repo_name
stringlengths
6
103
path
stringlengths
5
191
copies
stringlengths
1
4
size
stringlengths
4
6
content
stringlengths
986
970k
license
stringclasses
15 values
shyamalschandra/scikit-learn
sklearn/linear_model/_ridge.py
1
83523
""" Ridge regression """ # Author: Mathieu Blondel <mathieu@mblondel.org> # Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com> # Fabian Pedregosa <fabian@fseoane.net> # Michael Eickenberg <michael.eickenberg@nsup.org> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy import optimize from scipy.sparse import linalg as sp_linalg from ._base import LinearClassifierMixin, LinearModel from ._base import _deprecate_normalize, _rescale_data from ._sag import sag_solver from ..base import MultiOutputMixin, RegressorMixin, is_classifier from ..utils.extmath import safe_sparse_dot from ..utils.extmath import row_norms from ..utils import check_array from ..utils import check_consistent_length from ..utils import compute_sample_weight from ..utils import column_or_1d from ..utils.validation import _check_sample_weight from ..preprocessing import LabelBinarizer from ..model_selection import GridSearchCV from ..metrics import check_scoring from ..exceptions import ConvergenceWarning from ..utils.sparsefuncs import mean_variance_axis def _solve_sparse_cg( X, y, alpha, max_iter=None, tol=1e-3, verbose=0, X_offset=None, X_scale=None ): def _get_rescaled_operator(X): X_offset_scale = X_offset / X_scale def matvec(b): return X.dot(b) - b.dot(X_offset_scale) def rmatvec(b): return X.T.dot(b) - X_offset_scale * np.sum(b) X1 = sparse.linalg.LinearOperator(shape=X.shape, matvec=matvec, rmatvec=rmatvec) return X1 n_samples, n_features = X.shape if X_offset is None or X_scale is None: X1 = sp_linalg.aslinearoperator(X) else: X1 = _get_rescaled_operator(X) coefs = np.empty((y.shape[1], n_features), dtype=X.dtype) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype ) # FIXME atol try: coef, info = sp_linalg.cg(C, y_column, tol=tol, atol="legacy") except TypeError: # old scipy coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype ) # FIXME atol try: coefs[i], info = sp_linalg.cg( C, y_column, maxiter=max_iter, tol=tol, atol="legacy" ) except TypeError: # old scipy coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn( "sparse_cg did not converge after %d iterations." % info, ConvergenceWarning, ) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features), dtype=X.dtype) n_iter = np.empty(y.shape[1], dtype=np.int32) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] info = sp_linalg.lsqr( X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter ) coefs[i] = info[0] n_iter[i] = info[2] return coefs, n_iter def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_features = X.shape[1] n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[:: n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features], dtype=X.dtype) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[:: n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[:: n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[:: n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn( "Singular matrix in solving dual problem. Using " "least-squares solution instead." ) dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[:: n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples], K.dtype) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[:: n_samples + 1] += current_alpha dual_coef[:] = linalg.solve( K, target, sym_pos=True, overwrite_a=False ).ravel() K.flat[:: n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size), dtype=X.dtype) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def _solve_lbfgs( X, y, alpha, positive=True, max_iter=None, tol=1e-3, X_offset=None, X_scale=None ): """Solve ridge regression with LBFGS. The main purpose is fitting with forcing coefficients to be positive. For unconstrained ridge regression, there are faster dedicated solver methods. Note that with positive bounds on the coefficients, LBFGS seems faster than scipy.optimize.lsq_linear. """ n_samples, n_features = X.shape options = {} if max_iter is not None: options["maxiter"] = max_iter config = { "method": "L-BFGS-B", "tol": tol, "jac": True, "options": options, } if positive: config["bounds"] = [(0, np.inf)] * n_features if X_offset is not None and X_scale is not None: X_offset_scale = X_offset / X_scale else: X_offset_scale = None coefs = np.empty((y.shape[1], n_features), dtype=X.dtype) for i in range(y.shape[1]): x0 = np.zeros((n_features,)) y_column = y[:, i] def func(w): residual = X.dot(w) - y_column if X_offset_scale is not None: residual -= w.dot(X_offset_scale) f = 0.5 * residual.dot(residual) + 0.5 * alpha[i] * w.dot(w) grad = X.T @ residual + alpha[i] * w if X_offset_scale is not None: grad -= X_offset_scale * np.sum(residual) return f, grad result = optimize.minimize(func, x0, **config) if not result["success"]: warnings.warn( "The lbfgs solver did not converge. Try increasing max_iter " f"or tol. Currently: max_iter={max_iter} and tol={tol}", ConvergenceWarning, ) coefs[i] = result["x"] return coefs def _get_valid_accept_sparse(is_X_sparse, solver): if is_X_sparse and solver in ["auto", "sag", "saga"]: return "csr" else: return ["csr", "csc", "coo"] def ridge_regression( X, y, alpha, *, sample_weight=None, solver="auto", max_iter=None, tol=1e-3, verbose=0, positive=False, random_state=None, return_n_iter=False, return_intercept=False, check_input=True, ): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {ndarray, sparse matrix, LinearOperator} of shape \ (n_samples, n_features) Training data y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values alpha : float or array-like of shape (n_targets,) Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. sample_weight : float or array-like of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. If sample_weight is not None and solver='auto', the solver will be set to 'cholesky'. .. versionadded:: 0.17 solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \ 'sag', 'saga', 'lbfgs'}, default='auto' Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses its improved, unbiased version named SAGA. Both methods also use an iterative procedure, and are often faster than other solvers when both n_samples and n_features are large. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. - 'lbfgs' uses L-BFGS-B algorithm implemented in `scipy.optimize.minimize`. It can be used only when `positive` is True. All last six solvers support both dense and sparse data. However, only 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. max_iter : int, default=None Maximum number of iterations for conjugate gradient solver. For the 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' and saga solver, the default value is 1000. For 'lbfgs' solver, the default value is 15000. tol : float, default=1e-3 Precision of the solution. verbose : int, default=0 Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. positive : bool, default=False When set to ``True``, forces the coefficients to be positive. Only 'lbfgs' solver is supported in this case. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag' or 'saga' to shuffle the data. See :term:`Glossary <random_state>` for details. return_n_iter : bool, default=False If True, the method also returns `n_iter`, the actual number of iteration performed by the solver. .. versionadded:: 0.17 return_intercept : bool, default=False If True and if X is sparse, the method also returns the intercept, and the solver is automatically changed to 'sag'. This is only a temporary fix for fitting the intercept with sparse data. For dense data, use sklearn.linear_model._preprocess_data before your regression. .. versionadded:: 0.17 check_input : bool, default=True If False, the input arrays X and y will not be checked. .. versionadded:: 0.21 Returns ------- coef : ndarray of shape (n_features,) or (n_targets, n_features) Weight vector(s). n_iter : int, optional The actual number of iteration performed by the solver. Only returned if `return_n_iter` is True. intercept : float or ndarray of shape (n_targets,) The intercept of the model. Only returned if `return_intercept` is True and if X is a scipy sparse array. Notes ----- This function won't compute the intercept. """ return _ridge_regression( X, y, alpha, sample_weight=sample_weight, solver=solver, max_iter=max_iter, tol=tol, verbose=verbose, positive=positive, random_state=random_state, return_n_iter=return_n_iter, return_intercept=return_intercept, X_scale=None, X_offset=None, check_input=check_input, ) def _ridge_regression( X, y, alpha, sample_weight=None, solver="auto", max_iter=None, tol=1e-3, verbose=0, positive=False, random_state=None, return_n_iter=False, return_intercept=False, X_scale=None, X_offset=None, check_input=True, ): has_sw = sample_weight is not None if solver == "auto": if positive: solver = "lbfgs" elif return_intercept: # sag supports fitting intercept directly solver = "sag" elif not sparse.issparse(X): solver = "cholesky" else: solver = "sparse_cg" if solver not in ("sparse_cg", "cholesky", "svd", "lsqr", "sag", "saga", "lbfgs"): raise ValueError( "Known solvers are 'sparse_cg', 'cholesky', 'svd'" " 'lsqr', 'sag', 'saga' or 'lbfgs'. Got %s." % solver ) if positive and solver != "lbfgs": raise ValueError( "When positive=True, only 'lbfgs' solver can be used. " f"Please change solver {solver} to 'lbfgs' " "or set positive=False." ) if solver == "lbfgs" and not positive: raise ValueError( "'lbfgs' solver can be used only when positive=True. " "Please use another solver." ) if return_intercept and solver != "sag": raise ValueError( "In Ridge, only 'sag' solver can directly fit the " "intercept. Please change solver to 'sag' or set " "return_intercept=False." ) if check_input: _dtype = [np.float64, np.float32] _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver) X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype, order="C") y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None) check_consistent_length(X, y) n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError( "Number of samples in X and y does not correspond: %d != %d" % (n_samples, n_samples_) ) if has_sw: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) if solver not in ["sag", "saga"]: # SAG supports sample_weight directly. For other solvers, # we implement sample_weight via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha, dtype=X.dtype).ravel() if alpha.size not in [1, n_targets]: raise ValueError( "Number of targets and number of penalties do not correspond: %d != %d" % (alpha.size, n_targets) ) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) n_iter = None if solver == "sparse_cg": coef = _solve_sparse_cg( X, y, alpha, max_iter=max_iter, tol=tol, verbose=verbose, X_offset=X_offset, X_scale=X_scale, ) elif solver == "lsqr": coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == "cholesky": if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = "svd" else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = "svd" elif solver in ["sag", "saga"]: # precompute max_squared_sum for all targets max_squared_sum = row_norms(X, squared=True).max() coef = np.empty((y.shape[1], n_features), dtype=X.dtype) n_iter = np.empty(y.shape[1], dtype=np.int32) intercept = np.zeros((y.shape[1],), dtype=X.dtype) for i, (alpha_i, target) in enumerate(zip(alpha, y.T)): init = { "coef": np.zeros((n_features + int(return_intercept), 1), dtype=X.dtype) } coef_, n_iter_, _ = sag_solver( X, target.ravel(), sample_weight, "squared", alpha_i, 0, max_iter, tol, verbose, random_state, False, max_squared_sum, init, is_saga=solver == "saga", ) if return_intercept: coef[i] = coef_[:-1] intercept[i] = coef_[-1] else: coef[i] = coef_ n_iter[i] = n_iter_ if intercept.shape[0] == 1: intercept = intercept[0] coef = np.asarray(coef) elif solver == "lbfgs": coef = _solve_lbfgs( X, y, alpha, positive=positive, tol=tol, max_iter=max_iter, X_offset=X_offset, X_scale=X_scale, ) if solver == "svd": if sparse.issparse(X): raise TypeError("SVD solver does not support sparse inputs currently") coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() if return_n_iter and return_intercept: return coef, n_iter, intercept elif return_intercept: return coef, intercept elif return_n_iter: return coef, n_iter else: return coef class _BaseRidge(LinearModel, metaclass=ABCMeta): @abstractmethod def __init__( self, alpha=1.0, *, fit_intercept=True, normalize="deprecated", copy_X=True, max_iter=None, tol=1e-3, solver="auto", positive=False, random_state=None, ): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver self.positive = positive self.random_state = random_state def fit(self, X, y, sample_weight=None): self._normalize = _deprecate_normalize( self.normalize, default=False, estimator_name=self.__class__.__name__ ) _dtype = [np.float64, np.float32] _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), self.solver) X, y = self._validate_data( X, y, accept_sparse=_accept_sparse, dtype=_dtype, multi_output=True, y_numeric=True, ) if self.solver == "lbfgs" and not self.positive: raise ValueError( "'lbfgs' solver can be used only when positive=True. " "Please use another solver." ) if self.positive: if self.solver not in ["auto", "lbfgs"]: raise ValueError( f"solver='{self.solver}' does not support positive fitting. Please" " set the solver to 'auto' or 'lbfgs', or set `positive=False`" ) else: solver = self.solver elif sparse.issparse(X) and self.fit_intercept: if self.solver not in ["auto", "sparse_cg", "sag", "lbfgs"]: raise ValueError( "solver='{}' does not support fitting the intercept " "on sparse data. Please set the solver to 'auto' or " "'sparse_cg', 'sag', 'lbfgs' " "or set `fit_intercept=False`".format(self.solver) ) if self.solver == "lbfgs": solver = "lbfgs" elif self.solver == "sag" and self.max_iter is None and self.tol > 1e-4: warnings.warn( '"sag" solver requires many iterations to fit ' "an intercept with sparse inputs. Either set the " 'solver to "auto" or "sparse_cg", or set a low ' '"tol" and a high "max_iter" (especially if inputs are ' "not standardized)." ) solver = "sag" else: solver = "sparse_cg" else: solver = self.solver if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) # when X is sparse we only remove offset from y X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, self.fit_intercept, self._normalize, self.copy_X, sample_weight=sample_weight, return_mean=True, ) if solver == "sag" and sparse.issparse(X) and self.fit_intercept: self.coef_, self.n_iter_, self.intercept_ = _ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver="sag", positive=self.positive, random_state=self.random_state, return_n_iter=True, return_intercept=True, check_input=False, ) # add the offset which was subtracted by _preprocess_data self.intercept_ += y_offset else: if sparse.issparse(X) and self.fit_intercept: # required to fit intercept with sparse_cg solver params = {"X_offset": X_offset, "X_scale": X_scale} else: # for dense matrices or when intercept is set to 0 params = {} self.coef_, self.n_iter_ = _ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=solver, positive=self.positive, random_state=self.random_state, return_n_iter=True, return_intercept=False, check_input=False, **params, ) self._set_intercept(X_offset, y_offset, X_scale) return self class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge): """Linear least squares with l2 regularization. Minimizes the objective function:: ||y - Xw||^2_2 + alpha * ||w||^2_2 This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape (n_samples, n_targets)). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, ndarray of shape (n_targets,)}, default=1.0 Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. fit_intercept : bool, default=True Whether to fit the intercept for this model. If set to false, no intercept will be used in calculations (i.e. ``X`` and ``y`` are expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. max_iter : int, default=None Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. For 'lbfgs' solver, the default value is 15000. tol : float, default=1e-3 Precision of the solution. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \ 'sag', 'saga', 'lbfgs'}, default='auto' Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses its improved, unbiased version named SAGA. Both methods also use an iterative procedure, and are often faster than other solvers when both n_samples and n_features are large. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. - 'lbfgs' uses L-BFGS-B algorithm implemented in `scipy.optimize.minimize`. It can be used only when `positive` is True. All last six solvers support both dense and sparse data. However, only 'sag', 'sparse_cg', and 'lbfgs' support sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. positive : bool, default=False When set to ``True``, forces the coefficients to be positive. Only 'lbfgs' solver is supported in this case. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag' or 'saga' to shuffle the data. See :term:`Glossary <random_state>` for details. .. versionadded:: 0.17 `random_state` to support Stochastic Average Gradient. Attributes ---------- coef_ : ndarray of shape (n_features,) or (n_targets, n_features) Weight vector(s). intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : None or ndarray of shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. .. versionadded:: 0.17 n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 See Also -------- RidgeClassifier : Ridge classifier. RidgeCV : Ridge regression with built-in cross validation. :class:`~sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression combines ridge regression with the kernel trick. Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) Ridge() """ def __init__( self, alpha=1.0, *, fit_intercept=True, normalize="deprecated", copy_X=True, max_iter=None, tol=1e-3, solver="auto", positive=False, random_state=None, ): super().__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, positive=positive, random_state=random_state, ) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. """ return super().fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. This classifier first converts the target values into ``{-1, 1}`` and then treats the problem as a regression task (multi-output regression in the multiclass case). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float, default=1.0 Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. max_iter : int, default=None Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. tol : float, default=1e-3 Precision of the solution. class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', \ 'sag', 'saga', 'lbfgs'}, default='auto' Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses its unbiased and more flexible version named SAGA. Both methods use an iterative procedure, and are often faster than other solvers when both n_samples and n_features are large. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. - 'lbfgs' uses L-BFGS-B algorithm implemented in `scipy.optimize.minimize`. It can be used only when `positive` is True. positive : bool, default=False When set to ``True``, forces the coefficients to be positive. Only 'lbfgs' solver is supported in this case. random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag' or 'saga' to shuffle the data. See :term:`Glossary <random_state>` for details. Attributes ---------- coef_ : ndarray of shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. ``coef_`` is of shape (1, n_features) when the given problem is binary. intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : None or ndarray of shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. classes_ : ndarray of shape (n_classes,) The classes labels. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 See Also -------- Ridge : Ridge regression. RidgeClassifierCV : Ridge classifier with built-in cross validation. Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. Examples -------- >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import RidgeClassifier >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = RidgeClassifier().fit(X, y) >>> clf.score(X, y) 0.9595... """ def __init__( self, alpha=1.0, *, fit_intercept=True, normalize="deprecated", copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto", positive=False, random_state=None, ): super().__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, positive=positive, random_state=random_state, ) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge classifier model. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. .. versionadded:: 0.17 *sample_weight* support to Classifier. Returns ------- self : object Instance of the estimator. """ _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), self.solver) X, y = self._validate_data( X, y, accept_sparse=_accept_sparse, multi_output=True, y_numeric=False ) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith("multilabel"): y = column_or_1d(y, warn=True) else: # we don't (yet) support multi-label classification in Ridge raise ValueError( "%s doesn't support multi-label classification" % (self.__class__.__name__) ) if self.class_weight: # modify the sample weights with the corresponding class weight sample_weight = sample_weight * compute_sample_weight(self.class_weight, y) super().fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): """Classes labels.""" return self._label_binarizer.classes_ def _check_gcv_mode(X, gcv_mode): possible_gcv_modes = [None, "auto", "svd", "eigen"] if gcv_mode not in possible_gcv_modes: raise ValueError( "Unknown value for 'gcv_mode'. Got {} instead of one of {}".format( gcv_mode, possible_gcv_modes ) ) if gcv_mode in ["eigen", "svd"]: return gcv_mode # if X has more rows than columns, use decomposition of X^T.X, # otherwise X.X^T if X.shape[0] > X.shape[1]: return "svd" return "eigen" def _find_smallest_angle(query, vectors): """Find the column of vectors that is most aligned with the query. Both query and the columns of vectors must have their l2 norm equal to 1. Parameters ---------- query : ndarray of shape (n_samples,) Normalized query vector. vectors : ndarray of shape (n_samples, n_features) Vectors to which we compare query, as columns. Must be normalized. """ abs_cosine = np.abs(query.dot(vectors)) index = np.argmax(abs_cosine) return index class _X_CenterStackOp(sparse.linalg.LinearOperator): """Behaves as centered and scaled X with an added intercept column. This operator behaves as np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]) """ def __init__(self, X, X_mean, sqrt_sw): n_samples, n_features = X.shape super().__init__(X.dtype, (n_samples, n_features + 1)) self.X = X self.X_mean = X_mean self.sqrt_sw = sqrt_sw def _matvec(self, v): v = v.ravel() return ( safe_sparse_dot(self.X, v[:-1], dense_output=True) - self.sqrt_sw * self.X_mean.dot(v[:-1]) + v[-1] * self.sqrt_sw ) def _matmat(self, v): return ( safe_sparse_dot(self.X, v[:-1], dense_output=True) - self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1]) + v[-1] * self.sqrt_sw[:, None] ) def _transpose(self): return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw) class _XT_CenterStackOp(sparse.linalg.LinearOperator): """Behaves as transposed centered and scaled X with an intercept column. This operator behaves as np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T """ def __init__(self, X, X_mean, sqrt_sw): n_samples, n_features = X.shape super().__init__(X.dtype, (n_features + 1, n_samples)) self.X = X self.X_mean = X_mean self.sqrt_sw = sqrt_sw def _matvec(self, v): v = v.ravel() n_features = self.shape[0] res = np.empty(n_features, dtype=self.X.dtype) res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - ( self.X_mean * self.sqrt_sw.dot(v) ) res[-1] = np.dot(v, self.sqrt_sw) return res def _matmat(self, v): n_features = self.shape[0] res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype) res[:-1] = safe_sparse_dot(self.X.T, v, dense_output=True) - self.X_mean[ :, None ] * self.sqrt_sw.dot(v) res[-1] = np.dot(self.sqrt_sw, v) return res class _IdentityRegressor: """Fake regressor which will directly output the prediction.""" def decision_function(self, y_predict): return y_predict def predict(self, y_predict): return y_predict class _IdentityClassifier(LinearClassifierMixin): """Fake classifier which will directly output the prediction. We inherit from LinearClassifierMixin to get the proper shape for the output `y`. """ def __init__(self, classes): self.classes_ = classes def decision_function(self, y_predict): return y_predict class _RidgeGCV(LinearModel): """Ridge regression with built-in Leave-one-out Cross-Validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id). Dual solution: c = G^-1y Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G^-1 = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G^-1) The best score (negative mean squared error or user-provided scoring) is stored in the `best_score_` attribute, and the selected hyperparameter in `alpha_`. References ---------- http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__( self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize="deprecated", scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False, is_clf=False, alpha_per_target=False, ): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values self.is_clf = is_clf self.alpha_per_target = alpha_per_target @staticmethod def _decomp_diag(v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) @staticmethod def _diag_dot(D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None),) + (np.newaxis,) * (len(B.shape) - 1)] return D * B def _compute_gram(self, X, sqrt_sw): """Computes the Gram matrix XX^T with possible centering. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The preprocessed design matrix. sqrt_sw : ndarray of shape (n_samples,) square roots of sample weights Returns ------- gram : ndarray of shape (n_samples, n_samples) The Gram matrix. X_mean : ndarray of shape (n_feature,) The weighted mean of ``X`` for each feature. Notes ----- When X is dense the centering has been done in preprocessing so the mean is 0 and we just compute XX^T. When X is sparse it has not been centered in preprocessing, but it has been scaled by sqrt(sample weights). When self.fit_intercept is False no centering is done. The centered X is never actually computed because centering would break the sparsity of X. """ center = self.fit_intercept and sparse.issparse(X) if not center: # in this case centering has been done in preprocessing # or we are not fitting an intercept. X_mean = np.zeros(X.shape[1], dtype=X.dtype) return safe_sparse_dot(X, X.T, dense_output=True), X_mean # X is sparse n_samples = X.shape[0] sample_weight_matrix = sparse.dia_matrix( (sqrt_sw, 0), shape=(n_samples, n_samples) ) X_weighted = sample_weight_matrix.dot(X) X_mean, _ = mean_variance_axis(X_weighted, axis=0) X_mean *= n_samples / sqrt_sw.dot(sqrt_sw) X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True) X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean) return ( safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T, X_mean, ) def _compute_covariance(self, X, sqrt_sw): """Computes covariance matrix X^TX with possible centering. Parameters ---------- X : sparse matrix of shape (n_samples, n_features) The preprocessed design matrix. sqrt_sw : ndarray of shape (n_samples,) square roots of sample weights Returns ------- covariance : ndarray of shape (n_features, n_features) The covariance matrix. X_mean : ndarray of shape (n_feature,) The weighted mean of ``X`` for each feature. Notes ----- Since X is sparse it has not been centered in preprocessing, but it has been scaled by sqrt(sample weights). When self.fit_intercept is False no centering is done. The centered X is never actually computed because centering would break the sparsity of X. """ if not self.fit_intercept: # in this case centering has been done in preprocessing # or we are not fitting an intercept. X_mean = np.zeros(X.shape[1], dtype=X.dtype) return safe_sparse_dot(X.T, X, dense_output=True), X_mean # this function only gets called for sparse X n_samples = X.shape[0] sample_weight_matrix = sparse.dia_matrix( (sqrt_sw, 0), shape=(n_samples, n_samples) ) X_weighted = sample_weight_matrix.dot(X) X_mean, _ = mean_variance_axis(X_weighted, axis=0) X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw) weight_sum = sqrt_sw.dot(sqrt_sw) return ( safe_sparse_dot(X.T, X, dense_output=True) - weight_sum * np.outer(X_mean, X_mean), X_mean, ) def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw): """Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T) without explicitely centering X nor computing X.dot(A) when X is sparse. Parameters ---------- X : sparse matrix of shape (n_samples, n_features) A : ndarray of shape (n_features, n_features) X_mean : ndarray of shape (n_features,) sqrt_sw : ndarray of shape (n_features,) square roots of sample weights Returns ------- diag : np.ndarray, shape (n_samples,) The computed diagonal. """ intercept_col = scale = sqrt_sw batch_size = X.shape[1] diag = np.empty(X.shape[0], dtype=X.dtype) for start in range(0, X.shape[0], batch_size): batch = slice(start, min(X.shape[0], start + batch_size), 1) X_batch = np.empty( (X[batch].shape[0], X.shape[1] + self.fit_intercept), dtype=X.dtype ) if self.fit_intercept: X_batch[:, :-1] = X[batch].A - X_mean * scale[batch][:, None] X_batch[:, -1] = intercept_col[batch] else: X_batch = X[batch].A diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1) return diag def _eigen_decompose_gram(self, X, y, sqrt_sw): """Eigendecomposition of X.X^T, used when n_samples <= n_features.""" # if X is dense it has already been centered in preprocessing K, X_mean = self._compute_gram(X, sqrt_sw) if self.fit_intercept: # to emulate centering X with sample weights, # ie removing the weighted average, we add a column # containing the square roots of the sample weights. # by centering, it is orthogonal to the other columns K += np.outer(sqrt_sw, sqrt_sw) eigvals, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return X_mean, eigvals, Q, QT_y def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X.X^T (n_samples <= n_features). """ w = 1.0 / (eigvals + alpha) if self.fit_intercept: # the vector containing the square roots of the sample weights (1 # when no sample weights) is the eigenvector of XX^T which # corresponds to the intercept; we cancel the regularization on # this dimension. the corresponding eigenvalue is # sum(sample_weight). normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw) intercept_dim = _find_smallest_angle(normalized_sw, Q) w[intercept_dim] = 0 # cancel regularization for the intercept c = np.dot(Q, self._diag_dot(w, QT_y)) G_inverse_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_inverse_diag = G_inverse_diag[:, np.newaxis] return G_inverse_diag, c def _eigen_decompose_covariance(self, X, y, sqrt_sw): """Eigendecomposition of X^T.X, used when n_samples > n_features and X is sparse. """ n_samples, n_features = X.shape cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype) cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw) if not self.fit_intercept: cov = cov[:-1, :-1] # to emulate centering X with sample weights, # ie removing the weighted average, we add a column # containing the square roots of the sample weights. # by centering, it is orthogonal to the other columns # when all samples have the same weight we add a column of 1 else: cov[-1] = 0 cov[:, -1] = 0 cov[-1, -1] = sqrt_sw.dot(sqrt_sw) nullspace_dim = max(0, n_features - n_samples) eigvals, V = linalg.eigh(cov) # remove eigenvalues and vectors in the null space of X^T.X eigvals = eigvals[nullspace_dim:] V = V[:, nullspace_dim:] return X_mean, eigvals, V, X def _solve_eigen_covariance_no_intercept( self, alpha, y, sqrt_sw, X_mean, eigvals, V, X ): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X^T.X (n_samples > n_features and X is sparse), and not fitting an intercept. """ w = 1 / (eigvals + alpha) A = (V * w).dot(V.T) AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True)) y_hat = safe_sparse_dot(X, AXy, dense_output=True) hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw) if len(y.shape) != 1: # handle case where y is 2-d hat_diag = hat_diag[:, np.newaxis] return (1 - hat_diag) / alpha, (y - y_hat) / alpha def _solve_eigen_covariance_intercept( self, alpha, y, sqrt_sw, X_mean, eigvals, V, X ): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X^T.X (n_samples > n_features and X is sparse), and we are fitting an intercept. """ # the vector [0, 0, ..., 0, 1] # is the eigenvector of X^TX which # corresponds to the intercept; we cancel the regularization on # this dimension. the corresponding eigenvalue is # sum(sample_weight), e.g. n when uniform sample weights. intercept_sv = np.zeros(V.shape[0]) intercept_sv[-1] = 1 intercept_dim = _find_smallest_angle(intercept_sv, V) w = 1 / (eigvals + alpha) w[intercept_dim] = 1 / eigvals[intercept_dim] A = (V * w).dot(V.T) # add a column to X containing the square roots of sample weights X_op = _X_CenterStackOp(X, X_mean, sqrt_sw) AXy = A.dot(X_op.T.dot(y)) y_hat = X_op.dot(AXy) hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw) # return (1 - hat_diag), (y - y_hat) if len(y.shape) != 1: # handle case where y is 2-d hat_diag = hat_diag[:, np.newaxis] return (1 - hat_diag) / alpha, (y - y_hat) / alpha def _solve_eigen_covariance(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X): """Compute dual coefficients and diagonal of G^-1. Used when we have a decomposition of X^T.X (n_samples > n_features and X is sparse). """ if self.fit_intercept: return self._solve_eigen_covariance_intercept( alpha, y, sqrt_sw, X_mean, eigvals, V, X ) return self._solve_eigen_covariance_no_intercept( alpha, y, sqrt_sw, X_mean, eigvals, V, X ) def _svd_decompose_design_matrix(self, X, y, sqrt_sw): # X already centered X_mean = np.zeros(X.shape[1], dtype=X.dtype) if self.fit_intercept: # to emulate fit_intercept=True situation, add a column # containing the square roots of the sample weights # by centering, the other columns are orthogonal to that one intercept_column = sqrt_sw[:, None] X = np.hstack((X, intercept_column)) U, singvals, _ = linalg.svd(X, full_matrices=0) singvals_sq = singvals ** 2 UT_y = np.dot(U.T, y) return X_mean, singvals_sq, U, UT_y def _solve_svd_design_matrix(self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y): """Compute dual coefficients and diagonal of G^-1. Used when we have an SVD decomposition of X (n_samples > n_features and X is dense). """ w = ((singvals_sq + alpha) ** -1) - (alpha ** -1) if self.fit_intercept: # detect intercept column normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw) intercept_dim = _find_smallest_angle(normalized_sw, U) # cancel the regularization for the intercept w[intercept_dim] = -(alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_inverse_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_inverse_diag = G_inverse_diag[:, np.newaxis] return G_inverse_diag, c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model with gcv. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training data. Will be cast to float64 if necessary. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to float64 if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object """ _normalize = _deprecate_normalize( self.normalize, default=False, estimator_name=self.__class__.__name__ ) X, y = self._validate_data( X, y, accept_sparse=["csr", "csc", "coo"], dtype=[np.float64], multi_output=True, y_numeric=True, ) # alpha_per_target cannot be used in classifier mode. All subclasses # of _RidgeGCV that are classifiers keep alpha_per_target at its # default value: False, so the condition below should never happen. assert not (self.is_clf and self.alpha_per_target) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) if np.any(self.alphas <= 0): raise ValueError( "alphas must be strictly positive. Got {} containing some " "negative or null value instead.".format(self.alphas) ) X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data( X, y, self.fit_intercept, _normalize, self.copy_X, sample_weight=sample_weight, ) gcv_mode = _check_gcv_mode(X, self.gcv_mode) if gcv_mode == "eigen": decompose = self._eigen_decompose_gram solve = self._solve_eigen_gram elif gcv_mode == "svd": if sparse.issparse(X): decompose = self._eigen_decompose_covariance solve = self._solve_eigen_covariance else: decompose = self._svd_decompose_design_matrix solve = self._solve_svd_design_matrix n_samples = X.shape[0] if sample_weight is not None: X, y = _rescale_data(X, y, sample_weight) sqrt_sw = np.sqrt(sample_weight) else: sqrt_sw = np.ones(n_samples, dtype=X.dtype) X_mean, *decomposition = decompose(X, y, sqrt_sw) scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None n_y = 1 if len(y.shape) == 1 else y.shape[1] n_alphas = 1 if np.ndim(self.alphas) == 0 else len(self.alphas) if self.store_cv_values: self.cv_values_ = np.empty((n_samples * n_y, n_alphas), dtype=X.dtype) best_coef, best_score, best_alpha = None, None, None for i, alpha in enumerate(np.atleast_1d(self.alphas)): G_inverse_diag, c = solve(float(alpha), y, sqrt_sw, X_mean, *decomposition) if error: squared_errors = (c / G_inverse_diag) ** 2 if self.alpha_per_target: alpha_score = -squared_errors.mean(axis=0) else: alpha_score = -squared_errors.mean() if self.store_cv_values: self.cv_values_[:, i] = squared_errors.ravel() else: predictions = y - (c / G_inverse_diag) if self.store_cv_values: self.cv_values_[:, i] = predictions.ravel() if self.is_clf: identity_estimator = _IdentityClassifier(classes=np.arange(n_y)) alpha_score = scorer( identity_estimator, predictions, y.argmax(axis=1) ) else: identity_estimator = _IdentityRegressor() if self.alpha_per_target: alpha_score = np.array( [ scorer(identity_estimator, predictions[:, j], y[:, j]) for j in range(n_y) ] ) else: alpha_score = scorer( identity_estimator, predictions.ravel(), y.ravel() ) # Keep track of the best model if best_score is None: # initialize if self.alpha_per_target and n_y > 1: best_coef = c best_score = np.atleast_1d(alpha_score) best_alpha = np.full(n_y, alpha) else: best_coef = c best_score = alpha_score best_alpha = alpha else: # update if self.alpha_per_target and n_y > 1: to_update = alpha_score > best_score best_coef[:, to_update] = c[:, to_update] best_score[to_update] = alpha_score[to_update] best_alpha[to_update] = alpha elif alpha_score > best_score: best_coef, best_score, best_alpha = c, alpha_score, alpha self.alpha_ = best_alpha self.best_score_ = best_score self.dual_coef_ = best_coef self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) X_offset += X_mean * X_scale self._set_intercept(X_offset, y_offset, X_scale) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, n_alphas else: cv_values_shape = n_samples, n_y, n_alphas self.cv_values_ = self.cv_values_.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__( self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize="deprecated", scoring=None, cv=None, gcv_mode=None, store_cv_values=False, alpha_per_target=False, ): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values self.alpha_per_target = alpha_per_target def fit(self, X, y, sample_weight=None): """Fit Ridge regression model with cv. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data. If using GCV, will be cast to float64 if necessary. y : ndarray of shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. Notes ----- When sample_weight is provided, the selected hyperparameter may depend on whether we use leave-one-out cross-validation (cv=None or cv='auto') or another form of cross-validation, because only leave-one-out cross-validation takes the sample weights into account when computing the validation score. """ cv = self.cv if cv is None: estimator = _RidgeGCV( self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values, is_clf=is_classifier(self), alpha_per_target=self.alpha_per_target, ) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ self.best_score_ = estimator.best_score_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True are incompatible") if self.alpha_per_target: raise ValueError("cv!=None and alpha_per_target=True are incompatible") parameters = {"alpha": self.alphas} solver = "sparse_cg" if sparse.issparse(X) else "auto" model = RidgeClassifier if is_classifier(self) else Ridge gs = GridSearchCV( model( fit_intercept=self.fit_intercept, normalize=self.normalize, solver=solver, ), parameters, cv=cv, scoring=self.scoring, ) gs.fit(X, y, sample_weight=sample_weight) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.best_score_ = gs.best_score_ self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ self.n_features_in_ = estimator.n_features_in_ if hasattr(estimator, "feature_names_in_"): self.feature_names_in_ = estimator.feature_names_in_ return self class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV): """Ridge regression with built-in cross-validation. See glossary entry for :term:`cross-validation estimator`. By default, it performs efficient Leave-One-Out Cross-Validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0) Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. If using Leave-One-Out cross-validation, alphas must be positive. fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. scoring : str, callable, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If None, the negative mean squared error if cv is 'auto' or None (i.e. when using leave-one-out cross-validation), and r2 score otherwise. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`~sklearn.model_selection.StratifiedKFold` is used, else, :class:`~sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. gcv_mode : {'auto', 'svd', eigen'}, default='auto' Flag indicating which strategy to use when performing Leave-One-Out Cross-Validation. Options are:: 'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen' 'svd' : force use of singular value decomposition of X when X is dense, eigenvalue decomposition of X^T.X when X is sparse. 'eigen' : force computation via eigendecomposition of X.X^T The 'auto' mode is the default and is intended to pick the cheaper option of the two depending on the shape of the training data. store_cv_values : bool, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the ``cv_values_`` attribute (see below). This flag is only compatible with ``cv=None`` (i.e. using Leave-One-Out Cross-Validation). alpha_per_target : bool, default=False Flag indicating whether to optimize the alpha value (picked from the `alphas` parameter list) for each target separately (for multi-output settings: multiple prediction targets). When set to `True`, after fitting, the `alpha_` attribute will contain a value for each target. When set to `False`, a single alpha is used for all targets. .. versionadded:: 0.24 Attributes ---------- cv_values_ : ndarray of shape (n_samples, n_alphas) or \ shape (n_samples, n_targets, n_alphas), optional Cross-validation values for each alpha (only available if ``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been called, this attribute will contain the mean squared errors if `scoring is None` otherwise it will contain standardized per point prediction values. coef_ : ndarray of shape (n_features) or (n_targets, n_features) Weight vector(s). intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float or ndarray of shape (n_targets,) Estimated regularization parameter, or, if ``alpha_per_target=True``, the estimated regularization parameter for each target. best_score_ : float or ndarray of shape (n_targets,) Score of base estimator with best alpha, or, if ``alpha_per_target=True``, a score for each target. .. versionadded:: 0.23 n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 See Also -------- Ridge : Ridge regression. RidgeClassifier : Classifier based on ridge regression on {-1, 1} labels. RidgeClassifierCV : Ridge classifier with built-in cross validation. Examples -------- >>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import RidgeCV >>> X, y = load_diabetes(return_X_y=True) >>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y) >>> clf.score(X, y) 0.5166... """ class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. See glossary entry for :term:`cross-validation estimator`. By default, it performs Leave-One-Out Cross-Validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0) Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``1 / (2C)`` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.svm.LinearSVC`. fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. scoring : str, callable, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. store_cv_values : bool, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the ``cv_values_`` attribute (see below). This flag is only compatible with ``cv=None`` (i.e. using Leave-One-Out Cross-Validation). Attributes ---------- cv_values_ : ndarray of shape (n_samples, n_targets, n_alphas), optional Cross-validation values for each alpha (only if ``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been called, this attribute will contain the mean squared errors if `scoring is None` otherwise it will contain standardized per point prediction values. coef_ : ndarray of shape (1, n_features) or (n_targets, n_features) Coefficient of the features in the decision function. ``coef_`` is of shape (1, n_features) when the given problem is binary. intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. best_score_ : float Score of base estimator with best alpha. .. versionadded:: 0.23 classes_ : ndarray of shape (n_classes,) The classes labels. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 See Also -------- Ridge : Ridge regression. RidgeClassifier : Ridge classifier. RidgeCV : Ridge regression with built-in cross validation. Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. Examples -------- >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import RidgeClassifierCV >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y) >>> clf.score(X, y) 0.9630... """ def __init__( self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize="deprecated", scoring=None, cv=None, class_weight=None, store_cv_values=False, ): super().__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv, store_cv_values=store_cv_values, ) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge classifier with cv. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. When using GCV, will be cast to float64 if necessary. y : ndarray of shape (n_samples,) Target values. Will be cast to X's dtype if necessary. sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight. Returns ------- self : object Fitted estimator. """ X, y = self._validate_data( X, y, accept_sparse=["csr", "csc", "coo"], multi_output=True, y_numeric=False, ) sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith("multilabel"): y = column_or_1d(y, warn=True) if self.class_weight: # modify the sample weights with the corresponding class weight sample_weight = sample_weight * compute_sample_weight(self.class_weight, y) target = Y if self.cv is None else y _BaseRidgeCV.fit(self, X, target, sample_weight=sample_weight) return self @property def classes_(self): """Classes labels.""" return self._label_binarizer.classes_ def _more_tags(self): return { "multilabel": True, "_xfail_checks": { "check_sample_weights_invariance": ( "zero sample_weight is not equivalent to removing samples" ), # FIXME: see # https://github.com/scikit-learn/scikit-learn/issues/19858 # to track progress to resolve this issue "check_classifiers_multilabel_output_format_predict": ( "RidgeClassifierCV.predict outputs an array of shape (25,) " "instead of (25, 5)" ), }, }
bsd-3-clause
Gustry/QGIS
tests/src/python/test_provider_postgres.py
2
149310
# -*- coding: utf-8 -*- """QGIS Unit tests for the postgres provider. Note: to prepare the DB, you need to run the sql files specified in tests/testdata/provider/testdata_pg.sh Read tests/README.md about writing/launching tests with PostgreSQL. Run with ctest -V -R PyQgsPostgresProvider .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ from builtins import next __author__ = 'Matthias Kuhn' __date__ = '2015-04-23' __copyright__ = 'Copyright 2015, The QGIS Project' import qgis # NOQA import psycopg2 import os import time from datetime import datetime from qgis.core import ( QgsVectorLayer, QgsVectorLayerExporter, QgsFeatureRequest, QgsFeatureSource, QgsFeature, QgsFieldConstraints, QgsDataProvider, NULL, QgsVectorLayerUtils, QgsSettings, QgsTransactionGroup, QgsReadWriteContext, QgsRectangle, QgsDefaultValue, QgsCoordinateReferenceSystem, QgsProject, QgsWkbTypes, QgsGeometry, QgsProviderRegistry, QgsVectorDataProvider, QgsDataSourceUri, QgsProviderConnectionException, ) from qgis.gui import QgsGui, QgsAttributeForm from qgis.PyQt.QtCore import QDate, QTime, QDateTime, QVariant, QDir, QObject, QByteArray, QTemporaryDir from qgis.PyQt.QtWidgets import QLabel from qgis.testing import start_app, unittest from qgis.PyQt.QtXml import QDomDocument from utilities import unitTestDataPath, compareWkt from providertestbase import ProviderTestCase QGISAPP = start_app() TEST_DATA_DIR = unitTestDataPath() class TestPyQgsPostgresProvider(unittest.TestCase, ProviderTestCase): @classmethod def setUpClass(cls): """Run before all tests""" cls.dbconn = 'service=qgis_test' if 'QGIS_PGTEST_DB' in os.environ: cls.dbconn = os.environ['QGIS_PGTEST_DB'] # Create test layers cls.vl = QgsVectorLayer( cls.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POINT table="qgis_test"."someData" (geom) sql=', 'test', 'postgres') assert cls.vl.isValid() cls.source = cls.vl.dataProvider() cls.poly_vl = QgsVectorLayer( cls.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="qgis_test"."some_poly_data" (geom) sql=', 'test', 'postgres') assert cls.poly_vl.isValid() cls.poly_provider = cls.poly_vl.dataProvider() QgsGui.editorWidgetRegistry().initEditors() cls.con = psycopg2.connect(cls.dbconn) @classmethod def tearDownClass(cls): """Run after all tests""" def execSQLCommand(self, sql): self.assertTrue(self.con) cur = self.con.cursor() self.assertTrue(cur) cur.execute(sql) cur.close() self.con.commit() def getSource(self): # create temporary table for edit tests self.execSQLCommand( 'DROP TABLE IF EXISTS qgis_test."editData" CASCADE') self.execSQLCommand( 'CREATE TABLE qgis_test."editData" ( pk SERIAL NOT NULL PRIMARY KEY, cnt integer, name text, name2 text, num_char text, dt timestamp without time zone, "date" date, "time" time without time zone, geom public.geometry(Point, 4326))') self.execSQLCommand("INSERT INTO qgis_test.\"editData\" (pk, cnt, name, name2, num_char, dt, \"date\", \"time\", geom) VALUES " "(5, -200, NULL, 'NuLl', '5', TIMESTAMP '2020-05-04 12:13:14', '2020-05-02', '12:13:01', '0101000020E61000001D5A643BDFC751C01F85EB51B88E5340')," "(3, 300, 'Pear', 'PEaR', '3', NULL, NULL, NULL, NULL)," "(1, 100, 'Orange', 'oranGe', '1', TIMESTAMP '2020-05-03 12:13:14', '2020-05-03', '12:13:14', '0101000020E61000006891ED7C3F9551C085EB51B81E955040')," "(2, 200, 'Apple', 'Apple', '2', TIMESTAMP '2020-05-04 12:14:14', '2020-05-04', '12:14:14', '0101000020E6100000CDCCCCCCCC0C51C03333333333B35140')," "(4, 400, 'Honey', 'Honey', '4', TIMESTAMP '2021-05-04 13:13:14', '2021-05-04', '13:13:14', '0101000020E610000014AE47E17A5450C03333333333935340')") vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POINT table="qgis_test"."editData" (geom) sql=', 'test', 'postgres') return vl def getEditableLayer(self): return self.getSource() def getEditableLayerWithCheckConstraint(self): """Returns the layer for attribute change CHECK constraint violation""" return QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'id\' srid=4326 type=POINT table="public"."test_check_constraint" (geom) sql=', 'test_check_constraint', 'postgres') def enableCompiler(self): QgsSettings().setValue('/qgis/compileExpressions', True) return True def disableCompiler(self): QgsSettings().setValue('/qgis/compileExpressions', False) def uncompiledFilters(self): return set(['"dt" = to_datetime(\'000www14ww13ww12www4ww5ww2020\',\'zzzwwwsswwmmwwhhwwwdwwMwwyyyy\')', '"date" = to_date(\'www4ww5ww2020\',\'wwwdwwMwwyyyy\')', '"time" = to_time(\'000www14ww13ww12www\',\'zzzwwwsswwmmwwhhwww\')']) def partiallyCompiledFilters(self): return set([]) def getGeneratedColumnsData(self): """ return a tuple with the generated column test layer and the expected generated value """ cur = self.con.cursor() cur.execute("SHOW server_version_num") pgversion = int(cur.fetchone()[0]) # don't trigger this test when PostgreSQL versions earlier than 12. if pgversion < 120000: return (None, None) else: return (QgsVectorLayer(self.dbconn + ' sslmode=disable table="qgis_test"."generated_columns"', 'test', 'postgres'), """('test:'::text || ((pk)::character varying)::text)""") # HERE GO THE PROVIDER SPECIFIC TESTS def testDefaultValue(self): self.source.setProviderProperty( QgsDataProvider.EvaluateDefaultValues, True) self.assertIsInstance(self.source.defaultValue(0), int) self.assertEqual(self.source.defaultValue(1), NULL) self.assertEqual(self.source.defaultValue(2), 'qgis') self.source.setProviderProperty( QgsDataProvider.EvaluateDefaultValues, False) def testDefaultValueClause(self): self.source.setProviderProperty( QgsDataProvider.EvaluateDefaultValues, False) self.assertEqual(self.source.defaultValueClause( 0), 'nextval(\'qgis_test."someData_pk_seq"\'::regclass)') self.assertFalse(self.source.defaultValueClause(1)) self.assertEqual(self.source.defaultValueClause(2), '\'qgis\'::text') def testDateTimeTypes(self): vl = QgsVectorLayer('%s table="qgis_test"."date_times" sql=' % ( self.dbconn), "testdatetimes", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual(fields.at(fields.indexFromName( 'date_field')).type(), QVariant.Date) self.assertEqual(fields.at(fields.indexFromName( 'time_field')).type(), QVariant.Time) self.assertEqual(fields.at(fields.indexFromName( 'datetime_field')).type(), QVariant.DateTime) f = next(vl.getFeatures(QgsFeatureRequest())) date_idx = vl.fields().lookupField('date_field') self.assertIsInstance(f.attributes()[date_idx], QDate) self.assertEqual(f.attributes()[date_idx], QDate(2004, 3, 4)) time_idx = vl.fields().lookupField('time_field') self.assertIsInstance(f.attributes()[time_idx], QTime) self.assertEqual(f.attributes()[time_idx], QTime(13, 41, 52)) datetime_idx = vl.fields().lookupField('datetime_field') self.assertIsInstance(f.attributes()[datetime_idx], QDateTime) self.assertEqual(f.attributes()[datetime_idx], QDateTime( QDate(2004, 3, 4), QTime(13, 41, 52))) def testBooleanType(self): vl = QgsVectorLayer('{} table="qgis_test"."boolean_table" sql='.format( self.dbconn), "testbool", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual( fields.at(fields.indexFromName('fld1')).type(), QVariant.Bool) values = {feat['id']: feat['fld1'] for feat in vl.getFeatures()} expected = { 1: True, 2: False, 3: NULL } self.assertEqual(values, expected) def testByteaType(self): vl = QgsVectorLayer('{} table="qgis_test"."byte_a_table" sql='.format( self.dbconn), "testbytea", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual(fields.at(fields.indexFromName( 'fld1')).type(), QVariant.ByteArray) values = {feat['id']: feat['fld1'] for feat in vl.getFeatures()} expected = { 1: QByteArray(b'YmludmFsdWU='), 2: QByteArray() } self.assertEqual(values, expected) # editing binary values self.execSQLCommand( 'DROP TABLE IF EXISTS qgis_test."byte_a_table_edit" CASCADE') self.execSQLCommand( 'CREATE TABLE qgis_test."byte_a_table_edit" ( pk SERIAL NOT NULL PRIMARY KEY, blobby bytea)') self.execSQLCommand("INSERT INTO qgis_test.\"byte_a_table_edit\" (pk, blobby) VALUES " "(1, encode('bbb', 'base64')::bytea)") vl = QgsVectorLayer( self.dbconn + ' sslmode=disable table="qgis_test"."byte_a_table_edit" sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) values = {feat['pk']: feat['blobby'] for feat in vl.getFeatures()} expected = { 1: QByteArray(b'YmJi') } self.assertEqual(values, expected) # change attribute value self.assertTrue(vl.dataProvider().changeAttributeValues( {1: {1: QByteArray(b'bbbvx')}})) values = {feat['pk']: feat['blobby'] for feat in vl.getFeatures()} expected = { 1: QByteArray(b'bbbvx') } self.assertEqual(values, expected) # add feature f = QgsFeature() f.setAttributes([2, QByteArray(b'cccc')]) self.assertTrue(vl.dataProvider().addFeature(f)) values = {feat['pk']: feat['blobby'] for feat in vl.getFeatures()} expected = { 1: QByteArray(b'bbbvx'), 2: QByteArray(b'cccc') } self.assertEqual(values, expected) # change feature self.assertTrue(vl.dataProvider().changeFeatures( {2: {1: QByteArray(b'dddd')}}, {})) values = {feat['pk']: feat['blobby'] for feat in vl.getFeatures()} expected = { 1: QByteArray(b'bbbvx'), 2: QByteArray(b'dddd') } self.assertEqual(values, expected) def testCitextType(self): vl = QgsVectorLayer('{} table="qgis_test"."citext_table" sql='.format( self.dbconn), "testbytea", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual( fields.at(fields.indexFromName('fld1')).type(), QVariant.String) values = {feat['id']: feat['fld1'] for feat in vl.getFeatures()} expected = { 1: 'test val', 2: NULL } self.assertEqual(values, expected) # editing citext values self.execSQLCommand( 'DROP TABLE IF EXISTS qgis_test."citext_table_edit" CASCADE') self.execSQLCommand( 'CREATE TABLE qgis_test."citext_table_edit" ( pk SERIAL NOT NULL PRIMARY KEY, txt citext)') self.execSQLCommand("INSERT INTO qgis_test.\"citext_table_edit\" (pk, txt) VALUES " "(1, 'text')") vl = QgsVectorLayer( self.dbconn + ' sslmode=disable table="qgis_test"."citext_table_edit" sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) values = {feat['pk']: feat['txt'] for feat in vl.getFeatures()} expected = { 1: 'text' } self.assertEqual(values, expected) # change attribute value self.assertTrue( vl.dataProvider().changeAttributeValues({1: {1: 'teeeext'}})) values = {feat['pk']: feat['txt'] for feat in vl.getFeatures()} expected = { 1: 'teeeext' } self.assertEqual(values, expected) # add feature f = QgsFeature() f.setAttributes([2, 'teeeeeeeeeext']) self.assertTrue(vl.dataProvider().addFeature(f)) values = {feat['pk']: feat['txt'] for feat in vl.getFeatures()} expected = { 1: 'teeeext', 2: 'teeeeeeeeeext' } self.assertEqual(values, expected) # change feature self.assertTrue(vl.dataProvider().changeFeatures( {2: {1: 'teeeeeeeeeeeeeeeeeeeeeeext'}}, {})) values = {feat['pk']: feat['txt'] for feat in vl.getFeatures()} expected = { 1: 'teeeext', 2: 'teeeeeeeeeeeeeeeeeeeeeeext' } self.assertEqual(values, expected) def testQueryLayers(self): def test_query(dbconn, query, key): ql = QgsVectorLayer( '%s srid=4326 table="%s" (geom) key=\'%s\' sql=' % ( dbconn, query.replace('"', '\\"'), key), "testgeom", "postgres") self.assertTrue(ql.isValid(), '{} ({})'.format(query, key)) test_query(self.dbconn, '(SELECT NULL::integer "Id1", NULL::integer "Id2", NULL::geometry(Point, 4326) geom LIMIT 0)', '"Id1","Id2"') def testWkbTypes(self): def test_table(dbconn, table_name, wkt): vl = QgsVectorLayer('%s srid=4326 table="qgis_test".%s (geom) sql=' % (dbconn, table_name), "testgeom", "postgres") self.assertTrue(vl.isValid()) for f in vl.getFeatures(): self.assertEqual(f.geometry().asWkt(), wkt) test_table(self.dbconn, 'p2d', 'Polygon ((0 0, 1 0, 1 1, 0 1, 0 0))') test_table(self.dbconn, 'p3d', 'PolygonZ ((0 0 0, 1 0 0, 1 1 0, 0 1 0, 0 0 0))') test_table(self.dbconn, 'triangle2d', 'Polygon ((0 0, 1 0, 1 1, 0 0))') test_table(self.dbconn, 'triangle3d', 'PolygonZ ((0 0 0, 1 0 0, 1 1 0, 0 0 0))') test_table(self.dbconn, 'tin2d', 'MultiPolygon (((0 0, 1 0, 1 1, 0 0)),((0 0, 0 1, 1 1, 0 0)))') test_table(self.dbconn, 'tin3d', 'MultiPolygonZ (((0 0 0, 1 0 0, 1 1 0, 0 0 0)),((0 0 0, 0 1 0, 1 1 0, 0 0 0)))') test_table(self.dbconn, 'ps2d', 'MultiPolygon (((0 0, 1 0, 1 1, 0 1, 0 0)))') test_table(self.dbconn, 'ps3d', 'MultiPolygonZ (((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)),((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),((1 0 0, 1 0 1, 0 0 1, 0 0 0, 1 0 0)))') test_table(self.dbconn, 'mp3d', 'MultiPolygonZ (((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)),((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),((1 0 0, 1 0 1, 0 0 1, 0 0 0, 1 0 0)))') test_table(self.dbconn, 'pt2d', 'Point (0 0)') test_table(self.dbconn, 'pt3d', 'PointZ (0 0 0)') test_table(self.dbconn, 'ls2d', 'LineString (0 0, 1 1)') test_table(self.dbconn, 'ls3d', 'LineStringZ (0 0 0, 1 1 1)') test_table(self.dbconn, 'mpt2d', 'MultiPoint ((0 0),(1 1))') test_table(self.dbconn, 'mpt3d', 'MultiPointZ ((0 0 0),(1 1 1))') test_table(self.dbconn, 'mls2d', 'MultiLineString ((0 0, 1 1),(2 2, 3 3))') test_table(self.dbconn, 'mls3d', 'MultiLineStringZ ((0 0 0, 1 1 1),(2 2 2, 3 3 3))') test_table(self.dbconn, 'pt4d', 'PointZM (1 2 3 4)') def testMetadata(self): """ Test that metadata is correctly acquired from provider """ metadata = self.vl.metadata() self.assertEqual( metadata.crs(), QgsCoordinateReferenceSystem.fromEpsgId(4326)) self.assertEqual(metadata.type(), 'dataset') self.assertEqual(metadata.abstract(), 'QGIS Test Table') def testGetFeaturesUniqueId(self): """ Test tables with inheritance for unique ids """ def test_unique(features, num_features): featureids = [] for f in features: self.assertFalse(f.id() in featureids) featureids.append(f.id()) self.assertEqual(len(features), num_features) vl = QgsVectorLayer('%s srid=4326 table="qgis_test".%s (geom) sql=' % (self.dbconn, 'someData'), "testgeom", "postgres") self.assertTrue(vl.isValid()) # Test someData test_unique([f for f in vl.getFeatures()], 5) # Test base_table_bad: layer is invalid vl = QgsVectorLayer('%s srid=4326 table="qgis_test".%s (geom) sql=' % (self.dbconn, 'base_table_bad'), "testgeom", "postgres") self.assertFalse(vl.isValid()) # Test base_table_bad with use estimated metadata: layer is valid because the unique test is skipped vl = QgsVectorLayer( '%s srid=4326 estimatedmetadata="true" table="qgis_test".%s (geom) sql=' % ( self.dbconn, 'base_table_bad'), "testgeom", "postgres") self.assertTrue(vl.isValid()) # Test base_table_good: layer is valid vl = QgsVectorLayer('%s srid=4326 table="qgis_test".%s (geom) sql=' % (self.dbconn, 'base_table_good'), "testgeom", "postgres") self.assertTrue(vl.isValid()) test_unique([f for f in vl.getFeatures()], 4) # Test base_table_good with use estimated metadata: layer is valid vl = QgsVectorLayer( '%s srid=4326 estimatedmetadata="true" table="qgis_test".%s (geom) sql=' % ( self.dbconn, 'base_table_good'), "testgeom", "postgres") self.assertTrue(vl.isValid()) test_unique([f for f in vl.getFeatures()], 4) # See https://github.com/qgis/QGIS/issues/22258 # TODO: accept multi-featured layers, and an array of values/fids def testSignedIdentifiers(self): def test_layer(ql, att, val, fidval): self.assertTrue(ql.isValid()) features = ql.getFeatures() att_idx = ql.fields().lookupField(att) count = 0 for f in features: count += 1 self.assertEqual(f.attributes()[att_idx], val) self.assertEqual(f.id(), fidval) self.assertEqual(count, 1) def test(dbconn, query, att, val, fidval): table = query.replace('"', '\\"') uri = '%s table="%s" (g) key=\'%s\'' % (dbconn, table, att) ql = QgsVectorLayer(uri, "t", "postgres") test_layer(ql, att, val, fidval) # now with estimated metadata uri += ' estimatedmetadata="true"' test_layer(ql, att, val, fidval) # --- INT16 ---- # zero test(self.dbconn, '(SELECT 0::int2 i, NULL::geometry(Point) g)', 'i', 0, 0) # low positive test(self.dbconn, '(SELECT 1::int2 i, NULL::geometry(Point) g)', 'i', 1, 1) # low negative test(self.dbconn, '(SELECT -1::int2 i, NULL::geometry(Point) g)', 'i', -1, 4294967295) # max positive signed 16bit integer test(self.dbconn, '(SELECT 32767::int2 i, NULL::geometry(Point) g)', 'i', 32767, 32767) # max negative signed 16bit integer test(self.dbconn, '(SELECT (-32768)::int2 i, NULL::geometry(Point) g)', 'i', -32768, 4294934528) # --- INT32 ---- # zero test(self.dbconn, '(SELECT 0::int4 i, NULL::geometry(Point) g)', 'i', 0, 0) # low positive test(self.dbconn, '(SELECT 2::int4 i, NULL::geometry(Point) g)', 'i', 2, 2) # low negative test(self.dbconn, '(SELECT -2::int4 i, NULL::geometry(Point) g)', 'i', -2, 4294967294) # max positive signed 32bit integer test(self.dbconn, '(SELECT 2147483647::int4 i, NULL::geometry(Point) g)', 'i', 2147483647, 2147483647) # max negative signed 32bit integer test(self.dbconn, '(SELECT (-2147483648)::int4 i, NULL::geometry(Point) g)', 'i', -2147483648, 2147483648) # --- INT64 (FIDs are always 1 because assigned ex-novo) ---- # zero test(self.dbconn, '(SELECT 0::int8 i, NULL::geometry(Point) g)', 'i', 0, 1) # low positive test(self.dbconn, '(SELECT 3::int8 i, NULL::geometry(Point) g)', 'i', 3, 1) # low negative test(self.dbconn, '(SELECT -3::int8 i, NULL::geometry(Point) g)', 'i', -3, 1) # max positive signed 64bit integer test(self.dbconn, '(SELECT 9223372036854775807::int8 i, NULL::geometry(Point) g)', 'i', 9223372036854775807, 1) # max negative signed 32bit integer test(self.dbconn, '(SELECT (-9223372036854775808)::int8 i, NULL::geometry(Point) g)', 'i', -9223372036854775808, 1) def testPktIntInsert(self): vl = QgsVectorLayer('{} table="qgis_test"."{}" key="pk" sql='.format(self.dbconn, 'bikes_view'), "bikes_view", "postgres") self.assertTrue(vl.isValid()) f = QgsFeature(vl.fields()) f['pk'] = NULL f['name'] = 'Cilo' r, f = vl.dataProvider().addFeatures([f]) self.assertTrue(r) self.assertNotEqual(f[0]['pk'], NULL, f[0].attributes()) vl.deleteFeatures([f[0].id()]) def testGeneratedFields(self): """Test if GENERATED geometry/geography columns are correctly handled by the provider.""" cur = self.con.cursor() cur.execute("SHOW server_version_num") pgversion = int(cur.fetchone()[0]) # GENERATED columns are unsupported by PostgreSQL versions earlier than 12. if pgversion < 120000: return # Geometry columns vl = QgsVectorLayer('{} table="qgis_test"."{}" (geom) srid=4326 type=POLYGON key="id" sql='.format(self.dbconn, "test_gen_col"), "test_gen_col", "postgres") self.assertTrue(vl.isValid()) # writing geometry... f = QgsFeature(vl.fields()) ix_name = f.fieldNameIndex('name') f.setGeometry(QgsGeometry.fromWkt('Polygon ((-67 -2, -67 0, -68 0, -70 -1, -67 -2))')) f.setAttribute(ix_name, 'QGIS-3') self.assertTrue(vl.startEditing()) self.assertTrue(vl.addFeatures([f])) self.assertTrue(vl.commitChanges()) # reading back to see if we saved the centroid correctly. vl2 = QgsVectorLayer('{} table="qgis_test"."{}" (cent) srid=4326 type=POINT key="id" sql='.format(self.dbconn, "test_gen_col"), "test_gen_col", "postgres") f2 = next(vl2.getFeatures(QgsFeatureRequest())) generated_geometry = f2.geometry().asWkt() expected_geometry = 'Point (-68.047619047619051 -0.90476190476190477)' expected_area = 43069568296.34387 assert compareWkt(generated_geometry, expected_geometry), "Geometry mismatch! Expected:\n{}\nGot:\n{}\n".format(expected_geometry, generated_geometry) self.assertAlmostEqual(f2['poly_area'], expected_area, places=4) self.assertEqual(f2['name'], 'QGIS-3') # Checking if we can correctly change values of an existing feature. self.assertTrue(vl2.startEditing()) ix2_name = f2.fieldNameIndex('name') fid2 = f2.id() vl2.changeAttributeValue(fid2, ix2_name, 'New') self.assertTrue(vl2.commitChanges()) # getting a brand new QgsVectorLayer vl = QgsVectorLayer('{} table="qgis_test"."{}" (geom) srid=4326 type=POLYGON key="id" sql='.format(self.dbconn, "test_gen_col"), "test_gen_col", "postgres") self.assertTrue(vl.isValid()) # checking if the name field was correctly updated f = next(vl.getFeatures(QgsFeatureRequest())) self.assertEqual(f['name'], 'New') # Now, check if we can change the value of a GENERATED field (we shouldn't) self.assertTrue(vl.startEditing()) ix_area = f.fieldNameIndex('poly_area') fid = f.id() vl.changeAttributeValue(fid, ix_area, 42) self.assertTrue(vl.commitChanges()) # reading back vl2 = QgsVectorLayer('{} table="qgis_test"."{}" (geom) srid=4326 type=POLYGON key="id" sql='.format(self.dbconn, "test_gen_col"), "test_gen_col", "postgres") f2 = next(vl2.getFeatures(QgsFeatureRequest())) self.assertAlmostEqual(f2['poly_area'], expected_area, places=4) # now, getting a brand new QgsVectorLayer to check if changes (UPDATE) in the geometry are reflected in the generated fields vl = QgsVectorLayer('{} table="qgis_test"."{}" (geom) srid=4326 type=POLYGON key="id" sql='.format(self.dbconn, "test_gen_col"), "test_gen_col", "postgres") self.assertTrue(vl.isValid()) f = next(vl.getFeatures(QgsFeatureRequest())) vl.startEditing() fid = f.id() vl.changeGeometry(fid, QgsGeometry.fromWkt('Polygon ((-67 -2, -65 0, -68 0, -70 -1, -67 -2))')) vl.commitChanges() # reading back... vl2 = QgsVectorLayer('{} table="qgis_test"."{}" (cent) srid=4326 type=POINT key="id" sql='.format(self.dbconn, "test_gen_col"), "test_gen_col", "postgres") f2 = next(vl2.getFeatures(QgsFeatureRequest())) generated_geometry = f2.geometry().asWkt() generated_geometry = f2.geometry().asWkt() expected_geometry = 'Point (-67.42424242424242209 -0.81818181818181823)' expected_area = 67718478405.28429 assert compareWkt(generated_geometry, expected_geometry), "Geometry mismatch! Expected:\n{}\nGot:\n{}\n".format(expected_geometry, generated_geometry) self.assertAlmostEqual(f2['poly_area'], expected_area, places=4) self.assertEqual(f2['name'], 'New') # Geography columns vl3 = QgsVectorLayer('{} table="qgis_test"."{}" (geog) srid=4326 type=POLYGON key="id" sql='.format(self.dbconn, "test_gen_geog_col"), "test_gen_geog_col", "postgres") self.assertTrue(vl3.isValid()) # writing geography... f3 = QgsFeature(vl3.fields()) f3.setGeometry(QgsGeometry.fromWkt('Polygon ((-67 -2, -67 0, -68 0, -70 -1, -67 -2))')) self.assertTrue(vl3.startEditing()) self.assertTrue(vl3.addFeatures([f3])) self.assertTrue(vl3.commitChanges()) # reading back geography and checking values vl4 = QgsVectorLayer('{} table="qgis_test"."{}" (cent) srid=4326 type=POINT key="id" sql='.format(self.dbconn, "test_gen_geog_col"), "test_gen_geog_col", "postgres") f4 = next(vl4.getFeatures(QgsFeatureRequest())) generated_geometry = f4.geometry().asWkt() expected_geometry = 'Point (-68.0477406158202 -0.904960604589168)' expected_area = 43088884296.69713 assert compareWkt(generated_geometry, expected_geometry), "Geometry mismatch! Expected:\n{}\nGot:\n{}\n".format(expected_geometry, generated_geometry) self.assertEqual(f4['poly_area'], expected_area) def testNonPkBigintField(self): """Test if we can correctly insert, read and change attributes(fields) of type bigint and which are not PKs.""" vl = QgsVectorLayer( '{} sslmode=disable srid=4326 key="pk" table="qgis_test".{} (geom)'.format( self.dbconn, 'bigint_pk'), "bigint_pk", "postgres") self.assertTrue(vl.isValid()) flds = vl.fields() # check if default values are correctly read back f = next(vl.getFeatures(QgsFeatureRequest())) bigint_with_default_idx = vl.fields().lookupField('bigint_attribute_def') self.assertEqual(f.attributes()[bigint_with_default_idx], 42) # check if NULL values are correctly read bigint_def_null_idx = vl.fields().lookupField('bigint_attribute') self.assertEqual(f.attributes()[bigint_def_null_idx], NULL) # check if we can overwrite a default value vl.startEditing() vl.changeAttributeValue(f.id(), bigint_with_default_idx, 43) pkidx = vl.fields().lookupField('pk') editedid = f.attributes()[pkidx] self.assertTrue(vl.commitChanges()) vl2 = QgsVectorLayer( '{} sslmode=disable srid=4326 key="pk" table="qgis_test".{} (geom)'.format( self.dbconn, 'bigint_pk'), "bigint_pk", "postgres") flds = vl2.fields() self.assertTrue(vl2.isValid()) f = next(vl2.getFeatures( QgsFeatureRequest().setFilterExpression('pk = ' + str(editedid)))) bigint_with_default_idx = vl2.fields().lookupField('bigint_attribute_def') self.assertEqual(f.attributes()[bigint_with_default_idx], 43) # check if we can insert a new value dp = vl2.dataProvider() dp.setProviderProperty(QgsDataProvider.EvaluateDefaultValues, 1) pkidx = vl2.fields().lookupField('pk') vl2.startEditing() f = QgsFeature(vl2.fields()) f['pk'] = NULL f['value'] = 'The answer.' f['bigint_attribute'] = 84 f.setAttribute(pkidx, vl2.dataProvider().defaultValue(pkidx)) f.setAttribute(bigint_with_default_idx, vl2.dataProvider().defaultValue(bigint_with_default_idx)) r, f = vl2.dataProvider().addFeatures([f]) self.assertTrue(r) vl2.commitChanges() inserted_id = f[0]['pk'] f = next(vl2.getFeatures( QgsFeatureRequest().setFilterExpression('pk = ' + str(inserted_id)))) self.assertEqual(f['bigint_attribute'], 84) self.assertEqual(f['bigint_attribute_def'], 42) def testPktUpdateBigintPk(self): """Test if we can update objects with positive, zero and negative bigint PKs.""" vl = QgsVectorLayer( '{} sslmode=disable srid=4326 key="pk" table="qgis_test".{} (geom)'.format( self.dbconn, 'bigint_pk'), "bigint_pk", "postgres") flds = vl.fields() self.assertTrue(vl.isValid()) vl.startEditing() statuses = [-1, -1, -1, -1] # changing values... for ft in vl.getFeatures(): if ft['value'] == 'first value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '1st value') statuses[0] = 0 elif ft['value'] == 'second value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '2nd value') statuses[1] = 0 elif ft['value'] == 'zero value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '0th value') statuses[2] = 0 elif ft['value'] == 'negative value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '-1th value') statuses[3] = 0 self.assertTrue(vl.commitChanges()) self.assertTrue(all(x == 0 for x in statuses)) # now, let's see if the values were changed vl2 = QgsVectorLayer( '{} sslmode=disable srid=4326 key="pk" table="qgis_test".{} (geom)'.format( self.dbconn, 'bigint_pk'), "bigint_pk", "postgres") self.assertTrue(vl2.isValid()) for ft in vl2.getFeatures(): if ft['value'] == '1st value': statuses[0] = 1 elif ft['value'] == '2nd value': statuses[1] = 1 elif ft['value'] == '0th value': statuses[2] = 1 elif ft['value'] == '-1th value': statuses[3] = 1 self.assertTrue(all(x == 1 for x in statuses)) def testPktUpdateBigintPkNonFirst(self): """Test if we can update objects with positive, zero and negative bigint PKs in tables whose PK is not the first field""" vl = QgsVectorLayer('{} sslmode=disable srid=4326 key="pk" table="qgis_test".{} (geom)'.format(self.dbconn, 'bigint_non_first_pk'), "bigint_non_first_pk", "postgres") flds = vl.fields() self.assertTrue(vl.isValid()) vl.startEditing() statuses = [-1, -1, -1, -1] # changing values... for ft in vl.getFeatures(): if ft['value'] == 'first value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '1st value') statuses[0] = 0 elif ft['value'] == 'second value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '2nd value') statuses[1] = 0 elif ft['value'] == 'zero value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '0th value') statuses[2] = 0 elif ft['value'] == 'negative value': vl.changeAttributeValue( ft.id(), flds.indexOf('value'), '-1th value') statuses[3] = 0 self.assertTrue(vl.commitChanges()) self.assertTrue(all(x == 0 for x in statuses)) # now, let's see if the values were changed vl2 = QgsVectorLayer( '{} sslmode=disable srid=4326 key="pk" table="qgis_test".{} (geom)'.format( self.dbconn, 'bigint_pk'), "bigint_pk_nonfirst", "postgres") self.assertTrue(vl2.isValid()) for ft in vl2.getFeatures(): if ft['value'] == '1st value': statuses[0] = 1 elif ft['value'] == '2nd value': statuses[1] = 1 elif ft['value'] == '0th value': statuses[2] = 1 elif ft['value'] == '-1th value': statuses[3] = 1 self.assertTrue(all(x == 1 for x in statuses)) def testPktComposite(self): """ Check that tables with PKs composed of many fields of different types are correctly read and written to """ vl = QgsVectorLayer('{} sslmode=disable srid=4326 key=\'"pk1","pk2"\' table="qgis_test"."tb_test_compound_pk" (geom)'.format(self.dbconn), "test_compound", "postgres") self.assertTrue(vl.isValid()) fields = vl.fields() f = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression('pk1 = 1 AND pk2 = 2'))) # first of all: we must be able to fetch a valid feature self.assertTrue(f.isValid()) self.assertEqual(f['pk1'], 1) self.assertEqual(f['pk2'], 2) self.assertEqual(f['value'], 'test 2') # can we edit a field? vl.startEditing() vl.changeAttributeValue(f.id(), fields.indexOf('value'), 'Edited Test 2') self.assertTrue(vl.commitChanges()) # Did we get it right? Let's create a new QgsVectorLayer and try to read back our changes: vl2 = QgsVectorLayer('{} sslmode=disable srid=4326 table="qgis_test"."tb_test_compound_pk" (geom) key=\'"pk1","pk2"\' '.format(self.dbconn), "test_compound2", "postgres") self.assertTrue(vl2.isValid()) f2 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression('pk1 = 1 AND pk2 = 2'))) self.assertTrue(f2.isValid()) # Then, making sure we really did change our value. self.assertEqual(f2['value'], 'Edited Test 2') # How about inserting a new field? f3 = QgsFeature(vl2.fields()) f3['pk1'] = 4 f3['pk2'] = -9223372036854775800 f3['value'] = 'other test' vl.startEditing() res, f3 = vl.dataProvider().addFeatures([f3]) self.assertTrue(res) self.assertTrue(vl.commitChanges()) # can we catch it on another layer? f4 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression('pk2 = -9223372036854775800'))) self.assertTrue(f4.isValid()) expected_attrs = [4, -9223372036854775800, 'other test'] self.assertEqual(f4.attributes(), expected_attrs) # Finally, let's delete one of the features. f5 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression('pk1 = 2 AND pk2 = 1'))) vl2.startEditing() vl2.deleteFeatures([f5.id()]) self.assertTrue(vl2.commitChanges()) # did we really delete? Let's try to get the deleted feature from the first layer. f_iterator = vl.getFeatures(QgsFeatureRequest().setFilterExpression('pk1 = 2 AND pk2 = 1')) got_feature = True try: f6 = next(f_iterator) got_feature = f6.isValid() except StopIteration: got_feature = False self.assertFalse(got_feature) def testPktCompositeFloat(self): """ Check that tables with PKs composed of many fields of different types are correctly read and written to """ vl = QgsVectorLayer('{} sslmode=disable srid=4326 key=\'"pk1","pk2","pk3"\' table="qgis_test"."tb_test_composite_float_pk" (geom)'.format(self.dbconn), "test_composite_float", "postgres") self.assertTrue(vl.isValid()) fields = vl.fields() f = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk3 = '3.14159274'"))) # first of all: we must be able to fetch a valid feature self.assertTrue(f.isValid()) self.assertEqual(f['pk1'], 1) self.assertEqual(f['pk2'], 2) self.assertAlmostEqual(f['pk3'], 3.14159274) self.assertEqual(f['value'], 'test 2') # can we edit a field? vl.startEditing() vl.changeAttributeValue(f.id(), fields.indexOf('value'), 'Edited Test 2') self.assertTrue(vl.commitChanges()) # Did we get it right? Let's create a new QgsVectorLayer and try to read back our changes: vl2 = QgsVectorLayer('{} sslmode=disable srid=4326 key=\'"pk1","pk2","pk3"\' table="qgis_test"."tb_test_composite_float_pk" (geom)'.format(self.dbconn), "test_composite_float2", "postgres") self.assertTrue(vl2.isValid()) f2 = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk3 = '3.14159274'"))) self.assertTrue(f2.isValid()) # just making sure we have the correct feature self.assertAlmostEqual(f2['pk3'], 3.14159274) # Then, making sure we really did change our value. self.assertEqual(f2['value'], 'Edited Test 2') # How about inserting a new field? f3 = QgsFeature(vl2.fields()) f3['pk1'] = 4 f3['pk2'] = -9223372036854775800 f3['pk3'] = 7.29154 f3['value'] = 'other test' vl.startEditing() res, f3 = vl.dataProvider().addFeatures([f3]) self.assertTrue(res) self.assertTrue(vl.commitChanges()) # can we catch it on another layer? f4 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk2 = '-9223372036854775800'"))) self.assertTrue(f4.isValid()) expected_attrs = [4, -9223372036854775800, 7.29154, 'other test'] gotten_attrs = [f4['pk1'], f4['pk2'], f4['pk3'], f4['value']] self.assertEqual(gotten_attrs[0], expected_attrs[0]) self.assertEqual(gotten_attrs[1], expected_attrs[1]) self.assertAlmostEqual(gotten_attrs[2], expected_attrs[2], places=4) self.assertEqual(gotten_attrs[3], expected_attrs[3]) # Finally, let's delete one of the features. f5 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk3 = '7.29154'"))) vl2.startEditing() vl2.deleteFeatures([f5.id()]) self.assertTrue(vl2.commitChanges()) # did we really delete? f_iterator = vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk3 = '7.29154'")) got_feature = True try: f6 = next(f_iterator) got_feature = f6.isValid() except StopIteration: got_feature = False self.assertFalse(got_feature) def testPktFloatingPoint(self): """ Check if we can handle floating point/numeric primary keys correctly """ # 1. 32 bit float (PostgreSQL "REAL" type) vl = QgsVectorLayer(self.dbconn + ' sslmode=disable srid=4326 key="pk" table="qgis_test"."tb_test_float_pk" (geom)', "test_float_pk", "postgres") self.assertTrue(vl.isValid()) # 1.1. Retrieving f = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '3.141592653589793238462643383279502884197169'"))) self.assertTrue(f.isValid()) self.assertEqual(f['value'], 'first teste') # 1.2. Editing self.assertTrue(vl.startEditing()) vl.changeAttributeValue(f.id(), vl.fields().indexOf('value'), 'Changed first') self.assertTrue(vl.commitChanges()) # 1.2.1. Checking edit from another vector layer vl2 = QgsVectorLayer(self.dbconn + ' sslmode=disable srid=4326 key="pk1" table="qgis_test"."tb_test_float_pk" (geom)', "test_float_pk2", "postgres") self.assertTrue(vl2.isValid()) f2 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '3.141592653589793238462643383279502884197169'"))) self.assertTrue(f2.isValid()) self.assertEqual(f2['value'], 'Changed first') # 1.3. Deleting f = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '2.718281828459045235360287471352662497757247'"))) vl.startEditing() vl.deleteFeatures([f.id()]) self.assertTrue(vl.commitChanges()) # 1.3.1. Checking deletion f_iterator = vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '2.718281828459045235360287471352662497757247'")) got_feature = True try: f2 = next(f_iterator) got_feature = f2.isValid() except StopIteration: got_feature = False self.assertFalse(got_feature) # 1.4. Inserting new feature newpointwkt = 'Point(-47.751 -15.644)' f = QgsFeature(vl.fields()) f['pk'] = 0.22222222222222222222222 f['value'] = 'newly inserted' f.setGeometry(QgsGeometry.fromWkt(newpointwkt)) vl.startEditing() res, f = vl.dataProvider().addFeatures([f]) self.assertTrue(res) self.assertTrue(vl.commitChanges()) # 1.4.1. Checking insertion f2 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '0.22222222222222222222222'"))) self.assertTrue(f2.isValid()) self.assertAlmostEqual(f2['pk'], 0.2222222222222222) self.assertEqual(f2['value'], 'newly inserted') assert compareWkt(f2.geometry().asWkt(), newpointwkt), "Geometry mismatch. Expected: {} Got: {} \n".format(f2.geometry().asWkt(), newpointwkt) # One more check: can we retrieve the same row with the value that we got from this layer? floatpk = f2['pk'] f3 = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '{}'".format(floatpk)))) self.assertTrue(f3.isValid()) self.assertEqual(f3['value'], 'newly inserted') self.assertEqual(f3['pk'], floatpk) # 2. 64 bit float (PostgreSQL "DOUBLE PRECISION" type) vl = QgsVectorLayer(self.dbconn + ' sslmode=disable srid=4326 key="pk" table="qgis_test"."tb_test_double_pk" (geom)', "test_double_pk", "postgres") self.assertTrue(vl.isValid()) # 2.1. Retrieving f = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '3.141592653589793238462643383279502884197169'"))) self.assertTrue(f.isValid()) self.assertEqual(f['value'], 'first teste') # 2.2. Editing self.assertTrue(vl.startEditing()) vl.changeAttributeValue(f.id(), vl.fields().indexOf('value'), 'Changed first') self.assertTrue(vl.commitChanges()) # 2.2.1. Checking edit from another vector layer vl2 = QgsVectorLayer(self.dbconn + ' sslmode=disable srid=4326 key="pk" table="qgis_test"."tb_test_double_pk" (geom)', "test_double_pk2", "postgres") self.assertTrue(vl2.isValid()) f2 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '3.141592653589793238462643383279502884197169'"))) self.assertTrue(f2.isValid()) self.assertEqual(f2['value'], 'Changed first') # 2.3. Deleting f = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '2.718281828459045235360287471352662497757247'"))) vl.startEditing() vl.deleteFeatures([f.id()]) self.assertTrue(vl.commitChanges()) # 2.3.1. Checking deletion f_iterator = vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '2.718281828459045235360287471352662497757247'")) got_feature = True try: f2 = next(f_iterator) got_feature = f2.isValid() except StopIteration: got_feature = False self.assertFalse(got_feature) # 2.4. Inserting new feature newpointwkt = 'Point(-47.751 -15.644)' f = QgsFeature(vl.fields()) f['pk'] = 0.22222222222222222222222 f['value'] = 'newly inserted' f.setGeometry(QgsGeometry.fromWkt(newpointwkt)) vl.startEditing() res, f = vl.dataProvider().addFeatures([f]) self.assertTrue(res) self.assertTrue(vl.commitChanges()) # 2.4.1. Checking insertion f2 = next(vl2.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '0.22222222222222222222222'"))) self.assertTrue(f2.isValid()) self.assertAlmostEqual(f2['pk'], 0.2222222222222222, places=15) self.assertEqual(f2['value'], 'newly inserted') assert compareWkt(f2.geometry().asWkt(), newpointwkt), "Geometry mismatch. Expected: {} Got: {} \n".format(f2.geometry().asWkt(), newpointwkt) # One more check: can we retrieve the same row with the value that we got from this layer? doublepk = f2['pk'] f3 = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("pk = '{}'".format(doublepk)))) self.assertTrue(f3.isValid()) self.assertEqual(f3['value'], 'newly inserted') self.assertEqual(f3['pk'], doublepk) # no NUMERIC/DECIMAL checks here. NUMERIC primary keys are unsupported. # TODO: implement NUMERIC primary keys/arbitrary precision arithmethics/fixed point math in QGIS. def testPktMapInsert(self): vl = QgsVectorLayer('{} table="qgis_test"."{}" key="obj_id" sql='.format(self.dbconn, 'oid_serial_table'), "oid_serial", "postgres") self.assertTrue(vl.isValid()) f = QgsFeature(vl.fields()) f['obj_id'] = vl.dataProvider().defaultValueClause(0) f['name'] = 'Test' r, f = vl.dataProvider().addFeatures([f]) self.assertTrue(r) self.assertNotEqual(f[0]['obj_id'], NULL, f[0].attributes()) vl.deleteFeatures([f[0].id()]) def testNull(self): """ Asserts that 0, '' and NULL are treated as different values on insert """ vl = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\' table="qgis_test"."constraints" sql=', 'test1', 'postgres') self.assertTrue(vl.isValid()) QgsProject.instance().addMapLayer(vl) tg = QgsTransactionGroup() tg.addLayer(vl) vl.startEditing() def onError(message): """We should not get here. If we do, fail and say why""" self.assertFalse(True, message) vl.raiseError.connect(onError) f = QgsFeature(vl.fields()) f['gid'] = 100 f['val'] = 0 f['name'] = '' self.assertTrue(vl.addFeature(f)) feature = next(vl.getFeatures('"gid" = 100')) self.assertEqual(f['val'], feature['val']) self.assertEqual(f['name'], feature['name']) def testNestedInsert(self): tg = QgsTransactionGroup() tg.addLayer(self.vl) self.vl.startEditing() it = self.vl.getFeatures() f = next(it) f['pk'] = NULL self.vl.addFeature(f) # Should not deadlock during an active iteration f = next(it) def testTimeout(self): """ Asserts that we will not deadlock if more iterators are opened in parallel than available in the connection pool """ request = QgsFeatureRequest() request.setTimeout(1) iterators = list() for i in range(100): iterators.append(self.vl.getFeatures(request)) def testTransactionDirtyName(self): # create a vector ayer based on postgres vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="qgis_test"."some_poly_data" (geom) sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) # prepare a project with transactions enabled p = QgsProject() p.setAutoTransaction(True) p.addMapLayers([vl]) vl.startEditing() # update the data within the transaction tr = vl.dataProvider().transaction() sql = "update qgis_test.some_poly_data set pk=1 where pk=1" name = "My Awesome Transaction!" self.assertTrue(tr.executeSql(sql, True, name)[0]) # test name self.assertEqual(vl.undoStack().command(0).text(), name) # rollback vl.rollBack() def testTransactionDirty(self): # create a vector layer based on postgres vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="qgis_test"."some_poly_data" (geom) sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) # prepare a project with transactions enabled p = QgsProject() p.setAutoTransaction(True) p.addMapLayers([vl]) vl.startEditing() # check that the feature used for testing is ok ft0 = vl.getFeatures('pk=1') f = QgsFeature() self.assertTrue(ft0.nextFeature(f)) # update the data within the transaction tr = vl.dataProvider().transaction() sql = "update qgis_test.some_poly_data set pk=33 where pk=1" self.assertTrue(tr.executeSql(sql, True)[0]) # check that the pk of the feature has been changed ft = vl.getFeatures('pk=1') self.assertFalse(ft.nextFeature(f)) ft = vl.getFeatures('pk=33') self.assertTrue(ft.nextFeature(f)) # underlying data has been modified but the layer is not tagged as # modified self.assertTrue(vl.isModified()) # undo sql query vl.undoStack().undo() # check that the original feature with pk is back ft0 = vl.getFeatures('pk=1') self.assertTrue(ft0.nextFeature(f)) # redo vl.undoStack().redo() # check that the pk of the feature has been changed ft1 = vl.getFeatures('pk=1') self.assertFalse(ft1.nextFeature(f)) def testTransactionConstraints(self): # create a vector layer based on postgres vl = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'id\' table="qgis_test"."check_constraints" sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) # prepare a project with transactions enabled p = QgsProject() p.setAutoTransaction(True) p.addMapLayers([vl]) # get feature f = QgsFeature() self.assertTrue(vl.getFeatures('id=1').nextFeature(f)) self.assertEqual(f.attributes(), [1, 4, 3]) # start edition vl.startEditing() # update attribute form with a failing constraints # coming from the database if attributes are updated # one at a time. # Current feature: a = 4 / b = 3 # Update feature: a = 1 / b = 0 # If updated one at a time, '(a = 1) < (b = 3)' => FAIL! form = QgsAttributeForm(vl, f) for w in form.findChildren(QLabel): if w.buddy(): spinBox = w.buddy() if w.text() == 'a': spinBox.setValue(1) elif w.text() == 'b': spinBox.setValue(0) # save form.save() # check new values self.assertTrue(vl.getFeatures('id=1').nextFeature(f)) self.assertEqual(f.attributes(), [1, 1, 0]) def testTransactionTuple(self): # create a vector layer based on postgres vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="qgis_test"."some_poly_data" (geom) sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) # prepare a project with transactions enabled p = QgsProject() p.setAutoTransaction(True) p.addMapLayers([vl]) vl.startEditing() # execute a query which returns a tuple tr = vl.dataProvider().transaction() sql = "select * from qgis_test.some_poly_data" self.assertTrue(tr.executeSql(sql, False)[0]) # underlying data has not been modified self.assertFalse(vl.isModified()) def testDomainTypes(self): """Test that domain types are correctly mapped""" vl = QgsVectorLayer('%s table="qgis_test"."domains" sql=' % (self.dbconn), "domains", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() expected = {} expected['fld_var_char_domain'] = {'type': QVariant.String, 'typeName': 'qgis_test.var_char_domain', 'length': -1} expected['fld_var_char_domain_6'] = {'type': QVariant.String, 'typeName': 'qgis_test.var_char_domain_6', 'length': 6} expected['fld_character_domain'] = {'type': QVariant.String, 'typeName': 'qgis_test.character_domain', 'length': 1} expected['fld_character_domain_6'] = {'type': QVariant.String, 'typeName': 'qgis_test.character_domain_6', 'length': 6} expected['fld_char_domain'] = { 'type': QVariant.String, 'typeName': 'qgis_test.char_domain', 'length': 1} expected['fld_char_domain_6'] = { 'type': QVariant.String, 'typeName': 'qgis_test.char_domain_6', 'length': 6} expected['fld_text_domain'] = { 'type': QVariant.String, 'typeName': 'qgis_test.text_domain', 'length': -1} expected['fld_numeric_domain'] = {'type': QVariant.Double, 'typeName': 'qgis_test.numeric_domain', 'length': 10, 'precision': 4} for f, e in list(expected.items()): self.assertEqual( fields.at(fields.indexFromName(f)).type(), e['type']) self.assertEqual(fields.at(fields.indexFromName(f) ).typeName(), e['typeName']) self.assertEqual( fields.at(fields.indexFromName(f)).length(), e['length']) if 'precision' in e: self.assertEqual( fields.at(fields.indexFromName(f)).precision(), e['precision']) def testRenameAttributes(self): ''' Test renameAttributes() ''' vl = QgsVectorLayer('%s table="qgis_test"."rename_table" sql=' % ( self.dbconn), "renames", "postgres") provider = vl.dataProvider() provider.renameAttributes({1: 'field1', 2: 'field2'}) # bad rename self.assertFalse(provider.renameAttributes({-1: 'not_a_field'})) self.assertFalse(provider.renameAttributes({100: 'not_a_field'})) # already exists self.assertFalse(provider.renameAttributes({1: 'field2'})) # rename one field self.assertTrue(provider.renameAttributes({1: 'newname'})) self.assertEqual(provider.fields().at(1).name(), 'newname') vl.updateFields() fet = next(vl.getFeatures()) self.assertEqual(fet.fields()[1].name(), 'newname') # rename two fields self.assertTrue(provider.renameAttributes( {1: 'newname2', 2: 'another'})) self.assertEqual(provider.fields().at(1).name(), 'newname2') self.assertEqual(provider.fields().at(2).name(), 'another') vl.updateFields() fet = next(vl.getFeatures()) self.assertEqual(fet.fields()[1].name(), 'newname2') self.assertEqual(fet.fields()[2].name(), 'another') # close layer and reopen, then recheck to confirm that changes were saved to db del vl vl = None vl = QgsVectorLayer('%s table="qgis_test"."rename_table" sql=' % ( self.dbconn), "renames", "postgres") provider = vl.dataProvider() self.assertEqual(provider.fields().at(1).name(), 'newname2') self.assertEqual(provider.fields().at(2).name(), 'another') fet = next(vl.getFeatures()) self.assertEqual(fet.fields()[1].name(), 'newname2') self.assertEqual(fet.fields()[2].name(), 'another') def testEditorWidgetTypes(self): """Test that editor widget types can be fetched from the qgis_editor_widget_styles table""" vl = QgsVectorLayer('%s table="qgis_test"."widget_styles" sql=' % ( self.dbconn), "widget_styles", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() setup1 = fields.field("fld1").editorWidgetSetup() self.assertFalse(setup1.isNull()) self.assertEqual(setup1.type(), "FooEdit") self.assertEqual(setup1.config(), {"param1": "value1", "param2": "2"}) best1 = QgsGui.editorWidgetRegistry().findBest(vl, "fld1") self.assertEqual(best1.type(), "FooEdit") self.assertEqual(best1.config(), setup1.config()) self.assertTrue(fields.field("fld2").editorWidgetSetup().isNull()) best2 = QgsGui.editorWidgetRegistry().findBest(vl, "fld2") self.assertEqual(best2.type(), "TextEdit") def testHstore(self): vl = QgsVectorLayer('%s table="qgis_test"."dict" sql=' % (self.dbconn), "testhstore", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual( fields.at(fields.indexFromName('value')).type(), QVariant.Map) f = next(vl.getFeatures(QgsFeatureRequest())) value_idx = vl.fields().lookupField('value') self.assertIsInstance(f.attributes()[value_idx], dict) self.assertEqual(f.attributes()[value_idx], {'a': 'b', '1': '2'}) new_f = QgsFeature(vl.fields()) new_f['pk'] = NULL new_f['value'] = {'simple': '1', 'doubleQuote': '"y"', 'quote': "'q'", 'backslash': '\\'} r, fs = vl.dataProvider().addFeatures([new_f]) self.assertTrue(r) new_pk = fs[0]['pk'] self.assertNotEqual(new_pk, NULL, fs[0].attributes()) try: read_back = vl.getFeature(new_pk) self.assertEqual(read_back['pk'], new_pk) self.assertEqual(read_back['value'], new_f['value']) finally: self.assertTrue(vl.startEditing()) self.assertTrue(vl.deleteFeatures([new_pk])) self.assertTrue(vl.commitChanges()) def testJson(self): vl = QgsVectorLayer('%s table="qgis_test"."json" sql=' % (self.dbconn), "testjson", "postgres") self.assertTrue(vl.isValid()) attrs = ( 123, 1233.45, None, True, False, r"String literal with \"quotes\" 'and' other funny chars []{};#/èé*", [1, 2, 3.4, None], [True, False], {'a': 123, 'b': 123.34, 'c': 'a string', 'd': [ 1, 2, 3], 'e': {'a': 123, 'b': 123.45}} ) attrs2 = ( 246, 2466.91, None, True, False, r"Yet another string literal with \"quotes\" 'and' other funny chars: π []{};#/èé*", [2, 4, 3.14159, None], [True, False], {'a': 246, 'b': 246.68, 'c': 'a rounded area: π × r²', 'd': [ 1, 2, 3], 'e': {'a': 246, 'b': 246.91}} ) json_idx = vl.fields().lookupField('jvalue') jsonb_idx = vl.fields().lookupField('jbvalue') for attr in attrs: # Add a new feature vl2 = QgsVectorLayer('%s table="qgis_test"."json" sql=' % ( self.dbconn), "testjson", "postgres") self.assertTrue(vl2.startEditing()) f = QgsFeature(vl2.fields()) f.setAttributes([None, attr, attr]) self.assertTrue(vl2.addFeatures([f])) self.assertTrue(vl2.commitChanges(), attr) # Read back vl2 = QgsVectorLayer('%s table="qgis_test"."json" sql=' % ( self.dbconn), "testjson", "postgres") fid = [f.id() for f in vl2.getFeatures()][-1] f = vl2.getFeature(fid) self.assertEqual(f.attributes(), [fid, attr, attr]) # Change attribute values vl2 = QgsVectorLayer('%s table="qgis_test"."json" sql=' % ( self.dbconn), "testjson", "postgres") fid = [f.id() for f in vl2.getFeatures()][-1] self.assertTrue(vl2.startEditing()) self.assertTrue(vl2.changeAttributeValues( fid, {json_idx: attr, jsonb_idx: attr})) self.assertTrue(vl2.commitChanges()) # Read back vl2 = QgsVectorLayer('%s table="qgis_test"."json" sql=' % ( self.dbconn), "testjson", "postgres") f = vl2.getFeature(fid) self.assertEqual(f.attributes(), [fid, attr, attr]) # Let's check changeFeatures: for attr in attrs2: vl2 = QgsVectorLayer('%s table="qgis_test"."json" sql=' % ( self.dbconn), "testjson", "postgres") fid = [f.id() for f in vl2.getFeatures()][-1] self.assertTrue(vl2.startEditing()) self.assertTrue(vl2.dataProvider().changeFeatures({fid: {json_idx: attr, jsonb_idx: attr}}, {})) self.assertTrue(vl2.commitChanges()) # Read back again vl2 = QgsVectorLayer('%s table="qgis_test"."json" sql=' % ( self.dbconn), "testjson", "postgres") f = vl2.getFeature(fid) self.assertEqual(f.attributes(), [fid, attr, attr]) def testStringArray(self): vl = QgsVectorLayer('%s table="qgis_test"."string_array" sql=' % ( self.dbconn), "teststringarray", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual(fields.at(fields.indexFromName( 'value')).type(), QVariant.StringList) self.assertEqual(fields.at(fields.indexFromName( 'value')).subType(), QVariant.String) f = next(vl.getFeatures(QgsFeatureRequest())) value_idx = vl.fields().lookupField('value') self.assertIsInstance(f.attributes()[value_idx], list) self.assertEqual(f.attributes()[value_idx], ['a', 'b', 'c']) new_f = QgsFeature(vl.fields()) new_f['pk'] = NULL new_f['value'] = ['simple', '"doubleQuote"', "'quote'", 'back\\slash'] r, fs = vl.dataProvider().addFeatures([new_f]) self.assertTrue(r) new_pk = fs[0]['pk'] self.assertNotEqual(new_pk, NULL, fs[0].attributes()) try: read_back = vl.getFeature(new_pk) self.assertEqual(read_back['pk'], new_pk) self.assertEqual(read_back['value'], new_f['value']) finally: self.assertTrue(vl.startEditing()) self.assertTrue(vl.deleteFeatures([new_pk])) self.assertTrue(vl.commitChanges()) def testIntArray(self): vl = QgsVectorLayer('%s table="qgis_test"."int_array" sql=' % ( self.dbconn), "testintarray", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual( fields.at(fields.indexFromName('value')).type(), QVariant.List) self.assertEqual(fields.at(fields.indexFromName( 'value')).subType(), QVariant.Int) f = next(vl.getFeatures(QgsFeatureRequest())) value_idx = vl.fields().lookupField('value') self.assertIsInstance(f.attributes()[value_idx], list) self.assertEqual(f.attributes()[value_idx], [1, 2, -5]) def testDoubleArray(self): vl = QgsVectorLayer('%s table="qgis_test"."double_array" sql=' % ( self.dbconn), "testdoublearray", "postgres") self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual( fields.at(fields.indexFromName('value')).type(), QVariant.List) self.assertEqual(fields.at(fields.indexFromName( 'value')).subType(), QVariant.Double) f = next(vl.getFeatures(QgsFeatureRequest())) value_idx = vl.fields().lookupField('value') self.assertIsInstance(f.attributes()[value_idx], list) self.assertEqual(f.attributes()[value_idx], [1.1, 2, -5.12345]) def testNotNullConstraint(self): vl = QgsVectorLayer('%s table="qgis_test"."constraints" sql=' % ( self.dbconn), "constraints", "postgres") self.assertTrue(vl.isValid()) self.assertEqual(len(vl.fields()), 4) # test some bad field indexes self.assertEqual(vl.dataProvider().fieldConstraints(-1), QgsFieldConstraints.Constraints()) self.assertEqual(vl.dataProvider().fieldConstraints( 1001), QgsFieldConstraints.Constraints()) self.assertTrue(vl.dataProvider().fieldConstraints(0) & QgsFieldConstraints.ConstraintNotNull) self.assertFalse(vl.dataProvider().fieldConstraints(1) & QgsFieldConstraints.ConstraintNotNull) self.assertTrue(vl.dataProvider().fieldConstraints(2) & QgsFieldConstraints.ConstraintNotNull) self.assertFalse(vl.dataProvider().fieldConstraints(3) & QgsFieldConstraints.ConstraintNotNull) # test that constraints have been saved to fields correctly fields = vl.fields() self.assertTrue(fields.at(0).constraints().constraints() & QgsFieldConstraints.ConstraintNotNull) self.assertEqual(fields.at(0).constraints().constraintOrigin(QgsFieldConstraints.ConstraintNotNull), QgsFieldConstraints.ConstraintOriginProvider) self.assertFalse(fields.at(1).constraints().constraints() & QgsFieldConstraints.ConstraintNotNull) self.assertTrue(fields.at(2).constraints().constraints() & QgsFieldConstraints.ConstraintNotNull) self.assertEqual(fields.at(2).constraints().constraintOrigin(QgsFieldConstraints.ConstraintNotNull), QgsFieldConstraints.ConstraintOriginProvider) self.assertFalse(fields.at(3).constraints().constraints() & QgsFieldConstraints.ConstraintNotNull) def testUniqueConstraint(self): vl = QgsVectorLayer('%s table="qgis_test"."constraints" sql=' % ( self.dbconn), "constraints", "postgres") self.assertTrue(vl.isValid()) self.assertEqual(len(vl.fields()), 4) # test some bad field indexes self.assertEqual(vl.dataProvider().fieldConstraints(-1), QgsFieldConstraints.Constraints()) self.assertEqual(vl.dataProvider().fieldConstraints( 1001), QgsFieldConstraints.Constraints()) self.assertTrue(vl.dataProvider().fieldConstraints(0) & QgsFieldConstraints.ConstraintUnique) self.assertTrue(vl.dataProvider().fieldConstraints(1) & QgsFieldConstraints.ConstraintUnique) self.assertTrue(vl.dataProvider().fieldConstraints(2) & QgsFieldConstraints.ConstraintUnique) self.assertFalse(vl.dataProvider().fieldConstraints(3) & QgsFieldConstraints.ConstraintUnique) # test that constraints have been saved to fields correctly fields = vl.fields() self.assertTrue(fields.at(0).constraints().constraints() & QgsFieldConstraints.ConstraintUnique) self.assertEqual(fields.at(0).constraints().constraintOrigin(QgsFieldConstraints.ConstraintUnique), QgsFieldConstraints.ConstraintOriginProvider) self.assertTrue(fields.at(1).constraints().constraints() & QgsFieldConstraints.ConstraintUnique) self.assertEqual(fields.at(1).constraints().constraintOrigin(QgsFieldConstraints.ConstraintUnique), QgsFieldConstraints.ConstraintOriginProvider) self.assertTrue(fields.at(2).constraints().constraints() & QgsFieldConstraints.ConstraintUnique) self.assertEqual(fields.at(2).constraints().constraintOrigin(QgsFieldConstraints.ConstraintUnique), QgsFieldConstraints.ConstraintOriginProvider) self.assertFalse(fields.at(3).constraints().constraints() & QgsFieldConstraints.ConstraintUnique) def testConstraintOverwrite(self): """ test that Postgres provider constraints can't be overwritten by vector layer method """ vl = QgsVectorLayer('%s table="qgis_test"."constraints" sql=' % ( self.dbconn), "constraints", "postgres") self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().fieldConstraints(0) & QgsFieldConstraints.ConstraintNotNull) self.assertTrue(vl.fields().at(0).constraints().constraints() & QgsFieldConstraints.ConstraintNotNull) # add a constraint at the layer level vl.setFieldConstraint(0, QgsFieldConstraints.ConstraintUnique) # should be no change at provider level self.assertTrue(vl.dataProvider().fieldConstraints(0) & QgsFieldConstraints.ConstraintNotNull) # but layer should still keep provider constraints... self.assertTrue(vl.fields().at(0).constraints().constraints() & QgsFieldConstraints.ConstraintNotNull) self.assertTrue(vl.fieldConstraints( 0) & QgsFieldConstraints.ConstraintNotNull) # ...in addition to layer level constraint self.assertTrue(vl.fields().at(0).constraints( ).constraints() & QgsFieldConstraints.ConstraintUnique) self.assertTrue(vl.fieldConstraints( 0) & QgsFieldConstraints.ConstraintUnique) def testVectorLayerUtilsUniqueWithProviderDefault(self): vl = QgsVectorLayer('%s table="qgis_test"."someData" sql=' % (self.dbconn), "someData", "postgres") default_clause = 'nextval(\'qgis_test."someData_pk_seq"\'::regclass)' vl.dataProvider().setProviderProperty( QgsDataProvider.EvaluateDefaultValues, False) self.assertEqual( vl.dataProvider().defaultValueClause(0), default_clause) self.assertTrue(QgsVectorLayerUtils.valueExists(vl, 0, 4)) vl.startEditing() f = QgsFeature(vl.fields()) f.setAttribute(0, default_clause) self.assertFalse( QgsVectorLayerUtils.valueExists(vl, 0, default_clause)) self.assertTrue(vl.addFeatures([f])) # the default value clause should exist... self.assertTrue(QgsVectorLayerUtils.valueExists(vl, 0, default_clause)) # but it should not prevent the attribute being validated self.assertTrue(QgsVectorLayerUtils.validateAttribute(vl, f, 0)) vl.rollBack() def testSkipConstraintCheck(self): vl = QgsVectorLayer('%s table="qgis_test"."someData" sql=' % (self.dbconn), "someData", "postgres") default_clause = 'nextval(\'qgis_test."someData_pk_seq"\'::regclass)' vl.dataProvider().setProviderProperty( QgsDataProvider.EvaluateDefaultValues, False) self.assertTrue(vl.dataProvider().skipConstraintCheck( 0, QgsFieldConstraints.ConstraintUnique, default_clause)) self.assertFalse(vl.dataProvider().skipConstraintCheck( 0, QgsFieldConstraints.ConstraintUnique, 59)) def testVectorLayerUtilsCreateFeatureWithProviderDefault(self): vl = QgsVectorLayer('%s table="qgis_test"."someData" sql=' % (self.dbconn), "someData", "postgres") default_clause = 'nextval(\'qgis_test."someData_pk_seq"\'::regclass)' self.assertEqual( vl.dataProvider().defaultValueClause(0), default_clause) # If an attribute map is provided, QgsVectorLayerUtils.createFeature must # respect it, otherwise default values from provider are checked. # User's choice will not be respected if the value violates unique constraints. # See https://github.com/qgis/QGIS/issues/27758 f = QgsVectorLayerUtils.createFeature(vl, attributes={1: 5, 3: 'map'}) # changed so that createFeature respects user choice self.assertEqual(f.attributes(), [ default_clause, 5, "'qgis'::text", 'map', None, None, None, None, None]) vl.setDefaultValueDefinition(3, QgsDefaultValue("'mappy'")) # test ignore vector layer default value expression overrides postgres provider default clause, # due to user's choice f = QgsVectorLayerUtils.createFeature(vl, attributes={1: 5, 3: 'map'}) self.assertEqual(f.attributes(), [ default_clause, 5, "'qgis'::text", 'map', None, None, None, None, None]) # Since user did not enter a default for field 3, test must return the default value chosen f = QgsVectorLayerUtils.createFeature(vl, attributes={1: 5}) self.assertEqual(f.attributes(), [ default_clause, 5, "'qgis'::text", 'mappy', None, None, None, None, None]) # See https://github.com/qgis/QGIS/issues/23127 def testNumericPrecision(self): uri = 'point?field=f1:int' uri += '&field=f2:double(6,4)' uri += '&field=f3:string(20)' lyr = QgsVectorLayer(uri, "x", "memory") self.assertTrue(lyr.isValid()) f = QgsFeature(lyr.fields()) f['f1'] = 1 f['f2'] = 123.456 f['f3'] = '12345678.90123456789' lyr.dataProvider().addFeatures([f]) uri = '%s table="qgis_test"."b18155" (g) key=\'f1\'' % (self.dbconn) self.execSQLCommand('DROP TABLE IF EXISTS qgis_test.b18155') err = QgsVectorLayerExporter.exportLayer( lyr, uri, "postgres", lyr.crs()) self.assertEqual(err[0], QgsVectorLayerExporter.NoError, 'unexpected import error {0}'.format(err)) lyr = QgsVectorLayer(uri, "y", "postgres") self.assertTrue(lyr.isValid()) f = next(lyr.getFeatures()) self.assertEqual(f['f1'], 1) self.assertEqual(f['f2'], 123.456) self.assertEqual(f['f3'], '12345678.90123456789') # See https://github.com/qgis/QGIS/issues/23163 def testImportKey(self): uri = 'point?field=f1:int' uri += '&field=F2:double(6,4)' uri += '&field=f3:string(20)' lyr = QgsVectorLayer(uri, "x", "memory") self.assertTrue(lyr.isValid()) def testKey(lyr, key, kfnames): self.execSQLCommand('DROP TABLE IF EXISTS qgis_test.import_test') uri = '%s table="qgis_test"."import_test" (g)' % self.dbconn if key is not None: uri += ' key=\'%s\'' % key err = QgsVectorLayerExporter.exportLayer( lyr, uri, "postgres", lyr.crs()) self.assertEqual(err[0], QgsVectorLayerExporter.NoError, 'unexpected import error {0}'.format(err)) olyr = QgsVectorLayer(uri, "y", "postgres") self.assertTrue(olyr.isValid()) flds = lyr.fields() oflds = olyr.fields() if key is None: # if the pkey was not given, it will create a pkey self.assertEqual(oflds.size(), flds.size() + 1) self.assertEqual(oflds[0].name(), kfnames[0]) for i in range(flds.size()): self.assertEqual(oflds[i + 1].name(), flds[i].name()) else: # pkey was given, no extra field generated self.assertEqual(oflds.size(), flds.size()) for i in range(oflds.size()): self.assertEqual(oflds[i].name(), flds[i].name()) pks = olyr.primaryKeyAttributes() self.assertEqual(len(pks), len(kfnames)) for i in range(0, len(kfnames)): self.assertEqual(oflds[pks[i]].name(), kfnames[i]) testKey(lyr, 'f1', ['f1']) testKey(lyr, '"f1"', ['f1']) testKey(lyr, '"f1","F2"', ['f1', 'F2']) testKey(lyr, '"f1","F2","f3"', ['f1', 'F2', 'f3']) testKey(lyr, None, ['id']) # See https://github.com/qgis/QGIS/issues/25415 def testImportWithoutSchema(self): def _test(table, schema=None): self.execSQLCommand('DROP TABLE IF EXISTS %s CASCADE' % table) uri = 'point?field=f1:int' uri += '&field=F2:double(6,4)' uri += '&field=f3:string(20)' lyr = QgsVectorLayer(uri, "x", "memory") self.assertTrue(lyr.isValid()) table = ("%s" % table) if schema is None else ( "\"%s\".\"%s\"" % (schema, table)) dest_uri = "%s sslmode=disable table=%s (geom) sql" % ( self.dbconn, table) QgsVectorLayerExporter.exportLayer( lyr, dest_uri, "postgres", lyr.crs()) olyr = QgsVectorLayer(dest_uri, "y", "postgres") self.assertTrue(olyr.isValid(), "Failed URI: %s" % dest_uri) # Test bug 17518 _test('b17518') # Test fully qualified table (with schema) _test("b17518", "qgis_test") # Test empty schema _test("b17518", "") # Test public schema _test("b17518", "public") # Test fully qualified table (with wrong schema) with self.assertRaises(AssertionError): _test("b17518", "qgis_test_wrong") def testStyle(self): self.execSQLCommand('DROP TABLE IF EXISTS layer_styles CASCADE') vl = self.getEditableLayer() self.assertTrue(vl.isValid()) self.assertTrue( vl.dataProvider().isSaveAndLoadStyleToDatabaseSupported()) self.assertTrue(vl.dataProvider().isDeleteStyleFromDatabaseSupported()) # table layer_styles does not exit related_count, idlist, namelist, desclist, errmsg = vl.listStylesInDatabase() self.assertEqual(related_count, -1) self.assertEqual(idlist, []) self.assertEqual(namelist, []) self.assertEqual(desclist, []) self.assertNotEqual(errmsg, "") qml, errmsg = vl.getStyleFromDatabase("1") self.assertEqual(qml, "") self.assertNotEqual(errmsg, "") mFilePath = QDir.toNativeSeparators( '%s/symbol_layer/%s.qml' % (unitTestDataPath(), "singleSymbol")) status = vl.loadNamedStyle(mFilePath) self.assertTrue(status) # The style is saved as non-default errorMsg = vl.saveStyleToDatabase( "by day", "faded greens and elegant patterns", False, "") self.assertEqual(errorMsg, "") # the style id should be "1", not "by day" qml, errmsg = vl.getStyleFromDatabase("by day") self.assertEqual(qml, "") self.assertNotEqual(errmsg, "") related_count, idlist, namelist, desclist, errmsg = vl.listStylesInDatabase() self.assertEqual(related_count, 1) self.assertEqual(errmsg, "") self.assertEqual(idlist, ["1"]) self.assertEqual(namelist, ["by day"]) self.assertEqual(desclist, ["faded greens and elegant patterns"]) qml, errmsg = vl.getStyleFromDatabase("100") self.assertEqual(qml, "") self.assertNotEqual(errmsg, "") qml, errmsg = vl.getStyleFromDatabase("1") self.assertTrue(qml.startswith('<!DOCTYPE qgis'), qml) self.assertEqual(errmsg, "") res, errmsg = vl.deleteStyleFromDatabase("100") self.assertTrue(res) self.assertEqual(errmsg, "") res, errmsg = vl.deleteStyleFromDatabase("1") self.assertTrue(res) self.assertEqual(errmsg, "") # We save now the style again twice but with one as default errorMsg = vl.saveStyleToDatabase( "related style", "faded greens and elegant patterns", False, "") self.assertEqual(errorMsg, "") errorMsg = vl.saveStyleToDatabase( "default style", "faded greens and elegant patterns", True, "") self.assertEqual(errorMsg, "") related_count, idlist, namelist, desclist, errmsg = vl.listStylesInDatabase() self.assertEqual(related_count, 2) self.assertEqual(errmsg, "") self.assertEqual(idlist, ["3", "2"]) # Ids must be reversed. self.assertEqual(namelist, ["default style", "related style"]) self.assertEqual(desclist, ["faded greens and elegant patterns"] * 2) # We remove these 2 styles res, errmsg = vl.deleteStyleFromDatabase("2") self.assertTrue(res) self.assertEqual(errmsg, "") res, errmsg = vl.deleteStyleFromDatabase("3") self.assertTrue(res) self.assertEqual(errmsg, "") # table layer_styles does exit, but is now empty related_count, idlist, namelist, desclist, errmsg = vl.listStylesInDatabase() self.assertEqual(related_count, 0) self.assertEqual(idlist, []) self.assertEqual(namelist, []) self.assertEqual(desclist, []) self.assertEqual(errmsg, "") def testStyleWithGeometryType(self): """Test saving styles with the additional geometry type Layers are created from geometries_table """ myconn = 'service=\'qgis_test\'' if 'QGIS_PGTEST_DB' in os.environ: myconn = os.environ['QGIS_PGTEST_DB'] # point layer myPoint = QgsVectorLayer( myconn + ' sslmode=disable srid=4326 type=POINT table="qgis_test"."geometries_table" (geom) sql=', 'Point', 'postgres') self.assertTrue(myPoint.isValid()) myPoint.saveStyleToDatabase('myPointStyle', '', False, '') # polygon layer myPolygon = QgsVectorLayer( myconn + ' sslmode=disable srid=4326 type=POLYGON table="qgis_test"."geometries_table" (geom) sql=', 'Poly', 'postgres') self.assertTrue(myPoint.isValid()) myPolygon.saveStyleToDatabase('myPolygonStyle', '', False, '') # how many related_count, idlist, namelist, desclist, errmsg = myPolygon.listStylesInDatabase() self.assertEqual(len(idlist), 2) self.assertEqual(namelist, ['myPolygonStyle', 'myPointStyle']) # raw psycopg2 query self.assertTrue(self.con) cur = self.con.cursor() self.assertTrue(cur) cur.execute("select stylename, type from layer_styles order by type") self.assertEqual(cur.fetchall(), [ ('myPointStyle', 'Point'), ('myPolygonStyle', 'Polygon')]) cur.close() # delete them myPolygon.deleteStyleFromDatabase(idlist[1]) myPolygon.deleteStyleFromDatabase(idlist[0]) styles = myPolygon.listStylesInDatabase() ids = styles[1] self.assertEqual(len(ids), 0) def testSaveStyleInvalidXML(self): self.execSQLCommand('DROP TABLE IF EXISTS layer_styles CASCADE') vl = self.getEditableLayer() self.assertTrue(vl.isValid()) self.assertTrue( vl.dataProvider().isSaveAndLoadStyleToDatabaseSupported()) self.assertTrue(vl.dataProvider().isDeleteStyleFromDatabaseSupported()) mFilePath = QDir.toNativeSeparators( '%s/symbol_layer/%s.qml' % (unitTestDataPath(), "fontSymbol")) status = vl.loadNamedStyle(mFilePath) self.assertTrue(status) errorMsg = vl.saveStyleToDatabase( "fontSymbol", "font with invalid utf8 char", False, "") self.assertEqual(errorMsg, "") qml, errmsg = vl.getStyleFromDatabase("1") self.assertTrue('v="\u001E"' in qml) self.assertEqual(errmsg, "") # Test loadStyle from metadata md = QgsProviderRegistry.instance().providerMetadata('postgres') qml = md.loadStyle(self.dbconn + " type=POINT table=\"qgis_test\".\"editData\" (geom)", 'fontSymbol') self.assertTrue(qml.startswith('<!DOCTYPE qgi'), qml) self.assertTrue('v="\u001E"' in qml) def testHasMetadata(self): # views don't have metadata vl = QgsVectorLayer('{} table="qgis_test"."{}" key="pk" sql='.format(self.dbconn, 'bikes_view'), "bikes_view", "postgres") self.assertTrue(vl.isValid()) self.assertFalse(vl.dataProvider().hasMetadata()) # ordinary tables have metadata vl = QgsVectorLayer('%s table="qgis_test"."someData" sql=' % (self.dbconn), "someData", "postgres") self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().hasMetadata()) def testReadExtentOnView(self): # vector layer based on view vl0 = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="qgis_test"."some_poly_data_view" (geom) sql=', 'test', 'postgres') self.assertTrue(vl0.isValid()) self.assertFalse(vl0.dataProvider().hasMetadata()) # set a custom extent originalExtent = vl0.extent() customExtent = QgsRectangle(-80, 80, -70, 90) vl0.setExtent(customExtent) # write xml doc = QDomDocument("testdoc") elem = doc.createElement("maplayer") self.assertTrue(vl0.writeLayerXml(elem, doc, QgsReadWriteContext())) # read xml with the custom extent. It should not be used by default vl1 = QgsVectorLayer() vl1.readLayerXml(elem, QgsReadWriteContext()) self.assertTrue(vl1.isValid()) self.assertEqual(vl1.extent(), originalExtent) # read xml with custom extent with readExtent option. Extent read from # xml document should be used because we have a view vl2 = QgsVectorLayer() vl2.setReadExtentFromXml(True) vl2.readLayerXml(elem, QgsReadWriteContext()) self.assertTrue(vl2.isValid()) self.assertEqual(vl2.extent(), customExtent) # but a force update on extent should allow retrieveing the data # provider extent vl2.updateExtents() vl2.readLayerXml(elem, QgsReadWriteContext()) self.assertEqual(vl2.extent(), customExtent) vl2.updateExtents(force=True) vl2.readLayerXml(elem, QgsReadWriteContext()) self.assertEqual(vl2.extent(), originalExtent) def testReadExtentOnTable(self): # vector layer based on a standard table vl0 = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="qgis_test"."some_poly_data" (geom) sql=', 'test', 'postgres') self.assertTrue(vl0.isValid()) self.assertTrue(vl0.dataProvider().hasMetadata()) # set a custom extent originalExtent = vl0.extent() customExtent = QgsRectangle(-80, 80, -70, 90) vl0.setExtent(customExtent) # write xml doc = QDomDocument("testdoc") elem = doc.createElement("maplayer") self.assertTrue(vl0.writeLayerXml(elem, doc, QgsReadWriteContext())) # read xml with the custom extent. It should not be used by default vl1 = QgsVectorLayer() vl1.readLayerXml(elem, QgsReadWriteContext()) self.assertTrue(vl1.isValid()) self.assertEqual(vl1.extent(), originalExtent) # read xml with custom extent with readExtent option. Extent read from # xml document should be used even if we don't have a view or a # materialized view vl2 = QgsVectorLayer() vl2.setReadExtentFromXml(True) vl2.readLayerXml(elem, QgsReadWriteContext()) self.assertTrue(vl2.isValid()) self.assertEqual(vl2.extent(), customExtent) # but a force update on extent should allow retrieveing the data # provider extent vl2.updateExtents() vl2.readLayerXml(elem, QgsReadWriteContext()) self.assertEqual(vl2.extent(), customExtent) vl2.updateExtents(force=True) vl2.readLayerXml(elem, QgsReadWriteContext()) self.assertEqual(vl2.extent(), originalExtent) def testDeterminePkey(self): """Test primary key auto-determination""" vl = QgsVectorLayer(self.dbconn + ' sslmode=disable srid=4326 type=POLYGON table="qgis_test"."authors" sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().hasMetadata()) self.assertTrue("key='pk'" in vl.source()) def testCheckPkUnicityOnView(self): # vector layer based on view # This is valid vl0 = QgsVectorLayer( self.dbconn + ' checkPrimaryKeyUnicity=\'0\' sslmode=disable key=\'pk\' srid=0 type=POINT table="qgis_test"."b21839_pk_unicity_view" (geom) sql=', 'test', 'postgres') self.assertTrue(vl0.isValid()) geom = vl0.getFeature(1).geometry().asWkt() # This is NOT valid vl0 = QgsVectorLayer( self.dbconn + ' checkPrimaryKeyUnicity=\'1\' sslmode=disable key=\'an_int\' srid=0 type=POINT table="qgis_test"."b21839_pk_unicity_view" (geom) sql=', 'test', 'postgres') self.assertFalse(vl0.isValid()) # This is NOT valid because the default is to check unicity vl0 = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'an_int\' srid=0 type=POINT table="qgis_test"."b21839_pk_unicity_view" (geom) sql=', 'test', 'postgres') self.assertFalse(vl0.isValid()) # This is valid because the readExtentFromXml option is set # loadDefaultStyle, readExtentFromXml options = QgsVectorLayer.LayerOptions(True, True) vl0 = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'an_int\' srid=0 type=POINT table="qgis_test"."b21839_pk_unicity_view" (geom) sql=', 'test', 'postgres', options) self.assertTrue(vl0.isValid()) # Valid because a_unique_int is unique and default is to check unicity vl0 = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'a_unique_int\' srid=0 type=POINT table="qgis_test"."b21839_pk_unicity_view" (geom) sql=', 'test', 'postgres') self.assertEqual(vl0.getFeature(1).geometry().asWkt(), geom) # Valid because a_unique_int is unique vl0 = QgsVectorLayer( self.dbconn + ' checkPrimaryKeyUnicity=\'1\' sslmode=disable key=\'a_unique_int\' srid=0 type=POINT table="qgis_test"."b21839_pk_unicity_view" (geom) sql=', 'test', 'postgres') self.assertTrue(vl0.isValid()) self.assertEqual(vl0.getFeature(1).geometry().asWkt(), geom) def testNotify(self): vl0 = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="qgis_test"."some_poly_data" (geom) sql=', 'test', 'postgres') vl0.dataProvider().setListening(True) class Notified(QObject): def __init__(self): super(Notified, self).__init__() self.received = "" def receive(self, msg): self.received = msg notified = Notified() vl0.dataProvider().notify.connect(notified.receive) vl0.dataProvider().setListening(True) cur = self.con.cursor() ok = False start = time.time() while True: cur.execute("NOTIFY qgis, 'my message'") self.con.commit() QGISAPP.processEvents() if notified.received == "my message": ok = True break if (time.time() - start) > 5: # timeout break vl0.dataProvider().notify.disconnect(notified.receive) vl0.dataProvider().setListening(False) self.assertTrue(ok) def testStyleDatabaseWithService(self): """Test saving style in DB using a service file. To run this test, you first need to setup the test database with tests/testdata/provider/testdata_pg.sh """ myconn = 'service=\'qgis_test\'' if 'QGIS_PGTEST_DB' in os.environ: myconn = os.environ['QGIS_PGTEST_DB'] myvl = QgsVectorLayer( myconn + ' sslmode=disable key=\'pk\' srid=4326 type=POINT table="qgis_test"."someData" (geom) sql=', 'test', 'postgres') styles = myvl.listStylesInDatabase() ids = styles[1] self.assertEqual(len(ids), 0) myvl.saveStyleToDatabase('mystyle', '', False, '') styles = myvl.listStylesInDatabase() ids = styles[1] self.assertEqual(len(ids), 1) myvl.deleteStyleFromDatabase(ids[0]) styles = myvl.listStylesInDatabase() ids = styles[1] self.assertEqual(len(ids), 0) def testCurveToMultipolygon(self): self.execSQLCommand( 'CREATE TABLE IF NOT EXISTS multicurve(pk SERIAL NOT NULL PRIMARY KEY, geom public.geometry(MultiPolygon, 4326))') self.execSQLCommand('TRUNCATE multicurve') vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=MULTIPOLYGON table="multicurve" (geom) sql=', 'test', 'postgres') f = QgsFeature(vl.fields()) f.setGeometry(QgsGeometry.fromWkt( 'CurvePolygon(CircularString (20 30, 50 30, 50 90, 10 50, 20 30))')) self.assertTrue(vl.startEditing()) self.assertTrue(vl.addFeatures([f])) self.assertTrue(vl.commitChanges()) f = next(vl.getFeatures(QgsFeatureRequest())) g = f.geometry().constGet() self.assertTrue(g) self.assertEqual(g.wkbType(), QgsWkbTypes.MultiPolygon) self.assertEqual(g.childCount(), 1) self.assertTrue(g.childGeometry(0).vertexCount() > 3) def testMassivePaste(self): """Speed test to compare createFeature and createFeatures, for regression #21303""" import time self.execSQLCommand( 'CREATE TABLE IF NOT EXISTS massive_paste(pk SERIAL NOT NULL PRIMARY KEY, geom public.geometry(Polygon, 4326))') self.execSQLCommand('TRUNCATE massive_paste') start_time = time.time() vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="massive_paste" (geom) sql=', 'test_massive_paste', 'postgres') self.assertTrue(vl.startEditing()) features = [] context = vl.createExpressionContext() for i in range(4000): features.append( QgsVectorLayerUtils.createFeature(vl, QgsGeometry.fromWkt('Polygon ((7 44, 8 45, 8 46, 7 46, 7 44))'), {0: i}, context)) self.assertTrue(vl.addFeatures(features)) self.assertTrue(vl.commitChanges()) self.assertEqual(vl.featureCount(), 4000) print("--- %s seconds ---" % (time.time() - start_time)) self.execSQLCommand('TRUNCATE massive_paste') start_time = time.time() vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POLYGON table="massive_paste" (geom) sql=', 'test_massive_paste', 'postgres') self.assertTrue(vl.startEditing()) features_data = [] context = vl.createExpressionContext() for i in range(4000): features_data.append( QgsVectorLayerUtils.QgsFeatureData(QgsGeometry.fromWkt('Polygon ((7 44, 8 45, 8 46, 7 46, 7 44))'), {0: i})) features = QgsVectorLayerUtils.createFeatures( vl, features_data, context) self.assertTrue(vl.addFeatures(features)) self.assertTrue(vl.commitChanges()) self.assertEqual(vl.featureCount(), 4000) print("--- %s seconds ---" % (time.time() - start_time)) def testFilterOnCustomBbox(self): extent = QgsRectangle(-68, 70, -67, 80) request = QgsFeatureRequest().setFilterRect(extent) dbconn = 'service=qgis_test' uri = '%s srid=4326 key="pk" sslmode=disable table="qgis_test"."some_poly_data_shift_bbox" (geom)' % ( dbconn) def _test(vl, ids): values = {feat['pk']: 'x' for feat in vl.getFeatures(request)} expected = {x: 'x' for x in ids} self.assertEqual(values, expected) vl = QgsVectorLayer(uri, "testgeom", "postgres") self.assertTrue(vl.isValid()) _test(vl, [2, 3]) vl = QgsVectorLayer(uri + ' bbox=shiftbox', "testgeom", "postgres") self.assertTrue(vl.isValid()) _test(vl, [1, 3]) def testValidLayerDiscoverRelationsNone(self): """ Test checks that discover relation feature can be used on a layer that has no relation. """ vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POINT table="qgis_test"."someData" (geom) sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) self.assertEqual(vl.dataProvider().discoverRelations(vl, []), []) def testInvalidLayerDiscoverRelations(self): """ Test that discover relations feature can be used on invalid layer. """ vl = QgsVectorLayer('{} table="qgis_test"."invalid_layer" sql='.format(self.dbconn), "invalid_layer", "postgres") self.assertFalse(vl.isValid()) self.assertEqual(vl.dataProvider().discoverRelations(vl, []), []) def testValidLayerDiscoverRelations(self): """ Test implicit relations that can be discovers between tables, based on declared foreign keys. The test also checks that two distinct relations can be discovered when two foreign keys are declared (see #41138). """ vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' checkPrimaryKeyUnicity=\'1\' table="qgis_test"."referencing_layer"', 'referencing_layer', 'postgres') vls = [ QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk_ref_1\' checkPrimaryKeyUnicity=\'1\' table="qgis_test"."referenced_layer_1"', 'referenced_layer_1', 'postgres'), QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk_ref_2\' checkPrimaryKeyUnicity=\'1\' table="qgis_test"."referenced_layer_2"', 'referenced_layer_2', 'postgres'), vl ] for lyr in vls: self.assertTrue(lyr.isValid()) QgsProject.instance().addMapLayer(lyr) relations = vl.dataProvider().discoverRelations(vl, vls) self.assertEqual(len(relations), 2) for i, r in enumerate(relations): self.assertEqual(r.referencedLayer(), vls[i]) def testCheckTidPkOnViews(self): """Test vector layer based on a view with `ctid` as a key""" # This is valid vl0 = QgsVectorLayer( self.dbconn + ' checkPrimaryKeyUnicity=\'0\' sslmode=disable key=\'ctid\' srid=4326 type=POINT table="qgis_test"."b31799_test_view_ctid" (geom) sql=', 'test', 'postgres') self.assertTrue(vl0.isValid()) self.assertEqual(vl0.featureCount(), 10) for f in vl0.getFeatures(): self.assertNotEqual(f.attribute(0), NULL) def testFeatureCountEstimatedOnTable(self): """ Test feature count on table when estimated data is enabled """ vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' estimatedmetadata=true srid=4326 type=POINT table="qgis_test"."someData" (geom) sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) self.assertTrue(vl.featureCount() > 0) def testFeatureCountEstimatedOnView(self): """ Test feature count on view when estimated data is enabled """ self.execSQLCommand('DROP VIEW IF EXISTS qgis_test.somedataview') self.execSQLCommand( 'CREATE VIEW qgis_test.somedataview AS SELECT * FROM qgis_test."someData"') vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' estimatedmetadata=true srid=4326 type=POINT table="qgis_test"."somedataview" (geom) sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) self.assertTrue(vl.featureCount() > 0) def testIdentityPk(self): """Test a table with identity pk, see GH #29560""" vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'gid\' srid=4326 type=POLYGON table="qgis_test"."b29560"(geom) sql=', 'testb29560', 'postgres') self.assertTrue(vl.isValid()) feature = QgsFeature(vl.fields()) geom = QgsGeometry.fromWkt('POLYGON EMPTY') feature.setGeometry(geom) self.assertTrue(vl.dataProvider().addFeature(feature)) self.assertEqual(vl.dataProvider().defaultValueClause(0), "nextval('b29560_gid_seq'::regclass)") del (vl) # Verify vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'gid\' srid=4326 type=POLYGON table="qgis_test"."b29560"(geom) sql=', 'testb29560', 'postgres') self.assertTrue(vl.isValid()) feature = next(vl.getFeatures()) self.assertIsNotNone(feature.id()) @unittest.skipIf(os.environ.get('QGIS_CONTINUOUS_INTEGRATION_RUN', 'true'), 'Test flaky') def testDefaultValuesAndClauses(self): """Test whether default values like CURRENT_TIMESTAMP or now() they are respected. See GH #33383""" # Create the test table vl = QgsVectorLayer(self.dbconn + ' sslmode=disable table="public"."test_table_default_values" sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) dp = vl.dataProvider() # Clean the table dp.deleteFeatures(dp.allFeatureIds()) # Save it for the test now = datetime.now() # Test default values dp.setProviderProperty(QgsDataProvider.EvaluateDefaultValues, 1) # FIXME: spatialite provider (and OGR) return a NULL here and the following passes # self.assertTrue(dp.defaultValue(0).isNull()) self.assertIsNotNone(dp.defaultValue(0)) self.assertIsNone(dp.defaultValue(1)) self.assertTrue(dp.defaultValue( 2).startswith(now.strftime('%Y-%m-%d'))) self.assertTrue(dp.defaultValue( 3).startswith(now.strftime('%Y-%m-%d'))) self.assertEqual(dp.defaultValue(4), 123) self.assertEqual(dp.defaultValue(5), 'My default') # FIXME: the provider should return the clause definition # regardless of the EvaluateDefaultValues setting dp.setProviderProperty(QgsDataProvider.EvaluateDefaultValues, 0) self.assertEqual(dp.defaultValueClause( 0), "nextval('test_table_default_values_id_seq'::regclass)") self.assertEqual(dp.defaultValueClause(1), '') self.assertEqual(dp.defaultValueClause(2), "now()") self.assertEqual(dp.defaultValueClause(3), "CURRENT_TIMESTAMP") self.assertEqual(dp.defaultValueClause(4), '123') self.assertEqual(dp.defaultValueClause(5), "'My default'::text") # FIXME: the test fails if the value is not reset to 1 dp.setProviderProperty(QgsDataProvider.EvaluateDefaultValues, 1) feature = QgsFeature(vl.fields()) for idx in range(vl.fields().count()): default = vl.dataProvider().defaultValue(idx) if default is not None: feature.setAttribute(idx, default) else: feature.setAttribute(idx, 'A comment') self.assertTrue(vl.dataProvider().addFeature(feature)) del (vl) # Verify vl2 = QgsVectorLayer(self.dbconn + ' sslmode=disable table="public"."test_table_default_values" sql=', 'test', 'postgres') self.assertTrue(vl2.isValid()) feature = next(vl2.getFeatures()) self.assertEqual(feature.attribute(1), 'A comment') self.assertTrue(feature.attribute( 2).startswith(now.strftime('%Y-%m-%d'))) self.assertTrue(feature.attribute( 3).startswith(now.strftime('%Y-%m-%d'))) self.assertEqual(feature.attribute(4), 123) self.assertEqual(feature.attribute(5), 'My default') def testEncodeDecodeUri(self): """Test PG encode/decode URI""" md = QgsProviderRegistry.instance().providerMetadata('postgres') self.assertEqual(md.decodeUri( 'dbname=\'qgis_tests\' host=localhost port=5432 user=\'myuser\' sslmode=disable estimatedmetadata=true srid=3067 table="public"."basic_map_tiled" (rast)'), {'dbname': 'qgis_tests', 'estimatedmetadata': True, 'geometrycolumn': 'rast', 'host': 'localhost', 'port': '5432', 'schema': 'public', 'srid': '3067', 'sslmode': 1, 'table': 'basic_map_tiled', 'username': 'myuser'}) self.assertEqual(md.decodeUri( 'dbname=\'qgis_tests\' host=localhost port=5432 user=\'myuser\' sslmode=disable key=\'id\' estimatedmetadata=true srid=3763 type=MultiPolygon checkPrimaryKeyUnicity=\'1\' table="public"."copas1" (geom)'), {'dbname': 'qgis_tests', 'estimatedmetadata': True, 'geometrycolumn': 'geom', 'host': 'localhost', 'key': 'id', 'port': '5432', 'schema': 'public', 'srid': '3763', 'sslmode': 1, 'table': 'copas1', 'type': 6, 'username': 'myuser'}) self.assertEqual(md.encodeUri({'dbname': 'qgis_tests', 'estimatedmetadata': True, 'geometrycolumn': 'geom', 'host': 'localhost', 'key': 'id', 'port': '5432', 'schema': 'public', 'srid': '3763', 'sslmode': 1, 'table': 'copas1', 'type': 6, 'username': 'myuser'}), "dbname='qgis_tests' user='myuser' srid=3763 estimatedmetadata='true' host='localhost' key='id' port='5432' sslmode='disable' type='MultiPolygon' table=\"public\".\"copas1\" (geom)") self.assertEqual(md.encodeUri({'dbname': 'qgis_tests', 'estimatedmetadata': True, 'geometrycolumn': 'rast', 'host': 'localhost', 'port': '5432', 'schema': 'public', 'srid': '3067', 'sslmode': 1, 'table': 'basic_map_tiled', 'username': 'myuser'}), "dbname='qgis_tests' user='myuser' srid=3067 estimatedmetadata='true' host='localhost' port='5432' sslmode='disable' table=\"public\".\"basic_map_tiled\" (rast)") def _round_trip(uri): decoded = md.decodeUri(uri) self.assertEqual(decoded, md.decodeUri(md.encodeUri(decoded))) uri = self.dbconn + \ ' sslmode=disable key=\'gid\' srid=3035 table="public"."my_pg_vector" sql=' decoded = md.decodeUri(uri) self.assertEqual(decoded, { 'key': 'gid', 'schema': 'public', 'service': 'qgis_test', 'srid': '3035', 'sslmode': QgsDataSourceUri.SslDisable, 'table': 'my_pg_vector', }) _round_trip(uri) uri = self.dbconn + \ ' sslmode=prefer key=\'gid\' srid=3035 temporalFieldIndex=2 ' + \ 'authcfg=afebeff username=\'my username\' password=\'my secret password=\' ' + \ 'table="public"."my_pg_vector" (the_geom) sql="a_field" != 1223223' _round_trip(uri) decoded = md.decodeUri(uri) self.assertEqual(decoded, { 'authcfg': 'afebeff', 'geometrycolumn': 'the_geom', 'key': 'gid', 'password': 'my secret password=', 'schema': 'public', 'service': 'qgis_test', 'sql': '"a_field" != 1223223', 'srid': '3035', 'sslmode': QgsDataSourceUri.SslPrefer, 'table': 'my_pg_vector', 'username': 'my username', }) def testHasSpatialIndex(self): for layer_name in ('hspi_table', 'hspi_materialized_view'): columns = {'geom_without_index': QgsFeatureSource.SpatialIndexNotPresent, 'geom_with_index': QgsFeatureSource.SpatialIndexPresent} for (geometry_column, spatial_index) in columns.items(): conn = 'service=\'qgis_test\'' if 'QGIS_PGTEST_DB' in os.environ: conn = os.environ['QGIS_PGTEST_DB'] vl = QgsVectorLayer( conn + ' sslmode=disable key=\'id\' srid=4326 type=\'Polygon\' table="qgis_test"."{n}" ({c}) sql='.format(n=layer_name, c=geometry_column), 'test', 'postgres') self.assertTrue(vl.isValid()) self.assertEqual(vl.hasSpatialIndex(), spatial_index) def testBBoxFilterOnGeographyType(self): """Test bounding box filter on geography type""" vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POINT table="qgis_test"."testgeog" (geog) sql=', 'test', 'postgres') self.assertTrue(vl.isValid()) def _test(vl, extent, ids): request = QgsFeatureRequest().setFilterRect(extent) values = {feat['pk']: 'x' for feat in vl.getFeatures(request)} expected = {x: 'x' for x in ids} self.assertEqual(values, expected) _test(vl, QgsRectangle(40 - 0.01, -0.01, 40 + 0.01, 0.01), [1]) _test(vl, QgsRectangle(40 - 5, -5, 40 + 5, 5), [1]) _test(vl, QgsRectangle(40 - 5, 0, 40 + 5, 5), [1]) _test(vl, QgsRectangle(40 - 10, -10, 40 + 10, 10), [1]) # no use of spatial index currently _test(vl, QgsRectangle(40 - 5, 0.01, 40 + 5, 5), []) # no match _test(vl, QgsRectangle(40 - 0.01, 60 - 0.01, 40 + 0.01, 60 + 0.01), [2]) _test(vl, QgsRectangle(40 - 5, 60 - 5, 40 + 5, 60 + 5), [2]) _test(vl, QgsRectangle(40 - 5, 60 - 0.01, 40 + 5, 60 + 9.99), [2]) _test(vl, QgsRectangle(40 - 0.01, -60 - 0.01, 40 + 0.01, -60 + 0.01), [3]) _test(vl, QgsRectangle(40 - 5, -60 - 5, 40 + 5, -60 + 5), [3]) _test(vl, QgsRectangle(40 - 5, -60 - 9.99, 40 + 5, -60 + 0.01), [3]) _test(vl, QgsRectangle(-181, -90, 181, 90), [1, 2, 3]) # no use of spatial index currently def testReadCustomSRID(self): """Test that we can correctly read the SRS from a custom SRID""" md = QgsProviderRegistry.instance().providerMetadata("postgres") conn = md.createConnection(self.dbconn, {}) # Cleanup if needed try: conn.dropVectorTable('qgis_test', 'test_custom_srid') except QgsProviderConnectionException: pass conn.executeSql("DELETE FROM spatial_ref_sys WHERE srid = 543210 AND auth_name='FOO' AND auth_srid=32600;") conn.executeSql("""INSERT INTO spatial_ref_sys (srid, auth_name, auth_srid, srtext, proj4text) VALUES (543210, 'FOO', 32600, 'PROJCS["my_projection",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",0],PARAMETER["scale_factor",1],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH]]','+proj=tmerc +lat_0=0 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs');""") conn.executeSql(''' CREATE TABLE "qgis_test"."test_custom_srid" ( gid serial primary key, geom geometry(Point, 543210) );''') layer = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\'table="qgis_test"."test_custom_srid" (geom) sql=', 'test', 'postgres') conn.executeSql("DELETE FROM spatial_ref_sys WHERE srid = 543210 AND auth_name='FOO' AND auth_srid=32600;") self.assertTrue(layer.isValid()) self.assertEqual(layer.crs().description(), 'my_projection') def testSingleMultiColumnPkSmallData(self): """Test Single and Multi Column PK, `Small` Data""" from itertools import combinations def test_for_pk_combinations(test_type_list, pk_column_name_list, fids_get_count): pk_column_name = ','.join(pk_column_name_list) set_new_pk = ''' ALTER TABLE qgis_test.multi_column_pk_small_data_table DROP CONSTRAINT multi_column_pk_small_data_pk; ALTER TABLE qgis_test.multi_column_pk_small_data_table ADD CONSTRAINT multi_column_pk_small_data_pk PRIMARY KEY ({});''' set_new_layer = ' sslmode=disable key=\'{}\' srid=3857 type=POLYGON table="qgis_test"."multi_column_pk_small_data_{}" (geom) sql=' error_string = 'from {} with PK - {} : expected {}, got {}' if 'table' in test_type_list: self.execSQLCommand(set_new_pk.format(pk_column_name)) for test_type in test_type_list: vl = QgsVectorLayer(self.dbconn + set_new_layer.format(pk_column_name, test_type), 'test_multi_column_pk_small_data', 'postgres') fids = [f.id() for f in vl.getFeatures(QgsFeatureRequest().setLimit(fids_get_count))] fids2 = [f.id() for f in vl.getFeatures(fids)] self.assertEqual(fids_get_count, len(fids), "Get with limit " + error_string.format(test_type, pk_column_name, fids_get_count, len(fids))) self.assertEqual(fids_get_count, len(fids2), "Get by fids " + error_string.format(test_type, pk_column_name, fids_get_count, len(fids2))) self.execSQLCommand('DROP TABLE IF EXISTS qgis_test.multi_column_pk_small_data_table CASCADE;') self.execSQLCommand(''' CREATE TABLE qgis_test.multi_column_pk_small_data_table ( id_serial serial NOT NULL, id_uuid uuid NOT NULL, id_int int NOT NULL, id_bigint bigint NOT NULL, id_str character varying(20) NOT NULL, id_inet4 inet NOT NULL, id_inet6 inet NOT NULL, id_cidr4 cidr NOT NULL, id_cidr6 cidr NOT NULL, id_macaddr macaddr NOT NULL, id_macaddr8 macaddr8 NOT NULL, id_timestamp timestamp with time zone NOT NULL, id_half_null_uuid uuid, id_all_null_uuid uuid, geom geometry(Polygon,3857), CONSTRAINT multi_column_pk_small_data_pk PRIMARY KEY (id_serial, id_uuid, id_int, id_bigint, id_str) );''') self.execSQLCommand(''' CREATE OR REPLACE VIEW qgis_test.multi_column_pk_small_data_view AS SELECT * FROM qgis_test.multi_column_pk_small_data_table; DROP MATERIALIZED VIEW IF EXISTS qgis_test.multi_column_pk_small_data_mat_view; CREATE MATERIALIZED VIEW qgis_test.multi_column_pk_small_data_mat_view AS SELECT * FROM qgis_test.multi_column_pk_small_data_table;''') self.execSQLCommand(''' TRUNCATE qgis_test.multi_column_pk_small_data_table; INSERT INTO qgis_test.multi_column_pk_small_data_table( id_uuid, id_int, id_bigint, id_str, id_inet4, id_inet6, id_cidr4, id_cidr6, id_macaddr, id_macaddr8, id_timestamp, id_half_null_uuid, id_all_null_uuid, geom) SELECT ( (10000000)::text || (100000000000 + dy)::text || (100000000000 + dx)::text )::uuid, dx + 1000000 * dy, --id_int dx + 1000000 * dy, --id_bigint dx || E\' ot\\'her \' || dy, --id_str (\'192.168.0.1\'::inet + dx + 100 * dy )::inet, --id_inet4 (\'2001:4f8:3:ba:2e0:81ff:fe22:d1f1\'::inet + dx + 100 * dy )::inet, --id_inet6 (\'192.168.0.1\'::cidr + dx + 100 * dy )::cidr, --id_cidr4 (\'2001:4f8:3:ba:2e0:81ff:fe22:d1f1\'::cidr + dx + 100 * dy )::cidr, --id_cidr6 ((112233445566 + dx + 100 * dy)::text)::macaddr, --id_macaddr ((1122334455667788 + dx + 100 * dy)::text)::macaddr8, --id_macaddr8 now() - ((dx||\' hour\')::text)::interval - ((dy||\' day\')::text)::interval, NULLIF( ( (10000000)::text || (100000000000 + dy)::text || (100000000000 + dx)::text )::uuid, ( (10000000)::text || (100000000000 + dy + dy%2)::text || (100000000000 + dx)::text )::uuid ), NULL, ST_Translate( ST_GeomFromText(\'POLYGON((3396900.0 6521800.0,3396900.0 6521870.0, 3396830.0 6521870.0,3396830.0 6521800.0,3396900.0 6521800.0))\', 3857 ), 100.0 * dx, 100.0 * dy ) FROM generate_series(1,3) dx, generate_series(1,3) dy; REFRESH MATERIALIZED VIEW qgis_test.multi_column_pk_small_data_mat_view;''') pk_col_list = ("id_serial", "id_uuid", "id_int", "id_bigint", "id_str", "id_inet4", "id_inet6", "id_cidr4", "id_cidr6", "id_macaddr", "id_macaddr8") test_type_list = ["table", "view", "mat_view"] for n in [1, 2, len(pk_col_list)]: pk_col_set_list = list(combinations(pk_col_list, n)) for pk_col_set in pk_col_set_list: test_for_pk_combinations(test_type_list, pk_col_set, 7) for col_name in ["id_serial", "id_uuid", "id_int", "id_bigint", "id_str", "id_inet4"]: test_for_pk_combinations(["view", "mat_view"], ["id_half_null_uuid", col_name], 7) test_for_pk_combinations(["view", "mat_view"], ["id_all_null_uuid", col_name], 7) class TestPyQgsPostgresProviderCompoundKey(unittest.TestCase, ProviderTestCase): @classmethod def setUpClass(cls): """Run before all tests""" cls.dbconn = 'service=qgis_test' if 'QGIS_PGTEST_DB' in os.environ: cls.dbconn = os.environ['QGIS_PGTEST_DB'] # Create test layers cls.vl = QgsVectorLayer( cls.dbconn + ' sslmode=disable key=\'"key1","key2"\' srid=4326 type=POINT table="qgis_test"."someDataCompound" (geom) sql=', 'test', 'postgres') assert cls.vl.isValid() cls.source = cls.vl.dataProvider() @classmethod def tearDownClass(cls): """Run after all tests""" def enableCompiler(self): QgsSettings().setValue('/qgis/compileExpressions', True) return True def disableCompiler(self): QgsSettings().setValue('/qgis/compileExpressions', False) def uncompiledFilters(self): return set(['"dt" = to_datetime(\'000www14ww13ww12www4ww5ww2020\',\'zzzwwwsswwmmwwhhwwwdwwMwwyyyy\')', '"date" = to_date(\'www4ww5ww2020\',\'wwwdwwMwwyyyy\')', '"time" = to_time(\'000www14ww13ww12www\',\'zzzwwwsswwmmwwhhwww\')']) def partiallyCompiledFilters(self): return set([]) def testConstraints(self): for key in ["key1", "key2"]: idx = self.vl.dataProvider().fieldNameIndex(key) self.assertTrue(idx >= 0) self.assertFalse(self.vl.dataProvider().fieldConstraints( idx) & QgsFieldConstraints.ConstraintUnique) def testCompoundPkChanges(self): """ Check if fields with compound primary keys can be changed """ vl = self.vl self.assertTrue(vl.isValid()) idx_key1 = vl.fields().lookupField('key1') idx_key2 = vl.fields().lookupField('key2') # the name "pk" for this datasource is misleading; # the primary key is actually composed by the fields key1 and key2 idx_pk = vl.fields().lookupField('pk') idx_name = vl.fields().lookupField('name') idx_name2 = vl.fields().lookupField('name2') geomwkt = 'Point(-47.945 -15.812)' # start editing ordinary attribute. ft1 = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("key1 = 2 AND key2 = 2"))) self.assertTrue(ft1.isValid()) original_geometry = ft1.geometry().asWkt() vl.startEditing() self.assertTrue(vl.changeAttributeValues(ft1.id(), {idx_name: 'Rose'})) self.assertTrue(vl.commitChanges()) # check change ft2 = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression("key1 = 2 AND key2 = 2"))) self.assertEqual(ft2['name'], 'Rose') self.assertEqual(ft2['name2'], 'Apple') self.assertEqual(ft2['pk'], 2) # now, start editing one of the PK field components vl.startEditing() self.assertTrue(vl.dataProvider().changeFeatures({ft2.id(): {idx_key2: 42, idx_name: 'Orchid', idx_name2: 'Daisy'}}, {ft2.id(): QgsGeometry.fromWkt(geomwkt)})) self.assertTrue(vl.commitChanges()) # let's check if we still have the same fid... ft2 = next(vl.getFeatures(QgsFeatureRequest().setFilterFid(ft2.id()))) self.assertEqual(ft2['key2'], 42) self.assertEqual(ft2['name'], 'Orchid') self.assertEqual(ft2['name2'], 'Daisy') self.assertTrue(vl.startEditing()) vl.changeAttributeValues(ft2.id(), {idx_key1: 21, idx_name2: 'Hibiscus'}) self.assertTrue(vl.commitChanges()) ft2 = next(vl.getFeatures(QgsFeatureRequest().setFilterFid(ft2.id()))) self.assertEqual(ft2['key1'], 21) self.assertEqual(ft2['name2'], 'Hibiscus') # lets get a brand new feature and check how it went... ft3 = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression('pk = 2'))) self.assertEqual(ft3['name'], 'Orchid') self.assertEqual(ft3['key1'], 21) self.assertEqual(ft3['key2'], 42) assert compareWkt(ft3.geometry().asWkt(), geomwkt), "Geometry mismatch. Expected: {} Got: {}\n".format(ft3.geometry().asWkt(), geomwkt) # Now, we leave the record as we found it, so further tests can proceed vl.startEditing() self.assertTrue(vl.dataProvider().changeFeatures({ft3.id(): {idx_key1: 2, idx_key2: 2, idx_pk: 2, idx_name: 'Apple', idx_name2: 'Apple'}}, {ft3.id(): QgsGeometry.fromWkt(original_geometry)})) self.assertTrue(vl.commitChanges()) class TestPyQgsPostgresProviderBigintSinglePk(unittest.TestCase, ProviderTestCase): @classmethod def setUpClass(cls): """Run before all tests""" cls.dbconn = 'service=qgis_test' if 'QGIS_PGTEST_DB' in os.environ: cls.dbconn = os.environ['QGIS_PGTEST_DB'] # Create test layers cls.vl = QgsVectorLayer( cls.dbconn + ' sslmode=disable key=\'"pk"\' srid=4326 type=POINT table="qgis_test"."provider_bigint_single_pk" (geom) sql=', 'bigint_pk', 'postgres') assert cls.vl.isValid() cls.source = cls.vl.dataProvider() cls.con = psycopg2.connect(cls.dbconn) @classmethod def tearDownClass(cls): """Run after all tests""" def getSource(self): """ drops/recreates the test data anew, like TestPyQgsPostgresProvider::getSource above. """ self.execSqlCommand( "DROP TABLE IF EXISTS qgis_test.provider_edit_bigint_single_pk") self.execSqlCommand( "CREATE TABLE qgis_test.provider_edit_bigint_single_pk ( pk bigserial PRIMARY KEY, cnt integer, name text DEFAULT 'qgis', name2 text DEFAULT 'qgis', num_char text, dt timestamp without time zone, \"date\" date, \"time\" time without time zone, geom public.geometry(Point,4326), key1 integer, key2 integer)") self.execSqlCommand( "INSERT INTO qgis_test.provider_edit_bigint_single_pk ( key1, key2, pk, cnt, name, name2, num_char, dt, \"date\", \"time\", geom) VALUES" "(1, 1, 5, -200, NULL, 'NuLl', '5', TIMESTAMP '2020-05-04 12:13:14', '2020-05-02', '12:13:01', '0101000020E61000001D5A643BDFC751C01F85EB51B88E5340')," "(1, 2, 3, 300, 'Pear', 'PEaR', '3', NULL, NULL, NULL, NULL)," "(2, 1, 1, 100, 'Orange', 'oranGe', '1', TIMESTAMP '2020-05-03 12:13:14', '2020-05-03', '12:13:14', '0101000020E61000006891ED7C3F9551C085EB51B81E955040')," "(2, 2, 2, 200, 'Apple', 'Apple', '2', TIMESTAMP '2020-05-04 12:14:14', '2020-05-04', '12:14:14', '0101000020E6100000CDCCCCCCCC0C51C03333333333B35140')," "(2, 3, 4, 400, 'Honey', 'Honey', '4', TIMESTAMP '2021-05-04 13:13:14', '2021-05-04', '13:13:14', '0101000020E610000014AE47E17A5450C03333333333935340')") vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'"pk"\' srid=4326 type=POINT table="qgis_test"."provider_edit_bigint_single_pk" (geom) sql=', 'edit_bigint_pk', 'postgres') return vl def getEditableLayer(self): return self.getSource() def execSqlCommand(self, sql): self.assertTrue(self.con) cur = self.con.cursor() self.assertTrue(cur) cur.execute(sql) cur.close() self.con.commit() def enableCompiler(self): QgsSettings().setValue('/qgis/compileExpressions', True) return True def disableCompiler(self): QgsSettings().setValue('/qgis/compileExpressions', False) def uncompiledFilters(self): return set(['"dt" = to_datetime(\'000www14ww13ww12www4ww5ww2020\',\'zzzwwwsswwmmwwhhwwwdwwMwwyyyy\')', '"date" = to_date(\'www4ww5ww2020\',\'wwwdwwMwwyyyy\')', '"time" = to_time(\'000www14ww13ww12www\',\'zzzwwwsswwmmwwhhwww\')']) def partiallyCompiledFilters(self): return set([]) def testConstraints(self): idx = self.vl.dataProvider().fieldNameIndex("pk") self.assertTrue(idx >= 0) def testGetFeaturesFidTests(self): fids = [f.id() for f in self.source.getFeatures()] assert len(fids) == 5, 'Expected 5 features, got {} instead'.format( len(fids)) for id in fids: features = [f for f in self.source.getFeatures( QgsFeatureRequest().setFilterFid(id))] self.assertEqual(len(features), 1) feature = features[0] self.assertTrue(feature.isValid()) result = [feature.id()] expected = [id] assert result == expected, 'Expected {} and got {} when testing for feature ID filter'.format(expected, result) # test that results match QgsFeatureRequest.acceptFeature request = QgsFeatureRequest().setFilterFid(id) for f in self.source.getFeatures(): self.assertEqual(request.acceptFeature(f), f.id() == id) # TODO: bad features are not tested because the PostgreSQL provider # doesn't mark explicitly set invalid features as such. def testGetFeatures(self, source=None, extra_features=[], skip_features=[], changed_attributes={}, changed_geometries={}): """ Test that expected results are returned when fetching all features """ # IMPORTANT - we do not use `for f in source.getFeatures()` as we are also # testing that existing attributes & geometry in f are overwritten correctly # (for f in ... uses a new QgsFeature for every iteration) if not source: source = self.source it = source.getFeatures() f = QgsFeature() attributes = {} geometries = {} while it.nextFeature(f): # expect feature to be valid self.assertTrue(f.isValid()) # some source test datasets will include additional attributes which we ignore, # so cherry pick desired attributes attrs = [f['pk'], f['cnt'], f['name'], f['name2'], f['num_char']] # DON'T force the num_char attribute to be text - some sources (e.g., delimited text) will # automatically detect that this attribute contains numbers and set it as a numeric # field # TODO: PostgreSQL 12 won't accept conversion from integer to text. # attrs[4] = str(attrs[4]) attributes[f['pk']] = attrs geometries[f['pk']] = f.hasGeometry() and f.geometry().asWkt() expected_attributes = {5: [5, -200, NULL, 'NuLl', '5'], 3: [3, 300, 'Pear', 'PEaR', '3'], 1: [1, 100, 'Orange', 'oranGe', '1'], 2: [2, 200, 'Apple', 'Apple', '2'], 4: [4, 400, 'Honey', 'Honey', '4']} expected_geometries = {1: 'Point (-70.332 66.33)', 2: 'Point (-68.2 70.8)', 3: None, 4: 'Point(-65.32 78.3)', 5: 'Point(-71.123 78.23)'} for f in extra_features: expected_attributes[f[0]] = f.attributes() if f.hasGeometry(): expected_geometries[f[0]] = f.geometry().asWkt() else: expected_geometries[f[0]] = None for i in skip_features: del expected_attributes[i] del expected_geometries[i] for i, a in changed_attributes.items(): for attr_idx, v in a.items(): expected_attributes[i][attr_idx] = v for i, g, in changed_geometries.items(): if g: expected_geometries[i] = g.asWkt() else: expected_geometries[i] = None self.assertEqual(attributes, expected_attributes, 'Expected {}, got {}'.format( expected_attributes, attributes)) self.assertEqual(len(expected_geometries), len(geometries)) for pk, geom in list(expected_geometries.items()): if geom: assert compareWkt(geom, geometries[pk]), "Geometry {} mismatch Expected:\n{}\nGot:\n{}\n".format(pk, geom, geometries[ pk]) else: self.assertFalse( geometries[pk], 'Expected null geometry for {}'.format(pk)) def testAddFeatureExtraAttributes(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) if not l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: return # test that adding features with too many attributes drops these attributes # we be more tricky and also add a valid feature to stress test the provider f1 = QgsFeature() f1.setAttributes([6, -220, 'qgis', 'String', '15']) f2 = QgsFeature() f2.setAttributes([7, -230, 'qgis', 'String', '15', 15, 16, 17]) result, added = l.dataProvider().addFeatures([f1, f2]) self.assertTrue(result, 'Provider returned False to addFeatures with extra attributes. Providers should accept these features but truncate the extra attributes.') # make sure feature was added correctly added = [f for f in l.dataProvider().getFeatures() if f['pk'] == 7][0] # TODO: The PostgreSQL provider doesn't truncate extra attributes! self.assertNotEqual(added.attributes(), [7, -230, 'qgis', 'String', '15'], 'The PostgreSQL provider doesn\'t truncate extra attributes.') def testAddFeatureMissingAttributes(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) if not l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: return # test that adding features with missing attributes pads out these # attributes with NULL values to the correct length. # changed from ProviderTestBase.testAddFeatureMissingAttributes: we use # 'qgis' instead of NULL below. # TODO: Only unmentioned attributes get filled with the DEFAULT table # value; if the attribute is present, the saved value will be NULL if # that is indicated, or the value mentioned by the user; there is no # implicit conversion of PyQGIS::NULL to PostgreSQL DEFAULT. f1 = QgsFeature() f1.setAttributes([6, -220, 'qgis', 'String']) f2 = QgsFeature() f2.setAttributes([7, 330]) result, added = l.dataProvider().addFeatures([f1, f2]) self.assertTrue(result, 'Provider returned False to addFeatures with missing attributes. Providers should accept these features but add NULL attributes to the end of the existing attributes to the required field length.') f1.setId(added[0].id()) f2.setId(added[1].id()) # check result - feature attributes MUST be padded out to required number of fields f1.setAttributes([6, -220, 'qgis', 'String', NULL]) f2.setAttributes([7, 330, 'qgis', 'qgis', NULL]) self.testGetFeatures(l.dataProvider(), [f1, f2]) def testAddFeature(self): if not getattr(self, 'getEditableLayer', None): return l = self.getEditableLayer() self.assertTrue(l.isValid()) f1 = QgsFeature() # changed from ProviderTestBase.testAddFeature: we use 'qgis' instead # of NULL below. # TODO: Only unmentioned attributes get filled with the DEFAULT table # value; if the attribute is present, the saved value will be NULL if # that is indicated, or the value mentioned by the user; there is no # implicit conversion of PyQGIS::NULL to PostgreSQL DEFAULT. f1.setAttributes([6, -220, 'qgis', 'String', '15']) f1.setGeometry(QgsGeometry.fromWkt('Point (-72.345 71.987)')) f2 = QgsFeature() f2.setAttributes([7, 330, 'Coconut', 'CoCoNut', '13']) if l.dataProvider().capabilities() & QgsVectorDataProvider.AddFeatures: # expect success result, added = l.dataProvider().addFeatures([f1, f2]) self.assertTrue( result, 'Provider reported AddFeatures capability, but returned False to addFeatures') f1.setId(added[0].id()) f2.setId(added[1].id()) # check result self.testGetFeatures(l.dataProvider(), [f1, f2]) # add empty list, should return true for consistency self.assertTrue(l.dataProvider().addFeatures([])) # ensure that returned features have been given the correct id f = next(l.getFeatures( QgsFeatureRequest().setFilterFid(added[0].id()))) self.assertTrue(f.isValid()) self.assertEqual(f['cnt'], -220) f = next(l.getFeatures( QgsFeatureRequest().setFilterFid(added[1].id()))) self.assertTrue(f.isValid()) self.assertEqual(f['cnt'], 330) else: # expect fail self.assertFalse(l.dataProvider().addFeatures([f1, f2]), 'Provider reported no AddFeatures capability, but returned true to addFeatures') def testModifyPk(self): """ Check if we can modify a primary key value. Since this PK is bigint, we also exercise the mapping between fid and values """ vl = self.getEditableLayer() self.assertTrue(vl.isValid()) geomwkt = 'Point(-47.945 -15.812)' feature = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression('pk = 4'))) self.assertTrue(feature.isValid()) self.assertTrue(vl.startEditing()) idxpk = vl.fields().lookupField('pk') self.assertTrue(vl.dataProvider().changeFeatures({feature.id(): {idxpk: 42}}, {feature.id(): QgsGeometry.fromWkt(geomwkt)})) self.assertTrue(vl.commitChanges()) # read back ft = next(vl.getFeatures(QgsFeatureRequest().setFilterExpression('pk = 42'))) self.assertTrue(ft.isValid()) self.assertEqual(ft['name'], 'Honey') assert compareWkt(ft.geometry().asWkt(), geomwkt), "Geometry mismatch. Expected: {} Got: {}\n".format(ft.geometry().asWkt(), geomwkt) def testDuplicatedFieldNamesInQueryLayers(self): """Test regresssion GH #36205""" vl = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'__rid__\' table="(SELECT row_number() OVER () AS __rid__, * FROM (SELECT * from qgis_test.some_poly_data a, qgis_test.some_poly_data b where ST_Intersects(a.geom,b.geom)) as foo)" sql=', 'test_36205', 'postgres') self.assertTrue(vl.isValid()) self.assertEqual(vl.featureCount(), 3) # This fails because the "geom" field and "pk" fields are ambiguous # There is no easy fix: all duplicated fields should be explicitly aliased # and the query internally rewritten # feature = next(vl.getFeatures()) # self.assertTrue(vl.isValid()) def testUnrestrictedGeometryType(self): """Test geometry column with no explicit geometry type, regression GH #38565""" md = QgsProviderRegistry.instance().providerMetadata("postgres") conn = md.createConnection(self.dbconn, {}) # Cleanup if needed try: conn.dropVectorTable('qgis_test', 'test_unrestricted_geometry') except QgsProviderConnectionException: pass conn.executeSql(''' CREATE TABLE "qgis_test"."test_unrestricted_geometry" ( gid serial primary key, geom geometry(Geometry, 4326) );''') points = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\' srid=4326 type=POINT table="qgis_test"."test_unrestricted_geometry" (geom) sql=', 'test_points', 'postgres') lines = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\' srid=4326 type=LINESTRING table="qgis_test"."test_unrestricted_geometry" (geom) sql=', 'test_lines', 'postgres') polygons = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\' srid=4326 type=POLYGON table="qgis_test"."test_unrestricted_geometry" (geom) sql=', 'test_polygons', 'postgres') self.assertTrue(points.isValid()) self.assertTrue(lines.isValid()) self.assertTrue(polygons.isValid()) f = QgsFeature(points.fields()) f.setGeometry(QgsGeometry.fromWkt('point(9 45)')) self.assertTrue(points.dataProvider().addFeatures([f])) self.assertEqual(points.featureCount(), 1) self.assertEqual(lines.featureCount(), 0) self.assertEqual(polygons.featureCount(), 0) # Fetch from iterator self.assertTrue(compareWkt(next(points.getFeatures()).geometry().asWkt(), 'point(9 45)')) with self.assertRaises(StopIteration): next(lines.getFeatures()) with self.assertRaises(StopIteration): next(polygons.getFeatures()) f.setGeometry(QgsGeometry.fromWkt('linestring(9 45, 10 46)')) self.assertTrue(lines.dataProvider().addFeatures([f])) self.assertEqual(points.featureCount(), 1) self.assertEqual(lines.featureCount(), 1) self.assertEqual(polygons.featureCount(), 0) # Fetch from iterator self.assertTrue(compareWkt(next(points.getFeatures()).geometry().asWkt(), 'point(9 45)')) self.assertTrue(compareWkt(next(lines.getFeatures()).geometry().asWkt(), 'linestring(9 45, 10 46)')) with self.assertRaises(StopIteration): next(polygons.getFeatures()) # Test regression GH #38567 (no SRID requested in the data source URI) # Cleanup if needed conn.executeSql('DELETE FROM "qgis_test"."test_unrestricted_geometry" WHERE \'t\'') points = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\' type=POINT table="qgis_test"."test_unrestricted_geometry" (geom) sql=', 'test_points', 'postgres') lines = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\' type=LINESTRING table="qgis_test"."test_unrestricted_geometry" (geom) sql=', 'test_lines', 'postgres') polygons = QgsVectorLayer(self.dbconn + ' sslmode=disable key=\'gid\' type=POLYGON table="qgis_test"."test_unrestricted_geometry" (geom) sql=', 'test_polygons', 'postgres') self.assertTrue(points.isValid()) self.assertTrue(lines.isValid()) self.assertTrue(polygons.isValid()) def testTrustFlag(self): """Test regression https://github.com/qgis/QGIS/issues/38809""" vl = QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'pk\' srid=4326 type=POINT table="qgis_test"."editData" (geom) sql=', 'testTrustFlag', 'postgres') self.assertTrue(vl.isValid()) p = QgsProject.instance() d = QTemporaryDir() dir_path = d.path() self.assertTrue(p.addMapLayers([vl])) project_path = os.path.join(dir_path, 'testTrustFlag.qgs') self.assertTrue(p.write(project_path)) del vl p.clear() self.assertTrue(p.read(project_path)) vl = p.mapLayersByName('testTrustFlag')[0] self.assertTrue(vl.isValid()) self.assertFalse(p.trustLayerMetadata()) # Set the trust flag p.setTrustLayerMetadata(True) self.assertTrue(p.write(project_path)) # Re-read p.clear() self.assertTrue(p.read(project_path)) self.assertTrue(p.trustLayerMetadata()) vl = p.mapLayersByName('testTrustFlag')[0] self.assertTrue(vl.isValid()) def testQueryLayerDuplicatedFields(self): """Test that duplicated fields from a query layer are returned""" def _get_layer(sql): return QgsVectorLayer( self.dbconn + ' sslmode=disable key=\'__rid__\' table=\'(SELECT row_number() OVER () AS __rid__, * FROM (' + sql + ') as foo)\' sql=', 'test', 'postgres') l = _get_layer('SELECT 1, 2') self.assertEqual(l.fields().count(), 3) self.assertEqual([f.name() for f in l.fields()], ['__rid__', '?column?', '?column? (2)']) l = _get_layer('SELECT 1 as id, 2 as id') self.assertEqual(l.fields().count(), 3) self.assertEqual([f.name() for f in l.fields()], ['__rid__', 'id', 'id (2)']) def testInsertOnlyFieldIsEditable(self): """Test issue #40922 when an INSERT only use cannot insert a new feature""" md = QgsProviderRegistry.instance().providerMetadata("postgres") conn = md.createConnection(self.dbconn, {}) conn.executeSql('DROP TABLE IF EXISTS public.insert_only_points') conn.executeSql('DROP USER IF EXISTS insert_only_user') conn.executeSql('CREATE USER insert_only_user WITH PASSWORD \'insert_only_user\'') conn.executeSql('CREATE TABLE insert_only_points (id SERIAL PRIMARY KEY, name VARCHAR(64))') conn.executeSql("SELECT AddGeometryColumn('public', 'insert_only_points', 'geom', 4326, 'POINT', 2 )") conn.executeSql('GRANT SELECT ON "public"."insert_only_points" TO insert_only_user') uri = QgsDataSourceUri(self.dbconn + ' sslmode=disable key=\'id\'srid=4326 type=POINT table="public"."insert_only_points" (geom) sql=') uri.setUsername('insert_only_user') uri.setPassword('insert_only_user') vl = QgsVectorLayer(uri.uri(), 'test', 'postgres') self.assertTrue(vl.isValid()) self.assertFalse(vl.startEditing()) feature = QgsFeature(vl.fields()) self.assertFalse(QgsVectorLayerUtils.fieldIsEditable(vl, 0, feature)) self.assertFalse(QgsVectorLayerUtils.fieldIsEditable(vl, 1, feature)) conn.executeSql('GRANT INSERT ON "public"."insert_only_points" TO insert_only_user') vl = QgsVectorLayer(uri.uri(), 'test', 'postgres') feature = QgsFeature(vl.fields()) self.assertTrue(vl.startEditing()) self.assertTrue(QgsVectorLayerUtils.fieldIsEditable(vl, 0, feature)) self.assertTrue(QgsVectorLayerUtils.fieldIsEditable(vl, 1, feature)) def testPkeyIntArray(self): """ Test issue #42778 when pkey is an int array """ md = QgsProviderRegistry.instance().providerMetadata("postgres") conn = md.createConnection(self.dbconn, {}) conn.executeSql('DROP TABLE IF EXISTS public.test_pkey_intarray') conn.executeSql('CREATE TABLE public.test_pkey_intarray (id _int8 PRIMARY KEY, name VARCHAR(64))') conn.executeSql("""INSERT INTO public.test_pkey_intarray (id, name) VALUES('{0,0,19111815}', 'test')""") uri = QgsDataSourceUri(self.dbconn + ' sslmode=disable key=\'id\' table="public"."test_pkey_intarray" sql=') vl = QgsVectorLayer(uri.uri(), 'test', 'postgres') self.assertTrue(vl.isValid()) feat = next(vl.getFeatures()) self.assertTrue(feat.isValid()) self.assertEqual(feat["name"], "test") fid = feat.id() self.assertTrue(fid > 0) feat = vl.getFeature(fid) self.assertTrue(feat.isValid()) self.assertEqual(feat["name"], "test") if __name__ == '__main__': unittest.main()
gpl-2.0
nutztherookie/wagtail
wagtail/contrib/wagtailfrontendcache/tests.py
4
6379
from __future__ import absolute_import, unicode_literals import mock from django.core.exceptions import ImproperlyConfigured from django.test import TestCase from django.test.utils import override_settings from wagtail.contrib.wagtailfrontendcache.backends import ( BaseBackend, CloudflareBackend, CloudfrontBackend, HTTPBackend) from wagtail.contrib.wagtailfrontendcache.utils import get_backends from wagtail.tests.testapp.models import EventIndex from wagtail.wagtailcore.models import Page class TestBackendConfiguration(TestCase): def test_default(self): backends = get_backends() self.assertEqual(len(backends), 0) def test_varnish(self): backends = get_backends(backend_settings={ 'varnish': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.HTTPBackend', 'LOCATION': 'http://localhost:8000', }, }) self.assertEqual(set(backends.keys()), set(['varnish'])) self.assertIsInstance(backends['varnish'], HTTPBackend) self.assertEqual(backends['varnish'].cache_scheme, 'http') self.assertEqual(backends['varnish'].cache_netloc, 'localhost:8000') def test_cloudflare(self): backends = get_backends(backend_settings={ 'cloudflare': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend', 'EMAIL': 'test@test.com', 'TOKEN': 'this is the token', 'ZONEID': 'this is a zone id', }, }) self.assertEqual(set(backends.keys()), set(['cloudflare'])) self.assertIsInstance(backends['cloudflare'], CloudflareBackend) self.assertEqual(backends['cloudflare'].cloudflare_email, 'test@test.com') self.assertEqual(backends['cloudflare'].cloudflare_token, 'this is the token') def test_cloudfront(self): backends = get_backends(backend_settings={ 'cloudfront': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudfrontBackend', 'DISTRIBUTION_ID': 'frontend', }, }) self.assertEqual(set(backends.keys()), set(['cloudfront'])) self.assertIsInstance(backends['cloudfront'], CloudfrontBackend) self.assertEqual(backends['cloudfront'].cloudfront_distribution_id, 'frontend') def test_cloudfront_validate_distribution_id(self): with self.assertRaises(ImproperlyConfigured): get_backends(backend_settings={ 'cloudfront': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudfrontBackend', }, }) @mock.patch('wagtail.contrib.wagtailfrontendcache.backends.CloudfrontBackend._create_invalidation') def test_cloudfront_distribution_id_mapping(self, _create_invalidation): backends = get_backends(backend_settings={ 'cloudfront': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudfrontBackend', 'DISTRIBUTION_ID': { 'www.wagtail.io': 'frontend', } }, }) backends.get('cloudfront').purge('http://www.wagtail.io/home/events/christmas/') backends.get('cloudfront').purge('http://torchbox.com/blog/') _create_invalidation.assert_called_once_with('frontend', '/home/events/christmas/') def test_multiple(self): backends = get_backends(backend_settings={ 'varnish': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.HTTPBackend', 'LOCATION': 'http://localhost:8000/', }, 'cloudflare': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend', 'EMAIL': 'test@test.com', 'TOKEN': 'this is the token', 'ZONEID': 'this is a zone id', } }) self.assertEqual(set(backends.keys()), set(['varnish', 'cloudflare'])) def test_filter(self): backends = get_backends(backend_settings={ 'varnish': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.HTTPBackend', 'LOCATION': 'http://localhost:8000/', }, 'cloudflare': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend', 'EMAIL': 'test@test.com', 'TOKEN': 'this is the token', 'ZONEID': 'this is a zone id', } }, backends=['cloudflare']) self.assertEqual(set(backends.keys()), set(['cloudflare'])) @override_settings(WAGTAILFRONTENDCACHE_LOCATION='http://localhost:8000') def test_backwards_compatibility(self): backends = get_backends() self.assertEqual(set(backends.keys()), set(['default'])) self.assertIsInstance(backends['default'], HTTPBackend) self.assertEqual(backends['default'].cache_scheme, 'http') self.assertEqual(backends['default'].cache_netloc, 'localhost:8000') PURGED_URLS = [] class MockBackend(BaseBackend): def __init__(self, config): pass def purge(self, url): PURGED_URLS.append(url) @override_settings(WAGTAILFRONTENDCACHE={ 'varnish': { 'BACKEND': 'wagtail.contrib.wagtailfrontendcache.tests.MockBackend', }, }) class TestCachePurging(TestCase): fixtures = ['test.json'] def test_purge_on_publish(self): PURGED_URLS[:] = [] # reset PURGED_URLS to the empty list page = EventIndex.objects.get(url_path='/home/events/') page.save_revision().publish() self.assertEqual(PURGED_URLS, ['http://localhost/events/']) def test_purge_on_unpublish(self): PURGED_URLS[:] = [] # reset PURGED_URLS to the empty list page = EventIndex.objects.get(url_path='/home/events/') page.unpublish() self.assertEqual(PURGED_URLS, ['http://localhost/events/']) def test_purge_with_unroutable_page(self): PURGED_URLS[:] = [] # reset PURGED_URLS to the empty list root = Page.objects.get(url_path='/') page = EventIndex(title='new top-level page') root.add_child(instance=page) page.save_revision().publish() self.assertEqual(PURGED_URLS, [])
bsd-3-clause
tshi04/machine-learning-codes
TextGAN_ST/utils.py
2
5932
import numpy as np import torch import time from torch.autograd import Variable ''' fast beam search ''' def tensor_transformer(seq0, batch_size, beam_size): seq = seq0.unsqueeze(2) seq = seq.repeat(1, 1, beam_size, 1) seq = seq.contiguous().view(batch_size, beam_size*beam_size, seq.size(3)) return seq def fast_beam_search( model, src_text, vocab2id, beam_size=4, max_len=20, network='gru', pointer_net=True ): batch_size = src_text.size(0) src_text_rep = src_text.unsqueeze(1).clone().repeat(1, beam_size, 1).view(-1, src_text.size(1)).cuda() if network == 'lstm': encoder_hy, (h0_new, c0_new), h_attn_new, hidden_attn_new, past_attn_new = model.forward_encoder(src_text_rep) else: encoder_hy, hidden_decoder_new, h_attn_new, hidden_attn_new, past_attn_new = model.forward_encoder(src_text_rep) beam_seq = Variable(torch.LongTensor(batch_size, beam_size, max_len+1).fill_(vocab2id['<pad>'])).cuda() beam_seq[:, :, 0] = vocab2id['<s>'] beam_prb = torch.FloatTensor(batch_size, beam_size).fill_(0.0) last_wd = Variable(torch.LongTensor(batch_size, beam_size, 1).fill_(vocab2id['<s>'])).cuda() for j in range(max_len): if network == 'lstm': logits, (h0, c0), h_attn, hidden_attn, past_attn, p_gen, attn_ = model.forward_onestep_decoder( last_wd.view(-1, 1), (h0_new, c0_new), h_attn_new, encoder_hy, hidden_attn_new, past_attn_new ) else: logits, hidden_decoder, h_attn, hidden_attn, past_attn, p_gen, attn_ = model.forward_onestep_decoder( last_wd.view(-1, 1), hidden_decoder_new, h_attn_new, encoder_hy, hidden_attn_new, past_attn_new ) if pointer_net: logits = model.cal_dist(src_text_rep, logits, attn_, p_gen) else: logits = F.softmax(logits, dim=2) prob, wds = logits.data.topk(k=beam_size) prob = prob.view(batch_size, beam_size, prob.size(1), prob.size(2)) wds = wds.view(batch_size, beam_size, wds.size(1), wds.size(2)) if j == 0: beam_prb = prob[:, 0, 0] beam_seq[:, :, 1] = wds[:, 0, 0] last_wd = Variable(wds[:, 0, 0].unsqueeze(2).clone()).cuda() if network == 'lstm': h0_new = h0 c0_new = c0 else: hidden_decoder_new = hidden_decoder h_attn_new = h_attn hidden_attn_new = hidden_attn past_attn_new = past_attn continue cand_seq = tensor_transformer(beam_seq, batch_size, beam_size) cand_seq[:, :, j+1] = wds.squeeze(2).view(batch_size, -1) cand_last_wd = wds.squeeze(2).view(batch_size, -1) cand_prob = beam_prb.unsqueeze(1).repeat(1, beam_size, 1).transpose(1,2) cand_prob += prob[:, :, 0] cand_prob = cand_prob.contiguous().view(batch_size, beam_size*beam_size) if network == 'lstm': h0_new = h0_new.view(batch_size, beam_size, h0_new.size(-1)) c0_new = c0_new.view(batch_size, beam_size, c0_new.size(-1)) else: hidden_decoder_new = hidden_decoder_new.view(batch_size, beam_size, hidden_decoder_new.size(-1)) h_attn_new = h_attn_new.view(batch_size, beam_size, h_attn_new.size(1)) hidden_attn_new = hidden_attn_new.view(batch_size, beam_size, hidden_attn_new.size(1)) past_attn_new = past_attn_new.view(batch_size, beam_size, past_attn_new.size(1)) if network == 'lstm': h0 = h0.view(batch_size, beam_size, h0.size(-1)) h0 = tensor_transformer(h0, batch_size, beam_size) c0 = c0.view(batch_size, beam_size, c0.size(-1)) c0 = tensor_transformer(c0, batch_size, beam_size) else: hidden_decoder = hidden_decoder.view(batch_size, beam_size, hidden_decoder.size(-1)) hidden_decoder = tensor_transformer(hidden_decoder, batch_size, beam_size) h_attn = h_attn.view(batch_size, beam_size, h_attn.size(1)) h_attn = tensor_transformer(h_attn, batch_size, beam_size) hidden_attn = hidden_attn.view(batch_size, beam_size, hidden_attn.size(1)) hidden_attn = tensor_transformer(hidden_attn, batch_size, beam_size) past_attn = past_attn.view(batch_size, beam_size, past_attn.size(1)) past_attn = tensor_transformer(past_attn, batch_size, beam_size) tmp_prb, tmp_idx = cand_prob.topk(k=beam_size, dim=1) for x in range(batch_size): for b in range(beam_size): last_wd[x, b] = cand_last_wd[x, tmp_idx[x, b]] beam_seq[x, b] = cand_seq[x, tmp_idx[x, b]] beam_prb[x, b] = tmp_prb[x, b] if network == 'lstm': h0_new[x, b] = h0[x, tmp_idx[x, b]] c0_new[x, b] = c0[x, tmp_idx[x, b]] else: hidden_decoder_new[x, b] = hidden_decoder[x, tmp_idx[x, b]] h_attn_new[x, b] = h_attn[x, tmp_idx[x, b]] hidden_attn_new[x, b] = hidden_attn[x, tmp_idx[x, b]] past_attn_new[x, b] = past_attn[x, tmp_idx[x, b]] if network == 'lstm': h0_new = h0_new.view(-1, h0_new.size(-1)) c0_new = c0_new.view(-1, c0_new.size(-1)) else: hidden_decoder_new = hidden_decoder_new.view(-1, hidden_decoder_new.size(-1)) h_attn_new = h_attn_new.view(-1, h_attn_new.size(-1)) hidden_attn_new = hidden_attn_new.view(-1, hidden_attn_new.size(-1)) past_attn_new = past_attn_new.view(-1, past_attn_new.size(-1)) return beam_seq, beam_prb
gpl-3.0
tshi04/machine-learning-codes
seq2seq_lstm_luong_ST/data_utils.py
1
3692
import os import re import glob import shutil import numpy as np import torch from torch.autograd import Variable ''' Construct the vocabulary ''' def construct_vocab(file_, max_size=200000, mincount=5): vocab2id = {'<s>': 2, '</s>': 3, '<pad>': 1, '<unk>': 0} id2vocab = {2: '<s>', 3: '</s>', 1: '<pad>', 0: '<unk>'} word_pad = {'<s>': 2, '</s>': 3, '<pad>': 1, '<unk>': 0} cnt = 4 with open(file_, 'r') as fp: for line in fp: arr = re.split('\s', line[:-1]) if arr[0] == ' ': continue if arr[0] in word_pad: continue if int(arr[1]) >= mincount: vocab2id[arr[0]] = cnt id2vocab[cnt] = arr[0] cnt += 1 if len(vocab2id) == max_size: break return vocab2id, id2vocab ''' Split the corpus into batches. ''' def create_batch_file(path_, fkey_, file_, batch_size, clean=False): file_name = os.path.join(path_, file_) folder = os.path.join(path_, 'batch_'+fkey_+'_'+str(batch_size)) if os.path.exists(folder): batch_files = glob.glob(os.path.join(folder, '*')) if len(batch_files) > 0 and clean==False: return len(batch_files) try: shutil.rmtree(folder) os.mkdir(folder) except: os.mkdir(folder) fp = open(file_name, 'r') cnt = 0 for line in fp: try: arr.append(line) except: arr = [line] if len(arr) == batch_size: fout = open(os.path.join(folder, str(cnt)), 'w') for itm in arr: fout.write(itm) fout.close() arr = [] cnt += 1 fout = open(os.path.join(folder, str(cnt)), 'w') for itm in arr: fout.write(itm) fout.close() arr = [] cnt += 1 fp.close() return cnt ''' Process the minibatch. ''' def process_minibatch(batch_id, path_, fkey_, batch_size, vocab2id, max_lens=[400, 100]): file_ = os.path.join(path_, 'batch_'+fkey_+'_'+str(batch_size), str(batch_id)) fp = open(file_, 'r') src_arr = [] trg_arr = [] src_lens = [] trg_lens = [] for line in fp: arr = re.split('<sec>', line[:-1]) dabs = re.split('\s', arr[0]) dabs = filter(None, dabs) trg_lens.append(len(dabs)) dabs2id = [ vocab2id[wd] if wd in vocab2id else vocab2id['<unk>'] for wd in dabs ] trg_arr.append(dabs2id) dart = re.split('\s', arr[1]) dart = filter(None, dart) src_lens.append(len(dart)) dart2id = [ vocab2id[wd] if wd in vocab2id else vocab2id['<unk>'] for wd in dart ] src_arr.append(dart2id) fp.close() # here we can make algorithm more efficient. src_max_lens = max_lens[0] trg_max_lens = max_lens[1] src_arr = [itm[:src_max_lens] for itm in src_arr] trg_arr = [itm[:trg_max_lens] for itm in trg_arr] src_arr = [ itm + [vocab2id['<pad>']]*(src_max_lens-len(itm)) for itm in src_arr ] trg_input_arr = [ itm[:-1] + [vocab2id['<pad>']]*(1+trg_max_lens-len(itm)) for itm in trg_arr ] trg_output_arr = [ itm[1:] + [vocab2id['<pad>']]*(1+trg_max_lens-len(itm)) for itm in trg_arr ] src_var = Variable(torch.LongTensor(src_arr)) trg_input_var = Variable(torch.LongTensor(trg_input_arr)) trg_output_var = Variable(torch.LongTensor(trg_output_arr)) return src_var, trg_input_var, trg_output_var
gpl-3.0
zorroblue/scikit-learn
examples/covariance/plot_outlier_detection.py
15
5121
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates three different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; - using the Isolation Forest algorithm, which is based on random forests and hence more adapted to large-dimensional settings, even if it performs quite well in the examples below. - using the Local Outlier Factor to measure the local deviation of a given data point with respect to its neighbors by comparing their local density. The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ import numpy as np from scipy import stats import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) rng = np.random.RandomState(42) # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "Robust covariance": EllipticEnvelope(contamination=outliers_fraction), "Isolation Forest": IsolationForest(max_samples=n_samples, contamination=outliers_fraction, random_state=rng), "Local Outlier Factor": LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 100), np.linspace(-7, 7, 100)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = -1 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model plt.figure(figsize=(9, 7)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers if clf_name == "Local Outlier Factor": y_pred = clf.fit_predict(X) scores_pred = clf.negative_outlier_factor_ else: clf.fit(X) scores_pred = clf.decision_function(X) y_pred = clf.predict(X) threshold = stats.scoreatpercentile(scores_pred, 100 * outliers_fraction) n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points if clf_name == "Local Outlier Factor": # decision_function is private for LOF Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(2, 2, i + 1) subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white', s=20, edgecolor='k') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black', s=20, edgecolor='k') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=10), loc='lower right') subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.suptitle("Outlier detection") plt.show()
bsd-3-clause
MLDGR/Kaggle_HomesiteQuoteConversion
Python/XGB_V1.py
1
2521
# adapted from: # https://www.kaggle.com/mpearmain/homesite-quote-conversion/xgboost-benchmark/code import pandas as pd import numpy as np import xgboost as xgb from sklearn import preprocessing from sklearn.cross_validation import train_test_split from sklearn.metrics import roc_auc_score seed = 12345 train = 'train.csv' test = 'test.csv' print 'Reading data...' train = pd.read_csv(train) test = pd.read_csv(test) def format_data(d): d.drop('QuoteNumber', axis=1, inplace=True) # create date features d['Date'] = pd.to_datetime(pd.Series(d['Original_Quote_Date'])) d['Year'] = d['Date'].dt.year d['Month'] = d['Date'].dt.month d['DayOfWeek'] = d['Date'].dt.dayofweek d.drop('Original_Quote_Date', axis=1, inplace=True) d.drop('Date', axis=1, inplace=True) # fill NaN d = d.fillna(-1) return d print 'Formatting data...' y = np.array(train['QuoteConversion_Flag']) train.drop('QuoteConversion_Flag', axis=1, inplace=True) train = format_data(train) submission = test[['QuoteNumber']] test = format_data(test) print 'Creating features...' features = train.columns # convert categorical features to numeric for f in features: if train[f].dtype=='object': print(f) lbl = preprocessing.LabelEncoder() lbl.fit(list(train[f].values) + list(test[f].values)) train[f] = lbl.transform(list(train[f].values)) test[f] = lbl.transform(list(test[f].values)) # create train/eval train_X, eval_X, train_y, eval_y = train_test_split(train, y, test_size=.05) dtrain = xgb.DMatrix(train_X, train_y) deval = xgb.DMatrix(eval_X, eval_y) watchlist = [(dtrain, 'train'), (deval, 'eval')] params = {"objective": "binary:logistic", "booster" : "gbtree", "eta": 0.08, "max_depth": 13, "subsample": 0.7, "colsample_bytree": 0.7, "eval_metric": "auc", "silent": 1 } rounds = 1600 print 'Training model...' gbm = xgb.train(params, dtrain, rounds, evals=watchlist, early_stopping_rounds=50, verbose_eval=True) preds = gbm.predict(deval) score = roc_auc_score(eval_y, preds) print 'Evaluation set AUC: {0}'.format(score) print 'Making submission...' dtest = xgb.DMatrix(test) submission_preds = gbm.predict(dtest) submission['QuoteConversion_Flag'] = submission_preds submission.to_csv('xgb_submission0005.csv', index=False) # XGB feature importances #xgb.plot_importance(gbm) #mpl.pyplot.savefig('foo.png') x = pd.Series(gbm.get_fscore()) x.to_csv('feature_score5.csv')
gpl-3.0
shikhardb/scikit-learn
examples/text/mlcomp_sparse_document_classification.py
290
4498
""" ======================================================== Classification of text documents: using a MLComp dataset ======================================================== This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org (free registration required): http://mlcomp.org/datasets/379 Once downloaded unzip the archive somewhere on your filesystem. For instance in:: % mkdir -p ~/data/mlcomp % cd ~/data/mlcomp % unzip /path/to/dataset-379-20news-18828_XXXXX.zip You should get a folder ``~/data/mlcomp/379`` with a file named ``metadata`` and subfolders ``raw``, ``train`` and ``test`` holding the text documents organized by newsgroups. Then set the ``MLCOMP_DATASETS_HOME`` environment variable pointing to the root folder holding the uncompressed archive:: % export MLCOMP_DATASETS_HOME="~/data/mlcomp" Then you are ready to run this example using your favorite python shell:: % ipython examples/mlcomp_sparse_document_classification.py """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from __future__ import print_function from time import time import sys import os import numpy as np import scipy.sparse as sp import pylab as pl from sklearn.datasets import load_mlcomp from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB print(__doc__) if 'MLCOMP_DATASETS_HOME' not in os.environ: print("MLCOMP_DATASETS_HOME not set; please follow the above instructions") sys.exit(0) # Load the training set print("Loading 20 newsgroups training set... ") news_train = load_mlcomp('20news-18828', 'train') print(news_train.DESCR) print("%d documents" % len(news_train.filenames)) print("%d categories" % len(news_train.target_names)) print("Extracting features from the dataset using a sparse vectorizer") t0 = time() vectorizer = TfidfVectorizer(encoding='latin1') X_train = vectorizer.fit_transform((open(f).read() for f in news_train.filenames)) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_train.shape) assert sp.issparse(X_train) y_train = news_train.target print("Loading 20 newsgroups test set... ") news_test = load_mlcomp('20news-18828', 'test') t0 = time() print("done in %fs" % (time() - t0)) print("Predicting the labels of the test set...") print("%d documents" % len(news_test.filenames)) print("%d categories" % len(news_test.target_names)) print("Extracting features from the dataset using the same vectorizer") t0 = time() X_test = vectorizer.transform((open(f).read() for f in news_test.filenames)) y_test = news_test.target print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_test.shape) ############################################################################### # Benchmark classifiers def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar() print("Testbenching a linear classifier...") parameters = { 'loss': 'hinge', 'penalty': 'l2', 'n_iter': 50, 'alpha': 0.00001, 'fit_intercept': True, } benchmark(SGDClassifier, parameters, 'SGD') print("Testbenching a MultinomialNB classifier...") parameters = {'alpha': 0.01} benchmark(MultinomialNB, parameters, 'MultinomialNB') pl.show()
bsd-3-clause
10clouds/edx-platform
lms/djangoapps/course_blocks/__init__.py
12
1370
""" The Course Blocks app, built upon the Block Cache framework in openedx.core.lib.block_structure, is a higher layer django app in LMS that provides additional context of Courses and Users (via usage_info.py) with implementations for Block Structure Transformers that are related to block structure course access. As described in the Block Cache framework's __init__ module, this framework provides faster access to course blocks for performance sensitive features, by caching all transformer-required data so no modulestore access is necessary during block access. It is expected that only Block Access related transformers reside in this django app, as they are cross-cutting authorization transformers required across other features. Other higher-level and feature-specific transformers should be implemented in their own separate apps. Note: Currently, some of the implementation is redundant with the has_access code in courseware/access.py. However, we do have short-term plans for refactoring the current has_access code to use Course Blocks instead (https://openedx.atlassian.net/browse/MA-1019). We have introduced this redundancy in the short-term as an incremental implementation approach, reducing risk with initial release of this app. """ # Importing signals is necessary to activate the course publish/delete signal handlers. from . import signals
agpl-3.0
MadsJensen/RP_scripts
perm_test_score_gat_cp.py
1
2341
# -*- coding: utf-8 -*- """ Created on Sun Mar 5 10:27:24 2017 @author: mje """ import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import (permutation_test_score, StratifiedKFold) from sklearn.externals import joblib from my_settings import (data_path, source_folder, step_size, window_size) # make time points times = np.arange(-4000, 1001, 1) times = times / 1000. selected_times = times[::step_size] n_time = sum((selected_times + window_size) < times[-1]) # Load data subjects = [ "0008", "0009", "0010", "0012", "0014", "0015", "0016", "0017", "0018", "0019", "0020", "0021", "0022" ] cls_all = [] pln_all = [] for subject in subjects: cls = np.load(source_folder + "graph_data/%s_cls_pow_sliding.npy" % subject).item() pln = np.load(source_folder + "graph_data/%s_pln_pow_sliding.npy" % subject).item() cls_tmp = [] cls_tmp.append(cls["cp_alpha"]) cls_tmp.append(cls["cp_beta"]) cls_tmp.append(cls["cp_gamma_low"]) cls_tmp.append(cls["cp_gamma_high"]) pln_tmp = [] pln_tmp.append(pln["cp_alpha"]) pln_tmp.append(pln["cp_beta"]) pln_tmp.append(pln["cp_gamma_low"]) pln_tmp.append(pln["cp_gamma_high"]) cls_all.append(np.asarray(cls_tmp)) pln_all.append(np.asarray(pln_tmp)) data_cls = np.asarray(cls_all) data_pln = np.asarray(pln_all) # Load GAT model gat = joblib.load(data_path + "decode_time_gen/gat_cp.jl") # Setup data for epochs and cross validation X = np.vstack([data_cls, data_pln]) y = np.concatenate([np.zeros(len(data_cls)), np.ones(len(data_pln))]) cv = StratifiedKFold(n_splits=7, shuffle=True) perm_score_results = [] for j, est in enumerate(gat.estimators_): for tmp in est: lr_mean = LogisticRegression(C=0.0001) lr_mean.coef_ = np.asarray([lr.coef_ for lr in est]).mean( axis=0).squeeze() lr_mean.intercept_ = np.asarray([lr.intercept_ for lr in est]).mean() score, perm_score, pval = permutation_test_score( lr_mean, X[:, :, j], y, cv=cv, scoring="roc_auc", n_permutations=2000) perm_score_results.append({ "score": score, "perm_score": perm_score, "pval": pval }) joblib.dump(perm_score_results, data_path + "decode_time_gen/perm_score_results_cp.npy")
bsd-3-clause
jccaicedo/localization-agent
utils/libLearning.py
1
10431
import numpy as np import utils as cu import libDetection as det import dataProcessor as dp from utils import emptyMatrix ############################################### # Hard Negative Mining ############################################### class HardNegativeMining(): def __init__(self,currentModel,maxVectorsPerImage): self.currentModel = currentModel self.maxVectorsPerImage = maxVectorsPerImage def run(self,img,features,bboxes): pred = self.currentModel.predict(features,bboxes) candidates = pred > -1.0001 f = features[candidates] p = pred[candidates] bboxes = [bboxes[i] for i in range(len(bboxes)) if candidates[i]] # Sort candidate detections by score s = np.argsort(p) j = min(2*self.maxVectorsPerImage,f.shape[0]) # Keep top candidates only if j > 0: return (f[ s[-j:] ], p[ s[-j:] ], bboxes) else: return None def getHardNegatives(negativesDir,negativesList,featuresExt,numFeatures,maxVectors,currentModel): maxVectorsPerImage = maxVectors/len(negativesList) i = 0 task = HardNegativeMining(currentModel,maxVectorsPerImage) result = dp.processData(negativesList,negativesDir,featuresExt,task) hardng = emptyMatrix([2*maxVectors,numFeatures]) boxes = [] while len(result) > 0: data = result.pop(0) if data[0].shape[0]+i > hardng.shape[0]: print 'Not enough matrix space' hardng = np.concatenate( (hardng,emptyMatrix([maxVectors,numFeatures])) ) hardng[i:i+data[0].shape[0],:] = data[0] boxes += data[2] i = i + data[0].shape[0] return hardng[0:i,:],boxes[0:i] ############################################### # Random Negative Windows Filter ############################################### class RandomNegativesFilter(): def __init__(self,numFeatures,randomBoxes): self.numFeatures = numFeatures self.randomBoxes = randomBoxes def run(self,img,features,bboxes): boxes = range(0,features.shape[0]) cu.rnd.shuffle(boxes) m = min(features.shape[0],self.randomBoxes) bboxes = [bboxes[i] for i in boxes] return (features[boxes[0:m]],bboxes) def getRandomNegs(featuresDir,negativeList,featuresExt,numFeatures,maxVectors,maxNegativeImages): randomBoxes = maxVectors/maxNegativeImages cu.rnd.shuffle(negativeList) task = RandomNegativesFilter(numFeatures,randomBoxes) negatives = [negativeList.pop(0) for i in range(maxNegativeImages)] result = dp.processData(negatives,featuresDir,featuresExt,task) neg = emptyMatrix([maxVectors,numFeatures]) boxes = [] n = 0 while len(result) > 0: mat,box = result.pop() neg[n:n+mat.shape[0]] = mat n = n + mat.shape[0] boxes += box return (neg[0:n],boxes[0:n]) ############################################### # Negative-Windows-From-Positive-Images Filter ############################################### class NWFPIFilter(): def __init__(self,groundTruths,featuresDir,featuresExt,maxNegatives,overlap,model): self.groundTruths = groundTruths self.featuresDir = featuresDir self.featuresExt = featuresExt self.maxNegatives = maxNegatives self.overlap = overlap self.model = model def rank(self,img,features,bboxes): pred = self.model.predict(features,bboxes) candidates = pred > -1.0001 f = features[candidates] b = [bboxes[t] for t in range(len(bboxes)) if candidates[t]] p = pred[candidates] # Sort candidate detections by score s = np.argsort(p) j = min(2*self.maxNegatives,f.shape[0]) # Keep top candidates only if j > 0: return (f[ s[-j:] ], [ b[t] for t in s[-j:] ]) else: return None,None def run(self,img,features,bboxes): if self.model: features,bboxes = self.rank(img,features,bboxes) if features == None: return ([],[],[],[]) positives,negatives = [],[] imageData = self.groundTruths[img] for i in range( len(bboxes) ): isPositive,isNegative = False,False for j in imageData: o = det.IoU(j,map(float,bboxes[i][1:])) if o >= 0.85: isPositive = True break elif self.overlap >= o and o > 0: isNegative = True if isPositive: positives.append(i) if isNegative: negatives.append(i) if self.model: negatives.reverse() else: cu.rnd.shuffle(negatives) posIdx = [bboxes[t] for t in positives] posFeat = [features[positives]] negIdx = [bboxes[t] for t in negatives[0:self.maxNegatives]] negFeat = [features[negatives[0:self.maxNegatives]]] return (posIdx,posFeat,negIdx,negFeat) def selectNegativeWindowsFromPositiveImages(groundTruths,featuresDir,featuresExt,maxVectors,overlap,model=False): gtb = dict() for x in groundTruths: im,bx = x[0],map(float,x[1:]) try: gtb[im].append(bx) except: gtb[im] = [bx] task = NWFPIFilter(gtb,featuresDir,featuresExt,maxVectors/len(gtb.keys()),overlap,model) result = dp.processData(gtb.keys(),featuresDir,featuresExt,task) posIdx,posFeat,negIdx,negFeat = [],[],[],[] for r in result: posIdx += r[0] posFeat += r[1] negIdx += r[2] negFeat += r[3] Xp = emptyMatrix( (len(posIdx),posFeat[0].shape[1]) ) Xn = emptyMatrix( (len(negIdx),negFeat[0].shape[1]) ) k = 0 for i in range(len(posFeat)): Xp[k:k+posFeat[i].shape[0],:] = posFeat[i] k = k + posFeat[i].shape[0] k = 0 for i in range(len(negFeat)): Xn[k:k+negFeat[i].shape[0],:] = negFeat[i] k + k + negFeat[i].shape[0] print 'NegFromPos ready:',len(negIdx) return {'posIdx':posIdx, 'posFeat':Xp, 'negIdx':negIdx, 'negFeat':Xn} ############################################### # Cross-validation evaluation ############################################### def reportCrossValidationPerformance(clf,X,Y): from sklearn import cross_validation import sklearn.metrics as met skf = cross_validation.StratifiedKFold(Y, n_folds=10) p,r = 0.0,0.0 for train_index, test_index in skf: X_train, X_test = X[train_index], X[test_index] Y_train, Y_test = Y[train_index], Y[test_index] clf.fit(X_train,Y_train) # Performance measures: pred = clf.predict(X_test) cfm = met.confusion_matrix(Y_test,pred) precision = float(cfm[1][1])/(cfm[1][1] + cfm[0][1]) recall = float(cfm[1][1])/(cfm[1][1] + cfm[1][0]) p += precision r += recall print '{:.4f} {:.4f}'.format(precision,recall) print cfm print 'AVG {:.4f} {:.4f}'.format(p/10.0, r/10.0) ############################################### # Load Hard Negatives from predefined list ############################################### class LoadHardNegatives(): def __init__(self,boxInfo): self.boxInfo = boxInfo def run(self,img,features,bboxes): wanted = set([ ':'.join(map(str,x)) for x in self.boxInfo[img] ]) candidates = [] imgList = [] box = [] for i in range(len(bboxes)): b = bboxes[i] boxHash = ':'.join(b[1:]) if boxHash in wanted: candidates.append(True) imgList.append(img) box.append(b) wanted.remove(boxHash) else: candidates.append(False) candidates = np.asarray(candidates) return (features[candidates],imgList,box) def loadHardNegativesFromList(featuresDir,negativesInfo,featuresExt,numFeatures,totalNegatives,idx=False): i = 0 task = LoadHardNegatives(negativesInfo) result = dp.processData(negativesInfo.keys(),featuresDir,featuresExt,task) hardng = emptyMatrix([totalNegatives,numFeatures]) hardNames = [] boxes = [] while len(result) > 0: data,imgs,box = result.pop(0) hardng[i:i+data.shape[0],:] = data hardNames += imgs boxes += box i = i + data.shape[0] return (hardng[0:i,:],boxes) def parseRankedDetectionsFile(detectionsLog,maxNegOverlap,maxNegativeVectors): ## Read ranked list of negatives if isinstance(detectionsLog, basestring): log = [x.split() for x in open(detectionsLog)] else: log = detectionsLog posExamples = dict() negExamples = dict() posCount,negCount,noCares,negTaken = 0,0,0,0 for l in log: if l[7] == '1': posCount += 1 try: posExamples[l[0]] += [ l[1:5] ] except: posExamples[l[0]] = [ l[1:5] ] elif l[7] == '0' and float(l[6]) <= maxNegOverlap: negCount += 1 if negCount < maxNegativeVectors: negTaken += 1 try: negExamples[l[0]] += [ l[1:5] ] except: negExamples[l[0]] = [ l[1:5] ] else: noCares += 1 print 'NEGEXAMPLES:',np.sum( [len(negExamples[i]) for i in negExamples.keys()] ) print 'Log Of Detections: Pos {:} Neg {:} NoCares {:}'.format(posCount,negCount,noCares) return {'posExamples':posExamples,'negExamples':negExamples,'negTaken':negTaken} ############################################### # Compute aspect ratio and size features ############################################### def addAspectRatioAndSizeFeatures(features,index,aspectRatios,objectSizes): fs = 12 boxes = np.asmatrix( [ map(float,x[1:]) for x in index] ) imgSize = np.max(boxes,axis=0)[0,2:] sizes = np.asarray(boxes[:,2]-boxes[:,0])*np.asarray(boxes[:,3]-boxes[:,1])/(500*500) #/(imgSize[0,0]*imgSize[0,1]) sizeF = np.tile(sizes, (1, fs)) - np.tile(objectSizes,(sizes.shape[0],1)) ratios = np.asarray(boxes[:,2]-boxes[:,0])/np.asarray(boxes[:,3]-boxes[:,1]) ratioF = np.tile(ratios, (1, fs)) - np.tile(aspectRatios,(sizes.shape[0],1)) # ** S = np.argsort(np.abs(sizeF),axis=1) R = np.argsort(np.abs(ratioF),axis=1) for i in range(len(S)): sizeF[ i, S[i] ] = [1.,.5,.25,.125,.0625,0.,0.,0.,0.,0.,0.,0.] ratioF[i, R[i] ] = [1.,.5,.25,.125,.0625,0.,0.,0.,0.,0.,0.,0.] # ** return np.concatenate( (features, sizeF, ratioF), axis=1 ) def computeAspectRatioAndSizeIntervals(index): boxes = np.asmatrix( [ map(float,x[1:]) for x in index] ) imgSize = np.max(boxes,axis=0)[0,2:] sizes = np.asarray(boxes[:,2]-boxes[:,0])*np.asarray(boxes[:,3]-boxes[:,1])/(500*500) #/(imgSize[0,0]*imgSize[0,1]) objectSizes = np.percentile(sizes,range(5,100,10)) ratios = np.asarray(boxes[:,2]-boxes[:,0])/np.asarray(boxes[:,3]-boxes[:,1]) aspectRatios = np.percentile(ratios,range(5,100,10)) # ** objectSizes = [objectSizes[0]*0.5] + objectSizes + [1.0] aspectRatios = [aspectRatios[0]*0.5] + aspectRatios + [aspectRatios[-1]*1.5] # ** print 'AspectRatios:',aspectRatios print 'ObjectSizes:',objectSizes return aspectRatios,objectSizes
mit
zorroblue/scikit-learn
sklearn/decomposition/tests/test_pca.py
2
27961
import numpy as np import scipy as sp from itertools import product from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_less from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() solver_list = ['full', 'arpack', 'randomized', 'auto'] def test_pca(): # PCA on dense arrays X = iris.data for n_comp in np.arange(X.shape[1]): pca = PCA(n_components=n_comp, svd_solver='full') X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], n_comp) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) # test explained_variance_ratio_ == 1 with all components pca = PCA(svd_solver='full') pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) def test_pca_arpack_solver(): # PCA on dense arrays X = iris.data d = X.shape[1] # Loop excluding the extremes, invalid inputs for arpack for n_comp in np.arange(1, d): pca = PCA(n_components=n_comp, svd_solver='arpack', random_state=0) X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], n_comp) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) X_r = pca.transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(d), 12) pca = PCA(n_components=0, svd_solver='arpack', random_state=0) assert_raises(ValueError, pca.fit, X) # Check internal state assert_equal(pca.n_components, PCA(n_components=0, svd_solver='arpack', random_state=0).n_components) assert_equal(pca.svd_solver, PCA(n_components=0, svd_solver='arpack', random_state=0).svd_solver) pca = PCA(n_components=d, svd_solver='arpack', random_state=0) assert_raises(ValueError, pca.fit, X) assert_equal(pca.n_components, PCA(n_components=d, svd_solver='arpack', random_state=0).n_components) assert_equal(pca.svd_solver, PCA(n_components=0, svd_solver='arpack', random_state=0).svd_solver) def test_pca_randomized_solver(): # PCA on dense arrays X = iris.data # Loop excluding the 0, invalid for randomized for n_comp in np.arange(1, X.shape[1]): pca = PCA(n_components=n_comp, svd_solver='randomized', random_state=0) X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], n_comp) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) X_r = pca.transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) pca = PCA(n_components=0, svd_solver='randomized', random_state=0) assert_raises(ValueError, pca.fit, X) pca = PCA(n_components=0, svd_solver='randomized', random_state=0) assert_raises(ValueError, pca.fit, X) # Check internal state assert_equal(pca.n_components, PCA(n_components=0, svd_solver='randomized', random_state=0).n_components) assert_equal(pca.svd_solver, PCA(n_components=0, svd_solver='randomized', random_state=0).svd_solver) def test_no_empty_slice_warning(): # test if we avoid numpy warnings for computing over empty arrays n_components = 10 n_features = n_components + 2 # anything > n_comps triggered it in 0.16 X = np.random.uniform(-1, 1, size=(n_components, n_features)) pca = PCA(n_components=n_components) assert_no_warnings(pca.fit, X) def test_whitening(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaining 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_greater(X.std(axis=0).std(), 43.8) for solver, copy in product(solver_list, (True, False)): # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = PCA(n_components=n_components, whiten=True, copy=copy, svd_solver=solver, random_state=0, iterated_power=7) # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(ddof=1, axis=0), np.ones(n_components), decimal=6) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = PCA(n_components=n_components, whiten=False, copy=copy, svd_solver=solver).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_explained_variance(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2, svd_solver='full').fit(X) apca = PCA(n_components=2, svd_solver='arpack', random_state=0).fit(X) assert_array_almost_equal(pca.explained_variance_, apca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, apca.explained_variance_ratio_, 3) rpca = PCA(n_components=2, svd_solver='randomized', random_state=42).fit(X) assert_array_almost_equal(pca.explained_variance_, rpca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 1) # compare to empirical variances expected_result = np.linalg.eig(np.cov(X, rowvar=False))[0] expected_result = sorted(expected_result, reverse=True)[:2] X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, ddof=1, axis=0)) assert_array_almost_equal(pca.explained_variance_, expected_result) X_pca = apca.transform(X) assert_array_almost_equal(apca.explained_variance_, np.var(X_pca, ddof=1, axis=0)) assert_array_almost_equal(apca.explained_variance_, expected_result) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, ddof=1, axis=0), decimal=1) assert_array_almost_equal(rpca.explained_variance_, expected_result, decimal=1) # Same with correlated data X = datasets.make_classification(n_samples, n_features, n_informative=n_features-2, random_state=rng)[0] pca = PCA(n_components=2).fit(X) rpca = PCA(n_components=2, svd_solver='randomized', random_state=rng).fit(X) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 5) def test_singular_values(): # Check that the PCA output has the correct singular values rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2, svd_solver='full', random_state=rng).fit(X) apca = PCA(n_components=2, svd_solver='arpack', random_state=rng).fit(X) rpca = PCA(n_components=2, svd_solver='randomized', random_state=rng).fit(X) assert_array_almost_equal(pca.singular_values_, apca.singular_values_, 12) assert_array_almost_equal(pca.singular_values_, rpca.singular_values_, 1) assert_array_almost_equal(apca.singular_values_, rpca.singular_values_, 1) # Compare to the Frobenius norm X_pca = pca.transform(X) X_apca = apca.transform(X) X_rpca = rpca.transform(X) assert_array_almost_equal(np.sum(pca.singular_values_**2.0), np.linalg.norm(X_pca, "fro")**2.0, 12) assert_array_almost_equal(np.sum(apca.singular_values_**2.0), np.linalg.norm(X_apca, "fro")**2.0, 9) assert_array_almost_equal(np.sum(rpca.singular_values_**2.0), np.linalg.norm(X_rpca, "fro")**2.0, 0) # Compare to the 2-norms of the score vectors assert_array_almost_equal(pca.singular_values_, np.sqrt(np.sum(X_pca**2.0, axis=0)), 12) assert_array_almost_equal(apca.singular_values_, np.sqrt(np.sum(X_apca**2.0, axis=0)), 12) assert_array_almost_equal(rpca.singular_values_, np.sqrt(np.sum(X_rpca**2.0, axis=0)), 2) # Set the singular values and see what we get back rng = np.random.RandomState(0) n_samples = 100 n_features = 110 X = rng.randn(n_samples, n_features) pca = PCA(n_components=3, svd_solver='full', random_state=rng) apca = PCA(n_components=3, svd_solver='arpack', random_state=rng) rpca = PCA(n_components=3, svd_solver='randomized', random_state=rng) X_pca = pca.fit_transform(X) X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0)) X_pca[:, 0] *= 3.142 X_pca[:, 1] *= 2.718 X_hat = np.dot(X_pca, pca.components_) pca.fit(X_hat) apca.fit(X_hat) rpca.fit(X_hat) assert_array_almost_equal(pca.singular_values_, [3.142, 2.718, 1.0], 14) assert_array_almost_equal(apca.singular_values_, [3.142, 2.718, 1.0], 14) assert_array_almost_equal(rpca.singular_values_, [3.142, 2.718, 1.0], 14) def test_pca_check_projection(): # Test that the projection of data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) for solver in solver_list: Yt = PCA(n_components=2, svd_solver=solver).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): # Test that the projection of data can be inverted rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2, svd_solver='full').fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) for solver in solver_list: pca = PCA(n_components=2, whiten=True, svd_solver=solver) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): # Ensures that solver-specific extreme inputs for the n_components # parameter raise errors X = np.array([[0, 1, 0], [1, 0, 0]]) smallest_d = 2 # The smallest dimension lower_limit = {'randomized': 1, 'arpack': 1, 'full': 0, 'auto': 0} for solver in solver_list: # We conduct the same test on X.T so that it is invariant to axis. for data in [X, X.T]: for n_components in [-1, 3]: if solver == 'auto': solver_reported = 'full' else: solver_reported = solver assert_raises_regex(ValueError, "n_components={}L? must be between " "{}L? and min\(n_samples, n_features\)=" "{}L? with svd_solver=\'{}\'" .format(n_components, lower_limit[solver], smallest_d, solver_reported), PCA(n_components, svd_solver=solver).fit, data) if solver == 'arpack': n_components = smallest_d assert_raises_regex(ValueError, "n_components={}L? must be " "strictly less than " "min\(n_samples, n_features\)={}L?" " with svd_solver=\'arpack\'" .format(n_components, smallest_d), PCA(n_components, svd_solver=solver) .fit, data) def test_n_components_none(): # Ensures that n_components == None is handled correctly X = iris.data # We conduct the same test on X.T so that it is invariant to axis. for data in [X, X.T]: for solver in solver_list: pca = PCA(svd_solver=solver) pca.fit(data) if solver == 'arpack': assert_equal(pca.n_components_, min(data.shape) - 1) else: assert_equal(pca.n_components_, min(data.shape)) def test_randomized_pca_check_projection(): # Test that the projection by randomized PCA on dense data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2, svd_solver='randomized', random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): # Test that the projection by randomized PCA on list data is correct X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = PCA(n_components=1, svd_solver='randomized', random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): # Test that randomized PCA is inversible on dense data rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = PCA(n_components=2, svd_solver='randomized', random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True, svd_solver='randomized', random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_less(relative_max_delta, 1e-5) def test_n_components_mle(): # Ensure that n_components == 'mle' doesn't raise error for auto/full # svd_solver and raises error for arpack/randomized svd_solver rng = np.random.RandomState(0) n_samples = 600 n_features = 10 X = rng.randn(n_samples, n_features) n_components_dict = {} for solver in solver_list: pca = PCA(n_components='mle', svd_solver=solver) if solver in ['auto', 'full']: pca.fit(X) n_components_dict[solver] = pca.n_components_ else: # arpack/randomized solver error_message = ("n_components='mle' cannot be a string with " "svd_solver='{}'".format(solver)) assert_raise_message(ValueError, error_message, pca.fit, X) assert_equal(n_components_dict['auto'], n_components_dict['full']) def test_pca_dim(): # Check automated dimensionality setting rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle', svd_solver='full').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p, svd_solver='full') pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p, svd_solver='full') pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p, svd_solver='full') pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95, svd_solver='full') pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01, svd_solver='full') pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5, svd_solver='full').fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): # Test that probabilistic PCA scoring yields a reasonable score n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) for solver in solver_list: pca = PCA(n_components=2, svd_solver=solver) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): # Test that probabilistic PCA correctly separated different datasets n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) for solver in solver_list: pca = PCA(n_components=2, svd_solver=solver) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives different scores if whiten=True pca = PCA(n_components=2, whiten=True, svd_solver=solver) pca.fit(X) ll2 = pca.score(X) assert_true(ll1 > ll2) def test_pca_score3(): # Check that probabilistic PCA selects the right model n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k, svd_solver='full') pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1) def test_pca_score_with_different_solvers(): digits = datasets.load_digits() X_digits = digits.data pca_dict = {svd_solver: PCA(n_components=30, svd_solver=svd_solver, random_state=0) for svd_solver in solver_list} for pca in pca_dict.values(): pca.fit(X_digits) # Sanity check for the noise_variance_. For more details see # https://github.com/scikit-learn/scikit-learn/issues/7568 # https://github.com/scikit-learn/scikit-learn/issues/8541 # https://github.com/scikit-learn/scikit-learn/issues/8544 assert np.all((pca.explained_variance_ - pca.noise_variance_) >= 0) # Compare scores with different svd_solvers score_dict = {svd_solver: pca.score(X_digits) for svd_solver, pca in pca_dict.items()} assert_almost_equal(score_dict['full'], score_dict['arpack']) assert_almost_equal(score_dict['full'], score_dict['randomized'], decimal=3) def test_pca_zero_noise_variance_edge_cases(): # ensure that noise_variance_ is 0 in edge cases # when n_components == min(n_samples, n_features) n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) # arpack raises ValueError for n_components == min(n_samples, # n_features) svd_solvers = ['full', 'randomized'] for svd_solver in svd_solvers: pca = PCA(svd_solver=svd_solver, n_components=p) pca.fit(X) assert pca.noise_variance_ == 0 pca.fit(X.T) assert pca.noise_variance_ == 0 def test_svd_solver_auto(): rng = np.random.RandomState(0) X = rng.uniform(size=(1000, 50)) # case: n_components in (0,1) => 'full' pca = PCA(n_components=.5) pca.fit(X) pca_test = PCA(n_components=.5, svd_solver='full') pca_test.fit(X) assert_array_almost_equal(pca.components_, pca_test.components_) # case: max(X.shape) <= 500 => 'full' pca = PCA(n_components=5, random_state=0) Y = X[:10, :] pca.fit(Y) pca_test = PCA(n_components=5, svd_solver='full', random_state=0) pca_test.fit(Y) assert_array_almost_equal(pca.components_, pca_test.components_) # case: n_components >= .8 * min(X.shape) => 'full' pca = PCA(n_components=50) pca.fit(X) pca_test = PCA(n_components=50, svd_solver='full') pca_test.fit(X) assert_array_almost_equal(pca.components_, pca_test.components_) # n_components >= 1 and n_components < .8 * min(X.shape) => 'randomized' pca = PCA(n_components=10, random_state=0) pca.fit(X) pca_test = PCA(n_components=10, svd_solver='randomized', random_state=0) pca_test.fit(X) assert_array_almost_equal(pca.components_, pca_test.components_) def test_deprecation_randomized_pca(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) depr_message = ("Class RandomizedPCA is deprecated; RandomizedPCA was " "deprecated in 0.18 and will be " "removed in 0.20. Use PCA(svd_solver='randomized') " "instead. The new implementation DOES NOT store " "whiten ``components_``. Apply transform to get them.") def fit_deprecated(X): global Y rpca = RandomizedPCA(random_state=0) Y = rpca.fit_transform(X) assert_warns_message(DeprecationWarning, depr_message, fit_deprecated, X) Y_pca = PCA(svd_solver='randomized', random_state=0).fit_transform(X) assert_array_almost_equal(Y, Y_pca) def test_pca_sparse_input(): X = np.random.RandomState(0).rand(5, 4) X = sp.sparse.csr_matrix(X) assert(sp.sparse.issparse(X)) for svd_solver in solver_list: pca = PCA(n_components=3, svd_solver=svd_solver) assert_raises(TypeError, pca.fit, X) def test_pca_bad_solver(): X = np.random.RandomState(0).rand(5, 4) pca = PCA(n_components=3, svd_solver='bad_argument') assert_raises(ValueError, pca.fit, X) def test_pca_dtype_preservation(): for svd_solver in solver_list: yield check_pca_float_dtype_preservation, svd_solver yield check_pca_int_dtype_upcast_to_double, svd_solver def check_pca_float_dtype_preservation(svd_solver): # Ensure that PCA does not upscale the dtype when input is float32 X_64 = np.random.RandomState(0).rand(1000, 4).astype(np.float64) X_32 = X_64.astype(np.float32) pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_64) pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_32) assert pca_64.components_.dtype == np.float64 assert pca_32.components_.dtype == np.float32 assert pca_64.transform(X_64).dtype == np.float64 assert pca_32.transform(X_32).dtype == np.float32 assert_array_almost_equal(pca_64.components_, pca_32.components_, decimal=5) def check_pca_int_dtype_upcast_to_double(svd_solver): # Ensure that all int types will be upcast to float64 X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4)) X_i64 = X_i64.astype(np.int64) X_i32 = X_i64.astype(np.int32) pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i64) pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i32) assert pca_64.components_.dtype == np.float64 assert pca_32.components_.dtype == np.float64 assert pca_64.transform(X_i64).dtype == np.float64 assert pca_32.transform(X_i32).dtype == np.float64 assert_array_almost_equal(pca_64.components_, pca_32.components_, decimal=5)
bsd-3-clause
jhbsz/OSI-OS
cddl/contrib/opensolaris/lib/pyzfs/common/dataset.py
9
6879
#! /usr/bin/python2.6 # # CDDL HEADER START # # The contents of this file are subject to the terms of the # Common Development and Distribution License (the "License"). # You may not use this file except in compliance with the License. # # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE # or http://www.opensolaris.org/os/licensing. # See the License for the specific language governing permissions # and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each # file and include the License file at usr/src/OPENSOLARIS.LICENSE. # If applicable, add the following below this CDDL HEADER, with the # fields enclosed by brackets "[]" replaced with your own identifying # information: Portions Copyright [yyyy] [name of copyright owner] # # CDDL HEADER END # # Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. # """Implements the Dataset class, providing methods for manipulating ZFS datasets. Also implements the Property class, which describes ZFS properties.""" import zfs.ioctl import zfs.util import errno _ = zfs.util._ class Property(object): """This class represents a ZFS property. It contains information about the property -- if it's readonly, a number vs string vs index, etc. Only native properties are represented by this class -- not user properties (eg "user:prop") or userspace properties (eg "userquota@joe").""" __slots__ = "name", "number", "type", "default", "attr", "validtypes", \ "values", "colname", "rightalign", "visible", "indextable" __repr__ = zfs.util.default_repr def __init__(self, t): """t is the tuple of information about this property from zfs.ioctl.get_proptable, which should match the members of zprop_desc_t (see zfs_prop.h).""" self.name = t[0] self.number = t[1] self.type = t[2] if self.type == "string": self.default = t[3] else: self.default = t[4] self.attr = t[5] self.validtypes = t[6] self.values = t[7] self.colname = t[8] self.rightalign = t[9] self.visible = t[10] self.indextable = t[11] def delegatable(self): """Return True if this property can be delegated with "zfs allow".""" return self.attr != "readonly" proptable = dict() for name, t in zfs.ioctl.get_proptable().iteritems(): proptable[name] = Property(t) del name, t def getpropobj(name): """Return the Property object that is identified by the given name string. It can be the full name, or the column name.""" try: return proptable[name] except KeyError: for p in proptable.itervalues(): if p.colname and p.colname.lower() == name: return p raise class Dataset(object): """Represents a ZFS dataset (filesystem, snapshot, zvol, clone, etc). Generally, this class provides interfaces to the C functions in zfs.ioctl which actually interface with the kernel to manipulate datasets. Unless otherwise noted, any method can raise a ZFSError to indicate failure.""" __slots__ = "name", "__props" __repr__ = zfs.util.default_repr def __init__(self, name, props=None, types=("filesystem", "volume"), snaps=True): """Open the named dataset, checking that it exists and is of the specified type. name is the string name of this dataset. props is the property settings dict from zfs.ioctl.next_dataset. types is an iterable of strings specifying which types of datasets are permitted. Accepted strings are "filesystem" and "volume". Defaults to accepting all types. snaps is a boolean specifying if snapshots are acceptable. Raises a ZFSError if the dataset can't be accessed (eg doesn't exist) or is not of the specified type. """ self.name = name e = zfs.util.ZFSError(errno.EINVAL, _("cannot open %s") % name, _("operation not applicable to datasets of this type")) if "@" in name and not snaps: raise e if not props: props = zfs.ioctl.dataset_props(name) self.__props = props if "volume" not in types and self.getprop("type") == 3: raise e if "filesystem" not in types and self.getprop("type") == 2: raise e def getprop(self, propname): """Return the value of the given property for this dataset. Currently only works for native properties (those with a Property object.) Raises KeyError if propname does not specify a native property. Does not raise ZFSError. """ p = getpropobj(propname) try: return self.__props[p.name]["value"] except KeyError: return p.default def parent(self): """Return a Dataset representing the parent of this one.""" return Dataset(self.name[:self.name.rindex("/")]) def descendents(self): """A generator function which iterates over all descendent Datasets (not including snapshots.""" cookie = 0 while True: # next_dataset raises StopIteration when done (name, cookie, props) = \ zfs.ioctl.next_dataset(self.name, False, cookie) ds = Dataset(name, props) yield ds for child in ds.descendents(): yield child def userspace(self, prop): """A generator function which iterates over a userspace-type property. prop specifies which property ("userused@", "userquota@", "groupused@", or "groupquota@"). returns 3-tuple of domain (string), rid (int), and space (int). """ d = zfs.ioctl.userspace_many(self.name, prop) for ((domain, rid), space) in d.iteritems(): yield (domain, rid, space) def userspace_upgrade(self): """Initialize the accounting information for userused@... and groupused@... properties.""" return zfs.ioctl.userspace_upgrade(self.name) def set_fsacl(self, un, d): """Add to the "zfs allow"-ed permissions on this Dataset. un is True if the specified permissions should be removed. d is a dict specifying which permissions to add/remove: { "whostr" -> None # remove all perms for this entity "whostr" -> { "perm" -> None} # add/remove these perms } """ return zfs.ioctl.set_fsacl(self.name, un, d) def get_fsacl(self): """Get the "zfs allow"-ed permissions on the Dataset. Return a dict("whostr": { "perm" -> None }).""" return zfs.ioctl.get_fsacl(self.name) def get_holds(self): """Get the user holds on this Dataset. Return a dict("tag": timestamp).""" return zfs.ioctl.get_holds(self.name) def snapshots_fromcmdline(dsnames, recursive): for dsname in dsnames: if not "@" in dsname: raise zfs.util.ZFSError(errno.EINVAL, _("cannot open %s") % dsname, _("operation only applies to snapshots")) try: ds = Dataset(dsname) yield ds except zfs.util.ZFSError, e: if not recursive or e.errno != errno.ENOENT: raise if recursive: (base, snapname) = dsname.split('@') parent = Dataset(base) for child in parent.descendents(): try: yield Dataset(child.name + "@" + snapname) except zfs.util.ZFSError, e: if e.errno != errno.ENOENT: raise
bsd-3-clause
shikhardb/scikit-learn
examples/svm/plot_oneclass.py
248
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
YRSNorwich/ProjectBlock
indev.py
1
9768
''' Created on Jul 22, 2011 @author: Rio ''' """ Indev levels: TAG_Compound "MinecraftLevel" { TAG_Compound "Environment" { TAG_Short "SurroundingGroundHeight"// Height of surrounding ground (in blocks) TAG_Byte "SurroundingGroundType" // Block ID of surrounding ground TAG_Short "SurroundingWaterHeight" // Height of surrounding water (in blocks) TAG_Byte "SurroundingWaterType" // Block ID of surrounding water TAG_Short "CloudHeight" // Height of the cloud layer (in blocks) TAG_Int "CloudColor" // Hexadecimal value for the color of the clouds TAG_Int "SkyColor" // Hexadecimal value for the color of the sky TAG_Int "FogColor" // Hexadecimal value for the color of the fog TAG_Byte "SkyBrightness" // The brightness of the sky, from 0 to 100 } TAG_List "Entities" { TAG_Compound { // One of these per entity on the map. // These can change a lot, and are undocumented. // Feel free to play around with them, though. // The most interesting one might be the one with ID "LocalPlayer", which contains the player inventory } } TAG_Compound "Map" { // To access a specific block from either byte array, use the following algorithm: // Index = x + (y * Depth + z) * Width TAG_Short "Width" // Width of the level (along X) TAG_Short "Height" // Height of the level (along Y) TAG_Short "Length" // Length of the level (along Z) TAG_Byte_Array "Blocks" // An array of Length*Height*Width bytes specifying the block types TAG_Byte_Array "Data" // An array of Length*Height*Width bytes with data for each blocks TAG_List "Spawn" // Default spawn position { TAG_Short x // These values are multiplied by 32 before being saved TAG_Short y // That means that the actual values are x/32.0, y/32.0, z/32.0 TAG_Short z } } TAG_Compound "About" { TAG_String "Name" // Level name TAG_String "Author" // Name of the player who made the level TAG_Long "CreatedOn" // Timestamp when the level was first created } } """ from mclevelbase import * MinecraftLevel = "MinecraftLevel" Environment = "Environment" SurroundingGroundHeight = "SurroundingGroundHeight" SurroundingGroundType = "SurroundingGroundType" SurroundingWaterHeight = "SurroundingWaterHeight" SurroundingWaterType = "SurroundingWaterType" CloudHeight = "CloudHeight" CloudColor = "CloudColor" SkyColor = "SkyColor" FogColor = "FogColor" SkyBrightness = "SkyBrightness" About = "About" Name = "Name" Author = "Author" CreatedOn = "CreatedOn" Spawn = "Spawn" __all__ = ["MCIndevLevel"] class MCIndevLevel(MCLevel): """ IMPORTANT: self.Blocks and self.Data are indexed with [x,z,y] via axis swapping to be consistent with infinite levels.""" hasEntities = True def setPlayerSpawnPosition(self, pos, player=None): assert len(pos) == 3 self.Spawn = array(pos); def playerSpawnPosition(self, player=None): return self.Spawn; def setPlayerPosition(self, pos, player="Ignored"): for x in self.root_tag["Entities"]: if x["id"].value == "LocalPlayer": x["Pos"] = TAG_List([TAG_Float(p) for p in pos]) def getPlayerPosition(self, player="Ignored"): for x in self.root_tag["Entities"]: if x["id"].value == "LocalPlayer": return array(map(lambda x:x.value, x["Pos"])); def setPlayerOrientation(self, yp, player="Ignored"): for x in self.root_tag["Entities"]: if x["id"].value == "LocalPlayer": x["Rotation"] = TAG_List([TAG_Float(p) for p in yp]) def playerOrientation(self, player="Ignored"): """ returns (yaw, pitch) """ for x in self.root_tag["Entities"]: if x["id"].value == "LocalPlayer": return array(map(lambda x:x.value, x["Rotation"])); def setBlockDataAt(self, x, y, z, newdata): if x < 0 or y < 0 or z < 0: return 0 if x >= self.Width or y >= self.Height or z >= self.Length: return 0; self.Data[x, z, y] = (newdata & 0xf); def blockDataAt(self, x, y, z): if x < 0 or y < 0 or z < 0: return 0 if x >= self.Width or y >= self.Height or z >= self.Length: return 0; return self.Data[x, z, y]; def blockLightAt(self, x, y, z): if x < 0 or y < 0 or z < 0: return 0 if x >= self.Width or y >= self.Height or z >= self.Length: return 0; return self.BlockLight[x, z, y]; def __repr__(self): return u"MCIndevLevel({0}): {1}W {2}L {3}H".format(self.filename, self.Width, self.Length, self.Height) @classmethod def _isTagLevel(cls, root_tag): return "MinecraftLevel" == root_tag.name def __init__(self, root_tag=None, filename=""): self.Width = 0 self.Height = 0 self.Length = 0 self.Blocks = array([], uint8) self.Data = array([], uint8) self.Spawn = (0, 0, 0) self.filename = filename; if root_tag: self.root_tag = root_tag; mapTag = root_tag[Map]; self.Width = mapTag[Width].value self.Length = mapTag[Length].value self.Height = mapTag[Height].value mapTag[Blocks].value.shape = (self.Height, self.Length, self.Width) self.Blocks = swapaxes(mapTag[Blocks].value, 0, 2) mapTag[Data].value.shape = (self.Height, self.Length, self.Width) self.Data = swapaxes(mapTag[Data].value, 0, 2) self.BlockLight = self.Data & 0xf self.Data >>= 4 self.Spawn = [mapTag[Spawn][i].value for i in range(3)]; if not Entities in root_tag: root_tag[Entities] = TAG_List(); self.Entities = root_tag[Entities] if not TileEntities in root_tag: root_tag[TileEntities] = TAG_List(); self.TileEntities = root_tag[TileEntities] if len(filter(lambda x:x['id'].value == 'LocalPlayer', root_tag[Entities])) == 0: #omen doesn't make a player entity p = TAG_Compound() p['id'] = TAG_String('LocalPlayer') p['Pos'] = TAG_List([TAG_Float(0.), TAG_Float(64.), TAG_Float(0.)]) p['Rotation'] = TAG_List([TAG_Float(0.), TAG_Float(45.)]) root_tag[Entities].append(p) #self.saveInPlace(); else: info(u"Creating new Indev levels is not yet implemented.!") raise ValueError, "Can't do that yet" # self.SurroundingGroundHeight = root_tag[Environment][SurroundingGroundHeight].value # self.SurroundingGroundType = root_tag[Environment][SurroundingGroundType].value # self.SurroundingWaterHeight = root_tag[Environment][SurroundingGroundHeight].value # self.SurroundingWaterType = root_tag[Environment][SurroundingWaterType].value # self.CloudHeight = root_tag[Environment][CloudHeight].value # self.CloudColor = root_tag[Environment][CloudColor].value # self.SkyColor = root_tag[Environment][SkyColor].value # self.FogColor = root_tag[Environment][FogColor].value # self.SkyBrightness = root_tag[Environment][SkyBrightness].value # self.TimeOfDay = root_tag[Environment]["TimeOfDay"].value # # # self.Name = self.root_tag[About][Name].value # self.Author = self.root_tag[About][Author].value # self.CreatedOn = self.root_tag[About][CreatedOn].value def rotateLeft(self): MCLevel.rotateLeft(self); self.Data = swapaxes(self.Data, 1, 0)[:, ::-1, :]; #x=y; y=-x torchRotation = array([0, 4, 3, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); torchIndexes = (self.Blocks == self.materials.Torch.ID) info(u"Rotating torches: {0}".format(len(torchIndexes.nonzero()[0]))) self.Data[torchIndexes] = torchRotation[self.Data[torchIndexes]] def saveToFile(self, filename=None): if filename == None: filename = self.filename; if filename == None: warn(u"Attempted to save an unnamed file in place") return; #you fool! self.Data <<= 4; self.Data |= (self.BlockLight & 0xf) self.Blocks = swapaxes(self.Blocks, 0, 2) self.Data = swapaxes(self.Data, 0, 2) mapTag = TAG_Compound(name=Map); mapTag[Width] = TAG_Short(self.Width); mapTag[Height] = TAG_Short(self.Height); mapTag[Length] = TAG_Short(self.Length); mapTag[Blocks] = TAG_Byte_Array(self.Blocks); mapTag[Data] = TAG_Byte_Array(self.Data); self.Blocks = swapaxes(self.Blocks, 0, 2) self.Data = swapaxes(self.Data, 0, 2) mapTag[Spawn] = TAG_List([TAG_Short(i) for i in self.Spawn]) self.root_tag[Map] = mapTag; self.root_tag[Map] #output_file = gzip.open(self.filename, "wb", compresslevel=1) try: os.rename(filename, filename + ".old"); except Exception, e: pass try: self.root_tag.saveGzipped(filename); except: os.rename(filename + ".old", filename); try: os.remove(filename + ".old"); except Exception, e: pass self.BlockLight = self.Data & 0xf self.Data >>= 4
isc
wdurhamh/statsmodels
statsmodels/tools/tests/test_grouputils.py
31
11494
import numpy as np import pandas as pd from statsmodels.tools.grouputils import Grouping from statsmodels.tools.tools import categorical from statsmodels.datasets import grunfeld, anes96 from pandas.util import testing as ptesting class CheckGrouping(object): def test_reindex(self): # smoke test self.grouping.reindex(self.grouping.index) def test_count_categories(self): self.grouping.count_categories(level=0) np.testing.assert_equal(self.grouping.counts, self.expected_counts) def test_sort(self): # data frame sorted_data, index = self.grouping.sort(self.data) expected_sorted_data = self.data.sort_index() ptesting.assert_frame_equal(sorted_data, expected_sorted_data) np.testing.assert_(isinstance(sorted_data, pd.DataFrame)) np.testing.assert_(not index.equals(self.grouping.index)) # make sure it copied if hasattr(sorted_data, 'equals'): # newer pandas np.testing.assert_(not sorted_data.equals(self.data)) # 2d arrays sorted_data, index = self.grouping.sort(self.data.values) np.testing.assert_array_equal(sorted_data, expected_sorted_data.values) np.testing.assert_(isinstance(sorted_data, np.ndarray)) # 1d series series = self.data[self.data.columns[0]] sorted_data, index = self.grouping.sort(series) expected_sorted_data = series.sort_index() ptesting.assert_series_equal(sorted_data, expected_sorted_data) np.testing.assert_(isinstance(sorted_data, pd.Series)) if hasattr(sorted_data, 'equals'): np.testing.assert_(not sorted_data.equals(series)) # 1d array array = series.values sorted_data, index = self.grouping.sort(array) expected_sorted_data = series.sort_index().values np.testing.assert_array_equal(sorted_data, expected_sorted_data) np.testing.assert_(isinstance(sorted_data, np.ndarray)) def test_transform_dataframe(self): names = self.data.index.names transformed_dataframe = self.grouping.transform_dataframe( self.data, lambda x : x.mean(), level=0) expected = self.data.reset_index().groupby(names[0] ).apply(lambda x : x.mean())[ self.data.columns] np.testing.assert_array_equal(transformed_dataframe, expected.values) if len(names) > 1: transformed_dataframe = self.grouping.transform_dataframe( self.data, lambda x : x.mean(), level=1) expected = self.data.reset_index().groupby(names[1] ).apply(lambda x : x.mean())[ self.data.columns] np.testing.assert_array_equal(transformed_dataframe, expected.values) def test_transform_array(self): names = self.data.index.names transformed_array = self.grouping.transform_array( self.data.values, lambda x : x.mean(), level=0) expected = self.data.reset_index().groupby(names[0] ).apply(lambda x : x.mean())[ self.data.columns] np.testing.assert_array_equal(transformed_array, expected.values) if len(names) > 1: transformed_array = self.grouping.transform_array( self.data.values, lambda x : x.mean(), level=1) expected = self.data.reset_index().groupby(names[1] ).apply(lambda x : x.mean())[ self.data.columns] np.testing.assert_array_equal(transformed_array, expected.values) def test_transform_slices(self): names = self.data.index.names transformed_slices = self.grouping.transform_slices( self.data.values, lambda x, idx : x.mean(0), level=0) expected = self.data.reset_index().groupby(names[0]).mean()[ self.data.columns] np.testing.assert_allclose(transformed_slices, expected.values, rtol=1e-12, atol=1e-25) if len(names) > 1: transformed_slices = self.grouping.transform_slices( self.data.values, lambda x, idx : x.mean(0), level=1) expected = self.data.reset_index().groupby(names[1] ).mean()[ self.data.columns] np.testing.assert_allclose(transformed_slices, expected.values, rtol=1e-12, atol=1e-25) def test_dummies_groups(self): # smoke test, calls dummy_sparse under the hood self.grouping.dummies_groups() if len(self.grouping.group_names) > 1: self.grouping.dummies_groups(level=1) def test_dummy_sparse(self): data = self.data self.grouping.dummy_sparse() expected = categorical(data.index.get_level_values(0).values, drop=True) np.testing.assert_equal(self.grouping._dummies.toarray(), expected) if len(self.grouping.group_names) > 1: self.grouping.dummy_sparse(level=1) expected = categorical(data.index.get_level_values(1).values, drop=True) np.testing.assert_equal(self.grouping._dummies.toarray(), expected) class TestMultiIndexGrouping(CheckGrouping): @classmethod def setupClass(cls): grun_data = grunfeld.load_pandas().data multi_index_data = grun_data.set_index(['firm', 'year']) multi_index_panel = multi_index_data.index cls.grouping = Grouping(multi_index_panel) cls.data = multi_index_data cls.expected_counts = [20] * 11 class TestIndexGrouping(CheckGrouping): @classmethod def setupClass(cls): grun_data = grunfeld.load_pandas().data index_data = grun_data.set_index(['firm']) index_group = index_data.index cls.grouping = Grouping(index_group) cls.data = index_data cls.expected_counts = [20] * 11 def test_init_api(): # make a multi-index panel grun_data = grunfeld.load_pandas().data multi_index_panel = grun_data.set_index(['firm', 'year']).index grouping = Grouping(multi_index_panel) # check group_names np.testing.assert_array_equal(grouping.group_names, ['firm', 'year']) # check shape np.testing.assert_array_equal(grouping.index_shape, (11, 20)) # check index_int np.testing.assert_array_equal(grouping.labels, [[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]) grouping = Grouping(multi_index_panel, names=['firms', 'year']) np.testing.assert_array_equal(grouping.group_names, ['firms', 'year']) # make a multi-index grouping anes_data = anes96.load_pandas().data multi_index_groups = anes_data.set_index(['educ', 'income', 'TVnews']).index grouping = Grouping(multi_index_groups) np.testing.assert_array_equal(grouping.group_names, ['educ', 'income', 'TVnews']) np.testing.assert_array_equal(grouping.index_shape, (7, 24, 8)) # make a list multi-index panel list_panel = multi_index_panel.tolist() grouping = Grouping(list_panel, names=['firms', 'year']) np.testing.assert_array_equal(grouping.group_names, ['firms', 'year']) np.testing.assert_array_equal(grouping.index_shape, (11, 20)) # make a list multi-index grouping list_groups = multi_index_groups.tolist() grouping = Grouping(list_groups, names=['educ', 'income', 'TVnews']) np.testing.assert_array_equal(grouping.group_names, ['educ', 'income', 'TVnews']) np.testing.assert_array_equal(grouping.index_shape, (7, 24, 8)) # single-variable index grouping index_group = multi_index_panel.get_level_values(0) grouping = Grouping(index_group) # the original multi_index_panel had it's name changed inplace above np.testing.assert_array_equal(grouping.group_names, ['firms']) np.testing.assert_array_equal(grouping.index_shape, (220,)) # single variable list grouping list_group = multi_index_panel.get_level_values(0).tolist() grouping = Grouping(list_group) np.testing.assert_array_equal(grouping.group_names, ["group0"]) np.testing.assert_array_equal(grouping.index_shape, 11*20) # test generic group names grouping = Grouping(list_groups) np.testing.assert_array_equal(grouping.group_names, ['group0', 'group1', 'group2'])
bsd-3-clause
wesm/statsmodels
scikits/statsmodels/examples/example_discrete.py
1
2153
"""Example: scikits.statsmodels.discretemod """ import numpy as np import scikits.statsmodels.api as sm # load the data from Spector and Mazzeo (1980) # Examples follow Greene's Econometric Analysis Ch. 21 (5th Edition). spector_data = sm.datasets.spector.load() spector_data.exog = sm.add_constant(spector_data.exog) # Linear Probability Model using OLS lpm_mod = sm.OLS(spector_data.endog,spector_data.exog) lpm_res = lpm_mod.fit() # Logit Model logit_mod = sm.Logit(spector_data.endog, spector_data.exog) logit_res = logit_mod.fit() # Probit Model probit_mod = sm.Probit(spector_data.endog, spector_data.exog) probit_res = probit_mod.fit() print "This example is based on Greene Table 21.1 5th Edition" print "Linear Model" print lpm_res.params print "Logit Model" print logit_res.params print "Probit Model" print probit_res.params #print "Typo in Greene for Weibull, replaced with logWeibull or Gumbel" #print "(Tentatively) Weibull Model" #print weibull_res.params print "Linear Model" print lpm_res.params[:-1] print "Logit Model" print logit_res.margeff() print "Probit Model" print probit_res.margeff() anes_data = sm.datasets.anes96.load() anes_exog = anes_data.exog anes_exog[:,0] = np.log(anes_exog[:,0] + .1) anes_exog = np.column_stack((anes_exog[:,0],anes_exog[:,2],anes_exog[:,5:8])) anes_exog = sm.add_constant(anes_exog) mlogit_mod = sm.MNLogit(anes_data.endog, anes_exog) mlogit_res = mlogit_mod.fit() # The default method for the fit is Newton-Raphson # However, you can use other solvers mlogit_res = mlogit_mod.fit(method='bfgs', maxiter=100) # The below needs a lot of iterations to get it right? #TODO: Add a technical note on algorithms #mlogit_res = mlogit_mod.fit(method='ncg') # this takes forever # Poisson model # This is similar to Cameron and Trivedi's Microeconometrics # Table 20.5; however, the data differs slightly from theirs rand_data = sm.datasets.randhie.load() rand_exog = rand_data.exog.view(float).reshape(len(rand_data.exog), -1) rand_exog = sm.add_constant(rand_exog) poisson_mod = sm.Poisson(rand_data.endog, rand_exog) poisson_res = poisson_mod.fit(method="newton") print poisson_res.summary()
bsd-3-clause
astocko/statsmodels
statsmodels/tsa/tsatools.py
6
20188
from statsmodels.compat.python import range, lrange, lzip import numpy as np import numpy.lib.recfunctions as nprf from statsmodels.tools.tools import add_constant from pandas.tseries import offsets from pandas.tseries.frequencies import to_offset def add_trend(X, trend="c", prepend=False, has_constant='skip'): """ Adds a trend and/or constant to an array. Parameters ---------- X : array-like Original array of data. trend : str {"c","t","ct","ctt"} "c" add constant only "t" add trend only "ct" add constant and linear trend "ctt" add constant and linear and quadratic trend. prepend : bool If True, prepends the new data to the columns of X. has_constant : str {'raise', 'add', 'skip'} Controls what happens when trend is 'c' and a constant already exists in X. 'raise' will raise an error. 'add' will duplicate a constant. 'skip' will return the data without change. 'skip' is the default. Notes ----- Returns columns as ["ctt","ct","c"] whenever applicable. There is currently no checking for an existing trend. See also -------- statsmodels.add_constant """ #TODO: could be generalized for trend of aribitrary order trend = trend.lower() if trend == "c": # handles structured arrays return add_constant(X, prepend=prepend, has_constant=has_constant) elif trend == "ct" or trend == "t": trendorder = 1 elif trend == "ctt": trendorder = 2 else: raise ValueError("trend %s not understood" % trend) X = np.asanyarray(X) nobs = len(X) trendarr = np.vander(np.arange(1,nobs+1, dtype=float), trendorder+1) # put in order ctt trendarr = np.fliplr(trendarr) if trend == "t": trendarr = trendarr[:,1] if not X.dtype.names: # check for constant if "c" in trend and np.any(np.ptp(X, axis=0) == 0): if has_constant == 'raise': raise ValueError("X already contains a constant") elif has_constant == 'add': pass elif has_constant == 'skip' and trend == "ct": trendarr = trendarr[:, 1] if not prepend: X = np.column_stack((X, trendarr)) else: X = np.column_stack((trendarr, X)) else: return_rec = data.__clas__ is np.recarray if trendorder == 1: if trend == "ct": dt = [('const',float),('trend',float)] else: dt = [('trend', float)] elif trendorder == 2: dt = [('const',float),('trend',float),('trend_squared', float)] trendarr = trendarr.view(dt) if prepend: X = nprf.append_fields(trendarr, X.dtype.names, [X[i] for i in X.dtype.names], usemask=False, asrecarray=return_rec) else: X = nprf.append_fields(X, trendarr.dtype.names, [trendarr[i] for i in trendarr.dtype.names], usemask=False, asrecarray=return_rec) return X def add_lag(x, col=None, lags=1, drop=False, insert=True): """ Returns an array with lags included given an array. Parameters ---------- x : array An array or NumPy ndarray subclass. Can be either a 1d or 2d array with observations in columns. col : 'string', int, or None If data is a structured array or a recarray, `col` can be a string that is the name of the column containing the variable. Or `col` can be an int of the zero-based column index. If it's a 1d array `col` can be None. lags : int The number of lags desired. drop : bool Whether to keep the contemporaneous variable for the data. insert : bool or int If True, inserts the lagged values after `col`. If False, appends the data. If int inserts the lags at int. Returns ------- array : ndarray Array with lags Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.macrodata.load() >>> data = data.data[['year','quarter','realgdp','cpi']] >>> data = sm.tsa.add_lag(data, 'realgdp', lags=2) Notes ----- Trims the array both forward and backward, so that the array returned so that the length of the returned array is len(`X`) - lags. The lags are returned in increasing order, ie., t-1,t-2,...,t-lags """ if x.dtype.names: names = x.dtype.names if not col and np.squeeze(x).ndim > 1: raise IndexError("col is None and the input array is not 1d") elif len(names) == 1: col = names[0] if isinstance(col, int): col = x.dtype.names[col] contemp = x[col] # make names for lags tmp_names = [col + '_'+'L(%i)' % i for i in range(1,lags+1)] ndlags = lagmat(contemp, maxlag=lags, trim='Both') # get index for return if insert is True: ins_idx = list(names).index(col) + 1 elif insert is False: ins_idx = len(names) + 1 else: # insert is an int if insert > len(names): import warnings warnings.warn("insert > number of variables, inserting at the" " last position", UserWarning) ins_idx = insert first_names = list(names[:ins_idx]) last_names = list(names[ins_idx:]) if drop: if col in first_names: first_names.pop(first_names.index(col)) else: last_names.pop(last_names.index(col)) if first_names: # only do this if x isn't "empty" first_arr = nprf.append_fields(x[first_names][lags:],tmp_names, ndlags.T, usemask=False) else: first_arr = np.zeros(len(x)-lags, dtype=lzip(tmp_names, (x[col].dtype,)*lags)) for i,name in enumerate(tmp_names): first_arr[name] = ndlags[:,i] if last_names: return nprf.append_fields(first_arr, last_names, [x[name][lags:] for name in last_names], usemask=False) else: # lags for last variable return first_arr else: # we have an ndarray if x.ndim == 1: # make 2d if 1d x = x[:,None] if col is None: col = 0 # handle negative index if col < 0: col = x.shape[1] + col contemp = x[:,col] if insert is True: ins_idx = col + 1 elif insert is False: ins_idx = x.shape[1] else: if insert < 0: # handle negative index insert = x.shape[1] + insert + 1 if insert > x.shape[1]: insert = x.shape[1] import warnings warnings.warn("insert > number of variables, inserting at the" " last position", UserWarning) ins_idx = insert ndlags = lagmat(contemp, lags, trim='Both') first_cols = lrange(ins_idx) last_cols = lrange(ins_idx,x.shape[1]) if drop: if col in first_cols: first_cols.pop(first_cols.index(col)) else: last_cols.pop(last_cols.index(col)) return np.column_stack((x[lags:,first_cols],ndlags, x[lags:,last_cols])) def detrend(x, order=1, axis=0): '''detrend an array with a trend of given order along axis 0 or 1 Parameters ---------- x : array_like, 1d or 2d data, if 2d, then each row or column is independently detrended with the same trendorder, but independent trend estimates order : int specifies the polynomial order of the trend, zero is constant, one is linear trend, two is quadratic trend axis : int axis can be either 0, observations by rows, or 1, observations by columns Returns ------- detrended data series : ndarray The detrended series is the residual of the linear regression of the data on the trend of given order. ''' x = np.asarray(x) nobs = x.shape[0] if order == 0: return x - np.expand_dims(x.mean(axis), axis) else: if x.ndim == 2 and lrange(2)[axis]==1: x = x.T elif x.ndim > 2: raise NotImplementedError('x.ndim>2 is not implemented until it is needed') #could use a polynomial, but this should work also with 2d x, but maybe not yet trends = np.vander(np.arange(nobs).astype(float), N=order+1) beta = np.linalg.lstsq(trends, x)[0] resid = x - np.dot(trends, beta) if x.ndim == 2 and lrange(2)[axis]==1: resid = resid.T return resid def lagmat(x, maxlag, trim='forward', original='ex'): '''create 2d array of lags Parameters ---------- x : array_like, 1d or 2d data; if 2d, observation in rows and variables in columns maxlag : int or sequence of ints all lags from zero to maxlag are included trim : str {'forward', 'backward', 'both', 'none'} or None * 'forward' : trim invalid observations in front * 'backward' : trim invalid initial observations * 'both' : trim invalid observations on both sides * 'none', None : no trimming of observations original : str {'ex','sep','in'} * 'ex' : drops the original array returning only the lagged values. * 'in' : returns the original array and the lagged values as a single array. * 'sep' : returns a tuple (original array, lagged values). The original array is truncated to have the same number of rows as the returned lagmat. Returns ------- lagmat : 2d array array with lagged observations y : 2d array, optional Only returned if original == 'sep' Examples -------- >>> from statsmodels.tsa.tsatools import lagmat >>> import numpy as np >>> X = np.arange(1,7).reshape(-1,2) >>> lagmat(X, maxlag=2, trim="forward", original='in') array([[ 1., 2., 0., 0., 0., 0.], [ 3., 4., 1., 2., 0., 0.], [ 5., 6., 3., 4., 1., 2.]]) >>> lagmat(X, maxlag=2, trim="backward", original='in') array([[ 5., 6., 3., 4., 1., 2.], [ 0., 0., 5., 6., 3., 4.], [ 0., 0., 0., 0., 5., 6.]]) >>> lagmat(X, maxlag=2, trim="both", original='in') array([[ 5., 6., 3., 4., 1., 2.]]) >>> lagmat(X, maxlag=2, trim="none", original='in') array([[ 1., 2., 0., 0., 0., 0.], [ 3., 4., 1., 2., 0., 0.], [ 5., 6., 3., 4., 1., 2.], [ 0., 0., 5., 6., 3., 4.], [ 0., 0., 0., 0., 5., 6.]]) Notes ----- TODO: * allow list of lags additional to maxlag * create varnames for columns ''' x = np.asarray(x) dropidx = 0 if x.ndim == 1: x = x[:,None] nobs, nvar = x.shape if original in ['ex','sep']: dropidx = nvar if maxlag >= nobs: raise ValueError("maxlag should be < nobs") lm = np.zeros((nobs+maxlag, nvar*(maxlag+1))) for k in range(0, int(maxlag+1)): lm[maxlag-k:nobs+maxlag-k, nvar*(maxlag-k):nvar*(maxlag-k+1)] = x if trim: trimlower = trim.lower() else: trimlower = trim if trimlower == 'none' or not trimlower: startobs = 0 stopobs = len(lm) elif trimlower == 'forward': startobs = 0 stopobs = nobs+maxlag-k elif trimlower == 'both': startobs = maxlag stopobs = nobs+maxlag-k elif trimlower == 'backward': startobs = maxlag stopobs = len(lm) else: raise ValueError('trim option not valid') if original == 'sep': return lm[startobs:stopobs,dropidx:], x[startobs:stopobs] else: return lm[startobs:stopobs,dropidx:] def lagmat2ds(x, maxlag0, maxlagex=None, dropex=0, trim='forward'): '''generate lagmatrix for 2d array, columns arranged by variables Parameters ---------- x : array_like, 2d 2d data, observation in rows and variables in columns maxlag0 : int for first variable all lags from zero to maxlag are included maxlagex : None or int max lag for all other variables all lags from zero to maxlag are included dropex : int (default is 0) exclude first dropex lags from other variables for all variables, except the first, lags from dropex to maxlagex are included trim : string * 'forward' : trim invalid observations in front * 'backward' : trim invalid initial observations * 'both' : trim invalid observations on both sides * 'none' : no trimming of observations Returns ------- lagmat : 2d array array with lagged observations, columns ordered by variable Notes ----- very inefficient for unequal lags, just done for convenience ''' if maxlagex is None: maxlagex = maxlag0 maxlag = max(maxlag0, maxlagex) nobs, nvar = x.shape lagsli = [lagmat(x[:,0], maxlag, trim=trim, original='in')[:,:maxlag0+1]] for k in range(1,nvar): lagsli.append(lagmat(x[:,k], maxlag, trim=trim, original='in')[:,dropex:maxlagex+1]) return np.column_stack(lagsli) def vec(mat): return mat.ravel('F') def vech(mat): # Gets Fortran-order return mat.T.take(_triu_indices(len(mat))) # tril/triu/diag, suitable for ndarray.take def _tril_indices(n): rows, cols = np.tril_indices(n) return rows * n + cols def _triu_indices(n): rows, cols = np.triu_indices(n) return rows * n + cols def _diag_indices(n): rows, cols = np.diag_indices(n) return rows * n + cols def unvec(v): k = int(np.sqrt(len(v))) assert(k * k == len(v)) return v.reshape((k, k), order='F') def unvech(v): # quadratic formula, correct fp error rows = .5 * (-1 + np.sqrt(1 + 8 * len(v))) rows = int(np.round(rows)) result = np.zeros((rows, rows)) result[np.triu_indices(rows)] = v result = result + result.T # divide diagonal elements by 2 result[np.diag_indices(rows)] /= 2 return result def duplication_matrix(n): """ Create duplication matrix D_n which satisfies vec(S) = D_n vech(S) for symmetric matrix S Returns ------- D_n : ndarray """ tmp = np.eye(n * (n + 1) / 2) return np.array([unvech(x).ravel() for x in tmp]).T def elimination_matrix(n): """ Create the elimination matrix L_n which satisfies vech(M) = L_n vec(M) for any matrix M Parameters ---------- Returns ------- """ vech_indices = vec(np.tril(np.ones((n, n)))) return np.eye(n * n)[vech_indices != 0] def commutation_matrix(p, q): """ Create the commutation matrix K_{p,q} satisfying vec(A') = K_{p,q} vec(A) Parameters ---------- p : int q : int Returns ------- K : ndarray (pq x pq) """ K = np.eye(p * q) indices = np.arange(p * q).reshape((p, q), order='F') return K.take(indices.ravel(), axis=0) def _ar_transparams(params): """ Transforms params to induce stationarity/invertability. Parameters ---------- params : array The AR coefficients Reference --------- Jones(1980) """ newparams = ((1-np.exp(-params))/ (1+np.exp(-params))).copy() tmp = ((1-np.exp(-params))/ (1+np.exp(-params))).copy() for j in range(1,len(params)): a = newparams[j] for kiter in range(j): tmp[kiter] -= a * newparams[j-kiter-1] newparams[:j] = tmp[:j] return newparams def _ar_invtransparams(params): """ Inverse of the Jones reparameterization Parameters ---------- params : array The transformed AR coefficients """ # AR coeffs tmp = params.copy() for j in range(len(params)-1,0,-1): a = params[j] for kiter in range(j): tmp[kiter] = (params[kiter] + a * params[j-kiter-1])/\ (1-a**2) params[:j] = tmp[:j] invarcoefs = -np.log((1-params)/(1+params)) return invarcoefs def _ma_transparams(params): """ Transforms params to induce stationarity/invertability. Parameters ---------- params : array The ma coeffecients of an (AR)MA model. Reference --------- Jones(1980) """ newparams = ((1-np.exp(-params))/(1+np.exp(-params))).copy() tmp = ((1-np.exp(-params))/(1+np.exp(-params))).copy() # levinson-durbin to get macf for j in range(1,len(params)): b = newparams[j] for kiter in range(j): tmp[kiter] += b * newparams[j-kiter-1] newparams[:j] = tmp[:j] return newparams def _ma_invtransparams(macoefs): """ Inverse of the Jones reparameterization Parameters ---------- params : array The transformed MA coefficients """ tmp = macoefs.copy() for j in range(len(macoefs)-1,0,-1): b = macoefs[j] for kiter in range(j): tmp[kiter] = (macoefs[kiter]-b *macoefs[j-kiter-1])/(1-b**2) macoefs[:j] = tmp[:j] invmacoefs = -np.log((1-macoefs)/(1+macoefs)) return invmacoefs def unintegrate_levels(x, d): """ Returns the successive differences needed to unintegrate the series. Parameters ---------- x : array-like The original series d : int The number of differences of the differenced series. Returns ------- y : array-like The increasing differences from 0 to d-1 of the first d elements of x. See Also -------- unintegrate """ x = x[:d] return np.asarray([np.diff(x, d - i)[0] for i in range(d, 0, -1)]) def unintegrate(x, levels): """ After taking n-differences of a series, return the original series Parameters ---------- x : array-like The n-th differenced series levels : list A list of the first-value in each differenced series, for [first-difference, second-difference, ..., n-th difference] Returns ------- y : array-like The original series de-differenced Examples -------- >>> x = np.array([1, 3, 9., 19, 8.]) >>> levels = unintegrate_levels(x, 2) >>> levels array([ 1., 2.]) >>> unintegrate(np.diff(x, 2), levels) array([ 1., 3., 9., 19., 8.]) """ levels = list(levels)[:] # copy if len(levels) > 1: x0 = levels.pop(-1) return unintegrate(np.cumsum(np.r_[x0, x]), levels) x0 = levels[0] return np.cumsum(np.r_[x0, x]) def freq_to_period(freq): """ Convert a pandas frequency to a periodicity Parameters ---------- freq : str or offset Frequency to convert Returns ------- period : int Periodicity of freq Notes ----- Annual maps to 1, quarterly maps to 4, monthly to 12, weekly to 52. """ if not isinstance(freq, offsets.DateOffset): freq = to_offset(freq) # go ahead and standardize freq = freq.rule_code.upper() if freq == 'A' or freq.startswith(('A-', 'AS-')): return 1 elif freq == 'Q' or freq.startswith(('Q-', 'QS-')): return 4 elif freq == 'M' or freq.startswith(('M-', 'MS')): return 12 elif freq == 'B' or freq == 'W' or freq.startswith('W-'): return 52 else: # pragma : no cover raise ValueError("freq {} not understood. Please report if you " "think this in error.".format(freq)) __all__ = ['lagmat', 'lagmat2ds','add_trend', 'duplication_matrix', 'elimination_matrix', 'commutation_matrix', 'vec', 'vech', 'unvec', 'unvech'] if __name__ == '__main__': # sanity check, mainly for imports x = np.random.normal(size=(100,2)) tmp = lagmat(x,2) tmp = lagmat2ds(x,2) # grangercausalitytests(x, 2)
bsd-3-clause
ray-project/ray
rllib/algorithms/impala/vtrace_torch.py
1
14451
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch version of the functions to compute V-trace off-policy actor critic targets. For details and theory see: "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. See https://arxiv.org/abs/1802.01561 for the full paper. In addition to the original paper's code, changes have been made to support MultiDiscrete action spaces. behaviour_policy_logits, target_policy_logits and actions parameters in the entry point multi_from_logits method accepts lists of tensors instead of just tensors. """ from ray.rllib.algorithms.impala.vtrace_tf import VTraceFromLogitsReturns, VTraceReturns from ray.rllib.models.torch.torch_action_dist import TorchCategorical from ray.rllib.utils import force_list from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.torch_utils import convert_to_torch_tensor torch, nn = try_import_torch() def log_probs_from_logits_and_actions( policy_logits, actions, dist_class=TorchCategorical, model=None ): return multi_log_probs_from_logits_and_actions( [policy_logits], [actions], dist_class, model )[0] def multi_log_probs_from_logits_and_actions(policy_logits, actions, dist_class, model): """Computes action log-probs from policy logits and actions. In the notation used throughout documentation and comments, T refers to the time dimension ranging from 0 to T-1. B refers to the batch size and ACTION_SPACE refers to the list of numbers each representing a number of actions. Args: policy_logits: A list with length of ACTION_SPACE of float32 tensors of shapes [T, B, ACTION_SPACE[0]], ..., [T, B, ACTION_SPACE[-1]] with un-normalized log-probabilities parameterizing a softmax policy. actions: A list with length of ACTION_SPACE of tensors of shapes [T, B, ...], ..., [T, B, ...] with actions. dist_class: Python class of the action distribution. Returns: A list with length of ACTION_SPACE of float32 tensors of shapes [T, B], ..., [T, B] corresponding to the sampling log probability of the chosen action w.r.t. the policy. """ log_probs = [] for i in range(len(policy_logits)): p_shape = policy_logits[i].shape a_shape = actions[i].shape policy_logits_flat = torch.reshape(policy_logits[i], (-1,) + tuple(p_shape[2:])) actions_flat = torch.reshape(actions[i], (-1,) + tuple(a_shape[2:])) log_probs.append( torch.reshape( dist_class(policy_logits_flat, model).logp(actions_flat), a_shape[:2] ) ) return log_probs def from_logits( behaviour_policy_logits, target_policy_logits, actions, discounts, rewards, values, bootstrap_value, dist_class=TorchCategorical, model=None, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, ): """multi_from_logits wrapper used only for tests""" res = multi_from_logits( [behaviour_policy_logits], [target_policy_logits], [actions], discounts, rewards, values, bootstrap_value, dist_class, model, clip_rho_threshold=clip_rho_threshold, clip_pg_rho_threshold=clip_pg_rho_threshold, ) assert len(res.behaviour_action_log_probs) == 1 assert len(res.target_action_log_probs) == 1 return VTraceFromLogitsReturns( vs=res.vs, pg_advantages=res.pg_advantages, log_rhos=res.log_rhos, behaviour_action_log_probs=res.behaviour_action_log_probs[0], target_action_log_probs=res.target_action_log_probs[0], ) def multi_from_logits( behaviour_policy_logits, target_policy_logits, actions, discounts, rewards, values, bootstrap_value, dist_class, model, behaviour_action_log_probs=None, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, ): r"""V-trace for softmax policies. Calculates V-trace actor critic targets for softmax polices as described in "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. Target policy refers to the policy we are interested in improving and behaviour policy refers to the policy that generated the given rewards and actions. In the notation used throughout documentation and comments, T refers to the time dimension ranging from 0 to T-1. B refers to the batch size and ACTION_SPACE refers to the list of numbers each representing a number of actions. Args: behaviour_policy_logits: A list with length of ACTION_SPACE of float32 tensors of shapes [T, B, ACTION_SPACE[0]], ..., [T, B, ACTION_SPACE[-1]] with un-normalized log-probabilities parameterizing the softmax behavior policy. target_policy_logits: A list with length of ACTION_SPACE of float32 tensors of shapes [T, B, ACTION_SPACE[0]], ..., [T, B, ACTION_SPACE[-1]] with un-normalized log-probabilities parameterizing the softmax target policy. actions: A list with length of ACTION_SPACE of tensors of shapes [T, B, ...], ..., [T, B, ...] with actions sampled from the behavior policy. discounts: A float32 tensor of shape [T, B] with the discount encountered when following the behavior policy. rewards: A float32 tensor of shape [T, B] with the rewards generated by following the behavior policy. values: A float32 tensor of shape [T, B] with the value function estimates wrt. the target policy. bootstrap_value: A float32 of shape [B] with the value function estimate at time T. dist_class: action distribution class for the logits. model: backing ModelV2 instance behaviour_action_log_probs: Precalculated values of the behavior actions. clip_rho_threshold: A scalar float32 tensor with the clipping threshold for importance weights (rho) when calculating the baseline targets (vs). rho^bar in the paper. clip_pg_rho_threshold: A scalar float32 tensor with the clipping threshold on rho_s in: \rho_s \delta log \pi(a|x) (r + \gamma v_{s+1} - V(x_s)). Returns: A `VTraceFromLogitsReturns` namedtuple with the following fields: vs: A float32 tensor of shape [T, B]. Can be used as target to train a baseline (V(x_t) - vs_t)^2. pg_advantages: A float 32 tensor of shape [T, B]. Can be used as an estimate of the advantage in the calculation of policy gradients. log_rhos: A float32 tensor of shape [T, B] containing the log importance sampling weights (log rhos). behaviour_action_log_probs: A float32 tensor of shape [T, B] containing behaviour policy action log probabilities (log \mu(a_t)). target_action_log_probs: A float32 tensor of shape [T, B] containing target policy action probabilities (log \pi(a_t)). """ behaviour_policy_logits = convert_to_torch_tensor( behaviour_policy_logits, device="cpu" ) target_policy_logits = convert_to_torch_tensor(target_policy_logits, device="cpu") actions = convert_to_torch_tensor(actions, device="cpu") # Make sure tensor ranks are as expected. # The rest will be checked by from_action_log_probs. for i in range(len(behaviour_policy_logits)): assert len(behaviour_policy_logits[i].size()) == 3 assert len(target_policy_logits[i].size()) == 3 target_action_log_probs = multi_log_probs_from_logits_and_actions( target_policy_logits, actions, dist_class, model ) if len(behaviour_policy_logits) > 1 or behaviour_action_log_probs is None: # can't use precalculated values, recompute them. Note that # recomputing won't work well for autoregressive action dists # which may have variables not captured by 'logits' behaviour_action_log_probs = multi_log_probs_from_logits_and_actions( behaviour_policy_logits, actions, dist_class, model ) behaviour_action_log_probs = convert_to_torch_tensor( behaviour_action_log_probs, device="cpu" ) behaviour_action_log_probs = force_list(behaviour_action_log_probs) log_rhos = get_log_rhos(target_action_log_probs, behaviour_action_log_probs) vtrace_returns = from_importance_weights( log_rhos=log_rhos, discounts=discounts, rewards=rewards, values=values, bootstrap_value=bootstrap_value, clip_rho_threshold=clip_rho_threshold, clip_pg_rho_threshold=clip_pg_rho_threshold, ) return VTraceFromLogitsReturns( log_rhos=log_rhos, behaviour_action_log_probs=behaviour_action_log_probs, target_action_log_probs=target_action_log_probs, **vtrace_returns._asdict() ) def from_importance_weights( log_rhos, discounts, rewards, values, bootstrap_value, clip_rho_threshold=1.0, clip_pg_rho_threshold=1.0, ): r"""V-trace from log importance weights. Calculates V-trace actor critic targets as described in "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. In the notation used throughout documentation and comments, T refers to the time dimension ranging from 0 to T-1. B refers to the batch size. This code also supports the case where all tensors have the same number of additional dimensions, e.g., `rewards` is [T, B, C], `values` is [T, B, C], `bootstrap_value` is [B, C]. Args: log_rhos: A float32 tensor of shape [T, B] representing the log importance sampling weights, i.e. log(target_policy(a) / behaviour_policy(a)). V-trace performs operations on rhos in log-space for numerical stability. discounts: A float32 tensor of shape [T, B] with discounts encountered when following the behaviour policy. rewards: A float32 tensor of shape [T, B] containing rewards generated by following the behaviour policy. values: A float32 tensor of shape [T, B] with the value function estimates wrt. the target policy. bootstrap_value: A float32 of shape [B] with the value function estimate at time T. clip_rho_threshold: A scalar float32 tensor with the clipping threshold for importance weights (rho) when calculating the baseline targets (vs). rho^bar in the paper. If None, no clipping is applied. clip_pg_rho_threshold: A scalar float32 tensor with the clipping threshold on rho_s in \rho_s \delta log \pi(a|x) (r + \gamma v_{s+1} - V(x_s)). If None, no clipping is applied. Returns: A VTraceReturns namedtuple (vs, pg_advantages) where: vs: A float32 tensor of shape [T, B]. Can be used as target to train a baseline (V(x_t) - vs_t)^2. pg_advantages: A float32 tensor of shape [T, B]. Can be used as the advantage in the calculation of policy gradients. """ log_rhos = convert_to_torch_tensor(log_rhos, device="cpu") discounts = convert_to_torch_tensor(discounts, device="cpu") rewards = convert_to_torch_tensor(rewards, device="cpu") values = convert_to_torch_tensor(values, device="cpu") bootstrap_value = convert_to_torch_tensor(bootstrap_value, device="cpu") # Make sure tensor ranks are consistent. rho_rank = len(log_rhos.size()) # Usually 2. assert rho_rank == len(values.size()) assert rho_rank - 1 == len(bootstrap_value.size()), "must have rank {}".format( rho_rank - 1 ) assert rho_rank == len(discounts.size()) assert rho_rank == len(rewards.size()) rhos = torch.exp(log_rhos) if clip_rho_threshold is not None: clipped_rhos = torch.clamp_max(rhos, clip_rho_threshold) else: clipped_rhos = rhos cs = torch.clamp_max(rhos, 1.0) # Append bootstrapped value to get [v1, ..., v_t+1] values_t_plus_1 = torch.cat( [values[1:], torch.unsqueeze(bootstrap_value, 0)], dim=0 ) deltas = clipped_rhos * (rewards + discounts * values_t_plus_1 - values) vs_minus_v_xs = [torch.zeros_like(bootstrap_value)] for i in reversed(range(len(discounts))): discount_t, c_t, delta_t = discounts[i], cs[i], deltas[i] vs_minus_v_xs.append(delta_t + discount_t * c_t * vs_minus_v_xs[-1]) vs_minus_v_xs = torch.stack(vs_minus_v_xs[1:]) # Reverse the results back to original order. vs_minus_v_xs = torch.flip(vs_minus_v_xs, dims=[0]) # Add V(x_s) to get v_s. vs = vs_minus_v_xs + values # Advantage for policy gradient. vs_t_plus_1 = torch.cat([vs[1:], torch.unsqueeze(bootstrap_value, 0)], dim=0) if clip_pg_rho_threshold is not None: clipped_pg_rhos = torch.clamp_max(rhos, clip_pg_rho_threshold) else: clipped_pg_rhos = rhos pg_advantages = clipped_pg_rhos * (rewards + discounts * vs_t_plus_1 - values) # Make sure no gradients backpropagated through the returned values. return VTraceReturns(vs=vs.detach(), pg_advantages=pg_advantages.detach()) def get_log_rhos(target_action_log_probs, behaviour_action_log_probs): """With the selected log_probs for multi-discrete actions of behavior and target policies we compute the log_rhos for calculating the vtrace.""" t = torch.stack(target_action_log_probs) b = torch.stack(behaviour_action_log_probs) log_rhos = torch.sum(t - b, dim=0) return log_rhos
apache-2.0
theoryno3/scikit-learn
sklearn/cross_decomposition/cca_.py
23
3087
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
pianomania/scikit-learn
examples/linear_model/plot_theilsen.py
98
3846
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <florian.wilhelm@gmail.com> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen'} lw = 2 ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.scatter(x, y, color='indigo', marker='x', s=40) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, color=colors[name], linewidth=lw, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.title("Corrupt y") ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.scatter(x, y, color='indigo', marker='x', s=40) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, color=colors[name], linewidth=lw, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.title("Corrupt x") plt.show()
bsd-3-clause
datamade/pyhacrf
pyhacrf/feature_extraction.py
1
9183
# Authors: Dirko Coetsee # License: 3-clause BSD """ Implements feature extraction methods to use with HACRF models. """ import numpy as np import functools import itertools class PairFeatureExtractor(object): """Extract features from sequence pairs. For each feature, a grid is constructed for a sequency pair. The features are stacked, producing a 3 dimensional matrix of dimensions: (length of sequence 1) X (length of sequence 2) X (number of features) For example, a 'beginning' character feature grid for the sequences, 'kaas' and 'cheese' could look like this. c h e e s e k 1 1 1 1 1 1 a 1 0 0 0 0 0 a 1 0 0 0 0 0 s 1 0 0 0 0 0 These grids are made from two different types of feature functions: real and sparse. Real features are functions of the form: def some_feature_function(array1, array2): ... return feature_grid Given two sequences, s1 and s1, return a numpy.array with dimensions (length of array1) X (length of array2). For performance reasons, we take advantage of numpy broadcasting, and array1 is a column array and array2 is a row array. For a 'matching character' feature between 'kaas' and 'cheese', the sequences are transformed and then we use broadcasting > array1 = numpy.array([['k'], ['a'], ['a'], ['s']]) > array2 = numpy.array([['c', 'h', 'e', 'e', 's', 'e']) > array1 == array2 numpy.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0]]) When writing you own real feature functions, you can assume that the arrays will come in with the right shape. Sparse feature functions look similar: def some_feature_function(i, j, s1, s2): ... return some_index, total_vector_length but they always return two ints. The first is the index of the element that should be 1 and the second is the total length of vector. So for example if (4, 5) is returned, then the feature vector [0, 0, 0, 0, 1] is constructed. Parameters ---------- real: list: optional (default=[]) List of functions of the form def some_feature_function(i, j, s1, s2): ... return some_float sparse: list: optional (default=[]) List of functions of the form def some_feature_function(i, j, s1, s2): ... return some_index, total_vector_length """ def __init__(self, real=None, sparse=None): self._binary_features = [] if real: self._binary_features = real self._sparse_features = [] if sparse: self._sparse_features = sparse self.K = (len(self._binary_features) + sum(num_feats for _, num_feats in self._sparse_features)) def fit_transform(self, raw_X, y=None): """Like transform. Transform sequence pairs to feature arrays that can be used as input to `Hacrf` models. Parameters ---------- raw_X : List of (sequence1_n, sequence2_n) pairs, one for each training example n. y : (ignored) Returns ------- X : List of numpy ndarrays, each with shape = (I_n, J_n, K), where I_n is the length of sequence1_n, J_n is the length of sequence2_n, and K is the number of features. Feature matrix list, for use with estimators or further transformers. """ return self.transform(raw_X) def transform(self, raw_X, y=None): """Transform sequence pairs to feature arrays that can be used as input to `Hacrf` models. Parameters ---------- raw_X : List of (sequence1_n, sequence2_n) pairs, one for each training example n. y : (ignored) Returns ------- X : List of numpy ndarrays, each with shape = (I_n, J_n, K), where I_n is the length of sequence1_n, J_n is the length of sequence2_n, and K is the number of features. Feature matrix list, for use with estimators or further transformers. """ return [self._extract_features(self._to_array(sequence1).T, self._to_array(sequence2)) for sequence1, sequence2 in raw_X] def _extract_features(self, array1, array2): """ Helper to extract features for one data point. """ feature_array = np.zeros((array1.size, array2.size, self.K), dtype='float64') for k, feature_function in enumerate(self._binary_features): feature_array[..., k] = feature_function(array1, array2) if self._sparse_features: array1 = array1.T[0] array2 = array2[0] n_binary_features = len(self._binary_features) for i, j in np.ndindex(array1.size, array2.size): k = n_binary_features for feature_function, num_features in self._sparse_features: feature_array[i, j, k + feature_function(i, j, array1, array2)] = 1.0 k += num_features return feature_array def _to_array(self, sequence): return np.array(tuple(sequence), ndmin=2) class StringPairFeatureExtractor(PairFeatureExtractor): """ Extract features from sequence pairs. A grid is constructed for each sequence pair, for example for ("kaas", "cheese"): s * . . . @ . a * . . . . . a * . . . . . k * * * * * * c h e e s e For each element in the grid, a feature vector is constructed. The elements in the feature vector are determined by which features are active at that position in the grid. So for the example above, the 'match' feature will be 0 in every vector in every position except the position indicated with '@', where it will be 1. The 'start' feature will be 1 in all the positions with '*' and 0 everywhere else. Parameters ---------- bias: float: optional (default=1.0) A bias term that is always added to every position in the lattice. start: boolean: optional Binary feature that activates at the start of either sequence. end: boolean: optional Binary feature that activates at the end of either sequence. match: boolean: optional Binary feature that activates when elements at a position are equal. numeric: boolean, optional Binary feature that activates when all elements at a position are numerical. transition: boolean, optional Adds binary features for pairs of (lower case) input characters. """ # Constants CHARACTERS = 'abcdefghijklmnopqrstuvwxyz0123456789,./;\'\-=<>?:"|_+!@#$%^&*() ' def __init__(self, bias=1.0, start=False, end=False, match=False, numeric=False, transition=False): # TODO: For longer strings, tokenize and use Levenshtein # distance up until a lattice position. Other (possibly) # useful features might be whether characters are consonant or # vowel, punctuation, case. binary_features_active = [True, start, end, match, numeric] binary_features = [functools.partial(biases, bias=bias), starts, ends, matches, digits] self._binary_features = [feature for feature, active in zip(binary_features, binary_features_active) if active] self._sparse_features = [] if transition: characters_to_index = {character: index for index, character in enumerate(self.CHARACTERS)} curried_charIndex = functools.partial(charIndex, char2index = characters_to_index) self._sparse_features.append((curried_charIndex, len(characters_to_index) ** 2)) self.K = (len(self._binary_features) + sum(num_feats for _, num_feats in self._sparse_features)) def _to_array(self, sequence): return np.asarray(tuple(sequence)).reshape(1, -1) def charIndex(i, j, s1, s2, char2index=None) : char_i, char_j = s1[i].lower(), s2[j].lower() index = char2index[char_j] + char2index[char_i] * len(char2index) return index def biases(s1, s2, bias=1.0) : return np.full((s1.size, s2.size), bias) def starts(s1, s2) : M = np.zeros((s1.size, s2.size)) M[0,...] = 1 M[...,0] = 1 return M def ends(s1, s2) : M = np.zeros((s1.size, s2.size)) M[(s1.size-1),...] = 1 M[...,(s2.size-1)] = 1 return M def matches(s1, s2) : return (s1 == s2) def digits(s1, s2) : return np.char.isdigit(s1) & np.char.isdigit(s2)
bsd-3-clause
cainiaocome/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
295
1247
# Author: Mathieu Blondel <mathieu@mblondel.org> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
theoryno3/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
295
1247
# Author: Mathieu Blondel <mathieu@mblondel.org> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
glennq/scikit-learn
examples/manifold/plot_mds.py
85
2731
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # License: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0, label='True Position') plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS') plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS') plt.legend(scatterpoints=1, loc='best', shadow=False) similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
ray-project/ray
rllib/algorithms/dreamer/utils.py
1
3095
import numpy as np from ray.rllib.utils.framework import try_import_torch torch, nn = try_import_torch() # Custom initialization for different types of layers if torch: class Linear(nn.Linear): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.zeros_(self.bias) class Conv2d(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.zeros_(self.bias) class ConvTranspose2d(nn.ConvTranspose2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.zeros_(self.bias) class GRUCell(nn.GRUCell): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def reset_parameters(self): nn.init.xavier_uniform_(self.weight_ih) nn.init.orthogonal_(self.weight_hh) nn.init.zeros_(self.bias_ih) nn.init.zeros_(self.bias_hh) # Custom Tanh Bijector due to big gradients through Dreamer Actor class TanhBijector(torch.distributions.Transform): def __init__(self): super().__init__() self.bijective = True self.domain = torch.distributions.constraints.real self.codomain = torch.distributions.constraints.interval(-1.0, 1.0) def atanh(self, x): return 0.5 * torch.log((1 + x) / (1 - x)) def sign(self): return 1.0 def _call(self, x): return torch.tanh(x) def _inverse(self, y): y = torch.where( (torch.abs(y) <= 1.0), torch.clamp(y, -0.99999997, 0.99999997), y ) y = self.atanh(y) return y def log_abs_det_jacobian(self, x, y): return 2.0 * (np.log(2) - x - nn.functional.softplus(-2.0 * x)) # Modified from https://github.com/juliusfrost/dreamer-pytorch class FreezeParameters: def __init__(self, parameters): self.parameters = parameters self.param_states = [p.requires_grad for p in self.parameters] def __enter__(self): for param in self.parameters: param.requires_grad = False def __exit__(self, exc_type, exc_val, exc_tb): for i, param in enumerate(self.parameters): param.requires_grad = self.param_states[i] def batchify_states(states_list, batch_size, device=None): """ Batchify data into batches of size batch_size """ state_batches = [s[None, :].expand(batch_size, -1) for s in states_list] if device is not None: state_batches = [s.to(device) for s in state_batches] return state_batches
apache-2.0
snap-stanford/ogb
examples/lsc/wikikg90m/dgl-ke-ogb-lsc/python/dglke/models/infer.py
1
13505
# -*- coding: utf-8 -*- # # train.py # # Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import argparse import numpy as np import dgl.backend as F backend = os.environ.get('DGLBACKEND', 'pytorch') from .general_models import InferModel if backend.lower() == 'mxnet': from .mxnet.tensor_models import logsigmoid from .mxnet.tensor_models import none from .mxnet.tensor_models import get_dev from .mxnet.tensor_models import cosine_dist from .mxnet.tensor_models import l2_dist from .mxnet.tensor_models import l1_dist from .mxnet.tensor_models import dot_dist from .mxnet.tensor_models import extended_jaccard_dist from .mxnet.tensor_models import floor_divide DEFAULT_INFER_BATCHSIZE = 256 else: from .pytorch.tensor_models import logsigmoid from .pytorch.tensor_models import none from .pytorch.tensor_models import get_dev from .pytorch.tensor_models import cosine_dist from .pytorch.tensor_models import l2_dist from .pytorch.tensor_models import l1_dist from .pytorch.tensor_models import dot_dist from .pytorch.tensor_models import extended_jaccard_dist from .pytorch.tensor_models import floor_divide DEFAULT_INFER_BATCHSIZE = 1024 class ScoreInfer(object): """ Calculate score of triplet (h, r, t) based on pretained KG embeddings using specified score_function Parameters --------- device : int Device to run the inference, -1 for CPU config : dict Containing KG model information model_path : str path storing the model (pretrained embeddings) score_func : str What kind of score is used, none: score = $x$ logsigmoid: score $log(sigmoid(x)) """ def __init__(self, device, config, model_path, sfunc='none'): assert sfunc in ['none', 'logsigmoid'], 'score function should be none or logsigmoid' self.device = 'cpu' if device < 0 else device self.config = config self.model_path = model_path self.sfunc = sfunc if sfunc == 'none': self.score_func = none else: self.score_func = logsigmoid def load_model(self): config = self.config model_path = self.model_path # for none score func, use 0. # for logsigmoid use original gamma to make the score closer to 0. gamma=config['gamma'] if self.sfunc == 'logsigmoid' else 0.0 model = InferModel(device=self.device, model_name=config['model'], hidden_dim=config['emb_size'], double_entity_emb=config['double_ent'], double_relation_emb=config['double_rel'], gamma=gamma) dataset = config['dataset'] model.load_emb(model_path, dataset) self.model = model def topK(self, head=None, rel=None, tail=None, exec_mode='all', k=10): if head is None: head = F.arange(0, self.model.num_entity) else: head = F.tensor(head) if rel is None: rel = F.arange(0, self.model.num_rel) else: rel = F.tensor(rel) if tail is None: tail = F.arange(0, self.model.num_entity) else: tail = F.tensor(tail) num_head = F.shape(head)[0] num_rel = F.shape(rel)[0] num_tail = F.shape(tail)[0] if exec_mode == 'triplet_wise': result = [] assert num_head == num_rel, \ 'For triplet wise exection mode, head, relation and tail lists should have same length' assert num_head == num_tail, \ 'For triplet wise exection mode, head, relation and tail lists should have same length' raw_score = self.model.score(head, rel, tail, triplet_wise=True) score = self.score_func(raw_score) idx = F.arange(0, num_head) sidx = F.argsort(score, dim=0, descending=True) sidx = sidx[:k] score = score[sidx] idx = idx[sidx] result.append((F.asnumpy(head[idx]), F.asnumpy(rel[idx]), F.asnumpy(tail[idx]), F.asnumpy(score))) elif exec_mode == 'all': result = [] raw_score = self.model.score(head, rel, tail) score = self.score_func(raw_score) idx = F.arange(0, num_head * num_rel * num_tail) sidx = F.argsort(score, dim=0, descending=True) sidx = sidx[:k] score = score[sidx] idx = idx[sidx] tail_idx = idx % num_tail idx = floor_divide(idx, num_tail) rel_idx = idx % num_rel idx = floor_divide(idx, num_rel) head_idx = idx % num_head result.append((F.asnumpy(head[head_idx]), F.asnumpy(rel[rel_idx]), F.asnumpy(tail[tail_idx]), F.asnumpy(score))) elif exec_mode == 'batch_head': result = [] for i in range(num_head): raw_score = self.model.score(F.unsqueeze(head[i], 0), rel, tail) score = self.score_func(raw_score) idx = F.arange(0, num_rel * num_tail) sidx = F.argsort(score, dim=0, descending=True) sidx = sidx[:k] score = score[sidx] idx = idx[sidx] tail_idx = idx % num_tail idx = floor_divide(idx, num_tail) rel_idx = idx % num_rel result.append((np.full((k,), F.asnumpy(head[i])), F.asnumpy(rel[rel_idx]), F.asnumpy(tail[tail_idx]), F.asnumpy(score))) elif exec_mode == 'batch_rel': result = [] for i in range(num_rel): raw_score = self.model.score(head, F.unsqueeze(rel[i], 0), tail) score = self.score_func(raw_score) idx = F.arange(0, num_head * num_tail) sidx = F.argsort(score, dim=0, descending=True) sidx = sidx[:k] score = score[sidx] idx = idx[sidx] tail_idx = idx % num_tail idx = floor_divide(idx, num_tail) head_idx = idx % num_head result.append((F.asnumpy(head[head_idx]), np.full((k,), F.asnumpy(rel[i])), F.asnumpy(tail[tail_idx]), F.asnumpy(score))) elif exec_mode == 'batch_tail': result = [] for i in range(num_tail): raw_score = self.model.score(head, rel, F.unsqueeze(tail[i], 0)) score = self.score_func(raw_score) idx = F.arange(0, num_head * num_rel) sidx = F.argsort(score, dim=0, descending=True) sidx = sidx[:k] score = score[sidx] idx = idx[sidx] rel_idx = idx % num_rel idx = floor_divide(idx, num_rel) head_idx = idx % num_head result.append((F.asnumpy(head[head_idx]), F.asnumpy(rel[rel_idx]), np.full((k,), F.asnumpy(tail[i])), F.asnumpy(score))) else: assert False, 'unknow execution mode type {}'.format(exec_mode) return result class EmbSimInfer(): """ Calculate simularity of entity/relation embeddings based on pretained KG embeddings Parameters --------- device : int Device to run the inference, -1 for CPU emb_file : dict Containing embedding information sfunc : str What kind of score is used, cosine: score = $\frac{x \cdot y}{||x||_2||y||_2}$ l2: score = $-||x - y||_2$ l1: score = $-||x - y||_1$ dot: score = $x \cdot y$ ext_jaccard: score = $\frac{x \cdot y}{||x||_{2}^{2} + ||y||_{2}^{2} - x \cdot y}$ """ def __init__(self, device, emb_file, sfunc='cosine', batch_size=DEFAULT_INFER_BATCHSIZE): self.device = get_dev(device) self.emb_file = emb_file self.sfunc = sfunc if sfunc == 'cosine': self.sim_func = cosine_dist elif sfunc == 'l2': self.sim_func = l2_dist elif sfunc == 'l1': self.sim_func = l1_dist elif sfunc == 'dot': self.sim_func = dot_dist elif sfunc == 'ext_jaccard': self.sim_func = extended_jaccard_dist self.batch_size = batch_size def load_emb(self): self.emb = F.tensor(np.load(self.emb_file)) def topK(self, head=None, tail=None, bcast=False, pair_ws=False, k=10): if head is None: head = F.arange(0, self.emb.shape[0]) else: head = F.tensor(head) if tail is None: tail = F.arange(0, self.emb.shape[0]) else: tail = F.tensor(tail) head_emb = self.emb[head] tail_emb = self.emb[tail] if pair_ws is True: result = [] batch_size = self.batch_size # chunked cal score score = [] num_head = head.shape[0] num_tail = tail.shape[0] for i in range((num_head + batch_size - 1) // batch_size): sh_emb = head_emb[i * batch_size : (i + 1) * batch_size \ if (i + 1) * batch_size < num_head \ else num_head] sh_emb = F.copy_to(sh_emb, self.device) st_emb = tail_emb[i * batch_size : (i + 1) * batch_size \ if (i + 1) * batch_size < num_head \ else num_head] st_emb = F.copy_to(st_emb, self.device) score.append(F.copy_to(self.sim_func(sh_emb, st_emb, pw=True), F.cpu())) score = F.cat(score, dim=0) sidx = F.argsort(score, dim=0, descending=True) sidx = sidx[:k] score = score[sidx] result.append((F.asnumpy(head[sidx]), F.asnumpy(tail[sidx]), F.asnumpy(score))) else: num_head = head.shape[0] num_tail = tail.shape[0] batch_size = self.batch_size # chunked cal score score = [] for i in range((num_head + batch_size - 1) // batch_size): sh_emb = head_emb[i * batch_size : (i + 1) * batch_size \ if (i + 1) * batch_size < num_head \ else num_head] sh_emb = F.copy_to(sh_emb, self.device) s_score = [] for j in range((num_tail + batch_size - 1) // batch_size): st_emb = tail_emb[j * batch_size : (j + 1) * batch_size \ if (j + 1) * batch_size < num_tail \ else num_tail] st_emb = F.copy_to(st_emb, self.device) s_score.append(F.copy_to(self.sim_func(sh_emb, st_emb), F.cpu())) score.append(F.cat(s_score, dim=1)) score = F.cat(score, dim=0) if bcast is False: result = [] idx = F.arange(0, num_head * num_tail) score = F.reshape(score, (num_head * num_tail, )) sidx = F.argsort(score, dim=0, descending=True) sidx = sidx[:k] score = score[sidx] sidx = sidx idx = idx[sidx] tail_idx = idx % num_tail idx = floor_divide(idx, num_tail) head_idx = idx % num_head result.append((F.asnumpy(head[head_idx]), F.asnumpy(tail[tail_idx]), F.asnumpy(score))) else: # bcast at head result = [] for i in range(num_head): i_score = score[i] sidx = F.argsort(i_score, dim=0, descending=True) idx = F.arange(0, num_tail) i_idx = sidx[:k] i_score = i_score[i_idx] idx = idx[i_idx] result.append((np.full((k,), F.asnumpy(head[i])), F.asnumpy(tail[idx]), F.asnumpy(i_score))) return result
mit
pianomania/scikit-learn
sklearn/preprocessing/__init__.py
265
1319
""" The :mod:`sklearn.preprocessing` module includes scaling, centering, normalization, binarization and imputation methods. """ from ._function_transformer import FunctionTransformer from .data import Binarizer from .data import KernelCenterer from .data import MinMaxScaler from .data import MaxAbsScaler from .data import Normalizer from .data import RobustScaler from .data import StandardScaler from .data import add_dummy_feature from .data import binarize from .data import normalize from .data import scale from .data import robust_scale from .data import maxabs_scale from .data import minmax_scale from .data import OneHotEncoder from .data import PolynomialFeatures from .label import label_binarize from .label import LabelBinarizer from .label import LabelEncoder from .label import MultiLabelBinarizer from .imputation import Imputer __all__ = [ 'Binarizer', 'FunctionTransformer', 'Imputer', 'KernelCenterer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'PolynomialFeatures', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', 'label_binarize', ]
bsd-3-clause
cainiaocome/scikit-learn
sklearn/linear_model/coordinate_descent.py
42
73973
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Gael Varoquaux <gael.varoquaux@inria.fr> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data, sparse_center_data from ..utils import check_array, check_X_y, deprecated from ..utils.validation import check_random_state from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_mean, _, X_std = sparse_center_data(X, y, fit_intercept, normalize) mean_dot = X_mean * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_std[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) if Xy is not None: Xy = check_array(Xy, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.zeros(n_features) # X should be normalized and fit already. X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=np.float64) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=np.float64) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1])) else: coef_ = np.asfortranarray(coef_init) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): precompute = check_array(precompute, 'csc', dtype=np.float64, order='F') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like") coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if self.precompute == 'auto': warnings.warn("Setting precompute to 'auto', was found to be " "slower even when n_samples > n_features. Hence " "it will be removed in 0.18.", DeprecationWarning, stacklevel=2) X, y = check_X_y(X, y, accept_sparse='csc', dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ return self._decision_function(X) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_mean = np.atleast_1d(y_mean) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_std) coefs[:, nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean[:, np.newaxis] - np.dot(X_mean, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = np.asarray(y, dtype=np.float64) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if not np.may_share_memory(reference_to_old_X.data, X.data): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=np.float64) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = check_array(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_mean, y_mean, X_std) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automaticlly. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
theoryno3/scikit-learn
benchmarks/bench_lasso.py
295
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
GoogleCloudPlatform/cloudml-samples
pytorch/containers/custom_container/task.py
1
4919
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the \"License\"); # you may not use this file except in compliance with the License.\n", # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an \"AS IS\" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch import torch.optim as optim import torch.nn as nn import data_utils import model def train(net, train_loader, optimizer, epoch): """Create the training loop""" net.train() criterion = nn.BCELoss() running_loss = 0.0 for batch_index, data in enumerate(train_loader): features = data['features'] target = data['target'] # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(features) loss = criterion(outputs, target) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if batch_index % 6 == 5: # print every 6 mini-batches print('[%d, %5d] loss: %.3f' % (epoch, batch_index + 1, running_loss / 6)) running_loss = 0.0 def test(net, test_loader): """Test the DNN""" net.eval() criterion = nn.BCELoss() # https://pytorch.org/docs/stable/nn.html#bceloss test_loss = 0 correct = 0 with torch.no_grad(): for i, data in enumerate(test_loader, 0): features = data['features'] target = data['target'] output = net(features) # Binarize the output pred = output.apply_(lambda x: 0.0 if x < 0.5 else 1.0) test_loss += criterion(output, target) # sum up batch loss correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set:\n\tAverage loss: {:.4f}'.format(test_loss)) print('\tAccuracy: {}/{} ({:.0f}%)\n'.format( correct, (len(test_loader) * test_loader.batch_size), 100. * correct / (len(test_loader) * test_loader.batch_size))) def train_model(args): """Load the data, train the model, test the model, export / save the model """ torch.manual_seed(args.seed) # Open our dataset train_loader, test_loader = data_utils.load_data(args.test_split, args.batch_size) # Create the model net = model.SonarDNN().double() optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, nesterov=False) # Train / Test the model for epoch in range(1, args.epochs + 1): train(net, train_loader, optimizer, epoch) test(net, test_loader) # Export the trained model torch.save(net.state_dict(), args.model_name) if args.model_dir: # Save the model to GCS data_utils.save_model(args.model_dir, args.model_name) def get_args(): """Argument parser. Returns: Dictionary of arguments. """ parser = argparse.ArgumentParser(description='PyTorch Sonar Example') parser.add_argument('--model-dir', type=str, help='Where to save the model') parser.add_argument('--model-name', type=str, default='sonar_model', help='What to name the saved model file') parser.add_argument('--batch-size', type=int, default=4, help='input batch size for training (default: 4)') parser.add_argument('--test-split', type=float, default=0.2, help='split size for training / testing dataset') parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, help='SGD momentum (default: 0.5)') parser.add_argument('--seed', type=int, default=42, help='random seed (default: 42)') args = parser.parse_args() return args def main(): args = get_args() train_model(args) if __name__ == '__main__': main()
apache-2.0
SMV818VMS/diffraction
findmotifs.py
1
6730
#/usr/bin/envimport sys, os ############################################################# # # findmotifs.py # # Author : Miravet-Verde, Samuel # Written : 04/20/2016 # Last updated : 04/21/2016 # # Test to detect motifs from sequences given by finddrops # ############################################################# ##################### # PACKAGES LOAD # ##################### import sys, os import itertools import numpy as np import glob from scipy.cluster.vq import kmeans, vq from finddrops import find_drops, bruto_drops from Bio import SeqIO from Bio.Seq import Seq from Bio.Alphabet import generic_dna from Bio.SeqRecord import SeqRecord ##################### # GENERAL FUNCTIONS # ##################### def maxgap(data, max_gap): """ Arrange data into groups where successive elements differ by no more than *maxgap* The input has to be a list of list with the structure: [['id1', distance between start decay and last expression],['id2',dist2],...,['idn', distn]] The output will be a list of lists with the identifiers clustered together by the distances if the difference between them is less than the maxgap [[id1, id2],[id3,..]] Example: in: [['id1',1], ['id2',-1], ['id3',2], ['id4',80], ['id5',81], ['id3',82]] out: [['id1','id2','id3'], ['id4','id5','id3']] """ # Sort the list by the second value (distances) data.sort(key=lambda x: x[1]) # Separate lists identifiers = [x[0] for x in data] distances = [x[1] for x in data] # Cluster the distances by max gap and return the identifiers groupes groups = [] for k, g in itertools.groupby(distances, key=lambda n: n//max_gap): i = len(list(g)) groups.append(identifiers[:i]) identifiers = identifiers[i:] return groups def kmeans(data, k): """ Arrange data into k groups based on a kmeans approach The input has to be a list of list with the structure: [['id1', distance between start decay and last expression],['id2',dist2],...,['idn', distn]] The output will be a list of lists with the identifiers clustered together by the distances if the difference between them is less than the maxgap [[id1, id2],[id3,..]] Example: in: [['id1',1], ['id2',-1], ['id3',2], ['id4',80], ['id5',81], ['id3',82]] out: [['id1','id2','id3'], ['id4','id5','id3']] """ # Sort the list by the second value (distances) data.sort(key=lambda x: x[1]) # Separate lists identifiers = [x[0] for x in data] distances = [x[1] for x in data] # Cluster the distances by max gap and return the identifiers groupes groups = [] for k, g in itertools.groupby(distances, key=lambda n: n//max_gap): i = len(list(g)) groups.append(identifiers[:i]) identifiers = identifiers[i:] return groups def group_by(data, method, max_gap=10, k=2): """ Define the number of groups in your dataset and labels them Possible methods: - maxgap - kmeans - hierar ---- max_gap: maximum distance expected between features in maxgap method k: is the number of groups expected, used by some of the methods """ if method == 'maxgap': return maxgap(data, max_gap) def subset_dictionary(bigdict, wanted_keys): """ Given a dictionary (bigdict) including several keys and a list of keys in list format in wanted_keys Return a subsetted dictionary from bigdict with only wanted keys """ return dict((k, bigdict[k]) for k in wanted_keys if k in bigdict) def process_sequences(dictionary, genome, outFile): """ Given a dictionary with {identifier:[features]} where feature[0] is the start index of a sequence and feature[1] is the end Creates a multifasta file to run a meme analysis """ # The goal is extract several subsequences from a genome given # we load the genome with open(outFile, 'w') as f: for seq_record in SeqIO.parse(genome, 'fasta'): for k, v in dictionary.iteritems(): start = v[0] end = v[1] f.write('>'+k+'_'+str(seq_record.id)+'\n') f.write(str(seq_record.seq[start:end])+'\n') def pymeme(directory): """ Given a directory, List all the fasta files in it and runs a MEME for each file By default, the program creates a directory with the name of the fasta where all the results will be located """ print('finding files...') files = glob.glob(directory+"*.fasta") print(str(len(files))+' files found') for fil in files: outname = fil.replace(directory,'').replace('.fasta','') print('meme of '+outname) command = 'meme '+fil+' -dna -oc ./results_meme/'+outname+'/ -nostatus -time 18000 -maxsize 60000 -mod zoops -nmotifs 5 -minw 6 -maxw 100' os.system(command) ##################### # CLASSES # ##################### ##################### # EXECUTION # ##################### if __name__ == "__main__": # Generate the list of candidates # candidates = find_drops(annotation_file='./datasets/toyset_annotations.txt', expression_file='./datasets/toyset.txt', expression_index=1, header_exp=False) candidates = bruto_drops(annotation_file='../mycorepo/plusTSSTTS.csv', expression_file='./datasets/dsspilesmpn.txt', additional_id = '_bruto', expression_index=2, expression_determinant=10) # This is a dictionary, to group we have to select a feature explaining more differences, in this dictionary we have different features: # 'SIGN7': [6986, 7211, 7001, 7087, 48.566111083270691, -68.0, -4.6440034020500001] # ident : [start, end,decay_p, 0exp, std expression, max_change, diff exp btw last and 0exp] # The most specific value for classes is the difference between decay position and 0exp # Reformat the dictionary data = [] for key, values in candidates.iteritems(): distance = values[3]-values[2] data.append([key, distance]) # # Group by # groups = group_by(data, 'maxgap') # # # Extract subsequences and write them in separate files: # sharp_signals = subset_dictionary(candidates, groups[0]) # decay_signals = subset_dictionary(candidates, groups[1]) # # process_sequences(sharp_signals, './datasets/toy_genome.fasta', './results_meme/input_sequences/sharp_signals.fasta') # process_sequences(decay_signals, './datasets/toy_genome.fasta', './results_meme/input_sequences/decay_signals.fasta') process_sequences(candidates, './datasets/mpn_genome.fasta', './results_meme/input_sequences/bruto_test.fasta') # Run pymeme pymeme('./results_meme/input_sequences/')
mit
szilveszter/django
django/contrib/gis/geoip/base.py
67
11157
import os import re from ctypes import c_char_p from django.core.validators import ipv4_re from django.contrib.gis.geoip.libgeoip import GEOIP_SETTINGS from django.contrib.gis.geoip.prototypes import ( GeoIP_open, GeoIP_delete, GeoIP_database_info, GeoIP_lib_version, GeoIP_record_by_addr, GeoIP_record_by_name, GeoIP_country_code_by_addr, GeoIP_country_code_by_name, GeoIP_country_name_by_addr, GeoIP_country_name_by_name) from django.utils import six from django.utils.encoding import force_bytes # Regular expressions for recognizing the GeoIP free database editions. free_regex = re.compile(r'^GEO-\d{3}FREE') lite_regex = re.compile(r'^GEO-\d{3}LITE') #### GeoIP classes #### class GeoIPException(Exception): pass class GeoIP(object): # The flags for GeoIP memory caching. # GEOIP_STANDARD - read database from filesystem, uses least memory. # # GEOIP_MEMORY_CACHE - load database into memory, faster performance # but uses more memory # # GEOIP_CHECK_CACHE - check for updated database. If database has been # updated, reload filehandle and/or memory cache. This option # is not thread safe. # # GEOIP_INDEX_CACHE - just cache the most frequently accessed index # portion of the database, resulting in faster lookups than # GEOIP_STANDARD, but less memory usage than GEOIP_MEMORY_CACHE - # useful for larger databases such as GeoIP Organization and # GeoIP City. Note, for GeoIP Country, Region and Netspeed # databases, GEOIP_INDEX_CACHE is equivalent to GEOIP_MEMORY_CACHE # # GEOIP_MMAP_CACHE - load database into mmap shared memory ( not available # on Windows). GEOIP_STANDARD = 0 GEOIP_MEMORY_CACHE = 1 GEOIP_CHECK_CACHE = 2 GEOIP_INDEX_CACHE = 4 GEOIP_MMAP_CACHE = 8 cache_options = dict((opt, None) for opt in (0, 1, 2, 4, 8)) # Paths to the city & country binary databases. _city_file = '' _country_file = '' # Initially, pointers to GeoIP file references are NULL. _city = None _country = None def __init__(self, path=None, cache=0, country=None, city=None): """ Initializes the GeoIP object, no parameters are required to use default settings. Keyword arguments may be passed in to customize the locations of the GeoIP data sets. * path: Base directory to where GeoIP data is located or the full path to where the city or country data files (*.dat) are located. Assumes that both the city and country data sets are located in this directory; overrides the GEOIP_PATH settings attribute. * cache: The cache settings when opening up the GeoIP datasets, and may be an integer in (0, 1, 2, 4, 8) corresponding to the GEOIP_STANDARD, GEOIP_MEMORY_CACHE, GEOIP_CHECK_CACHE, GEOIP_INDEX_CACHE, and GEOIP_MMAP_CACHE, `GeoIPOptions` C API settings, respectively. Defaults to 0, meaning that the data is read from the disk. * country: The name of the GeoIP country data file. Defaults to 'GeoIP.dat'; overrides the GEOIP_COUNTRY settings attribute. * city: The name of the GeoIP city data file. Defaults to 'GeoLiteCity.dat'; overrides the GEOIP_CITY settings attribute. """ # Checking the given cache option. if cache in self.cache_options: self._cache = cache else: raise GeoIPException('Invalid GeoIP caching option: %s' % cache) # Getting the GeoIP data path. if not path: path = GEOIP_SETTINGS.get('GEOIP_PATH', None) if not path: raise GeoIPException('GeoIP path must be provided via parameter or the GEOIP_PATH setting.') if not isinstance(path, six.string_types): raise TypeError('Invalid path type: %s' % type(path).__name__) if os.path.isdir(path): # Constructing the GeoIP database filenames using the settings # dictionary. If the database files for the GeoLite country # and/or city datasets exist, then try and open them. country_db = os.path.join(path, country or GEOIP_SETTINGS.get('GEOIP_COUNTRY', 'GeoIP.dat')) if os.path.isfile(country_db): self._country = GeoIP_open(force_bytes(country_db), cache) self._country_file = country_db city_db = os.path.join(path, city or GEOIP_SETTINGS.get('GEOIP_CITY', 'GeoLiteCity.dat')) if os.path.isfile(city_db): self._city = GeoIP_open(force_bytes(city_db), cache) self._city_file = city_db elif os.path.isfile(path): # Otherwise, some detective work will be needed to figure # out whether the given database path is for the GeoIP country # or city databases. ptr = GeoIP_open(force_bytes(path), cache) info = GeoIP_database_info(ptr) if lite_regex.match(info): # GeoLite City database detected. self._city = ptr self._city_file = path elif free_regex.match(info): # GeoIP Country database detected. self._country = ptr self._country_file = path else: raise GeoIPException('Unable to recognize database edition: %s' % info) else: raise GeoIPException('GeoIP path must be a valid file or directory.') def __del__(self): # Cleaning any GeoIP file handles lying around. if GeoIP_delete is None: return if self._country: GeoIP_delete(self._country) if self._city: GeoIP_delete(self._city) def _check_query(self, query, country=False, city=False, city_or_country=False): "Helper routine for checking the query and database availability." # Making sure a string was passed in for the query. if not isinstance(query, six.string_types): raise TypeError('GeoIP query must be a string, not type %s' % type(query).__name__) # Extra checks for the existence of country and city databases. if city_or_country and not (self._country or self._city): raise GeoIPException('Invalid GeoIP country and city data files.') elif country and not self._country: raise GeoIPException('Invalid GeoIP country data file: %s' % self._country_file) elif city and not self._city: raise GeoIPException('Invalid GeoIP city data file: %s' % self._city_file) # Return the query string back to the caller. GeoIP only takes bytestrings. return force_bytes(query) def city(self, query): """ Returns a dictionary of city information for the given IP address or Fully Qualified Domain Name (FQDN). Some information in the dictionary may be undefined (None). """ enc_query = self._check_query(query, city=True) if ipv4_re.match(query): # If an IP address was passed in return GeoIP_record_by_addr(self._city, c_char_p(enc_query)) else: # If a FQDN was passed in. return GeoIP_record_by_name(self._city, c_char_p(enc_query)) def country_code(self, query): "Returns the country code for the given IP Address or FQDN." enc_query = self._check_query(query, city_or_country=True) if self._country: if ipv4_re.match(query): return GeoIP_country_code_by_addr(self._country, enc_query) else: return GeoIP_country_code_by_name(self._country, enc_query) else: return self.city(query)['country_code'] def country_name(self, query): "Returns the country name for the given IP Address or FQDN." enc_query = self._check_query(query, city_or_country=True) if self._country: if ipv4_re.match(query): return GeoIP_country_name_by_addr(self._country, enc_query) else: return GeoIP_country_name_by_name(self._country, enc_query) else: return self.city(query)['country_name'] def country(self, query): """ Returns a dictionary with the country code and name when given an IP address or a Fully Qualified Domain Name (FQDN). For example, both '24.124.1.80' and 'djangoproject.com' are valid parameters. """ # Returning the country code and name return {'country_code': self.country_code(query), 'country_name': self.country_name(query), } #### Coordinate retrieval routines #### def coords(self, query, ordering=('longitude', 'latitude')): cdict = self.city(query) if cdict is None: return None else: return tuple(cdict[o] for o in ordering) def lon_lat(self, query): "Returns a tuple of the (longitude, latitude) for the given query." return self.coords(query) def lat_lon(self, query): "Returns a tuple of the (latitude, longitude) for the given query." return self.coords(query, ('latitude', 'longitude')) def geos(self, query): "Returns a GEOS Point object for the given query." ll = self.lon_lat(query) if ll: from django.contrib.gis.geos import Point return Point(ll, srid=4326) else: return None #### GeoIP Database Information Routines #### @property def country_info(self): "Returns information about the GeoIP country database." if self._country is None: ci = 'No GeoIP Country data in "%s"' % self._country_file else: ci = GeoIP_database_info(self._country) return ci @property def city_info(self): "Retuns information about the GeoIP city database." if self._city is None: ci = 'No GeoIP City data in "%s"' % self._city_file else: ci = GeoIP_database_info(self._city) return ci @property def info(self): "Returns information about the GeoIP library and databases in use." info = '' if GeoIP_lib_version: info += 'GeoIP Library:\n\t%s\n' % GeoIP_lib_version() return info + 'Country:\n\t%s\nCity:\n\t%s' % (self.country_info, self.city_info) #### Methods for compatibility w/the GeoIP-Python API. #### @classmethod def open(cls, full_path, cache): return GeoIP(full_path, cache) def _rec_by_arg(self, arg): if self._city: return self.city(arg) else: return self.country(arg) region_by_addr = city region_by_name = city record_by_addr = _rec_by_arg record_by_name = _rec_by_arg country_code_by_addr = country_code country_code_by_name = country_code country_name_by_addr = country_name country_name_by_name = country_name
bsd-3-clause
jdmcbr/geopandas
geopandas/tools/sjoin.py
1
19493
from typing import Optional import warnings import numpy as np import pandas as pd from geopandas import GeoDataFrame from geopandas import _compat as compat from geopandas.array import _check_crs, _crs_mismatch_warn def sjoin( left_df, right_df, how="inner", predicate="intersects", lsuffix="left", rsuffix="right", **kwargs, ): """Spatial join of two GeoDataFrames. See the User Guide page :doc:`../../user_guide/mergingdata` for details. Parameters ---------- left_df, right_df : GeoDataFrames how : string, default 'inner' The type of join: * 'left': use keys from left_df; retain only left_df geometry column * 'right': use keys from right_df; retain only right_df geometry column * 'inner': use intersection of keys from both dfs; retain only left_df geometry column predicate : string, default 'intersects' Binary predicate. Valid values are determined by the spatial index used. You can check the valid values in left_df or right_df as ``left_df.sindex.valid_query_predicates`` or ``right_df.sindex.valid_query_predicates`` Replaces deprecated ``op`` parameter. lsuffix : string, default 'left' Suffix to apply to overlapping column names (left GeoDataFrame). rsuffix : string, default 'right' Suffix to apply to overlapping column names (right GeoDataFrame). Examples -------- >>> countries = geopandas.read_file(geopandas.datasets.get_\ path("naturalearth_lowres")) >>> cities = geopandas.read_file(geopandas.datasets.get_path("naturalearth_cities")) >>> countries.head() # doctest: +SKIP pop_est continent name \ iso_a3 gdp_md_est geometry 0 920938 Oceania Fiji FJI 8374.0 MULTIPOLY\ GON (((180.00000 -16.06713, 180.00000... 1 53950935 Africa Tanzania TZA 150600.0 POLYGON (\ (33.90371 -0.95000, 34.07262 -1.05982... 2 603253 Africa W. Sahara ESH 906.5 POLYGON (\ (-8.66559 27.65643, -8.66512 27.58948... 3 35623680 North America Canada CAN 1674000.0 MULTIPOLY\ GON (((-122.84000 49.00000, -122.9742... 4 326625791 North America United States of America USA 18560000.0 MULTIPOLY\ GON (((-122.84000 49.00000, -120.0000... >>> cities.head() name geometry 0 Vatican City POINT (12.45339 41.90328) 1 San Marino POINT (12.44177 43.93610) 2 Vaduz POINT (9.51667 47.13372) 3 Luxembourg POINT (6.13000 49.61166) 4 Palikir POINT (158.14997 6.91664) >>> cities_w_country_data = geopandas.sjoin(cities, countries) >>> cities_w_country_data.head() # doctest: +SKIP name_left geometry index_right pop_est continent name_\ right iso_a3 gdp_md_est 0 Vatican City POINT (12.45339 41.90328) 141 62137802 Europe \ Italy ITA 2221000.0 1 San Marino POINT (12.44177 43.93610) 141 62137802 Europe \ Italy ITA 2221000.0 192 Rome POINT (12.48131 41.89790) 141 62137802 Europe \ Italy ITA 2221000.0 2 Vaduz POINT (9.51667 47.13372) 114 8754413 Europe Au\ stria AUT 416600.0 184 Vienna POINT (16.36469 48.20196) 114 8754413 Europe Au\ stria AUT 416600.0 See also -------- overlay : overlay operation resulting in a new geometry GeoDataFrame.sjoin : equivalent method Notes ------ Every operation in GeoPandas is planar, i.e. the potential third dimension is not taken into account. """ if "op" in kwargs: op = kwargs.pop("op") deprecation_message = ( "The `op` parameter is deprecated and will be removed" " in a future release. Please use the `predicate` parameter" " instead." ) if predicate != "intersects" and op != predicate: override_message = ( "A non-default value for `predicate` was passed" f' (got `predicate="{predicate}"`' f' in combination with `op="{op}"`).' " The value of `predicate` will be overriden by the value of `op`," " , which may result in unexpected behavior." f"\n{deprecation_message}" ) warnings.warn(override_message, UserWarning, stacklevel=4) else: warnings.warn(deprecation_message, FutureWarning, stacklevel=4) predicate = op if kwargs: first = next(iter(kwargs.keys())) raise TypeError(f"sjoin() got an unexpected keyword argument '{first}'") _basic_checks(left_df, right_df, how, lsuffix, rsuffix) indices = _geom_predicate_query(left_df, right_df, predicate) joined = _frame_join(indices, left_df, right_df, how, lsuffix, rsuffix) return joined def _basic_checks(left_df, right_df, how, lsuffix, rsuffix): """Checks the validity of join input parameters. `how` must be one of the valid options. `'index_'` concatenated with `lsuffix` or `rsuffix` must not already exist as columns in the left or right data frames. Parameters ------------ left_df : GeoDataFrame right_df : GeoData Frame how : str, one of 'left', 'right', 'inner' join type lsuffix : str left index suffix rsuffix : str right index suffix """ if not isinstance(left_df, GeoDataFrame): raise ValueError( "'left_df' should be GeoDataFrame, got {}".format(type(left_df)) ) if not isinstance(right_df, GeoDataFrame): raise ValueError( "'right_df' should be GeoDataFrame, got {}".format(type(right_df)) ) allowed_hows = ["left", "right", "inner"] if how not in allowed_hows: raise ValueError( '`how` was "{}" but is expected to be in {}'.format(how, allowed_hows) ) if not _check_crs(left_df, right_df): _crs_mismatch_warn(left_df, right_df, stacklevel=4) index_left = "index_{}".format(lsuffix) index_right = "index_{}".format(rsuffix) # due to GH 352 if any(left_df.columns.isin([index_left, index_right])) or any( right_df.columns.isin([index_left, index_right]) ): raise ValueError( "'{0}' and '{1}' cannot be names in the frames being" " joined".format(index_left, index_right) ) def _geom_predicate_query(left_df, right_df, predicate): """Compute geometric comparisons and get matching indices. Parameters ---------- left_df : GeoDataFrame right_df : GeoDataFrame predicate : string Binary predicate to query. Returns ------- DataFrame DataFrame with matching indices in columns named `_key_left` and `_key_right`. """ with warnings.catch_warnings(): # We don't need to show our own warning here # TODO remove this once the deprecation has been enforced warnings.filterwarnings( "ignore", "Generated spatial index is empty", FutureWarning ) original_predicate = predicate if predicate == "within": # within is implemented as the inverse of contains # contains is a faster predicate # see discussion at https://github.com/geopandas/geopandas/pull/1421 predicate = "contains" sindex = left_df.sindex input_geoms = right_df.geometry else: # all other predicates are symmetric # keep them the same sindex = right_df.sindex input_geoms = left_df.geometry if sindex: l_idx, r_idx = sindex.query_bulk(input_geoms, predicate=predicate, sort=False) indices = pd.DataFrame({"_key_left": l_idx, "_key_right": r_idx}) else: # when sindex is empty / has no valid geometries indices = pd.DataFrame(columns=["_key_left", "_key_right"], dtype=float) if original_predicate == "within": # within is implemented as the inverse of contains # flip back the results indices = indices.rename( columns={"_key_left": "_key_right", "_key_right": "_key_left"} ) return indices def _frame_join(join_df, left_df, right_df, how, lsuffix, rsuffix): """Join the GeoDataFrames at the DataFrame level. Parameters ---------- join_df : DataFrame Indices and join data returned by the geometric join. Must have columns `_key_left` and `_key_right` with integer indices representing the matches from `left_df` and `right_df` respectively. Additional columns may be included and will be copied to the resultant GeoDataFrame. left_df : GeoDataFrame right_df : GeoDataFrame lsuffix : string Suffix to apply to overlapping column names (left GeoDataFrame). rsuffix : string Suffix to apply to overlapping column names (right GeoDataFrame). how : string The type of join to use on the DataFrame level. Returns ------- GeoDataFrame Joined GeoDataFrame. """ # the spatial index only allows limited (numeric) index types, but an # index in geopandas may be any arbitrary dtype. so reset both indices now # and store references to the original indices, to be reaffixed later. # GH 352 index_left = "index_{}".format(lsuffix) left_df = left_df.copy(deep=True) try: left_index_name = left_df.index.name left_df.index = left_df.index.rename(index_left) except TypeError: index_left = [ "index_{}".format(lsuffix + str(pos)) for pos, ix in enumerate(left_df.index.names) ] left_index_name = left_df.index.names left_df.index = left_df.index.rename(index_left) left_df = left_df.reset_index() index_right = "index_{}".format(rsuffix) right_df = right_df.copy(deep=True) try: right_index_name = right_df.index.name right_df.index = right_df.index.rename(index_right) except TypeError: index_right = [ "index_{}".format(rsuffix + str(pos)) for pos, ix in enumerate(right_df.index.names) ] right_index_name = right_df.index.names right_df.index = right_df.index.rename(index_right) right_df = right_df.reset_index() # perform join on the dataframes if how == "inner": join_df = join_df.set_index("_key_left") joined = ( left_df.merge(join_df, left_index=True, right_index=True) .merge( right_df.drop(right_df.geometry.name, axis=1), left_on="_key_right", right_index=True, suffixes=("_{}".format(lsuffix), "_{}".format(rsuffix)), ) .set_index(index_left) .drop(["_key_right"], axis=1) ) if isinstance(index_left, list): joined.index.names = left_index_name else: joined.index.name = left_index_name elif how == "left": join_df = join_df.set_index("_key_left") joined = ( left_df.merge(join_df, left_index=True, right_index=True, how="left") .merge( right_df.drop(right_df.geometry.name, axis=1), how="left", left_on="_key_right", right_index=True, suffixes=("_{}".format(lsuffix), "_{}".format(rsuffix)), ) .set_index(index_left) .drop(["_key_right"], axis=1) ) if isinstance(index_left, list): joined.index.names = left_index_name else: joined.index.name = left_index_name else: # how == 'right': joined = ( left_df.drop(left_df.geometry.name, axis=1) .merge( join_df.merge( right_df, left_on="_key_right", right_index=True, how="right" ), left_index=True, right_on="_key_left", how="right", suffixes=("_{}".format(lsuffix), "_{}".format(rsuffix)), ) .set_index(index_right) .drop(["_key_left", "_key_right"], axis=1) ) if isinstance(index_right, list): joined.index.names = right_index_name else: joined.index.name = right_index_name return joined def _nearest_query( left_df: GeoDataFrame, right_df: GeoDataFrame, max_distance: float, how: str, return_distance: bool, ): if not (compat.PYGEOS_GE_010 and compat.USE_PYGEOS): raise NotImplementedError( "Currently, only PyGEOS >= 0.10.0 supports `nearest_all`. " + compat.INSTALL_PYGEOS_ERROR ) # use the opposite of the join direction for the index use_left_as_sindex = how == "right" if use_left_as_sindex: sindex = left_df.sindex query = right_df.geometry else: sindex = right_df.sindex query = left_df.geometry if sindex: res = sindex.nearest( query, return_all=True, max_distance=max_distance, return_distance=return_distance, ) if return_distance: (input_idx, tree_idx), distances = res else: (input_idx, tree_idx) = res distances = None if use_left_as_sindex: l_idx, r_idx = tree_idx, input_idx sort_order = np.argsort(l_idx, kind="stable") l_idx, r_idx = l_idx[sort_order], r_idx[sort_order] if distances is not None: distances = distances[sort_order] else: l_idx, r_idx = input_idx, tree_idx join_df = pd.DataFrame( {"_key_left": l_idx, "_key_right": r_idx, "distances": distances} ) else: # when sindex is empty / has no valid geometries join_df = pd.DataFrame( columns=["_key_left", "_key_right", "distances"], dtype=float ) return join_df def sjoin_nearest( left_df: GeoDataFrame, right_df: GeoDataFrame, how: str = "inner", max_distance: Optional[float] = None, lsuffix: str = "left", rsuffix: str = "right", distance_col: Optional[str] = None, ) -> GeoDataFrame: """Spatial join of two GeoDataFrames based on the distance between their geometries. Results will include multiple output records for a single input record where there are multiple equidistant nearest or intersected neighbors. See the User Guide page https://geopandas.readthedocs.io/en/latest/docs/user_guide/mergingdata.html for more details. Parameters ---------- left_df, right_df : GeoDataFrames how : string, default 'inner' The type of join: * 'left': use keys from left_df; retain only left_df geometry column * 'right': use keys from right_df; retain only right_df geometry column * 'inner': use intersection of keys from both dfs; retain only left_df geometry column max_distance : float, default None Maximum distance within which to query for nearest geometry. Must be greater than 0. The max_distance used to search for nearest items in the tree may have a significant impact on performance by reducing the number of input geometries that are evaluated for nearest items in the tree. lsuffix : string, default 'left' Suffix to apply to overlapping column names (left GeoDataFrame). rsuffix : string, default 'right' Suffix to apply to overlapping column names (right GeoDataFrame). distance_col : string, default None If set, save the distances computed between matching geometries under a column of this name in the joined GeoDataFrame. Examples -------- >>> countries = geopandas.read_file(geopandas.datasets.get_\ path("naturalearth_lowres")) >>> cities = geopandas.read_file(geopandas.datasets.get_path("naturalearth_cities")) >>> countries.head(2).name # doctest: +SKIP pop_est continent name \ iso_a3 gdp_md_est geometry 0 920938 Oceania Fiji FJI 8374.0 MULTIPOLY\ GON (((180.00000 -16.06713, 180.00000... 1 53950935 Africa Tanzania TZA 150600.0 POLYGON (\ (33.90371 -0.95000, 34.07262 -1.05982... >>> cities.head(2).name # doctest: +SKIP name geometry 0 Vatican City POINT (12.45339 41.90328) 1 San Marino POINT (12.44177 43.93610) >>> cities_w_country_data = geopandas.sjoin_nearest(cities, countries) >>> cities_w_country_data[['name_left', 'name_right']].head(2) # doctest: +SKIP name_left geometry index_right pop_est continent name_\ right iso_a3 gdp_md_est 0 Vatican City POINT (12.45339 41.90328) 141 62137802 Europe \ Italy ITA 2221000.0 1 San Marino POINT (12.44177 43.93610) 141 62137802 Europe \ Italy ITA 2221000.0 To include the distances: >>> cities_w_country_data = geopandas.sjoin_nearest\ (cities, countries, distance_col="distances") >>> cities_w_country_data[["name_left", "name_right", \ "distances"]].head(2) # doctest: +SKIP name_left name_right distances 0 Vatican City Italy 0.0 1 San Marino Italy 0.0 In the following example, we get multiple cities for Italy because all results are equidistant (in this case zero because they intersect). In fact, we get 3 results in total: >>> countries_w_city_data = geopandas.sjoin_nearest\ (cities, countries, distance_col="distances", how="right") >>> italy_results = \ countries_w_city_data[countries_w_city_data["name_left"] == "Italy"] >>> italy_results # doctest: +SKIP name_x name_y 141 Vatican City Italy 141 San Marino Italy 141 Rome Italy See also -------- sjoin : binary predicate joins GeoDataFrame.sjoin_nearest : equivalent method Notes ----- Since this join relies on distances, results will be innaccurate if your geometries are in a geographic CRS. Every operation in GeoPandas is planar, i.e. the potential third dimension is not taken into account. """ _basic_checks(left_df, right_df, how, lsuffix, rsuffix) left_df.geometry.values.check_geographic_crs(stacklevel=1) right_df.geometry.values.check_geographic_crs(stacklevel=1) return_distance = distance_col is not None join_df = _nearest_query(left_df, right_df, max_distance, how, return_distance) if return_distance: join_df = join_df.rename(columns={"distances": distance_col}) else: join_df.pop("distances") joined = _frame_join(join_df, left_df, right_df, how, lsuffix, rsuffix) if return_distance: columns = [c for c in joined.columns if c != distance_col] + [distance_col] joined = joined[columns] return joined
bsd-3-clause
theoryno3/scikit-learn
examples/cluster/plot_mean_shift.py
348
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
snap-stanford/ogb
ogb/linkproppred/dataset_dgl.py
1
7161
import pandas as pd import shutil, os import os.path as osp import torch import numpy as np from dgl.data.utils import load_graphs, save_graphs, Subset import dgl from ogb.utils.url import decide_download, download_url, extract_zip from ogb.io.read_graph_dgl import read_graph_dgl, read_heterograph_dgl from ogb.utils.torch_util import replace_numpy_with_torchtensor class DglLinkPropPredDataset(object): '''Adapted from https://docs.dgl.ai/en/latest/_modules/dgl/data/chem/csv_dataset.html#CSVDataset''' def __init__(self, name, root = 'dataset', meta_dict=None): ''' - name (str): name of the dataset - root (str): root directory to store the dataset folder - meta_dict: dictionary that stores all the meta-information about data. Default is None, but when something is passed, it uses its information. Useful for debugging for external contributers. ''' self.name = name ## original name, e.g., ogbl-ppa if meta_dict is None: self.dir_name = '_'.join(name.split('-')) # check if previously-downloaded folder exists. # If so, use that one. if osp.exists(osp.join(root, self.dir_name + '_dgl')): self.dir_name = self.dir_name + '_dgl' self.original_root = root self.root = osp.join(root, self.dir_name) master = pd.read_csv(os.path.join(os.path.dirname(__file__), 'master.csv'), index_col = 0) if not self.name in master: error_mssg = 'Invalid dataset name {}.\n'.format(self.name) error_mssg += 'Available datasets are as follows:\n' error_mssg += '\n'.join(master.keys()) raise ValueError(error_mssg) self.meta_info = master[self.name] else: self.dir_name = meta_dict['dir_path'] self.original_root = '' self.root = meta_dict['dir_path'] self.meta_info = meta_dict # check version # First check whether the dataset has been already downloaded or not. # If so, check whether the dataset version is the newest or not. # If the dataset is not the newest version, notify this to the user. if osp.isdir(self.root) and (not osp.exists(osp.join(self.root, 'RELEASE_v' + str(self.meta_info['version']) + '.txt'))): print(self.name + ' has been updated.') if input('Will you update the dataset now? (y/N)\n').lower() == 'y': shutil.rmtree(self.root) self.download_name = self.meta_info['download_name'] ## name of downloaded file, e.g., ppassoc self.task_type = self.meta_info['task type'] self.eval_metric = self.meta_info['eval metric'] self.is_hetero = self.meta_info['is hetero'] == 'True' self.binary = self.meta_info['binary'] == 'True' super(DglLinkPropPredDataset, self).__init__() self.pre_process() def pre_process(self): processed_dir = osp.join(self.root, 'processed') pre_processed_file_path = osp.join(processed_dir, 'dgl_data_processed') if osp.exists(pre_processed_file_path): self.graph, _ = load_graphs(pre_processed_file_path) else: ### check if the downloaded file exists if self.binary: # npz format has_necessary_file_simple = osp.exists(osp.join(self.root, 'raw', 'data.npz')) and (not self.is_hetero) has_necessary_file_hetero = osp.exists(osp.join(self.root, 'raw', 'edge_index_dict.npz')) and self.is_hetero else: # csv file has_necessary_file_simple = osp.exists(osp.join(self.root, 'raw', 'edge.csv.gz')) and (not self.is_hetero) has_necessary_file_hetero = osp.exists(osp.join(self.root, 'raw', 'triplet-type-list.csv.gz')) and self.is_hetero has_necessary_file = has_necessary_file_simple or has_necessary_file_hetero if not has_necessary_file: url = self.meta_info['url'] if decide_download(url): path = download_url(url, self.original_root) extract_zip(path, self.original_root) os.unlink(path) # delete folder if there exists try: shutil.rmtree(self.root) except: pass shutil.move(osp.join(self.original_root, self.download_name), self.root) else: print('Stop download.') exit(-1) raw_dir = osp.join(self.root, 'raw') add_inverse_edge = self.meta_info['add_inverse_edge'] == 'True' ### pre-process and save if self.meta_info['additional node files'] == 'None': additional_node_files = [] else: additional_node_files = self.meta_info['additional node files'].split(',') if self.meta_info['additional edge files'] == 'None': additional_edge_files = [] else: additional_edge_files = self.meta_info['additional edge files'].split(',') if self.is_hetero: graph = read_heterograph_dgl(raw_dir, add_inverse_edge = add_inverse_edge, additional_node_files = additional_node_files, additional_edge_files = additional_edge_files, binary=self.binary)[0] else: graph = read_graph_dgl(raw_dir, add_inverse_edge = add_inverse_edge, additional_node_files = additional_node_files, additional_edge_files = additional_edge_files, binary=self.binary)[0] print('Saving...') save_graphs(pre_processed_file_path, graph, {}) self.graph, _ = load_graphs(pre_processed_file_path) def get_edge_split(self, split_type = None): if split_type is None: split_type = self.meta_info['split'] path = osp.join(self.root, 'split', split_type) # short-cut if split_dict.pt exists if os.path.isfile(os.path.join(path, 'split_dict.pt')): return torch.load(os.path.join(path, 'split_dict.pt')) train = replace_numpy_with_torchtensor(torch.load(osp.join(path, 'train.pt'))) valid = replace_numpy_with_torchtensor(torch.load(osp.join(path, 'valid.pt'))) test = replace_numpy_with_torchtensor(torch.load(osp.join(path, 'test.pt'))) return {'train': train, 'valid': valid, 'test': test} def __getitem__(self, idx): assert idx == 0, 'This dataset has only one graph' return self.graph[0] def __len__(self): return 1 def __repr__(self): # pragma: no cover return '{}({})'.format(self.__class__.__name__, len(self)) if __name__ == '__main__': dgl_dataset = DglLinkPropPredDataset(name = 'ogbl-collab') split_edge = dgl_dataset.get_edge_split() print(dgl_dataset[0]) print(split_edge['train'].keys()) print(split_edge['valid'].keys())
mit
astocko/statsmodels
statsmodels/tsa/base/tests/test_base.py
27
2106
import numpy as np from pandas import Series from pandas import date_range from statsmodels.tsa.base.tsa_model import TimeSeriesModel import numpy.testing as npt from statsmodels.tools.testing import assert_equal def test_pandas_nodates_index(): from statsmodels.datasets import sunspots y = sunspots.load_pandas().data.SUNACTIVITY npt.assert_raises(ValueError, TimeSeriesModel, y) def test_predict_freq(): # test that predicted dates have same frequency x = np.arange(1,36.) # there's a bug in pandas up to 0.10.2 for YearBegin #dates = date_range("1972-4-1", "2007-4-1", freq="AS-APR") dates = date_range("1972-4-30", "2006-4-30", freq="A-APR") series = Series(x, index=dates) model = TimeSeriesModel(series) #npt.assert_(model.data.freq == "AS-APR") npt.assert_(model.data.freq == "A-APR") start = model._get_predict_start("2006-4-30") end = model._get_predict_end("2016-4-30") model._make_predict_dates() predict_dates = model.data.predict_dates #expected_dates = date_range("2006-12-31", "2016-12-31", # freq="AS-APR") expected_dates = date_range("2006-4-30", "2016-4-30", freq="A-APR") assert_equal(predict_dates, expected_dates) #ptesting.assert_series_equal(predict_dates, expected_dates) def test_keyerror_start_date(): x = np.arange(1,36.) from pandas import date_range # there's a bug in pandas up to 0.10.2 for YearBegin #dates = date_range("1972-4-1", "2007-4-1", freq="AS-APR") dates = date_range("1972-4-30", "2006-4-30", freq="A-APR") series = Series(x, index=dates) model = TimeSeriesModel(series) npt.assert_raises(ValueError, model._get_predict_start, "1970-4-30") def test_period_index(): # test 1285 from pandas import PeriodIndex, TimeSeries dates = PeriodIndex(start="1/1/1990", periods=20, freq="M") x = np.arange(1, 21.) model = TimeSeriesModel(Series(x, index=dates)) npt.assert_(model.data.freq == "M") model = TimeSeriesModel(TimeSeries(x, index=dates)) npt.assert_(model.data.freq == "M")
bsd-3-clause
ray-project/ray
rllib/examples/inference_and_serving/policy_inference_after_training.py
1
3765
""" Example showing how you can use your trained policy for inference (computing actions) in an environment. Includes options for LSTM-based models (--use-lstm), attention-net models (--use-attention), and plain (non-recurrent) models. """ import argparse import gym import os import ray from ray import air, tune from ray.rllib.algorithms.algorithm import Algorithm from ray.tune.registry import get_trainable_cls parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use." ) parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--framework", choices=["tf", "tf2", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument("--eager-tracing", action="store_true") parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train before we do inference.", ) parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train before we do inference.", ) parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training before we do inference.", ) parser.add_argument( "--explore-during-inference", action="store_true", help="Whether the trained policy should use exploration during action " "inference.", ) parser.add_argument( "--num-episodes-during-inference", type=int, default=10, help="Number of episodes to do inference over after training.", ) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) config = ( get_trainable_cls(args.run) .get_default_config() .environment("FrozenLake-v1") # Run with tracing enabled for tf2? .framework(args.framework, eager_tracing=args.eager_tracing) # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. .resources(num_gpus=int(os.environ.get("RLLIB_NUM_GPUS", "0"))) ) stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } print("Training policy until desired reward/timesteps/iterations. ...") tuner = tune.Tuner( args.run, param_space=config.to_dict(), run_config=air.RunConfig( stop=stop, verbose=2, checkpoint_config=air.CheckpointConfig( checkpoint_frequency=1, checkpoint_at_end=True ), ), ) results = tuner.fit() print("Training completed. Restoring new Trainer for action inference.") # Get the last checkpoint from the above training run. checkpoint = results.get_best_result().checkpoint # Create new Algorithm and restore its state from the last checkpoint. algo = Algorithm.from_checkpoint(checkpoint) # Create the env to do inference in. env = gym.make("FrozenLake-v1") obs = env.reset() num_episodes = 0 episode_reward = 0.0 while num_episodes < args.num_episodes_during_inference: # Compute an action (`a`). a = algo.compute_single_action( observation=obs, explore=args.explore_during_inference, policy_id="default_policy", # <- default value ) # Send the computed action `a` to the env. obs, reward, done, _ = env.step(a) episode_reward += reward # Is the episode `done`? -> Reset. if done: print(f"Episode done: Total reward = {episode_reward}") obs = env.reset() num_episodes += 1 episode_reward = 0.0 algo.stop() ray.shutdown()
apache-2.0
previtus/MGR-Project-Code
DatasetHandler/DataAugmentation.py
1
10236
from Omnipresent import len_ import os import shutil from DatasetHandler.FileHelperFunc import copy_folder, copy_file, file_exists, folder_exists, md5 def handle_noncanon_dataset(Settings, model_settings): ''' Special case scenario. We are creating a new custom dataset, instead of using one of the big officially used, "canon" datasets :param Settings: Setting for the whole experiment :param model_settings: Setting for our one dataset :return: ''' if model_settings["noncanon_dataset"] == 'expand_existing_dataset': # Idea: take an existing dataset and expand it via # Directly load the old segments file # for each segment # for each image # apply the custom ImageDataGenerator to generate new images (depending of settings) # save the new images into target folder as well as into this Segment # save edited Segments array into new SegmentsFile.dump debug_visual_output = False debug_txt_output = False from DatasetHandler.CreateDataset import get_path_for_dataset from Downloader.DataOperations import LoadDataFile from Downloader.KerasPreparation import LoadActualImages import numpy as np if debug_visual_output: from matplotlib import pyplot from keras.preprocessing.image import array_to_img import math target_folder = model_settings["dataset_name"] source_folder = model_settings["source_dataset"] filename_override = model_settings["dump_file_override"] source_segments_path = get_path_for_dataset(source_folder, filename_override) source_segments_dir = os.path.dirname(source_segments_path) + '/' if not file_exists(source_segments_dir + filename_override): print "WARNING !!!!" print '\t',"Careful, couldn't find the file", source_segments_dir + filename_override print '\t',"... we will instead be using ", source_segments_path target_segments_path = get_path_for_dataset(target_folder, '') target_segments_dir = os.path.dirname(target_segments_path) + '/' target_segments_path = target_segments_dir+model_settings["dump_file_expanded"] # Check if we don't alredy have it? if (file_exists(target_segments_path) and folder_exists(target_segments_dir+'images')): list1 = os.listdir(target_segments_dir+'images') list2 = os.listdir(source_segments_dir+'images') if len(list1)>=len(list2): # Seems like we have copied it correctly too print "We already have this dataset extended! (", len(list1), len(list2), ")" return else: print '\t', file_exists(target_segments_path), target_segments_path print '\t', folder_exists(target_segments_dir+'images'), target_segments_dir+'images' generated_images_folder = os.path.dirname(target_segments_path) + '/images/' print "source_segments_path", source_segments_path # /home/ekmek/Vitek/MGR-Project-Code/Data/StreetViewData/miniset_640px/SegmentsData.dump print "source_segments_dir", source_segments_dir # /home/ekmek/Vitek/MGR-Project-Code/Data/StreetViewData/miniset_640px/ print "target_segments_path", target_segments_path # /home/ekmek/Vitek/MGR-Project-Code/Data/StreetViewData/miniset_640px_expanded/SegmentsData_images_generated_test_folder_expanded.dump print "target_segments_dir", target_segments_dir # /home/ekmek/Vitek/MGR-Project-Code/Data/StreetViewData/miniset_640px_expanded/ # copy source_dataset -> target_dataset in dataset_name # from source_segments_dir/images to target_segments_dir/images source__path = source_segments_dir+'images' target__path = target_segments_dir+'images' copy_folder(source__path, target__path) # test the success of this copy process! # for each file in source_segments_dir/images check for a copy in target_segments_dir/images was_ok = False while not was_ok: was_ok = True list_of_source_files=os.listdir(source__path) for item in list_of_source_files: file_source = source__path + '/' + item file_target = target__path + '/' + item if not file_exists(file_target): was_ok = False else: # file exists, but maybe just to be parainoid secure, md5 compare? md5_1 = md5(file_source) md5_2 = md5(file_target) if md5_1 <> md5_2: was_ok = False if not was_ok: copy_file(file_source, file_target) print '-- was missing, now fixed:' + file_source size_of_batch = model_settings["noncanon_dataset_genfrom1"] image_generator = model_settings["noncanon_dataset_imagegenerator"] print "image_generator", image_generator Segments = LoadDataFile(source_segments_path) number_of_images_parsed = 0 for Segment in Segments: number_of_images = Segment.number_of_images for i_th_image in range(0,number_of_images): if Segment.hasLoadedImageI(i_th_image): filename = source_segments_dir+Segment.getImageFilename(i_th_image) number_of_images_parsed += 1 print filename # we have one image filepath - generate data x = LoadActualImages([filename]) y = np.array([Segment.SegmentId]) if debug_txt_output: print "ORIGINAL id", y, "ith", i_th_image, "img:", len_(x[0]) X_batch = [] y_batch = [] from DatasetHandler.custom_image import ImageDataGenerator as custom_ImageDataGenerator number_of_images_generated = 0 for x_gen, y_gen in image_generator.flow(x, y, batch_size=1, save_to_dir=generated_images_folder, save_prefix=str(y)+'_', save_format='jpg'): number_of_images_generated += 1 image = x_gen[0] filename_generated = y_gen[1][0] id = y_gen[0][0] if debug_txt_output: print id, filename_generated # save image on path filename_generated to the Segments hierarchy! print "Segment.number_of_images", Segment.number_of_images print "Segment.LocationsIndex", Segment.LocationsIndex print "Segment.DistinctLocations", Segment.DistinctLocations print "Segment.DistinctNearbyVector", Segment.DistinctNearbyVector print "Segment.HasLoadedImages", Segment.HasLoadedImages print "Segment.ErrorMessages", Segment.ErrorMessages # Value 200 is the marker location_index = Segment.LocationsIndex[i_th_image] + 1000 # accordingly we get Segment.DistinctLocations[location_index] and Segment.DistinctNearbyVector[location_index] has_img = Segment.HasLoadedImages[i_th_image] has_err = Segment.ErrorMessages[i_th_image] # Add to this Segment Segment.number_of_images += 1 Segment.LocationsIndex.append(location_index) Segment.HasLoadedImages.append(has_img) Segment.ErrorMessages.append(has_err) # Change filename and path new_filename_generated = target_segments_dir + 'images' + Segment.getImageFilename(Segment.number_of_images-1)[6:] if debug_txt_output: print "rename", filename_generated, "to", new_filename_generated shutil.move(filename_generated, new_filename_generated) print ".", new_filename_generated X_batch.append(image) y_batch.append(id) #print "id", y_gen, "img:", len_(x_gen), array_md5(image) if len(X_batch) == size_of_batch: if debug_txt_output: print "GENERATED ", len(y_batch), " images > ", len_(X_batch), y_batch if debug_visual_output: # create a grid of 3x3 images size_for_plot = int(math.floor(math.sqrt(size_of_batch-0.1))+1) size_for_plot_y = size_for_plot while size_of_batch <= size_for_plot*(size_for_plot_y-1): size_for_plot_y -= 1 print size_for_plot, "x", size_for_plot_y, " grid" for i in range(0, len(X_batch)): pyplot.subplot(size_for_plot_y,size_for_plot,i+1) img = X_batch[i] backimg = array_to_img(img) pyplot.imshow(backimg) # show the plot pyplot.show() break break # end generation for this one image if debug_txt_output: print "Save new images from id", y, " in", len_(X_batch) print "number_of_images_parsed", number_of_images_parsed from Downloader.DataOperations import SaveDataFile print "Saving new Segments file into ", target_segments_path SaveDataFile(target_segments_path, Segments) else: print "This type of noncanon dataset generation has not yet been implemented!"
mit
astocko/statsmodels
statsmodels/datasets/copper/data.py
28
2316
"""World Copper Prices 1951-1975 dataset.""" __docformat__ = 'restructuredtext' COPYRIGHT = """Used with express permission from the original author, who retains all rights.""" TITLE = "World Copper Market 1951-1975 Dataset" SOURCE = """ Jeff Gill's `Generalized Linear Models: A Unified Approach` http://jgill.wustl.edu/research/books.html """ DESCRSHORT = """World Copper Market 1951-1975""" DESCRLONG = """This data describes the world copper market from 1951 through 1975. In an example, in Gill, the outcome variable (of a 2 stage estimation) is the world consumption of copper for the 25 years. The explanatory variables are the world consumption of copper in 1000 metric tons, the constant dollar adjusted price of copper, the price of a substitute, aluminum, an index of real per capita income base 1970, an annual measure of manufacturer inventory change, and a time trend. """ NOTE = """ Number of Observations - 25 Number of Variables - 6 Variable name definitions:: WORLDCONSUMPTION - World consumption of copper (in 1000 metric tons) COPPERPRICE - Constant dollar adjusted price of copper INCOMEINDEX - An index of real per capita income (base 1970) ALUMPRICE - The price of aluminum INVENTORYINDEX - A measure of annual manufacturer inventory trend TIME - A time trend Years are included in the data file though not returned by load. """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the copper data and returns a Dataset class. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/copper.csv', 'rb'), delimiter=",", names=True, dtype=float, usecols=(1,2,3,4,5,6)) return data def load_pandas(): """ Load the copper data and returns a Dataset class. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float)
bsd-3-clause
theoryno3/scikit-learn
examples/decomposition/plot_incremental_pca.py
243
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
exclude/monki
monki/settings.py
1
6246
from pathlib import Path from django.utils import crypto from decouple import config, Csv from dj_database_url import parse as db_url BASE_DIR = Path(__file__).absolute().parent ADMINS = ( ('include', 'contato@xchan.pw'), ) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY', default=crypto.get_random_string(32)) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', cast=bool, default=False) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv(), default='*') SITE_ID = 1 # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # 3rd 'compressor', 'debug_toolbar', 'django_cleanup', 'django_extensions', 'imagekit', 'rest_framework', # project 'monki.boards', 'monki.core', 'monki.home', ] MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', 'monki.boards.middleware.UserCookieMiddleware', 'monki.boards.middleware.UserBanMiddleware', ] ROOT_URLCONF = 'monki.urls' # Templates TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ str(BASE_DIR / 'templates') ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'monki.boards.context_processors.inject_categories', ], }, }, ] WSGI_APPLICATION = 'monki.wsgi.application' DEBUG_TOOLBAR_CONFIG = { 'SHOW_TOOLBAR_CALLBACK': 'monki.core.middleware.show_toolbar', 'JQUERY_URL': None, } # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = {'default': config('DATABASE_URL', cast=db_url, default='sqlite:///db.sqlite3')} # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Sao_Paulo' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.CachedStaticFilesStorage' STATICFILES_DIRS = [ str(BASE_DIR / 'static'), str(BASE_DIR.parent / 'node_modules'), ] STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ] STATIC_URL = '/static/' STATIC_ROOT = str(BASE_DIR.parent / 'static-root') MEDIA_URL = '/media/' MEDIA_ROOT = str(BASE_DIR.parent / 'media-root') # Django-compressor # https://django-compressor.readthedocs.org/en/latest/ COMPRESS_PRECOMPILERS = [ ('text/x-sass', 'django_libsass.SassCompiler'), ('text/x-scss', 'django_libsass.SassCompiler'), ] COMPRESS_ENABLED = not DEBUG COMPRESS_OFFLINE = True COMPRESS_CSS_FILTERS = [ 'compressor.filters.css_default.CssAbsoluteFilter', 'compressor.filters.cssmin.rCSSMinFilter', ] COMPRESS_JS_FILTERS = [ 'compressor.filters.jsmin.JSMinFilter', ] # Django-libsass # https://github.com/torchbox/django-libsass LIBSASS_SOURCEMAPS = True # Django-imagekit # https://django-imagekit.readthedocs.io if not DEBUG: IMAGEKIT_DEFAULT_CACHEFILE_STRATEGY = 'imagekit.cachefiles.strategies.Optimistic' # E-mail # https://docs.djangoproject.com/en/1.9/topics/email/ DEFAULT_FROM_EMAIL = 'no-reply@xchan.pw' EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = 'no-reply@xchan.pw' EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD', default='123change') EMAIL_PORT = 587 EMAIL_SUBJECT_PREFIX = '[XCHAN] ' EMAIL_USE_TLS = True EMAIL_USE_SSL = False # Logging # https://docs.djangoproject.com/en/1.9/topics/logging LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } # File upload # https://docs.djangoproject.com/en/1.9/topics/http/file-uploads/ FILE_UPLOAD_HANDLERS = ( "django.core.files.uploadhandler.TemporaryFileUploadHandler", ) # Django Rest Framework # http://www.django-rest-framework.org/ REST_FRAMEWORK = { 'DEFAULT_RENDERER_CLASSES': ( 'rest_framework.renderers.JSONRenderer', ), 'DEFAULT_PARSER_CLASSES': ( 'rest_framework.parsers.JSONParser', ), 'PAGE_SIZE': 10, }
agpl-3.0
theoryno3/scikit-learn
sklearn/utils/random.py
232
10510
# Author: Hamzeh Alsalhi <ha258@cornell.edu> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribtion over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if None != p: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if None != p: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if None != p: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
pianomania/scikit-learn
examples/cluster/plot_kmeans_digits.py
42
4491
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(82 * '_') print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(82 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
giorgiop/scikit-learn
examples/cluster/plot_kmeans_digits.py
42
4491
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(82 * '_') print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(82 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
tszym/ansible
lib/ansible/modules/storage/zfs/zfs_facts.py
8
8180
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2016, Adam Števko <adam.stevko@gmail.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: zfs_facts short_description: Gather facts about ZFS datasets. description: - Gather facts from ZFS dataset properties. version_added: "2.3" author: Adam Števko (@xen0l) options: name: description: - ZFS dataset name. aliases: [ "ds", "dataset" ] required: yes recurse: description: - Specifies if properties for any children should be recursively displayed. type: bool default: False required: false parsable: description: - Specifies if property values should be displayed in machine friendly format. type: bool default: False required: false properties: description: - Specifies which dataset properties should be queried in comma-separated format. For more information about dataset properties, check zfs(1M) man page. aliases: [ "props" ] default: all required: false type: description: - Specifies which datasets types to display. Multiple values have to be provided in comma-separated form. aliases: [ "props" ] default: all choices: [ 'all', 'filesystem', 'volume', 'snapshot', 'bookmark' ] required: false depth: description: - Specifiies recurion depth. default: None required: false ''' EXAMPLES = ''' - name: Gather facts about ZFS dataset rpool/export/home zfs_facts: dataset: rpool/export/home - name: Report space usage on ZFS filesystems under data/home zfs_facts: name: data/home recurse: yes type: filesystem - debug: msg: 'ZFS dataset {{ item.name }} consumes {{ item.used }} of disk space.' with_items: '{{ ansible_zfs_datasets }}' ''' RETURN = ''' name: description: ZFS dataset name returned: always type: string sample: rpool/var/spool parsable: description: if parsable output should be provided in machine friendly format. returned: if 'parsable' is set to True type: boolean sample: True recurse: description: if we should recurse over ZFS dataset returned: if 'recurse' is set to True type: boolean sample: True zfs_datasets: description: ZFS dataset facts returned: always type: string sample: { "aclinherit": "restricted", "aclmode": "discard", "atime": "on", "available": "43.8G", "canmount": "on", "casesensitivity": "sensitive", "checksum": "on", "compression": "off", "compressratio": "1.00x", "copies": "1", "creation": "Thu Jun 16 11:37 2016", "dedup": "off", "devices": "on", "exec": "on", "filesystem_count": "none", "filesystem_limit": "none", "logbias": "latency", "logicalreferenced": "18.5K", "logicalused": "3.45G", "mlslabel": "none", "mounted": "yes", "mountpoint": "/rpool", "name": "rpool", "nbmand": "off", "normalization": "none", "org.openindiana.caiman:install": "ready", "primarycache": "all", "quota": "none", "readonly": "off", "recordsize": "128K", "redundant_metadata": "all", "refcompressratio": "1.00x", "referenced": "29.5K", "refquota": "none", "refreservation": "none", "reservation": "none", "secondarycache": "all", "setuid": "on", "sharenfs": "off", "sharesmb": "off", "snapdir": "hidden", "snapshot_count": "none", "snapshot_limit": "none", "sync": "standard", "type": "filesystem", "used": "4.41G", "usedbychildren": "4.41G", "usedbydataset": "29.5K", "usedbyrefreservation": "0", "usedbysnapshots": "0", "utf8only": "off", "version": "5", "vscan": "off", "written": "29.5K", "xattr": "on", "zoned": "off" } ''' from collections import defaultdict from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.six import iteritems SUPPORTED_TYPES = ['all', 'filesystem', 'volume', 'snapshot', 'bookmark'] class ZFSFacts(object): def __init__(self, module): self.module = module self.name = module.params['name'] self.recurse = module.params['recurse'] self.parsable = module.params['parsable'] self.properties = module.params['properties'] self.type = module.params['type'] self.depth = module.params['depth'] self._datasets = defaultdict(dict) self.facts = [] def dataset_exists(self): cmd = [self.module.get_bin_path('zfs')] cmd.append('list') cmd.append(self.name) (rc, out, err) = self.module.run_command(cmd) if rc == 0: return True else: return False def get_facts(self): cmd = [self.module.get_bin_path('zfs')] cmd.append('get') cmd.append('-H') if self.parsable: cmd.append('-p') if self.recurse: cmd.append('-r') if int(self.depth) != 0: cmd.append('-d') cmd.append('%s' % self.depth) if self.type: cmd.append('-t') cmd.append(self.type) cmd.append('-o') cmd.append('name,property,value') cmd.append(self.properties) cmd.append(self.name) (rc, out, err) = self.module.run_command(cmd) if rc == 0: for line in out.splitlines(): dataset, property, value = line.split('\t') self._datasets[dataset].update({property: value}) for k, v in iteritems(self._datasets): v.update({'name': k}) self.facts.append(v) return {'ansible_zfs_datasets': self.facts} else: self.module.fail_json(msg='Error while trying to get facts about ZFS dataset: %s' % self.name, stderr=err, rc=rc) def main(): module = AnsibleModule( argument_spec=dict( name=dict(required=True, aliases=['ds', 'dataset'], type='str'), recurse=dict(required=False, default=False, type='bool'), parsable=dict(required=False, default=False, type='bool'), properties=dict(required=False, default='all', type='str'), type=dict(required=False, default='all', type='str', choices=SUPPORTED_TYPES), depth=dict(required=False, default=0, type='int') ), supports_check_mode=True ) zfs_facts = ZFSFacts(module) result = {} result['changed'] = False result['name'] = zfs_facts.name if zfs_facts.parsable: result['parsable'] = zfs_facts.parsable if zfs_facts.recurse: result['recurse'] = zfs_facts.recurse if zfs_facts.dataset_exists(): result['ansible_facts'] = zfs_facts.get_facts() else: module.fail_json(msg='ZFS dataset %s does not exist!' % zfs_facts.name) module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
ray-project/ray
rllib/examples/custom_vector_env.py
1
2237
import argparse import os import ray from ray import air, tune from ray.rllib.examples.env.mock_env import MockVectorEnv from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.test_utils import check_learning_achieved from ray.tune.registry import get_trainable_cls tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use." ) parser.add_argument( "--framework", choices=["tf", "tf2", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--stop-iters", type=int, default=50, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=35.0, help="Reward at which we stop training." ) if __name__ == "__main__": args = parser.parse_args() ray.init() # episode-len=100 # num-envs=4 (note that these are fake-envs as the MockVectorEnv only # carries a single CartPole sub-env in it). tune.register_env("custom_vec_env", lambda env_ctx: MockVectorEnv(100, 4)) config = ( get_trainable_cls(args.run) .get_default_config() .environment("custom_vec_env") .framework(args.framework) .rollouts(num_rollout_workers=2) # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. .resources(num_gpus=int(os.environ.get("RLLIB_NUM_GPUS", "0"))) ) stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } tuner = tune.Tuner( args.run, param_space=config.to_dict(), run_config=air.RunConfig(stop=stop, verbose=1), ) results = tuner.fit() if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()
apache-2.0
pianomania/scikit-learn
sklearn/grid_search.py
16
40213
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>, # Gael Varoquaux <gael.varoquaux@normalesup.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring from .exceptions import ChangedBehaviorWarning __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] warnings.warn("This module was deprecated in version 0.18 in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. This module will be removed in 0.20.", DeprecationWarning) class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. .. deprecated:: 0.18 This module will be removed in 0.20. Use :class:`sklearn.model_selection.ParameterGrid` instead. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. .. deprecated:: 0.18 This module will be removed in 0.20. Use :class:`sklearn.model_selection.ParameterSampler` instead. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. .. deprecated:: 0.18 This module will be removed in 0.20. Use :func:`sklearn.model_selection.fit_grid_point` instead. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for name, v in p.items(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values for parameter ({0}) need " "to be a sequence.".format(name)) if len(v) == 0: raise ValueError("Parameter values for parameter ({0}) need " "to be a non-empty sequence.".format(name)) class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type @property def classes_(self): return self.best_estimator_.classes_ def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. .. deprecated:: 0.18 This module will be removed in 0.20. Use :class:`sklearn.model_selection.GridSearchCV` instead. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs: int, default: 1 : The maximum number of estimators fit in parallel. - If -1 all CPUs are used. - If 1 is given, no parallel computing code is used at all, which is useful for debugging. - For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used. For example, with ``n_jobs = -2`` all CPUs but one are used. .. versionchanged:: 0.17 Upgraded to joblib 0.9.3. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape='ovr', degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. .. deprecated:: 0.18 This module will be removed in 0.20. Use :class:`sklearn.model_selection.RandomizedSearchCV` instead. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs: int, default: 1 : The maximum number of estimators fit in parallel. - If -1 all CPUs are used. - If 1 is given, no parallel computing code is used at all, which is useful for debugging. - For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used. For example, with ``n_jobs = -2`` all CPUs but one are used. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settings, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
pianomania/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
51
12300
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def safe_median(arr, *args, **kwargs): # np.median([]) raises a TypeError for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.median(arr, *args, **kwargs) def safe_mean(arr, *args, **kwargs): # np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.mean(arr, *args, **kwargs) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0] + 1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: safe_mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: safe_median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_array_equal(X, Xt) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_array_equal(X.data, Xt.data) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_array_equal(X.data, Xt.data) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
cainiaocome/scikit-learn
examples/ensemble/plot_gradient_boosting_regularization.py
352
2843
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
bsd-3-clause
ray-project/ray
python/ray/data/tests/test_mars.py
1
1480
import pytest import ray import mars import mars.dataframe as md import pyarrow as pa @pytest.fixture(scope="module") def ray_start_regular(request): # pragma: no cover try: yield ray.init(num_cpus=16) finally: ray.shutdown() def test_mars(ray_start_regular): import pandas as pd cluster = mars.new_cluster_in_ray(worker_num=2, worker_cpu=1) n = 10000 pdf = pd.DataFrame({"a": list(range(n)), "b": list(range(n, 2 * n))}) df = md.DataFrame(pdf) # Convert mars dataframe to ray dataset ds = ray.data.from_mars(df) pd.testing.assert_frame_equal(ds.to_pandas(), df.to_pandas()) ds2 = ds.filter(lambda row: row["a"] % 2 == 0) assert ds2.take(5) == [{"a": 2 * i, "b": n + 2 * i} for i in range(5)] # Convert ray dataset to mars dataframe df2 = ds2.to_mars() pd.testing.assert_frame_equal( df2.head(5).to_pandas(), pd.DataFrame({"a": list(range(0, 10, 2)), "b": list(range(n, n + 10, 2))}), ) # Test Arrow Dataset pdf2 = pd.DataFrame({c: range(5) for c in "abc"}) ds3 = ray.data.from_arrow([pa.Table.from_pandas(pdf2) for _ in range(3)]) df3 = ds3.to_mars() pd.testing.assert_frame_equal( df3.head(5).to_pandas(), pdf2, ) # Test simple datasets with pytest.raises(NotImplementedError): ray.data.range(10).to_mars() cluster.stop() if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", __file__]))
apache-2.0
cainiaocome/scikit-learn
sklearn/tests/test_kernel_approximation.py
242
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
ray-project/ray
python/ray/util/collective/collective_group/gloo_util.py
1
10286
"""Code to wrap some GLOO API calls.""" import asyncio import time from typing import List import numpy import ray import ray.experimental.internal_kv as internal_kv from ray._private.gcs_utils import GcsClient from ray.util.collective.types import ReduceOp, torch_available from ray.util.queue import _QueueActor try: import pygloo except ImportError: raise ImportError( "Can not import pygloo. Please run 'pip install pygloo' to install pygloo." ) GLOO_REDUCE_OP_MAP = { ReduceOp.SUM: pygloo.ReduceOp.SUM, ReduceOp.PRODUCT: pygloo.ReduceOp.PRODUCT, ReduceOp.MIN: pygloo.ReduceOp.MIN, ReduceOp.MAX: pygloo.ReduceOp.MAX, } NUMPY_GLOO_DTYPE_MAP = { # INT types numpy.int: pygloo.glooDataType_t.glooInt64, numpy.uint8: pygloo.glooDataType_t.glooUint8, numpy.uint32: pygloo.glooDataType_t.glooUint32, numpy.uint64: pygloo.glooDataType_t.glooUint64, numpy.int8: pygloo.glooDataType_t.glooInt8, numpy.int32: pygloo.glooDataType_t.glooInt32, numpy.int64: pygloo.glooDataType_t.glooInt64, # FLOAT types numpy.half: pygloo.glooDataType_t.glooFloat16, numpy.float: pygloo.glooDataType_t.glooFloat64, numpy.float16: pygloo.glooDataType_t.glooFloat16, numpy.float32: pygloo.glooDataType_t.glooFloat32, numpy.float64: pygloo.glooDataType_t.glooFloat64, numpy.double: pygloo.glooDataType_t.glooFloat64, } if torch_available(): import torch TORCH_GLOO_DTYPE_MAP = { torch.int: pygloo.glooDataType_t.glooInt32, torch.uint8: pygloo.glooDataType_t.glooUint8, torch.int8: pygloo.glooDataType_t.glooInt8, torch.int32: pygloo.glooDataType_t.glooInt32, torch.int64: pygloo.glooDataType_t.glooInt64, torch.long: pygloo.glooDataType_t.glooInt64, # FLOAT types torch.half: pygloo.glooDataType_t.glooFloat16, torch.float: pygloo.glooDataType_t.glooFloat32, torch.float16: pygloo.glooDataType_t.glooFloat16, torch.float32: pygloo.glooDataType_t.glooFloat32, torch.float64: pygloo.glooDataType_t.glooFloat64, torch.double: pygloo.glooDataType_t.glooFloat64, } TORCH_NUMPY_DTYPE_MAP = { # INT types torch.int: numpy.int32, torch.uint8: numpy.uint8, torch.int8: numpy.int8, torch.int32: numpy.int32, torch.int64: numpy.int64, torch.long: numpy.int64, # FLOAT types torch.half: numpy.half, torch.float: numpy.float32, torch.float16: numpy.float16, torch.float32: numpy.float32, torch.float64: numpy.float64, } def create_gloo_context(rank, world_size): """Create a GLOO context using GLOO APIs. Args: rank: the rank of this process. world_size: the number of processes of this collective group. Returns: context (pygloo.Context): a GLOO context. """ context = pygloo.rendezvous.Context(rank, world_size) return context def get_gloo_reduce_op(reduce_op): """Map the reduce op to GLOO reduce op type. Args: reduce_op: ReduceOp Enum (SUM/PRODUCT/MIN/MAX). Returns: (pygloo.ReduceOp): the mapped GLOO reduce op. """ if reduce_op not in GLOO_REDUCE_OP_MAP: raise RuntimeError("Gloo does not support reduce op: '{}'.".format(reduce_op)) return GLOO_REDUCE_OP_MAP[reduce_op] def get_gloo_tensor_dtype(tensor): """Return the corresponded GLOO dtype given a tensor.""" if isinstance(tensor, numpy.ndarray): return NUMPY_GLOO_DTYPE_MAP[tensor.dtype.type] if torch_available(): if isinstance(tensor, torch.Tensor): if not tensor.is_cuda: return TORCH_GLOO_DTYPE_MAP[tensor.dtype] else: raise ValueError( "Expect torch CPU tensor. Got {}.".format(tensor.device) ) raise ValueError("Unsupported tensor type. Got: {}.".format(type(tensor))) def get_numpy_tensor_dtype(tensor): """Return the corresponded Cupy dtype given a tensor.""" if isinstance(tensor, numpy.ndarray): return tensor.dtype.type if torch_available(): if isinstance(tensor, torch.Tensor): return TORCH_NUMPY_DTYPE_MAP[tensor.dtype] raise ValueError( "Unsupported tensor type. Got: {}. Supported " "CPU tensor types are: torch.Tensor, " "numpy.ndarray.".format(type(tensor)) ) def get_tensor_ptr(tensor): """Return the pointer to the underlying memory storage of a tensor.""" if isinstance(tensor, numpy.ndarray): return tensor.ctypes.data if torch_available(): if isinstance(tensor, torch.Tensor): if tensor.is_cuda: raise RuntimeError( "Torch tensor must be on CPU when using GLOO collectives." ) return tensor.data_ptr() raise ValueError( "Unsupported tensor type. Got: {}. Supported " "CPU tensor types are: torch.Tensor, " "numpy.ndarray.".format(type(tensor)) ) def get_tensor_n_elements(tensor): """Return the number of elements in a tensor.""" if isinstance(tensor, numpy.ndarray): return tensor.size if torch_available(): if isinstance(tensor, torch.Tensor): return torch.numel(tensor) raise ValueError("Unsupported tensor type. Got: {}.".format(type(tensor))) def get_gloo_store_path(store_name): from ray._private.utils import get_ray_temp_dir store_path = f"{get_ray_temp_dir()}_collective/gloo/{store_name}" return store_path def get_tensor_device(tensor): if isinstance(tensor, numpy.ndarray): return "cpu" elif torch_available() and isinstance(tensor, torch.Tensor): if not tensor.is_cuda: return "cpu" else: return "cuda" else: raise RuntimeError("Unrecognized tensor type: '{}'.".format(type(tensor))) def get_tensor_shape(tensor): """Return the shape of the tensor as a list.""" if isinstance(tensor, numpy.ndarray): return list(tensor.shape) if torch_available(): if isinstance(tensor, torch.Tensor): return list(tensor.size()) raise ValueError( "Unsupported tensor type. Got: {}. Supported " "CPU tensor types are: torch.Tensor, " "numpy.ndarray.".format(type(tensor)) ) def copy_tensor(dst_tensor, src_tensor): """Copy the content from src_tensor to dst_tensor. Args: dst_tensor: the tensor to copy from. src_tensor: the tensor to copy to. Returns: None """ copied = True if isinstance(dst_tensor, numpy.ndarray) and isinstance(src_tensor, numpy.ndarray): numpy.copyto(dst_tensor, src_tensor) elif torch_available(): if isinstance(dst_tensor, torch.Tensor) and isinstance( src_tensor, torch.Tensor ): dst_tensor.copy_(src_tensor) elif isinstance(dst_tensor, torch.Tensor) and isinstance( src_tensor, numpy.ndarray ): t = torch.Tensor(src_tensor) dst_tensor.copy_(t) elif isinstance(dst_tensor, numpy.ndarray) and isinstance( src_tensor, torch.Tensor ): t = src_tensor.numpy() numpy.copyto(dst_tensor, t) else: copied = False else: copied = False if not copied: raise ValueError( "Unsupported tensor type. Got: {} and {}. Supported " "CPU tensor types are: torch.Tensor, numpy.ndarray.".format( type(dst_tensor), type(src_tensor) ) ) # Note(Hao): this requires Ray >= 1.2.0, # otherwise _QueueActor is an actor class. class glooQueue(_QueueActor): def index(self, group_name): try: return self.queue._queue.index(group_name) except ValueError: return -1 @ray.remote(num_cpus=0) class SignalActor: def __init__(self, world_size): self.ready_events = [asyncio.Event() for _ in range(world_size)] self.world_size = world_size def send(self, rank, clear=False): self.ready_events[rank].set() if clear: self.ready_events[rank].clear() async def wait(self, should_wait=True): if should_wait: for i in range(self.world_size): await self.ready_events[i].wait() # The custom store which is implementated in Ray internal kv storage, helping # to store the rank meta information when setting up the gloo collective group. class RayInternalKvStore: def __init__(self, group_name: str): self._group_name = group_name self._job_id = ray.get_runtime_context().job_id gcs_address = ray._private.worker._global_node.gcs_address self._gcs_client = GcsClient(address=gcs_address, nums_reconnect_retry=10) internal_kv._initialize_internal_kv(self._gcs_client) def set(self, key: str, data: bytes) -> bool: key = self.__concat_key_with_prefixes(key) ret = internal_kv._internal_kv_put(key, data) return ret def get(self, key: str) -> bytes: key = self.__concat_key_with_prefixes(key) ret = internal_kv._internal_kv_get(key) return ret def delete(self, key: str) -> int: key = self.__concat_key_with_prefixes(key) ret = internal_kv._internal_kv_del(key) return ret def del_keys(self, keys: List[str]) -> List[int]: results = [] for key in keys: results.append(self.delete(key)) return results def wait(self, keys: List[str]): while True: all_exist = True for key in keys: key = self.__concat_key_with_prefixes(key) result = internal_kv._internal_kv_exists(key) if not result: all_exist = False break if all_exist: return True time.sleep(1) def __concat_key_with_prefixes(self, original_key): """Concat the necessary prefixes and key for isolation purpose for different jobs and different groups.""" return f"{self._job_id.hex()}-{self._group_name}-{original_key}"
apache-2.0
yyjiang/scikit-learn
examples/ensemble/plot_forest_iris.py
332
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
giorgiop/scikit-learn
examples/applications/plot_prediction_latency.py
83
11395
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <eustache@diemert.fr> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR from sklearn.utils import shuffle def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[[i], :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) random_seed = 13 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=n_train, random_state=random_seed) X_train, y_train = shuffle(X_train, y_train, random_state=random_seed) X_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) X_test = X_scaler.transform(X_test) y_scaler = StandardScaler() y_train = y_scaler.fit_transform(y_train[:, None])[:, 0] y_test = y_scaler.transform(y_test[:, None])[:, 0] gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[[0]]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
theoryno3/scikit-learn
examples/manifold/plot_lle_digits.py
180
8510
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing LDA projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = lda.LDA(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
ZRiddle/BoostARoota
Dev_Testing/FS_Brute_Force.py
1
7786
#Starting with a 0/1 classification task import numpy as np import pandas as pd from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from boruta import BorutaPy from random import randint import os os.chdir('/home/chase.dehan/source/DataScience/Tools/Academic/Variable Selection') ######################################################################################## # # Preprocessing # ######################################################################################## #Bring in data and split into X and Y lsvt = pd.read_csv("LSVT_VR.csv") # Data came from here: https://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation X = lsvt[lsvt.columns[1:lsvt.shape[1]]] Y = lsvt[lsvt.columns[0]] - 1 #The next step would be doing an initial ranking and split out of the variables, #BUT, we will skip that for now #Split into a test/train seed = 1228 test_size = 0.33 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) ######################################################################################## # # Running the model - ALL DATA # ######################################################################################## # fit model no training data model = XGBClassifier() model.fit(X_train, y_train) # make predictions for test data y_pred = model.predict(X_test) predictions = [round(value) for value in y_pred] # evaluate predictions accuracy = accuracy_score(y_test, predictions) print("Accuracy: %.2f%%" % (accuracy * 100.0)) ######################################################################################## # # Run with Boruta # ######################################################################################## # define random forest classifier, with utilising all cores and # sampling in proportion to y labels rf = RandomForestClassifier(n_jobs=-1, class_weight='auto', max_depth=5) # define Boruta feature selection method feat_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=1) # find all relevant features feat_selector.fit(X_train.values, y_train.values) # call transform() on X to filter it down to selected features X_train_filter = feat_selector.transform(X_train.values) X_test_filter = feat_selector.transform(X_test.values) # fit model to training data model = XGBClassifier() model.fit(X_train_filter, y_train) # make predictions for test data y_pred = model.predict(X_test_filter) boruta_pred = [round(value) for value in y_pred] # evaluate predictions boruta_acc = accuracy_score(y_test, boruta_pred) #Compare Boruta to all_features print("Boruta Accuracy: %.2f%%" % (boruta_acc * 100.0)) print("All Feature Accuracy: %.2f%%" % (accuracy * 100.0)) #Boruta outperforms using 26 variables versus 310 in all features #Performs pretty well ######################################################################################## # # First phase - Create random subsets of variables and run through a model # ######################################################################################## ncol = X_train.shape[1] #Generate random samples of variables var_list = [] num_iterations = 100 for i in np.arange(num_iterations): num_vars = randint(10,50) #Should hardcode the max size to scale with the dataset var_list.append( np.random.choice(ncol, num_vars, replace=False) ) #Then evaluate the performance of each model: model = XGBClassifier() #Split out the train/test from the above, because I created a validation X_train2, X_test2, y_train2, y_test2 = train_test_split(X_train, y_train, test_size=test_size, random_state=seed) #Declare empty dataframe to be filled eval_results = pd.DataFrame(index=np.arange(num_iterations), columns=np.insert(X_train2.columns.values, 0, ["Iteration", "Accuracy"]) ) #declare an empty list to place output of each into for i in np.arange(num_iterations): these_vars = list(X_train2.columns[var_list[i]]) X_train_filter = X_train2[these_vars] X_test_filter = X_test2[these_vars] #Fit and make predictions off the data model.fit(X_train_filter, y_train2) predictions = [round(value) for value in model.predict(X_test_filter)] acc_score = accuracy_score(y_test2, predictions) #Set the values of the scores and place into a larger var_scores = [] for j in np.arange(ncol): if X_train2.columns[j] not in these_vars: value = -1 else: value_index = these_vars.index(X_train2.columns[j]) value = model.feature_importances_[value_index] var_scores.append(value) eval_results.loc[i] = np.insert(var_scores, 0, [i, acc_score]) eval_results = eval_results.sort("Accuracy") #Ok, I now have results for each of the models #The timing of running through these models is pretty fast, much faster than 100 iterations on Boruta #Just going to run the model on the top model from eval_results a = list(eval_results.tail(11).ix[:, "Iteration"] ) top_values = [int(x) for x in a] #top_values = [120, 373, 225, 807, 121] preds = pd.DataFrame() for i in top_values: these_vars = list(X_train.columns[var_list[i]]) X_train_filter = X_train[these_vars] X_test_filter = X_test[these_vars] model.fit(X_train_filter, y_train) predictions = [round(value) for value in model.predict(X_test_filter)] preds.insert(0, i, predictions) preds.insert(0, "combined", np.where(preds.sum(1) >= 6, 1, 0)) ensemble_brute_acc = accuracy_score(y_test, preds["combined"]) #Then, just taking the top model these_vars = list(X_train.columns[var_list[top_values[4]]]) X_train_filter = X_train[these_vars] X_test_filter = X_test[these_vars] model.fit(X_train_filter, y_train) predictions = [round(value) for value in model.predict(X_test_filter)] brute_force_acc = accuracy_score(y_test, predictions) print("Brute Force Accuracy: %.2f%%" % (brute_force_acc * 100.0)) print("Boruta Accuracy: %.2f%%" % (boruta_acc * 100.0)) print("All Feature Accuracy: %.2f%%" % (accuracy * 100.0)) print("Ensemble Brute Accuracy: %.2f%%" % (ensemble_brute_acc * 100.0)) #I now know that the brute force approach can outperform Boruta, but it is an expensive process #And could take an immense amount of time to force through it, especially on large datasets ######################################################################################## # # Second Phase - Determine which variables are important # ######################################################################################## #This should follow some sort of optimization process, where the algo automatically selects variables #Want to rank the models for each iteration #And rank the variables according to relative scalse #Variable rankings from highest value to lowest # High ranking in high scoring models # High ranking with low scores # Low on most, but high in at least 1, or in top model(s) #Looking for non linear interactions # Low ranking in high scoring models # Low or no ranking in only poor models #So, how do we move towards the objective? #Look at the relative scores - how many 0 values are there? #Importances will add up to 1 #Should I normalize for num variables? #Take average of the scores #Find places where two variables together are above their averages #These variables should probably be tested together #Make some new combinations: # Make it probabilistic # What combinations are most likely to yield higher performance? # Add these points and recalculate the probabilities # Repeat
mit
cbentivoglio/neurolearn_clone
build/lib/nltools/analysis.py
2
25878
''' NeuroLearn Analysis Tools ========================= These tools provide the ability to quickly run machine-learning analyses on imaging data Author: Luke Chang License: MIT ''' # ToDo # 1) add roc functionality for classification # 2) add thresholding functionality # 3) add bootstrapping functionality # 4) add tests # 5) add within subject checks and plots # 6) Plot probabilities import os import importlib import nibabel as nib import sklearn from sklearn.pipeline import Pipeline from nilearn.input_data import NiftiMasker import pandas as pd import numpy as np from nilearn.plotting import plot_stat_map import seaborn as sns import matplotlib.pyplot as plt from nltools.plotting import dist_from_hyperplane_plot, scatterplot, probability_plot, roc_plot from nltools.stats import pearson from scipy.stats import norm, binom_test from sklearn.metrics import auc # Paths resource_dir = os.path.join(os.path.dirname(__file__),'resources') class Predict: def __init__(self, data, Y, subject_id = None, algorithm=None, cv_dict=None, mask=None, output_dir='.', **kwargs): """ Initialize Predict. Args: data: nibabel data instance Y: vector of training labels subject_id: vector of labels corresponding to each subject algorithm: Algorithm to use for prediction. Must be one of 'svm', 'svr', 'linear', 'logistic', 'lasso', 'ridge', 'ridgeClassifier','randomforest', or 'randomforestClassifier' cv_dict: Type of cross_validation to use. A dictionary of {'kfold',5} or {'loso':subject_id}. mask: binary nibabel mask output_dir: Directory to use for writing all outputs **kwargs: Additional keyword arguments to pass to the prediction algorithm """ self.output_dir = output_dir if subject_id is not None: self.subject_id = subject_id if mask is not None: if type(mask) is not nib.nifti1.Nifti1Image: raise ValueError("mask is not a nibabel instance") self.mask = mask else: self.mask = nib.load(os.path.join(resource_dir,'MNI152_T1_2mm_brain_mask_dil.nii.gz')) if type(data) is not nib.nifti1.Nifti1Image: raise ValueError("data is not a nibabel instance") self.nifti_masker = NiftiMasker(mask_img=mask) self.data = self.nifti_masker.fit_transform(data) if self.data.shape[0]!= len(Y): raise ValueError("Y does not match the correct size of data") self.Y = Y if algorithm is not None: self.set_algorithm(algorithm, **kwargs) if cv_dict is not None: self.set_cv(cv_dict) def predict(self, algorithm=None, cv_dict=None, save_images=True, save_output=True, save_plot = True, **kwargs): """ Run prediction Args: algorithm: Algorithm to use for prediction. Must be one of 'svm', 'svr', 'linear', 'logistic', 'lasso', 'ridge', 'ridgeClassifier','randomforest', or 'randomforestClassifier' cv_dict: Type of cross_validation to use. A dictionary of {'kfold',5} or {'loso':subject_id}. save_images: Boolean indicating whether or not to save images to file. save_output: Boolean indicating whether or not to save prediction output to file. save_plot: Boolean indicating whether or not to create plots. **kwargs: Additional keyword arguments to pass to the prediction algorithm """ if algorithm is not None: self.set_algorithm(algorithm, **kwargs) if self.algorithm is None: raise ValueError("Make sure you specify an 'algorithm' to use.") # Overall Fit for weight map predicter = self.predicter predicter.fit(self.data, self.Y) self.yfit = predicter.predict(self.data) # will be overwritten if xvalidating if save_images: self._save_image(predicter) # Cross-Validation Fit if cv_dict is not None: self.set_cv(cv_dict) if hasattr(self,'cv'): predicter_cv = self.predicter if self.prediction_type is 'classification': if self.algorithm not in ['svm','ridgeClassifier','ridgeClassifierCV']: self.prob = np.zeros(len(self.Y)) else: xval_dist_from_hyperplane = np.zeros(len(self.Y)) if self.algorithm is 'svm' and self.predicter.probability: self.prob = np.zeros(len(self.Y)) for train, test in self.cv: predicter_cv.fit(self.data[train], self.Y[train]) self.yfit[test] = predicter_cv.predict(self.data[test]) if self.prediction_type is 'classification': if self.algorithm not in ['svm','ridgeClassifier','ridgeClassifierCV']: self.prob[test] = predicter_cv.predict_proba(self.data[test]) else: xval_dist_from_hyperplane[test] = predicter_cv.decision_function(self.data[test]) if self.algorithm is 'svm' and self.predicter.probability: self.prob[test] = predicter_cv.predict_proba(self.data[test]) if save_output: self.stats_output = pd.DataFrame({ 'SubID' : self.subject_id, 'Y' : self.Y, 'yfit' : self.yfit}) if self.prediction_type is 'classification': if self.algorithm not in ['svm','ridgeClassifier','ridgeClassifierCV']: self.stats_output['Probability'] = self.prob else: self.stats_output['xval_dist_from_hyperplane']=xval_dist_from_hyperplane if self.algorithm is 'svm' and self.predicter.probability: self.stats_output['Probability'] = self.prob self._save_stats_output() if save_plot: self._save_plot(predicter_cv) if self.prediction_type is 'classification': self.mcr = np.mean(self.yfit==self.Y) print 'overall CV accuracy: %.2f' % self.mcr elif self.prediction_type is 'prediction': self.rmse = np.sqrt(np.mean((self.yfit-self.Y)**2)) self.r = np.corrcoef(self.Y,self.yfit)[0,1] print 'overall Root Mean Squared Error: %.2f' % self.rmse print 'overall Correlation: %.2f' % self.r def set_algorithm(self, algorithm, **kwargs): """ Set the algorithm to use in subsequent prediction analyses. Args: algorithm: The prediction algorithm to use. Either a string or an (uninitialized) scikit-learn prediction object. If string, must be one of 'svm','svr', linear', 'logistic','lasso','lassopcr','lassoCV','ridge','ridgeCV','ridgeClassifier', 'randomforest', or 'randomforestClassifier' kwargs: Additional keyword arguments to pass onto the scikit-learn clustering object. """ self.algorithm = algorithm def load_class(import_string): class_data = import_string.split(".") module_path = '.'.join(class_data[:-1]) class_str = class_data[-1] module = importlib.import_module(module_path) return getattr(module, class_str) algs_classify = { 'svm':'sklearn.svm.SVC', 'logistic':'sklearn.linear_model.LogisticRegression', 'ridgeClassifier':'sklearn.linear_model.RidgeClassifier', 'ridgeClassifierCV':'sklearn.linear_model.RidgeClassifierCV', 'randomforestClassifier':'sklearn.ensemble.RandomForestClassifier' } algs_predict = { 'svr':'sklearn.svm.SVR', 'linear':'sklearn.linear_model.LinearRegression', 'lasso':'sklearn.linear_model.Lasso', 'lassoCV':'sklearn.linear_model.LassoCV', 'ridge':'sklearn.linear_model.Ridge', 'ridgeCV':'sklearn.linear_model.RidgeCV', 'randomforest':'sklearn.ensemble.RandomForest' } if algorithm in algs_classify.keys(): self.prediction_type = 'classification' alg = load_class(algs_classify[algorithm]) self.predicter = alg(**kwargs) elif algorithm in algs_predict: self.prediction_type = 'prediction' alg = load_class(algs_predict[algorithm]) self.predicter = alg(**kwargs) elif algorithm is 'lassopcr': self.prediction_type = 'prediction' from sklearn.linear_model import Lasso from sklearn.decomposition import PCA self._lasso = Lasso() self._pca = PCA() self.predicter = Pipeline(steps=[('pca', self._pca), ('lasso', self._lasso)]) elif algorithm is 'pcr': self.prediction_type = 'prediction' from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA self._regress = LinearRegression() self._pca = PCA() self.predicter = Pipeline(steps=[('pca', self._pca), ('regress', self._regress)]) else: raise ValueError("""Invalid prediction/classification algorithm name. Valid options are 'svm','svr', 'linear', 'logistic', 'lasso', 'lassopcr', 'lassoCV','ridge','ridgeCV','ridgeClassifier', 'randomforest', or 'randomforestClassifier'.""") def set_cv(self, cv_dict): """ Set the CV algorithm to use in subsequent prediction analyses. Args: cv_dict: Type of cross_validation to use. A dictionary of {'kfold',5} or {'loso':subject_id}. """ if type(cv_dict) is dict: if cv_dict.keys()[0] is 'kfolds': from sklearn.cross_validation import StratifiedKFold self.cv = StratifiedKFold(self.Y, n_folds=cv_dict.values()[0]) elif cv_dict.keys()[0] is 'loso': from sklearn.cross_validation import LeaveOneLabelOut self.cv = LeaveOneLabelOut(labels=cv_dict.values()[0]) else: raise ValueError("Make sure you specify a dictionary of {'kfold',5} or {'loso':subject_id}.") else: raise ValueError("Make sure 'cv_dict' is a dictionary.") def _save_image(self, predicter): """ Write out weight map to Nifti image. Args: predicter: predicter instance Returns: predicter_weightmap.nii.gz: Will output a nifti image of weightmap """ if not os.path.isdir(self.output_dir): os.makedirs(self.output_dir) if self.algorithm is 'lassopcr': coef = np.dot(self._pca.components_.T,self._lasso.coef_) coef_img = self.nifti_masker.inverse_transform(np.transpose(coef)) elif self.algorithm is 'pcr': coef = np.dot(self._pca.components_.T,self._regress.coef_) coef_img = self.nifti_masker.inverse_transform(np.transpose(coef)) else: coef_img = self.nifti_masker.inverse_transform(predicter.coef_.squeeze()) nib.save(coef_img, os.path.join(self.output_dir, self.algorithm + '_weightmap.nii.gz')) def _save_stats_output(self): """ Write stats output to csv file. Args: stats_output: a pandas file with prediction output Returns: predicter_stats_output.csv: Will output a csv file of stats output """ if not os.path.isdir(self.output_dir): os.makedirs(self.output_dir) self.stats_output.to_csv(os.path.join(self.output_dir, self.algorithm + '_Stats_Output.csv')) def _save_plot(self, predicter): """ Save Plots. Args: predicter: predicter instance Returns: predicter_weightmap_montage.png: Will output a montage of axial slices of weightmap predicter_prediction.png: Will output a plot of prediction """ if not os.path.isdir(self.output_dir): os.makedirs(self.output_dir) if self.algorithm is 'lassopcr': coef = np.dot(self._pca.components_.T,self._lasso.coef_) coef_img = self.nifti_masker.inverse_transform(np.transpose(coef)) elif self.algorithm is 'pcr': coef = np.dot(self._pca.components_.T,self._regress.coef_) coef_img = self.nifti_masker.inverse_transform(np.transpose(coef)) else: coef_img = self.nifti_masker.inverse_transform(predicter.coef_) overlay_img = nib.load(os.path.join(resource_dir,'MNI152_T1_2mm_brain.nii.gz')) fig1 = plot_stat_map(coef_img, overlay_img, title=self.algorithm + " weights", cut_coords=range(-40, 40, 10), display_mode='z') fig1.savefig(os.path.join(self.output_dir, self.algorithm + '_weightmap_axial.png')) if self.prediction_type == 'classification': if self.algorithm not in ['svm','ridgeClassifier','ridgeClassifierCV']: fig2 = probability_plot(self.stats_output) fig2.savefig(os.path.join(self.output_dir, self.algorithm + '_prob_plot.png')) else: fig2 = dist_from_hyperplane_plot(self.stats_output) fig2.savefig(os.path.join(self.output_dir, self.algorithm + '_xVal_Distance_from_Hyperplane.png')) if self.algorithm is 'svm' and self.predicter.probability: fig3 = probability_plot(self.stats_output) fig3.savefig(os.path.join(self.output_dir, self.algorithm + '_prob_plot.png')) elif self.prediction_type == 'prediction': fig2 = scatterplot(self.stats_output) fig2.savefig(os.path.join(self.output_dir, self.algorithm + '_scatterplot.png')) def apply_mask(data=None, weight_map=None, mask=None, method='dot_product', save_output=False, output_dir='.'): """ Apply Nifti weight map to Nifti Images. Args: data: nibabel instance of data to be applied weight_map: nibabel instance of weight map mask: binary nibabel mask method: type of pattern expression (e.g,. 'dot_product','correlation') save_output: Boolean indicating whether or not to save output to csv file. output_dir: Directory to use for writing all outputs **kwargs: Additional parameters to pass Returns: pexp: Outputs a vector of pattern expression values """ if mask is not None: if type(mask) is not nib.nifti1.Nifti1Image: raise ValueError("Mask is not a nibabel instance") else: mask = nib.load(os.path.join(resource_dir,'MNI152_T1_2mm_brain_mask_dil.nii.gz')) if type(data) is not nib.nifti1.Nifti1Image: raise ValueError("Data is not a nibabel instance") nifti_masker = NiftiMasker(mask_img=mask) data_masked = nifti_masker.fit_transform(data) if type(weight_map) is not nib.nifti1.Nifti1Image: raise ValueError("Weight_map is not a nibabel instance") weight_map_masked = nifti_masker.fit_transform(weight_map) # Calculate pattern expression if method is 'dot_product': pexp = np.dot(data_masked,np.transpose(weight_map_masked)).squeeze() elif method is 'correlation': pexp = pearson(data_masked,weight_map_masked) if save_output: np.savetxt(os.path.join(output_dir,"Pattern_Expression_" + method + ".csv"), pexp, delimiter=",") return pexp class Roc: def __init__(self, input_values=None, binary_outcome=None, threshold_type='optimal_overall', forced_choice=False, **kwargs): """ Initialize Roc instance. Object-Oriented version based on Tor Wager's Matlab roc_plot.m function Args: input_values: nibabel data instance binary_outcome: vector of training labels threshold_type: ['optimal_overall', 'optimal_balanced','minimum_sdt_bias'] **kwargs: Additional keyword arguments to pass to the prediction algorithm """ if len(input_values) != len(binary_outcome): raise ValueError("Data Problem: input_value and binary_outcome are different lengths.") if not any(binary_outcome): raise ValueError("Data Problem: binary_outcome may not be boolean") thr_type = ['optimal_overall', 'optimal_balanced','minimum_sdt_bias'] if threshold_type not in thr_type: raise ValueError("threshold_type must be ['optimal_overall', 'optimal_balanced','minimum_sdt_bias']") self.input_values = input_values self.binary_outcome = binary_outcome self.threshold_type = threshold_type self.forced_choice=forced_choice def calculate(self, input_values=None, binary_outcome=None, criterion_values=None, threshold_type='optimal_overall', forced_choice=False, balanced_acc=False): """ Calculate Receiver Operating Characteristic plot (ROC) for single-interval classification. Args: input_values: nibabel data instance binary_outcome: vector of training labels criterion_values: (optional) criterion values for calculating fpr & tpr threshold_type: ['optimal_overall', 'optimal_balanced','minimum_sdt_bias'] forced_choice: within-subject forced classification (bool). Data must be stacked on top of each other (e.g., [1 1 1 0 0 0]). balanced_acc: balanced accuracy for single-interval classification (bool) **kwargs: Additional keyword arguments to pass to the prediction algorithm """ if input_values is not None: self.input_values = input_values if binary_outcome is not None: self.binary_outcome = binary_outcome # Create Criterion Values if criterion_values is not None: self.criterion_values = criterion_values else: self.criterion_values = np.linspace(min(self.input_values), max(self.input_values), num=50*len(self.binary_outcome)) if (forced_choice) | (self.forced_choice): self.forced_choice=True mn_scores = (self.input_values[self.binary_outcome] + self.input_values[self.binary_outcome])/2 self.input_values[self.binary_outcome] = self.input_values[self.binary_outcome] - mn_scores; self.input_values[~self.binary_outcome] = self.input_values[~self.binary_outcome] - mn_scores; self.class_thr = 0; # Calculate true positive and false positive rate self.tpr = np.zeros(self.criterion_values.shape) self.fpr = np.zeros(self.criterion_values.shape) for i,x in enumerate(self.criterion_values): wh = self.input_values >= x self.tpr[i] = float(sum(wh[self.binary_outcome]))/float(sum(self.binary_outcome)) self.fpr[i] = float(sum(wh[~self.binary_outcome]))/float(sum(~self.binary_outcome)) self.n_true = float(sum(self.binary_outcome)) self.n_false = float(sum(~self.binary_outcome)) # Calculate Area Under the Curve # fix for AUC = 1 if no overlap - code not working (tpr_unique and fpr_unique can be different lengths) # fpr_unique = np.unique(self.fpr) # tpr_unique = np.unique(self.tpr) # if any((fpr_unique == 0) & (tpr_unique == 1)): # self.auc = 1 # Fix for AUC = 1 if no overlap; # else: # self.auc = auc(self.fpr, self.tpr) # Use sklearn auc otherwise self.auc = auc(self.fpr, self.tpr) # Use sklearn auc # Get criterion threshold if not self.forced_choice: self.threshold_type = threshold_type if threshold_type is 'optimal_balanced': mn = (tpr+fpr)/2 self.class_thr = self.criterion_values[np.argmax(mn)] elif threshold_type is 'optimal_overall': n_corr_t = self.tpr*self.n_true n_corr_f = (1-self.fpr)*self.n_false sm = (n_corr_t+n_corr_f) self.class_thr = self.criterion_values[np.argmax(sm)] elif threshold_type is 'minimum_sdt_bias': # Calculate MacMillan and Creelman 2005 Response Bias (c_bias) c_bias = ( norm.ppf(np.maximum(.0001, np.minimum(0.9999, self.tpr))) + norm.ppf(np.maximum(.0001, np.minimum(0.9999, self.fpr))) ) / float(2) self.class_thr = self.criterion_values[np.argmin(abs(c_bias))] # Calculate output self.false_positive = (self.input_values >= self.class_thr) & (~self.binary_outcome) self.false_negative = (self.input_values < self.class_thr) & (self.binary_outcome) self.misclass = (self.false_negative) | (self.false_positive) self.true_positive = (self.binary_outcome) & (~self.misclass) self.true_negative = (~self.binary_outcome) & (~self.misclass) self.sensitivity = sum(self.input_values[self.binary_outcome] >= self.class_thr)/self.n_true self.specificity = 1 - sum(self.input_values[~self.binary_outcome] >= self.class_thr)/self.n_false self.ppv = float(sum(self.true_positive))/(float(sum(self.true_positive)) + float(sum(self.false_positive))) if self.forced_choice: self.true_positive = self.true_positive[self.binary_outcome] self.true_negative = self.true_negative[~self.binary_outcome] self.false_negative = self.false_negative[self.binary_outcome] self.false_positive = self.false_positive[~self.binary_outcome] self.misclass = (self.false_positive) | (self.false_negative) # Calculate Accuracy if balanced_acc: self.accuracy = np.mean([self.sensitivity,self.specificity]) #See Brodersen, Ong, Stephan, Buhmann (2010) else: self.accuracy = 1 - np.mean(self.misclass) # Calculate p-Value using binomial test (can add hierarchical version of binomial test) self.n = len(self.misclass) self.accuracy_p = binom_test(int(sum(~self.misclass)), self.n, p=.5) self.accuracy_se = np.sqrt(float(np.mean(~self.misclass)) * (float(np.mean(~self.misclass))) / self.n) def plot(self, plot_method = 'gaussian'): """ Create ROC Plot Create a specific kind of ROC curve plot, based on input values along a continuous distribution and a binary outcome variable (logical). Args: plot_method: type of plot ['gaussian','observed'] binary_outcome: vector of training labels **kwargs: Additional keyword arguments to pass to the prediction algorithm """ self.calculate() # Calculate ROC parameters if plot_method is 'gaussian': if self.forced_choice: diff_scores = self.input_values[self.binary_outcome] - self.input_values[~self.binary_outcome] mn_diff = np.mean(diff_scores) d = mn_diff / np.std(diff_scores) pooled_sd = np.std(diff_scores) / np.sqrt(2); d_a_model = mn_diff / pooled_sd x = np.arange(-3,3,.1) tpr_smooth = 1 - norm.cdf(x, d, 1) fpr_smooth = 1 - norm.cdf(x, -d, 1) else: mn_true = np.mean(self.input_values[self.binary_outcome]) mn_false = np.mean(self.input_values[~self.binary_outcome]) var_true = np.var(self.input_values[self.binary_outcome]) var_false = np.var(self.input_values[~self.binary_outcome]) pooled_sd = np.sqrt((var_true*(self.n_true-1))/(self.n_true + self.n_false - 2)) d = (mn_true-mn_false)/pooled_sd z_true = mn_true/pooled_sd z_false = mn_false/pooled_sd x = np.arange(z_false-3,z_true+3,.1) tpr_smooth = 1-(norm.cdf(x, z_true,1)) fpr_smooth = 1-(norm.cdf(x, z_false,1)) roc_plot(fpr_smooth,tpr_smooth) elif plot_method is 'observed': roc_plot(self.fpr, self.tpr) else: raise ValueError("plot_method must be 'gaussian' or 'observed'") def summary(self): """ Display a formatted summary of ROC analysis. """ print("------------------------") print(".:ROC Analysis Summary:.") print("------------------------") print("{:20s}".format("Accuracy:") + "{:.2f}".format(self.accuracy)) print("{:20s}".format("Accuracy SE:") + "{:.2f}".format(self.accuracy_se)) print("{:20s}".format("Accuracy p-value:") + "{:.2f}".format(self.accuracy_p)) print("{:20s}".format("Sensitivity:") + "{:.2f}".format(self.sensitivity)) print("{:20s}".format("Specificity:") + "{:.2f}".format(self.specificity)) print("{:20s}".format("AUC:") + "{:.2f}".format(self.auc)) print("{:20s}".format("PPV:") + "{:.2f}".format(self.ppv)) print("------------------------")
mit
glennq/scikit-learn
sklearn/linear_model/ridge.py
13
51357
""" Ridge regression """ # Author: Mathieu Blondel <mathieu@mblondel.org> # Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com> # Fabian Pedregosa <fabian@fseoane.net> # Michael Eickenberg <michael.eickenberg@nsup.org> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel, _rescale_data from .sag import sag_solver from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils.extmath import row_norms from ..utils import check_X_y from ..utils import check_array from ..utils import check_consistent_length from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..model_selection import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter) coefs[i] = info[0] n_iter[i] = info[2] return coefs, n_iter def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0, random_state=None, return_n_iter=False, return_intercept=False): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is not None and solver='auto', the solver will be set to 'cholesky'. .. versionadded:: 0.17 solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. However, only 'sag' supports sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in 'sag' solver. return_n_iter : boolean, default False If True, the method also returns `n_iter`, the actual number of iteration performed by the solver. .. versionadded:: 0.17 return_intercept : boolean, default False If True and if X is sparse, the method also returns the intercept, and the solver is automatically changed to 'sag'. This is only a temporary fix for fitting the intercept with sparse data. For dense data, use sklearn.linear_model._preprocess_data before your regression. .. versionadded:: 0.17 Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). n_iter : int, optional The actual number of iteration performed by the solver. Only returned if `return_n_iter` is True. intercept : float or array, shape = [n_targets] The intercept of the model. Only returned if `return_intercept` is True and if X is a scipy sparse array. Notes ----- This function won't compute the intercept. """ if return_intercept and sparse.issparse(X) and solver != 'sag': if solver != 'auto': warnings.warn("In Ridge, only 'sag' solver can currently fit the " "intercept when X is sparse. Solver has been " "automatically changed into 'sag'.") solver = 'sag' # SAG needs X and y columns to be C-contiguous and np.float64 if solver == 'sag': X = check_array(X, accept_sparse=['csr'], dtype=np.float64, order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='F') else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) y = check_array(y, dtype='numeric', ensure_2d=False) check_consistent_length(X, y) n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") if solver != 'sag': # SAG supports sample_weight directly. For other solvers, # we implement sample_weight via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag'): raise ValueError('Solver %s not understood' % solver) n_iter = None if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == 'lsqr': coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' elif solver == 'sag': # precompute max_squared_sum for all targets max_squared_sum = row_norms(X, squared=True).max() coef = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype=np.int32) intercept = np.zeros((y.shape[1], )) for i, (alpha_i, target) in enumerate(zip(alpha, y.T)): init = {'coef': np.zeros((n_features + int(return_intercept), 1))} coef_, n_iter_, _ = sag_solver( X, target.ravel(), sample_weight, 'squared', alpha_i, max_iter, tol, verbose, random_state, False, max_squared_sum, init) if return_intercept: coef[i] = coef_[:-1] intercept[i] = coef_[-1] else: coef[i] = coef_ n_iter[i] = n_iter_ if intercept.shape[0] == 1: intercept = intercept[0] coef = np.asarray(coef) if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() if return_n_iter and return_intercept: return coef, n_iter, intercept elif return_intercept: return coef, intercept elif return_n_iter: return coef, n_iter else: return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver self.random_state = random_state def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) # temporary fix for fitting the intercept with sparse data using 'sag' if sparse.issparse(X) and self.fit_intercept: self.coef_, self.n_iter_, self.intercept_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True, return_intercept=True) self.intercept_ += y_offset else: self.coef_, self.n_iter_ = ridge_regression( X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver, random_state=self.random_state, return_n_iter=True, return_intercept=False) self._set_intercept(X_offset, y_offset, X_scale) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like}, shape (n_targets) Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. For 'sparse_cg' and 'lsqr' solvers, the default value is determined by scipy.sparse.linalg. For 'sag' solver, the default value is 1000. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is often faster than other solvers when both n_samples and n_features are large. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. All last four solvers support both dense and sparse data. However, only 'sag' supports sparse input when `fit_intercept` is True. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in 'sag' solver. .. versionadded:: 0.17 *random_state* to support Stochastic Average Gradient. Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. .. versionadded:: 0.17 See also -------- RidgeClassifier, RidgeCV, :class:`sklearn.kernel_ridge.KernelRidge` Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto", random_state=None): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest but may not be available in old scipy versions. It also uses an iterative procedure. - 'sag' uses a Stochastic Average Gradient descent. It also uses an iterative procedure, and is faster than other solvers when both n_samples and n_features are large. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float Precision of the solution. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used in 'sag' solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. n_iter_ : array or None, shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None. See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto", random_state=None): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver, random_state=random_state) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. .. versionadded:: 0.17 *sample_weight* support to Classifier. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) else: # we don't (yet) support multi-label classification in Ridge raise ValueError( "%s doesn't support multi-label classification" % ( self.__class__.__name__)) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y, centered_kernel=True): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) # the following emulates an additional constant regressor # corresponding to fit_intercept=True # but this is done only when the features have been centered if centered_kernel: K += np.ones_like(K) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors_and_values_helper(self, alpha, y, v, Q, QT_y): """Helper function to avoid code duplication between self._errors and self._values. Notes ----- We don't construct matrix G, instead compute action on y & diagonal. """ w = 1. / (v + alpha) constant_column = np.var(Q, 0) < 1.e-12 # detect constant columns w[constant_column] = 0 # cancel the regularization for the intercept w[v == 0] = 0 c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return G_diag, c def _errors(self, alpha, y, v, Q, QT_y): G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y) return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): G_diag, c = self._errors_and_values_helper(alpha, y, v, Q, QT_y) return y - (c / G_diag), c def _pre_compute_svd(self, X, y, centered_kernel=True): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") if centered_kernel: X = np.hstack((X, np.ones((X.shape[0], 1)))) # to emulate fit_intercept=True situation, add a column on ones # Note that by centering, the other columns are orthogonal to that one U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_and_values_svd_helper(self, alpha, y, v, U, UT_y): """Helper function to avoid code duplication between self._errors_svd and self._values_svd. """ constant_column = np.var(U, 0) < 1.e-12 # detect columns colinear to ones w = ((v + alpha) ** -1) - (alpha ** -1) w[constant_column] = - (alpha ** -1) # cancel the regularization for the intercept c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return G_diag, c def _errors_svd(self, alpha, y, v, U, UT_y): G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y) return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): G_diag, c = self._errors_and_values_svd_helper(alpha, y, v, U, UT_y) return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float64, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) if sample_weight is not None: X, y = _rescale_data(X, y, sample_weight) centered_kernel = not sparse.issparse(X) and self.fit_intercept v, Q, QT_y = _pre_compute(X, y, centered_kernel) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): if error: out, c = _errors(alpha, y, v, Q, QT_y) else: out, c = _values(alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_offset, y_offset, X_scale) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv, scoring=self.scoring) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used, else, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
sshleifer/object_detection_kitti
differential_privacy/dp_sgd/dp_mnist/dp_mnist.py
15
21114
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example differentially private trainer and evaluator for MNIST. """ from __future__ import division import json import os import sys import time import numpy as np import tensorflow as tf from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer from differential_privacy.dp_sgd.dp_optimizer import dp_pca from differential_privacy.dp_sgd.dp_optimizer import sanitizer from differential_privacy.dp_sgd.dp_optimizer import utils from differential_privacy.privacy_accountant.tf import accountant # parameters for the training tf.flags.DEFINE_integer("batch_size", 600, "The training batch size.") tf.flags.DEFINE_integer("batches_per_lot", 1, "Number of batches per lot.") # Together, batch_size and batches_per_lot determine lot_size. tf.flags.DEFINE_integer("num_training_steps", 50000, "The number of training steps." "This counts number of lots.") tf.flags.DEFINE_bool("randomize", True, "If true, randomize the input data; otherwise use a fixed " "seed and non-randomized input.") tf.flags.DEFINE_bool("freeze_bottom_layers", False, "If true, only train on the logit layer.") tf.flags.DEFINE_bool("save_mistakes", False, "If true, save the mistakes made during testing.") tf.flags.DEFINE_float("lr", 0.05, "start learning rate") tf.flags.DEFINE_float("end_lr", 0.05, "end learning rate") tf.flags.DEFINE_float("lr_saturate_epochs", 0, "learning rate saturate epochs; set to 0 for a constant " "learning rate of --lr.") # For searching parameters tf.flags.DEFINE_integer("projection_dimensions", 60, "PCA projection dimensions, or 0 for no projection.") tf.flags.DEFINE_integer("num_hidden_layers", 1, "Number of hidden layers in the network") tf.flags.DEFINE_integer("hidden_layer_num_units", 1000, "Number of units per hidden layer") tf.flags.DEFINE_float("default_gradient_l2norm_bound", 4.0, "norm clipping") tf.flags.DEFINE_integer("num_conv_layers", 0, "Number of convolutional layers to use.") tf.flags.DEFINE_string("training_data_path", "/tmp/mnist/mnist_train.tfrecord", "Location of the training data.") tf.flags.DEFINE_string("eval_data_path", "/tmp/mnist/mnist_test.tfrecord", "Location of the eval data.") tf.flags.DEFINE_integer("eval_steps", 10, "Evaluate the model every eval_steps") # Parameters for privacy spending. We allow linearly varying eps during # training. tf.flags.DEFINE_string("accountant_type", "Moments", "Moments, Amortized.") # Flags that control privacy spending during training. tf.flags.DEFINE_float("eps", 1.0, "Start privacy spending for one epoch of training, " "used if accountant_type is Amortized.") tf.flags.DEFINE_float("end_eps", 1.0, "End privacy spending for one epoch of training, " "used if accountant_type is Amortized.") tf.flags.DEFINE_float("eps_saturate_epochs", 0, "Stop varying epsilon after eps_saturate_epochs. Set to " "0 for constant eps of --eps. " "Used if accountant_type is Amortized.") tf.flags.DEFINE_float("delta", 1e-5, "Privacy spending for training. Constant through " "training, used if accountant_type is Amortized.") tf.flags.DEFINE_float("sigma", 4.0, "Noise sigma, used only if accountant_type is Moments") # Flags that control privacy spending for the pca projection # (only used if --projection_dimensions > 0). tf.flags.DEFINE_float("pca_eps", 0.5, "Privacy spending for PCA, used if accountant_type is " "Amortized.") tf.flags.DEFINE_float("pca_delta", 0.005, "Privacy spending for PCA, used if accountant_type is " "Amortized.") tf.flags.DEFINE_float("pca_sigma", 7.0, "Noise sigma for PCA, used if accountant_type is Moments") tf.flags.DEFINE_string("target_eps", "0.125,0.25,0.5,1,2,4,8", "Log the privacy loss for the target epsilon's. Only " "used when accountant_type is Moments.") tf.flags.DEFINE_float("target_delta", 1e-5, "Maximum delta for --terminate_based_on_privacy.") tf.flags.DEFINE_bool("terminate_based_on_privacy", False, "Stop training if privacy spent exceeds " "(max(--target_eps), --target_delta), even " "if --num_training_steps have not yet been completed.") tf.flags.DEFINE_string("save_path", "/tmp/mnist_dir", "Directory for saving model outputs.") FLAGS = tf.flags.FLAGS NUM_TRAINING_IMAGES = 60000 NUM_TESTING_IMAGES = 10000 IMAGE_SIZE = 28 def MnistInput(mnist_data_file, batch_size, randomize): """Create operations to read the MNIST input file. Args: mnist_data_file: Path of a file containing the MNIST images to process. batch_size: size of the mini batches to generate. randomize: If true, randomize the dataset. Returns: images: A tensor with the formatted image data. shape [batch_size, 28*28] labels: A tensor with the labels for each image. shape [batch_size] """ file_queue = tf.train.string_input_producer([mnist_data_file]) reader = tf.TFRecordReader() _, value = reader.read(file_queue) example = tf.parse_single_example( value, features={"image/encoded": tf.FixedLenFeature(shape=(), dtype=tf.string), "image/class/label": tf.FixedLenFeature([1], tf.int64)}) image = tf.cast(tf.image.decode_png(example["image/encoded"], channels=1), tf.float32) image = tf.reshape(image, [IMAGE_SIZE * IMAGE_SIZE]) image /= 255 label = tf.cast(example["image/class/label"], dtype=tf.int32) label = tf.reshape(label, []) if randomize: images, labels = tf.train.shuffle_batch( [image, label], batch_size=batch_size, capacity=(batch_size * 100), min_after_dequeue=(batch_size * 10)) else: images, labels = tf.train.batch([image, label], batch_size=batch_size) return images, labels def Eval(mnist_data_file, network_parameters, num_testing_images, randomize, load_path, save_mistakes=False): """Evaluate MNIST for a number of steps. Args: mnist_data_file: Path of a file containing the MNIST images to process. network_parameters: parameters for defining and training the network. num_testing_images: the number of images we will evaluate on. randomize: if false, randomize; otherwise, read the testing images sequentially. load_path: path where to load trained parameters from. save_mistakes: save the mistakes if True. Returns: The evaluation accuracy as a float. """ batch_size = 100 # Like for training, we need a session for executing the TensorFlow graph. with tf.Graph().as_default(), tf.Session() as sess: # Create the basic Mnist model. images, labels = MnistInput(mnist_data_file, batch_size, randomize) logits, _, _ = utils.BuildNetwork(images, network_parameters) softmax = tf.nn.softmax(logits) # Load the variables. ckpt_state = tf.train.get_checkpoint_state(load_path) if not (ckpt_state and ckpt_state.model_checkpoint_path): raise ValueError("No model checkpoint to eval at %s\n" % load_path) saver = tf.train.Saver() saver.restore(sess, ckpt_state.model_checkpoint_path) coord = tf.train.Coordinator() _ = tf.train.start_queue_runners(sess=sess, coord=coord) total_examples = 0 correct_predictions = 0 image_index = 0 mistakes = [] for _ in xrange((num_testing_images + batch_size - 1) // batch_size): predictions, label_values = sess.run([softmax, labels]) # Count how many were predicted correctly. for prediction, label_value in zip(predictions, label_values): total_examples += 1 if np.argmax(prediction) == label_value: correct_predictions += 1 elif save_mistakes: mistakes.append({"index": image_index, "label": label_value, "pred": np.argmax(prediction)}) image_index += 1 return (correct_predictions / total_examples, mistakes if save_mistakes else None) def Train(mnist_train_file, mnist_test_file, network_parameters, num_steps, save_path, eval_steps=0): """Train MNIST for a number of steps. Args: mnist_train_file: path of MNIST train data file. mnist_test_file: path of MNIST test data file. network_parameters: parameters for defining and training the network. num_steps: number of steps to run. Here steps = lots save_path: path where to save trained parameters. eval_steps: evaluate the model every eval_steps. Returns: the result after the final training step. Raises: ValueError: if the accountant_type is not supported. """ batch_size = FLAGS.batch_size params = {"accountant_type": FLAGS.accountant_type, "task_id": 0, "batch_size": FLAGS.batch_size, "projection_dimensions": FLAGS.projection_dimensions, "default_gradient_l2norm_bound": network_parameters.default_gradient_l2norm_bound, "num_hidden_layers": FLAGS.num_hidden_layers, "hidden_layer_num_units": FLAGS.hidden_layer_num_units, "num_examples": NUM_TRAINING_IMAGES, "learning_rate": FLAGS.lr, "end_learning_rate": FLAGS.end_lr, "learning_rate_saturate_epochs": FLAGS.lr_saturate_epochs } # Log different privacy parameters dependent on the accountant type. if FLAGS.accountant_type == "Amortized": params.update({"flag_eps": FLAGS.eps, "flag_delta": FLAGS.delta, "flag_pca_eps": FLAGS.pca_eps, "flag_pca_delta": FLAGS.pca_delta, }) elif FLAGS.accountant_type == "Moments": params.update({"sigma": FLAGS.sigma, "pca_sigma": FLAGS.pca_sigma, }) with tf.Graph().as_default(), tf.Session() as sess, tf.device('/cpu:0'): # Create the basic Mnist model. images, labels = MnistInput(mnist_train_file, batch_size, FLAGS.randomize) logits, projection, training_params = utils.BuildNetwork( images, network_parameters) cost = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=tf.one_hot(labels, 10)) # The actual cost is the average across the examples. cost = tf.reduce_sum(cost, [0]) / batch_size if FLAGS.accountant_type == "Amortized": priv_accountant = accountant.AmortizedAccountant(NUM_TRAINING_IMAGES) sigma = None pca_sigma = None with_privacy = FLAGS.eps > 0 elif FLAGS.accountant_type == "Moments": priv_accountant = accountant.GaussianMomentsAccountant( NUM_TRAINING_IMAGES) sigma = FLAGS.sigma pca_sigma = FLAGS.pca_sigma with_privacy = FLAGS.sigma > 0 else: raise ValueError("Undefined accountant type, needs to be " "Amortized or Moments, but got %s" % FLAGS.accountant) # Note: Here and below, we scale down the l2norm_bound by # batch_size. This is because per_example_gradients computes the # gradient of the minibatch loss with respect to each individual # example, and the minibatch loss (for our model) is the *average* # loss over examples in the minibatch. Hence, the scale of the # per-example gradients goes like 1 / batch_size. gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer( priv_accountant, [network_parameters.default_gradient_l2norm_bound / batch_size, True]) for var in training_params: if "gradient_l2norm_bound" in training_params[var]: l2bound = training_params[var]["gradient_l2norm_bound"] / batch_size gaussian_sanitizer.set_option(var, sanitizer.ClipOption(l2bound, True)) lr = tf.placeholder(tf.float32) eps = tf.placeholder(tf.float32) delta = tf.placeholder(tf.float32) init_ops = [] if network_parameters.projection_type == "PCA": with tf.variable_scope("pca"): # Compute differentially private PCA. all_data, _ = MnistInput(mnist_train_file, NUM_TRAINING_IMAGES, False) pca_projection = dp_pca.ComputeDPPrincipalProjection( all_data, network_parameters.projection_dimensions, gaussian_sanitizer, [FLAGS.pca_eps, FLAGS.pca_delta], pca_sigma) assign_pca_proj = tf.assign(projection, pca_projection) init_ops.append(assign_pca_proj) # Add global_step global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="global_step") if with_privacy: gd_op = dp_optimizer.DPGradientDescentOptimizer( lr, [eps, delta], gaussian_sanitizer, sigma=sigma, batches_per_lot=FLAGS.batches_per_lot).minimize( cost, global_step=global_step) else: gd_op = tf.train.GradientDescentOptimizer(lr).minimize(cost) saver = tf.train.Saver() coord = tf.train.Coordinator() _ = tf.train.start_queue_runners(sess=sess, coord=coord) # We need to maintain the intialization sequence. for v in tf.trainable_variables(): sess.run(tf.variables_initializer([v])) sess.run(tf.global_variables_initializer()) sess.run(init_ops) results = [] start_time = time.time() prev_time = start_time filename = "results-0.json" log_path = os.path.join(save_path, filename) target_eps = [float(s) for s in FLAGS.target_eps.split(",")] if FLAGS.accountant_type == "Amortized": # Only matters if --terminate_based_on_privacy is true. target_eps = [max(target_eps)] max_target_eps = max(target_eps) lot_size = FLAGS.batches_per_lot * FLAGS.batch_size lots_per_epoch = NUM_TRAINING_IMAGES / lot_size for step in xrange(num_steps): epoch = step / lots_per_epoch curr_lr = utils.VaryRate(FLAGS.lr, FLAGS.end_lr, FLAGS.lr_saturate_epochs, epoch) curr_eps = utils.VaryRate(FLAGS.eps, FLAGS.end_eps, FLAGS.eps_saturate_epochs, epoch) for _ in xrange(FLAGS.batches_per_lot): _ = sess.run( [gd_op], feed_dict={lr: curr_lr, eps: curr_eps, delta: FLAGS.delta}) sys.stderr.write("step: %d\n" % step) # See if we should stop training due to exceeded privacy budget: should_terminate = False terminate_spent_eps_delta = None if with_privacy and FLAGS.terminate_based_on_privacy: terminate_spent_eps_delta = priv_accountant.get_privacy_spent( sess, target_eps=[max_target_eps])[0] # For the Moments accountant, we should always have # spent_eps == max_target_eps. if (terminate_spent_eps_delta.spent_delta > FLAGS.target_delta or terminate_spent_eps_delta.spent_eps > max_target_eps): should_terminate = True if (eval_steps > 0 and (step + 1) % eval_steps == 0) or should_terminate: if with_privacy: spent_eps_deltas = priv_accountant.get_privacy_spent( sess, target_eps=target_eps) else: spent_eps_deltas = [accountant.EpsDelta(0, 0)] for spent_eps, spent_delta in spent_eps_deltas: sys.stderr.write("spent privacy: eps %.4f delta %.5g\n" % ( spent_eps, spent_delta)) saver.save(sess, save_path=save_path + "/ckpt") train_accuracy, _ = Eval(mnist_train_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=True, load_path=save_path) sys.stderr.write("train_accuracy: %.2f\n" % train_accuracy) test_accuracy, mistakes = Eval(mnist_test_file, network_parameters, num_testing_images=NUM_TESTING_IMAGES, randomize=False, load_path=save_path, save_mistakes=FLAGS.save_mistakes) sys.stderr.write("eval_accuracy: %.2f\n" % test_accuracy) curr_time = time.time() elapsed_time = curr_time - prev_time prev_time = curr_time results.append({"step": step+1, # Number of lots trained so far. "elapsed_secs": elapsed_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "mistakes": mistakes}) loginfo = {"elapsed_secs": curr_time-start_time, "spent_eps_deltas": spent_eps_deltas, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "num_training_steps": step+1, # Steps so far. "mistakes": mistakes, "result_series": results} loginfo.update(params) if log_path: with tf.gfile.Open(log_path, "w") as f: json.dump(loginfo, f, indent=2) f.write("\n") f.close() if should_terminate: break def main(_): network_parameters = utils.NetworkParameters() # If the ASCII proto isn't specified, then construct a config protobuf based # on 3 flags. network_parameters.input_size = IMAGE_SIZE ** 2 network_parameters.default_gradient_l2norm_bound = ( FLAGS.default_gradient_l2norm_bound) if FLAGS.projection_dimensions > 0 and FLAGS.num_conv_layers > 0: raise ValueError("Currently you can't do PCA and have convolutions" "at the same time. Pick one") # could add support for PCA after convolutions. # Currently BuildNetwork can build the network with conv followed by # projection, but the PCA training works on data, rather than data run # through a few layers. Will need to init the convs before running the # PCA, and need to change the PCA subroutine to take a network and perhaps # allow for batched inputs, to handle larger datasets. if FLAGS.num_conv_layers > 0: conv = utils.ConvParameters() conv.name = "conv1" conv.in_channels = 1 conv.out_channels = 128 conv.num_outputs = 128 * 14 * 14 network_parameters.conv_parameters.append(conv) # defaults for the rest: 5x5,stride 1, relu, maxpool 2x2,stride 2. # insize 28x28, bias, stddev 0.1, non-trainable. if FLAGS.num_conv_layers > 1: conv = network_parameters.ConvParameters() conv.name = "conv2" conv.in_channels = 128 conv.out_channels = 128 conv.num_outputs = 128 * 7 * 7 conv.in_size = 14 # defaults for the rest: 5x5,stride 1, relu, maxpool 2x2,stride 2. # bias, stddev 0.1, non-trainable. network_parameters.conv_parameters.append(conv) if FLAGS.num_conv_layers > 2: raise ValueError("Currently --num_conv_layers must be 0,1 or 2." "Manually create a network_parameters proto for more.") if FLAGS.projection_dimensions > 0: network_parameters.projection_type = "PCA" network_parameters.projection_dimensions = FLAGS.projection_dimensions for i in xrange(FLAGS.num_hidden_layers): hidden = utils.LayerParameters() hidden.name = "hidden%d" % i hidden.num_units = FLAGS.hidden_layer_num_units hidden.relu = True hidden.with_bias = False hidden.trainable = not FLAGS.freeze_bottom_layers network_parameters.layer_parameters.append(hidden) logits = utils.LayerParameters() logits.name = "logits" logits.num_units = 10 logits.relu = False logits.with_bias = False network_parameters.layer_parameters.append(logits) Train(FLAGS.training_data_path, FLAGS.eval_data_path, network_parameters, FLAGS.num_training_steps, FLAGS.save_path, eval_steps=FLAGS.eval_steps) if __name__ == "__main__": tf.app.run()
apache-2.0
eranchetz/nupic
nupic/math/roc_utils.py
49
8308
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Utility functions to compute ROC (Receiver Operator Characteristic) curves and AUC (Area Under the Curve). The ROCCurve() and AreaUnderCurve() functions are based on the roc_curve() and auc() functions found in metrics.py module of scikit-learn (http://scikit-learn.org/stable/). Scikit-learn has a BSD license (3 clause). Following is the original license/credits statement from the top of the metrics.py file: # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # License: BSD Style. """ import numpy as np def ROCCurve(y_true, y_score): """compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Parameters ---------- y_true : array, shape = [n_samples] true binary labels y_score : array, shape = [n_samples] target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- fpr : array, shape = [>2] False Positive Rates tpr : array, shape = [>2] True Positive Rates thresholds : array, shape = [>2] Thresholds on y_score used to compute fpr and tpr Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) References ---------- http://en.wikipedia.org/wiki/Receiver_operating_characteristic """ y_true = np.ravel(y_true) classes = np.unique(y_true) # ROC only for binary classification if classes.shape[0] != 2: raise ValueError("ROC is defined for binary classification only") y_score = np.ravel(y_score) n_pos = float(np.sum(y_true == classes[1])) # nb of true positive n_neg = float(np.sum(y_true == classes[0])) # nb of true negative thresholds = np.unique(y_score) neg_value, pos_value = classes[0], classes[1] tpr = np.empty(thresholds.size, dtype=np.float) # True positive rate fpr = np.empty(thresholds.size, dtype=np.float) # False positive rate # Build tpr/fpr vector current_pos_count = current_neg_count = sum_pos = sum_neg = idx = 0 signal = np.c_[y_score, y_true] sorted_signal = signal[signal[:, 0].argsort(), :][::-1] last_score = sorted_signal[0][0] for score, value in sorted_signal: if score == last_score: if value == pos_value: current_pos_count += 1 else: current_neg_count += 1 else: tpr[idx] = (sum_pos + current_pos_count) / n_pos fpr[idx] = (sum_neg + current_neg_count) / n_neg sum_pos += current_pos_count sum_neg += current_neg_count current_pos_count = 1 if value == pos_value else 0 current_neg_count = 1 if value == neg_value else 0 idx += 1 last_score = score else: tpr[-1] = (sum_pos + current_pos_count) / n_pos fpr[-1] = (sum_neg + current_neg_count) / n_neg # hard decisions, add (0,0) if fpr.shape[0] == 2: fpr = np.array([0.0, fpr[0], fpr[1]]) tpr = np.array([0.0, tpr[0], tpr[1]]) # trivial decisions, add (0,0) and (1,1) elif fpr.shape[0] == 1: fpr = np.array([0.0, fpr[0], 1.0]) tpr = np.array([0.0, tpr[0], 1.0]) return fpr, tpr, thresholds def AreaUnderCurve(x, y): """Compute Area Under the Curve (AUC) using the trapezoidal rule Parameters ---------- x : array, shape = [n] x coordinates y : array, shape = [n] y coordinates Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred) >>> metrics.auc(fpr, tpr) 0.75 """ #x, y = check_arrays(x, y) if x.shape[0] != y.shape[0]: raise ValueError('x and y should have the same shape' ' to compute area under curve,' ' but x.shape = %s and y.shape = %s.' % (x.shape, y.shape)) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) # reorder the data points according to the x axis order = np.argsort(x) x = x[order] y = y[order] h = np.diff(x) area = np.sum(h * (y[1:] + y[:-1])) / 2.0 return area def _printNPArray(x, precision=2): format = "%%.%df" % (precision) for elem in x: print format % (elem), print def _test(): """ This is a toy example, to show the basic functionality: The dataset is: actual prediction ------------------------- 0 0.1 0 0.4 1 0.5 1 0.3 1 0.45 Some ROC terminology: A True Positive (TP) is when we predict TRUE and the actual value is 1. A False Positive (FP) is when we predict TRUE, but the actual value is 0. The True Positive Rate (TPR) is TP/P, where P is the total number of actual positives (3 in this example, the last 3 samples). The False Positive Rate (FPR) is FP/N, where N is the total number of actual negatives (2 in this example, the first 2 samples) Here are the classifications at various choices for the threshold. The prediction is TRUE if the predicted value is >= threshold and FALSE otherwise. actual pred 0.50 0.45 0.40 0.30 0.10 --------------------------------------------------------- 0 0.1 0 0 0 0 1 0 0.4 0 0 1 1 1 1 0.5 1 1 1 1 1 1 0.3 0 0 0 1 1 1 0.45 0 1 1 1 1 TruePos(TP) 1 2 2 3 3 FalsePos(FP) 0 0 1 1 2 TruePosRate(TPR) 1/3 2/3 2/3 3/3 3/3 FalsePosRate(FPR) 0/2 0/2 1/2 1/2 2/2 The ROC curve is a plot of FPR on the x-axis and TPR on the y-axis. Basically, one can pick any operating point along this curve to run, the operating point determined by which threshold you want to use. By changing the threshold, you tradeoff TP's for FPs. The more area under this curve, the better the classification algorithm is. The AreaUnderCurve() function can be used to compute the area under this curve. """ yTrue = np.array([0, 0, 1, 1, 1]) yScore = np.array([0.1, 0.4, 0.5, 0.3, 0.45]) (fpr, tpr, thresholds) = ROCCurve(yTrue, yScore) print "Actual: ", _printNPArray(yTrue) print "Predicted: ", _printNPArray(yScore) print print "Thresholds:", _printNPArray(thresholds[::-1]) print "FPR(x): ", _printNPArray(fpr) print "TPR(y): ", _printNPArray(tpr) print area = AreaUnderCurve(fpr, tpr) print "AUC: ", area if __name__=='__main__': _test()
agpl-3.0
stefrobb/namebench
nb_third_party/dns/rrset.py
215
5866
# Copyright (C) 2003-2007, 2009, 2010 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """DNS RRsets (an RRset is a named rdataset)""" import dns.name import dns.rdataset import dns.rdataclass import dns.renderer class RRset(dns.rdataset.Rdataset): """A DNS RRset (named rdataset). RRset inherits from Rdataset, and RRsets can be treated as Rdatasets in most cases. There are, however, a few notable exceptions. RRsets have different to_wire() and to_text() method arguments, reflecting the fact that RRsets always have an owner name. """ __slots__ = ['name', 'deleting'] def __init__(self, name, rdclass, rdtype, covers=dns.rdatatype.NONE, deleting=None): """Create a new RRset.""" super(RRset, self).__init__(rdclass, rdtype) self.name = name self.deleting = deleting def _clone(self): obj = super(RRset, self)._clone() obj.name = self.name obj.deleting = self.deleting return obj def __repr__(self): if self.covers == 0: ctext = '' else: ctext = '(' + dns.rdatatype.to_text(self.covers) + ')' if not self.deleting is None: dtext = ' delete=' + dns.rdataclass.to_text(self.deleting) else: dtext = '' return '<DNS ' + str(self.name) + ' ' + \ dns.rdataclass.to_text(self.rdclass) + ' ' + \ dns.rdatatype.to_text(self.rdtype) + ctext + dtext + ' RRset>' def __str__(self): return self.to_text() def __eq__(self, other): """Two RRsets are equal if they have the same name and the same rdataset @rtype: bool""" if not isinstance(other, RRset): return False if self.name != other.name: return False return super(RRset, self).__eq__(other) def match(self, name, rdclass, rdtype, covers, deleting=None): """Returns True if this rrset matches the specified class, type, covers, and deletion state.""" if not super(RRset, self).match(rdclass, rdtype, covers): return False if self.name != name or self.deleting != deleting: return False return True def to_text(self, origin=None, relativize=True, **kw): """Convert the RRset into DNS master file format. @see: L{dns.name.Name.choose_relativity} for more information on how I{origin} and I{relativize} determine the way names are emitted. Any additional keyword arguments are passed on to the rdata to_text() method. @param origin: The origin for relative names, or None. @type origin: dns.name.Name object @param relativize: True if names should names be relativized @type relativize: bool""" return super(RRset, self).to_text(self.name, origin, relativize, self.deleting, **kw) def to_wire(self, file, compress=None, origin=None, **kw): """Convert the RRset to wire format.""" return super(RRset, self).to_wire(self.name, file, compress, origin, self.deleting, **kw) def to_rdataset(self): """Convert an RRset into an Rdataset. @rtype: dns.rdataset.Rdataset object """ return dns.rdataset.from_rdata_list(self.ttl, list(self)) def from_text_list(name, ttl, rdclass, rdtype, text_rdatas): """Create an RRset with the specified name, TTL, class, and type, and with the specified list of rdatas in text format. @rtype: dns.rrset.RRset object """ if isinstance(name, (str, unicode)): name = dns.name.from_text(name, None) if isinstance(rdclass, str): rdclass = dns.rdataclass.from_text(rdclass) if isinstance(rdtype, str): rdtype = dns.rdatatype.from_text(rdtype) r = RRset(name, rdclass, rdtype) r.update_ttl(ttl) for t in text_rdatas: rd = dns.rdata.from_text(r.rdclass, r.rdtype, t) r.add(rd) return r def from_text(name, ttl, rdclass, rdtype, *text_rdatas): """Create an RRset with the specified name, TTL, class, and type and with the specified rdatas in text format. @rtype: dns.rrset.RRset object """ return from_text_list(name, ttl, rdclass, rdtype, text_rdatas) def from_rdata_list(name, ttl, rdatas): """Create an RRset with the specified name and TTL, and with the specified list of rdata objects. @rtype: dns.rrset.RRset object """ if isinstance(name, (str, unicode)): name = dns.name.from_text(name, None) if len(rdatas) == 0: raise ValueError("rdata list must not be empty") r = None for rd in rdatas: if r is None: r = RRset(name, rd.rdclass, rd.rdtype) r.update_ttl(ttl) first_time = False r.add(rd) return r def from_rdata(name, ttl, *rdatas): """Create an RRset with the specified name and TTL, and with the specified rdata objects. @rtype: dns.rrset.RRset object """ return from_rdata_list(name, ttl, rdatas)
apache-2.0
PatrickOReilly/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
164
2027
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LinearDiscriminantAnalysis(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() colors = ['navy', 'turquoise', 'darkorange'] lw = 2 for color, i, target_name in zip(colors, [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw, label=target_name) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('PCA of IRIS dataset') plt.figure() for color, i, target_name in zip(colors, [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=.8, color=color, label=target_name) plt.legend(loc='best', shadow=False, scatterpoints=1) plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
ray-project/ray
doc/source/ray-overview/doc_test/ray_train.py
1
1118
import torch import ray.train as train from ray.train.torch import TorchTrainer, TorchCheckpoint from ray.air import ScalingConfig, session def train_func(): # Setup model. model = torch.nn.Linear(1, 1) model = train.torch.prepare_model(model) loss_fn = torch.nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-2) # Setup data. input = torch.randn(1000, 1) labels = input * 2 dataset = torch.utils.data.TensorDataset(input, labels) dataloader = torch.utils.data.DataLoader(dataset, batch_size=32) dataloader = train.torch.prepare_data_loader(dataloader) # Train. for _ in range(5): for X, y in dataloader: pred = model(X) loss = loss_fn(pred, y) optimizer.zero_grad() loss.backward() optimizer.step() session.report({"loss": loss.item()}) session.report({}, checkpoint=TorchCheckpoint.from_model(model)) trainer = TorchTrainer(train_func, scaling_config=ScalingConfig(num_workers=4)) results = trainer.fit() print(results.metrics) print(results.checkpoint)
apache-2.0
ray-project/ray
python/ray/util/collective/tests/distributed_multigpu_tests/test_distributed_multigpu_allreduce.py
1
6660
"""Test the collective allreduice API on a distributed Ray cluster.""" import pytest import logging import cupy as cp import ray from ray.util.collective.types import ReduceOp from ray.util.collective.tests.util import create_collective_multigpu_workers logger = logging.getLogger(__name__) logger.setLevel("DEBUG") @pytest.mark.parametrize("group_name", ["default", "test", "123?34!"]) def test_allreduce_multigpu_different_name( ray_start_distributed_multigpu_2_nodes_4_gpus, group_name ): world_size = 2 num_gpu_per_worker = 2 actual_world_size = world_size * num_gpu_per_worker actors, _ = create_collective_multigpu_workers( num_workers=world_size, group_name=group_name ) results = ray.get([a.do_allreduce_multigpu.remote(group_name) for a in actors]) assert (results[0] == cp.ones((10,), dtype=cp.float32) * actual_world_size).all() assert (results[1] == cp.ones((10,), dtype=cp.float32) * actual_world_size).all() @pytest.mark.parametrize("array_size", [2, 2**5, 2**10, 2**15, 2**20]) def test_allreduce_multigpu_different_array_size( ray_start_distributed_multigpu_2_nodes_4_gpus, array_size ): world_size = 2 num_gpu_per_worker = 2 actual_world_size = world_size * num_gpu_per_worker actors, _ = create_collective_multigpu_workers(world_size) ray.get([a.set_buffer.remote(array_size) for a in actors]) results = ray.get([a.do_allreduce_multigpu.remote() for a in actors]) assert ( results[0] == cp.ones((array_size,), dtype=cp.float32) * actual_world_size ).all() assert ( results[1] == cp.ones((array_size,), dtype=cp.float32) * actual_world_size ).all() def test_allreduce_multigpu_destroy( ray_start_distributed_multigpu_2_nodes_4_gpus, backend="nccl", group_name="default" ): world_size = 2 num_gpu_per_worker = 2 actual_world_size = world_size * num_gpu_per_worker actors, _ = create_collective_multigpu_workers(world_size) results = ray.get([a.do_allreduce_multigpu.remote() for a in actors]) assert (results[0] == cp.ones((10,), dtype=cp.float32) * actual_world_size).all() assert (results[1] == cp.ones((10,), dtype=cp.float32) * actual_world_size).all() # destroy the group and try do work, should fail ray.get([a.destroy_group.remote() for a in actors]) with pytest.raises(RuntimeError): results = ray.get([a.do_allreduce_multigpu.remote() for a in actors]) # reinit the same group and all reduce ray.get( [ actor.init_group.remote(world_size, i, backend, group_name) for i, actor in enumerate(actors) ] ) results = ray.get([a.do_allreduce_multigpu.remote() for a in actors]) assert ( results[0] == cp.ones((10,), dtype=cp.float32) * actual_world_size * actual_world_size ).all() assert ( results[1] == cp.ones((10,), dtype=cp.float32) * actual_world_size * actual_world_size ).all() def test_allreduce_multigpu_multiple_group( ray_start_distributed_multigpu_2_nodes_4_gpus, backend="nccl", num_groups=5 ): world_size = 2 num_gpu_per_worker = 2 actual_world_size = world_size * num_gpu_per_worker actors, _ = create_collective_multigpu_workers(world_size) for group_name in range(1, num_groups): ray.get( [ actor.init_group.remote(world_size, i, backend, str(group_name)) for i, actor in enumerate(actors) ] ) for i in range(num_groups): group_name = "default" if i == 0 else str(i) results = ray.get([a.do_allreduce_multigpu.remote(group_name) for a in actors]) assert ( results[0] == cp.ones((10,), dtype=cp.float32) * (actual_world_size ** (i + 1)) ).all() def test_allreduce_multigpu_different_op(ray_start_distributed_multigpu_2_nodes_4_gpus): world_size = 2 actors, _ = create_collective_multigpu_workers(world_size) # check product ray.get(actors[0].set_buffer.remote([10], value0=2, value1=3)) ray.get(actors[1].set_buffer.remote([10], value0=4, value1=5)) results = ray.get( [a.do_allreduce_multigpu.remote(op=ReduceOp.PRODUCT) for a in actors] ) assert (results[0] == cp.ones((10,), dtype=cp.float32) * 120).all() assert (results[1] == cp.ones((10,), dtype=cp.float32) * 120).all() # check min ray.get(actors[0].set_buffer.remote([10], value0=2, value1=3)) ray.get(actors[1].set_buffer.remote([10], value0=4, value1=5)) results = ray.get([a.do_allreduce_multigpu.remote(op=ReduceOp.MIN) for a in actors]) assert (results[0] == cp.ones((10,), dtype=cp.float32) * 2).all() assert (results[1] == cp.ones((10,), dtype=cp.float32) * 2).all() # check max ray.get(actors[0].set_buffer.remote([10], value0=2, value1=3)) ray.get(actors[1].set_buffer.remote([10], value0=4, value1=5)) results = ray.get([a.do_allreduce_multigpu.remote(op=ReduceOp.MAX) for a in actors]) assert (results[0] == cp.ones((10,), dtype=cp.float32) * 5).all() assert (results[1] == cp.ones((10,), dtype=cp.float32) * 5).all() @pytest.mark.parametrize("dtype", [cp.uint8, cp.float16, cp.float32, cp.float64]) def test_allreduce_multigpu_different_dtype( ray_start_distributed_multigpu_2_nodes_4_gpus, dtype ): world_size = 2 num_gpu_per_worker = 2 actual_world_size = world_size * num_gpu_per_worker actors, _ = create_collective_multigpu_workers(world_size) ray.get([a.set_buffer.remote([10], dtype=dtype) for a in actors]) results = ray.get([a.do_allreduce_multigpu.remote() for a in actors]) assert (results[0] == cp.ones((10,), dtype=dtype) * actual_world_size).all() assert (results[1] == cp.ones((10,), dtype=dtype) * actual_world_size).all() def test_allreduce_torch_cupy(ray_start_distributed_multigpu_2_nodes_4_gpus): # import torch world_size = 2 actual_world_size = 4 actors, _ = create_collective_multigpu_workers(world_size) ray.get(actors[0].set_buffer.remote([10])) ray.get( actors[1].set_buffer.remote([10], tensor_type0="torch", tensor_type1="torch") ) results = ray.get([a.do_allreduce_multigpu.remote() for a in actors]) assert (results[0] == cp.ones((10,)) * actual_world_size).all() ray.get( actors[0].set_buffer.remote([10], tensor_type0="cupy", tensor_type1="torch") ) ray.get( actors[1].set_buffer.remote([10], tensor_type0="torch", tensor_type1="cupy") ) results = ray.get([a.do_allreduce_multigpu.remote() for a in actors]) assert (results[0] == cp.ones((10,)) * actual_world_size).all()
apache-2.0
ChampionZP/DeepLearningImplementations
DenseNet/run_cifar10.py
1
7187
from __future__ import print_function import os import time import json import argparse import densenet import numpy as np import keras.backend as K from keras.datasets import cifar10 from keras.optimizers import Adam from keras.utils import np_utils def run_cifar10(batch_size, nb_epoch, depth, nb_dense_block, nb_filter, growth_rate, dropout_rate, learning_rate, weight_decay, plot_architecture): """ Run CIFAR10 experiments :param batch_size: int -- batch size :param nb_epoch: int -- number of training epochs :param depth: int -- network depth :param nb_dense_block: int -- number of dense blocks :param nb_filter: int -- initial number of conv filter :param growth_rate: int -- number of new filters added by conv layers :param dropout_rate: float -- dropout rate :param learning_rate: float -- learning rate :param weight_decay: float -- weight decay :param plot_architecture: bool -- whether to plot network architecture """ ################### # Data processing # ################### # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = cifar10.load_data() nb_classes = len(np.unique(y_train)) img_dim = X_train.shape[1:] if K.image_dim_ordering() == "th": n_channels = X_train.shape[1] else: n_channels = X_train.shape[-1] # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) X_train = X_train.astype('float32') X_test = X_test.astype('float32') # Normalisation X = np.vstack((X_train, X_test)) # 2 cases depending on the image ordering if K.image_dim_ordering() == "th": for i in range(n_channels): mean = np.mean(X[:, i, :, :]) std = np.std(X[:, i, :, :]) X_train[:, i, :, :] = (X_train[:, i, :, :] - mean) / std X_test[:, i, :, :] = (X_test[:, i, :, :] - mean) / std elif K.image_dim_ordering() == "tf": for i in range(n_channels): mean = np.mean(X[:, :, :, i]) std = np.std(X[:, :, :, i]) X_train[:, :, :, i] = (X_train[:, :, :, i] - mean) / std X_test[:, :, :, i] = (X_test[:, :, :, i] - mean) / std ################### # Construct model # ################### model = densenet.DenseNet(nb_classes, img_dim, depth, nb_dense_block, growth_rate, nb_filter, dropout_rate=dropout_rate, weight_decay=weight_decay) # Model output model.summary() # Build optimizer opt = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=["accuracy"]) if plot_architecture: from keras.utils.visualize_util import plot plot(model, to_file='./figures/densenet_archi.png', show_shapes=True) #################### # Network training # #################### print("Training") list_train_loss = [] list_test_loss = [] list_learning_rate = [] for e in range(nb_epoch): if e == int(0.5 * nb_epoch): K.set_value(model.optimizer.lr, np.float32(learning_rate / 10.)) if e == int(0.75 * nb_epoch): K.set_value(model.optimizer.lr, np.float32(learning_rate / 100.)) split_size = batch_size num_splits = X_train.shape[0] / split_size arr_splits = np.array_split(np.arange(X_train.shape[0]), num_splits) l_train_loss = [] start = time.time() for batch_idx in arr_splits: X_batch, Y_batch = X_train[batch_idx], Y_train[batch_idx] train_logloss, train_acc = model.train_on_batch(X_batch, Y_batch) l_train_loss.append([train_logloss, train_acc]) test_logloss, test_acc = model.evaluate(X_test, Y_test, verbose=0, batch_size=64) list_train_loss.append(np.mean(np.array(l_train_loss), 0).tolist()) list_test_loss.append([test_logloss, test_acc]) list_learning_rate.append(float(K.get_value(model.optimizer.lr))) # to convert numpy array to json serializable print('Epoch %s/%s, Time: %s' % (e + 1, nb_epoch, time.time() - start)) d_log = {} d_log["batch_size"] = batch_size d_log["nb_epoch"] = nb_epoch d_log["optimizer"] = opt.get_config() d_log["train_loss"] = list_train_loss d_log["test_loss"] = list_test_loss d_log["learning_rate"] = list_learning_rate json_file = os.path.join('./log/experiment_log_cifar10.json') with open(json_file, 'w') as fp: json.dump(d_log, fp, indent=4, sort_keys=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run CIFAR10 experiment') parser.add_argument('--batch_size', default=64, type=int, help='Batch size') parser.add_argument('--nb_epoch', default=30, type=int, help='Number of epochs') parser.add_argument('--depth', type=int, default=7, help='Network depth') parser.add_argument('--nb_dense_block', type=int, default=1, help='Number of dense blocks') parser.add_argument('--nb_filter', type=int, default=16, help='Initial number of conv filters') parser.add_argument('--growth_rate', type=int, default=12, help='Number of new filters added by conv layers') parser.add_argument('--dropout_rate', type=float, default=0.2, help='Dropout rate') parser.add_argument('--learning_rate', type=float, default=1E-3, help='Learning rate') parser.add_argument('--weight_decay', type=float, default=1E-4, help='L2 regularization on weights') parser.add_argument('--plot_architecture', type=bool, default=False, help='Save a plot of the network architecture') args = parser.parse_args() print("Network configuration:") for name, value in parser.parse_args()._get_kwargs(): print(name, value) list_dir = ["./log", "./figures"] for d in list_dir: if not os.path.exists(d): os.makedirs(d) run_cifar10(args.batch_size, args.nb_epoch, args.depth, args.nb_dense_block, args.nb_filter, args.growth_rate, args.dropout_rate, args.learning_rate, args.weight_decay, args.plot_architecture)
mit
ray-project/ray
rllib/models/torch/modules/noisy_layer.py
1
3406
import numpy as np from ray.rllib.models.utils import get_activation_fn from ray.rllib.utils.framework import try_import_torch, TensorType torch, nn = try_import_torch() class NoisyLayer(nn.Module): r"""A Layer that adds learnable Noise to some previous layer's outputs. Consists of: - a common dense layer: y = w^{T}x + b - a noisy layer: y = (w + \epsilon_w*\sigma_w)^{T}x + (b+\epsilon_b*\sigma_b) , where \epsilon are random variables sampled from factorized normal distributions and \sigma are trainable variables which are expected to vanish along the training procedure. """ def __init__( self, in_size: int, out_size: int, sigma0: float, activation: str = "relu" ): """Initializes a NoisyLayer object. Args: in_size: Input size for Noisy Layer out_size: Output size for Noisy Layer sigma0: Initialization value for sigma_b (bias noise) activation: Non-linear activation for Noisy Layer """ super().__init__() self.in_size = in_size self.out_size = out_size self.sigma0 = sigma0 self.activation = get_activation_fn(activation, framework="torch") if self.activation is not None: self.activation = self.activation() sigma_w = nn.Parameter( torch.from_numpy( np.random.uniform( low=-1.0 / np.sqrt(float(self.in_size)), high=1.0 / np.sqrt(float(self.in_size)), size=[self.in_size, out_size], ) ).float() ) self.register_parameter("sigma_w", sigma_w) sigma_b = nn.Parameter( torch.from_numpy( np.full( shape=[out_size], fill_value=sigma0 / np.sqrt(float(self.in_size)) ) ).float() ) self.register_parameter("sigma_b", sigma_b) w = nn.Parameter( torch.from_numpy( np.full( shape=[self.in_size, self.out_size], fill_value=6 / np.sqrt(float(in_size) + float(out_size)), ) ).float() ) self.register_parameter("w", w) b = nn.Parameter(torch.from_numpy(np.zeros([out_size])).float()) self.register_parameter("b", b) def forward(self, inputs: TensorType) -> TensorType: epsilon_in = self._f_epsilon( torch.normal( mean=torch.zeros([self.in_size]), std=torch.ones([self.in_size]) ).to(inputs.device) ) epsilon_out = self._f_epsilon( torch.normal( mean=torch.zeros([self.out_size]), std=torch.ones([self.out_size]) ).to(inputs.device) ) epsilon_w = torch.matmul( torch.unsqueeze(epsilon_in, -1), other=torch.unsqueeze(epsilon_out, 0) ) epsilon_b = epsilon_out action_activation = ( torch.matmul(inputs, self.w + self.sigma_w * epsilon_w) + self.b + self.sigma_b * epsilon_b ) if self.activation is not None: action_activation = self.activation(action_activation) return action_activation def _f_epsilon(self, x: TensorType) -> TensorType: return torch.sign(x) * torch.pow(torch.abs(x), 0.5)
apache-2.0
cainiaocome/scikit-learn
sklearn/lda.py
55
17706
""" Linear Discriminant Analysis (LDA) """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .base import BaseEstimator, TransformerMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .preprocessing import StandardScaler __all__ = ['LDA'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = sc.std_ * ledoit_wolf(X)[0] * sc.std_ # scale back elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LDA(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis (LDA). A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation in SVD solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.qda.QDA: Quadratic discriminant analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.lda import LDA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LDA() >>> clf.fit(X, y) LDA(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y, store_covariance=False, tol=1.0e-4): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) rank = np.sum(S > tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y, store_covariance=False, tol=1.0e-4): """Fit LDA model according to the given training data and parameters. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ if store_covariance: warnings.warn("'store_covariance' was moved to the __init__()" "method in version 0.16 and will be removed from" "fit() in version 0.18.", DeprecationWarning) else: store_covariance = self.store_covariance if tol != 1.0e-4: warnings.warn("'tol' was moved to __init__() method in version" " 0.16 and will be removed from fit() in 0.18", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = self.priors if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y, store_covariance=store_covariance, tol=tol) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) n_components = X.shape[1] if self.n_components is None \ else self.n_components return X_new[:, :n_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X))
bsd-3-clause
AllenDowney/ThinkBayes2
scripts/species.py
1
52932
"""This file contains code used in "Think Bayes", by Allen B. Downey, available from greenteapress.com Copyright 2012 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import matplotlib.pyplot as pyplot import thinkplot import numpy import csv import random import shelve import sys import time import thinkbayes2 import warnings warnings.simplefilter('error', RuntimeWarning) FORMATS = ['pdf', 'eps', 'png'] class Locker(object): """Encapsulates a shelf for storing key-value pairs.""" def __init__(self, shelf_file): self.shelf = shelve.open(shelf_file) def Close(self): """Closes the shelf. """ self.shelf.close() def Add(self, key, value): """Adds a key-value pair.""" self.shelf[str(key)] = value def Lookup(self, key): """Looks up a key.""" return self.shelf.get(str(key)) def Keys(self): """Returns an iterator of keys.""" return self.shelf.iterkeys() def Read(self): """Returns the contents of the shelf as a map.""" return dict(self.shelf) class Subject(object): """Represents a subject from the belly button study.""" def __init__(self, code): """ code: string ID species: sequence of (int count, string species) pairs """ self.code = code self.species = [] self.suite = None self.num_reads = None self.num_species = None self.total_reads = None self.total_species = None self.prev_unseen = None self.pmf_n = None self.pmf_q = None self.pmf_l = None def Add(self, species, count): """Add a species-count pair. It is up to the caller to ensure that species names are unique. species: string species/genus name count: int number of individuals """ self.species.append((count, species)) def Done(self, reverse=False, clean_param=0): """Called when we are done adding species counts. reverse: which order to sort in """ if clean_param: self.Clean(clean_param) self.species.sort(reverse=reverse) counts = self.GetCounts() self.num_species = len(counts) self.num_reads = sum(counts) def Clean(self, clean_param=50): """Identifies and removes bogus data. clean_param: parameter that controls the number of legit species """ def prob_bogus(k, r): """Compute the probability that a species is bogus.""" q = clean_param / r p = (1-q) ** k return p print(self.code, clean_param) counts = self.GetCounts() r = 1.0 * sum(counts) species_seq = [] for k, species in sorted(self.species): if random.random() < prob_bogus(k, r): continue species_seq.append((k, species)) self.species = species_seq def GetM(self): """Gets number of observed species.""" return len(self.species) def GetCounts(self): """Gets the list of species counts Should be in increasing order, if Sort() has been invoked. """ return [count for count, _ in self.species] def MakeCdf(self): """Makes a CDF of total prevalence vs rank.""" counts = self.GetCounts() counts.sort(reverse=True) cdf = thinkbayes2.Cdf(dict(enumerate(counts))) return cdf def GetNames(self): """Gets the names of the seen species.""" return [name for _, name in self.species] def PrintCounts(self): """Prints the counts and species names.""" for count, name in reversed(self.species): print(count, name) def GetSpecies(self, index): """Gets the count and name of the indicated species. Returns: count-species pair """ return self.species[index] def GetCdf(self): """Returns cumulative prevalence vs number of species. """ counts = self.GetCounts() items = enumerate(counts) cdf = thinkbayes2.Cdf(items) return cdf def GetPrevalences(self): """Returns a sequence of prevalences (normalized counts). """ counts = self.GetCounts() total = sum(counts) prevalences = numpy.array(counts, dtype=numpy.float) / total return prevalences def Process(self, low=None, high=500, conc=1, iters=100): """Computes the posterior distribution of n and the prevalences. Sets attribute: self.suite low: minimum number of species high: maximum number of species conc: concentration parameter iters: number of iterations to use in the estimator """ counts = self.GetCounts() m = len(counts) if low is None: low = max(m, 2) ns = range(low, high+1) #start = time.time() self.suite = Species5(ns, conc=conc, iters=iters) self.suite.Update(counts) #end = time.time() #print 'Processing time' end-start def MakePrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attributes pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads curves = self.RunSimulations(num_sims, add_reads) self.pmf_l = self.MakePredictive(curves) def MakeQuickPrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attribute: pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads pmf = thinkbayes2.Pmf() _, seen = self.GetSeenSpecies() for _ in range(num_sims): _, observations = self.GenerateObservations(add_reads) all_seen = seen.union(observations) l = len(all_seen) - len(seen) pmf.Incr(l) pmf.Normalize() self.pmf_l = pmf def DistL(self): """Returns the distribution of additional species, l. """ return self.pmf_l def MakeFigures(self): """Makes figures showing distribution of n and the prevalences.""" self.PlotDistN() self.PlotPrevalences() def PlotDistN(self): """Plots distribution of n.""" pmf = self.suite.DistN() print('90% CI for N:', pmf.CredibleInterval(90)) pmf.label = self.code thinkplot.Clf() thinkplot.PrePlot(num=1) thinkplot.Pmf(pmf) root = 'species-ndist-%s' % self.code thinkplot.Save(root=root, xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def PlotPrevalences(self, num=5): """Plots dist of prevalence for several species. num: how many species (starting with the highest prevalence) """ thinkplot.Clf() thinkplot.PrePlot(num=5) for rank in range(1, num+1): self.PlotPrevalence(rank) root = 'species-prev-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 1], ) def PlotPrevalence(self, rank=1, cdf_flag=True): """Plots dist of prevalence for one species. rank: rank order of the species to plot. cdf_flag: whether to plot the CDF """ # convert rank to index index = self.GetM() - rank _, mix = self.suite.DistOfPrevalence(index) count, _ = self.GetSpecies(index) mix.label = '%d (%d)' % (rank, count) print('90%% CI for prevalence of species %d:' % rank, end=' ') print(mix.CredibleInterval(90)) if cdf_flag: cdf = mix.MakeCdf() thinkplot.Cdf(cdf) else: thinkplot.Pmf(mix) def PlotMixture(self, rank=1): """Plots dist of prevalence for all n, and the mix. rank: rank order of the species to plot """ # convert rank to index index = self.GetM() - rank print(self.GetSpecies(index)) print(self.GetCounts()[index]) metapmf, mix = self.suite.DistOfPrevalence(index) thinkplot.Clf() for pmf in metapmf.Values(): thinkplot.Pmf(pmf, color='blue', alpha=0.2, linewidth=0.5) thinkplot.Pmf(mix, color='blue', alpha=0.9, linewidth=2) root = 'species-mix-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 0.3], legend=False) def GetSeenSpecies(self): """Makes a set of the names of seen species. Returns: number of species, set of string species names """ names = self.GetNames() m = len(names) seen = set(SpeciesGenerator(names, m)) return m, seen def GenerateObservations(self, num_reads): """Generates a series of random observations. num_reads: number of reads to generate Returns: number of species, sequence of string species names """ n, prevalences = self.suite.SamplePosterior() names = self.GetNames() name_iter = SpeciesGenerator(names, n) items = zip(name_iter, prevalences) cdf = thinkbayes2.Cdf(dict(items)) observations = cdf.Sample(num_reads) #for ob in observations: # print ob return n, observations def Resample(self, num_reads): """Choose a random subset of the data (without replacement). num_reads: number of reads in the subset """ t = [] for count, species in self.species: t.extend([species]*count) random.shuffle(t) reads = t[:num_reads] subject = Subject(self.code) hist = thinkbayes2.Hist(reads) for species, count in hist.Items(): subject.Add(species, count) subject.Done() return subject def Match(self, match): """Match up a rarefied subject with a complete subject. match: complete Subject Assigns attributes: total_reads: total_species: prev_unseen: """ self.total_reads = match.num_reads self.total_species = match.num_species # compute the prevalence of unseen species (at least approximately, # based on all species counts in match _, seen = self.GetSeenSpecies() seen_total = 0.0 unseen_total = 0.0 for count, species in match.species: if species in seen: seen_total += count else: unseen_total += count self.prev_unseen = unseen_total / (seen_total + unseen_total) def RunSimulation(self, num_reads, frac_flag=False, jitter=0.01): """Simulates additional observations and returns a rarefaction curve. k is the number of additional observations num_new is the number of new species seen num_reads: how many new reads to simulate frac_flag: whether to convert to fraction of species seen jitter: size of jitter added if frac_flag is true Returns: list of (k, num_new) pairs """ m, seen = self.GetSeenSpecies() n, observations = self.GenerateObservations(num_reads) curve = [] for i, obs in enumerate(observations): seen.add(obs) if frac_flag: frac_seen = len(seen) / float(n) frac_seen += random.uniform(-jitter, jitter) curve.append((i+1, frac_seen)) else: num_new = len(seen) - m curve.append((i+1, num_new)) return curve def RunSimulations(self, num_sims, num_reads, frac_flag=False): """Runs simulations and returns a list of curves. Each curve is a sequence of (k, num_new) pairs. num_sims: how many simulations to run num_reads: how many samples to generate in each simulation frac_flag: whether to convert num_new to fraction of total """ curves = [self.RunSimulation(num_reads, frac_flag) for _ in range(num_sims)] return curves def MakePredictive(self, curves): """Makes a predictive distribution of additional species. curves: list of (k, num_new) curves Returns: Pmf of num_new """ pred = thinkbayes2.Pmf(label=self.code) for curve in curves: _, last_num_new = curve[-1] pred.Incr(last_num_new) pred.Normalize() return pred def MakeConditionals(curves, ks): """Makes Cdfs of the distribution of num_new conditioned on k. curves: list of (k, num_new) curves ks: list of values of k Returns: list of Cdfs """ joint = MakeJointPredictive(curves) cdfs = [] for k in ks: pmf = joint.Conditional(1, 0, k) pmf.label = 'k=%d' % k cdf = pmf.MakeCdf() cdfs.append(cdf) print('90%% credible interval for %d' % k, end=' ') print(cdf.CredibleInterval(90)) return cdfs def MakeJointPredictive(curves): """Makes a joint distribution of k and num_new. curves: list of (k, num_new) curves Returns: joint Pmf of (k, num_new) """ joint = thinkbayes2.Joint() for curve in curves: for k, num_new in curve: joint.Incr((k, num_new)) joint.Normalize() return joint def MakeFracCdfs(curves, ks): """Makes Cdfs of the fraction of species seen. curves: list of (k, num_new) curves Returns: list of Cdfs """ d = {} for curve in curves: for k, frac in curve: if k in ks: d.setdefault(k, []).append(frac) cdfs = {} for k, fracs in d.items(): cdf = thinkbayes2.Cdf(fracs) cdfs[k] = cdf return cdfs def SpeciesGenerator(names, num): """Generates a series of names, starting with the given names. Additional names are 'unseen' plus a serial number. names: list of strings num: total number of species names to generate Returns: string iterator """ i = 0 for name in names: yield name i += 1 while i < num: yield 'unseen-%d' % i i += 1 def ReadRarefactedData(filename='journal.pone.0047712.s001.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from http://www.plosone.org/article/ info%3Adoi%2F10.1371%2Fjournal.pone.0047712#s4 filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) #_ = reader.next() _ = next(reader) subject = Subject('') subject_map = {} i = 0 for t in reader: code = t[0] if code != subject.code: # start a new subject subject = Subject(code) subject_map[code] = subject # append a number to the species names so they're unique species = t[1] species = '%s-%d' % (species, i) i += 1 count = int(t[2]) subject.Add(species, count) for code, subject in subject_map.items(): subject.Done(clean_param=clean_param) return subject_map def ReadCompleteDataset(filename='BBB_data_from_Rob.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from personal correspondence with Rob Dunn, received 2-7-13. Converted from xlsx to csv. filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) header = next(reader) header = next(reader) subject_codes = header[1:-1] subject_codes = ['B'+code for code in subject_codes] # create the subject map uber_subject = Subject('uber') subject_map = {} for code in subject_codes: subject_map[code] = Subject(code) # read lines i = 0 for t in reader: otu_code = t[0] if otu_code == '': continue # pull out a species name and give it a number otu_names = t[-1] taxons = otu_names.split(';') species = taxons[-1] species = '%s-%d' % (species, i) i += 1 counts = [int(x) for x in t[1:-1]] # print otu_code, species for code, count in zip(subject_codes, counts): if count > 0: subject_map[code].Add(species, count) uber_subject.Add(species, count) uber_subject.Done(clean_param=clean_param) for code, subject in subject_map.items(): subject.Done(clean_param=clean_param) return subject_map, uber_subject def JoinSubjects(): """Reads both datasets and computes their inner join. Finds all subjects that appear in both datasets. For subjects in the rarefacted dataset, looks up the total number of reads and stores it as total_reads. num_reads is normally 400. Returns: map from code to Subject """ # read the rarefacted dataset sampled_subjects = ReadRarefactedData() # read the complete dataset all_subjects, _ = ReadCompleteDataset() for code, subject in sampled_subjects.items(): if code in all_subjects: match = all_subjects[code] subject.Match(match) return sampled_subjects def JitterCurve(curve, dx=0.2, dy=0.3): """Adds random noise to the pairs in a curve. dx and dy control the amplitude of the noise in each dimension. """ curve = [(x+random.uniform(-dx, dx), y+random.uniform(-dy, dy)) for x, y in curve] return curve def OffsetCurve(curve, i, n, dx=0.3, dy=0.3): """Adds random noise to the pairs in a curve. i is the index of the curve n is the number of curves dx and dy control the amplitude of the noise in each dimension. """ xoff = -dx + 2 * dx * i / (n-1) yoff = -dy + 2 * dy * i / (n-1) curve = [(x+xoff, y+yoff) for x, y in curve] return curve def PlotCurves(curves, root='species-rare'): """Plots a set of curves. curves is a list of curves; each curve is a list of (x, y) pairs. """ thinkplot.Clf() color = '#225EA8' n = len(curves) for i, curve in enumerate(curves): curve = OffsetCurve(curve, i, n) xs, ys = zip(*curve) thinkplot.Plot(xs, ys, color=color, alpha=0.3, linewidth=0.5) thinkplot.Save(root=root, xlabel='# samples', ylabel='# species', formats=FORMATS, legend=False) def PlotConditionals(cdfs, root='species-cond'): """Plots cdfs of num_new conditioned on k. cdfs: list of Cdf root: string filename root """ thinkplot.Clf() thinkplot.PrePlot(num=len(cdfs)) thinkplot.Cdfs(cdfs) thinkplot.Save(root=root, xlabel='# new species', ylabel='Prob', formats=FORMATS) def PlotFracCdfs(cdfs, root='species-frac'): """Plots CDFs of the fraction of species seen. cdfs: map from k to CDF of fraction of species seen after k samples """ thinkplot.Clf() color = '#225EA8' for k, cdf in cdfs.items(): xs, ys = cdf.Render() ys = [1-y for y in ys] thinkplot.Plot(xs, ys, color=color, linewidth=1) x = 0.9 y = 1 - cdf.Prob(x) pyplot.text(x, y, str(k), fontsize=9, color=color, horizontalalignment='center', verticalalignment='center', bbox=dict(facecolor='white', edgecolor='none')) thinkplot.Save(root=root, xlabel='Fraction of species seen', ylabel='Probability', formats=FORMATS, legend=False) class Species(thinkbayes2.Suite): """Represents hypotheses about the number of species.""" def __init__(self, ns, conc=1, iters=1000): hypos = [thinkbayes2.Dirichlet(n, conc) for n in ns] thinkbayes2.Suite.__init__(self, hypos) self.iters = iters def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ # call Update in the parent class, which calls Likelihood thinkbayes2.Suite.Update(self, data) # update the next level of the hierarchy for hypo in self.Values(): hypo.Update(data) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo # draw sample Likelihoods from the hypothetical Dirichlet dist # and add them up like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of ways the observed species # might have been chosen from all species m = len(data) like *= thinkbayes2.BinomialCoef(dirichlet.n, m) return like def DistN(self): """Computes the distribution of n.""" pmf = thinkbayes2.Pmf() for hypo, prob in self.Items(): pmf.Set(hypo.n, prob) return pmf class Species2(object): """Represents hypotheses about the number of species. Combines two layers of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def __init__(self, ns, conc=1, iters=1000): self.ns = ns self.conc = conc self.probs = numpy.ones(len(ns), dtype=numpy.float) self.params = numpy.ones(self.ns[-1], dtype=numpy.float) * conc self.iters = iters self.num_reads = 0 self.m = 0 def Preload(self, data): """Change the initial parameters to fit the data better. Just an experiment. Doesn't work. """ m = len(data) singletons = data.count(1) num = m - singletons print(m, singletons, num) addend = numpy.ones(num, dtype=numpy.float) * 1 print(len(addend)) print(len(self.params[singletons:m])) self.params[singletons:m] += addend print('Preload', num) def Update(self, data): """Updates the distribution based on data. data: numpy array of counts """ self.num_reads += sum(data) like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() self.m = len(data) #self.params[:self.m] += data * self.conc self.params[:self.m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data for all values of n. Draws one sample from the distribution of prevalences. data: sequence of observed counts Returns: numpy array of m likelihoods """ gammas = numpy.random.gamma(self.params) m = len(data) row = gammas[:m] col = numpy.cumsum(gammas) log_likes = [] for n in self.ns: ps = row / col[n-1] terms = numpy.log(ps) * data log_like = terms.sum() log_likes.append(log_like) log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) coefs = [thinkbayes2.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes def DistN(self): """Computes the distribution of n. Returns: new Pmf object """ pmf = thinkbayes2.Pmf(dict(zip(self.ns, self.probs))) return pmf def RandomN(self): """Returns a random value of n.""" return self.DistN().Random() def DistQ(self, iters=100): """Computes the distribution of q based on distribution of n. Returns: pmf of q """ cdf_n = self.DistN().MakeCdf() sample_n = cdf_n.Sample(iters) pmf = thinkbayes2.Pmf() for n in sample_n: q = self.RandomQ(n) pmf.Incr(q) pmf.Normalize() return pmf def RandomQ(self, n): """Returns a random value of q. Based on n, self.num_reads and self.conc. n: number of species Returns: q """ # generate random prevalences dirichlet = thinkbayes2.Dirichlet(n, conc=self.conc) prevalences = dirichlet.Random() # generate a simulated sample pmf = thinkbayes2.Pmf(dict(enumerate(prevalences))) cdf = pmf.MakeCdf() sample = cdf.Sample(self.num_reads) seen = set(sample) # add up the prevalence of unseen species q = 0 for species, prev in enumerate(prevalences): if species not in seen: q += prev return q def MarginalBeta(self, n, index): """Computes the conditional distribution of the indicated species. n: conditional number of species index: which species Returns: Beta object representing a distribution of prevalence. """ alpha0 = self.params[:n].sum() alpha = self.params[index] return thinkbayes2.Beta(alpha, alpha0-alpha) def DistOfPrevalence(self, index): """Computes the distribution of prevalence for the indicated species. index: which species Returns: (metapmf, mix) where metapmf is a MetaPmf and mix is a Pmf """ metapmf = thinkbayes2.Pmf() for n, prob in zip(self.ns, self.probs): beta = self.MarginalBeta(n, index) pmf = beta.MakePmf() metapmf.Set(pmf, prob) mix = thinkbayes2.MakeMixture(metapmf) return metapmf, mix def SamplePosterior(self): """Draws random n and prevalences. Returns: (n, prevalences) """ n = self.RandomN() prevalences = self.SamplePrevalences(n) #print 'Peeking at n_cheat' #n = n_cheat return n, prevalences def SamplePrevalences(self, n): """Draws a sample of prevalences given n. n: the number of species assumed in the conditional Returns: numpy array of n prevalences """ if n == 1: return [1.0] q_desired = self.RandomQ(n) q_desired = max(q_desired, 1e-6) params = self.Unbias(n, self.m, q_desired) gammas = numpy.random.gamma(params) gammas /= gammas.sum() return gammas def Unbias(self, n, m, q_desired): """Adjusts the parameters to achieve desired prev_unseen (q). n: number of species m: seen species q_desired: prevalence of unseen species """ params = self.params[:n].copy() if n == m: return params x = sum(params[:m]) y = sum(params[m:]) a = x + y #print x, y, a, x/a, y/a g = q_desired * a / y f = (a - g * y) / x params[:m] *= f params[m:] *= g return params class Species3(Species2): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observations """ # sample the likelihoods and add them up like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() m = len(data) self.params[:m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data under all hypotheses. data: list of observations """ # get a random sample gammas = numpy.random.gamma(self.params) # row is just the first m elements of gammas m = len(data) row = gammas[:m] # col is the cumulative sum of gammas col = numpy.cumsum(gammas)[self.ns[0]-1:] # each row of the array is a set of ps, normalized # for each hypothetical value of n array = row / col[:, numpy.newaxis] # computing the multinomial PDF under a log transform # take the log of the ps and multiply by the data terms = numpy.log(array) * data # add up the rows log_likes = terms.sum(axis=1) # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) # correct for the number of ways we could see m species # out of a possible n coefs = [thinkbayes2.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes class Species4(Species): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ m = len(data) # loop through the species and update one at a time for i in range(m): one = numpy.zeros(i+1) one[i] = data[i] # call the parent class Species.Update(self, one) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. Note: this only works correctly if we update one species at a time. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of unseen species the new one # could have been m = len(data) num_unseen = dirichlet.n - m + 1 like *= num_unseen return like class Species5(Species2): """Represents hypotheses about the number of species. Combines two laters of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies in increasing order """ # loop through the species and update one at a time m = len(data) for i in range(m): self.UpdateOne(i+1, data[i]) self.params[i] += data[i] def UpdateOne(self, i, count): """Updates the suite based on the data. Evaluates the likelihood for all values of n. i: which species was observed (1..n) count: how many were observed """ # how many species have we seen so far self.m = i # how many reads have we seen self.num_reads += count if self.iters == 0: return # sample the likelihoods and add them up likes = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): likes += self.SampleLikelihood(i, count) # correct for the number of unseen species the new one # could have been unseen_species = [n-i+1 for n in self.ns] likes *= unseen_species # multiply the priors by the likelihoods and renormalize self.probs *= likes self.probs /= self.probs.sum() def SampleLikelihood(self, i, count): """Computes the likelihood of the data under all hypotheses. i: which species was observed count: how many were observed """ # get a random sample of p gammas = numpy.random.gamma(self.params) # sums is the cumulative sum of p, for each value of n sums = numpy.cumsum(gammas)[self.ns[0]-1:] # get p for the mth species, for each value of n ps = gammas[i-1] / sums log_likes = numpy.log(ps) * count # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) return likes def MakePosterior(constructor, data, ns, conc=1, iters=1000): """Makes a suite, updates it and returns the posterior suite. Prints the elapsed time. data: observed species and their counts ns: sequence of hypothetical ns conc: concentration parameter iters: how many samples to draw Returns: posterior suite of the given type """ suite = constructor(ns, conc=conc, iters=iters) # print constructor.__name__ start = time.time() suite.Update(data) end = time.time() print('Processing time', end-start) return suite def PlotAllVersions(): """Makes a graph of posterior distributions of N.""" data = [1, 2, 3] m = len(data) n = 20 ns = range(m, n) for constructor in [Species, Species2, Species3, Species4, Species5]: suite = MakePosterior(constructor, data, ns) pmf = suite.DistN() pmf.label = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Save(root='species3', xlabel='Number of species', ylabel='Prob') def PlotMedium(): """Makes a graph of posterior distributions of N.""" data = [1, 1, 1, 1, 2, 3, 5, 9] m = len(data) n = 20 ns = range(m, n) for constructor in [Species, Species2, Species3, Species4, Species5]: suite = MakePosterior(constructor, data, ns) pmf = suite.DistN() pmf.label = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Show() def SimpleDirichletExample(): """Makes a plot showing posterior distributions for three species. This is the case where we know there are exactly three species. """ thinkplot.Clf() thinkplot.PrePlot(3) names = ['lions', 'tigers', 'bears'] data = [3, 2, 1] dirichlet = thinkbayes2.Dirichlet(3) for i in range(3): beta = dirichlet.MarginalBeta(i) print('mean', names[i], beta.Mean()) dirichlet.Update(data) for i in range(3): beta = dirichlet.MarginalBeta(i) print('mean', names[i], beta.Mean()) pmf = beta.MakePmf(label=names[i]) thinkplot.Pmf(pmf) thinkplot.Save(root='species1', xlabel='Prevalence', ylabel='Prob', formats=FORMATS, ) def HierarchicalExample(): """Shows the posterior distribution of n for lions, tigers and bears. """ ns = range(3, 30) suite = Species(ns, iters=8000) data = [3, 2, 1] suite.Update(data) thinkplot.Clf() thinkplot.PrePlot(num=1) pmf = suite.DistN() thinkplot.Pdf(pmf) thinkplot.Save(root='species2', xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def CompareHierarchicalExample(): """Makes a graph of posterior distributions of N.""" data = [3, 2, 1] m = len(data) n = 30 ns = range(m, n) constructors = [Species, Species5] iters = [1000, 100] for constructor, iters in zip(constructors, iters): suite = MakePosterior(constructor, data, ns, iters) pmf = suite.DistN() pmf.label = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Show() def ProcessSubjects(codes): """Process subjects with the given codes and plot their posteriors. code: sequence of string codes """ thinkplot.Clf() thinkplot.PrePlot(len(codes)) subjects = ReadRarefactedData() pmfs = [] for code in codes: subject = subjects[code] subject.Process() pmf = subject.suite.DistN() pmf.label = subject.code thinkplot.Pmf(pmf) pmfs.append(pmf) print('ProbGreater', thinkbayes2.PmfProbGreater(pmfs[0], pmfs[1])) print('ProbLess', thinkbayes2.PmfProbLess(pmfs[0], pmfs[1])) thinkplot.Save(root='species4', xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def RunSubject(code, conc=1, high=500): """Run the analysis for the subject with the given code. code: string code """ subjects = JoinSubjects() subject = subjects[code] subject.Process(conc=conc, high=high, iters=300) subject.MakeQuickPrediction() PrintSummary(subject) actual_l = subject.total_species - subject.num_species cdf_l = subject.DistL().MakeCdf() PrintPrediction(cdf_l, actual_l) subject.MakeFigures() num_reads = 400 curves = subject.RunSimulations(100, num_reads) root = 'species-rare-%s' % subject.code PlotCurves(curves, root=root) num_reads = 800 curves = subject.RunSimulations(500, num_reads) ks = [100, 200, 400, 800] cdfs = MakeConditionals(curves, ks) root = 'species-cond-%s' % subject.code PlotConditionals(cdfs, root=root) num_reads = 1000 curves = subject.RunSimulations(500, num_reads, frac_flag=True) ks = [10, 100, 200, 400, 600, 800, 1000] cdfs = MakeFracCdfs(curves, ks) root = 'species-frac-%s' % subject.code PlotFracCdfs(cdfs, root=root) def PrintSummary(subject): """Print a summary of a subject. subject: Subject """ print(subject.code) print('found %d species in %d reads' % (subject.num_species, subject.num_reads)) print('total %d species in %d reads' % (subject.total_species, subject.total_reads)) cdf = subject.suite.DistN().MakeCdf() print('n') PrintPrediction(cdf, 'unknown') def PrintPrediction(cdf, actual): """Print a summary of a prediction. cdf: predictive distribution actual: actual value """ median = cdf.Percentile(50) low, high = cdf.CredibleInterval(75) print('predicted %0.2f (%0.2f %0.2f)' % (median, low, high)) print('actual', actual) def RandomSeed(x): """Initialize random.random and numpy.random. x: int seed """ random.seed(x) numpy.random.seed(x) def GenerateFakeSample(n, r, tr, conc=1): """Generates fake data with the given parameters. n: number of species r: number of reads in subsample tr: total number of reads conc: concentration parameter Returns: hist of all reads, hist of subsample, prev_unseen """ # generate random prevalences dirichlet = thinkbayes2.Dirichlet(n, conc=conc) prevalences = dirichlet.Random() prevalences.sort() # generate a simulated sample pmf = thinkbayes2.Pmf(dict(enumerate(prevalences))) cdf = pmf.MakeCdf() sample = cdf.Sample(tr) # collect the species counts hist = thinkbayes2.Hist(sample) # extract a subset of the data if tr > r: random.shuffle(sample) subsample = sample[:r] subhist = thinkbayes2.Hist(subsample) else: subhist = hist # add up the prevalence of unseen species prev_unseen = 0 for species, prev in enumerate(prevalences): if species not in subhist: prev_unseen += prev return hist, subhist, prev_unseen def PlotActualPrevalences(): """Makes a plot comparing actual prevalences with a model. """ # read data subject_map, _ = ReadCompleteDataset() # for subjects with more than 50 species, # PMF of max prevalence, and PMF of max prevalence # generated by a simulation pmf_actual = thinkbayes2.Pmf() pmf_sim = thinkbayes2.Pmf() # concentration parameter used in the simulation conc = 0.06 for code, subject in subject_map.items(): prevalences = subject.GetPrevalences() m = len(prevalences) if m < 2: continue actual_max = max(prevalences) print(code, m, actual_max) # incr the PMFs if m > 50: pmf_actual.Incr(actual_max) pmf_sim.Incr(SimulateMaxPrev(m, conc)) # plot CDFs for the actual and simulated max prevalence cdf_actual = pmf_actual.MakeCdf(label='actual') cdf_sim = pmf_sim.MakeCdf(label='sim') thinkplot.Cdfs([cdf_actual, cdf_sim]) thinkplot.Show() def ScatterPrevalences(ms, actual): """Make a scatter plot of actual prevalences and expected values. ms: sorted sequence of in m (number of species) actual: sequence of actual max prevalence """ for conc in [1, 0.5, 0.2, 0.1]: expected = [ExpectedMaxPrev(m, conc) for m in ms] thinkplot.Plot(ms, expected) thinkplot.Scatter(ms, actual) thinkplot.Show(xscale='log') def SimulateMaxPrev(m, conc=1): """Returns random max prevalence from a Dirichlet distribution. m: int number of species conc: concentration parameter of the Dirichlet distribution Returns: float max of m prevalences """ dirichlet = thinkbayes2.Dirichlet(m, conc) prevalences = dirichlet.Random() return max(prevalences) def ExpectedMaxPrev(m, conc=1, iters=100): """Estimate expected max prevalence. m: number of species conc: concentration parameter iters: how many iterations to run Returns: expected max prevalence """ dirichlet = thinkbayes2.Dirichlet(m, conc) t = [] for _ in range(iters): prevalences = dirichlet.Random() t.append(max(prevalences)) return numpy.mean(t) class Calibrator(object): """Encapsulates the calibration process.""" def __init__(self, conc=0.1): """ """ self.conc = conc self.ps = range(10, 100, 10) self.total_n = numpy.zeros(len(self.ps)) self.total_q = numpy.zeros(len(self.ps)) self.total_l = numpy.zeros(len(self.ps)) self.n_seq = [] self.q_seq = [] self.l_seq = [] def Calibrate(self, num_runs=100, n_low=30, n_high=400, r=400, tr=1200): """Runs calibrations. num_runs: how many runs """ for seed in range(num_runs): self.RunCalibration(seed, n_low, n_high, r, tr) self.total_n *= 100.0 / num_runs self.total_q *= 100.0 / num_runs self.total_l *= 100.0 / num_runs def Validate(self, num_runs=100, clean_param=0): """Runs validations. num_runs: how many runs """ subject_map, _ = ReadCompleteDataset(clean_param=clean_param) i = 0 for match in subject_map.itervalues(): if match.num_reads < 400: continue num_reads = 100 print('Validate', match.code) subject = match.Resample(num_reads) subject.Match(match) n_actual = None q_actual = subject.prev_unseen l_actual = subject.total_species - subject.num_species self.RunSubject(subject, n_actual, q_actual, l_actual) i += 1 if i == num_runs: break self.total_n *= 100.0 / num_runs self.total_q *= 100.0 / num_runs self.total_l *= 100.0 / num_runs def PlotN(self, root='species-n'): """Makes a scatter plot of simulated vs actual prev_unseen (q). """ xs, ys = zip(*self.n_seq) if None in xs: return high = max(xs+ys) thinkplot.Plot([0, high], [0, high], color='gray') thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual n', ylabel='Predicted') def PlotQ(self, root='species-q'): """Makes a scatter plot of simulated vs actual prev_unseen (q). """ thinkplot.Plot([0, 0.2], [0, 0.2], color='gray') xs, ys = zip(*self.q_seq) thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual q', ylabel='Predicted') def PlotL(self, root='species-n'): """Makes a scatter plot of simulated vs actual l. """ thinkplot.Plot([0, 20], [0, 20], color='gray') xs, ys = zip(*self.l_seq) thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual l', ylabel='Predicted') def PlotCalibrationCurves(self, root='species5'): """Plots calibration curves""" print(self.total_n) print(self.total_q) print(self.total_l) thinkplot.Plot([0, 100], [0, 100], color='gray', alpha=0.2) if self.total_n[0] >= 0: thinkplot.Plot(self.ps, self.total_n, label='n') thinkplot.Plot(self.ps, self.total_q, label='q') thinkplot.Plot(self.ps, self.total_l, label='l') thinkplot.Save(root=root, axis=[0, 100, 0, 100], xlabel='Ideal percentages', ylabel='Predictive distributions', formats=FORMATS, ) def RunCalibration(self, seed, n_low, n_high, r, tr): """Runs a single calibration run. Generates N and prevalences from a Dirichlet distribution, then generates simulated data. Runs analysis to get the posterior distributions. Generates calibration curves for each posterior distribution. seed: int random seed """ # generate a random number of species and their prevalences # (from a Dirichlet distribution with alpha_i = conc for all i) RandomSeed(seed) n_actual = random.randrange(n_low, n_high+1) hist, subhist, q_actual = GenerateFakeSample( n_actual, r, tr, self.conc) l_actual = len(hist) - len(subhist) print('Run low, high, conc', n_low, n_high, self.conc) print('Run r, tr', r, tr) print('Run n, q, l', n_actual, q_actual, l_actual) # extract the data data = [count for species, count in subhist.Items()] data.sort() print('data', data) # make a Subject and process subject = Subject('simulated') subject.num_reads = r subject.total_reads = tr for species, count in subhist.Items(): subject.Add(species, count) subject.Done() self.RunSubject(subject, n_actual, q_actual, l_actual) def RunSubject(self, subject, n_actual, q_actual, l_actual): """Runs the analysis for a subject. subject: Subject n_actual: number of species q_actual: prevalence of unseen species l_actual: number of new species """ # process and make prediction subject.Process(conc=self.conc, iters=100) subject.MakeQuickPrediction() # extract the posterior suite suite = subject.suite # check the distribution of n pmf_n = suite.DistN() print('n') self.total_n += self.CheckDistribution(pmf_n, n_actual, self.n_seq) # check the distribution of q pmf_q = suite.DistQ() print('q') self.total_q += self.CheckDistribution(pmf_q, q_actual, self.q_seq) # check the distribution of additional species pmf_l = subject.DistL() print('l') self.total_l += self.CheckDistribution(pmf_l, l_actual, self.l_seq) def CheckDistribution(self, pmf, actual, seq): """Checks a predictive distribution and returns a score vector. pmf: predictive distribution actual: actual value seq: which sequence to append (actual, mean) onto """ mean = pmf.Mean() seq.append((actual, mean)) cdf = pmf.MakeCdf() PrintPrediction(cdf, actual) sv = ScoreVector(cdf, self.ps, actual) return sv def ScoreVector(cdf, ps, actual): """Checks whether the actual value falls in each credible interval. cdf: predictive distribution ps: percentages to check (0-100) actual: actual value Returns: numpy array of 0, 0.5, or 1 """ scores = [] for p in ps: low, high = cdf.CredibleInterval(p) score = Score(low, high, actual) scores.append(score) return numpy.array(scores) def Score(low, high, n): """Score whether the actual value falls in the range. Hitting the posts counts as 0.5, -1 is invalid. low: low end of range high: high end of range n: actual value Returns: -1, 0, 0.5 or 1 """ if n is None: return -1 if low < n < high: return 1 if n == low or n == high: return 0.5 else: return 0 def FakeSubject(n=300, conc=0.1, num_reads=400, prevalences=None): """Makes a fake Subject. If prevalences is provided, n and conc are ignored. n: number of species conc: concentration parameter num_reads: number of reads prevalences: numpy array of prevalences (overrides n and conc) """ # generate random prevalences if prevalences is None: dirichlet = thinkbayes2.Dirichlet(n, conc=conc) prevalences = dirichlet.Random() prevalences.sort() # generate a simulated sample pmf = thinkbayes2.Pmf(dict(enumerate(prevalences))) cdf = pmf.MakeCdf() sample = cdf.Sample(num_reads) # collect the species counts hist = thinkbayes2.Hist(sample) # extract the data data = [count for species, count in hist.Items()] data.sort() # make a Subject and process subject = Subject('simulated') for species, count in hist.Items(): subject.Add(species, count) subject.Done() return subject def PlotSubjectCdf(code=None, clean_param=0): """Checks whether the Dirichlet model can replicate the data. """ subject_map, uber_subject = ReadCompleteDataset(clean_param=clean_param) if code is None: subjects = subject_map.values() subject = random.choice(subjects) code = subject.code elif code == 'uber': subject = uber_subject else: subject = subject_map[code] print(subject.code) m = subject.GetM() subject.Process(high=m, conc=0.1, iters=0) print(subject.suite.params[:m]) # plot the cdf options = dict(linewidth=3, color='blue', alpha=0.5) cdf = subject.MakeCdf() thinkplot.Cdf(cdf, **options) options = dict(linewidth=1, color='green', alpha=0.5) # generate fake subjects and plot their CDFs for _ in range(10): prevalences = subject.suite.SamplePrevalences(m) fake = FakeSubject(prevalences=prevalences) cdf = fake.MakeCdf() thinkplot.Cdf(cdf, **options) root = 'species-cdf-%s' % code thinkplot.Save(root=root, xlabel='rank', ylabel='CDF', xscale='log', formats=FORMATS, ) def RunCalibration(flag='cal', num_runs=100, clean_param=50): """Runs either the calibration or validation process. flag: string 'cal' or 'val' num_runs: how many runs clean_param: parameter used for data cleaning """ cal = Calibrator(conc=0.1) if flag == 'val': cal.Validate(num_runs=num_runs, clean_param=clean_param) else: cal.Calibrate(num_runs=num_runs) cal.PlotN(root='species-n-%s' % flag) cal.PlotQ(root='species-q-%s' % flag) cal.PlotL(root='species-l-%s' % flag) cal.PlotCalibrationCurves(root='species5-%s' % flag) def RunTests(): """Runs calibration code and generates some figures.""" RunCalibration(flag='val') RunCalibration(flag='cal') PlotSubjectCdf('B1558.G', clean_param=50) PlotSubjectCdf(None) def main(script): RandomSeed(17) RunSubject('B1242', conc=1, high=100) RandomSeed(17) SimpleDirichletExample() RandomSeed(17) HierarchicalExample() if __name__ == '__main__': main(*sys.argv)
mit
dhruvagarwal/django
tests/generic_views/test_list.py
306
12129
# -*- coding: utf-8 -*- from __future__ import unicode_literals import datetime from django.core.exceptions import ImproperlyConfigured from django.test import TestCase, override_settings from django.utils.encoding import force_str from django.views.generic.base import View from .models import Artist, Author, Book, Page @override_settings(ROOT_URLCONF='generic_views.urls') class ListViewTests(TestCase): @classmethod def setUpTestData(cls): cls.artist1 = Artist.objects.create(name='Rene Magritte') cls.author1 = Author.objects.create(name='Roberto Bolaño', slug='roberto-bolano') cls.author2 = Author.objects.create(name='Scott Rosenberg', slug='scott-rosenberg') cls.book1 = Book.objects.create(name='2066', slug='2066', pages=800, pubdate=datetime.date(2008, 10, 1)) cls.book1.authors.add(cls.author1) cls.book2 = Book.objects.create( name='Dreaming in Code', slug='dreaming-in-code', pages=300, pubdate=datetime.date(2006, 5, 1) ) cls.page1 = Page.objects.create( content='I was once bitten by a moose.', template='generic_views/page_template.html' ) def test_items(self): res = self.client.get('/list/dict/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/list.html') self.assertEqual(res.context['object_list'][0]['first'], 'John') def test_queryset(self): res = self.client.get('/list/authors/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIsInstance(res.context['view'], View) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertIsNone(res.context['paginator']) self.assertIsNone(res.context['page_obj']) self.assertFalse(res.context['is_paginated']) def test_paginated_queryset(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTrue(res.context['is_paginated']) self.assertEqual(res.context['page_obj'].number, 1) self.assertEqual(res.context['paginator'].num_pages, 4) self.assertEqual(res.context['author_list'][0].name, 'Author 00') self.assertEqual(list(res.context['author_list'])[-1].name, 'Author 29') def test_paginated_queryset_shortdata(self): # Test that short datasets ALSO result in a paginated view. res = self.client.get('/list/authors/paginated/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['page_obj'].number, 1) self.assertEqual(res.context['paginator'].num_pages, 1) self.assertFalse(res.context['is_paginated']) def test_paginated_get_page_by_query_string(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/', {'page': '2'}) self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 30') self.assertEqual(res.context['page_obj'].number, 2) def test_paginated_get_last_page_by_query_string(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/', {'page': 'last'}) self.assertEqual(res.status_code, 200) self.assertEqual(len(res.context['object_list']), 10) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 90') self.assertEqual(res.context['page_obj'].number, 4) def test_paginated_get_page_by_urlvar(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/3/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 60') self.assertEqual(res.context['page_obj'].number, 3) def test_paginated_page_out_of_range(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/42/') self.assertEqual(res.status_code, 404) def test_paginated_invalid_page(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/?page=frog') self.assertEqual(res.status_code, 404) def test_paginated_custom_paginator_class(self): self._make_authors(7) res = self.client.get('/list/authors/paginated/custom_class/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['paginator'].num_pages, 1) # Custom pagination allows for 2 orphans on a page size of 5 self.assertEqual(len(res.context['object_list']), 7) def test_paginated_custom_page_kwarg(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/custom_page_kwarg/', {'pagina': '2'}) self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 30') self.assertEqual(res.context['page_obj'].number, 2) def test_paginated_custom_paginator_constructor(self): self._make_authors(7) res = self.client.get('/list/authors/paginated/custom_constructor/') self.assertEqual(res.status_code, 200) # Custom pagination allows for 2 orphans on a page size of 5 self.assertEqual(len(res.context['object_list']), 7) def test_paginated_orphaned_queryset(self): self._make_authors(92) res = self.client.get('/list/authors/paginated-orphaned/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['page_obj'].number, 1) res = self.client.get( '/list/authors/paginated-orphaned/', {'page': 'last'}) self.assertEqual(res.status_code, 200) self.assertEqual(res.context['page_obj'].number, 3) res = self.client.get( '/list/authors/paginated-orphaned/', {'page': '3'}) self.assertEqual(res.status_code, 200) self.assertEqual(res.context['page_obj'].number, 3) res = self.client.get( '/list/authors/paginated-orphaned/', {'page': '4'}) self.assertEqual(res.status_code, 404) def test_paginated_non_queryset(self): res = self.client.get('/list/dict/paginated/') self.assertEqual(res.status_code, 200) self.assertEqual(len(res.context['object_list']), 1) def test_verbose_name(self): res = self.client.get('/list/artists/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/list.html') self.assertEqual(list(res.context['object_list']), list(Artist.objects.all())) self.assertIs(res.context['artist_list'], res.context['object_list']) self.assertIsNone(res.context['paginator']) self.assertIsNone(res.context['page_obj']) self.assertFalse(res.context['is_paginated']) def test_allow_empty_false(self): res = self.client.get('/list/authors/notempty/') self.assertEqual(res.status_code, 200) Author.objects.all().delete() res = self.client.get('/list/authors/notempty/') self.assertEqual(res.status_code, 404) def test_template_name(self): res = self.client.get('/list/authors/template_name/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTemplateUsed(res, 'generic_views/list.html') def test_template_name_suffix(self): res = self.client.get('/list/authors/template_name_suffix/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTemplateUsed(res, 'generic_views/author_objects.html') def test_context_object_name(self): res = self.client.get('/list/authors/context_object_name/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertNotIn('authors', res.context) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTemplateUsed(res, 'generic_views/author_list.html') def test_duplicate_context_object_name(self): res = self.client.get('/list/authors/dupe_context_object_name/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertNotIn('authors', res.context) self.assertNotIn('author_list', res.context) self.assertTemplateUsed(res, 'generic_views/author_list.html') def test_missing_items(self): self.assertRaises(ImproperlyConfigured, self.client.get, '/list/authors/invalid/') def test_paginated_list_view_does_not_load_entire_table(self): # Regression test for #17535 self._make_authors(3) # 1 query for authors with self.assertNumQueries(1): self.client.get('/list/authors/notempty/') # same as above + 1 query to test if authors exist + 1 query for pagination with self.assertNumQueries(3): self.client.get('/list/authors/notempty/paginated/') def test_explicitly_ordered_list_view(self): Book.objects.create(name="Zebras for Dummies", pages=800, pubdate=datetime.date(2006, 9, 1)) res = self.client.get('/list/books/sorted/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['object_list'][0].name, '2066') self.assertEqual(res.context['object_list'][1].name, 'Dreaming in Code') self.assertEqual(res.context['object_list'][2].name, 'Zebras for Dummies') res = self.client.get('/list/books/sortedbypagesandnamedec/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['object_list'][0].name, 'Dreaming in Code') self.assertEqual(res.context['object_list'][1].name, 'Zebras for Dummies') self.assertEqual(res.context['object_list'][2].name, '2066') @override_settings(DEBUG=True) def test_paginated_list_view_returns_useful_message_on_invalid_page(self): # test for #19240 # tests that source exception's message is included in page self._make_authors(1) res = self.client.get('/list/authors/paginated/2/') self.assertEqual(res.status_code, 404) self.assertEqual(force_str(res.context.get('reason')), "Invalid page (2): That page contains no results") def _make_authors(self, n): Author.objects.all().delete() for i in range(n): Author.objects.create(name='Author %02i' % i, slug='a%s' % i)
bsd-3-clause
cainiaocome/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
217
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
yyjiang/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
217
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
giorgiop/scikit-learn
examples/cluster/plot_digits_agglomeration.py
373
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
istio/envoy
tools/api_proto_plugin/annotations.py
5
3708
"""Envoy API annotations.""" from collections import namedtuple import re # Key-value annotation regex. ANNOTATION_REGEX = re.compile('\[#([\w-]+?):\s*(.*?)\](\s?)', re.DOTALL) # Page/section titles with special prefixes in the proto comments DOC_TITLE_ANNOTATION = 'protodoc-title' # When documenting an extension, this should be used to specify the qualified # name that the extension registers as in the static registry, e.g. # envoy.filters.network.http_connection_manager. EXTENSION_ANNOTATION = 'extension' # Not implemented yet annotation on leading comments, leading to hiding of # field. NOT_IMPLEMENTED_HIDE_ANNOTATION = 'not-implemented-hide' # For large protos, place a comment at the top that specifies the next free field number. NEXT_FREE_FIELD_ANNOTATION = 'next-free-field' # Comment that allows for easy searching for things that need cleaning up in the next major # API version. NEXT_MAJOR_VERSION_ANNOTATION = 'next-major-version' # Comment. Just used for adding text that will not go into the docs at all. COMMENT_ANNOTATION = 'comment' VALID_ANNOTATIONS = set([ DOC_TITLE_ANNOTATION, EXTENSION_ANNOTATION, NOT_IMPLEMENTED_HIDE_ANNOTATION, NEXT_FREE_FIELD_ANNOTATION, NEXT_MAJOR_VERSION_ANNOTATION, COMMENT_ANNOTATION, ]) # These can propagate from file scope to message/enum scope (and be overridden). INHERITED_ANNOTATIONS = set([ # Nothing here right now, this used to be PROTO_STATUS_ANNOTATION. Retaining # this capability for potential future use. ]) class AnnotationError(Exception): """Base error class for the annotations module.""" def ExtractAnnotations(s, inherited_annotations=None): """Extract annotations map from a given comment string. Args: s: string that may contains annotations. inherited_annotations: annotation map from file-level inherited annotations (or None) if this is a file-level comment. Returns: Annotation map. """ annotations = { k: v for k, v in (inherited_annotations or {}).items() if k in INHERITED_ANNOTATIONS } # Extract annotations. groups = re.findall(ANNOTATION_REGEX, s) for group in groups: annotation = group[0] if annotation not in VALID_ANNOTATIONS: raise AnnotationError('Unknown annotation: %s' % annotation) annotations[group[0]] = group[1].lstrip() return annotations def XformAnnotation(s, annotation_xforms): """Return transformed string with annotation transformers. The annotation will be replaced with the new value returned by the transformer. If the transformer returns None, then the annotation will be removed. If the annotation presented in transformers doesn't exist in the original string, a new annotation will be appended to the end of string. Args: annotation_xforms: a dict of transformers for annotations. Returns: transformed string. """ present_annotations = set() def xform(match): annotation, content, trailing = match.groups() present_annotations.add(annotation) annotation_xform = annotation_xforms.get(annotation) if annotation_xform: value = annotation_xform(annotation) return '[#%s: %s]%s' % (annotation, value, trailing) if value is not None else '' else: return match.group(0) def append(s, annotation, content): return '%s [#%s: %s]\n' % (s, annotation, content) xformed = re.sub(ANNOTATION_REGEX, xform, s) for annotation, xform in sorted(annotation_xforms.items()): if annotation not in present_annotations: value = xform(None) if value is not None: xformed = append(xformed, annotation, value) return xformed def WithoutAnnotations(s): return re.sub(ANNOTATION_REGEX, '', s)
apache-2.0
PatrickOReilly/scikit-learn
examples/decomposition/plot_kernel_pca.py
350
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
glennq/scikit-learn
sklearn/externals/joblib/parallel.py
33
32728
""" Helpers for embarrassingly parallel code. """ # Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org > # Copyright: 2010, Gael Varoquaux # License: BSD 3 clause from __future__ import division import os import sys from math import sqrt import functools import time import threading import itertools from numbers import Integral from contextlib import contextmanager try: import cPickle as pickle except: import pickle from ._multiprocessing_helpers import mp from .format_stack import format_outer_frames from .logger import Logger, short_format_time from .my_exceptions import TransportableException, _mk_exception from .disk import memstr_to_bytes from ._parallel_backends import (FallbackToBackend, MultiprocessingBackend, ThreadingBackend, SequentialBackend) from ._compat import _basestring from .func_inspect import getfullargspec # Make sure that those two classes are part of the public joblib.parallel API # so that 3rd party backend implementers can import them from here. from ._parallel_backends import AutoBatchingMixin # noqa from ._parallel_backends import ParallelBackendBase # noqa BACKENDS = { 'multiprocessing': MultiprocessingBackend, 'threading': ThreadingBackend, 'sequential': SequentialBackend, } # name of the backend used by default by Parallel outside of any context # managed by ``parallel_backend``. DEFAULT_BACKEND = 'multiprocessing' DEFAULT_N_JOBS = 1 # Thread local value that can be overriden by the ``parallel_backend`` context # manager _backend = threading.local() def get_active_backend(): """Return the active default backend""" active_backend_and_jobs = getattr(_backend, 'backend_and_jobs', None) if active_backend_and_jobs is not None: return active_backend_and_jobs # We are outside of the scope of any parallel_backend context manager, # create the default backend instance now active_backend = BACKENDS[DEFAULT_BACKEND]() return active_backend, DEFAULT_N_JOBS @contextmanager def parallel_backend(backend, n_jobs=-1, **backend_params): """Change the default backend used by Parallel inside a with block. If ``backend`` is a string it must match a previously registered implementation using the ``register_parallel_backend`` function. Alternatively backend can be passed directly as an instance. By default all available workers will be used (``n_jobs=-1``) unless the caller passes an explicit value for the ``n_jobs`` parameter. This is an alternative to passing a ``backend='backend_name'`` argument to the ``Parallel`` class constructor. It is particularly useful when calling into library code that uses joblib internally but does not expose the backend argument in its own API. >>> from operator import neg >>> with parallel_backend('threading'): ... print(Parallel()(delayed(neg)(i + 1) for i in range(5))) ... [-1, -2, -3, -4, -5] Warning: this function is experimental and subject to change in a future version of joblib. .. versionadded:: 0.10 """ if isinstance(backend, _basestring): backend = BACKENDS[backend](**backend_params) old_backend_and_jobs = getattr(_backend, 'backend_and_jobs', None) try: _backend.backend_and_jobs = (backend, n_jobs) # return the backend instance to make it easier to write tests yield backend, n_jobs finally: if old_backend_and_jobs is None: if getattr(_backend, 'backend_and_jobs', None) is not None: del _backend.backend_and_jobs else: _backend.backend_and_jobs = old_backend_and_jobs # Under Linux or OS X the default start method of multiprocessing # can cause third party libraries to crash. Under Python 3.4+ it is possible # to set an environment variable to switch the default start method from # 'fork' to 'forkserver' or 'spawn' to avoid this issue albeit at the cost # of causing semantic changes and some additional pool instantiation overhead. if hasattr(mp, 'get_context'): method = os.environ.get('JOBLIB_START_METHOD', '').strip() or None DEFAULT_MP_CONTEXT = mp.get_context(method=method) else: DEFAULT_MP_CONTEXT = None class BatchedCalls(object): """Wrap a sequence of (func, args, kwargs) tuples as a single callable""" def __init__(self, iterator_slice): self.items = list(iterator_slice) self._size = len(self.items) def __call__(self): return [func(*args, **kwargs) for func, args, kwargs in self.items] def __len__(self): return self._size ############################################################################### # CPU count that works also when multiprocessing has been disabled via # the JOBLIB_MULTIPROCESSING environment variable def cpu_count(): """Return the number of CPUs.""" if mp is None: return 1 return mp.cpu_count() ############################################################################### # For verbosity def _verbosity_filter(index, verbose): """ Returns False for indices increasingly apart, the distance depending on the value of verbose. We use a lag increasing as the square of index """ if not verbose: return True elif verbose > 10: return False if index == 0: return False verbose = .5 * (11 - verbose) ** 2 scale = sqrt(index / verbose) next_scale = sqrt((index + 1) / verbose) return (int(next_scale) == int(scale)) ############################################################################### def delayed(function, check_pickle=True): """Decorator used to capture the arguments of a function. Pass `check_pickle=False` when: - performing a possibly repeated check is too costly and has been done already once outside of the call to delayed. - when used in conjunction `Parallel(backend='threading')`. """ # Try to pickle the input function, to catch the problems early when # using with multiprocessing: if check_pickle: pickle.dumps(function) def delayed_function(*args, **kwargs): return function, args, kwargs try: delayed_function = functools.wraps(function)(delayed_function) except AttributeError: " functools.wraps fails on some callable objects " return delayed_function ############################################################################### class BatchCompletionCallBack(object): """Callback used by joblib.Parallel's multiprocessing backend. This callable is executed by the parent process whenever a worker process has returned the results of a batch of tasks. It is used for progress reporting, to update estimate of the batch processing duration and to schedule the next batch of tasks to be processed. """ def __init__(self, dispatch_timestamp, batch_size, parallel): self.dispatch_timestamp = dispatch_timestamp self.batch_size = batch_size self.parallel = parallel def __call__(self, out): self.parallel.n_completed_tasks += self.batch_size this_batch_duration = time.time() - self.dispatch_timestamp self.parallel._backend.batch_completed(self.batch_size, this_batch_duration) self.parallel.print_progress() if self.parallel._original_iterator is not None: self.parallel.dispatch_next() ############################################################################### def register_parallel_backend(name, factory, make_default=False): """Register a new Parallel backend factory. The new backend can then be selected by passing its name as the backend argument to the Parallel class. Moreover, the default backend can be overwritten globally by setting make_default=True. The factory can be any callable that takes no argument and return an instance of ``ParallelBackendBase``. Warning: this function is experimental and subject to change in a future version of joblib. .. versionadded:: 0.10 """ BACKENDS[name] = factory if make_default: global DEFAULT_BACKEND DEFAULT_BACKEND = name def effective_n_jobs(n_jobs=-1): """Determine the number of jobs that can actually run in parallel n_jobs is the is the number of workers requested by the callers. Passing n_jobs=-1 means requesting all available workers for instance matching the number of CPU cores on the worker host(s). This method should return a guesstimate of the number of workers that can actually perform work concurrently with the currently enabled default backend. The primary use case is to make it possible for the caller to know in how many chunks to slice the work. In general working on larger data chunks is more efficient (less scheduling overhead and better use of CPU cache prefetching heuristics) as long as all the workers have enough work to do. Warning: this function is experimental and subject to change in a future version of joblib. .. versionadded:: 0.10 """ backend, _ = get_active_backend() return backend.effective_n_jobs(n_jobs=n_jobs) ############################################################################### class Parallel(Logger): ''' Helper class for readable parallel mapping. Parameters ----------- n_jobs: int, default: 1 The maximum number of concurrently running jobs, such as the number of Python worker processes when backend="multiprocessing" or the size of the thread-pool when backend="threading". If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. backend: str or None, default: 'multiprocessing' Specify the parallelization backend implementation. Supported backends are: - "multiprocessing" used by default, can induce some communication and memory overhead when exchanging input and output data with the worker Python processes. - "threading" is a very low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. "threading" is mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). - finally, you can register backends by calling register_parallel_backend. This will allow you to implement a backend of your liking. verbose: int, optional The verbosity level: if non zero, progress messages are printed. Above 50, the output is sent to stdout. The frequency of the messages increases with the verbosity level. If it more than 10, all iterations are reported. timeout: float, optional Timeout limit for each task to complete. If any task takes longer a TimeOutError will be raised. Only applied when n_jobs != 1 pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'} The number of batches (of tasks) to be pre-dispatched. Default is '2*n_jobs'. When batch_size="auto" this is reasonable default and the multiprocessing workers should never starve. batch_size: int or 'auto', default: 'auto' The number of atomic tasks to dispatch at once to each worker. When individual evaluations are very fast, multiprocessing can be slower than sequential computation because of the overhead. Batching fast computations together can mitigate this. The ``'auto'`` strategy keeps track of the time it takes for a batch to complete, and dynamically adjusts the batch size to keep the time on the order of half a second, using a heuristic. The initial batch size is 1. ``batch_size="auto"`` with ``backend="threading"`` will dispatch batches of a single task at a time as the threading backend has very little overhead and using larger batch size has not proved to bring any gain in that case. temp_folder: str, optional Folder to be used by the pool for memmaping large arrays for sharing memory with worker processes. If None, this will try in order: - a folder pointed by the JOBLIB_TEMP_FOLDER environment variable, - /dev/shm if the folder exists and is writable: this is a RAMdisk filesystem available by default on modern Linux distributions, - the default system temporary folder that can be overridden with TMP, TMPDIR or TEMP environment variables, typically /tmp under Unix operating systems. Only active when backend="multiprocessing". max_nbytes int, str, or None, optional, 1M by default Threshold on the size of arrays passed to the workers that triggers automated memory mapping in temp_folder. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Only active when backend="multiprocessing". mmap_mode: {None, 'r+', 'r', 'w+', 'c'} Memmapping mode for numpy arrays passed to workers. See 'max_nbytes' parameter documentation for more details. Notes ----- This object uses the multiprocessing module to compute in parallel the application of a function to many different arguments. The main functionality it brings in addition to using the raw multiprocessing API are (see examples for details): * More readable code, in particular since it avoids constructing list of arguments. * Easier debugging: - informative tracebacks even when the error happens on the client side - using 'n_jobs=1' enables to turn off parallel computing for debugging without changing the codepath - early capture of pickling errors * An optional progress meter. * Interruption of multiprocesses jobs with 'Ctrl-C' * Flexible pickling control for the communication to and from the worker processes. * Ability to use shared memory efficiently with worker processes for large numpy-based datastructures. Examples -------- A simple example: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] Reshaping the output when the function has several return values: >>> from math import modf >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10)) >>> res, i = zip(*r) >>> res (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5) >>> i (0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0) The progress meter: the higher the value of `verbose`, the more messages:: >>> from time import sleep >>> from sklearn.externals.joblib import Parallel, delayed >>> r = Parallel(n_jobs=2, verbose=5)(delayed(sleep)(.1) for _ in range(10)) #doctest: +SKIP [Parallel(n_jobs=2)]: Done 1 out of 10 | elapsed: 0.1s remaining: 0.9s [Parallel(n_jobs=2)]: Done 3 out of 10 | elapsed: 0.2s remaining: 0.5s [Parallel(n_jobs=2)]: Done 6 out of 10 | elapsed: 0.3s remaining: 0.2s [Parallel(n_jobs=2)]: Done 9 out of 10 | elapsed: 0.5s remaining: 0.1s [Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 0.5s finished Traceback example, note how the line of the error is indicated as well as the values of the parameter passed to the function that triggered the exception, even though the traceback happens in the child process:: >>> from heapq import nlargest >>> from sklearn.externals.joblib import Parallel, delayed >>> Parallel(n_jobs=2)(delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3)) #doctest: +SKIP #... --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- TypeError Mon Nov 12 11:37:46 2012 PID: 12934 Python 2.7.3: /usr/bin/python ........................................................................... /usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None) 419 if n >= size: 420 return sorted(iterable, key=key, reverse=True)[:n] 421 422 # When key is none, use simpler decoration 423 if key is None: --> 424 it = izip(iterable, count(0,-1)) # decorate 425 result = _nlargest(n, it) 426 return map(itemgetter(0), result) # undecorate 427 428 # General case, slowest method TypeError: izip argument #1 must support iteration ___________________________________________________________________________ Using pre_dispatch in a producer/consumer situation, where the data is generated on the fly. Note how the producer is first called a 3 times before the parallel loop is initiated, and then called to generate new data on the fly. In this case the total number of iterations cannot be reported in the progress messages:: >>> from math import sqrt >>> from sklearn.externals.joblib import Parallel, delayed >>> def producer(): ... for i in range(6): ... print('Produced %s' % i) ... yield i >>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')( ... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP Produced 0 Produced 1 Produced 2 [Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s Produced 3 [Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s Produced 4 [Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s Produced 5 [Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s [Parallel(n_jobs=2)]: Done 5 out of 6 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished ''' def __init__(self, n_jobs=1, backend=None, verbose=0, timeout=None, pre_dispatch='2 * n_jobs', batch_size='auto', temp_folder=None, max_nbytes='1M', mmap_mode='r'): active_backend, default_n_jobs = get_active_backend() if backend is None and n_jobs == 1: # If we are under a parallel_backend context manager, look up # the default number of jobs and use that instead: n_jobs = default_n_jobs self.n_jobs = n_jobs self.verbose = verbose self.timeout = timeout self.pre_dispatch = pre_dispatch if isinstance(max_nbytes, _basestring): max_nbytes = memstr_to_bytes(max_nbytes) self._backend_args = dict( max_nbytes=max_nbytes, mmap_mode=mmap_mode, temp_folder=temp_folder, verbose=max(0, self.verbose - 50), ) if DEFAULT_MP_CONTEXT is not None: self._backend_args['context'] = DEFAULT_MP_CONTEXT if backend is None: backend = active_backend elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'): # Make it possible to pass a custom multiprocessing context as # backend to change the start method to forkserver or spawn or # preload modules on the forkserver helper process. self._backend_args['context'] = backend backend = MultiprocessingBackend() else: try: backend_factory = BACKENDS[backend] except KeyError: raise ValueError("Invalid backend: %s, expected one of %r" % (backend, sorted(BACKENDS.keys()))) backend = backend_factory() if (batch_size == 'auto' or isinstance(batch_size, Integral) and batch_size > 0): self.batch_size = batch_size else: raise ValueError( "batch_size must be 'auto' or a positive integer, got: %r" % batch_size) self._backend = backend self._output = None self._jobs = list() self._managed_backend = False # This lock is used coordinate the main thread of this process with # the async callback thread of our the pool. self._lock = threading.Lock() def __enter__(self): self._managed_backend = True self._initialize_backend() return self def __exit__(self, exc_type, exc_value, traceback): self._terminate_backend() self._managed_backend = False def _initialize_backend(self): """Build a process or thread pool and return the number of workers""" try: return self._backend.configure(n_jobs=self.n_jobs, parallel=self, **self._backend_args) except FallbackToBackend as e: # Recursively initialize the backend in case of requested fallback. self._backend = e.backend return self._initialize_backend() def _effective_n_jobs(self): if self._backend: return self._backend.effective_n_jobs(self.n_jobs) return 1 def _terminate_backend(self): if self._backend is not None: self._backend.terminate() def _dispatch(self, batch): """Queue the batch for computing, with or without multiprocessing WARNING: this method is not thread-safe: it should be only called indirectly via dispatch_one_batch. """ # If job.get() catches an exception, it closes the queue: if self._aborting: return self.n_dispatched_tasks += len(batch) self.n_dispatched_batches += 1 dispatch_timestamp = time.time() cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self) job = self._backend.apply_async(batch, callback=cb) self._jobs.append(job) def dispatch_next(self): """Dispatch more data for parallel processing This method is meant to be called concurrently by the multiprocessing callback. We rely on the thread-safety of dispatch_one_batch to protect against concurrent consumption of the unprotected iterator. """ if not self.dispatch_one_batch(self._original_iterator): self._iterating = False self._original_iterator = None def dispatch_one_batch(self, iterator): """Prefetch the tasks for the next batch and dispatch them. The effective size of the batch is computed here. If there are no more jobs to dispatch, return False, else return True. The iterator consumption and dispatching is protected by the same lock so calling this function should be thread safe. """ if self.batch_size == 'auto': batch_size = self._backend.compute_batch_size() else: # Fixed batch size strategy batch_size = self.batch_size with self._lock: tasks = BatchedCalls(itertools.islice(iterator, batch_size)) if len(tasks) == 0: # No more tasks available in the iterator: tell caller to stop. return False else: self._dispatch(tasks) return True def _print(self, msg, msg_args): """Display the message on stout or stderr depending on verbosity""" # XXX: Not using the logger framework: need to # learn to use logger better. if not self.verbose: return if self.verbose < 50: writer = sys.stderr.write else: writer = sys.stdout.write msg = msg % msg_args writer('[%s]: %s\n' % (self, msg)) def print_progress(self): """Display the process of the parallel execution only a fraction of time, controlled by self.verbose. """ if not self.verbose: return elapsed_time = time.time() - self._start_time # Original job iterator becomes None once it has been fully # consumed : at this point we know the total number of jobs and we are # able to display an estimation of the remaining time based on already # completed jobs. Otherwise, we simply display the number of completed # tasks. if self._original_iterator is not None: if _verbosity_filter(self.n_dispatched_batches, self.verbose): return self._print('Done %3i tasks | elapsed: %s', (self.n_completed_tasks, short_format_time(elapsed_time), )) else: index = self.n_completed_tasks # We are finished dispatching total_tasks = self.n_dispatched_tasks # We always display the first loop if not index == 0: # Display depending on the number of remaining items # A message as soon as we finish dispatching, cursor is 0 cursor = (total_tasks - index + 1 - self._pre_dispatch_amount) frequency = (total_tasks // self.verbose) + 1 is_last_item = (index + 1 == total_tasks) if (is_last_item or cursor % frequency): return remaining_time = (elapsed_time / index) * \ (self.n_dispatched_tasks - index * 1.0) # only display status if remaining time is greater or equal to 0 self._print('Done %3i out of %3i | elapsed: %s remaining: %s', (index, total_tasks, short_format_time(elapsed_time), short_format_time(remaining_time), )) def retrieve(self): self._output = list() while self._iterating or len(self._jobs) > 0: if len(self._jobs) == 0: # Wait for an async callback to dispatch new jobs time.sleep(0.01) continue # We need to be careful: the job list can be filling up as # we empty it and Python list are not thread-safe by default hence # the use of the lock with self._lock: job = self._jobs.pop(0) try: # check if timeout supported in backend future implementation if 'timeout' in getfullargspec(job.get).args: self._output.extend(job.get(timeout=self.timeout)) else: self._output.extend(job.get()) except BaseException as exception: # Note: we catch any BaseException instead of just Exception # instances to also include KeyboardInterrupt. # Stop dispatching any new job in the async callback thread self._aborting = True if isinstance(exception, TransportableException): # Capture exception to add information on the local # stack in addition to the distant stack this_report = format_outer_frames(context=10, stack_start=1) report = """Multiprocessing exception: %s --------------------------------------------------------------------------- Sub-process traceback: --------------------------------------------------------------------------- %s""" % (this_report, exception.message) # Convert this to a JoblibException exception_type = _mk_exception(exception.etype)[0] exception = exception_type(report) # If the backends allows it, cancel or kill remaining running # tasks without waiting for the results as we will raise # the exception we got back to the caller instead of returning # any result. backend = self._backend if (backend is not None and hasattr(backend, 'abort_everything')): # If the backend is managed externally we need to make sure # to leave it in a working state to allow for future jobs # scheduling. ensure_ready = self._managed_backend backend.abort_everything(ensure_ready=ensure_ready) raise exception def __call__(self, iterable): if self._jobs: raise ValueError('This Parallel instance is already running') # A flag used to abort the dispatching of jobs in case an # exception is found self._aborting = False if not self._managed_backend: n_jobs = self._initialize_backend() else: n_jobs = self._effective_n_jobs() iterator = iter(iterable) pre_dispatch = self.pre_dispatch if pre_dispatch == 'all' or n_jobs == 1: # prevent further dispatch via multiprocessing callback thread self._original_iterator = None self._pre_dispatch_amount = 0 else: self._original_iterator = iterator if hasattr(pre_dispatch, 'endswith'): pre_dispatch = eval(pre_dispatch) self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch) # The main thread will consume the first pre_dispatch items and # the remaining items will later be lazily dispatched by async # callbacks upon task completions. iterator = itertools.islice(iterator, pre_dispatch) self._start_time = time.time() self.n_dispatched_batches = 0 self.n_dispatched_tasks = 0 self.n_completed_tasks = 0 try: # Only set self._iterating to True if at least a batch # was dispatched. In particular this covers the edge # case of Parallel used with an exhausted iterator. while self.dispatch_one_batch(iterator): self._iterating = True else: self._iterating = False if pre_dispatch == "all" or n_jobs == 1: # The iterable was consumed all at once by the above for loop. # No need to wait for async callbacks to trigger to # consumption. self._iterating = False self.retrieve() # Make sure that we get a last message telling us we are done elapsed_time = time.time() - self._start_time self._print('Done %3i out of %3i | elapsed: %s finished', (len(self._output), len(self._output), short_format_time(elapsed_time))) finally: if not self._managed_backend: self._terminate_backend() self._jobs = list() output = self._output self._output = None return output def __repr__(self): return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
bsd-3-clause
giorgiop/scikit-learn
examples/svm/plot_svm_kernels.py
326
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
glennq/scikit-learn
sklearn/tests/test_kernel_ridge.py
339
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
pianomania/scikit-learn
sklearn/naive_bayes.py
20
30830
# -*- coding: utf-8 -*- """ The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These are supervised learning methods based on applying Bayes' theorem with strong (naive) feature independence assumptions. """ # Author: Vincent Michel <vincent.michel@inria.fr> # Minor fixes by Fabian Pedregosa # Amit Aides <amitibo@tx.technion.ac.il> # Yehuda Finkelstein <yehudaf@tx.technion.ac.il> # Lars Buitinck # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # (parts based on earlier work by Mathieu Blondel) # # License: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from .base import BaseEstimator, ClassifierMixin from .preprocessing import binarize from .preprocessing import LabelBinarizer from .preprocessing import label_binarize from .utils import check_X_y, check_array, check_consistent_length from .utils.extmath import safe_sparse_dot, logsumexp from .utils.multiclass import _check_partial_fit_first_call from .utils.fixes import in1d from .utils.validation import check_is_fitted from .externals import six __all__ = ['BernoulliNB', 'GaussianNB', 'MultinomialNB'] class BaseNB(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Abstract base class for naive Bayes estimators""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of shape [n_classes, n_samples]. Input is passed to _joint_log_likelihood as-is by predict, predict_proba and predict_log_proba. """ def predict(self, X): """ Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Predicted target values for X """ jll = self._joint_log_likelihood(X) return self.classes_[np.argmax(jll, axis=1)] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the log-probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ jll = self._joint_log_likelihood(X) # normalize by P(x) = P(f_1, ..., f_n) log_prob_x = logsumexp(jll, axis=1) return jll - np.atleast_2d(log_prob_x).T def predict_proba(self, X): """ Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ return np.exp(self.predict_log_proba(X)) class GaussianNB(BaseNB): """ Gaussian Naive Bayes (GaussianNB) Can perform online updates to model parameters via `partial_fit` method. For details on algorithm used to update feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Read more in the :ref:`User Guide <gaussian_naive_bayes>`. Parameters ---------- priors : array-like, shape (n_classes,) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_prior_ : array, shape (n_classes,) probability of each class. class_count_ : array, shape (n_classes,) number of training samples observed in each class. theta_ : array, shape (n_classes, n_features) mean of each feature per class sigma_ : array, shape (n_classes, n_features) variance of each feature per class Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB(priors=None) >>> print(clf.predict([[-0.8, -1]])) [1] >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y)) GaussianNB(priors=None) >>> print(clf_pf.predict([[-0.8, -1]])) [1] """ def __init__(self, priors=None): self.priors = priors def fit(self, X, y, sample_weight=None): """Fit Gaussian Naive Bayes according to X, y Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape (n_samples,), optional (default=None) Weights applied to individual samples (1. for unweighted). .. versionadded:: 0.17 Gaussian Naive Bayes supports fitting with *sample_weight*. Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) return self._partial_fit(X, y, np.unique(y), _refit=True, sample_weight=sample_weight) @staticmethod def _update_mean_variance(n_past, mu, var, X, sample_weight=None): """Compute online update of Gaussian mean and variance. Given starting sample count, mean, and variance, a new set of points X, and optionally sample weights, return the updated mean and variance. (NB - each dimension (column) in X is treated as independent -- you get variance, not covariance). Can take scalar mean and variance, or vector mean and variance to simultaneously update a number of independent Gaussians. See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Parameters ---------- n_past : int Number of samples represented in old mean and variance. If sample weights were given, this should contain the sum of sample weights represented in old mean and variance. mu : array-like, shape (number of Gaussians,) Means for Gaussians in original set. var : array-like, shape (number of Gaussians,) Variances for Gaussians in original set. sample_weight : array-like, shape (n_samples,), optional (default=None) Weights applied to individual samples (1. for unweighted). Returns ------- total_mu : array-like, shape (number of Gaussians,) Updated mean for each Gaussian over the combined set. total_var : array-like, shape (number of Gaussians,) Updated variance for each Gaussian over the combined set. """ if X.shape[0] == 0: return mu, var # Compute (potentially weighted) mean and variance of new datapoints if sample_weight is not None: n_new = float(sample_weight.sum()) new_mu = np.average(X, axis=0, weights=sample_weight / n_new) new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight / n_new) else: n_new = X.shape[0] new_var = np.var(X, axis=0) new_mu = np.mean(X, axis=0) if n_past == 0: return new_mu, new_var n_total = float(n_past + n_new) # Combine mean of old and new data, taking into consideration # (weighted) number of observations total_mu = (n_new * new_mu + n_past * mu) / n_total # Combine variance of old and new data, taking into consideration # (weighted) number of observations. This is achieved by combining # the sum-of-squared-differences (ssd) old_ssd = n_past * var new_ssd = n_new * new_var total_ssd = (old_ssd + new_ssd + (n_past / float(n_new * n_total)) * (n_new * mu - n_new * new_mu) ** 2) total_var = total_ssd / n_total return total_mu, total_var def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance and numerical stability overhead, hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,), optional (default=None) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape (n_samples,), optional (default=None) Weights applied to individual samples (1. for unweighted). .. versionadded:: 0.17 Returns ------- self : object Returns self. """ return self._partial_fit(X, y, classes, _refit=False, sample_weight=sample_weight) def _partial_fit(self, X, y, classes=None, _refit=False, sample_weight=None): """Actual implementation of Gaussian NB fitting. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,), optional (default=None) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. _refit: bool, optional (default=False) If true, act as though this were the first time we called _partial_fit (ie, throw away any past fitting and start over). sample_weight : array-like, shape (n_samples,), optional (default=None) Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) check_consistent_length(y, sample_weight) # If the ratio of data variance between dimensions is too small, it # will cause numerical errors. To address this, we artificially # boost the variance by epsilon, a small fraction of the standard # deviation of the largest dimension. epsilon = 1e-9 * np.var(X, axis=0).max() if _refit: self.classes_ = None if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_features = X.shape[1] n_classes = len(self.classes_) self.theta_ = np.zeros((n_classes, n_features)) self.sigma_ = np.zeros((n_classes, n_features)) self.class_count_ = np.zeros(n_classes, dtype=np.float64) # Initialise the class prior n_classes = len(self.classes_) # Take into account the priors if self.priors is not None: priors = np.asarray(self.priors) # Check that the provide prior match the number of classes if len(priors) != n_classes: raise ValueError('Number of priors must match number of' ' classes.') # Check that the sum is 1 if priors.sum() != 1.0: raise ValueError('The sum of the priors should be 1.') # Check that the prior are non-negative if (priors < 0).any(): raise ValueError('Priors must be non-negative.') self.class_prior_ = priors else: # Initialize the priors to zeros for each class self.class_prior_ = np.zeros(len(self.classes_), dtype=np.float64) else: if X.shape[1] != self.theta_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (X.shape[1], self.theta_.shape[1])) # Put epsilon back in each time self.sigma_[:, :] -= epsilon classes = self.classes_ unique_y = np.unique(y) unique_y_in_classes = in1d(unique_y, classes) if not np.all(unique_y_in_classes): raise ValueError("The target label(s) %s in y do not exist in the " "initial classes %s" % (unique_y[~unique_y_in_classes], classes)) for y_i in unique_y: i = classes.searchsorted(y_i) X_i = X[y == y_i, :] if sample_weight is not None: sw_i = sample_weight[y == y_i] N_i = sw_i.sum() else: sw_i = None N_i = X_i.shape[0] new_theta, new_sigma = self._update_mean_variance( self.class_count_[i], self.theta_[i, :], self.sigma_[i, :], X_i, sw_i) self.theta_[i, :] = new_theta self.sigma_[i, :] = new_sigma self.class_count_[i] += N_i self.sigma_[:, :] += epsilon # Update if only no priors is provided if self.priors is None: # Empirical prior, with sample_weight taken into account self.class_prior_ = self.class_count_ / self.class_count_.sum() return self def _joint_log_likelihood(self, X): check_is_fitted(self, "classes_") X = check_array(X) joint_log_likelihood = [] for i in range(np.size(self.classes_)): jointi = np.log(self.class_prior_[i]) n_ij = - 0.5 * np.sum(np.log(2. * np.pi * self.sigma_[i, :])) n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / (self.sigma_[i, :]), 1) joint_log_likelihood.append(jointi + n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T return joint_log_likelihood class BaseDiscreteNB(BaseNB): """Abstract base class for naive Bayes on discrete/categorical data Any estimator based on this class should provide: __init__ _joint_log_likelihood(X) as per BaseNB """ def _update_class_log_prior(self, class_prior=None): n_classes = len(self.classes_) if class_prior is not None: if len(class_prior) != n_classes: raise ValueError("Number of priors must match number of" " classes.") self.class_log_prior_ = np.log(class_prior) elif self.fit_prior: # empirical prior, with sample_weight taken into account self.class_log_prior_ = (np.log(self.class_count_) - np.log(self.class_count_.sum())) else: self.class_log_prior_ = np.zeros(n_classes) - np.log(n_classes) def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance overhead hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. classes : array-like, shape = [n_classes], optional (default=None) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape = [n_samples], optional (default=None) Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) _, n_features = X.shape if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_effective_classes = len(classes) if len(classes) > 1 else 2 self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) elif n_features != self.coef_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (n_features, self.coef_.shape[-1])) Y = label_binarize(y, classes=self.classes_) if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) n_samples, n_classes = Y.shape if X.shape[0] != Y.shape[0]: msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible." raise ValueError(msg % (X.shape[0], y.shape[0])) # label_binarize() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently Y = Y.astype(np.float64) if sample_weight is not None: sample_weight = np.atleast_2d(sample_weight) Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas self._count(X, Y) # XXX: OPTIM: we could introduce a public finalization method to # be called by the user explicitly just once after several consecutive # calls to partial_fit and prior any call to predict[_[log_]proba] # to avoid computing the smooth log probas at each call to partial fit self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self def fit(self, X, y, sample_weight=None): """Fit Naive Bayes classifier according to X, y Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : array-like, shape = [n_samples], optional (default=None) Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y, 'csr') _, n_features = X.shape labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) # LabelBinarizer().fit_transform() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently; # this means we also don't have to cast X to floating point Y = Y.astype(np.float64) if sample_weight is not None: sample_weight = np.atleast_2d(sample_weight) Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas n_effective_classes = Y.shape[1] self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) self._count(X, Y) self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self # XXX The following is a stopgap measure; we need to set the dimensions # of class_log_prior_ and feature_log_prob_ correctly. def _get_coef(self): return (self.feature_log_prob_[1:] if len(self.classes_) == 2 else self.feature_log_prob_) def _get_intercept(self): return (self.class_log_prior_[1:] if len(self.classes_) == 2 else self.class_log_prior_) coef_ = property(_get_coef) intercept_ = property(_get_intercept) class MultinomialNB(BaseDiscreteNB): """ Naive Bayes classifier for multinomial models The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. Read more in the :ref:`User Guide <multinomial_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : boolean, optional (default=True) Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size (n_classes,), optional (default=None) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape (n_classes, ) Smoothed empirical log probability for each class. intercept_ : property Mirrors ``class_log_prior_`` for interpreting MultinomialNB as a linear model. feature_log_prob_ : array, shape (n_classes, n_features) Empirical log probability of features given a class, ``P(x_i|y)``. coef_ : property Mirrors ``feature_log_prob_`` for interpreting MultinomialNB as a linear model. class_count_ : array, shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2:3])) [3] Notes ----- For the rationale behind the names `coef_` and `intercept_`, i.e. naive Bayes as a linear classifier, see J. Rennie et al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML. References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html """ def __init__(self, alpha=1.0, fit_prior=True, class_prior=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if np.any((X.data if issparse(X) else X) < 0): raise ValueError("Input X must be non-negative") self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') return (safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_) class BernoulliNB(BaseDiscreteNB): """Naive Bayes classifier for multivariate Bernoulli models. Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean features. Read more in the :ref:`User Guide <bernoulli_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). binarize : float or None, optional (default=0.0) Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors. fit_prior : boolean, optional (default=True) Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size=[n_classes,], optional (default=None) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape = [n_classes] Log probability of each class (smoothed). feature_log_prob_ : array, shape = [n_classes, n_features] Empirical log probability of features given a class, P(x_i|y). class_count_ : array, shape = [n_classes] Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape = [n_classes, n_features] Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2:3])) [3] References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS). """ def __init__(self, alpha=1.0, binarize=.0, fit_prior=True, class_prior=None): self.alpha = alpha self.binarize = binarize self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if self.binarize is not None: X = binarize(X, threshold=self.binarize) self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = self.class_count_ + self.alpha * 2 self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') if self.binarize is not None: X = binarize(X, threshold=self.binarize) n_classes, n_features = self.feature_log_prob_.shape n_samples, n_features_X = X.shape if n_features_X != n_features: raise ValueError("Expected input with %d features, got %d instead" % (n_features, n_features_X)) neg_prob = np.log(1 - np.exp(self.feature_log_prob_)) # Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T) jll += self.class_log_prior_ + neg_prob.sum(axis=1) return jll
bsd-3-clause
glennq/scikit-learn
sklearn/utils/deprecation.py
75
2417
import warnings __all__ = ["deprecated", ] class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecation.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra: string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc
bsd-3-clause
pianomania/scikit-learn
examples/decomposition/plot_image_denoising.py
69
6249
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np import scipy as sp from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d from sklearn.utils.testing import SkipTest from sklearn.utils.fixes import sp_version if sp_version < (0, 12): raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and " "thus does not include the scipy.misc.face() image.") ############################################################################### try: from scipy import misc face = misc.face(gray=True) except AttributeError: # Old versions of scipy have face in the top level package face = sp.face(gray=True) # Convert from uint8 representation with values between 0 and 255 to # a floating point representation with values between 0 and 1. face = face / 255 # downsample for higher speed face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2] face /= 4.0 height, width = face.shape # Distort the right half of the image print('Distorting image...') distorted = face.copy() distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :width // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from face patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, face, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, width // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = face.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d( patches, (height, width // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], face, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
glennq/scikit-learn
sklearn/cluster/bicluster.py
64
19850
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils import check_random_state from ..utils.arpack import eigsh, svds from ..utils.extmath import (make_nonnegative, norm, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. A = safe_sparse_dot(array.T, array) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0) vt = v.T if np.any(np.isnan(u)): A = safe_sparse_dot(array, array.T) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
glennq/scikit-learn
sklearn/linear_model/least_angle.py
5
57466
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ from __future__ import print_function # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel from ..base import RegressorMixin from ..utils import arrayfuncs, as_float_array, check_X_y, deprecated from ..model_selection import check_cv from ..exceptions import ConvergenceWarning from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange from ..externals.six import string_types import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} def lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=np.finfo(np.float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ----------- X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. positive : boolean (default=False) Restrict coefficients to be >= 0. When using this option together with method 'lasso' the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha (neither will they when using method 'lar' ..). Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, optional (default='lar') Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If ``False``, ``X`` is overwritten. copy_Gram : bool, optional (default=True) If ``False``, ``Gram`` is overwritten. verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, optional (default=False) Whether to return the number of iterations. Returns -------- alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Effron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <https://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <https://en.wikipedia.org/wiki/Lasso_(statistics)>`_ """ n_features = X.shape[1] n_samples = y.size max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. # We are initializing this to "zeros" and not empty, because # it is passed to scipy linalg functions and thus if it has NaNs, # even if they are in the upper part that it not used, we # get errors raised. # Once we support only scipy > 0.12 we can use check_finite=False and # go back to "empty" L = np.zeros((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) solve_cholesky, = get_lapack_funcs(('potrs',), (X,)) if Gram is None: if copy_X: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') elif isinstance(Gram, string_types) and Gram == 'auto': Gram = None if X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) elif copy_Gram: Gram = Gram.copy() if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny = np.finfo(np.float).tiny # to avoid division by 0 warning tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps while True: if Cov.size: if positive: C_idx = np.argmax(Cov) else: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] if positive: C = C_ else: C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## if positive: sign_active[n_active] = np.ones_like(C_) else: sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by # the test suite. The `equality_tolerance` margin added in 0.16 # to get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, info = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, info = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny)) if positive: gamma_ = min(g1, C / AA) else: g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) alphas = np.resize(alphas, n_iter + add_features) coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] alpha = alphas[n_iter, np.newaxis] prev_alpha = alphas[n_iter - 1, np.newaxis] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 [arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in idx] n_active -= 1 m, n = idx, n_active # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated residual = y - np.dot(X, coef) temp = np.dot(X.T[drop_idx], residual) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(LinearModel, RegressorMixin): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use ``np.inf`` for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \ whichever is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) \ | list of n_targets such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lars(n_nonzero_coefs=1) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True, n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] See also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ def __init__(self, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.method = 'lar' self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.positive = positive self.eps = eps self.copy_X = copy_X self.fit_path = fit_path def _get_gram(self): # precompute if n_samples > n_features precompute = self.precompute if hasattr(precompute, '__array__'): Gram = precompute elif precompute == 'auto': Gram = 'auto' else: Gram = None return Gram def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \ optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, multi_output=True) n_features = X.shape[1] X, y, X_offset, y_offset, X_scale = self._preprocess_data(X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter precompute = self.precompute if not hasattr(precompute, '__array__') and ( precompute is True or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): Gram = np.dot(X.T, X) else: Gram = self._get_gram() self.alphas_ = [] self.n_iter_ = [] if self.fit_path: self.coef_ = [] self.active_ = [] self.coef_path_ = [] for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_.append(coef_path[:, -1]) if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: self.coef_ = np.empty((n_targets, n_features)) for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_offset, y_offset, X_scale) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \ nodes in the path with correlation greater than ``alpha``, whichever \ is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) or list If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int. The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -0.963257...] See also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ def __init__(self, alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True, positive=False): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.method = 'lasso' self.positive = positive self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(np.float).eps, positive=False): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : 'lar' | 'lasso' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : integer, optional Sets the amount of verbosity fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array, shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas) Coefficients along the path residues : array, shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps, positive=positive) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. See also -------- lars_path, LassoLars, LassoLarsCV """ method = 'lar' def __init__(self, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.copy_X = copy_X self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) X = as_float_array(X, copy=self.copy_X) y = as_float_array(y, copy=self.copy_X) # init cross-validation generator cv = check_cv(self.cv, classifier=False) Gram = 'auto' if self.precompute else None cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps, positive=self.positive) for train, test in cv.split(X, y)) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, active, coefs, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' Lars.fit(self, X, y) return self @property def alpha(self): # impedance matching for the above Lars.fit (should not be documented) return self.alpha_ @property @deprecated("Attribute mse_path_ is deprecated in 0.18 and " "will be removed in 0.20. Use 'cv_mse_path_' instead") def cv_mse_path_(self): return self.mse_path_ class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsCV only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : 'bic' | 'aic' The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). positive : boolean (default=False) Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached. verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. This parameter is ignored when `fit_intercept` is set to False. When the regressors are normalized, note that this makes the hyperparameters learnt more robust and almost independent of the number of samples. The same property is not valid for standardized data. However, if you wish to standardize, please use `preprocessing.StandardScaler` before calling `fit` on an estimator with `normalize=False`. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criteria is chosen. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLarsIC(criterion='bic') >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, positive=False, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_information_criterion See also -------- lars_path, LassoLars, LassoLarsCV """ def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, positive=False): self.criterion = criterion self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps def fit(self, X, y, copy_X=True): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) max_iter = self.max_iter Gram = self._get_gram() alphas_, active_, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=max_iter, eps=self.eps, return_n_iter=True, positive=self.positive) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ with np.errstate(divide='ignore'): self.criterion_ = n_samples * np.log(mean_squared_error) + K * df n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
privatecaptain/qden
flask_script.py
1
7845
from flask import Flask, request, make_response, redirect, render_template import random from flask import Flask, url_for,render_template import xlrd import sklearn.ensemble from sklearn.ensemble import RandomForestRegressor import sqlite3 import requests db_connector = sqlite3.connect("/var/www/qden/qden_data.db",check_same_thread=False) # """ http://localhost:5000/84.2/56.8/7329.4 """ app = Flask(__name__) path = "/var/www/qden/Q_Den.xlsx" book = xlrd.open_workbook(path) # print book.nsheets first_sheet = book.sheet_by_index(0) num_rows = first_sheet.nrows - 1 curr_row = 0 x=[] y=[] y_echo=[] y_total_cooling_hours=[] y_DX=[] y_EERH=[] y_consumption_saving=[] y_peak_demand_saving=[] y_water_consumption=[] while curr_row < num_rows: curr_row += 1 # row = first_sheet.row(curr_row) dry_bulb = first_sheet.cell(curr_row,1).value wet_bulb = first_sheet.cell(curr_row,3).value elevation = first_sheet.cell(curr_row,4).value echo = first_sheet.cell(curr_row,5).value total_cooling_hours = first_sheet.cell(curr_row,6).value DX = first_sheet.cell(curr_row,7).value EERH = first_sheet.cell(curr_row,8).value consumption_saving = first_sheet.cell(curr_row,9).value peak_demand_saving = first_sheet.cell(curr_row,10).value water_consumption = first_sheet.cell(curr_row,11).value xval = [dry_bulb,wet_bulb,elevation] y.append(echo) y_echo.append(echo) y_total_cooling_hours.append(total_cooling_hours) y_DX.append(DX) y_EERH.append(EERH) y_consumption_saving.append(consumption_saving) y_peak_demand_saving.append(peak_demand_saving) y_water_consumption.append(water_consumption) x.append(xval) #4410 5 0.0103430437039, 960 7 0.010346165879 clf_echo = RandomForestRegressor(n_estimators=4410, max_depth=5) clf_echo.fit(x, y_echo) #960 19 977462.760895, clf_total_cooling_hours = RandomForestRegressor(n_estimators=960, max_depth=19) clf_total_cooling_hours.fit(x, y_total_cooling_hours) clf_DX = RandomForestRegressor(n_estimators=1610, max_depth=8) clf_DX.fit(x, y_DX) #4810 4 7.19106692097 4810 4 7.19106692097 2760 18 7.3044908132 clf_EERH = RandomForestRegressor(n_estimators=4810, max_depth=4) clf_EERH.fit(x, y_EERH) #1910 18 0.00471920801752, 4610 7 0.00476592327654 clf_consumption_saving = RandomForestRegressor(n_estimators=1910, max_depth=18) clf_consumption_saving.fit(x, y_consumption_saving) #done 10 7 0.00819795771602, 510 14 0.00930511952647, 610 11 0.00936973055891, clf_peak_demand_saving = RandomForestRegressor(n_estimators=510, max_depth=14) clf_peak_demand_saving.fit(x, y_peak_demand_saving) #2610 11 0.0129692552313 clf_water_consumption = RandomForestRegressor(n_estimators=2610, max_depth=11) clf_water_consumption.fit(x, y_water_consumption) # num_rows = 5 #@app.route('/') #def api_root(): # return render_template('login.html') #routing the qden page to the User Interface @app.route('/articles') def api_articles(): return 'List of ' + url_for('api_articles') # @app.route('/articles/<articleid>') # def api_article(articleid): # return 'You are reading ' + articleid @app.route('/articles/<articleid1>/<articleid2>/<articleid3>') def api_article(articleid1): return "hii" # return 'You are reading ' + articleid1 @app.route('/<dry_bulb>/<wet_bulb>/<elevation>') def user(dry_bulb,wet_bulb,elevation): # num_rows = 5 # path = "/Users/prasanna/mrjob/Q_Den.xlsx" # book = xlrd.open_workbook(path) # # print book.nsheets # first_sheet = book.sheet_by_index(0) # num_rows = first_sheet.nrows - 1 X_test = [dry_bulb,wet_bulb,elevation] preds_echo = clf_echo.predict(X_test) preds_total_cooling_hours = clf_total_cooling_hours.predict(X_test) preds_DX = clf_DX.predict(X_test) preds_EERH = clf_EERH.predict(X_test) preds_consumption_saving = clf_consumption_saving.predict(X_test) preds_peak_demand_saving = clf_peak_demand_saving.predict(X_test) preds_water_consumption = clf_water_consumption.predict(X_test) obj = {"echo":preds_echo[0],"total cooling hours":preds_total_cooling_hours[0],"DX":preds_DX[0],"EERH":preds_EERH[0], "consumption saving":preds_consumption_saving[0],"demand saving":preds_peak_demand_saving[0], "water consumption":preds_water_consumption[0] } return str(obj) + "," + str(dry_bulb) + "," + str(wet_bulb) + "," + str(elevation) + "," + str(preds_echo[0]) + "," + str(preds_total_cooling_hours[0]) + "," + str(preds_DX[0]) + "," + str(preds_EERH[0]) + "," + str(preds_consumption_saving[0]) + "," + str(preds_peak_demand_saving[0]) + "," + str(preds_water_consumption[0]) # return "usercalled"+str(dry_bulb)+str(wet_bulb)+str(elevation) # def sendmail(to,code): return requests.post( "https://api.mailgun.net/v3/info.air2o.com/messages", auth=("api", "key-49df66c0deb773d5ee957597be27f9e9"), data={"from": "Q-DEN Air2O <verification@info.air2o.com>", "to": [to,], "subject": "Verification Email", "text": "Congratulations on creating your Q-DEN account. Please enter the code below to activate your account.\n\n\n" + code}) def adduser(name,email,code): try: with db_connector: cursor = db_connector.cursor() t = (name,email,code,0) cursor.execute("INSERT INTO USERS(name,email,password,active) VALUES(?,?,?,?);",t) return True except: return False def activate(email): try: with db_connector: cursor = db_connector.cursor() t = (1,email) cursor.execute("UPDATE USERS SET active=? WHERE email=?;",t) return True except: return False def verify(email,code): try: with db_connector: cursor = db_connector.cursor() t = (email,) cursor.execute("SELECT password FROM USERS WHERE email=?;",t) pwd = cursor.fetchone()[0] if code == pwd: return True except: pass return False def valid_login(email): try: with db_connector: cursor = db_connector.cursor() t = (email,) cursor.execute("SELECT * FROM USERS WHERE email=?;",t) dpass = cursor.fetchone()[0] if dpass: return True except: pass return False def log_the_user_in(email,flag=False): try: with db_connector: cursor = db_connector.cursor() t = (email,) cursor.execute("SELECT active FROM USERS WHERE email=?;",t) act = cursor.fetchone()[0] if int(act) == 1: resp = make_response(render_template('index.html')) if flag: resp.set_cookie('email',email) return resp except: pass return render_template("success.html",email=email) def generate_code(): return random.randint(1000,10000) @app.route('/') def index(): email = request.cookies.get('email') if email: return log_the_user_in(email) return render_template('login.html') @app.route('/login', methods=['POST',]) def login(): if request.method == 'POST': email = request.form['email'] try: flag = request.form['remember'] except: flag = None print flag if valid_login(email): if flag == 'on': return log_the_user_in(email,flag=True) else: return log_the_user_in(email) else: return render_template('loginerror.html') return render_template('login.html') @app.route('/signup',methods=['POST']) def signup(): email = request.form['email'] if request.method == 'POST': name = request.form['name'] code = str(generate_code()) if adduser(name,email,code): sendmail(email,code) return render_template('success.html',email=email) return render_template('login.html') @app.route('/activate',methods=['POST',]) def activate_user(): email = request.form['email'] code = request.form['code'] if verify(email,code): if activate(email): return render_template('index.html') return render_template('login.html') if __name__ == '__main__': app.run()
apache-2.0
ray-project/ray
rllib/policy/view_requirement.py
1
6277
import dataclasses import gym from typing import Dict, List, Optional, Union import numpy as np from ray.rllib.utils.annotations import PublicAPI from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.serialization import ( gym_space_to_dict, gym_space_from_dict, ) torch, _ = try_import_torch() @PublicAPI @dataclasses.dataclass class ViewRequirement: """Single view requirement (for one column in an SampleBatch/input_dict). Policies and ModelV2s return a Dict[str, ViewRequirement] upon calling their `[train|inference]_view_requirements()` methods, where the str key represents the column name (C) under which the view is available in the input_dict/SampleBatch and ViewRequirement specifies the actual underlying column names (in the original data buffer), timestep shifts, and other options to build the view. Examples: >>> from ray.rllib.models.modelv2 import ModelV2 >>> # The default ViewRequirement for a Model is: >>> req = ModelV2(...).view_requirements # doctest: +SKIP >>> print(req) # doctest: +SKIP {"obs": ViewRequirement(shift=0)} Args: data_col: The data column name from the SampleBatch (str key). If None, use the dict key under which this ViewRequirement resides. space: The gym Space used in case we need to pad data in inaccessible areas of the trajectory (t<0 or t>H). Default: Simple box space, e.g. rewards. shift: Single shift value or list of relative positions to use (relative to the underlying `data_col`). Example: For a view column "prev_actions", you can set `data_col="actions"` and `shift=-1`. Example: For a view column "obs" in an Atari framestacking fashion, you can set `data_col="obs"` and `shift=[-3, -2, -1, 0]`. Example: For the obs input to an attention net, you can specify a range via a str: `shift="-100:0"`, which will pass in the past 100 observations plus the current one. index: An optional absolute position arg, used e.g. for the location of a requested inference dict within the trajectory. Negative values refer to counting from the end of a trajectory. (#TODO: Is this still used?) batch_repeat_value: determines how many time steps we should skip before we repeat the view indexing for the next timestep. For RNNs this number is usually the sequence length that we will rollout over. Example: view_col = "state_in_0", data_col = "state_out_0" batch_repeat_value = 5, shift = -1 buffer["state_out_0"] = [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] output["state_in_0"] = [-1, 4, 9] Explanation: For t=0, we output buffer["state_out_0"][-1]. We then skip 5 time steps and repeat the view. for t=5, we output buffer["state_out_0"][4] . Continuing on this pattern, for t=10, we output buffer["state_out_0"][9]. used_for_compute_actions: Whether the data will be used for creating input_dicts for `Policy.compute_actions()` calls (or `Policy.compute_actions_from_input_dict()`). used_for_training: Whether the data will be used for training. If False, the column will not be copied into the final train batch. """ data_col: Optional[str] = None space: gym.Space = None shift: Union[int, str, List[int]] = 0 index: Optional[int] = None batch_repeat_value: int = 1 used_for_compute_actions: bool = True used_for_training: bool = True shift_arr: Optional[np.ndarray] = dataclasses.field(init=False) def __post_init__(self): """Initializes a ViewRequirement object. shift_arr is infered from the shift value. For example: - if shift is -1, then shift_arr is np.array([-1]). - if shift is [-1, -2], then shift_arr is np.array([-2, -1]). - if shift is "-2:2", then shift_arr is np.array([-2, -1, 0, 1, 2]). """ if self.space is None: self.space = gym.spaces.Box(float("-inf"), float("inf"), shape=()) # TODO: ideally we won't need shift_from and shift_to, and shift_step. # all of them should be captured within shift_arr. # Special case: Providing a (probably larger) range of indices, e.g. # "-100:0" (past 100 timesteps plus current one). self.shift_from = self.shift_to = self.shift_step = None if isinstance(self.shift, str): split = self.shift.split(":") assert len(split) in [2, 3], f"Invalid shift str format: {self.shift}" if len(split) == 2: f, t = split self.shift_step = 1 else: f, t, s = split self.shift_step = int(s) self.shift_from = int(f) self.shift_to = int(t) shift = self.shift self.shfit_arr = None if self.shift_from: self.shift_arr = np.arange( self.shift_from, self.shift_to + 1, self.shift_step ) else: if isinstance(shift, int): self.shift_arr = np.array([shift]) elif isinstance(shift, list): self.shift_arr = np.array(shift) else: ValueError(f'unrecognized shift type: "{shift}"') def to_dict(self) -> Dict: """Return a dict for this ViewRequirement that can be JSON serialized.""" return { "data_col": self.data_col, "space": gym_space_to_dict(self.space), "shift": self.shift, "index": self.index, "batch_repeat_value": self.batch_repeat_value, "used_for_training": self.used_for_training, "used_for_compute_actions": self.used_for_compute_actions, } @classmethod def from_dict(cls, d: Dict): """Construct a ViewRequirement instance from JSON deserialized dict.""" d["space"] = gym_space_from_dict(d["space"]) return cls(**d)
apache-2.0
ray-project/ray
rllib/examples/models/shared_weights_model.py
1
6957
import numpy as np from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.torch.misc import SlimFC from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.utils.annotations import override from ray.rllib.utils.framework import try_import_tf, try_import_torch tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() TF2_GLOBAL_SHARED_LAYER = None class TF2SharedWeightsModel(TFModelV2): """Example of weight sharing between two different TFModelV2s. NOTE: This will only work for tf2.x. When running with config.framework=tf, use SharedWeightsModel1 and SharedWeightsModel2 below, instead! The shared (single) layer is simply defined outside of the two Models, then used by both Models in their forward pass. """ def __init__( self, observation_space, action_space, num_outputs, model_config, name ): super().__init__( observation_space, action_space, num_outputs, model_config, name ) global TF2_GLOBAL_SHARED_LAYER # The global, shared layer to be used by both models. if TF2_GLOBAL_SHARED_LAYER is None: TF2_GLOBAL_SHARED_LAYER = tf.keras.layers.Dense( units=64, activation=tf.nn.relu, name="fc1" ) inputs = tf.keras.layers.Input(observation_space.shape) last_layer = TF2_GLOBAL_SHARED_LAYER(inputs) output = tf.keras.layers.Dense( units=num_outputs, activation=None, name="fc_out" )(last_layer) vf = tf.keras.layers.Dense(units=1, activation=None, name="value_out")( last_layer ) self.base_model = tf.keras.models.Model(inputs, [output, vf]) @override(ModelV2) def forward(self, input_dict, state, seq_lens): out, self._value_out = self.base_model(input_dict["obs"]) return out, [] @override(ModelV2) def value_function(self): return tf.reshape(self._value_out, [-1]) class SharedWeightsModel1(TFModelV2): """Example of weight sharing between two different TFModelV2s. NOTE: This will only work for tf1 (static graph). When running with config.framework_str=tf2, use TF2SharedWeightsModel, instead! Here, we share the variables defined in the 'shared' variable scope by entering it explicitly with tf1.AUTO_REUSE. This creates the variables for the 'fc1' layer in a global scope called 'shared' (outside of the Policy's normal variable scope). """ def __init__( self, observation_space, action_space, num_outputs, model_config, name ): super().__init__( observation_space, action_space, num_outputs, model_config, name ) inputs = tf.keras.layers.Input(observation_space.shape) with tf1.variable_scope( tf1.VariableScope(tf1.AUTO_REUSE, "shared"), reuse=tf1.AUTO_REUSE, auxiliary_name_scope=False, ): last_layer = tf.keras.layers.Dense( units=64, activation=tf.nn.relu, name="fc1" )(inputs) output = tf.keras.layers.Dense( units=num_outputs, activation=None, name="fc_out" )(last_layer) vf = tf.keras.layers.Dense(units=1, activation=None, name="value_out")( last_layer ) self.base_model = tf.keras.models.Model(inputs, [output, vf]) @override(ModelV2) def forward(self, input_dict, state, seq_lens): out, self._value_out = self.base_model(input_dict["obs"]) return out, [] @override(ModelV2) def value_function(self): return tf.reshape(self._value_out, [-1]) class SharedWeightsModel2(TFModelV2): """The "other" TFModelV2 using the same shared space as the one above.""" def __init__( self, observation_space, action_space, num_outputs, model_config, name ): super().__init__( observation_space, action_space, num_outputs, model_config, name ) inputs = tf.keras.layers.Input(observation_space.shape) # Weights shared with SharedWeightsModel1. with tf1.variable_scope( tf1.VariableScope(tf1.AUTO_REUSE, "shared"), reuse=tf1.AUTO_REUSE, auxiliary_name_scope=False, ): last_layer = tf.keras.layers.Dense( units=64, activation=tf.nn.relu, name="fc1" )(inputs) output = tf.keras.layers.Dense( units=num_outputs, activation=None, name="fc_out" )(last_layer) vf = tf.keras.layers.Dense(units=1, activation=None, name="value_out")( last_layer ) self.base_model = tf.keras.models.Model(inputs, [output, vf]) @override(ModelV2) def forward(self, input_dict, state, seq_lens): out, self._value_out = self.base_model(input_dict["obs"]) return out, [] @override(ModelV2) def value_function(self): return tf.reshape(self._value_out, [-1]) TORCH_GLOBAL_SHARED_LAYER = None if torch: # The global, shared layer to be used by both models. TORCH_GLOBAL_SHARED_LAYER = SlimFC( 64, 64, activation_fn=nn.ReLU, initializer=torch.nn.init.xavier_uniform_, ) class TorchSharedWeightsModel(TorchModelV2, nn.Module): """Example of weight sharing between two different TorchModelV2s. The shared (single) layer is simply defined outside of the two Models, then used by both Models in their forward pass. """ def __init__( self, observation_space, action_space, num_outputs, model_config, name ): TorchModelV2.__init__( self, observation_space, action_space, num_outputs, model_config, name ) nn.Module.__init__(self) # Non-shared initial layer. self.first_layer = SlimFC( int(np.product(observation_space.shape)), 64, activation_fn=nn.ReLU, initializer=torch.nn.init.xavier_uniform_, ) # Non-shared final layer. self.last_layer = SlimFC( 64, self.num_outputs, activation_fn=None, initializer=torch.nn.init.xavier_uniform_, ) self.vf = SlimFC( 64, 1, activation_fn=None, initializer=torch.nn.init.xavier_uniform_, ) self._global_shared_layer = TORCH_GLOBAL_SHARED_LAYER self._output = None @override(ModelV2) def forward(self, input_dict, state, seq_lens): out = self.first_layer(input_dict["obs"]) self._output = self._global_shared_layer(out) model_out = self.last_layer(self._output) return model_out, [] @override(ModelV2) def value_function(self): assert self._output is not None, "must call forward first!" return torch.reshape(self.vf(self._output), [-1])
apache-2.0
cainiaocome/scikit-learn
examples/model_selection/plot_confusion_matrix.py
243
2496
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(iris.target_names)) plt.xticks(tick_marks, iris.target_names, rotation=45) plt.yticks(tick_marks, iris.target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cm = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) print('Confusion matrix, without normalization') print(cm) plt.figure() plot_confusion_matrix(cm) # Normalize the confusion matrix by row (i.e by the number of samples # in each class) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix') plt.show()
bsd-3-clause
giorgiop/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
115
1270
# Author: Mathieu Blondel <mathieu@mblondel.org> # License: BSD 3 clause import time import matplotlib.pyplot as plt from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) plt.figure('scikit-learn parallel %s benchmark results' % func.__name__) plt.plot(sample_sizes, one_core, label="one core") plt.plot(sample_sizes, multi_core, label="multi core") plt.xlabel('n_samples') plt.ylabel('Time (s)') plt.title('Parallel %s' % func.__name__) plt.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) plt.show()
bsd-3-clause
theoryno3/scikit-learn
examples/ensemble/plot_gradient_boosting_regression.py
226
2520
""" ============================ Gradient Boosting regression ============================ Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4. """ print(__doc__) # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error ############################################################################### # Load data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=13) X = X.astype(np.float32) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] ############################################################################### # Fit regression model params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.01, 'loss': 'ls'} clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) ############################################################################### # Plot training deviance # compute test set deviance test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, boston.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show()
bsd-3-clause
vinhqdang/wikipedia_analysis
lang_model/enwiki/bi_lstm.py
1
5254
from __future__ import division, print_function, absolute_import import tflearn from tflearn.data_utils import to_categorical, pad_sequences import csv import numpy as np from sklearn import metrics, cross_validation # import pandas import tensorflow as tf from tflearn.layers.recurrent import bidirectional_rnn, BasicLSTMCell, GRUCell from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.estimator import regression from tflearn.layers.embedding_ops import embedding # from tf.nn.rnn_* import rnn, rnn_cell # import skflow import random import time # import cPickle as pickle # from nltk.corpus import stopwords import string import getopt import sys import os data_dir = "text" # directory contains text documents model_size = 2000 # length of output vectors nb_epochs = 10 # number of training epochs embedding_size = 300 label_file = "enwikilabel" MAX_FILE_ID = 50000 cell_size = [128] dropout_ratio = 0.5 dynamic = True activation_function = "relu" learning_rate = 0.001 test_ratio = 0.2 cell_type = "lstm" try: opts, args = getopt.getopt(sys.argv[1:],"hd:model_size:epoch:lb:es:",["model_size=","epoch=","es=","cell_size=","dropout=","dynamic=","activation=","rate=","test_ratio=","cell_type="]) except getopt.GetoptError as e: print ("Error of parameters") print (e) print (sys.argv[0] + " -h for help") sys.exit(2) for opt, arg in opts: if opt == '-h': print ('LSTM for Wikipedia classification') print (sys.argv[0] + " -h for help") sys.exit () elif opt in ("-model_size","--model_size"): model_size = int (arg) elif opt in ("-epoch","--epoch"): nb_epochs = int (arg) elif opt in ["-es","--es"]: embedding_size = int (arg) elif opt in ["--cell_size"]: cell_size = arg.split (",") cell_size = [int (x) for x in cell_size] elif opt in ["--dropout"]: dropout_ratio = float (arg) elif opt in ["--dynamic"]: dynamic = bool (arg) elif opt in ["--activation"]: activation_function = arg elif opt in ["--rate"]: learning_rate = float (arg) elif opt in ["--test_ratio"]: test_ratio = float (arg) elif opt in ["--cell_type"]: if (arg != "lstm" and arg != "gru"): print ("Wrong cell type. Accept only lstm or gru.") sys.exit(1) cell_type = arg ### Training data qualities = ["stub","start","c","b","ga","fa"] print('Read labels') def load_label (label_file): with open (label_file) as f: return f.read().splitlines() Y = load_label(label_file) for i in range(len(Y)): Y[i] = qualities.index(Y[i]) print('Read content') def load_content (file_name): with open(file_name) as f: return f.read() X = [] for i in range (MAX_FILE_ID): file_name = data_dir + '/' + str(i + 1) if os.path.isfile (file_name): X.append (load_content(file_name)) X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y, test_size=test_ratio, random_state=2017) Y_train = to_categorical (Y_train, nb_classes = len (qualities)) Y_test = to_categorical (Y_test, nb_classes = len (qualities)) ### Process vocabulary print('Process vocabulary') vocab_processor = tflearn.data_utils.VocabularyProcessor(max_document_length = model_size, min_frequency = 0) X_train = np.array(list(vocab_processor.fit_transform(X_train))) X_test = np.array(list(vocab_processor.fit_transform(X_test))) X_train = pad_sequences(X_train, maxlen=model_size, value=0.) X_test = pad_sequences(X_test, maxlen=model_size, value=0.) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # pickle.dump (X_train, open ("xtrain.p", b)) # pickle.dump (X_test, open ("xtest.p", b)) # X_train = pickle.load (open ("xtrain.p", rb)) # X_test = pickle.load (open ("xtest.p", rb)) ### Models print('Build model') net = input_data([None, model_size]) net = embedding(net, input_dim=n_words, output_dim=embedding_size) if cell_type == "lstm": for i in range (len (cell_size)): if i < len(cell_size) - 1: net = bidirectional_rnn(net, BasicLSTMCell(cell_size[i]), BasicLSTMCell(cell_size[i]), return_seq = True) net = dropout(net, dropout_ratio) else: net = bidirectional_rnn(net, BasicLSTMCell(cell_size[i]), BasicLSTMCell(cell_size[i])) net = dropout(net, dropout_ratio) elif cell_type == "gru": for i in range (len (cell_size)): if i < len(cell_size) - 1: net = bidirectional_rnn(net, GRUCell(cell_size[i]), GRUCell(cell_size[i]), return_seq = True) net = dropout(net, dropout_ratio) else: net = bidirectional_rnn(net, GRUCell(cell_size[i]), GRUCell(cell_size[i])) net = dropout(net, dropout_ratio) net = fully_connected(net, len (qualities), activation='softmax') net = regression(net, optimizer='adam', learning_rate=learning_rate, loss='categorical_crossentropy') print ('Train model') model = tflearn.DNN(net, tensorboard_verbose=1, tensorboard_dir = "logdir/bi_lstm") print ('Predict') model.fit(X_train, Y_train, validation_set=(X_test, Y_test), show_metric=True, batch_size=32, n_epoch = nb_epochs)
gpl-2.0
UniMOOC/gcb-new-module
modules/data_pump/data_pump.py
3
61410
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Enable periodic transmission of DB and job-produced content to BigQuery.""" __author__ = [ 'Michael Gainer (mgainer@google.com)', ] import base64 import collections import copy import datetime import logging import os import random import re import time import urllib import apiclient import apiclient.discovery import httplib2 import oauth2client import oauth2client.client from common import catch_and_log from common import crypto from common import schema_fields from common import utils as common_utils from controllers import sites from controllers import utils from models import analytics from models import courses from models import custom_modules from models import data_sources from models import jobs from models import roles from models import transforms from modules.dashboard import dashboard from modules.dashboard import tabs from google.appengine.ext import db from google.appengine.ext import deferred # CourseBuilder setup strings XSRF_ACTION_NAME = 'data_pump' DASHBOARD_ACTION = 'data_pump' # Separate permission to be able to push user data delegable to non-super-users ACCESS_PERMISSION = 'push_data' ACCESS_PERMISSION_DESCRIPTION = 'Can push user data outside CourseBuilder.' # Connection parameters for discovering and auth to BigQuery. BIGQUERY_RW_SCOPE = 'https://www.googleapis.com/auth/bigquery' BIGQUERY_API_NAME = 'bigquery' BIGQUERY_API_VERSION = 'v2' # API endpoint for initiating a retryable upload. BIGQUERY_API_UPLOAD_URL_PREFIX = ( 'https://www.googleapis.com/upload/bigquery/v2/projects/') # UI for BigQuery interactive queries BIGQUERY_UI_URL_PREFIX = 'https://bigquery.cloud.google.com/table/' # Max of about 20 min of retries (random exponential backoff from 2^1...2^MAX) MAX_CONSECUTIVE_FAILURES = 10 MAX_RETRY_BACKOFF_SECONDS = 600 # Config for secret PII_SECRET_LENGTH = 20 PII_SECRET_DEFAULT_LIFETIME = '30 days' # Constants for accessing job context settings map UPLOAD_URL = 'upload_url' LAST_START_OFFSET = 'last_start_offset' LAST_END_OFFSET = 'last_end_offset' LAST_PAGE_SENT = 'last_page_sent' LAST_PAGE_NUM_ITEMS = 'last_page_num_items' CONSECUTIVE_FAILURES = 'consecutive_failures' FAILURE_REASON = 'failure_reason' ITEMS_UPLOADED = 'items_uploaded' PII_SECRET = 'pii_secret' # Constants for items within course settings schema DATA_PUMP_SETTINGS_SCHEMA_SECTION = 'data_pump' PROJECT_ID = 'project_id' DATASET_NAME = 'dataset_name' JSON_KEY = 'json_key' TABLE_LIFETIME = 'table_lifetime' PII_ENCRYPTION_TOKEN = 'pii_encryption_token' # Discovery service lookup retries constants DISCOVERY_SERVICE_MAX_ATTEMPTS = 10 DISCOVERY_SERVICE_RETRY_SECONDS = 2 def _get_data_source_class_by_name(name): source_classes = data_sources.Registry.get_rest_data_source_classes() for source_class in source_classes: if source_class.__name__ == name and source_class.exportable(): return source_class names = [source_class.__name__ for source_class in source_classes] logging.critical( 'No entry found for data source class with name "%s". ' 'Available names are: %s', name, ' '.join(names)) return None class DataPumpJob(jobs.DurableJobBase): @staticmethod def get_description(): """Job to push data from CourseBuilder to BigQuery. The job operates from the deferred queue, and takes advantage of the underlying TaskQueue retry and backoff support. One job is created for each DataSource (see models/data_source). This job moves data from the paginated data source up to Google BigQuery via the retryable POST method. Jobs here run on the TaskQueue named "default along with all other CB deferred tasks because that queue has a reasonable set of config parameters. However, there is nothing about these jobs that requires interleaving with others if queue parameters need to be tuned. Functional tests will need to be changed to have execute_all_deferred_tasks() pass the name of the new queue. """ def __init__(self, app_context, data_source_class_name, no_expiration_date=False, send_uncensored_pii_data=False): if not _get_data_source_class_by_name(data_source_class_name): raise ValueError( 'No such data source "%s", or data source is not marked ' 'as exportable.' % data_source_class_name) super(DataPumpJob, self).__init__(app_context) self._data_source_class_name = data_source_class_name self._job_name = 'job-datapump-%s-%s' % (self._data_source_class_name, self._namespace) self._no_expiration_date = no_expiration_date self._send_uncensored_pii_data = send_uncensored_pii_data def non_transactional_submit(self): """Callback used when UI gesture indicates this job should start.""" sequence_num = super(DataPumpJob, self).non_transactional_submit() deferred.defer(self.main, sequence_num) return sequence_num def _mark_job_canceled(self, job, message, duration): """Override default behavior of setting job.output to error string.""" if job.output: job_context, data_source_context = self._load_state( job, job.sequence_num) else: job_context = self._build_job_context(None, None) data_source_context = self._build_data_source_context() job_context[FAILURE_REASON] = message self._save_state(jobs.STATUS_CODE_FAILED, job, job.sequence_num, job_context, data_source_context, use_transaction=False) def _build_data_source_context(self): """Set up context class specific to data source type we pull from.""" data_source_class = _get_data_source_class_by_name( self._data_source_class_name) context_class = data_source_class.get_context_class() # TODO(mgainer): if we start getting timeout failures, perhaps learn # proper chunk size from history, rather than using default. default_chunk_size = data_source_class.get_default_chunk_size() ret = context_class.build_blank_default({}, default_chunk_size) if hasattr(ret, 'send_uncensored_pii_data'): ret.send_uncensored_pii_data = self._send_uncensored_pii_data return ret def _build_job_context(self, upload_url, pii_secret): """Set up context object used to maintain this job's internal state.""" job_context = { UPLOAD_URL: upload_url, LAST_START_OFFSET: 0, LAST_END_OFFSET: -1, LAST_PAGE_SENT: -1, LAST_PAGE_NUM_ITEMS: 0, CONSECUTIVE_FAILURES: [], FAILURE_REASON: '', ITEMS_UPLOADED: 0, PII_SECRET: pii_secret, } return job_context def _load_state(self, job, sequence_num): if job.sequence_num != sequence_num: raise ValueError( 'Abandoning stale job with sequence %d; ' 'there is a new job with sequence %d running.' % ( sequence_num, job.sequence_num)) data_source_class = _get_data_source_class_by_name( self._data_source_class_name) content = transforms.loads(job.output) job_context = content['job_context'] data_source_context_class = data_source_class.get_context_class() data_source_context = data_source_context_class.build_from_dict( content['data_source_context']) return job_context, data_source_context def _save_state(self, state, job, sequence_num, job_context, data_source_context, use_transaction=True): # Job context may have been made with blank values for these two items. # Recover them from the previous context if they are not set (and if # the previous context is present enough to have them) try: prev_job_context, _ = self._load_state(job, sequence_num) if not job_context[PII_SECRET]: job_context[PII_SECRET] = prev_job_context[PII_SECRET] if not job_context[UPLOAD_URL]: job_context[UPLOAD_URL] = prev_job_context[UPLOAD_URL] except (ValueError, AttributeError): pass # Convert data source context object to plain dict. data_source_class = _get_data_source_class_by_name( self._data_source_class_name) context_class = data_source_class.get_context_class() data_source_context_dict = context_class.save_to_dict( data_source_context) # Set job object state variables. now = datetime.datetime.now() job.output = transforms.dumps({ 'job_context': job_context, 'data_source_context': data_source_context_dict, }) job.status_code = state job.execution_time_sec += int((now - job.updated_on).total_seconds()) job.updated_on = now logging.info('Data pump job %s saving contexts: %s %s', self._job_name, str(job_context), str(data_source_context)) # Using _update in DurableJobEntity # pylint: disable=protected-access if use_transaction: xg_on = db.create_transaction_options(xg=True) db.run_in_transaction_options( xg_on, jobs.DurableJobEntity._update, self._job_name, sequence_num, job.status_code, job.output, job.execution_time_sec) else: jobs.DurableJobEntity._update(self._job_name, sequence_num, job.status_code, job.output, job.execution_time_sec) @classmethod def _parse_pii_encryption_token(cls, token): parts = token.split('/') return (parts[0], datetime.datetime(year=1970, month=1, day=1) + datetime.timedelta(seconds=int(parts[1]))) @classmethod def _is_pii_encryption_token_valid(cls, token): try: _, valid_until_date = cls._parse_pii_encryption_token(token) return valid_until_date > datetime.datetime.now() except ValueError: return False @classmethod def _build_new_pii_encryption_token(cls, timedelta_string): hmac_secret = base64.urlsafe_b64encode( os.urandom(int(PII_SECRET_LENGTH * 0.75))) table_lifetime_seconds = common_utils.parse_timedelta_string( timedelta_string).total_seconds() unix_epoch = datetime.datetime(year=1970, month=1, day=1) now = datetime.datetime.now() table_lifetime_timedelta = datetime.timedelta( seconds=table_lifetime_seconds) valid_until_timestamp = int( (now - unix_epoch + table_lifetime_timedelta).total_seconds()) pii_encryption_token = '%s/%d' % (hmac_secret, valid_until_timestamp) return pii_encryption_token @classmethod def _get_pii_token(cls, app_context): """Retrieve or generate and save a secret used to encrypt exported PII. All PII data in objects exported to BigQuery is either suppressed or transformed via a one-way hash using a secret value. The point of the transformation is so that exported data cannot trivially be correlated to any individual's data in CourseBuilder, but records in exported data encoded using the same key can. (E.g., a user_id is the key for students; this key should be usable to correlate a user's language preference with his test scores.) Once data has been exported from CourseBuilder to BigQuery, the internal permissions from CourseBuilder no longer apply. To minimize the ability of those with access to the data to perform long-term correlations that might identify individuals, the secret used to encode PII is automatically rotated on a period determined by the course settings. We re-use the expiration period for tables, or default to 30 days if no period is selected. The format for the stored setting is a string composed of: - A randomly-generated secret encoded as a base-64 string - A slash character ('/') - A Unix timestamp indicating the expiration date of the token. The expiration date approach is chosen so that within the expiration period, different data sources can be re-exported multiple times, but still correlated with one another in BigQuery. Upon expiration, a new token is generated and used. Data exported before and after the changeover cannot be directly correlated. (It may be possible to force a correlation if old versions of the data tables were downloaded by comparing non-key fields in the old/new versions, if the non-key fields are sufficiently discriminative) Args: app_context: Standard CB application context object. Returns: Secret string used for encoding PII data upon export. """ course_settings = app_context.get_environ() pump_settings = course_settings.get(DATA_PUMP_SETTINGS_SCHEMA_SECTION, {}) pii_encryption_token = pump_settings.get(PII_ENCRYPTION_TOKEN) if (not pii_encryption_token or not cls._is_pii_encryption_token_valid(pii_encryption_token)): # If table_lifetime is missing OR is set to the empty string, # prefer the default value. lifetime = (pump_settings.get(TABLE_LIFETIME) or PII_SECRET_DEFAULT_LIFETIME) pii_encryption_token = cls._build_new_pii_encryption_token(lifetime) pump_settings[PII_ENCRYPTION_TOKEN] = pii_encryption_token course = courses.Course(None, app_context=app_context) course.save_settings(course_settings) return pii_encryption_token @classmethod def _get_pii_secret(cls, app_context): secret, _ = cls._parse_pii_encryption_token( cls._get_pii_token(app_context)) return secret def _get_bigquery_settings(self, app_context): """Pull settings necessary for using BigQuery from DB. This is nice and verbose and paranoid, so that if there is any misconfiguration, the end-user gets a nice message that's specific about the particular problem, rather than just a KeyError or ValueError. Args: app_context: The standard app context for the course in question. Returns: A namedtuple containing private_key, client_email, project_id and dataset_id members. The first three are required to connect to BigQuery, and the last is the dataset within BigQuery to which the data pump will restrict itself for insert/write/delete operations. Raises: ValueError: if any expected element is missing or malformed. """ pump_settings = app_context.get_environ().get( DATA_PUMP_SETTINGS_SCHEMA_SECTION, {}) dataset_id = ( pump_settings.get(DATASET_NAME) or re.sub('[^0-9a-z_:-]', '', app_context.get_slug().lower()) or 'course') project_id = pump_settings.get(PROJECT_ID) if not project_id: raise ValueError('Cannot pump data without a course settings value ' 'for the target Google BigQuery project ID') json_key = pump_settings.get(JSON_KEY) if not json_key: raise ValueError('Cannot pump data without a JSON client key ' 'allowing access to the target Google BigQuery ' 'project') try: json_key = transforms.loads(json_key) except ValueError: raise ValueError('Cannot decode JSON client key for the target ' 'Google BigQuery project.') if 'private_key' not in json_key or 'client_email' not in json_key: raise ValueError('The JSON client key for the target Google ' 'BigQuery project does not seem to be well ' 'formed; either the "private_key" or ' '"client_email" field is missing.') # If table_lifetime setting is missing OR is set to the empty string, # prefer the default value. table_lifetime_seconds = common_utils.parse_timedelta_string( pump_settings.get(TABLE_LIFETIME) or PII_SECRET_DEFAULT_LIFETIME ).total_seconds() Settings = collections.namedtuple('Settings', [ 'private_key', 'client_email', PROJECT_ID, 'dataset_id', 'table_lifetime_seconds']) return Settings(json_key['private_key'], json_key['client_email'], project_id, dataset_id, table_lifetime_seconds) def _get_bigquery_service(self, bigquery_settings): """Get BigQuery API client plus HTTP client with auth credentials.""" credentials = oauth2client.client.SignedJwtAssertionCredentials( bigquery_settings.client_email, bigquery_settings.private_key, BIGQUERY_RW_SCOPE) http = httplib2.Http() http = credentials.authorize(http) # Discovery.build has a timeout that's a little too aggressive. Since # this happens before we even have our job_context built, any errors # returned from here will be fatal. Since that's the case, add some # extra forgiveness here by retrying several times, with a little bit # of wait thrown in to allow the discovery service to recover, in case # it really is just having a bad few moments. attempts = 0 while True: try: return apiclient.discovery.build( BIGQUERY_API_NAME, BIGQUERY_API_VERSION, http=http), http # pylint: disable=broad-except except Exception, ex: attempts += 1 if attempts >= DISCOVERY_SERVICE_MAX_ATTEMPTS: raise logging.warning( 'Ignoring HTTP connection timeout %d of %d', attempts, DISCOVERY_SERVICE_MAX_ATTEMPTS) time.sleep(DISCOVERY_SERVICE_RETRY_SECONDS) def _maybe_create_course_dataset(self, service, bigquery_settings): """Create dataset within BigQuery if it's not already there.""" datasets = service.datasets() try: datasets.get(projectId=bigquery_settings.project_id, datasetId=bigquery_settings.dataset_id).execute() except apiclient.errors.HttpError, ex: if ex.resp.status != 404: raise datasets.insert(projectId=bigquery_settings.project_id, body={ 'datasetReference': { 'projectId': bigquery_settings.project_id, 'datasetId': bigquery_settings.dataset_id }}).execute() def _maybe_delete_previous_table(self, tables, bigquery_settings, data_source_class): """Delete previous version of table for data source, if it exists.""" # TODO(mgainer): Make clobbering old table and replacing optional. # For now, we assume people will be writing queries in terms of # a single table name, and will be irritated at having to change # their queries all the time if we add a timestamp to the table # name. And no, AFAICT, the BigQuery API does not permit renaming # of tables, just creation and deletion. table_name = data_source_class.get_name() try: tables.delete(projectId=bigquery_settings.project_id, datasetId=bigquery_settings.dataset_id, tableId=table_name).execute() except apiclient.errors.HttpError, ex: if ex.resp.status != 404: raise def _json_schema_member_to_bigquery_schema(self, name, structure): item = {'name': name} if 'description' in structure: item['description'] = structure['description'] if 'properties' in structure: # It's a sub-registry. item['type'] = 'RECORD' item['mode'] = 'NULLABLE' item['fields'] = self._json_schema_to_bigquery_schema( structure['properties']) elif 'items' in structure: # It's an array if 'items' in structure['items']: raise ValueError( 'BigQuery schema descriptions do not support nesting ' 'arrays directly in other arrays. Instead, nest ' 'structures in arrays; those structures may contain ' 'sub-arrays. Problem arises trying to pump data for %s' % self._data_source_class_name) item = self._json_schema_member_to_bigquery_schema( name, structure['items']) item['mode'] = 'REPEATED' else: item['mode'] = ('NULLABLE' if structure.get('optional') else 'REQUIRED') if structure['type'] in ('string', 'text', 'html', 'url', 'file'): item['type'] = 'STRING' elif structure['type'] in 'integer': item['type'] = 'INTEGER' elif structure['type'] in 'number': item['type'] = 'FLOAT' elif structure['type'] in 'boolean': item['type'] = 'BOOLEAN' elif structure['type'] in ('date', 'datetime', 'timestamp'): # BigQuery will accept ISO-formatted datetimes as well as # integer seconds-since-epoch as timestamps. item['type'] = 'TIMESTAMP' else: raise ValueError( 'Unrecognized schema scalar type "%s" ' 'when trying to make schema for data-pumping %s' % ( structure['type'], self._data_source_class_name)) return item def _json_schema_to_bigquery_schema(self, json_schema_dict): fields = [] for name, structure in json_schema_dict.iteritems(): fields.append(self._json_schema_member_to_bigquery_schema( name, structure)) return fields def _create_data_table(self, tables, bigquery_settings, schema, data_source_class): """Instantiate and provide schema for new BigQuery table.""" table_name = data_source_class.get_name() request = { 'kind': 'bigquery#table', 'tableReference': { 'projectId': bigquery_settings.project_id, 'datasetId': bigquery_settings.dataset_id, 'tableId': table_name, }, 'schema': {'fields': schema} } # If user has requested it, set the time at which table should be # reclaimed (as milliseconds since Unix epoch). if (bigquery_settings.table_lifetime_seconds and not self._no_expiration_date): now = datetime.datetime.utcnow() expiration_delta = datetime.timedelta( seconds=bigquery_settings.table_lifetime_seconds) unix_epoch = datetime.datetime(year=1970, month=1, day=1) expiration_ms = int( (now + expiration_delta - unix_epoch).total_seconds()) * 1000 request['expirationTime'] = expiration_ms # Allow exceptions from here to propagate; we don't expect any problems, # so if we have any, the upload should abort. tables.insert( projectId=bigquery_settings.project_id, datasetId=bigquery_settings.dataset_id, body=request).execute() def _create_upload_job(self, http, bigquery_settings, data_source_class): """Before uploading, we must create a job to handle the upload. Args: http: An HTTP client object configured to send our auth token bigquery_settings: Configs for talking to bigquery. Returns: URL specific to this upload job. Subsequent PUT requests to send pages of data must be sent to this URL. Raises: Exception: on unexpected responses from BigQuery API. """ uri = '%s%s/jobs?uploadType=resumable' % ( BIGQUERY_API_UPLOAD_URL_PREFIX, bigquery_settings.project_id) headers = { 'Content-Type': 'application/json', 'X-Upload-Content-Type': 'application/octet-stream', } table_name = data_source_class.get_name() body = transforms.dumps({ 'kind': 'bigquery#job', 'configuration': { 'load': { 'createDisposition': 'CREATE_NEVER', # Already exists. 'destinationTable': { 'projectId': bigquery_settings.project_id, 'datasetId': bigquery_settings.dataset_id, 'tableId': table_name, }, 'ignoreUnknownValues': False, 'sourceFormat': 'NEWLINE_DELIMITED_JSON', } } }) response, content = http.request(uri, method='POST', body=body, headers=headers) if int(response.get('status', 0)) != 200: raise Exception('Got non-200 response when trying to create a ' 'new upload job. Reponse was: "%s"; content ' 'was "%s"' % (str(response), str(content))) location = response.get('location') if not location: raise Exception('Expected response to contain a "location" item ' 'giving a URL to send subsequent content to, but ' 'instead got "%s"' % str(response)) return location def _initiate_upload_job(self, bigquery_service, bigquery_settings, http, app_context, data_source_context): """Coordinate table cleanup, setup, and initiation of upload job.""" data_source_class = _get_data_source_class_by_name( self._data_source_class_name) catch_and_log_ = catch_and_log.CatchAndLog() table_schema = data_source_class.get_schema(app_context, catch_and_log_, data_source_context) schema = self._json_schema_to_bigquery_schema(table_schema) tables = bigquery_service.tables() self._maybe_create_course_dataset(bigquery_service, bigquery_settings) self._maybe_delete_previous_table(tables, bigquery_settings, data_source_class) self._create_data_table(tables, bigquery_settings, schema, data_source_class) upload_url = self._create_upload_job(http, bigquery_settings, data_source_class) return upload_url def _note_retryable_failure(self, message, job_context): """Log a timestamped message into the job context object.""" timestamp = datetime.datetime.now().strftime( utils.HUMAN_READABLE_DATETIME_FORMAT) job_context[CONSECUTIVE_FAILURES].append(timestamp + ' ' + message) def _randomized_backoff_timeout(self, job_context): num_failures = len(job_context[CONSECUTIVE_FAILURES]) if not num_failures: return 0 return min(MAX_RETRY_BACKOFF_SECONDS, random.randrange(2 ** num_failures, 2 ** (num_failures + 1))) def _check_upload_state(self, http, job_context): """Check with the BigQuery upload server to get state of our upload. Due to various communication failure cases, we may not be aware of the actual state of the upload as known to the server. Issue a blank PUT request to evoke a response that will indicate: - How far along we are in the upload - Whether the upload has already completed - Whether the upload job has taken too long and expired Args: http: An HTTP client object configured to send our auth token job_context: Hash containing configuration for this upload job. Returns: A 2-tuple of next page to load (or None if no page should be loaded), and the next jobs.STATUS_CODE_<X> to transition to. """ response, _ = http.request(job_context[UPLOAD_URL], method='PUT', headers={'Content-Range': 'bytes */*'}) return self._handle_put_response(response, job_context, is_upload=False) def _send_data_page_to_bigquery(self, data, is_last_chunk, next_page, http, job, sequence_num, job_context, data_source_context): if next_page == 0 and is_last_chunk and not data: return jobs.STATUS_CODE_COMPLETED # BigQuery expects one JSON object per newline-delimed record, # not a JSON array containing objects, so convert them individually. # Less efficient, but less hacky than converting and then string # manipulation. lines = [] total_len = 0 for item in data: line = transforms.dumps(item) line += '\n' total_len += len(line) lines.append(line) # Round data size up to next multiple of 256K, per # https://cloud.google.com/bigquery/loading-data-post-request#chunking padding_amount = 0 if not is_last_chunk: round_to = 256 * 1024 if total_len % round_to: padding_amount = round_to - (total_len % round_to) lines.append(' ' * padding_amount) payload = ''.join(lines) # We are either re-attempting to send a page, or sending a new page. # Adjust the job_context's last-sent state to reflect this. job_context[LAST_PAGE_NUM_ITEMS] = len(data) if next_page == job_context[LAST_PAGE_SENT]: job_context[LAST_END_OFFSET] = ( job_context[LAST_START_OFFSET] + len(payload) - 1) elif next_page == job_context[LAST_PAGE_SENT] + 1: job_context[LAST_PAGE_SENT] = next_page job_context[LAST_START_OFFSET] = ( job_context[LAST_END_OFFSET] + 1) job_context[LAST_END_OFFSET] = ( job_context[LAST_START_OFFSET] + len(payload) - 1) else: raise Exception( 'Internal error - unexpected condition in sending page. ' 'next_page=%d last_page=%d, num_items=%d' % ( next_page, job_context[LAST_PAGE_SENT], len(data))) logging.info( 'Sending to BigQuery. %d items; %d padding bytes; is-last: %s', len(data), padding_amount, str(is_last_chunk)) headers = { 'Content-Range': 'bytes %d-%d/%s' % ( job_context[LAST_START_OFFSET], job_context[LAST_END_OFFSET], (job_context[LAST_END_OFFSET] + 1) if is_last_chunk else '*') } response, _ = http.request(job_context[UPLOAD_URL], method='PUT', body=payload, headers=headers) _, next_state = self._handle_put_response(response, job_context, is_upload=True) return next_state def _handle_put_response(self, response, job_context, is_upload=True): """Update job_context state depending on response from BigQuery.""" status = int(response['status']) logging.info('Response from bigquery: %d; %s', status, str(response)) next_page = None next_status = jobs.STATUS_CODE_STARTED if status == 308: # Google's push-partial-data usurps the usual meaning of 308 to # instead mean "partial request incomplete"; here, it's telling # us that the request has partially completed, and it will give # us a Range: header to indicate how far it thinks we've gone. # We only care about the upper end of the range. if 'range' not in response: last_offset_received = -1 else: last_offset_received = int(response['range'].split('-')[1]) if last_offset_received == job_context[LAST_END_OFFSET]: # The nominal case; the reported index of the last byte # received exactly matches what we think we sent. Tell our # caller we are ready to try the next page, and count up # the total number of items sent only now that we have seen # the receiving side's acknowledgement. next_page = job_context[LAST_PAGE_SENT] + 1 job_context[ITEMS_UPLOADED] += job_context[LAST_PAGE_NUM_ITEMS] job_context[LAST_PAGE_NUM_ITEMS] = 0 # Don't clear the list of failures if this is handling the # pre-check done before uploading. Experiments show that # persistent problems with our requests result in 503's on # upload, but 308's (reporting no progress made) on check. # We want to eventually fail out if we're constantly getting # errors, so ignore the "success" on checking status. if is_upload: job_context[CONSECUTIVE_FAILURES] = [] elif (last_offset_received >= job_context[LAST_START_OFFSET] - 1 and last_offset_received < job_context[LAST_END_OFFSET]): # If the last offset received is not the same as the last offset # sent, that's possibly OK; verify that the last offset received # is sane. Here, "sane" means that we accept seeing the # last offset of the previous page sent (last_start_offset-1) # up to, but not including the last_end_offset (for the page # we just sent). Anything lower means that our algorithm # mistakenly skipped past a failure. Anything higher means # that we have somehow become confused and decided to step # backward (or BigQuery is lying to us). prev_page_size = (job_context[LAST_END_OFFSET] - job_context[LAST_START_OFFSET] + 1) bytes_received = (last_offset_received - job_context[LAST_START_OFFSET] + 1) self._note_retryable_failure( 'Incomplete upload detected - %d of %d bytes received ' 'for page %d' % (bytes_received, prev_page_size, job_context[LAST_PAGE_SENT]), job_context) next_page = job_context[LAST_PAGE_SENT] else: raise ValueError( 'Uploaded byte count of %d does not fall in the range ' '%d to %d, the start/end range for previously-sent page ' 'number %d. Abandoning upload.' % ( last_offset_received, job_context[LAST_START_OFFSET], job_context[LAST_END_OFFSET], job_context[LAST_PAGE_SENT])) elif status in (200, 201): # BigQuery confirms that it has seen the upload complete. (Note # that this is *not* a promise that the upload has parsed # correctly; there doesn't seem to be a clean way to ask about # that other than to probe the table for number of rows uploaded # until we see the desired number or time out. Ick.) job_context[ITEMS_UPLOADED] += job_context[LAST_PAGE_NUM_ITEMS] job_context[LAST_PAGE_NUM_ITEMS] = 0 next_status = jobs.STATUS_CODE_COMPLETED elif status == 404: # Unlikely, but possible. For whatever reason, BigQuery has # decided that our upload URL is no longer valid. (Docs say that # we are allowed up to a day to get an upload done, but do not # promise that this is the only reason a job may become invalid.) # We need to start again from scratch. To start over, we will # just skip uploading a data page this round, and set ourselves up # to be called back again from the deferred-tasks queue. When the # callback happens, STATUS_CODE_QUEUED will indicate we need to # re-init everything from scratch. next_status = jobs.STATUS_CODE_QUEUED elif status in (500, 502, 503, 504): # Server Error, Bad Gateway, Service Unavailable or Gateway Timeout. # In all of these cases, we do a randomized exponential delay before # retrying. self._note_retryable_failure('Retryable server error %d' % status, job_context) else: raise ValueError( 'Got unexpected status code %d from BigQuery in response %s' % (status, str(response))) return next_page, next_status def _fetch_page_data(self, app_context, data_source_context, next_page): """Get the next page of data from the data source.""" data_source_class = _get_data_source_class_by_name( self._data_source_class_name) catch_and_log_ = catch_and_log.CatchAndLog() is_last_page = False with catch_and_log_.propagate_exceptions('Loading page of data'): schema = data_source_class.get_schema(app_context, catch_and_log_, data_source_context) required_jobs = data_sources.utils.get_required_jobs( data_source_class, app_context, catch_and_log_) data, _ = data_source_class.fetch_values( app_context, data_source_context, schema, catch_and_log_, next_page, *required_jobs) # BigQuery has a somewhat unfortunate design: It does not attempt # to parse/validate the data we send until all data has been # uploaded and the upload has been declared a "success". Rather # than having to poll for an indefinite amount of time until the # upload is parsed, we validate that the sent items exactly match # the declared schema. Somewhat expensive, but better than having # completely unreported hidden failures. for index, item in enumerate(data): complaints = transforms.validate_object_matches_json_schema( item, schema) if complaints: raise ValueError( 'Data in item to pump does not match schema! ' + 'Item is item number %d ' % index + 'on data page %d. ' % next_page + 'Problems for this item are:\n' + '\n'.join(complaints)) if (data_source_class.get_default_chunk_size() == 0 or not hasattr(data_source_context, 'chunk_size') or len(data) < data_source_context.chunk_size): is_last_page = True else: # Here, we may have read to the end of the table and just # happened to end up on an even chunk boundary. Attempt to # read one more row so that we can discern whether we really # are at the end. # Don't use the normal data_source_context; we don't want it # to cache a cursor for the next page that will only retrieve # one row. throwaway_context = copy.deepcopy(data_source_context) throwaway_context.chunk_size = 1 next_data, actual_page = data_source_class.fetch_values( app_context, throwaway_context, schema, catch_and_log_, next_page + 1, *required_jobs) if not next_data or actual_page == next_page: is_last_page = True return data, is_last_page def _send_next_page(self, sequence_num, job): """Coordinate table setup, job setup, sending pages of data.""" # Gather necessary resources app_context = sites.get_course_index().get_app_context_for_namespace( self._namespace) pii_secret = self._get_pii_secret(app_context) bigquery_settings = self._get_bigquery_settings(app_context) bigquery_service, http = self._get_bigquery_service(bigquery_settings) # If this is our first call after job start (or we have determined # that we need to start over from scratch), do initial setup. # Otherwise, re-load context objects from saved version in job.output if job.status_code == jobs.STATUS_CODE_QUEUED: data_source_context = self._build_data_source_context() upload_url = self._initiate_upload_job( bigquery_service, bigquery_settings, http, app_context, data_source_context) job_context = self._build_job_context(upload_url, pii_secret) else: job_context, data_source_context = self._load_state( job, sequence_num) if hasattr(data_source_context, 'pii_secret'): data_source_context.pii_secret = pii_secret if self._send_uncensored_pii_data: data_source_context.send_uncensored_pii_data = True logging.info('Data pump job %s loaded contexts: %s %s', self._job_name, str(job_context), str(data_source_context)) # Check BigQuery's state. Based on that, choose the next page of data # to push. Depending on BigQuery's response, we may or may not be # able to send a page now. next_page, next_state = self._check_upload_state(http, job_context) if next_page is not None: data, is_last_chunk = self._fetch_page_data( app_context, data_source_context, next_page) next_state = self._send_data_page_to_bigquery( data, is_last_chunk, next_page, http, job, sequence_num, job_context, data_source_context) self._save_state(next_state, job, sequence_num, job_context, data_source_context) # If we are not done, enqueue another to-do item on the deferred queue. if len(job_context[CONSECUTIVE_FAILURES]) >= MAX_CONSECUTIVE_FAILURES: raise Exception('Too many consecutive failures; abandoning job.') elif not job.has_finished: backoff_seconds = self._randomized_backoff_timeout(job_context) logging.info('%s re-queueing for subsequent work', self._job_name) deferred.defer(self.main, sequence_num, _countdown=backoff_seconds) else: logging.info('%s complete', self._job_name) def main(self, sequence_num): """Callback entry point. Manage namespaces, failures; send data.""" logging.info('%s de-queued and starting work.', self._job_name) job = self.load() if not job: raise deferred.PermanentTaskFailure( 'Job object for %s not found!' % self._job_name) if job.has_finished: return # We have been canceled; bail out immediately. with common_utils.Namespace(self._namespace): try: self._send_next_page(sequence_num, job) except Exception, ex: common_utils.log_exception_origin() logging.critical('%s: job abandoned due to fatal error %s', self._job_name, str(ex)) # Log failure in job object as well. if job.output: job_context, data_source_context = self._load_state( job, sequence_num) else: job_context = self._build_job_context(None, None) data_source_context = (self._build_data_source_context()) job_context[FAILURE_REASON] = str(ex) self._save_state(jobs.STATUS_CODE_FAILED, job, sequence_num, job_context, data_source_context) # PermanentTaskFailure tells deferred queue to give up on us. raise deferred.PermanentTaskFailure('Job %s failed: %s' % ( self._job_name, str(ex))) def get_display_dict(self, app_context): """Set up dict for Jinja rendering on data_pump.html.""" data_source_context = self._build_data_source_context() data_source_class = _get_data_source_class_by_name( self._data_source_class_name) ret = { 'name': self._data_source_class_name, 'title': data_source_class.get_title(), 'status': 'Has Never Run', 'active': False, } job = self.load() if job: ret['status'] = jobs.STATUS_CODE_DESCRIPTION[job.status_code] ret['active'] = not job.has_finished ret['sequence_number'] = job.sequence_num ret['updated_on'] = job.updated_on.strftime( utils.HUMAN_READABLE_TIME_FORMAT) if job.has_finished: duration = job.execution_time_sec else: duration = int((datetime.datetime.now() - job.updated_on) .total_seconds()) ret['duration'] = datetime.timedelta(days=0, seconds=duration) ret['last_updated'] = job.updated_on.strftime( utils.HUMAN_READABLE_DATETIME_FORMAT) bigquery_settings = self._get_bigquery_settings(app_context) ret['bigquery_url'] = '%s%s:%s.%s' % ( BIGQUERY_UI_URL_PREFIX, bigquery_settings.project_id, bigquery_settings.dataset_id, data_source_class.get_name()) try: job_context, data_source_context = self._load_state( job, job.sequence_num) ret['job_context'] = job_context current_secret = DataPumpJob._get_pii_secret(app_context) if job_context[PII_SECRET] != current_secret: ret['pii_secret_is_out_of_date'] = True del job_context[PII_SECRET] except (ValueError, AttributeError): # When jobs framework catches a failure, it overwrites the # job.output with the failure message as a string. We will # get here if we fail to parse job.output as a JSON-packed # object. ret['message'] = job.output ret['source_url'] = '%s/rest/data/%s/items?chunk_size=10' % ( app_context.get_slug(), data_source_class.get_name()) catch_and_log_ = catch_and_log.CatchAndLog() ret['schema'] = data_source_class.get_schema( app_context, catch_and_log_, data_source_context) ret['generator_statuses'] = [] ret['available'] = True ret['any_generator_running'] = False required_generators = data_source_class.required_generators() if not required_generators: ret['generator_statuses'].append( {'message': '(No dependencies)', 'link': None}) ret['has_any_generators'] = False else: ret['has_any_generators'] = True for generator_class in required_generators: generator = generator_class(app_context) job = generator.load() message = analytics.display.get_generator_status_message( generator_class, job) link = analytics.display.get_pipeline_link( crypto.XsrfTokenManager, app_context, generator_class, job) ret['generator_statuses'].append({'message': message, 'link': link}) if not job or job.status_code != jobs.STATUS_CODE_COMPLETED: ret['available'] = False if job and not job.has_finished: ret['any_generator_running'] = True return ret class DataPumpJobsDataSource(data_sources.SynchronousQuery): """Present DataPump job status as an analytic generated at page-render time. This is a very mild hack. Since the data pump job controls show up as a sub-tab under Dashboard -> Analytics, the easiest way to generate tab content is to act as though we are an analytic. And we are, in a sense - this analytic just happens to generate a table of data-pump job statuses, rather than analytics about student performance. This also conveniently re-uses all the mechanics for authorization, dispatch, page-painting, etc. """ @staticmethod def required_generators(): return [] @staticmethod def fill_values(app_context, template_values): template_values['xsrf_token'] = ( crypto.XsrfTokenManager.create_xsrf_token(XSRF_ACTION_NAME)) template_values['exit_url'] = urllib.urlencode({ 'exit_url': 'dashboard?%s' % urllib.urlencode({ 'action': 'analytics', 'tab': 'data_pump'})}) source_classes = [ ds for ds in data_sources.Registry.get_rest_data_source_classes() if ds.exportable()] source_classes.sort(key=lambda c: c.get_title()) # pylint: disable=protected-access template_values['pumps'] = [] for source_class in source_classes: job = DataPumpJob(app_context, source_class.__name__) template_values['pumps'].append(job.get_display_dict(app_context)) pump_settings = app_context.get_environ().get( DATA_PUMP_SETTINGS_SCHEMA_SECTION, {}) template_values['need_settings'] = ( not pump_settings.has_key(PROJECT_ID) or not pump_settings.has_key(JSON_KEY)) # If table_lifetime setting is missing OR is set to the empty string, # prefer the default value. template_values['default_lifetime'] = ( pump_settings.get(TABLE_LIFETIME) or PII_SECRET_DEFAULT_LIFETIME) template_values[DATASET_NAME] = ( pump_settings.get(DATASET_NAME) or re.sub('[^0-9a-z_:-]', '', app_context.get_slug().lower()) or 'course') custom_module = None class DashboardExtension(object): """Respond to UI run/cancel commands for individual data pump jobs.""" @classmethod def register(cls): # Register new permission for pushing student data to external location. dashboard.DashboardHandler.add_external_permission( ACCESS_PERMISSION, ACCESS_PERMISSION_DESCRIPTION) # Register a new Analytics sub-tab for showing data pump status and # start/stop buttons. data_pump_visualization = analytics.Visualization( 'data_pumps', 'Data Pumps', 'data_pump.html', data_source_classes=[DataPumpJobsDataSource]) tabs.Registry.register('analytics', 'data_pump', 'Data Pump', [data_pump_visualization]) def post_action(handler): cls(handler).post_data_pump() dashboard.DashboardHandler.post_actions.append(DASHBOARD_ACTION) setattr(dashboard.DashboardHandler, 'post_%s' % DASHBOARD_ACTION, post_action) dashboard.DashboardHandler.map_action_to_permission( 'post_%s' % DASHBOARD_ACTION, ACCESS_PERMISSION) @classmethod def unregister(cls): dashboard.DashboardHandler.post_actions.remove(DASHBOARD_ACTION) setattr(dashboard.DashboardHandler, 'post_%s' % DASHBOARD_ACTION, None) dashboard.DashboardHandler.unmap_action_to_permission( 'post_%s' % DASHBOARD_ACTION, ACCESS_PERMISSION) dashboard.DashboardHandler.remove_external_permission(ACCESS_PERMISSION) roles.Roles.unregister_permissions(custom_module) def post_data_pump(self): source_name = self.handler.request.get('data_source') data_source_class = _get_data_source_class_by_name(source_name) if data_source_class: action = self.handler.request.get('pump_action') data_pump_job = DataPumpJob( self.handler.app_context, source_name, self.handler.request.get('no_expiration_date') == 'True', self.handler.request.get('send_uncensored_pii_data') == 'True') if action == 'start_pump': data_pump_job.submit() elif action == 'cancel_pump': data_pump_job.cancel() elif action == 'run_generators': for generator_class in data_source_class.required_generators(): generator_class(self.handler.app_context).submit() elif action == 'cancel_generators': for generator_class in data_source_class.required_generators(): generator_class(self.handler.app_context).cancel() self.handler.redirect(self.handler.get_action_url( 'analytics', extra_args={'tab': 'data_pump'}, fragment=source_name)) def __init__(self, handler): self.handler = handler def register_module(): """Adds this module to the registry. Called once at startup.""" def validate_project_id(value, errors): if not value: return if not re.match('^[a-z][-a-z0-9]{4,61}[a-z0-9]$', value): errors.append( 'Project IDs must contain 6-63 lowercase letters, digits, ' 'or dashes. IDs must start with a letter and may not end ' 'with a dash.') project_id = schema_fields.SchemaField( DATA_PUMP_SETTINGS_SCHEMA_SECTION + ':' + PROJECT_ID, 'Project ID', 'string', validator=validate_project_id, description='The ID (not the name!) of the Project to which to ' 'send data. See the list of projects and their IDs at ' 'https://console.developers.google.com/project', i18n=False) dataset_name = schema_fields.SchemaField( DATA_PUMP_SETTINGS_SCHEMA_SECTION + ':' + DATASET_NAME, 'Dataset Name', 'string', description='Name of the BigQuery dataset to which to pump tables. ' 'If not set, this will default to the name of the course.', optional=True, i18n=False) def validate_json_key(json_key, errors): if not json_key: return try: json_key = transforms.loads(json_key or '') if 'private_key' not in json_key or 'client_email' not in json_key: errors.append( 'The JSON client key for allowing access to push data ' 'to BigQuery is missing either the "private_key" or ' '"client_email" field (or both). Please check that you ' 'have copied the entire contents of the JSON key file ' 'you downloaded using the Credentials screen in the ' 'Google Developers Console.') except ValueError, ex: errors.append( 'The JSON key field doesn\'t seem to contain valid JSON. ' 'Please check that you have copied all of the content of the ' 'JSON file you downloaded using the Credentials screen in the ' 'Google Developers Console. Also, be sure that you are ' 'pasting in the JSON version, not the .p12 (PKCS12) file.' + str(ex)) json_key = schema_fields.SchemaField( DATA_PUMP_SETTINGS_SCHEMA_SECTION + ':' + JSON_KEY, 'JSON Key', 'text', i18n=False, validator=validate_json_key, description='Contents of a JSON key created in the Developers Console ' 'for the instance where BigQuery is to be run. See ' # TODO(mgainer): Get CB location of instructions to get client key # for destination application. 'the instructions at ') def validate_table_lifetime(value, errors): if not value: return seconds = common_utils.parse_timedelta_string(value).total_seconds() if not seconds: errors.append( 'The string "%s" ' % value + 'has some problems; please check the instructions below ' 'the field for instructions on accepted formats.') table_lifetime = schema_fields.SchemaField( DATA_PUMP_SETTINGS_SCHEMA_SECTION + ':' + TABLE_LIFETIME, 'Table Lifetime', 'string', optional=True, i18n=False, validator=validate_table_lifetime, description='Amount of time a table pushed to BigQuery will last. ' 'After this amount of time, the table will be automatically deleted. ' '(This is useful if your data retention or privacy policy mandates ' 'a limited time for analysis after which personal data must be ' 'removed.) Leaving this field blank will use the default value ' 'of "' + PII_SECRET_DEFAULT_LIFETIME + '". Supported units are: ' '"weeks", "days", "hours", "minutes", "seconds". Units may be ' 'specified as their first letter, singular, or plural. Spaces ' 'and commas may be used or omitted. E.g., both of the following ' 'are equivalent: "3w1d7h", "3 weeks, 1 day, 7 hours"') pii_encryption_token = schema_fields.SchemaField( DATA_PUMP_SETTINGS_SCHEMA_SECTION + ':' + PII_ENCRYPTION_TOKEN, 'PII Encryption Token', 'string', optional=True, i18n=False, editable=False, description='Automatically generated encryption secret used to ' 'obscure PII fields when these are pushed to BigQuery. This ' 'key lasts only as long as the Table Lifetime setting above, or ' '30 days if the limit is not set. After this secret has expired, ' 'a new secret will be generated. PII items with the same un-obscured ' 'value which are obscured with different values for this secret will ' 'have different values. Most importantly, this means that joins on ' 'fields that should be the same (e.g., user ID) will not work.') course_settings_fields = ( lambda c: project_id, lambda c: json_key, lambda c: dataset_name, lambda c: table_lifetime, lambda c: pii_encryption_token, ) def on_module_enabled(): data_sources.Registry.register(DataPumpJobsDataSource) courses.Course.OPTIONS_SCHEMA_PROVIDERS[ DATA_PUMP_SETTINGS_SCHEMA_SECTION] += course_settings_fields tabs.Registry.register('settings', 'data_pump', 'Data Pump', DATA_PUMP_SETTINGS_SCHEMA_SECTION) DashboardExtension.register() def on_module_disabled(): for field in course_settings_fields: courses.Course.OPTIONS_SCHEMA_PROVIDERS[ DATA_PUMP_SETTINGS_SCHEMA_SECTION].remove(field) DashboardExtension.unregister() global custom_module # pylint: disable=global-statement custom_module = custom_modules.Module( 'Data Pump', 'Pushes DB and generated content to a BigQuery project', [], [], notify_module_enabled=on_module_enabled, notify_module_disabled=on_module_disabled) return custom_module # Since this module contains a registry which may be populated from other # modules, we here import 'main' so that we are ensured that by the time this # module is loaded, the global code in 'main' has been run (either by this # import, or prior). Note that we must do this import strictly after we # declare register_module(): If this import actually runs the code in main, # this module must have declared its own register_module() method so that the # the registration code can see it. # pylint: disable=unused-import import main
apache-2.0
PatrickOReilly/scikit-learn
examples/cluster/plot_digits_linkage.py
366
2959
""" ============================================================================= Various Agglomerative Clustering on a 2D embedding of digits ============================================================================= An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset. The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits. This is why the example works on a 2D embedding. What this example shows us is the behavior "rich getting richer" of agglomerative clustering that tends to create uneven cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of singleton clusters. """ # Authors: Gael Varoquaux # License: BSD 3 clause (C) INRIA 2014 print(__doc__) from time import time import numpy as np from scipy import ndimage from matplotlib import pyplot as plt from sklearn import manifold, datasets digits = datasets.load_digits(n_class=10) X = digits.data y = digits.target n_samples, n_features = X.shape np.random.seed(0) def nudge_images(X, y): # Having a larger dataset shows more clearly the behavior of the # methods, but we multiply the size of the dataset only by 2, as the # cost of the hierarchical clustering methods are strongly # super-linear in n_samples shift = lambda x: ndimage.shift(x.reshape((8, 8)), .3 * np.random.normal(size=2), mode='constant', ).ravel() X = np.concatenate([X, np.apply_along_axis(shift, 1, X)]) Y = np.concatenate([y, y], axis=0) return X, Y X, y = nudge_images(X, y) #---------------------------------------------------------------------- # Visualize the clustering def plot_clustering(X_red, X, labels, title=None): x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0) X_red = (X_red - x_min) / (x_max - x_min) plt.figure(figsize=(6, 4)) for i in range(X_red.shape[0]): plt.text(X_red[i, 0], X_red[i, 1], str(y[i]), color=plt.cm.spectral(labels[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]) plt.yticks([]) if title is not None: plt.title(title, size=17) plt.axis('off') plt.tight_layout() #---------------------------------------------------------------------- # 2D embedding of the digits dataset print("Computing embedding") X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X) print("Done.") from sklearn.cluster import AgglomerativeClustering for linkage in ('ward', 'average', 'complete'): clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10) t0 = time() clustering.fit(X_red) print("%s : %.2fs" % (linkage, time() - t0)) plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage) plt.show()
bsd-3-clause
eranchetz/nupic
tests/swarming/nupic/swarming/experiments/simple_cla_multistep/description.py
32
13701
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '/Users/ronmarianetti/nupic/eng/lib/python2.6/site-packages/nupicengine/frameworks/opf/expGenerator/ExpGenerator.pyc' """ from nupic.frameworks.opf.expdescriptionapi import ExperimentDescriptionAPI from nupic.frameworks.opf.expdescriptionhelpers import ( updateConfigFromSubConfig, applyValueGettersToContainer ) from nupic.frameworks.opf.clamodelcallbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opfutils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opftaskdriver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # config = { # Type of model that the rest of these parameters apply to. 'model': "CLA", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'days': 0, 'fields': [ (u'timestamp', 'first'), (u'consumption', 'sum'), ], 'hours': 0, 'microseconds': 0, 'milliseconds': 0, 'minutes': 0, 'months': 0, 'seconds': 0, 'weeks': 0, 'years': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'TemporalMultiStep', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : 0, # Example: # 'encoders': {'field1': {'fieldname': 'field1', 'n':100, # 'name': 'field1', 'type': 'AdaptiveScalarEncoder', # 'w': 21}} # 'encoders': { 'consumption': { 'clipInput': True, 'fieldname': u'consumption', 'n': 100, 'name': u'consumption', 'type': 'AdaptiveScalarEncoder', 'w': 21}, 'timestamp_timeOfDay': { 'fieldname': u'timestamp', 'name': u'timestamp_timeOfDay', 'type': 'DateEncoder', 'timeOfDay': (21, 1)}, 'timestamp_dayOfWeek': { 'fieldname': u'timestamp', 'name': u'timestamp_dayOfWeek', 'type': 'DateEncoder', 'dayOfWeek': (21, 1)}, '_classifierInput': { 'name': u'_classifierInput', 'fieldname': u'consumption', 'classifierOnly': True, 'type': 'AdaptiveScalarEncoder', 'clipInput': True, 'n': 100, 'w': 21}, }, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : { u'days': 0, u'hours': 0}, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : 0, 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TP) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TP and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, }, # Controls whether TP is enabled or disabled; # TP is necessary for making temporal predictions, such as predicting # the next inputs. Without TP, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tpEnable' : True, 'tpParams': { # TP diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/TP.py and TP10X*.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TP) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 20, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TP # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TP # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TP how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { 'regionName' : 'CLAClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'clVerbosity' : 0, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.001, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '1', }, 'anomalyParams': { u'anomalyCacheRecords': None, u'autoDetectThreshold': None, u'autoDetectWaitRecords': None}, 'trainSPNetOnlyIfRequested': False, }, } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) control = { # The environment that the current model is being run in "environment": 'nupic', # Input stream specification per py/nupic/frameworks/opf/jsonschema/stream_def.json. # 'dataset' : { u'info': u'test_hotgym', u'streams': [ { u'columns': [u'*'], u'info': u'test data', u'source': u'file://swarming/test_data.csv'}], u'version': 1}, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : -1, # A dictionary containing all the supplementary parameters for inference "inferenceArgs":{u'predictedField': u'consumption', u'predictionSteps': [1]}, # Metrics: A list of MetricSpecs that instantiate the metrics that are # computed for this experiment 'metrics':[ MetricSpec(field=u'consumption', metric='multiStep', inferenceElement='multiStepBestPredictions', params={'window': 1000, 'steps': [1], 'errorMetric': 'altMAPE'}), ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': ['.*'], } descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0
theoryno3/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
317
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
Vvkmnn/books
TensorFlowForMachineIntelligence/chapters/04_machine_learning_basics/softmax.py
1
3143
# Softmax example in TF using the classical Iris dataset # Download iris.data from https://archive.ics.uci.edu/ml/datasets/Iris import tensorflow as tf import os # this time weights form a matrix, not a column vector, one "weight vector" per class. W = tf.Variable(tf.zeros([4, 3]), name="weights") # so do the biases, one per class. b = tf.Variable(tf.zeros([3], name="bias")) def combine_inputs(X): return tf.matmul(X, W) + b def inference(X): return tf.nn.softmax(combine_inputs(X)) def loss(X, Y): return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(combine_inputs(X), Y)) def read_csv(batch_size, file_name, record_defaults): filename_queue = tf.train.string_input_producer([os.path.dirname(__file__) + "/" + file_name]) reader = tf.TextLineReader(skip_header_lines=1) key, value = reader.read(filename_queue) # decode_csv will convert a Tensor from type string (the text line) in # a tuple of tensor columns with the specified defaults, which also # sets the data type for each column decoded = tf.decode_csv(value, record_defaults=record_defaults) # batch actually reads the file and loads "batch_size" rows in a single tensor return tf.train.shuffle_batch(decoded, batch_size=batch_size, capacity=batch_size * 50, min_after_dequeue=batch_size) def inputs(): sepal_length, sepal_width, petal_length, petal_width, label =\ read_csv(100, "iris.data", [[0.0], [0.0], [0.0], [0.0], [""]]) # convert class names to a 0 based class index. label_number = tf.to_int32(tf.argmax(tf.to_int32(tf.pack([ tf.equal(label, ["Iris-setosa"]), tf.equal(label, ["Iris-versicolor"]), tf.equal(label, ["Iris-virginica"]) ])), 0)) # Pack all the features that we care about in a single matrix; # We then transpose to have a matrix with one example per row and one feature per column. features = tf.transpose(tf.pack([sepal_length, sepal_width, petal_length, petal_width])) return features, label_number def train(total_loss): learning_rate = 0.01 return tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss) def evaluate(sess, X, Y): predicted = tf.cast(tf.arg_max(inference(X), 1), tf.int32) print sess.run(tf.reduce_mean(tf.cast(tf.equal(predicted, Y), tf.float32))) # Launch the graph in a session, setup boilerplate with tf.Session() as sess: tf.initialize_all_variables().run() X, Y = inputs() total_loss = loss(X, Y) train_op = train(total_loss) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # actual training loop training_steps = 1000 for step in range(training_steps): sess.run([train_op]) # for debugging and learning purposes, see how the loss gets decremented thru training steps if step % 10 == 0: print "loss: ", sess.run([total_loss]) evaluate(sess, X, Y) coord.request_stop() coord.join(threads) sess.close()
gpl-3.0
previtus/MGR-Project-Code
Settings/set1-test_of_models_against_datasets/models_30m_640px.py
1
2240
def Setup(Settings,DefaultModel): # set1-test_of_models_against_datasets/models_30m_640px.py Settings["experiment_name"] = "set1c_Models_Test_30m_640px" Settings["graph_histories"] = ['together', [0,1], [1,2], [0,2]] n=0 # 5556x_minlen30_640px 5556x_minlen20_640px 5556x_reslen20_299px 5556x_reslen30_299px Settings["models"][n]["dataset_name"] = "5556x_minlen30_640px" Settings["models"][n]["dump_file_override"] = 'SegmentsData_marked_R100_4Tables.dump' Settings["models"][n]["pixels"] = 640 Settings["models"][n]["model_type"] = 'img_osm_mix' Settings["models"][n]["unique_id"] = 'mix' Settings["models"][n]["top_repeat_FC_block"] = 2 Settings["models"][n]["epochs"] = 800 # c Settings["models"][n]["loss_func"] = 'mean_absolute_error' Settings["models"][n]["metrics"] = ['mean_squared_error'] Settings["models"].append(DefaultModel.copy()) n=1 Settings["models"][n]["dataset_pointer"] = -1 # 0 - reuse the first dataset Settings["models"][n]["dataset_name"] = "5556x_minlen30_640px" Settings["models"][n]["dump_file_override"] = 'SegmentsData_marked_R100_4Tables.dump' Settings["models"][n]["pixels"] = 640 Settings["models"][n]["model_type"] = 'osm_only' Settings["models"][n]["unique_id"] = 'osm_only' Settings["models"][n]["top_repeat_FC_block"] = 2 Settings["models"][n]["epochs"] = 800 # c Settings["models"][n]["loss_func"] = 'mean_absolute_error' Settings["models"][n]["metrics"] = ['mean_squared_error'] Settings["models"].append(DefaultModel.copy()) n=2 Settings["models"][n]["dataset_pointer"] = -1 # 0 - reuse the first dataset Settings["models"][n]["dataset_name"] = "5556x_minlen30_640px" Settings["models"][n]["dump_file_override"] = 'SegmentsData_marked_R100_4Tables.dump' Settings["models"][n]["pixels"] = 640 Settings["models"][n]["model_type"] = 'simple_cnn_with_top' Settings["models"][n]["unique_id"] = 'img_only' Settings["models"][n]["top_repeat_FC_block"] = 2 Settings["models"][n]["epochs"] = 800 # c Settings["models"][n]["loss_func"] = 'mean_absolute_error' Settings["models"][n]["metrics"] = ['mean_squared_error'] return Settings
mit
yyjiang/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
226
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
cainiaocome/scikit-learn
sklearn/tests/test_grid_search.py
67
28778
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler, ChangedBehaviorWarning) from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, StratifiedKFold, FitFailedWarning from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
ray-project/ray
python/ray/util/collective/tests/util.py
1
12263
import cupy as cp import logging import ray import ray.util.collective as col from ray.util.collective.types import Backend, ReduceOp from ray.util.collective.collective_group.nccl_util import get_num_gpus import torch logger = logging.getLogger(__name__) @ray.remote(num_gpus=1) class Worker: def __init__(self): self.buffer = None self.list_buffer = None def init_tensors(self): self.buffer = cp.ones((10,), dtype=cp.float32) self.list_buffer = [cp.ones((10,), dtype=cp.float32) for _ in range(2)] cp.cuda.Stream.null.synchronize() return True def init_group(self, world_size, rank, backend=Backend.NCCL, group_name="default"): col.init_collective_group(world_size, rank, backend, group_name) return True def set_buffer(self, data): self.buffer = data return self.buffer def get_buffer(self): return self.buffer def set_list_buffer(self, list_of_arrays): self.list_buffer = list_of_arrays return self.list_buffer def do_allreduce(self, group_name="default", op=ReduceOp.SUM): col.allreduce(self.buffer, group_name, op) return self.buffer def do_reduce(self, group_name="default", dst_rank=0, op=ReduceOp.SUM): col.reduce(self.buffer, dst_rank, group_name, op) return self.buffer def do_broadcast(self, group_name="default", src_rank=0): col.broadcast(self.buffer, src_rank, group_name) return self.buffer def do_allgather(self, group_name="default"): col.allgather(self.list_buffer, self.buffer, group_name) return self.list_buffer def do_reducescatter(self, group_name="default", op=ReduceOp.SUM): col.reducescatter(self.buffer, self.list_buffer, group_name, op) return self.buffer def do_send(self, group_name="default", dst_rank=0): col.send(self.buffer, dst_rank, group_name) return self.buffer def do_recv(self, group_name="default", src_rank=0): col.recv(self.buffer, src_rank, group_name) return self.buffer def destroy_group(self, group_name="default"): col.destroy_collective_group(group_name) return True def report_rank(self, group_name="default"): rank = col.get_rank(group_name) return rank def report_world_size(self, group_name="default"): ws = col.get_collective_group_size(group_name) return ws def report_nccl_availability(self): avail = col.nccl_available() return avail def report_gloo_availability(self): avail = col.gloo_available() return avail def report_is_group_initialized(self, group_name="default"): is_init = col.is_group_initialized(group_name) return is_init def create_collective_workers(num_workers=2, group_name="default", backend="nccl"): actors = [None] * num_workers for i in range(num_workers): actor = Worker.remote() ray.get([actor.init_tensors.remote()]) actors[i] = actor world_size = num_workers init_results = ray.get( [ actor.init_group.remote(world_size, i, backend, group_name) for i, actor in enumerate(actors) ] ) return actors, init_results def init_tensors_for_gather_scatter( actors, array_size=10, dtype=cp.float32, tensor_backend="cupy" ): world_size = len(actors) for i, a in enumerate(actors): if tensor_backend == "cupy": t = cp.ones(array_size, dtype=dtype) * (i + 1) elif tensor_backend == "torch": t = torch.ones(array_size, dtype=torch.float32).cuda() * (i + 1) else: raise RuntimeError("Unsupported tensor backend.") ray.get([a.set_buffer.remote(t)]) if tensor_backend == "cupy": list_buffer = [cp.ones(array_size, dtype=dtype) for _ in range(world_size)] elif tensor_backend == "torch": list_buffer = [ torch.ones(array_size, dtype=torch.float32).cuda() for _ in range(world_size) ] else: raise RuntimeError("Unsupported tensor backend.") ray.get([a.set_list_buffer.remote(list_buffer) for a in actors]) @ray.remote(num_gpus=2) class MultiGPUWorker: def __init__(self): self.buffer0 = None self.buffer1 = None self.list_buffer0 = None self.list_buffer1 = None def __del__(self): self.buffer0 = None self.buffer1 = None self.list_buffer0 = None self.list_buffer1 = None def init_tensors(self): with cp.cuda.Device(0): self.buffer0 = cp.ones((10,), dtype=cp.float32) self.list_buffer0 = [cp.ones((10,), dtype=cp.float32) for _ in range(4)] with cp.cuda.Device(1): self.buffer1 = cp.ones((10,), dtype=cp.float32) self.list_buffer1 = [cp.ones((10,), dtype=cp.float32) for _ in range(4)] cp.cuda.Stream.null.synchronize() return True def init_group(self, world_size, rank, backend=Backend.NCCL, group_name="default"): col.init_collective_group(world_size, rank, backend, group_name) return True def set_buffer( self, size, value0=1.0, value1=1.0, dtype=cp.float32, tensor_type0="cupy", tensor_type1="cupy", ): if tensor_type0 == "cupy": with cp.cuda.Device(0): self.buffer0 = cp.ones(size, dtype=dtype) * value0 elif tensor_type0 == "torch": self.buffer0 = torch.ones(size, dtype=torch.float32).cuda(0) * value0 else: raise RuntimeError() if tensor_type1 == "cupy": with cp.cuda.Device(1): self.buffer1 = cp.ones(size, dtype=dtype) * value1 elif tensor_type1 == "torch": self.buffer1 = torch.ones(size, dtype=torch.float32).cuda(1) * value1 else: raise RuntimeError() cp.cuda.Device(0).synchronize() cp.cuda.Device(1).synchronize() # cp.cuda.Stream.null.synchronize() return True def set_list_buffer( self, size, value0=1.0, value1=1.0, dtype=cp.float32, tensor_type0="cupy", tensor_type1="cupy", ): if tensor_type0 == "cupy": with cp.cuda.Device(0): self.list_buffer0 = [ cp.ones(size, dtype=dtype) * value0 for _ in range(4) ] elif tensor_type0 == "torch": self.list_buffer0 = [ torch.ones(size, dtype=torch.float32).cuda(0) * value0 for _ in range(4) ] else: raise RuntimeError() if tensor_type1 == "cupy": with cp.cuda.Device(1): self.list_buffer1 = [ cp.ones(size, dtype=dtype) * value1 for _ in range(4) ] elif tensor_type1 == "torch": self.list_buffer1 = [ torch.ones(size, dtype=torch.float32).cuda(1) * value1 for _ in range(4) ] else: raise RuntimeError() cp.cuda.Device(0).synchronize() cp.cuda.Device(1).synchronize() return True @ray.method(num_returns=2) def get_buffer(self): return self.buffer0, self.buffer1 def do_allreduce_multigpu(self, group_name="default", op=ReduceOp.SUM): col.allreduce_multigpu([self.buffer0, self.buffer1], group_name, op) cp.cuda.Device(0).synchronize() cp.cuda.Device(1).synchronize() return self.buffer0 def do_reduce_multigpu( self, group_name="default", dst_rank=0, dst_gpu_index=0, op=ReduceOp.SUM ): col.reduce_multigpu( [self.buffer0, self.buffer1], dst_rank, dst_gpu_index, group_name, op ) cp.cuda.Device(0).synchronize() cp.cuda.Device(1).synchronize() return self.buffer0, self.buffer1 def do_broadcast_multigpu(self, group_name="default", src_rank=0, src_gpu_index=0): col.broadcast_multigpu( [self.buffer0, self.buffer1], src_rank, src_gpu_index, group_name ) return self.buffer0, self.buffer1 def do_allgather_multigpu(self, group_name="default"): col.allgather_multigpu( [self.list_buffer0, self.list_buffer1], [self.buffer0, self.buffer1], group_name, ) cp.cuda.Device(0).synchronize() cp.cuda.Device(1).synchronize() return self.list_buffer0, self.list_buffer1 def do_reducescatter_multigpu(self, group_name="default", op=ReduceOp.SUM): col.reducescatter_multigpu( [self.buffer0, self.buffer1], [self.list_buffer0, self.list_buffer1], group_name, op, ) cp.cuda.Device(0).synchronize() cp.cuda.Device(1).synchronize() return self.buffer0, self.buffer1 def do_send_multigpu( self, group_name="default", dst_rank=0, dst_gpu_index=0, src_gpu_index=0 ): if src_gpu_index == 0: col.send_multigpu(self.buffer0, dst_rank, dst_gpu_index, group_name) cp.cuda.Device(0).synchronize() return self.buffer0 elif src_gpu_index == 1: col.send_multigpu(self.buffer1, dst_rank, dst_gpu_index, group_name) cp.cuda.Device(1).synchronize() return self.buffer1 else: raise RuntimeError() def do_recv_multigpu( self, group_name="default", src_rank=0, src_gpu_index=0, dst_gpu_index=0 ): if dst_gpu_index == 0: col.recv_multigpu(self.buffer0, src_rank, src_gpu_index, group_name) cp.cuda.Device(0).synchronize() return self.buffer0 elif dst_gpu_index == 1: col.recv_multigpu(self.buffer1, src_rank, src_gpu_index, group_name) cp.cuda.Device(1).synchronize() return self.buffer1 else: raise RuntimeError() def destroy_group(self, group_name="default"): col.destroy_collective_group(group_name) return True def report_rank(self, group_name="default"): rank = col.get_rank(group_name) return rank def report_world_size(self, group_name="default"): ws = col.get_collective_group_size(group_name) return ws def report_nccl_availability(self): avail = col.nccl_available() return avail def report_gloo_availability(self): avail = col.gloo_available() return avail def report_is_group_initialized(self, group_name="default"): is_init = col.is_group_initialized(group_name) return is_init def report_num_gpus(self): n_gpus = get_num_gpus() return n_gpus def create_collective_multigpu_workers( num_workers=2, group_name="default", backend="nccl" ): actors = [None] * num_workers for i in range(num_workers): actor = MultiGPUWorker.remote() ray.get([actor.set_buffer.remote([10])], timeout=10) ray.get([actor.set_list_buffer.remote([10])], timeout=10) actors[i] = actor world_size = num_workers init_results = ray.get( [ actor.init_group.remote(world_size, i, backend, group_name) for i, actor in enumerate(actors) ] ) return actors, init_results def init_tensors_for_gather_scatter_multigpu( actors, array_size=10, tensor_backend="cupy" ): for i, a in enumerate(actors): if tensor_backend == "cupy": ray.get([a.set_buffer.remote(array_size)]) ray.get([a.set_list_buffer.remote(array_size)]) elif tensor_backend == "torch": ray.get( [ a.set_buffer.remote( array_size, tensor_type0="torch", tensor_type1="torch" ) ] ) ray.get( [ a.set_list_buffer.remote( array_size, tensor_type0="torch", tensor_type1="torch" ) ] ) else: raise RuntimeError("Unsupported tensor backend.")
apache-2.0
ray-project/ray
rllib/evaluation/tests/test_env_runner_v2.py
1
12202
import unittest import ray from ray.rllib.algorithms.callbacks import DefaultCallbacks from ray.rllib.algorithms.ppo import PPO, PPOConfig from ray.rllib.connectors.connector import ActionConnector, ConnectorContext from ray.rllib.evaluation.metrics import RolloutMetrics from ray.rllib.examples.env.debug_counter_env import DebugCounterEnv from ray.rllib.examples.env.multi_agent import BasicMultiAgent from ray.rllib.examples.policy.random_policy import RandomPolicy from ray.rllib.policy.policy import PolicySpec from ray.tune import register_env from ray.rllib.policy.sample_batch import convert_ma_batch_to_sample_batch register_env("basic_multiagent", lambda _: BasicMultiAgent(2)) class TestEnvRunnerV2(unittest.TestCase): @classmethod def setUpClass(cls): ray.init() # When dealing with two policies in these tests, simply alternate between the 2 # policies to make sure we have data for inference for both policies for each # step. class AlternatePolicyMapper: def __init__(self): self.policies = ["one", "two"] self.next = 0 def map(self): p = self.policies[self.next] self.next = 1 - self.next return p cls.mapper = AlternatePolicyMapper() @classmethod def tearDownClass(cls): ray.shutdown() def test_sample_batch_rollout_single_agent_env(self): config = ( PPOConfig() .framework("torch") .training( # Specifically ask for a batch of 200 samples. train_batch_size=200, ) .rollouts( num_envs_per_worker=1, num_rollout_workers=0, # Enable EnvRunnerV2. enable_connectors=True, ) ) algo = PPO(config, env=DebugCounterEnv) rollout_worker = algo.workers.local_worker() sample_batch = rollout_worker.sample() sample_batch = convert_ma_batch_to_sample_batch(sample_batch) self.assertEqual(sample_batch["t"][0], 0) self.assertEqual(sample_batch.env_steps(), 200) self.assertEqual(sample_batch.agent_steps(), 200) def test_sample_batch_rollout_multi_agent_env(self): config = ( PPOConfig() .framework("torch") .training( # Specifically ask for a batch of 200 samples. train_batch_size=200, ) .rollouts( num_envs_per_worker=1, num_rollout_workers=0, # Enable EnvRunnerV2. enable_connectors=True, ) ) algo = PPO(config, env="basic_multiagent") rollout_worker = algo.workers.local_worker() sample_batch = rollout_worker.sample() # 2 agents. So the multi-agent SampleBatch should have # 200 env steps, and 400 agent steps. self.assertEqual(sample_batch.env_steps(), 200) self.assertEqual(sample_batch.agent_steps(), 400) def test_inference_batches_are_grouped_by_policy(self): # Create 2 policies that have different inference batch shapes. class RandomPolicyOne(RandomPolicy): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.view_requirements["rewards"].used_for_compute_actions = True self.view_requirements["dones"].used_for_compute_actions = True # Create 2 policies that have different inference batch shapes. class RandomPolicyTwo(RandomPolicy): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.view_requirements["rewards"].used_for_compute_actions = False self.view_requirements["dones"].used_for_compute_actions = False config = ( PPOConfig() .framework("torch") .training( # Specifically ask for a batch of 200 samples. train_batch_size=200, ) .rollouts( num_envs_per_worker=1, num_rollout_workers=0, # Enable EnvRunnerV2. enable_connectors=True, ) .multi_agent( policies={ "one": PolicySpec( policy_class=RandomPolicyOne, ), "two": PolicySpec( policy_class=RandomPolicyTwo, ), }, policy_mapping_fn=lambda *args, **kwargs: self.mapper.map(), policies_to_train=["one"], count_steps_by="agent_steps", ) ) algo = PPO(config, env="basic_multiagent") local_worker = algo.workers.local_worker() env = local_worker.env obs, rewards, dones, infos = local_worker.env.step( {0: env.action_space.sample(), 1: env.action_space.sample()} ) env_id = 0 env_runner = local_worker.sampler._env_runner_obj env_runner.create_episode(env_id) _, to_eval, _ = env_runner._process_observations( {0: obs}, {0: rewards}, {0: dones}, {0: infos} ) # We should have 2 separate batches for both policies. # Each batch has 1 samples. self.assertTrue("one" in to_eval) self.assertEqual(len(to_eval["one"]), 1) self.assertTrue("two" in to_eval) self.assertEqual(len(to_eval["two"]), 1) def test_action_connector_gets_raw_input_dict(self): class CheckInputDictActionConnector(ActionConnector): def __call__(self, ac_data): assert ac_data.input_dict, "raw input dict should be available" return ac_data class AddActionConnectorCallbacks(DefaultCallbacks): def on_create_policy(self, *, policy_id, policy) -> None: policy.action_connectors.append( CheckInputDictActionConnector(ConnectorContext.from_policy(policy)) ) config = ( PPOConfig() .framework("torch") .training( # Specifically ask for a batch of 200 samples. train_batch_size=200, ) .callbacks( callbacks_class=AddActionConnectorCallbacks, ) .rollouts( num_envs_per_worker=1, num_rollout_workers=0, # Enable EnvRunnerV2. enable_connectors=True, ) ) algo = PPO(config, env="basic_multiagent") rollout_worker = algo.workers.local_worker() # As long as we can successfully sample(), things should be good. _ = rollout_worker.sample() def test_start_episode(self): config = ( PPOConfig() .framework("torch") .training( # Specifically ask for a batch of 200 samples. train_batch_size=200, ) .rollouts( num_envs_per_worker=1, num_rollout_workers=0, # Enable EnvRunnerV2. enable_connectors=True, ) .multi_agent( policies={ "one": PolicySpec( policy_class=RandomPolicy, ), "two": PolicySpec( policy_class=RandomPolicy, ), }, policy_mapping_fn=lambda *args, **kwargs: self.mapper.map(), policies_to_train=["one"], count_steps_by="agent_steps", ) ) algo = PPO(config, env="basic_multiagent") local_worker = algo.workers.local_worker() env_runner = local_worker.sampler._env_runner_obj # No episodes present self.assertEqual(env_runner._active_episodes.get(0), None) env_runner.step() # Only initial observation collected, add_init_obs called on episode self.assertEqual(env_runner._active_episodes[0].total_env_steps, 0) self.assertEqual(env_runner._active_episodes[0].total_agent_steps, 0) env_runner.step() # First recorded step, add_action_reward_done_next_obs called self.assertEqual(env_runner._active_episodes[0].total_env_steps, 1) self.assertEqual(env_runner._active_episodes[0].total_agent_steps, 2) def test_env_runner_output(self): # Test if we can produce RolloutMetrics just by stepping config = ( PPOConfig() .framework("torch") .training( # Specifically ask for a batch of 200 samples. train_batch_size=200, ) .rollouts( num_envs_per_worker=1, num_rollout_workers=0, # Enable EnvRunnerV2. enable_connectors=True, ) .multi_agent( policies={ "one": PolicySpec( policy_class=RandomPolicy, ), "two": PolicySpec( policy_class=RandomPolicy, ), }, policy_mapping_fn=lambda *args, **kwargs: self.mapper.map(), policies_to_train=["one"], count_steps_by="agent_steps", ) ) algo = PPO(config, env="basic_multiagent") local_worker = algo.workers.local_worker() env_runner = local_worker.sampler._env_runner_obj outputs = [] while not outputs: outputs = env_runner.step() self.assertEqual(len(outputs), 1) self.assertTrue(len(list(outputs[0].agent_rewards.keys())) == 2) def test_env_error(self): class CheckErrorCallbacks(DefaultCallbacks): def on_episode_end( self, *, worker, base_env, policies, episode, env_index=None, **kwargs ) -> None: # We should see an error episode. assert isinstance(episode, Exception) # Test if we can produce RolloutMetrics just by stepping config = ( PPOConfig() .framework("torch") .training( # Specifically ask for a batch of 200 samples. train_batch_size=200, ) .rollouts( num_envs_per_worker=1, num_rollout_workers=0, # Enable EnvRunnerV2. enable_connectors=True, ) .multi_agent( policies={ "one": PolicySpec( policy_class=RandomPolicy, ), "two": PolicySpec( policy_class=RandomPolicy, ), }, policy_mapping_fn=lambda *args, **kwargs: self.mapper.map(), policies_to_train=["one"], count_steps_by="agent_steps", ) .callbacks( callbacks_class=CheckErrorCallbacks, ) ) algo = PPO(config, env="basic_multiagent") local_worker = algo.workers.local_worker() env_runner = local_worker.sampler._env_runner_obj # Run a couple of steps. env_runner.step() env_runner.step() active_envs, to_eval, outputs = env_runner._process_observations( unfiltered_obs={0: AttributeError("mock error")}, rewards={0: {}}, dones={0: {"__all__": True}}, infos={0: {}}, ) self.assertEqual(active_envs, {0}) self.assertTrue(to_eval) # to_eval contains data for the resetted new episode. self.assertEqual(len(outputs), 1) self.assertTrue(isinstance(outputs[0], RolloutMetrics)) if __name__ == "__main__": import sys import pytest sys.exit(pytest.main(["-v", __file__]))
apache-2.0