repo_name
stringlengths
6
103
path
stringlengths
5
191
copies
stringlengths
1
4
size
stringlengths
4
6
content
stringlengths
986
970k
license
stringclasses
15 values
benoitsteiner/tensorflow-xsmm
tensorflow/examples/get_started/regression/imports85.py
39
6589
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A dataset loader for imports85.data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import tensorflow as tf try: import pandas as pd # pylint: disable=g-import-not-at-top except ImportError: pass URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data" # Order is important for the csv-readers, so we use an OrderedDict here. defaults = collections.OrderedDict([ ("symboling", [0]), ("normalized-losses", [0.0]), ("make", [""]), ("fuel-type", [""]), ("aspiration", [""]), ("num-of-doors", [""]), ("body-style", [""]), ("drive-wheels", [""]), ("engine-location", [""]), ("wheel-base", [0.0]), ("length", [0.0]), ("width", [0.0]), ("height", [0.0]), ("curb-weight", [0.0]), ("engine-type", [""]), ("num-of-cylinders", [""]), ("engine-size", [0.0]), ("fuel-system", [""]), ("bore", [0.0]), ("stroke", [0.0]), ("compression-ratio", [0.0]), ("horsepower", [0.0]), ("peak-rpm", [0.0]), ("city-mpg", [0.0]), ("highway-mpg", [0.0]), ("price", [0.0]) ]) # pyformat: disable types = collections.OrderedDict((key, type(value[0])) for key, value in defaults.items()) def _get_imports85(): path = tf.contrib.keras.utils.get_file(URL.split("/")[-1], URL) return path def dataset(y_name="price", train_fraction=0.7): """Load the imports85 data as a (train,test) pair of `Dataset`. Each dataset generates (features_dict, label) pairs. Args: y_name: The name of the column to use as the label. train_fraction: A float, the fraction of data to use for training. The remainder will be used for evaluation. Returns: A (train,test) pair of `Datasets` """ # Download and cache the data path = _get_imports85() # Define how the lines of the file should be parsed def decode_line(line): """Convert a csv line into a (features_dict,label) pair.""" # Decode the line to a tuple of items based on the types of # csv_header.values(). items = tf.decode_csv(line, list(defaults.values())) # Convert the keys and items to a dict. pairs = zip(defaults.keys(), items) features_dict = dict(pairs) # Remove the label from the features_dict label = features_dict.pop(y_name) return features_dict, label def has_no_question_marks(line): """Returns True if the line of text has no question marks.""" # split the line into an array of characters chars = tf.string_split(line[tf.newaxis], "").values # for each character check if it is a question mark is_question = tf.equal(chars, "?") any_question = tf.reduce_any(is_question) no_question = ~any_question return no_question def in_training_set(line): """Returns a boolean tensor, true if the line is in the training set.""" # If you randomly split the dataset you won't get the same split in both # sessions if you stop and restart training later. Also a simple # random split won't work with a dataset that's too big to `.cache()` as # we are doing here. num_buckets = 1000000 bucket_id = tf.string_to_hash_bucket_fast(line, num_buckets) # Use the hash bucket id as a random number that's deterministic per example return bucket_id < int(train_fraction * num_buckets) def in_test_set(line): """Returns a boolean tensor, true if the line is in the training set.""" # Items not in the training set are in the test set. # This line must use `~` instead of `not` because `not` only works on python # booleans but we are dealing with symbolic tensors. return ~in_training_set(line) base_dataset = ( tf.data # Get the lines from the file. .TextLineDataset(path) # drop lines with question marks. .filter(has_no_question_marks)) train = (base_dataset # Take only the training-set lines. .filter(in_training_set) # Decode each line into a (features_dict, label) pair. .map(decode_line) # Cache data so you only decode the file once. .cache()) # Do the same for the test-set. test = (base_dataset.filter(in_test_set).cache().map(decode_line)) return train, test def raw_dataframe(): """Load the imports85 data as a pd.DataFrame.""" # Download and cache the data path = _get_imports85() # Load it into a pandas dataframe df = pd.read_csv(path, names=types.keys(), dtype=types, na_values="?") return df def load_data(y_name="price", train_fraction=0.7, seed=None): """Get the imports85 data set. A description of the data is available at: https://archive.ics.uci.edu/ml/datasets/automobile The data itself can be found at: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data Args: y_name: the column to return as the label. train_fraction: the fraction of the dataset to use for training. seed: The random seed to use when shuffling the data. `None` generates a unique shuffle every run. Returns: a pair of pairs where the first pair is the training data, and the second is the test data: `(x_train, y_train), (x_test, y_test) = get_imports85_dataset(...)` `x` contains a pandas DataFrame of features, while `y` contains the label array. """ # Load the raw data columns. data = raw_dataframe() # Delete rows with unknowns data = data.dropna() # Shuffle the data np.random.seed(seed) # Split the data into train/test subsets. x_train = data.sample(frac=train_fraction, random_state=seed) x_test = data.drop(x_train.index) # Extract the label from the features dataframe. y_train = x_train.pop(y_name) y_test = x_test.pop(y_name) return (x_train, y_train), (x_test, y_test)
apache-2.0
nightjean/Deep-Learning
tensorflow/contrib/data/python/kernel_tests/zip_dataset_op_test.py
5
4387
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.data.python.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class ZipDatasetTest(test.TestCase): def testZipDataset(self): component_placeholders = [ array_ops.placeholder(dtypes.int64), array_ops.placeholder(dtypes.int64), array_ops.placeholder(dtypes.float64) ] datasets = [ dataset_ops.Dataset.from_tensor_slices(component_placeholder) for component_placeholder in component_placeholders ] zipped = dataset_ops.Dataset.zip(datasets) iterator = zipped.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: equal_length_components = [ np.tile(np.array([[1], [2], [3], [4]]), 20), np.tile(np.array([[12], [13], [14], [15]]), 22), np.array([37.0, 38.0, 39.0, 40.0]) ] sess.run(init_op, feed_dict={ph: value for ph, value in zip( component_placeholders, equal_length_components)}) for i in range(4): results = sess.run(get_next) for component, result_component in zip( equal_length_components, results): self.assertAllEqual(component[i], result_component) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) variable_length_components = [[1, 2, 3, 4], [1, 2, 3, 4, 5], [1.0, 2.0]] sess.run(init_op, feed_dict={ph: value for ph, value in zip( component_placeholders, variable_length_components)}) for i in range(2): results = sess.run(get_next) for component, result_component in zip( variable_length_components, results): self.assertAllEqual(component[i], result_component) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testNestedZipDataset(self): component_placeholders = [ array_ops.placeholder(dtypes.int64, shape=[4, 20]), array_ops.placeholder(dtypes.int64, shape=[4, 22]), array_ops.placeholder(dtypes.float64, shape=[4]) ] datasets = [ dataset_ops.Dataset.from_tensor_slices(component_placeholder) for component_placeholder in component_placeholders ] zipped = dataset_ops.Dataset.zip((datasets[0], (datasets[1], datasets[2]))) iterator = zipped.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([20], get_next[0].shape) self.assertEqual([22], get_next[1][0].shape) self.assertEqual([], get_next[1][1].shape) with self.test_session() as sess: equal_length_components = [ np.tile(np.array([[1], [2], [3], [4]]), 20), np.tile(np.array([[12], [13], [14], [15]]), 22), np.array([37.0, 38.0, 39.0, 40.0]) ] sess.run(init_op, feed_dict={ph: value for ph, value in zip( component_placeholders, equal_length_components)}) for i in range(4): result1, (result2, result3) = sess.run(get_next) self.assertAllEqual(equal_length_components[0][i], result1) self.assertAllEqual(equal_length_components[1][i], result2) self.assertAllEqual(equal_length_components[2][i], result3) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) if __name__ == "__main__": test.main()
apache-2.0
mxjl620/scikit-learn
sklearn/utils/tests/test_validation.py
79
18547
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( NotFittedError, has_fit_parameter, check_is_fitted, check_consistent_length, DataConversionWarning, ) from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=(10, 10), dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M.ravel()) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) @ignore_warnings def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d assert_warns(DeprecationWarning, check_array, [0, 1, 2]) X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [[]]) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = assert_warns(DeprecationWarning, check_array, [42], ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
ageron/tensorflow
tensorflow/python/compiler/tensorrt/test/quantization_mnist_test.py
3
11029
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script to test TF-TRT INT8 conversion without calibration on Mnist model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.protobuf import config_pb2 from tensorflow.python import data from tensorflow.python import keras from tensorflow.python.compiler.tensorrt import trt_convert from tensorflow.python.compiler.tensorrt.wrap_conversion import get_linked_tensorrt_version from tensorflow.python.compiler.tensorrt.wrap_conversion import is_tensorrt_enabled from tensorflow.python.estimator.estimator import Estimator from tensorflow.python.estimator.model_fn import EstimatorSpec from tensorflow.python.estimator.model_fn import ModeKeys from tensorflow.python.estimator.run_config import RunConfig from tensorflow.python.framework import dtypes from tensorflow.python.framework import graph_util from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.keras.datasets import mnist from tensorflow.python.layers import layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import metrics from tensorflow.python.ops import nn from tensorflow.python.ops import variable_scope from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import saver from tensorflow.python.training.adam import AdamOptimizer from tensorflow.python.training.checkpoint_management import latest_checkpoint from tensorflow.python.training.training_util import get_global_step INPUT_NODE_NAME = 'input' OUTPUT_NODE_NAME = 'output' class QuantizationAwareTrainingMNISTTest(test_util.TensorFlowTestCase): def _BuildGraph(self, x): def _Quantize(x, r): x = gen_array_ops.quantize_and_dequantize_v2(x, -r, r) return x def _DenseLayer(x, num_inputs, num_outputs, quantization_range, name): """Dense layer with quantized outputs. Args: x: input to the dense layer num_inputs: number of input columns of x num_outputs: number of output columns quantization_range: the min/max range for quantization name: name of the variable scope Returns: The output of the layer. """ with variable_scope.variable_scope(name): kernel = variable_scope.get_variable( 'kernel', shape=[num_inputs, num_outputs], dtype=dtypes.float32, initializer=keras.initializers.glorot_uniform()) bias = variable_scope.get_variable( 'bias', shape=[num_outputs], dtype=dtypes.float32, initializer=keras.initializers.zeros()) x = math_ops.matmul(x, kernel) x = _Quantize(x, quantization_range) x = nn.bias_add(x, bias) x = _Quantize(x, quantization_range) return x x = _Quantize(x, 1) # Conv + Bias + Relu6 x = layers.conv2d(x, filters=32, kernel_size=3, use_bias=True) x = nn.relu6(x) # Conv + Bias + Relu6 x = layers.conv2d(x, filters=64, kernel_size=3, use_bias=True) x = nn.relu6(x) # Reduce x = math_ops.reduce_mean(x, [1, 2]) x = _Quantize(x, 6) # FC1 x = _DenseLayer(x, 64, 512, 6, name='dense') x = nn.relu6(x) # FC2 x = _DenseLayer(x, 512, 10, 25, name='dense_1') x = array_ops.identity(x, name=OUTPUT_NODE_NAME) return x def _GetGraphDef(self, use_trt, max_batch_size, model_dir): """Get the frozen mnist GraphDef. Args: use_trt: whether use TF-TRT to convert the graph. max_batch_size: the max batch size to apply during TF-TRT conversion. model_dir: the model directory to load the checkpoints. Returns: The frozen mnist GraphDef. """ graph = ops.Graph() with self.session(graph=graph) as sess: with graph.device('/GPU:0'): x = array_ops.placeholder( shape=(None, 28, 28, 1), dtype=dtypes.float32, name=INPUT_NODE_NAME) self._BuildGraph(x) # Load weights mnist_saver = saver.Saver() checkpoint_file = latest_checkpoint(model_dir) mnist_saver.restore(sess, checkpoint_file) # Freeze graph_def = graph_util.convert_variables_to_constants( sess, sess.graph_def, output_node_names=[OUTPUT_NODE_NAME]) # Convert with TF-TRT if use_trt: logging.info('Number of nodes before TF-TRT conversion: %d', len(graph_def.node)) converter = trt_convert.TrtGraphConverter( input_graph_def=graph_def, nodes_blacklist=[OUTPUT_NODE_NAME], max_batch_size=max_batch_size, precision_mode='INT8', # There is a 2GB GPU memory limit for each test, so we set # max_workspace_size_bytes to 256MB to leave enough room for TF # runtime to allocate GPU memory. max_workspace_size_bytes=1 << 28, minimum_segment_size=2, use_calibration=False, use_function_backup=False) graph_def = converter.convert() logging.info('Number of nodes after TF-TRT conversion: %d', len(graph_def.node)) num_engines = len( [1 for n in graph_def.node if str(n.op) == 'TRTEngineOp']) self.assertEqual(1, num_engines) return graph_def def _Run(self, is_training, use_trt, batch_size, num_epochs, model_dir): """Train or evaluate the model. Args: is_training: whether to train or evaluate the model. In training mode, quantization will be simulated where the quantize_and_dequantize_v2 are placed. use_trt: if true, use TRT INT8 mode for evaluation, which will perform real quantization. Otherwise use native TensorFlow which will perform simulated quantization. Ignored if is_training is True. batch_size: batch size. num_epochs: how many epochs to train. Ignored if is_training is False. model_dir: where to save or load checkpoint. Returns: The Estimator evaluation result. """ # Get dataset train_data, test_data = mnist.load_data() def _PreprocessFn(x, y): x = math_ops.cast(x, dtypes.float32) x = array_ops.expand_dims(x, axis=2) x = 2.0 * (x / 255.0) - 1.0 y = math_ops.cast(y, dtypes.int32) return x, y def _EvalInputFn(): mnist_x, mnist_y = test_data dataset = data.Dataset.from_tensor_slices((mnist_x, mnist_y)) dataset = dataset.apply( data.experimental.map_and_batch( map_func=_PreprocessFn, batch_size=batch_size, num_parallel_calls=8)) dataset = dataset.repeat(count=1) iterator = dataset.make_one_shot_iterator() features, labels = iterator.get_next() return features, labels def _TrainInputFn(): mnist_x, mnist_y = train_data dataset = data.Dataset.from_tensor_slices((mnist_x, mnist_y)) dataset = dataset.shuffle(2 * len(mnist_x)) dataset = dataset.apply( data.experimental.map_and_batch( map_func=_PreprocessFn, batch_size=batch_size, num_parallel_calls=8)) dataset = dataset.repeat(count=num_epochs) iterator = dataset.make_one_shot_iterator() features, labels = iterator.get_next() return features, labels def _ModelFn(features, labels, mode): if is_training: logits_out = self._BuildGraph(features) else: graph_def = self._GetGraphDef(use_trt, batch_size, model_dir) logits_out = importer.import_graph_def( graph_def, input_map={INPUT_NODE_NAME: features}, return_elements=[OUTPUT_NODE_NAME + ':0'], name='')[0] loss = losses.sparse_softmax_cross_entropy( labels=labels, logits=logits_out) summary.scalar('loss', loss) classes_out = math_ops.argmax(logits_out, axis=1, name='classes_out') accuracy = metrics.accuracy( labels=labels, predictions=classes_out, name='acc_op') summary.scalar('accuracy', accuracy[1]) if mode == ModeKeys.EVAL: return EstimatorSpec( mode, loss=loss, eval_metric_ops={'accuracy': accuracy}) elif mode == ModeKeys.TRAIN: optimizer = AdamOptimizer(learning_rate=1e-2) train_op = optimizer.minimize(loss, global_step=get_global_step()) return EstimatorSpec(mode, loss=loss, train_op=train_op) config_proto = config_pb2.ConfigProto() config_proto.gpu_options.allow_growth = True estimator = Estimator( model_fn=_ModelFn, model_dir=model_dir if is_training else None, config=RunConfig(session_config=config_proto)) if is_training: estimator.train(_TrainInputFn) results = estimator.evaluate(_EvalInputFn) logging.info('accuracy: %s', str(results['accuracy'])) return results # To generate the checkpoint, set a different model_dir and call self._Run() # by setting is_training=True and num_epochs=1000, e.g.: # model_dir = '/tmp/quantization_mnist' # self._Run( # is_training=True, # use_trt=False, # batch_size=128, # num_epochs=100, # model_dir=model_dir) def testEval(self): if not is_tensorrt_enabled(): return model_dir = test.test_src_dir_path('python/compiler/tensorrt/test/testdata') accuracy_tf_native = self._Run( is_training=False, use_trt=False, batch_size=128, num_epochs=None, model_dir=model_dir)['accuracy'] logging.info('accuracy_tf_native: %f', accuracy_tf_native) self.assertAllClose(0.9662, accuracy_tf_native, rtol=3e-3, atol=3e-3) if get_linked_tensorrt_version()[0] < 5: return accuracy_tf_trt = self._Run( is_training=False, use_trt=True, batch_size=128, num_epochs=None, model_dir=model_dir)['accuracy'] logging.info('accuracy_tf_trt: %f', accuracy_tf_trt) self.assertAllClose(0.9675, accuracy_tf_trt, rtol=1e-3, atol=1e-3) if __name__ == '__main__': test.main()
apache-2.0
nickgentoo/scikit-learn-graph
skgraph/kernel/ODDSTGraphKernel.py
1
28608
# -*- coding: utf-8 -*- """ Created on Wed Jun 24 12:44:02 2015 Copyright 2015 Nicolo' Navarin, Riccardo Tesselli This file is part of scikit-learn-graph. scikit-learn-graph is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. scikit-learn-graph is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with scikit-learn-graph. If not, see <http://www.gnu.org/licenses/>. """ from graphKernel import GraphKernel from ..graph.GraphTools import generateDAG from ..graph.GraphTools import generateDAGOrdered from ..graph.GraphTools import orderDAGvertices from operator import itemgetter from ..graph.GraphTools import drawGraph from KernelTools import convert_to_sparse_matrix from sklearn.preprocessing import normalize import networkx as nx import math import sys import numpy as np class ODDSTGraphKernel(GraphKernel): """ Class that implements the ODDKernel with ST kernel """ class UniqueMap(object): """ Inner class that creates a __map between elements and ascending unique values """ def __init__(self): self.__counter=0 self.__map={} def addElement(self,elem): if self.__map.get(elem) is None: self.__map[elem]=self.__counter self.__counter+=1 def getElement(self,elem): return self.__map.get(elem) def __init__(self, r =3, l =1, normalization =True, ntype =0): """ Constructor @type r: integer number @param r: ODDKernel Parameter @type l: number in (0,1] @param l: ODDKernel Parameter @type normalization: boolean @param normalization: True to normalize the feature vectors @type ntype: enum in [0,1] @param ntype: 0 for default normalization, 1 for tanh normalization @type show: boolean @param show: If true shows graphs and DAGs during computation """ self.Lambda=l self.max_radius=r self.normalization=normalization self.normalization_type = ntype self.__startsymbol='!' #special symbols used in encoding self.__conjsymbol='#' self.__endsymbol='?' def computeWeightedGraphFromFeatures(self,G,features): """ #TODO """ featureindexes=self.getFeaturesIndexes(G) wg=nx.Graph(G) for u in wg.nodes(): wg.node[u]['weight']=0 for f in featureindexes.keys(): if not features.get(f) is None: value=features.get(f) DAG=self.encodingWithIndexesToDag(featureindexes[f])[0] for u in DAG.nodes(): wg.node[u]['weight']+=value return wg def computeWeightedGraph(self,G): """ Public method that weights a graph G given its features in the encoding with nodes' indexes instead of labels @type G: a networkx graph @param G: the graph to weight @rtype: networkx graph @return: the weighted graph """ dfeatures=self.getFeaturesNoCollisions(G, indexes=True) wg=nx.Graph(G) pairs=[] for (k,v) in dfeatures.items(): pairs.append((self.encodingWithIndexesToDag(k)[0],v)) for (dag,frequency) in pairs: for u in dag.nodes(): if wg.node[u].get('weight') is None: wg.node[u]['weight']=frequency else: wg.node[u]['weight']+=frequency return wg def encodingWithLabelsToDag(self, encode, rootindex=0): """ Public method that creates a DAG given its encoding with the nodes' labels @type encode: string @param encode: the DAG's encoding @rtype: triple (networkx.DiGraph,string,string) @return: the triple that contains the created DAG, the left string to parse and the root's index """ DAG=nx.DiGraph() start=encode.find(self.__startsymbol) if start==-1: start=sys.maxint end=encode.find(self.__endsymbol) if end==-1: end=sys.maxint conj=encode.find(self.__conjsymbol) if conj==-1: conj=sys.maxint minindex=min(start,end,conj) labelnode=encode[:minindex] DAG.add_node(rootindex, label=labelnode) encode=encode[minindex:] if len(encode)!=0: if encode[0]==self.__startsymbol: encode=encode[1:] (childDAG,encodeleft,root,indexnext)=self.encodingWithLabelsToDag(encode,rootindex+1) childrenDAG=[childDAG] childrenRoot=[root] while(encodeleft[0]==self.__conjsymbol): encodeleft=encodeleft[1:] (childDAG,encodeleft,root,indexnext)=self.encodingWithLabelsToDag(encodeleft,indexnext) childrenDAG.append(childDAG) childrenRoot.append(root) if encodeleft[0]==self.__endsymbol: encodeleft=encodeleft[1:] compose=nx.DiGraph(DAG) for g in childrenDAG: compose=nx.compose(compose,g) for r in childrenRoot: compose.add_edge(rootindex, r) return (compose,encodeleft,rootindex,indexnext) else: return (DAG,encode,rootindex,rootindex+1) else: return (DAG,encode,rootindex,rootindex+1) def encodingWithIndexesToDag(self, encode): """ Public method that creates a DAG given its encoding with the nodes' index @type encode: string @param encode: the DAG's encoding @rtype: triple (networkx.DiGraph,string,string) @return: the triple that contains the created DAG, the left string to parse and the root's index """ DAG=nx.DiGraph() start=encode.find(self.__startsymbol) if start==-1: start=sys.maxint end=encode.find(self.__endsymbol) if end==-1: end=sys.maxint conj=encode.find(self.__conjsymbol) if conj==-1: conj=sys.maxint minindex=min(start,end,conj) number=int(encode[:minindex]) DAG.add_node(number) encode=encode[minindex:] if len(encode)!=0: if encode[0]==self.__startsymbol: encode=encode[1:] (childDAG,encodeleft,root)=self.encodingWithIndexesToDag(encode) childrenDAG=[childDAG] childrenRoot=[root] while(encodeleft[0]==self.__conjsymbol): encodeleft=encodeleft[1:] (childDAG,encodeleft,root)=self.encodingWithIndexesToDag(encodeleft) childrenDAG.append(childDAG) childrenRoot.append(root) if encodeleft[0]==self.__endsymbol: encodeleft=encodeleft[1:] compose=nx.DiGraph(DAG) for g in childrenDAG: compose=nx.compose(compose,g) for r in childrenRoot: compose.add_edge(number, r) return (compose,encodeleft,number) else: return (DAG,encode,number) else: return (DAG,encode,number) def __normalization(self, feature_list): """ Private method that normalize the feature vector if requested @type feature_list: Dictionary @param feature_list: Dictionary that represent the feature vector @rtype: Dictionary @return: The normalized feature vector """ if self.normalization: total_norm = 0.0 for value in feature_list.itervalues(): total_norm += value*value normalized_feature_vector = {} sqrt_total_norm = math.sqrt( float(total_norm) ) for (key,value) in feature_list.iteritems(): normalized_feature_vector[key] = value/sqrt_total_norm return normalized_feature_vector else : return dict(feature_list) def computeKernelMatrixTrain(self,Graphs): return self.computeGram(Graphs) def computeGram(self, g_it, jobs=-1, approx=True, precomputed=None): """ Public static method to compute the Gram matrix @type g_it: networkx graph list @param g_it: graph instances @type jobs: integer @param jobs: number of parallel jobs. if -1 then number of jobs is maximum @type approx: boolean @param approx: if True then the approximated decomposition is used @type precomputed: csr_sparse matrix @param precomputed: precomputed instance-features matrix @rtype: numpy matrix @return: the Gram matrix """ if precomputed is None: precomputed=self.transform(g_it, n_jobs=jobs, approximated=approx) return precomputed.dot(precomputed.T).todense().tolist() def computeGramTest(self,X,Y,jobs=-1, approx=True, precomputed=None): """ TODO TEST Public static method to compute the Gram matrix @type X: scipy.sparse.csr_matrix @param X: The instance-features matrix @rtype: numpy matrix @return: the Gram matrix """ if precomputed is None: precomputed1=self.transform(X, n_jobs=jobs, approximated=approx) precomputed2=self.transform(X, n_jobs=jobs, approximated=approx) return precomputed1.dot(precomputed2.T).todense().tolist() def __transform(self, instance_id , G_orig, approximated=True, MapEncToId=None): """ Private method that given a graph id and its representation computes the normalized feature vector @type instance_id: integer number @param instannce_id: a graph id @type G_orig: Networkx graph @param G_orig: a Networkx graph @type MapEncToId: self.UniqueMap @param MapEncToId: Map between feature's encodings and integer values @rtype: Dictionary @return: The normalized feature vector """ #feature_list = defaultdict(lambda : defaultdict(float)) feature_list={} if approximated: feature_list.update({(instance_id,k):v for (k,v) in self.getFeaturesApproximated(G_orig,MapEncToId).items()}) else: feature_list.update({(instance_id,k):v for (k,v) in self.getFeaturesNoCollisions(G_orig,MapEncToId).items()}) # ve=convert_to_sparse_matrix(feature_list) # if self.normalization: # ve = normalize(ve, norm='l2', axis=1) # return ve # return self.__normalization(feature_list) return feature_list def __transform_serial(self, G_list, approximated=True,keepdictionary=False): """ Private method that converts a networkx graph list into a instance-features matrix @type G_list: networkx graph generator @param G_list: list of the graph to convert @type approximated: boolean @param approximated: true if use a hash function with probable collisions during feature decomposition. False no collision guaranteed @type keepdictionary: boolean @param keepdictionary: True if the instance-feature matrix is kept as a dictionary. Else is a csr_matrix @rtype: scipy.sparse.csr_matrix @return: the instance-features matrix """ feature_dict={} MapEncToId=None if not keepdictionary: MapEncToId=self.UniqueMap() for instance_id , G in enumerate( G_list ): feature_dict.update(self.__transform( instance_id, G, approximated, MapEncToId)) # if keepdictionary: # return (convert_to_sparse_matrix( feature_dict, MapEncToId ),feature_dict) # else: # return convert_to_sparse_matrix( feature_dict, MapEncToId ) ve=convert_to_sparse_matrix(feature_dict) if self.normalization: ve = normalize(ve, norm='l2', axis=1) return ve def transform(self, G_list, n_jobs = -1, approximated=True, keepdictionary=False): """ Public method that given a list of networkx graph it creates the sparse matrix (example, features) in parallel or serial @type G_list: networkx graph generator @param G_list: list of the graph to convert @type n_jobs: integer number @param n_jobs: number of parallel jobs @type approximated: boolean mult=1.0 if i>13 and i< @param approximated: true if use a hash function with probable collisions during feature decomposition. False no collision guaranteed @type keepdictionary: boolean @param keepdictionary: True if the instance-feature matrix is kept as a dictionary. Else is a csr_matrix @rtype: scipy.sparse.csr_matrix @return: the instance-features matrix """ if n_jobs is 1 or n_jobs is -1: return self.__transform_serial(G_list,approximated,keepdictionary) else: print "WARNING: parallel calculation not implemented" return self.__transform_serial(G_list,approximated,keepdictionary) def getFeaturesIndexes(self,G): """ Public method that given a networkx graph G will create the dictionary representing its encoded features and the corresponding index nodes @type G: networkx graph @param G: the graph to extract features from @rtype: dictionary @return: the encoding-feature dictionary """ Dict_features={} for v in G.nodes(): if G.node[v]['viewpoint']: if not G.graph['ordered']: (DAG,maxLevel)=generateDAG(G, v, self.max_radius) orderDAGvertices(DAG) else: (DAG,maxLevel)=generateDAGOrdered(G, v, self.max_radius) MapNodeToProductionsID={} MapNodeToProductionsIDInd={} for u in DAG.nodes(): MapNodeToProductionsID[u]=[] MapNodeToProductionsIDInd[u]=[] for u in nx.topological_sort(DAG)[::-1]: max_child_height=0 for child in DAG.successors(u): child_height=len(MapNodeToProductionsID.get(child)) if child_height > max_child_height: max_child_height = child_height for depth in range(max_child_height+1): if depth==0: enc=DAG.node[u]['label'] encind=str(u) MapNodeToProductionsID[u].append(enc) MapNodeToProductionsIDInd[u].append(encind) if Dict_features.get(enc) is None: Dict_features[enc]=encind else: encoding=DAG.node[u]['label'] encodingind=str(u) vertex_label_id_list=[] for child in DAG.successors(u): size_map=len(MapNodeToProductionsID[child]) child_hash=MapNodeToProductionsID[child][min(size_map,depth)-1] child_hashind=MapNodeToProductionsIDInd[child][min(size_map,depth)-1] vertex_label_id_list.append((child_hash,child_hashind)) vertex_label_id_list.sort(key=itemgetter(0)) encoding+=self.__startsymbol+vertex_label_id_list[0][0] encodingind+=self.__startsymbol+vertex_label_id_list[0][1] for i in range(1,len(vertex_label_id_list)): encoding+=self.__conjsymbol+vertex_label_id_list[i][0] encodingind+=self.__conjsymbol+vertex_label_id_list[i][1] encoding+=self.__endsymbol encodingind+=self.__endsymbol MapNodeToProductionsID[u].append(encoding) MapNodeToProductionsIDInd[u].append(encodingind) if Dict_features.get(encoding) is None: Dict_features[encoding]=encodingind return Dict_features def getFeaturesNoCollisions(self,G,MapEncToId=None,indexes=False): """ Public method that given a networkx graph G will create the dictionary representing its features according to the ST Kernel @type G: networkx graph @param G: the graph to extract features from @type MapEncToId: self.UniqueMap @param MapEncToId: Map between feature's encodings and integer values @type indexes: boolean @param indexes: if True the feature is encoded using the nodes' index rather than theirs labels @rtype: dictionary @return: the encoding-feature dictionary """ Dict_features={} for v in G.nodes(): (DAG,maxLevel)=generateDAG(G, v, self.max_radius) MapNodeToProductionsID={} #k:list(unsigned) MapNodetoFrequencies={} #k:list(int) for u in DAG.nodes(): MapNodeToProductionsID[u]=[] MapNodetoFrequencies[u]=[] MapProductionIDtoSize={} #k:int for u in nx.topological_sort(DAG)[::-1]: max_child_height=0 for child in DAG.successors(u): child_height=0 child_height=len(MapNodeToProductionsID.get(child)) if child_height > max_child_height: max_child_height = child_height for depth in range(max_child_height+1): if depth==0: if not indexes: enc=DAG.node[u]['label'] else: enc=str(u) MapNodeToProductionsID[u].append(enc) frequency=0 if max_child_height==0: frequency=maxLevel - DAG.node[u]['depth'] if Dict_features.get(enc) is None: Dict_features[enc]=float(frequency+1.0)*math.sqrt(self.Lambda) else: Dict_features[enc]+=float(frequency+1.0)*math.sqrt(self.Lambda) if not MapEncToId is None: MapEncToId.addElement(enc) MapNodetoFrequencies[u].append(frequency) MapProductionIDtoSize[enc]=1 else: size=0 if not indexes: encoding=DAG.node[u]['label'] else: encoding=str(u) vertex_label_id_list=[]#list[string] min_freq_children=sys.maxint for child in DAG.successors(u): size_map=len(MapNodeToProductionsID[child]) child_hash=MapNodeToProductionsID[child][min(size_map,depth)-1] freq_child=MapNodetoFrequencies[child][min(size_map,depth)-1] if freq_child<min_freq_children: min_freq_children=freq_child vertex_label_id_list.append(child_hash) size+=MapProductionIDtoSize[child_hash] vertex_label_id_list.sort() encoding+=self.__startsymbol+vertex_label_id_list[0] for i in range(1,len(vertex_label_id_list)): encoding+=self.__conjsymbol+vertex_label_id_list[i] encoding+=self.__endsymbol MapNodeToProductionsID[u].append(encoding) size+=1 MapProductionIDtoSize[encoding]=size frequency = min_freq_children MapNodetoFrequencies[u].append(frequency) if Dict_features.get(encoding) is None: Dict_features[encoding]=float(frequency+1.0)*math.sqrt(math.pow(self.Lambda,size)) else: Dict_features[encoding]+=float(frequency+1.0)*math.sqrt(math.pow(self.Lambda,size)) if not MapEncToId is None: MapEncToId.addElement(encoding) return Dict_features def getFeaturesApproximated(self,G,MapEncToId=None):#TODO usa xxhash lib con bitsize settabile """ Public method that given a networkx graph G will create the dictionary representing its features according to the ST Kernel. The computation will use a hash function to encode a feature. There might be collisions @type G: networkx graph @param G: the graph to extract features from @type hashsize: integer @param hashsize: number of bits of the hash function to use @type MapEncToId: self.UniqueMap @param MapEncToId: Map between feature's encodings and integer values @rtype: dictionary @return: the encoding-feature dictionary """ Dict_features={} for v in G.nodes(): if G.node[v]['viewpoint']: if not G.graph['ordered']: (DAG,maxLevel)=generateDAG(G, v, self.max_radius) #orderDAGvertices(DAG) else: (DAG,maxLevel)=generateDAGOrdered(G, v, self.max_radius) MapNodeToProductionsID={} #k:list(unsigned) MapNodetoFrequencies={} #k:list(int) for u in DAG.nodes(): MapNodeToProductionsID[u]=[] MapNodetoFrequencies[u]=[] MapProductionIDtoSize={} #k:int for u in nx.topological_sort(DAG)[::-1]: max_child_height=0 for child in DAG.successors(u): child_height=len(MapNodeToProductionsID.get(child)) if child_height > max_child_height: max_child_height = child_height for depth in xrange(max_child_height+1): if depth==0: enc=hash(str(DAG.node[u]['label'])) MapNodeToProductionsID[u].append(enc) frequency=0 if max_child_height==0: frequency=maxLevel - DAG.node[u]['depth'] weight = float(frequency+1.0)*math.sqrt(self.Lambda) if self.normalization and self.normalization_type == 1: weight = math.tanh(float(frequency+1.0))*math.tanh(math.sqrt(self.Lambda)) if Dict_features.get(enc) is None: Dict_features[enc] = weight else: Dict_features[enc] += weight if not MapEncToId is None: MapEncToId.addElement(enc) MapNodetoFrequencies[u].append(frequency) MapProductionIDtoSize[enc]=1 else: size=0 encoding=str(DAG.node[u]['label']) vertex_label_id_list=[]#list[string] min_freq_children=sys.maxint for child in DAG.successors(u): size_map=len(MapNodeToProductionsID[child]) child_hash=MapNodeToProductionsID[child][min(size_map,depth)-1] freq_child=MapNodetoFrequencies[child][min(size_map,depth)-1] if freq_child<min_freq_children: min_freq_children=freq_child vertex_label_id_list.append(child_hash) size+=MapProductionIDtoSize[child_hash] vertex_label_id_list.sort() encoding+=self.__startsymbol+str(vertex_label_id_list[0]) for i in range(1,len(vertex_label_id_list)): encoding+=self.__conjsymbol+str(vertex_label_id_list[i]) encoding+=self.__endsymbol encoding=hash(encoding) MapNodeToProductionsID[u].append(encoding) size+=1 MapProductionIDtoSize[encoding]=size frequency = min_freq_children MapNodetoFrequencies[u].append(frequency) weight = float(frequency+1.0)*math.sqrt(math.pow(self.Lambda,size)) if self.normalization and self.normalization_type == 1: weight = math.tanh(float(frequency+1.0))*math.tanh(math.sqrt(math.pow(self.Lambda,size))) if Dict_features.get(encoding) is None: Dict_features[encoding] = weight else: Dict_features[encoding] += weight if not MapEncToId is None: MapEncToId.addElement(encoding) return Dict_features def kernelFunction(self,Graph1, Graph2): """ #TODO """ G_list = [Graph1, Graph2] X=self.transform(G_list, n_jobs=1) row1=X[0] row2=X[1] return row1.dot(row2.T)[0,0]
gpl-3.0
rbrecheisen/arff-utils
arff_utils/arff_utils.py
1
17913
# -*- coding: utf-8 -*- __author__ = 'Ralph' import arff import numpy as np import pandas as pd class ARFF(object): @staticmethod def read(file_name, missing=None): """ Loads ARFF file into data dictionary. Missing values indicated by '?' are automatically converted to None. If you want some other value to be treated as missing, specify them in the missing parameter. :param file_name: File name :param missing: List of missing value representations :return: Data dictionary """ data = arff.load(open(file_name)) if missing is not None: for i in range(len(data['data'])): for j in range(len(data['data'][i])): if type(missing) is str: if data['data'][i][j] == missing: data['data'][i][j] = None elif type(missing) is list: for m in missing: if data['data'][i][j] == m: data['data'][i][j] = None else: raise RuntimeError('Invalid type for \'missing\' parameter ' + str(type(missing))) return data @staticmethod def read_from_csv(file_name): """ Loads CSV file and converts it to an ARFF data dictionary. This function assumes the following: (1) First line contains a header with column names (2) First column contains IDs (interpreted as string values) (3) Remaining columns contain numeric values :param file_name: CSV file path """ attributes = [] f = open(file_name, 'r') header = f.readline().strip().split(',') header = [item.strip() for item in header] attributes.append((header[0], 'STRING')) for item in header[1:]: attributes.append((item, 'NUMERIC')) data = [] for line in f.readlines(): line = line.strip() if line.startswith('#') or line == '': continue parts = line.split(',') parts = [part.strip() for part in parts] parts[0] = str(parts[0]) parts[1:] = [float(part) for part in parts[1:]] data.append(parts) f.close() return { 'relation': 'unknown', 'attributes': attributes, 'data': data, 'description': '' } @staticmethod def to_data_frame(data, index_col=None): """ Converts ARFF data dictionary to Pandas data frame. :param data: Data dictionary :param index_col: Column name to use as index :return: Data frame """ # Create data frame by by taking rows and attributes from # ARFF data. Data types should be automatically inferred rows = data['data'] columns = [attribute[0] for attribute in data['attributes']] # Get categorical-type columns categoricals = [] for attribute in data['attributes']: column = attribute[0] if type(attribute[1]) is list: categoricals.append(column) # Create data frame from ARFF dictionary data_frame = pd.DataFrame(rows, columns=columns) for categorical in categoricals: data_frame[categorical] = data_frame[categorical].astype('category') # If index column specified, set it if index_col is not None: if index_col not in data_frame.columns: raise RuntimeError('Index column ' + index_col + ' not found') data_frame.set_index(index_col, drop=True, inplace=True, verify_integrity=True) return data_frame @staticmethod def from_data_frame(relation, attributes, data_frame, description=''): """ Converts Pandas data frame to ARFF dictionary. This is only possible if the data frame was previously converted from ARFF data because we need the specific attribute information. :param relation: Relation :param attributes: ARFF attributes :param data_frame: Data frame :param description: Optional description :return: ARFF data dictionary """ data = [] for row in data_frame.to_records(index=False): data.append(list(row)) return { 'relation': relation, 'attributes': attributes, 'data': data, 'description': description } @staticmethod def from_data_frame(relation, data_frame): """ Converts Pandas data frame to ARFF dictionary. Attribute types are automatically inferred. :param relation: Relation name :param data_frame: Data frame :return: ARFF data dictionary """ attributes = [] for name in data_frame.columns: column = data_frame[name] if column.dtype is np.dtype('int') or column.dtype is np.dtype('float'): attributes.append((name, 'NUMERIC')) elif column.dtype is np.dtype('object'): attributes.append((name, 'STRING')) elif column.dtype.name is 'category': attributes.append((name, list(column.cat.categories))) data = [] for row in data_frame.to_records(index=False): data.append(list(row)) return { 'relation': relation, 'attributes': attributes, 'data': data, 'description': 'Converted from Pandas data frame' } @staticmethod def test(): data = ARFF.to_data_frame( ARFF.read('/Users/Ralph/datasets/pyminer/features.arff')) ARFF.from_data_frame(data) @staticmethod def write(file_name, data): """ Writes ARFF data dictionary to file. :param file_name: File name :param data: Data dictionary :return: """ f = open(file_name, 'w') arff.dump(data, f) f.close() @staticmethod def write_csv(file_name, data): """ Writes ARFF data dictionary to CSV file. Note that this will cause loss of attribute type information. The approach we take here is to first convert to a Pandas data frame and then use the Pandas built-in function to export to CSV. :param file_name: CSV file name :param data: Data dictionary :return: """ data_frame = ARFF.to_data_frame(data) data_frame.to_csv(file_name, na_rep='?', header=True, index=False, sep=',') @staticmethod def append(data1, data2): """ Appends contents of ARFF data dictionary 'data2' to the contents of data dictionary 'data1'. Obviously, the attributes and types must correspond exactly. :param data1: Base data dictionary. :param data2: Dictionary to append :return: Updated dictionary """ # Use description of data1 description = data1['description'] # Check whether we have matching attributes attributes1 = data1['attributes'] attributes2 = data2['attributes'] if not len(attributes1) == len(attributes2): raise RuntimeError('Mismatch number of attributes') for i in range(len(attributes1)): attribute1 = attributes1[i] attribute2 = attributes2[i] if not len(attribute1) == 2: raise RuntimeError('Number of attribute1 items != 2') if not len(attribute2) == 2: raise RuntimeError('Number of attribute2 items != 2') if not unicode(attribute1[0]) == unicode(attribute2[0]): raise RuntimeError('Mismatching names at ' + str(i) + ' (' + attribute1[0] + ' vs ' + attribute2[0] + ')') if type(attribute1[1]) is list and type(attribute2[1]) is list: for j in range(len(attribute1[1])): if not unicode(attribute1[1][j]) == unicode(attribute2[1][j]): raise RuntimeError('Mismatching nominal values at (' + str(i) + ',' + str(j) + ') (' + unicode(attribute1[1][j]) + ' vs ' + unicode(attribute2[1][j]) + ')') elif not unicode(attribute1[1]) == unicode(attribute2[1]): raise RuntimeError('Mismatching attribute types (' + unicode(attribute1[1]) + ' vs ' + unicode(attribute2[1]) + ')') # Append rows of data2 to rows of data1 data = [] data.extend(data1['data']) data.extend(data2['data']) return { 'relation': relation1, 'attributes': attributes1, 'data': data, 'description': description } @staticmethod def merge(data1, data2, join_by, attributes): """ Merges two data sets by appending the columns of data2 associated with given attributes to data1. Rows are matched based on the join_by attribute. :param data1: Original data set :param data2: Data set whose columns to add :param join_by: Attribute for matching data rows :param attributes: Attributes to add :return: New data set """ # Check that both data sets have the merge attribute otherwise we # can never match rows from one with rows from the other if not ARFF.contains(data1, join_by): raise RuntimeError('Attribute ' + join_by + ' missing from data1') if not ARFF.contains(data2, join_by): raise RuntimeError('Attribute ' + join_by + ' missing from data2') # Check that data2 has the given attributes for attribute in attributes: if not ARFF.contains(data2, attribute): raise RuntimeError('Attribute ' + attribute + ' missing from data2') # Check that data1 does not have the given attributes for attribute in attributes: if ARFF.contains(data1, attribute): raise RuntimeError('Attribute ' + attribute + ' already exists in data1') # Get index of join_by attribute in both data sets. Then, create a # lookup table for data2 based on join_by attribute as key. This # allows quick access to data rows of data2. If we iterate through # the rows of data1, we can get the join_by attribute value using # the join_idx1 index. Using the attribute value we can then lookup # the corresponding data row in data2. join_idx1 = ARFF.index_of(data1, join_by) join_idx2 = ARFF.index_of(data2, join_by) data2_lookup = {} for data_row1 in data2['data']: data2_lookup[data_row1[join_idx2]] = data_row1 # Get indexes associated with given attributes in data2. We need this # to efficiently access specific values in the rows of data2 attribute_indexes = [] for attribute in attributes: attribute_indexes.append(ARFF.index_of(data2, attribute)) # Create new attribute set by appending the attributes of # data set data2. We already checked there are no duplicates. attributes_extended = data1['attributes'] for i in attribute_indexes: attribute = data2['attributes'][i] attributes_extended.append(attribute) # Create new data rows by taking the original data row and # appending the values corresponding to the attribute columns from # data2. We can do this efficiently because of the lookup table we # created earlier. data = [] for i in range(len(data1['data'])): data_row = data1['data'][i] key = data_row[join_idx1] if key not in data2_lookup: print('WARNING: row with id {} not present in data2'.format(key)) continue data_row2 = data2_lookup[data_row[join_idx1]] for j in attribute_indexes: data_row.append(data_row2[j]) data.append(data_row) return { 'relation': data1['relation'], 'attributes': attributes_extended, 'data': data, 'description': '' } @staticmethod def dummy_encode(data, attribute): """ Applies a 1-of-k dummy encoding to the given attribute and replaces the associated column with two or more dummy columns. Note that if there are only two levels, they are just converted to zero and one instead of creating new columns for them. :param data: ARFF data dictionary :param attribute: Nominal attribute :return: Dummy encoded data dictionary, new attributes """ # Check that the attribute is actually nominal. If not, just # return the data unchanged if not ARFF.is_nominal(data, attribute): return data # Get index of given attribute. We need it when we insert # additional dummy columns. idx = ARFF.index_of(data, attribute) # Get attribute values attr_values = data['attributes'][idx][1] if len(attr_values) == 2: # If we're dealing with a binominal attribute there's no need # to split it up in separate dummy columns. Just convert the # values to 0's and 1's. data['attributes'][idx] = (attribute, 'NUMERIC') data_rows = data['data'] for i in range(len(data_rows)): value = data_rows[i][idx] if value == attr_values[0]: data_rows[i][idx] = 0 else: data_rows[i][idx] = 1 return data, [attribute] else: # Next, delete the original attribute and insert new attributes # for each attribute value we encounter del data['attributes'][idx] for attr_value in reversed(attr_values): data['attributes'].insert(idx, (attr_value, 'NUMERIC')) # Insert dummy values into each data row depending on its # original value in the attribute column data_rows = data['data'] for i in range(len(data_rows)): value = data_rows[i][idx] first = True for attr_value in reversed(attr_values): if first: data_rows[i][idx] = 0 first = False else: data_rows[i].insert(idx, 0) if value == attr_value: data_rows[i][idx] = 1 return data, attr_values @staticmethod def contains(data, attribute): """ Checks whether given attribute is in data dictionary. :param data: Data dictionary :param attribute: Attribute to check :return: True/False """ return ARFF.index_of(data, attribute) > -1 @staticmethod def index_of(data, attribute): """ Returns index of given attribute or -1 if not found. :param data: Data dictionary :param attribute: Attribute to search :return: Index or -1 """ for i in range(len(data['attributes'])): item = data['attributes'][i][0] if item == attribute: return i return -1 @staticmethod def type_of(data, attribute): """ Returns type of given attribute or None if attribute is of nominal type. In that case, use labels_of() :param data: Data dictionary :param attribute: Attribute to return type of :return: Attribute type """ i = ARFF.index_of(data, attribute) if i < 0: return None attribute_value = data['attributes'][i][1] if isinstance(attribute_value, list): print('WARNING: attribute value is nominal') return None else: return attribute_value @staticmethod def labels_of(data, attribute): """ Returns labels of given nominal attribute or None if attribute is not of nominal type. :param data: Data dictionary :param attribute: Attribute to return labels of :return: Labels """ i = ARFF.index_of(data, attribute) if i < 0: return None attribute_values = data['attributes'][i][1] if not isinstance(attribute_values, list): print('WARNING: attribute value is not of type nominal') return None else: return attribute_values @staticmethod def sort_by(data, attribute): """ Sorts data by given attribute. :param data: ARFF data dictionary :param attribute: Attribute to sort by :return: Sorted dictionary """ i = ARFF.index_of(data, attribute) if i < 0: raise RuntimeError('Attribute not found') data['data'].sort(key=lambda tup: tup[i]) return data @staticmethod def is_nominal(data, attribute): """ Checks whether given attribute name corresponds to nominal attribute or not. :param data: ARFF data dictionary :param attribute: Attribute to check """ i = ARFF.index_of(data, attribute) if i < 0: raise RuntimeError('Attribute not found') attribute_value = data['attributes'][i][1] if type(attribute_value) is list: return True return False if __name__ == '__main__': ARFF.test()
apache-2.0
hyperspy/hyperspy
hyperspy/component.py
2
50888
# -*- coding: utf-8 -*- # Copyright 2007-2022 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <https://www.gnu.org/licenses/#GPL>. import numpy as np from dask.array import Array as dArray import traits.api as t from traits.trait_numeric import Array import sympy from sympy.utilities.lambdify import lambdify from packaging.version import Version from pathlib import Path import hyperspy from hyperspy.misc.utils import slugify, is_binned from hyperspy.misc.io.tools import (incremental_filename, append2pathname,) from hyperspy.misc.export_dictionary import export_to_dictionary, \ load_from_dictionary from hyperspy.events import Events, Event from hyperspy.ui_registry import add_gui_method from IPython.display import display_pretty, display from hyperspy.misc.model_tools import current_component_values from hyperspy.misc.utils import get_object_package_info import logging _logger = logging.getLogger(__name__) class NoneFloat(t.CFloat): # Lazy solution, but usable default_value = None def validate(self, object, name, value): if value == "None" or value == b"None": value = None if value is None: super(NoneFloat, self).validate(object, name, 0) return None return super(NoneFloat, self).validate(object, name, value) @add_gui_method(toolkey="hyperspy.Parameter") class Parameter(t.HasTraits): """Model parameter Attributes ---------- value : float or array The value of the parameter for the current location. The value for other locations is stored in map. bmin, bmax: float Lower and upper bounds of the parameter value. twin : {None, Parameter} If it is not None, the value of the current parameter is a function of the given Parameter. The function is by default the identity function, but it can be defined by twin_function twin_function_expr: str Expression of the ``twin_function`` that enables setting a functional relationship between the parameter and its twin. If ``twin`` is not ``None``, the parameter value is calculated as the output of calling the twin function with the value of the twin parameter. The string is parsed using sympy, so permitted values are any valid sympy expressions of one variable. If the function is invertible the twin inverse function is set automatically. twin_inverse_function_expr : str Expression of the ``twin_inverse_function`` that enables setting the value of the twin parameter. If ``twin`` is not ``None``, its value is set to the output of calling the twin inverse function with the value provided. The string is parsed using sympy, so permitted values are any valid sympy expressions of one variable. twin_function : function **Setting this attribute manually is deprecated in HyperSpy newer than 1.1.2. It will become private in HyperSpy 2.0. Please use ``twin_function_expr`` instead.** twin_inverse_function : function **Setting this attribute manually is deprecated in HyperSpy newer than 1.1.2. It will become private in HyperSpy 2.0. Please use ``twin_inverse_function_expr`` instead.** ext_force_positive : bool If True, the parameter value is set to be the absolute value of the input value i.e. if we set Parameter.value = -3, the value stored is 3 instead. This is useful to bound a value to be positive in an optimization without actually using an optimizer that supports bounding. ext_bounded : bool Similar to ext_force_positive, but in this case the bounds are defined by bmin and bmax. It is a better idea to use an optimizer that supports bounding though. Methods ------- connect, disconnect(function) Call the functions connected when the value attribute changes. """ __number_of_elements = 1 __value = 0 _free = True _bounds = (None, None) __twin = None _axes_manager = None __ext_bounded = False __ext_force_positive = False # traitsui bugs out trying to make an editor for this, so always specify! # (it bugs out, because both editor shares the object, and Array editors # don't like non-sequence objects). TextEditor() works well, so does # RangeEditor() as it works with bmin/bmax. value = t.Property(t.Either([t.CFloat(0), Array()])) units = t.Str('') free = t.Property(t.CBool(True)) bmin = t.Property(NoneFloat(), label="Lower bounds") bmax = t.Property(NoneFloat(), label="Upper bounds") _twin_function_expr = "" _twin_inverse_function_expr = "" twin_function = None _twin_inverse_function = None _twin_inverse_sympy = None def __init__(self): self._twins = set() self.events = Events() self.events.value_changed = Event(""" Event that triggers when the `Parameter.value` changes. The event triggers after the internal state of the `Parameter` has been updated. Arguments --------- obj : Parameter The `Parameter` that the event belongs to value : {float | array} The new value of the parameter """, arguments=["obj", 'value']) self.std = None self.component = None self.grad = None self.name = '' self.units = '' self._linear = False self.map = None self.model = None self._whitelist = {'_id_name': None, 'value': None, 'std': None, 'free': None, 'units': None, 'map': None, '_bounds': None, 'ext_bounded': None, 'name': None, '_linear':None, 'ext_force_positive': None, 'twin_function_expr': None, 'twin_inverse_function_expr': None, 'self': ('id', None), } self._slicing_whitelist = {'map': 'inav'} def _load_dictionary(self, dictionary): """Load data from dictionary. Parameters ---------- dict : dict A dictionary containing at least the following fields: * _id_name: ``_id_name`` of the original parameter, used to create the dictionary. Has to match with the ``self._id_name``. * _whitelist: a dictionary, which keys are used as keywords to match with the parameter attributes. For more information see :py:func:`~hyperspy.misc.export_dictionary.load_from_dictionary` * any field from ``_whitelist.keys()``. Returns ------- id_value : int the ID value of the original parameter, to be later used for setting up the correct twins """ if dictionary['_id_name'] == self._id_name: load_from_dictionary(self, dictionary) return dictionary['self'] else: raise ValueError("_id_name of parameter and dictionary do not match, \nparameter._id_name = %s\ \ndictionary['_id_name'] = %s" % (self._id_name, dictionary['_id_name'])) def __repr__(self): text = '' text += 'Parameter %s' % self.name if self.component is not None: text += ' of %s' % self.component._get_short_description() text = '<' + text + '>' return text def __len__(self): return self._number_of_elements @property def twin_function_expr(self): return self._twin_function_expr @twin_function_expr.setter def twin_function_expr(self, value): if not value: self.twin_function = None self.twin_inverse_function = None self._twin_function_expr = "" self._twin_inverse_sympy = None return expr = sympy.sympify(value) if len(expr.free_symbols) > 1: raise ValueError("The expression must contain only one variable.") elif len(expr.free_symbols) == 0: raise ValueError("The expression must contain one variable, " "it contains none.") x = tuple(expr.free_symbols)[0] self.twin_function = lambdify(x, expr.evalf()) self._twin_function_expr = value if not self.twin_inverse_function: y = sympy.Symbol(x.name + "2") try: inv = list(sympy.solveset(sympy.Eq(y, expr), x)) self._twin_inverse_sympy = lambdify(y, inv) self._twin_inverse_function = None except BaseException: # Not all may have a suitable solution. self._twin_inverse_function = None self._twin_inverse_sympy = None _logger.warning( "The function {} is not invertible. Setting the value of " "{} will raise an AttributeError unless you set manually " "``twin_inverse_function_expr``. Otherwise, set the " "value of its twin parameter instead.".format(value, self)) @property def twin_inverse_function_expr(self): if self.twin: return self._twin_inverse_function_expr else: return "" @twin_inverse_function_expr.setter def twin_inverse_function_expr(self, value): if not value: self.twin_inverse_function = None self._twin_inverse_function_expr = "" return expr = sympy.sympify(value) if len(expr.free_symbols) > 1: raise ValueError("The expression must contain only one variable.") elif len(expr.free_symbols) == 0: raise ValueError("The expression must contain one variable, " "it contains none.") x = tuple(expr.free_symbols)[0] self._twin_inverse_function = lambdify(x, expr.evalf()) self._twin_inverse_function_expr = value @property def twin_inverse_function(self): if (not self.twin_inverse_function_expr and self.twin_function_expr and self._twin_inverse_sympy): return lambda x: self._twin_inverse_sympy(x).pop() else: return self._twin_inverse_function @twin_inverse_function.setter def twin_inverse_function(self, value): self._twin_inverse_function = value def _get_value(self): if self.twin is None: return self.__value else: if self.twin_function: return self.twin_function(self.twin.value) else: return self.twin.value def _set_value(self, value): try: # Use try/except instead of hasattr("__len__") because a numpy # memmap has a __len__ wrapper even for numbers that raises a # TypeError when calling. See issue #349. if len(value) != self._number_of_elements: raise ValueError( "The length of the parameter must be ", self._number_of_elements) else: if not isinstance(value, tuple): value = tuple(value) except TypeError: if self._number_of_elements != 1: raise ValueError( "The length of the parameter must be ", self._number_of_elements) old_value = self.__value if self.twin is not None: if self.twin_function is not None: if self.twin_inverse_function is not None: self.twin.value = self.twin_inverse_function(value) return else: raise AttributeError( "This parameter has a ``twin_function`` but" "its ``twin_inverse_function`` is not defined.") else: self.twin.value = value return if self.ext_bounded is False: self.__value = value else: if self.ext_force_positive is True: value = np.abs(value) if self._number_of_elements == 1: if self.bmin is not None and value <= self.bmin: self.__value = self.bmin elif self.bmax is not None and value >= self.bmax: self.__value = self.bmax else: self.__value = value else: bmin = (self.bmin if self.bmin is not None else -np.inf) bmax = (self.bmax if self.bmin is not None else np.inf) self.__value = np.clip(value, bmin, bmax) if (self._number_of_elements != 1 and not isinstance(self.__value, tuple)): self.__value = tuple(self.__value) if old_value != self.__value: self.events.value_changed.trigger(value=self.__value, obj=self) self.trait_property_changed('value', old_value, self.__value) # Fix the parameter when coupled def _get_free(self): if self.twin is None: return self._free else: return False def _set_free(self, arg): if arg and self.twin: raise ValueError(f"Parameter {self.name} can't be set free " "is twinned with {self.twin}.") old_value = self._free self._free = arg if self.component is not None: self.component._update_free_parameters() self.trait_property_changed('free', old_value, self._free) def _on_twin_update(self, value, twin=None): if (twin is not None and hasattr(twin, 'events') and hasattr(twin.events, 'value_changed')): with twin.events.value_changed.suppress_callback( self._on_twin_update): self.events.value_changed.trigger(value=value, obj=self) else: self.events.value_changed.trigger(value=value, obj=self) def _set_twin(self, arg): if arg is None: if self.twin is not None: # Store the value of the twin in order to set the # value of the parameter when it is uncoupled twin_value = self.value if self in self.twin._twins: self.twin._twins.remove(self) self.twin.events.value_changed.disconnect( self._on_twin_update) self.__twin = arg self.value = twin_value else: if self not in arg._twins: arg._twins.add(self) arg.events.value_changed.connect(self._on_twin_update, ["value"]) self.__twin = arg if self.component is not None: self.component._update_free_parameters() def _get_twin(self): return self.__twin twin = property(_get_twin, _set_twin) def _get_bmin(self): if self._number_of_elements == 1: return self._bounds[0] else: return self._bounds[0][0] def _set_bmin(self, arg): old_value = self.bmin if self._number_of_elements == 1: self._bounds = (arg, self.bmax) else: self._bounds = ((arg, self.bmax),) * self._number_of_elements # Update the value to take into account the new bounds self.value = self.value self.trait_property_changed('bmin', old_value, arg) def _get_bmax(self): if self._number_of_elements == 1: return self._bounds[1] else: return self._bounds[0][1] def _set_bmax(self, arg): old_value = self.bmax if self._number_of_elements == 1: self._bounds = (self.bmin, arg) else: self._bounds = ((self.bmin, arg),) * self._number_of_elements # Update the value to take into account the new bounds self.value = self.value self.trait_property_changed('bmax', old_value, arg) @property def _number_of_elements(self): return self.__number_of_elements @_number_of_elements.setter def _number_of_elements(self, arg): # Do nothing if the number of arguments stays the same if self.__number_of_elements == arg: return if arg < 1: raise ValueError("Please provide an integer number equal " "or greater to 1") self._bounds = ((self.bmin, self.bmax),) * arg self.__number_of_elements = arg if arg == 1: self._Parameter__value = 0 else: self._Parameter__value = (0,) * arg if self.component is not None: self.component.update_number_parameters() @property def ext_bounded(self): return self.__ext_bounded @ext_bounded.setter def ext_bounded(self, arg): if arg is not self.__ext_bounded: self.__ext_bounded = arg # Update the value to take into account the new bounds self.value = self.value @property def ext_force_positive(self): return self.__ext_force_positive @ext_force_positive.setter def ext_force_positive(self, arg): if arg is not self.__ext_force_positive: self.__ext_force_positive = arg # Update the value to take into account the new bounds self.value = self.value def store_current_value_in_array(self): """Store the value and std attributes. See also -------- fetch, assign_current_value_to_all """ indices = self._axes_manager.indices[::-1] # If it is a single spectrum indices is () if not indices: indices = (0,) self.map['values'][indices] = self.value self.map['is_set'][indices] = True if self.std is not None: self.map['std'][indices] = self.std def fetch(self): """Fetch the stored value and std attributes from the parameter.map['values'] and ...['std'] if `parameter.map['is_set']` is True for that index. Updates `parameter.value` and `parameter.std`. If not stored, then .value and .std will remain from their previous values, i.e. from a fit in a previous pixel. See Also -------- store_current_value_in_array, assign_current_value_to_all """ indices = self._axes_manager.indices[::-1] # If it is a single spectrum indices is () if not indices: indices = (0,) if self.map['is_set'][indices]: value = self.map['values'][indices] std = self.map['std'][indices] if isinstance(value, dArray): value = value.compute() if isinstance(std, dArray): std = std.compute() self.value = value self.std = std def assign_current_value_to_all(self, mask=None): """Assign the current value attribute to all the indices, setting parameter.map for all parameters in the component. Takes the current `parameter.value` and sets it for all indices in `parameter.map['values']`. Parameters ---------- mask: {None, boolean numpy array} Set only the indices that are not masked i.e. where mask is False. See Also -------- store_current_value_in_array, fetch """ if mask is None: mask = np.zeros(self.map.shape, dtype='bool') self.map['values'][mask == False] = self.value self.map['is_set'][mask == False] = True def _create_array(self): """Create the map array to store the information in multidimensional datasets. """ shape = self._axes_manager._navigation_shape_in_array if not shape: shape = [1, ] # Shape-1 fields in dtypes won’t be collapsed to scalars in a future # numpy version (see release notes numpy 1.17.0) if self._number_of_elements > 1: dtype_ = np.dtype([ ('values', 'float', self._number_of_elements), ('std', 'float', self._number_of_elements), ('is_set', 'bool')]) else: dtype_ = np.dtype([ ('values', 'float'), ('std', 'float'), ('is_set', 'bool')]) if (self.map is None or self.map.shape != shape or self.map.dtype != dtype_): self.map = np.zeros(shape, dtype_) self.map['std'].fill(np.nan) # TODO: in the future this class should have access to # axes manager and should be able to fetch its own # values. Until then, the next line is necessary to avoid # erros when self.std is defined and the shape is different # from the newly defined arrays self.std = None def as_signal(self, field='values'): """Get a parameter map as a signal object. Please note that this method only works when the navigation dimension is greater than 0. Parameters ---------- field : {'values', 'std', 'is_set'} Field to return as signal. Raises ------ NavigationDimensionError If the navigation dimension is 0 """ from hyperspy.signal import BaseSignal s = BaseSignal(data=self.map[field], axes=self._axes_manager._get_navigation_axes_dicts()) if self.component is not None and \ self.component.active_is_multidimensional: s.data[np.logical_not(self.component._active_array)] = np.nan s.metadata.General.title = ("%s parameter" % self.name if self.component is None else "%s parameter of %s component" % (self.name, self.component.name)) for axis in s.axes_manager._axes: axis.navigate = False if self._number_of_elements > 1: s.axes_manager._append_axis( size=self._number_of_elements, name=self.name, navigate=True) s._assign_subclass() if field == "values": # Add the variance if available std = self.as_signal(field="std") if not np.isnan(std.data).all(): std.data = std.data ** 2 std.metadata.General.title = "Variance" s.metadata.set_item( "Signal.Noise_properties.variance", std) return s def plot(self, **kwargs): """Plot parameter signal. Parameters ---------- **kwargs Any extra keyword arguments are passed to the signal plot. Example ------- >>> parameter.plot() #doctest: +SKIP Set the minimum and maximum displayed values >>> parameter.plot(vmin=0, vmax=1) #doctest: +SKIP """ self.as_signal().plot(**kwargs) def export(self, folder=None, name=None, format="hspy", save_std=False): """Save the data to a file. All the arguments are optional. Parameters ---------- folder : str or None The path to the folder where the file will be saved. If `None` the current folder is used by default. name : str or None The name of the file. If `None` the Components name followed by the Parameter `name` attributes will be used by default. If a file with the same name exists the name will be modified by appending a number to the file path. save_std : bool If True, also the standard deviation will be saved format: str The extension of any file format supported by HyperSpy, default ``hspy``. """ if format is None: format = "hspy" if name is None: name = self.component.name + '_' + self.name filename = incremental_filename(slugify(name) + '.' + format) if folder is not None: filename = Path(folder).joinpath(filename) self.as_signal().save(filename) if save_std is True: self.as_signal(field='std').save(append2pathname( filename, '_std')) def as_dictionary(self, fullcopy=True): """Returns parameter as a dictionary, saving all attributes from self._whitelist.keys() For more information see py:meth:`~hyperspy.misc.export_dictionary.export_to_dictionary` Parameters ---------- fullcopy : Bool (optional, False) Copies of objects are stored, not references. If any found, functions will be pickled and signals converted to dictionaries Returns ------- A dictionary, containing at least the following fields: * _id_name: _id_name of the original parameter, used to create the dictionary. Has to match with the self._id_name * _twins: a list of ids of the twins of the parameter * _whitelist: a dictionary, which keys are used as keywords to match with the parameter attributes. For more information see :py:func:`~hyperspy.misc.export_dictionary.export_to_dictionary` * any field from _whitelist.keys() """ dic = {'_twins': [id(t) for t in self._twins]} export_to_dictionary(self, self._whitelist, dic, fullcopy) return dic def default_traits_view(self): # As mentioned above, the default editor for # value = t.Property(t.Either([t.CFloat(0), Array()])) # gives a ValueError. We therefore implement default_traits_view so # that configure/edit_traits will still work straight out of the box. # A whitelist controls which traits to include in this view. from traitsui.api import RangeEditor, View, Item whitelist = ['bmax', 'bmin', 'free', 'name', 'std', 'units', 'value'] editable_traits = [trait for trait in self.editable_traits() if trait in whitelist] if 'value' in editable_traits: i = editable_traits.index('value') v = editable_traits.pop(i) editable_traits.insert(i, Item( v, editor=RangeEditor(low_name='bmin', high_name='bmax'))) view = View(editable_traits, buttons=['OK', 'Cancel']) return view @add_gui_method(toolkey="hyperspy.Component") class Component(t.HasTraits): __axes_manager = None active = t.Property(t.CBool(True)) name = t.Property(t.Str('')) def __init__(self, parameter_name_list, linear_parameter_list=None): self.events = Events() self.events.active_changed = Event(""" Event that triggers when the `Component.active` changes. The event triggers after the internal state of the `Component` has been updated. Arguments --------- obj : Component The `Component` that the event belongs to active : bool The new active state """, arguments=["obj", 'active']) self.parameters = [] self.init_parameters(parameter_name_list, linear_parameter_list) self._update_free_parameters() self.active = True self._active_array = None # only if active_is_multidimensional is True self.isbackground = False self.convolved = True self.parameters = tuple(self.parameters) self._id_name = self.__class__.__name__ self._id_version = '1.0' self._position = None self.model = None self.name = '' self._whitelist = {'_id_name': None, 'name': None, 'active_is_multidimensional': None, '_active_array': None, 'active': None } self._slicing_whitelist = {'_active_array': 'inav'} self._slicing_order = ('active', 'active_is_multidimensional', '_active_array',) _name = '' _active_is_multidimensional = False _active = True @property def active_is_multidimensional(self): """In multidimensional signals it is possible to store the value of the :py:attr:`~.component.Component.active` attribute at each navigation index. """ return self._active_is_multidimensional @active_is_multidimensional.setter def active_is_multidimensional(self, value): if not isinstance(value, bool): raise ValueError('Only boolean values are permitted') if value == self.active_is_multidimensional: return if value: # Turn on if self._axes_manager.navigation_size < 2: _logger.info('`navigation_size` < 2, skipping') return # Store value at current position self._create_active_array() self._store_active_value_in_array(self._active) self._active_is_multidimensional = True else: # Turn off # Get the value at the current position before switching it off self._active = self.active self._active_array = None self._active_is_multidimensional = False def _get_name(self): return self._name def _set_name(self, value): old_value = self._name if old_value == value: return if self.model: for component in self.model: if value == component.name: raise ValueError( "Another component already has " "the name " + str(value)) self._name = value setattr(self.model.components, slugify( value, valid_variable_name=True), self) self.model.components.__delattr__( slugify(old_value, valid_variable_name=True)) else: self._name = value self.trait_property_changed('name', old_value, self._name) @property def _axes_manager(self): return self.__axes_manager @_axes_manager.setter def _axes_manager(self, value): for parameter in self.parameters: parameter._axes_manager = value self.__axes_manager = value @property def _is_navigation_multidimensional(self): if (self._axes_manager is None or not self._axes_manager.navigation_dimension): return False else: return True def _get_active(self): if self.active_is_multidimensional is True: # The following should set self.active = self._active_array[self._axes_manager.indices[::-1]] return self._active def _store_active_value_in_array(self, value): self._active_array[self._axes_manager.indices[::-1]] = value def _set_active(self, arg): if self._active == arg: return old_value = self._active self._active = arg if self.active_is_multidimensional is True: self._store_active_value_in_array(arg) self.events.active_changed.trigger(active=self._active, obj=self) self.trait_property_changed('active', old_value, self._active) def init_parameters(self, parameter_name_list, linear_parameter_list=None): """ Initialise the parameters of the component. Parameters ---------- parameter_name_list : list The list of parameter names. linear_parameter_list : list, optional The list of linear parameter. The default is None. Returns ------- None. """ if linear_parameter_list is None: linear_parameter_list = [] for name in parameter_name_list: parameter = Parameter() self.parameters.append(parameter) parameter.name = name if name in linear_parameter_list: parameter._linear = True parameter._id_name = name setattr(self, name, parameter) if hasattr(self, 'grad_' + name): parameter.grad = getattr(self, 'grad_' + name) parameter.component = self self.add_trait(name, t.Instance(Parameter)) def _get_long_description(self): if self.name: text = '%s (%s component)' % (self.name, self.__class__.__name__) else: text = '%s component' % self.__class__.__name__ return text def _get_short_description(self): text = '' if self.name: text += self.name else: text += self.__class__.__name__ text += ' component' return text def __repr__(self): text = '<%s>' % self._get_long_description() return text def _update_free_parameters(self): self.free_parameters = sorted([par for par in self.parameters if par.free], key=lambda x: x.name) self._nfree_param = sum([par._number_of_elements for par in self.free_parameters]) def update_number_parameters(self): i = 0 for parameter in self.parameters: i += parameter._number_of_elements self.nparam = i self._update_free_parameters() def fetch_values_from_array(self, p, p_std=None, onlyfree=False): """Fetch the parameter values from an array `p` and optionally standard deviation from `p_std`. Places them `component.parameter.value` and `...std`, according to their position in the component. Parameters ---------- p : array array containing new values for the parameters in a component p_std : array, optional array containing the corresponding standard deviation. """ if onlyfree is True: parameters = self.free_parameters else: parameters = self.parameters i = 0 for parameter in sorted(parameters, key=lambda x: x.name): length = parameter._number_of_elements parameter.value = (p[i] if length == 1 else p[i:i + length]) if p_std is not None: parameter.std = (p_std[i] if length == 1 else tuple(p_std[i:i + length])) i += length def _create_active_array(self): shape = self._axes_manager._navigation_shape_in_array if len(shape) == 1 and shape[0] == 0: shape = [1, ] if (not isinstance(self._active_array, np.ndarray) or self._active_array.shape != shape): _logger.debug(f'Creating _active_array for {self}.\n\tCurrent ' f'array is:\n{self._active_array}') self._active_array = np.ones(shape, dtype=bool) def _create_arrays(self): if self.active_is_multidimensional: self._create_active_array() for parameter in self.parameters: parameter._create_array() def store_current_parameters_in_map(self): for parameter in self.parameters: parameter.store_current_value_in_array() def fetch_stored_values(self, only_fixed=False): if self.active_is_multidimensional: # Store the stored value in self._active and trigger the connected # functions. self.active = self.active if only_fixed is True: parameters = (set(self.parameters) - set(self.free_parameters)) else: parameters = self.parameters parameters = [parameter for parameter in parameters if (parameter.twin is None or not isinstance(parameter.twin, Parameter))] for parameter in parameters: parameter.fetch() def plot(self, only_free=True): """Plot the value of the parameters of the model Parameters ---------- only_free : bool If True, only the value of the parameters that are free will be plotted """ if only_free: parameters = self.free_parameters else: parameters = self.parameters parameters = [k for k in parameters if k.twin is None] for parameter in parameters: parameter.plot() def export(self, folder=None, format="hspy", save_std=False, only_free=True): """Plot the value of the parameters of the model Parameters ---------- folder : str or None The path to the folder where the file will be saved. If `None` the current folder is used by default. format : str The extension of the file format, default "hspy". save_std : bool If True, also the standard deviation will be saved. only_free : bool If True, only the value of the parameters that are free will be exported. Notes ----- The name of the files will be determined by each the Component and each Parameter name attributes. Therefore, it is possible to customise the file names modify the name attributes. """ if only_free: parameters = self.free_parameters else: parameters = self.parameters parameters = [k for k in parameters if k.twin is None] for parameter in parameters: parameter.export(folder=folder, format=format, save_std=save_std,) def summary(self): for parameter in self.parameters: dim = len(parameter.map.squeeze().shape) if parameter.map \ is not None else 0 if parameter.twin is None: if dim <= 1: print('%s = %s ± %s %s' % (parameter.name, parameter.value, parameter.std, parameter.units)) def __call__(self): """Returns the corresponding model for the current coordinates Returns ------- numpy array """ axis = self.model.axis.axis[self.model.channel_switches] component_array = self.function(axis) return component_array def _component2plot(self, axes_manager, out_of_range2nans=True): old_axes_manager = None if axes_manager is not self.model.axes_manager: old_axes_manager = self.model.axes_manager self.model.axes_manager = axes_manager self.fetch_stored_values() s = self.model.__call__(component_list=[self]) if not self.active: s.fill(np.nan) if old_axes_manager is not None: self.model.axes_manager = old_axes_manager self.charge() if out_of_range2nans is True: ns = np.empty(self.model.axis.axis.shape) ns.fill(np.nan) ns[self.model.channel_switches] = s s = ns if old_axes_manager is not None: self.model.axes_manager = old_axes_manager self.fetch_stored_values() return s def set_parameters_free(self, parameter_name_list=None, only_linear=False, only_nonlinear=False): """ Sets parameters in a component to free. Parameters ---------- parameter_name_list : None or list of str, optional If None, will set all the parameters to free. If list of strings, will set all the parameters with the same name as the strings in parameter_name_list to free. only_linear : bool If True, only sets a parameter free if it is linear only_nonlinear : bool If True, only sets a parameter free if it is nonlinear Examples -------- >>> v1 = hs.model.components1D.Voigt() >>> v1.set_parameters_free() >>> v1.set_parameters_free(parameter_name_list=['area','centre']) >>> v1.set_parameters_free(linear=True) See also -------- set_parameters_not_free hyperspy.model.BaseModel.set_parameters_free hyperspy.model.BaseModel.set_parameters_not_free """ if only_linear and only_nonlinear: raise ValueError( "To set all parameters free, set both `only_linear` and " "`only_nonlinear` to False." ) parameter_list = [] if not parameter_name_list: parameter_list = self.parameters else: for _parameter in self.parameters: if _parameter.name in parameter_name_list: parameter_list.append(_parameter) for _parameter in parameter_list: if not only_linear and not only_nonlinear: _parameter.free = True elif only_linear and _parameter._linear: _parameter.free = True elif only_nonlinear and not _parameter._linear: _parameter.free = True def set_parameters_not_free(self, parameter_name_list=None, only_linear=False, only_nonlinear=False): """ Sets parameters in a component to not free. Parameters ---------- parameter_name_list : None or list of str, optional If None, will set all the parameters to not free. If list of strings, will set all the parameters with the same name as the strings in parameter_name_list to not free. only_linear : bool If True, only sets a parameter not free if it is linear only_nonlinear : bool If True, only sets a parameter not free if it is nonlinear Examples -------- >>> v1 = hs.model.components1D.Voigt() >>> v1.set_parameters_not_free() >>> v1.set_parameters_not_free(parameter_name_list=['area','centre']) >>> v1.set_parameters_not_free(only_linear=True) See also -------- set_parameters_free hyperspy.model.BaseModel.set_parameters_free hyperspy.model.BaseModel.set_parameters_not_free """ if only_linear and only_nonlinear: raise ValueError( "To set all parameters not free, " "set both only_linear and _nonlinear to False.") parameter_list = [] if not parameter_name_list: parameter_list = self.parameters else: for _parameter in self.parameters: if _parameter.name in parameter_name_list: parameter_list.append(_parameter) for _parameter in parameter_list: if not only_linear and not only_nonlinear: _parameter.free = False elif only_linear and _parameter._linear: _parameter.free = False elif only_nonlinear and not _parameter._linear: _parameter.free = False def _estimate_parameters(self, signal): if self._axes_manager != signal.axes_manager: self._axes_manager = signal.axes_manager self._create_arrays() def as_dictionary(self, fullcopy=True): """ Returns component as a dictionary. For more information on method and conventions, see :py:meth:`~hyperspy.misc.export_dictionary.export_to_dictionary` Parameters ---------- fullcopy : Bool (optional, False) Copies of objects are stored, not references. If any found, functions will be pickled and signals converted to dictionaries Returns ------- dic : dict A dictionary, containing at least the following fields: * parameters: a list of dictionaries of the parameters, one per component. * _whitelist: a dictionary with keys used as references saved attributes, for more information, see :py:func:`~hyperspy.misc.export_dictionary.export_to_dictionary` * any field from _whitelist.keys() """ dic = { 'parameters': [ p.as_dictionary(fullcopy) for p in self.parameters]} dic.update(get_object_package_info(self)) export_to_dictionary(self, self._whitelist, dic, fullcopy) from hyperspy.model import _COMPONENTS if self._id_name not in _COMPONENTS: import dill dic['_class_dump'] = dill.dumps(self.__class__) return dic def _load_dictionary(self, dic): """ Load data from dictionary. Parameters ---------- dict : dict A dictionary containing at least the following fields: * _id_name: _id_name of the original parameter, used to create the dictionary. Has to match with the self._id_name * parameters: a list of dictionaries, one per parameter of the component (see :py:meth:`~hyperspy.component.Parameter.as_dictionary` documentation for more details) * _whitelist: a dictionary, which keys are used as keywords to match with the parameter attributes. For more information see :py:func:`~hyperspy.misc.export_dictionary.load_from_dictionary` * any field from _whitelist.keys() Returns ------- twin_dict : dict Dictionary of 'id' values from input dictionary as keys with all of the parameters of the component, to be later used for setting up correct twins. """ if dic['_id_name'] == self._id_name: if (self._id_name == "Polynomial" and Version(hyperspy.__version__) >= Version("2.0")): # in HyperSpy 2.0 the polynomial definition changed from hyperspy._components.polynomial import convert_to_polynomial dic = convert_to_polynomial(dic) load_from_dictionary(self, dic) id_dict = {} for p in dic['parameters']: idname = p['_id_name'] if hasattr(self, idname): par = getattr(self, idname) t_id = par._load_dictionary(p) id_dict[t_id] = par else: raise ValueError( "_id_name of parameters in component and dictionary do not match") return id_dict else: raise ValueError("_id_name of component and dictionary do not match, \ncomponent._id_name = %s\ \ndictionary['_id_name'] = %s" % (self._id_name, dic['_id_name'])) def print_current_values(self, only_free=False, fancy=True): """ Prints the current values of the component's parameters. Parameters ---------- only_free : bool If True, only free parameters will be printed. fancy : bool If True, attempts to print using html rather than text in the notebook. """ if fancy: display(current_component_values(self, only_free=only_free)) else: display_pretty(current_component_values(self, only_free=only_free)) @property def _constant_term(self): """ Get value of any (non-free) constant term of the component. Returns 0 for most components. """ return 0 def _compute_constant_term(self): """Gets the value of any (non-free) constant term, with convolution""" model = self.model if model.convolved and self.convolved: data = convolve_component_values(self._constant_term, model=model) else: signal_shape = model.axes_manager.signal_shape[::-1] data = self._constant_term * np.ones(signal_shape) return data.T[np.where(model.channel_switches)[::-1]].T def convolve_component_values(component_values, model): """ Convolve component with model convolution axis. Multiply by np.ones in order to handle case where component_values is a single constant """ sig = component_values * np.ones(model.convolution_axis.shape) ll = model.low_loss(model.axes_manager) convolved = np.convolve(sig, ll, mode="valid") return convolved def _get_scaling_factor(signal, axis, parameter): """ Convenience function to get the scaling factor required to take into account binned and/or non-uniform axes. Parameters ---------- signal : BaseSignal axis : BaseDataAxis parameter : float or numpy array The axis value at which scaling factor is evaluated (ignored if the axis is uniform) Returns ------- scaling_factor """ if is_binned(signal): # in v2 replace by #if axis.is_binned: if axis.is_uniform: scaling_factor = axis.scale else: parameter_idx = axis.value2index(parameter) scaling_factor = np.gradient(axis.axis)[parameter_idx] else: scaling_factor = 1 return scaling_factor
gpl-3.0
adamtiger/tensorflow
tensorflow/examples/learn/iris_custom_model.py
37
3651
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for Iris plant dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf X_FEATURE = 'x' # Name of the input feature. def my_model(features, labels, mode): """DNN with three hidden layers, and dropout of 0.1 probability.""" # Create three fully connected layers respectively of size 10, 20, and 10 with # each layer having a dropout probability of 0.1. net = features[X_FEATURE] for units in [10, 20, 10]: net = tf.layers.dense(net, units=units, activation=tf.nn.relu) net = tf.layers.dropout(net, rate=0.1) # Compute logits (1 per class). logits = tf.layers.dense(net, 3, activation=None) # Compute predictions. predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'class': predicted_classes, 'prob': tf.nn.softmax(logits) } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Convert the labels to a one-hot tensor of shape (length of features, 3) and # with a on-value of 1 for each one-hot vector of length 3. onehot_labels = tf.one_hot(labels, 3, 1, 0) # Compute loss. loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) # Create training op. if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) # Compute evaluation metrics. eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = tf.estimator.Estimator(model_fn=my_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=1000) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
rahuldhote/scikit-learn
examples/feature_stacker.py
245
1906
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way to high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
rahuldhote/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
345
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
lucafon/ArtificialIntelligence
src/classification_sklearn/problem3_3.py
1
7154
''' Created on Mar 7, 2017 @author: Luca Fontanili ''' import pandas as pd import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegressionCV from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier def svm_linear(dataset, out): print('svm_linear') X = dataset[['x', 'y']] y = dataset.label X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) tuned_parameters = [{'kernel': ['linear'], 'C': [0.1, 0.5, 1, 5, 10, 50, 100]}] clf = GridSearchCV(SVC(), tuned_parameters, cv=5) clf.fit(X_train, y_train) best_param = clf.best_params_ print('best param: ' + str(best_param)) # means = clf.cv_results_['mean_test_score'] # stds = clf.cv_results_['std_test_score'] # for mean, std, params in zip(means, stds, clf.cv_results_['params']): # print("%0.3f (+/-%0.03f) for %r" # % (mean, std * 2, params)) best_score = clf.best_score_ print('best score: ' + str(best_score)) print('test score: ' + str(clf.score(X_test,y_test))) out.write('svm_linear,' + str(best_score) + ',' + str(clf.score(X_test,y_test)) + '\n') def svm_polynomial(dataset, out): print('svm_polynomial') X = dataset[['x', 'y']] y = dataset.label X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) # tuned_parameters = [{'kernel': ['poly'], 'C': [0.1, 1, 3], 'degree':[4, 5, 6], 'gamma':[0.1,1]}] tuned_parameters = [{'kernel': ['poly'], 'C': [0.1,1,3], 'degree':[4,5,6], 'gamma':[0.1,1]}] clf = GridSearchCV(SVC(), tuned_parameters, cv=5) clf.fit(X_train, y_train) best_param = clf.best_params_ print('best param: ' + str(best_param)) best_score = clf.best_score_ print('best score: ' + str(best_score)) print('test score: ' + str(clf.score(X_test,y_test))) out.write('svm_polynomial,' + str(best_score) + ',' + str(clf.score(X_test,y_test)) + '\n') def svm_rbf(dataset, out): print('svm_rbf') X = dataset[['x', 'y']] y = dataset.label X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) # tuned_parameters = [{'kernel': ['poly'], 'C': [0.1, 1, 3], 'degree':[4, 5, 6], 'gamma':[0.1,1]}] tuned_parameters = [{'kernel': ['rbf'], 'C': [0.1, 0.5, 1, 5, 10, 50, 100], 'gamma':[0.1, 0.5, 1, 3, 6, 10]}] clf = GridSearchCV(SVC(), tuned_parameters, cv=5) clf.fit(X_train, y_train) best_param = clf.best_params_ print('best param: ' + str(best_param)) best_score = clf.best_score_ print('best score: ' + str(best_score)) print('test score: ' + str(clf.score(X_test,y_test))) out.write('svm_rbf,' + str(best_score) + ',' + str(clf.score(X_test,y_test)) + '\n') def logistic(dataset, out): print('logistic') X = dataset[['x', 'y']] y = dataset.label X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) logreg = LogisticRegressionCV(Cs =[0.1, 0.5, 1, 5, 10, 50, 100] , cv=5) logreg.fit(X_train, y_train) print('best score: ' + str(logreg.scores_[1].max())) print('test score: ' + str(logreg.score(X_test, y_test))) out.write('logistic,' + str(logreg.scores_[1].max()) + ',' + str(logreg.score(X_test, y_test)) + '\n') def knn(dataset, out): print('knn') X = dataset[['x', 'y']] y = dataset.label X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) best_score = 0 best_negih = None for k in range(1,51): for leaf_size in range(5,65,5): neigh = KNeighborsClassifier(n_neighbors=k, leaf_size=leaf_size) neigh.fit(X_train, y_train) current_test_score = cross_val_score(neigh, X_train, y_train, cv=5).mean() if current_test_score > best_score: best_score = current_test_score best_negih = neigh print('best score: ' + str(best_score)) test_score = best_negih.score(X_test, y_test) print('test score: ' + str(test_score)) out.write('knn,' + str(best_score) + ',' + str(test_score) + '\n') def decision_tree(dataset, out): print('decision_tree') X = dataset[['x', 'y']] y = dataset.label X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) best_score = 0 best_clf = None for max_depth in range(1,51): for min_sample in range(2,11): clf = DecisionTreeClassifier(max_depth=max_depth, min_samples_split=min_sample) clf.fit(X_train, y_train) current_test_score = cross_val_score(clf, X_train, y_train, cv=5).mean() if current_test_score > best_score: best_score = current_test_score best_clf = clf print('best score: ' + str(best_score)) test_score = best_clf.score(X_test, y_test) print('test score: ' + str(test_score)) out.write('decision_tree,' + str(best_score) + ',' + str(test_score) + '\n') def random_forest(dataset, out): print('random_forest') X = dataset[['x', 'y']] y = dataset.label X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) best_score = 0 best_clf = None for max_depth in range(1,51): for min_sample in range(2,11): print('md: ', max_depth, ' ms: ', min_sample) clf = RandomForestClassifier(max_depth=max_depth, min_samples_split=min_sample) clf.fit(X_train, y_train) current_test_score = cross_val_score(clf, X_train, y_train, cv=5).mean() if current_test_score > best_score: best_score = current_test_score best_clf = clf print('best score: ' + str(best_score)) test_score = best_clf.score(X_test, y_test) print('test score: ' + str(test_score)) out.write('random_forest,' + str(best_score) + ',' + str(test_score)) def main(): inp = open('input3.csv', 'r') out = open('output3.csv', 'w') values = [] for line in inp: if 'label' in line: continue params = line.strip().split(",") values.append((float(params[0]),float(params[1]),int(params[2]))) dataset = pd.DataFrame(values,columns=['x','y','label']) # dataset.plot(x='x', y='y', kind='scatter', c='label') # plt.show() svm_linear(dataset, out) svm_polynomial(dataset, out) svm_rbf(dataset, out) logistic(dataset, out) knn(dataset, out) decision_tree(dataset, out) random_forest(dataset, out) # clf = SVC() # clf.fit(X, y) # SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True,tol=0.001, verbose=False) plt.show() if __name__ == '__main__': main()
mit
kearnsw/Twitt.IR
src/AnnotweetClassifier2.py
1
4819
from pymongo import MongoClient from config import MONGO_URI from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.datasets import fetch_20newsgroups from sklearn.naive_bayes import MultinomialNB from sklearn import metrics import sys import numpy as np from random import shuffle import pathDictionary import cPickle charsToRemove = ['"', ':', ')', '(', '[', ']', ',', '!', "?"] def lexicon_classifier(tweets, concept): if concept == "humor": features = ["\\U0001f602", "lol", "lmao", "rofl", "haha", "hahaha", "welp", "arse", "ass", "\\U0001f606", "Drumpf", "skeeter", "fun"] elif concept == "mistrust": features = ["illegal", "illegals", "immigrants", "mexicans", "prince", "false", "fake", "scheme", "hoax", "conspiracy", "monsanto", "depopulation", "gmo" "hype", "bio-warfare", "fabricating", "fabrication"] elif concept == "relief": features = ["test", "fda", "unveils", "uniforms", "zikaproof", "deal", "approval", "diagnostics", "billboard", "cure"] predictions = [] for tweet in tweets: for char in charsToRemove: tweet = tweet.replace(char, " ") parsed = tweet.encode("unicode-escape").replace("\\", " \\") parsed = " ".join(parsed).lower().split() for feature in features: if feature.lower() in parsed: prediction = 1 break else: prediction = 0 predictions.append(prediction) return predictions # Import training data client = MongoClient(MONGO_URI) db = client.get_default_database() cursor = db["submissions"].find({}) submissions = [] for document in cursor: if "tweet" in document: submissions.append(document) shuffle(submissions) clusterMap = pathDictionary.getDictionary() corpus = [] target = [] raw = [] humor_words = [] query = sys.argv[1] count = 0 for submission in submissions: raw.append(submission["tweet"]["text"]) for char in charsToRemove: submission["tweet"]["text"] = submission["tweet"]["text"].replace(char, " ") submission["tweet"]["text"] = submission["tweet"]["text"].encode("unicode-escape").replace("\\", " \\").strip().lower() tokens = [] for token in submission["tweet"]["text"].split(" "): if token in clusterMap.keys(): tokens.append(clusterMap[token]) else: tokens.append(token) submission["tweet"]["text"] = " ".join(tokens) corpus.append(submission["tweet"]["text"]) if submission["data"][query] == "true": target.append(1) count += 1 else: target.append(0) print count print corpus # Separate test data from the training data # Training Data is the first 90%, i.e [0, (.9 * size)] train_corpus = corpus[:int((.9 * len(corpus)))] train_target = target[:int((.9 * len(corpus)))] raw_train = raw[:int((.9 * len(corpus)))] # Test Data is the last 10%, i.e [(.9 * size), size] test_corpus = corpus[int((.9 * len(corpus))):] test_target = target[int((.9 * len(corpus))):] raw_test = raw[int((.9 * len(corpus))):] # Count features count_vect = CountVectorizer(ngram_range=(1, 2)) train_counts = count_vect.fit_transform(train_corpus) with open("count_vect.pk1", "wb") as f: cPickle.dump(count_vect, f) # Convert to tfidf tfidf_transformer = TfidfTransformer() train_tfidf = tfidf_transformer.fit_transform(train_counts) with open("tfidf.pk1", "wb") as f: cPickle.dump(tfidf_transformer, f) # Train classifier clf = MultinomialNB().fit(train_tfidf, train_target) # Transform test data test_counts = count_vect.transform(test_corpus) test_tfidf = tfidf_transformer.transform(test_counts) # Predict test values if query == "concern": predicted = clf.predict(test_tfidf) else: predicted = lexicon_classifier(raw_test, query) print predicted print np.mean(predicted == test_target) print "--------------------------------------" metrics = metrics.classification_report(test_target, predicted, target_names=['other', query]) for i in range(len(predicted)): if predicted[i] != test_target[i] and test_target[i] == 0: print("False Positive: " + raw_test[i]) elif predicted[i] != test_target[i] and test_target[i] == 1: print("False Negative: " + raw_test[i]) else: if test_target[i] == 1: print("Correctly Identified: " + raw_test[i]) print metrics with open("concernClassifier.pk1", "wb") as f: cPickle.dump(clf, f) """ features = extract_features(submissions) unigram_features = features["word_features"] bigram_features = features["bigram_features"] """
gpl-3.0
Ldpe2G/mxnet
example/svm_mnist/svm_mnist.py
7
3545
############################################################# ## Please read the README.md document for better reference ## ############################################################# from __future__ import print_function import mxnet as mx import numpy as np from sklearn.datasets import fetch_mldata from sklearn.decomposition import PCA # import matplotlib.pyplot as plt import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) # Network declaration as symbols. The following pattern was based # on the article, but feel free to play with the number of nodes # and with the activation function data = mx.symbol.Variable('data') fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=512) act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 512) act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10) # Here we add the ultimate layer based on L2-SVM objective mlp = mx.symbol.SVMOutput(data=fc3, name='svm') # To use L1-SVM objective, comment the line above and uncomment the line below # mlp = mx.symbol.SVMOutput(data=fc3, name='svm', use_linear=True) # Now we fetch MNIST dataset, add some noise, as the article suggests, # permutate and assign the examples to be used on our network mnist = fetch_mldata('MNIST original') mnist_pca = PCA(n_components=70).fit_transform(mnist.data) noise = np.random.normal(size=mnist_pca.shape) mnist_pca += noise np.random.seed(1234) # set seed for deterministic ordering p = np.random.permutation(mnist_pca.shape[0]) X = mnist_pca[p] Y = mnist.target[p] X_show = mnist.data[p] # This is just to normalize the input to a value inside [0,1], # and separate train set and test set X = X.astype(np.float32)/255 X_train = X[:60000] X_test = X[60000:] X_show = X_show[60000:] Y_train = Y[:60000] Y_test = Y[60000:] # Article's suggestion on batch size batch_size = 200 train_iter = mx.io.NDArrayIter(X_train, Y_train, batch_size=batch_size) test_iter = mx.io.NDArrayIter(X_test, Y_test, batch_size=batch_size) # A quick work around to prevent mxnet complaining the lack of a softmax_label train_iter.label = mx.io._init_data(Y_train, allow_empty=True, default_name='svm_label') test_iter.label = mx.io._init_data(Y_test, allow_empty=True, default_name='svm_label') # Here we instatiate and fit the model for our data # The article actually suggests using 400 epochs, # But I reduced to 10, for convinience mod = mx.mod.Module( context = mx.cpu(0), # Run on CPU 0 symbol = mlp, # Use the network we just defined label_names = ['svm_label'], ) mod.fit( train_data=train_iter, eval_data=test_iter, # Testing data set. MXNet computes scores on test set every epoch batch_end_callback = mx.callback.Speedometer(batch_size, 200), # Logging module to print out progress num_epoch = 10, # Train for 10 epochs optimizer_params = { 'learning_rate': 0.1, # Learning rate 'momentum': 0.9, # Momentum for SGD with momentum 'wd': 0.00001, # Weight decay for regularization }, ) # Uncomment to view an example # plt.imshow((X_show[0].reshape((28,28))*255).astype(np.uint8), cmap='Greys_r') # plt.show() # print 'Result:', model.predict(X_test[0:1])[0].argmax() # Now it prints how good did the network did for this configuration print('Accuracy:', mod.score(test_iter, mx.metric.Accuracy())[0][1]*100, '%')
apache-2.0
jjardel/probablyPOTUS
model/src/_model.py
2
5837
# python STL import re import os from datetime import datetime # third party modules from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve from sklearn.externals import joblib import numpy as np import matplotlib.pyplot as plt # model utils from model.src import DFColumnExtractor, twitter_tokenizer # other utils from lib.utils.lw import get_logger from lib.utils.db_conn import DBConn WORKING_DIR = os.getenv('WORKING_DIR') CONFIG = '{0}/config/db_creds_local.json'.format(WORKING_DIR) TEXT_FEATURES = 'text' NON_TEXT_FEATURES = [ #'favorites', #'retweets', #'retweets_to_faves', 'num_exclamation_points', 'num_uppercase_strings', 'is_trump_retweet' #'is_tweetstorm' # this feature has some leakage of the label ] LABEL = 'tweet_source' class BaseModel(object): def __init__(self, table_name, schema_name, **params_dict): self.table_name = table_name self.schema_name = schema_name self.logger = get_logger(__name__) self.params = params_dict self._random_state = 42 self.data = None self.train_inds_ = None self.test_inds_ = None self.model_ = None self.gs_ = None @property def _estimator(self): raise NotImplementedError('this method must be overriden') def _get_data(self): # retreive data from DB conn = DBConn(CONFIG) data = conn.export(self.table_name, schema=self.schema_name) # zero-one encoding for labels data.tweet_source = data.tweet_source.apply(lambda x: 1 if x == 'android' else 0) # standardize all urls data.text = data.text.str.replace('https?:\/\/t.co\/[a-zA-Z0-9\-\.]{8,}', 'twitter_url ') self.data = data def _get_train_test_split(self, train_size=None): """ Perform stratified train/test split. Sets the indices for the train/test sets """ idx_array = np.arange(len(self.data)) self.train_inds_, self.test_inds_, _, _ = train_test_split( idx_array, self.data[LABEL].values, train_size=train_size, stratify=self.data[LABEL].values, random_state=self._random_state ) def train(self, train_size=0.8, k_folds=5): # retrieve data from DB and pre-process self._get_data() # perform train/test split self._get_train_test_split(train_size=train_size) # define text pre-processing pipeline text_pipeline = Pipeline([ ('extract_text', DFColumnExtractor(TEXT_FEATURES)), ('vect', TfidfVectorizer(tokenizer=twitter_tokenizer)) ]) # define pipeline for pre-processing of numeric features numeric_pipeline = Pipeline([ ('extract_nums', DFColumnExtractor(NON_TEXT_FEATURES)), ('scaler', MinMaxScaler()) ]) # combine both steps into a single pipeline pipeline = Pipeline([ ('features', FeatureUnion([ ('text_processing', text_pipeline), ('num_processing', numeric_pipeline) ])), ('clf', self._estimator) ]) self.logger.info('Fitting model hyperparameters with {0}-fold CV'.format(k_folds)) gs = GridSearchCV(pipeline, self.params, n_jobs=-1, cv=k_folds) X = self.data.iloc[self.train_inds_, :] y = self.data[LABEL].values[self.train_inds_] gs.fit(X, y) self.logger.info('Validation set accuracy is {0}'.format(gs.best_score_)) self.gs_ = gs self.model_ = gs.best_estimator_ def evaluate(self): if not self.model_: raise AttributeError('No model attribute found. Must run train() method first') X_test = self.data.iloc[self.test_inds_, :] y_test = self.data[LABEL].values[self.test_inds_] y_preds = self.model_.predict(X_test) self.logger.info('test set accuracy is {0}'.format(accuracy_score(y_test, y_preds))) # ROC Curve y_probs = self.model_.predict_proba(X_test)[:, 1] fpr, tpr, thresholds = roc_curve(y_test, y_probs) auc = roc_auc_score(y_test, y_probs) self.logger.info('ROC AUC for the test set: {0}'.format(auc)) plt.plot(fpr, tpr, lw=2, color='r', label='AUC: {:.2}'.format(auc)) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.plot([0, 1], [0, 1], linestyle='--') plt.legend() ts = datetime.now().strftime('%Y%m%d_%H%M%S') plt.savefig('{0}/model/saved_models/roc_{1}.png'.format(WORKING_DIR, ts)) def save(self, filebase): # re-train best model on full data set self.model_.fit(self.data, self.data[LABEL].values) ts = datetime.now().strftime('%Y%m%d_%H%M%S') # logging wrappers don't serialize del self.logger joblib.dump(self,'{0}/model_{1}.pkl'.format(filebase, ts)) class NaiveBayesModel(BaseModel): @property def _estimator(self): return MultinomialNB() class RandomForestModel(BaseModel): @property def _estimator(self): return RandomForestClassifier() if __name__ == '__main__': nb_params = { 'features__text_processing__vect__ngram_range': [(1, 1), (1, 2), (1, 3)], 'clf__alpha': np.logspace(-2, 0, num=10) } m = NaiveBayesModel('crazy_tweet_features', 'clean', **nb_params) m.train() m.save('.') print('test')
gpl-3.0
matthew-tucker/mne-python
examples/inverse/plot_gamma_map_inverse.py
30
2316
""" =============================================================================== Compute a sparse inverse solution using the Gamma-Map empirical Bayesian method =============================================================================== See Wipf et al. "A unified Bayesian framework for MEG/EEG source imaging." NeuroImage, vol. 44, no. 3, pp. 947?66, Mar. 2009. """ # Author: Martin Luessi <mluessi@nmr.mgh.harvard.edu> # # License: BSD (3-clause) import numpy as np import mne from mne.datasets import sample from mne.inverse_sparse import gamma_map from mne.viz import plot_sparse_source_estimates print(__doc__) data_path = sample.data_path() subjects_dir = data_path + '/subjects' fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' evoked_fname = data_path + '/MEG/sample/sample_audvis-ave.fif' cov_fname = data_path + '/MEG/sample/sample_audvis-cov.fif' # Read the evoked response and crop it condition = 'Left visual' evoked = mne.read_evokeds(evoked_fname, condition=condition, baseline=(None, 0)) evoked.crop(tmin=-50e-3, tmax=300e-3) # Read the forward solution forward = mne.read_forward_solution(fwd_fname, surf_ori=True, force_fixed=False) # Read noise noise covariance matrix and regularize it cov = mne.read_cov(cov_fname) cov = mne.cov.regularize(cov, evoked.info) # Run the Gamma-MAP method alpha = 0.5 stc, residual = gamma_map(evoked, forward, cov, alpha, xyz_same_gamma=True, return_residual=True) # View in 2D and 3D ("glass" brain like 3D plot) # Show the sources as spheres scaled by their strength scale_factors = np.max(np.abs(stc.data), axis=1) scale_factors = 0.5 * (1 + scale_factors / np.max(scale_factors)) plot_sparse_source_estimates( forward['src'], stc, bgcolor=(1, 1, 1), modes=['sphere'], opacity=0.1, scale_factors=(scale_factors, None), fig_name="Gamma-MAP") # Show the evoked response and the residual for gradiometers ylim = dict(grad=[-120, 120]) evoked.pick_types(meg='grad', exclude='bads') evoked.plot(titles=dict(grad='Evoked Response Gradiometers'), ylim=ylim, proj=True) residual.pick_types(meg='grad', exclude='bads') residual.plot(titles=dict(grad='Residuals Gradiometers'), ylim=ylim, proj=True)
bsd-3-clause
rahuldhote/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
269
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
mr3bn/DAT210x
Module6/assignment1.py
1
5224
import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd import numpy as np import time # # INFO: Your Parameters. # You can adjust them after completing the lab C = 1 kernel = 'linear' iterations = 5000 # TODO: Change to 200000 once you get to Question#2 # # INFO: You can set this to false if you want to # draw the full square matrix FAST_DRAW = True def drawPlots(model, X_train, X_test, y_train, y_test, wintitle='Figure 1'): # INFO: A convenience function for you # You can use this to break any higher-dimensional space down # And view cross sections of it. # If this line throws an error, use plt.style.use('ggplot') instead mpl.style.use('ggplot') # Look Pretty padding = 3 resolution = 0.5 max_2d_score = 0 y_colors = ['#ff0000', '#00ff00', '#0000ff'] my_cmap = mpl.colors.ListedColormap(['#ffaaaa', '#aaffaa', '#aaaaff']) colors = [y_colors[i] for i in y_train] num_columns = len(X_train.columns) fig = plt.figure() fig.canvas.set_window_title(wintitle) cnt = 0 for col in range(num_columns): for row in range(num_columns): # Easy out if FAST_DRAW and col > row: cnt += 1 continue ax = plt.subplot(num_columns, num_columns, cnt + 1) plt.xticks(()) plt.yticks(()) # Intersection: if col == row: plt.text(0.5, 0.5, X_train.columns[row], verticalalignment='center', horizontalalignment='center', fontsize=12) cnt += 1 continue # Only select two features to display, then train the model X_train_bag = X_train.ix[:, [row,col]] X_test_bag = X_test.ix[:, [row,col]] model.fit(X_train_bag, y_train) # Create a mesh to plot in x_min, x_max = X_train_bag.ix[:, 0].min() - padding, X_train_bag.ix[:, 0].max() + padding y_min, y_max = X_train_bag.ix[:, 1].min() - padding, X_train_bag.ix[:, 1].max() + padding xx, yy = np.meshgrid(np.arange(x_min, x_max, resolution), np.arange(y_min, y_max, resolution)) # Plot Boundaries plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) # Prepare the contour Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=my_cmap, alpha=0.8) plt.scatter(X_train_bag.ix[:, 0], X_train_bag.ix[:, 1], c=colors, alpha=0.5) score = round(model.score(X_test_bag, y_test) * 100, 3) plt.text(0.5, 0, "Score: {0}".format(score), transform = ax.transAxes, horizontalalignment='center', fontsize=8) max_2d_score = score if score > max_2d_score else max_2d_score cnt += 1 print "Max 2D Score: ", max_2d_score fig.set_tight_layout(True) def benchmark(model, X_train, X_test, y_train, y_test, wintitle='Figure 1'): print '\n\n' + wintitle + ' Results' s = time.time() for i in range(iterations): # # TODO: train the classifier on the training data / labels: # model.fit(X_train, y_train) print "{0} Iterations Training Time: ".format(iterations), time.time() - s s = time.time() for i in range(iterations): # # TODO: score the classifier on the testing data / labels: # score = model.score(X_test, y_test) print "{0} Iterations Scoring Time: ".format(iterations), time.time() - s print "High-Dimensionality Score: ", round((score*100), 3) # # TODO: Load up the wheat dataset into dataframe 'X' # Verify you did it properly. # Indices shouldn't be doubled, nor weird headers... X= pd.read_csv('Datasets/wheat.data', index_col = 0, header=0) # INFO: An easy way to show which rows have nans in them print X[pd.isnull(X).any(axis=1)] # # TODO: Go ahead and drop any row with a nan # X = X.dropna() # # INFO: # In the future, you might try setting the nan values to the # mean value of that column, the mean should only be calculated for # the specific class rather than across all classes, now that you # have the labels # # TODO: Copy the labels out of the dset into variable 'y' then Remove # them from X. Encode the labels, using the .map() trick we showed # you in Module 5 -- canadian:0, kama:1, and rosa:2 # y = X['wheat_type'].map({'canadian' : 0, 'kama' : 1, 'rosa' : 2}) del X['wheat_type'] # # TODO: Split your data into test / train sets # Your test size can be 30% with random_state 7. # Use variable names: X_train, X_test, y_train, y_test # from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 7) # # TODO: Create an SVC classifier named svc # Use a linear kernel, and set the C value to C # from sklearn.svm import SVC svc = SVC(kernel='linear') # # TODO: Create an KNeighbors classifier named knn # Set the neighbor count to 5 # from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) benchmark(knn, X_train, X_test, y_train, y_test, 'KNeighbors') drawPlots(knn, X_train, X_test, y_train, y_test, 'KNeighbors') benchmark(svc, X_train, X_test, y_train, y_test, 'SVC') drawPlots(svc, X_train, X_test, y_train, y_test, 'SVC') plt.show() # # BONUS: After submitting your answers, toy around with # gamma, kernel, and C.
mit
uber/pyro
examples/baseball.py
1
16326
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import argparse import logging import math import pandas as pd import torch import pyro from pyro.distributions import Beta, Binomial, HalfCauchy, Normal, Pareto, Uniform from pyro.distributions.util import scalar_like from pyro.infer import MCMC, NUTS, Predictive from pyro.infer.mcmc.util import initialize_model, summary from pyro.util import ignore_experimental_warning """ Example has been adapted from [1]. It demonstrates how to do Bayesian inference using NUTS (or, HMC) in Pyro, and use of some common inference utilities. As in the Stan tutorial, this uses the small baseball dataset of Efron and Morris [2] to estimate players' batting average which is the fraction of times a player got a base hit out of the number of times they went up at bat. The dataset separates the initial 45 at-bats statistics from the remaining season. We use the hits data from the initial 45 at-bats to estimate the batting average for each player. We then use the remaining season's data to validate the predictions from our models. Three models are evaluated: - Complete pooling model: The success probability of scoring a hit is shared amongst all players. - No pooling model: Each individual player's success probability is distinct and there is no data sharing amongst players. - Partial pooling model: A hierarchical model with partial data sharing. We recommend Radford Neal's tutorial on HMC ([3]) to users who would like to get a more comprehensive understanding of HMC and its variants, and to [4] for details on the No U-Turn Sampler, which provides an efficient and automated way (i.e. limited hyper-parameters) of running HMC on different problems. [1] Carpenter B. (2016), ["Hierarchical Partial Pooling for Repeated Binary Trials"] (http://mc-stan.org/users/documentation/case-studies/pool-binary-trials.html). [2] Efron B., Morris C. (1975), "Data analysis using Stein's estimator and its generalizations", J. Amer. Statist. Assoc., 70, 311-319. [3] Neal, R. (2012), "MCMC using Hamiltonian Dynamics", (https://arxiv.org/pdf/1206.1901.pdf) [4] Hoffman, M. D. and Gelman, A. (2014), "The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo", (https://arxiv.org/abs/1111.4246) """ logging.basicConfig(format="%(message)s", level=logging.INFO) DATA_URL = "https://d2hg8soec8ck9v.cloudfront.net/datasets/EfronMorrisBB.txt" # =================================== # MODELS # =================================== def fully_pooled(at_bats, hits): r""" Number of hits in $K$ at bats for each player has a Binomial distribution with a common probability of success, $\phi$. :param (torch.Tensor) at_bats: Number of at bats for each player. :param (torch.Tensor) hits: Number of hits for the given at bats. :return: Number of hits predicted by the model. """ phi_prior = Uniform(scalar_like(at_bats, 0), scalar_like(at_bats, 1)) phi = pyro.sample("phi", phi_prior) num_players = at_bats.shape[0] with pyro.plate("num_players", num_players): return pyro.sample("obs", Binomial(at_bats, phi), obs=hits) def not_pooled(at_bats, hits): r""" Number of hits in $K$ at bats for each player has a Binomial distribution with independent probability of success, $\phi_i$. :param (torch.Tensor) at_bats: Number of at bats for each player. :param (torch.Tensor) hits: Number of hits for the given at bats. :return: Number of hits predicted by the model. """ num_players = at_bats.shape[0] with pyro.plate("num_players", num_players): phi_prior = Uniform(scalar_like(at_bats, 0), scalar_like(at_bats, 1)) phi = pyro.sample("phi", phi_prior) return pyro.sample("obs", Binomial(at_bats, phi), obs=hits) def partially_pooled(at_bats, hits): r""" Number of hits has a Binomial distribution with independent probability of success, $\phi_i$. Each $\phi_i$ follows a Beta distribution with concentration parameters $c_1$ and $c_2$, where $c_1 = m * kappa$, $c_2 = (1 - m) * kappa$, $m ~ Uniform(0, 1)$, and $kappa ~ Pareto(1, 1.5)$. :param (torch.Tensor) at_bats: Number of at bats for each player. :param (torch.Tensor) hits: Number of hits for the given at bats. :return: Number of hits predicted by the model. """ num_players = at_bats.shape[0] m = pyro.sample("m", Uniform(scalar_like(at_bats, 0), scalar_like(at_bats, 1))) kappa = pyro.sample( "kappa", Pareto(scalar_like(at_bats, 1), scalar_like(at_bats, 1.5)) ) with pyro.plate("num_players", num_players): phi_prior = Beta(m * kappa, (1 - m) * kappa) phi = pyro.sample("phi", phi_prior) return pyro.sample("obs", Binomial(at_bats, phi), obs=hits) def partially_pooled_with_logit(at_bats, hits): r""" Number of hits has a Binomial distribution with a logit link function. The logits $\alpha$ for each player is normally distributed with the mean and scale parameters sharing a common prior. :param (torch.Tensor) at_bats: Number of at bats for each player. :param (torch.Tensor) hits: Number of hits for the given at bats. :return: Number of hits predicted by the model. """ num_players = at_bats.shape[0] loc = pyro.sample("loc", Normal(scalar_like(at_bats, -1), scalar_like(at_bats, 1))) scale = pyro.sample("scale", HalfCauchy(scale=scalar_like(at_bats, 1))) with pyro.plate("num_players", num_players): alpha = pyro.sample("alpha", Normal(loc, scale)) return pyro.sample("obs", Binomial(at_bats, logits=alpha), obs=hits) # =================================== # DATA SUMMARIZE UTILS # =================================== def get_summary_table( posterior, sites, player_names, transforms={}, diagnostics=False, group_by_chain=False, ): """ Return summarized statistics for each of the ``sites`` in the traces corresponding to the approximate posterior. """ site_stats = {} for site_name in sites: marginal_site = posterior[site_name].cpu() if site_name in transforms: marginal_site = transforms[site_name](marginal_site) site_summary = summary( {site_name: marginal_site}, prob=0.5, group_by_chain=group_by_chain )[site_name] if site_summary["mean"].shape: site_df = pd.DataFrame(site_summary, index=player_names) else: site_df = pd.DataFrame(site_summary, index=[0]) if not diagnostics: site_df = site_df.drop(["n_eff", "r_hat"], axis=1) site_stats[site_name] = site_df.astype(float).round(2) return site_stats def train_test_split(pd_dataframe): """ Training data - 45 initial at-bats and hits for each player. Validation data - Full season at-bats and hits for each player. """ device = torch.Tensor().device train_data = torch.tensor( pd_dataframe[["At-Bats", "Hits"]].values, dtype=torch.float, device=device ) test_data = torch.tensor( pd_dataframe[["SeasonAt-Bats", "SeasonHits"]].values, dtype=torch.float, device=device, ) first_name = pd_dataframe["FirstName"].values last_name = pd_dataframe["LastName"].values player_names = [ " ".join([first, last]) for first, last in zip(first_name, last_name) ] return train_data, test_data, player_names # =================================== # MODEL EVALUATION UTILS # =================================== def sample_posterior_predictive(model, posterior_samples, baseball_dataset): """ Generate samples from posterior predictive distribution. """ train, test, player_names = train_test_split(baseball_dataset) at_bats = train[:, 0] at_bats_season = test[:, 0] logging.Formatter("%(message)s") logging.info("\nPosterior Predictive:") logging.info("Hit Rate - Initial 45 At Bats") logging.info("-----------------------------") # set hits=None to convert it from observation node to sample node train_predict = Predictive(model, posterior_samples)(at_bats, None) train_summary = get_summary_table( train_predict, sites=["obs"], player_names=player_names )["obs"] train_summary = train_summary.assign(ActualHits=baseball_dataset[["Hits"]].values) logging.info(train_summary) logging.info("\nHit Rate - Season Predictions") logging.info("-----------------------------") with ignore_experimental_warning(): test_predict = Predictive(model, posterior_samples)(at_bats_season, None) test_summary = get_summary_table( test_predict, sites=["obs"], player_names=player_names )["obs"] test_summary = test_summary.assign( ActualHits=baseball_dataset[["SeasonHits"]].values ) logging.info(test_summary) def evaluate_pointwise_pred_density(model, posterior_samples, baseball_dataset): """ Evaluate the log probability density of observing the unseen data (season hits) given a model and posterior distribution over the parameters. """ _, test, player_names = train_test_split(baseball_dataset) at_bats_season, hits_season = test[:, 0], test[:, 1] trace = Predictive(model, posterior_samples).get_vectorized_trace( at_bats_season, hits_season ) # Use LogSumExp trick to evaluate $log(1/num_samples \sum_i p(new_data | \theta^{i})) $, # where $\theta^{i}$ are parameter samples from the model's posterior. trace.compute_log_prob() post_loglik = trace.nodes["obs"]["log_prob"] # computes expected log predictive density at each data point exp_log_density = (post_loglik.logsumexp(0) - math.log(post_loglik.shape[0])).sum() logging.info("\nLog pointwise predictive density") logging.info("--------------------------------") logging.info("{:.4f}\n".format(exp_log_density)) def main(args): baseball_dataset = pd.read_csv(DATA_URL, "\t") train, _, player_names = train_test_split(baseball_dataset) at_bats, hits = train[:, 0], train[:, 1] logging.info("Original Dataset:") logging.info(baseball_dataset) # (1) Full Pooling Model # In this model, we illustrate how to use MCMC with general potential_fn. init_params, potential_fn, transforms, _ = initialize_model( fully_pooled, model_args=(at_bats, hits), num_chains=args.num_chains, jit_compile=args.jit, skip_jit_warnings=True, ) nuts_kernel = NUTS(potential_fn=potential_fn) mcmc = MCMC( nuts_kernel, num_samples=args.num_samples, warmup_steps=args.warmup_steps, num_chains=args.num_chains, initial_params=init_params, transforms=transforms, ) mcmc.run(at_bats, hits) samples_fully_pooled = mcmc.get_samples() logging.info("\nModel: Fully Pooled") logging.info("===================") logging.info("\nphi:") logging.info( get_summary_table( mcmc.get_samples(group_by_chain=True), sites=["phi"], player_names=player_names, diagnostics=True, group_by_chain=True, )["phi"] ) num_divergences = sum(map(len, mcmc.diagnostics()["divergences"].values())) logging.info("\nNumber of divergent transitions: {}\n".format(num_divergences)) sample_posterior_predictive(fully_pooled, samples_fully_pooled, baseball_dataset) evaluate_pointwise_pred_density( fully_pooled, samples_fully_pooled, baseball_dataset ) # (2) No Pooling Model nuts_kernel = NUTS(not_pooled, jit_compile=args.jit, ignore_jit_warnings=True) mcmc = MCMC( nuts_kernel, num_samples=args.num_samples, warmup_steps=args.warmup_steps, num_chains=args.num_chains, ) mcmc.run(at_bats, hits) samples_not_pooled = mcmc.get_samples() logging.info("\nModel: Not Pooled") logging.info("=================") logging.info("\nphi:") logging.info( get_summary_table( mcmc.get_samples(group_by_chain=True), sites=["phi"], player_names=player_names, diagnostics=True, group_by_chain=True, )["phi"] ) num_divergences = sum(map(len, mcmc.diagnostics()["divergences"].values())) logging.info("\nNumber of divergent transitions: {}\n".format(num_divergences)) sample_posterior_predictive(not_pooled, samples_not_pooled, baseball_dataset) evaluate_pointwise_pred_density(not_pooled, samples_not_pooled, baseball_dataset) # (3) Partially Pooled Model nuts_kernel = NUTS(partially_pooled, jit_compile=args.jit, ignore_jit_warnings=True) mcmc = MCMC( nuts_kernel, num_samples=args.num_samples, warmup_steps=args.warmup_steps, num_chains=args.num_chains, ) mcmc.run(at_bats, hits) samples_partially_pooled = mcmc.get_samples() logging.info("\nModel: Partially Pooled") logging.info("=======================") logging.info("\nphi:") logging.info( get_summary_table( mcmc.get_samples(group_by_chain=True), sites=["phi"], player_names=player_names, diagnostics=True, group_by_chain=True, )["phi"] ) num_divergences = sum(map(len, mcmc.diagnostics()["divergences"].values())) logging.info("\nNumber of divergent transitions: {}\n".format(num_divergences)) sample_posterior_predictive( partially_pooled, samples_partially_pooled, baseball_dataset ) evaluate_pointwise_pred_density( partially_pooled, samples_partially_pooled, baseball_dataset ) # (4) Partially Pooled with Logit Model nuts_kernel = NUTS( partially_pooled_with_logit, jit_compile=args.jit, ignore_jit_warnings=True ) mcmc = MCMC( nuts_kernel, num_samples=args.num_samples, warmup_steps=args.warmup_steps, num_chains=args.num_chains, ) mcmc.run(at_bats, hits) samples_partially_pooled_logit = mcmc.get_samples() logging.info("\nModel: Partially Pooled with Logit") logging.info("==================================") logging.info("\nSigmoid(alpha):") logging.info( get_summary_table( mcmc.get_samples(group_by_chain=True), sites=["alpha"], player_names=player_names, transforms={"alpha": torch.sigmoid}, diagnostics=True, group_by_chain=True, )["alpha"] ) num_divergences = sum(map(len, mcmc.diagnostics()["divergences"].values())) logging.info("\nNumber of divergent transitions: {}\n".format(num_divergences)) sample_posterior_predictive( partially_pooled_with_logit, samples_partially_pooled_logit, baseball_dataset ) evaluate_pointwise_pred_density( partially_pooled_with_logit, samples_partially_pooled_logit, baseball_dataset ) if __name__ == "__main__": assert pyro.__version__.startswith("1.7.0") parser = argparse.ArgumentParser(description="Baseball batting average using HMC") parser.add_argument("-n", "--num-samples", nargs="?", default=200, type=int) parser.add_argument("--num-chains", nargs="?", default=4, type=int) parser.add_argument("--warmup-steps", nargs="?", default=100, type=int) parser.add_argument("--rng_seed", nargs="?", default=0, type=int) parser.add_argument( "--jit", action="store_true", default=False, help="use PyTorch jit" ) parser.add_argument( "--cuda", action="store_true", default=False, help="run this example in GPU" ) args = parser.parse_args() # work around the error "CUDA error: initialization error" # see https://github.com/pytorch/pytorch/issues/2517 torch.multiprocessing.set_start_method("spawn") pyro.set_rng_seed(args.rng_seed) # Enable validation checks # work around with the error "RuntimeError: received 0 items of ancdata" # see https://discuss.pytorch.org/t/received-0-items-of-ancdata-pytorch-0-4-0/19823 torch.multiprocessing.set_sharing_strategy("file_system") if args.cuda: torch.set_default_tensor_type(torch.cuda.FloatTensor) main(args)
apache-2.0
davidkunio/dedupe
tests/canonical_test.py
3
3235
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import print_function from future.utils import viewitems from builtins import range from itertools import combinations import csv import exampleIO import dedupe import os import time import optparse import logging optp = optparse.OptionParser() optp.add_option('-v', '--verbose', dest='verbose', action='count', help='Increase verbosity (specify multiple times for more)' ) (opts, args) = optp.parse_args() log_level = logging.WARNING if opts.verbose is not None : if opts.verbose == 1: log_level = logging.INFO elif opts.verbose >= 2: log_level = logging.DEBUG logging.getLogger().setLevel(log_level) #logging.basicConfig(level=log_level) #import random #import sys #random.seed(365072799328404092) def canonicalImport(filename): preProcess = exampleIO.preProcess data_d = {} with open(filename) as f: reader = csv.DictReader(f) for (i, row) in enumerate(reader): clean_row = [(k, preProcess(v)) for (k, v) in viewitems(row)] data_d[i] = dedupe.core.frozendict(clean_row) return data_d, reader.fieldnames def evaluateDuplicates(found_dupes, true_dupes): true_positives = found_dupes.intersection(true_dupes) false_positives = found_dupes.difference(true_dupes) uncovered_dupes = true_dupes.difference(found_dupes) print('found duplicate') print(len(found_dupes)) print('precision') print(1 - len(false_positives) / float(len(found_dupes))) print('recall') print(len(true_positives) / float(len(true_dupes))) settings_file = 'canonical_learned_settings.json' raw_data = 'tests/datasets/restaurant-nophone-training.csv' data_d, header = canonicalImport(raw_data) training_pairs = dedupe.trainingDataDedupe(data_d, 'unique_id', 5000) duplicates_s = set(frozenset(pair) for pair in training_pairs['match']) t0 = time.time() print('number of known duplicate pairs', len(duplicates_s)) if os.path.exists(settings_file): with open(settings_file, 'rb') as f: deduper = dedupe.StaticDedupe(f, 1) else: fields = [{'field' : 'name', 'type': 'String'}, {'field' : 'name', 'type': 'Exact'}, {'field' : 'address', 'type': 'String'}, {'field' : 'cuisine', 'type': 'ShortString'}, {'field' : 'city', 'type' : 'ShortString'} ] deduper = dedupe.Dedupe(fields, num_cores=5) deduper.sample(data_d, 10000) deduper.markPairs(training_pairs) deduper.train() with open(settings_file, 'wb') as f: deduper.writeSettings(f) alpha = deduper.threshold(data_d, 1.5) # print candidates print('clustering...') clustered_dupes = deduper.match(data_d, threshold=alpha) print('Evaluate Clustering') confirm_dupes = set([]) for dupes, score in clustered_dupes: for pair in combinations(dupes, 2): confirm_dupes.add(frozenset((data_d[pair[0]], data_d[pair[1]]))) evaluateDuplicates(confirm_dupes, duplicates_s) print('ran in ', time.time() - t0, 'seconds')
mit
jpn--/larch
larch/prelearning.py
1
11273
import logging import numpy import pandas import os from appdirs import user_cache_dir import joblib from typing import MutableMapping from .general_precision import l4_float_dtype from .log import logger_name from .dataframes import DataFrames def user_cache_file(filename, appname=None, appauthor=None, version=None, opinion=True): d = user_cache_dir(appname=appname, appauthor=appauthor, version=version, opinion=opinion) os.makedirs(d, exist_ok=True) return os.path.join(d, filename) class Prelearner(): """ A prelearner for use with Larch. A prelearner uses a machine learning classifier to make an initial prediction of the result. This initial prediction is then added as an input data column for Larch, effectively creating a chained classifier. Parameters ---------- training_X : pandas.DataFrame The exogenous variables. training_Y : pandas.DataFrame The observed choices in the training data. training_W : pandas.DataFrame, optional The weights. classifier : sklearn Classifier or Regressor This is the class object for the selected classifier, not an existing instance. This classifier or Regressor will be instantiated and trained using the data above to generate the prediction. fit : dict or False, optional A dictionary of arguments to pass to the `fit` method of the classifier, or set to False to not fit the classifier during the initialization of this object. cache_file : str, optional A cache file name to store the trained prelearner. If just a filename is given, it will be stored in `appdirs.user_cache_file()`. If instead an absolute path or a relative path beginning with '.' is given, that location will be used. If the file exists, it will be loaded instead of re-training. output_name : str, default 'prelearned_utility' The name of the output column from this prelearner. grid_cv_params : dict or List[dict], optional If given, this is used as the `param_grid` argument to initialize a :class:`sklearn.model_selection.GridSearchCV` wrapped around the classifier, instead of using the classifier directly. grid_cv_kwds : dict, optional If `grid_cv_params` is given, this dict gives other keyword arguments given to :class:`sklearn.model_selection.GridSearchCV`. **kwargs Any other keyword arguments are passed through to the classifier's constructor. """ def __init__( self, dataframes, ca_columns=None, co_columns=None, classifier=None, fit=True, cache_file=None, output_name='prelearned_utility', appname='larch', grid_cv_params=None, grid_cv_kwds=None, validation_dataframes=None, **kwargs, ): if classifier is None: raise ValueError('must give a classifier') if fit is True: fit = {} logger = logging.getLogger(logger_name) self.input_ca_columns = ca_columns if ca_columns is not None else [] self.input_co_columns = co_columns self.eval_set_names = fit.pop('eval_set_names', []) if isinstance(fit, MutableMapping): if 'validation_percent' in fit and validation_dataframes is None: vpct = fit.pop('validation_percent') dataframes, validation_dataframes = dataframes.split([100-vpct, vpct]) else: vpct = 'preset' if validation_dataframes is not None: validation_X = self.filter_and_join_columns( validation_dataframes.data_ca_as_ce(), validation_dataframes.data_co, ) validation_Y = validation_dataframes.array_ch_as_ce() validation_W = validation_dataframes.array_wt_as_ce() fit['eval_set'] = fit.get('eval_set', []) + [(validation_X, validation_Y)] if validation_W is not None: fit['sample_weight_eval_set'] = fit.get('sample_weight_eval_set', []) + [validation_W] self.eval_set_names += [f'validation_{vpct}'] training_X = self.filter_and_join_columns( dataframes.data_ca_as_ce(), dataframes.data_co, ) training_Y = dataframes.array_ch_as_ce() training_W = dataframes.array_wt_as_ce() self.output_column = output_name if cache_file is not None: if os.path.isabs(cache_file) or cache_file[:2] in ('./', '..', '.\\'): cache_clf_file = cache_file else: cache_clf_file = user_cache_file(cache_file, appname=appname) else: cache_clf_file = None if cache_clf_file is not None and os.path.exists(cache_clf_file): logger.info(f'LOADING {cache_clf_file}...') clf = joblib.load(cache_clf_file) logger.info(f'COMPLETED LOADING {cache_clf_file}') else: if grid_cv_params is not None: from sklearn.model_selection import GridSearchCV clf = GridSearchCV( classifier(**kwargs), grid_cv_params, **grid_cv_kwds, ) else: clf = classifier(**kwargs) if fit is not False: if 'train_as_eval' in fit: fit.pop('train_as_eval') fit['eval_set'] = [(training_X, training_Y),] + fit.get('eval_set',[]) if training_W is not None: fit['sample_weight_eval_set'] = [training_W,]+fit.get('sample_weight_eval_set',[]) self.eval_set_names = ['training'] + self.eval_set_names logger.info(f'FITTING {classifier}...') if training_W is not None: clf.fit(training_X, training_Y, sample_weight=training_W, **fit) else: clf.fit(training_X, training_Y, **fit) logger.info(f'FITTED {classifier}') if cache_clf_file is not None: joblib.dump(clf, cache_clf_file) logger.info(f'SAVED {cache_clf_file}') self.clf = clf self._predict_type = 'predict_proba col 1' def filter_ca_columns(self, X): # filter the columns of the input into the correct form for the prelearner. try: X1 = X[self.input_ca_columns] except KeyError: X1 = pandas.DataFrame( X.eval(self.input_ca_columns).T.astype(float), index=X.index, columns=self.input_ca_columns, ) return X1 def filter_and_join_columns(self, X_ca, X_co): training_X = self.filter_ca_columns(X_ca) if self.input_co_columns: try: X_co = X_co[self.input_co_columns] except KeyError: X_co = pandas.DataFrame( X_co.eval(self.input_co_columns).T.astype(float), index=X_co.index, columns=self.input_co_columns, ) training_X = training_X.join(X_co, on=training_X.index.levels[0].name, how='left').fillna(0) return training_X def apply( self, X, dtype=None, output_name=None, **kwargs, ): """ Apply the prelearner to compute pseudo-utility. Parameters ---------- X : pandas.DataFrame dtype : dtype, default float The dtype to use for the output column. output_name : str, optional The name of the output column from this application of the prelearner. **kwargs Other keyword arguments are forwarded to the `predict` or `predict_proba` method of the `clf` member. Returns ------- pandas.DataFrame """ if dtype is None: dtype = l4_float_dtype if isinstance(X, DataFrames): X_ca = X._data_ca_or_ce X_co = X.data_co else: X_ca = X X_co = None X_in = self.filter_and_join_columns( X_ca, X_co, ) if output_name is None: output_name = self.output_column if self._predict_type == 'predict_proba col 1': X_ca.loc[:,output_name] = numpy.log(self.clf.predict_proba(X_in, **kwargs)[:, 1]).astype(dtype) elif self._predict_type == 'predict': X_ca.loc[:,output_name] = numpy.log(self.clf.predict(X_in, **kwargs)).astype(dtype) else: raise TypeError(self._predict_type) return X class RandomForestPrelearner(Prelearner): def __init__( self, dataframes, ca_columns=None, co_columns=None, cache_file=None, fit=True, output_name='prelearned_utility', **kwargs, ): from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier default_kwargs = dict( n_estimators=200, warm_start=False, max_features=None, oob_score=True, n_jobs=-1, random_state=123, ) default_kwargs.update(kwargs) super().__init__( dataframes=dataframes, ca_columns=ca_columns, co_columns=co_columns, classifier=RandomForestClassifier, fit=fit, cache_file=cache_file, output_name=output_name, **default_kwargs, ) class XGBoostHardPrelearner(Prelearner): def __init__( self, dataframes, ca_columns=None, co_columns=None, cache_file=None, fit=True, output_name='prelearned_utility', **kwargs, ): from xgboost import XGBClassifier default_kwargs = dict( max_depth=11, learning_rate=0.01, n_estimators=500, # silent=True, objective='binary:logistic', booster='gbtree', n_jobs=-1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=123, ) default_kwargs.update(kwargs) super().__init__( dataframes=dataframes, ca_columns=ca_columns, co_columns=co_columns, classifier=XGBClassifier, fit=fit, cache_file=cache_file, output_name=output_name, **default_kwargs, ) class XGBoostSoftPrelearner(Prelearner): def __init__( self, dataframes, ca_columns=None, co_columns=None, cache_file=None, fit=True, output_name='prelearned_utility', **kwargs, ): from xgboost import XGBRegressor default_kwargs = dict( max_depth=11, learning_rate=0.01, n_estimators=500, # silent=True, objective='reg:logistic', booster='gbtree', n_jobs=-1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=123, ) default_kwargs.update(kwargs) super().__init__( dataframes=dataframes, ca_columns=ca_columns, co_columns=co_columns, classifier=XGBRegressor, fit=fit, cache_file=cache_file, output_name=output_name, **default_kwargs, ) self._predict_type = 'predict' class XGBoostPrelearner(Prelearner): def __init__( self, dataframes, ca_columns=None, co_columns=None, cache_file=None, fit=True, output_name='prelearned_utility', **kwargs, ): from xgboost import XGBRegressor, XGBClassifier training_Y = dataframes.array_ch_as_ce() use_soft = numpy.any((training_Y != 0) & (training_Y != 1.0)) default_kwargs = dict( max_depth=11, learning_rate=0.01, n_estimators=500, # silent=True, objective='reg:logistic' if use_soft else 'binary:logistic', booster='gbtree', n_jobs=-1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=123, ) default_kwargs.update(kwargs) super().__init__( dataframes=dataframes, ca_columns=ca_columns, co_columns=co_columns, classifier=XGBRegressor if use_soft else XGBClassifier, fit=fit, cache_file=cache_file, output_name=output_name, **default_kwargs, ) self._predict_type = 'predict' if use_soft else 'predict_proba col 1' def evals_result(self): j = [ pandas.DataFrame({mk:numpy.asarray(mv) for mk, mv in ev.items()}) for ek, ev in self.clf.evals_result_.items() ] k = [ ek for ek, ev in self.clf.evals_result_.items() ] for i in range(len(self.eval_set_names)): if len(k)>i: k[i] = self.eval_set_names[i] return pandas.concat(j, axis=1, keys=k, sort=False)
gpl-3.0
uber/pyro
pyro/distributions/transforms/planar.py
1
8881
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Transform, constraints from pyro.nn import DenseNN from ..conditional import ConditionalTransformModule from ..torch_transform import TransformModule from ..util import copy_docs_from @copy_docs_from(Transform) class ConditionedPlanar(Transform): domain = constraints.real_vector codomain = constraints.real_vector bijective = True def __init__(self, params): super().__init__(cache_size=1) self._params = params self._cached_logDetJ = None # This method ensures that torch(u_hat, w) > -1, required for invertibility def u_hat(self, u, w): alpha = torch.matmul(u.unsqueeze(-2), w.unsqueeze(-1)).squeeze(-1) a_prime = -1 + F.softplus(alpha) return u + (a_prime - alpha) * w.div(w.pow(2).sum(dim=-1, keepdim=True)) def _call(self, x): """ :param x: the input into the bijection :type x: torch.Tensor Invokes the bijection x => y; in the prototypical context of a :class:`~pyro.distributions.TransformedDistribution` `x` is a sample from the base distribution (or the output of a previous transform) """ bias, u, w = self._params() if callable(self._params) else self._params # x ~ (batch_size, dim_size, 1) # w ~ (batch_size, 1, dim_size) # bias ~ (batch_size, 1) act = torch.tanh( torch.matmul(w.unsqueeze(-2), x.unsqueeze(-1)).squeeze(-1) + bias ) u_hat = self.u_hat(u, w) y = x + u_hat * act psi_z = (1.0 - act.pow(2)) * w self._cached_logDetJ = torch.log( torch.abs( 1 + torch.matmul(psi_z.unsqueeze(-2), u_hat.unsqueeze(-1)) .squeeze(-1) .squeeze(-1) ) ) return y def _inverse(self, y): """ :param y: the output of the bijection :type y: torch.Tensor Inverts y => x. As noted above, this implementation is incapable of inverting arbitrary values `y`; rather it assumes `y` is the result of a previously computed application of the bijector to some `x` (which was cached on the forward call) """ raise KeyError( "ConditionedPlanar object expected to find key in intermediates cache but didn't" ) def log_abs_det_jacobian(self, x, y): """ Calculates the elementwise determinant of the log Jacobian """ x_old, y_old = self._cached_x_y if x is not x_old or y is not y_old: # This call to the parent class Transform will update the cache # as well as calling self._call and recalculating y and log_detJ self(x) return self._cached_logDetJ @copy_docs_from(ConditionedPlanar) class Planar(ConditionedPlanar, TransformModule): r""" A 'planar' bijective transform with equation, :math:`\mathbf{y} = \mathbf{x} + \mathbf{u}\tanh(\mathbf{w}^T\mathbf{z}+b)` where :math:`\mathbf{x}` are the inputs, :math:`\mathbf{y}` are the outputs, and the learnable parameters are :math:`b\in\mathbb{R}`, :math:`\mathbf{u}\in\mathbb{R}^D`, :math:`\mathbf{w}\in\mathbb{R}^D` for input dimension :math:`D`. For this to be an invertible transformation, the condition :math:`\mathbf{w}^T\mathbf{u}>-1` is enforced. Together with :class:`~pyro.distributions.TransformedDistribution` this provides a way to create richer variational approximations. Example usage: >>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10)) >>> transform = Planar(10) >>> pyro.module("my_transform", transform) # doctest: +SKIP >>> flow_dist = dist.TransformedDistribution(base_dist, [transform]) >>> flow_dist.sample() # doctest: +SKIP The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the planar transform can be scored. :param input_dim: the dimension of the input (and output) variable. :type input_dim: int References: [1] Danilo Jimenez Rezende, Shakir Mohamed. Variational Inference with Normalizing Flows. [arXiv:1505.05770] """ domain = constraints.real_vector codomain = constraints.real_vector bijective = True def __init__(self, input_dim): super().__init__(self._params) self.bias = nn.Parameter( torch.Tensor( 1, ) ) self.u = nn.Parameter( torch.Tensor( input_dim, ) ) self.w = nn.Parameter( torch.Tensor( input_dim, ) ) self.input_dim = input_dim self.reset_parameters() def _params(self): return self.bias, self.u, self.w def reset_parameters(self): stdv = 1.0 / math.sqrt(self.u.size(0)) self.w.data.uniform_(-stdv, stdv) self.u.data.uniform_(-stdv, stdv) self.bias.data.zero_() @copy_docs_from(ConditionalTransformModule) class ConditionalPlanar(ConditionalTransformModule): r""" A conditional 'planar' bijective transform using the equation, :math:`\mathbf{y} = \mathbf{x} + \mathbf{u}\tanh(\mathbf{w}^T\mathbf{z}+b)` where :math:`\mathbf{x}` are the inputs with dimension :math:`D`, :math:`\mathbf{y}` are the outputs, and the pseudo-parameters :math:`b\in\mathbb{R}`, :math:`\mathbf{u}\in\mathbb{R}^D`, and :math:`\mathbf{w}\in\mathbb{R}^D` are the output of a function, e.g. a NN, with input :math:`z\in\mathbb{R}^{M}` representing the context variable to condition on. For this to be an invertible transformation, the condition :math:`\mathbf{w}^T\mathbf{u}>-1` is enforced. Together with :class:`~pyro.distributions.ConditionalTransformedDistribution` this provides a way to create richer variational approximations. Example usage: >>> from pyro.nn.dense_nn import DenseNN >>> input_dim = 10 >>> context_dim = 5 >>> batch_size = 3 >>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim)) >>> param_dims = [1, input_dim, input_dim] >>> hypernet = DenseNN(context_dim, [50, 50], param_dims) >>> transform = ConditionalPlanar(hypernet) >>> z = torch.rand(batch_size, context_dim) >>> flow_dist = dist.ConditionalTransformedDistribution(base_dist, ... [transform]).condition(z) >>> flow_dist.sample(sample_shape=torch.Size([batch_size])) # doctest: +SKIP The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using the planar transform can be scored. :param nn: a function inputting the context variable and outputting a triplet of real-valued parameters of dimensions :math:`(1, D, D)`. :type nn: callable References: [1] Variational Inference with Normalizing Flows [arXiv:1505.05770] Danilo Jimenez Rezende, Shakir Mohamed """ domain = constraints.real_vector codomain = constraints.real_vector bijective = True def __init__(self, nn): super().__init__() self.nn = nn def _params(self, context): return self.nn(context) def condition(self, context): params = partial(self._params, context) return ConditionedPlanar(params) def planar(input_dim): """ A helper function to create a :class:`~pyro.distributions.transforms.Planar` object for consistency with other helpers. :param input_dim: Dimension of input variable :type input_dim: int """ return Planar(input_dim) def conditional_planar(input_dim, context_dim, hidden_dims=None): """ A helper function to create a :class:`~pyro.distributions.transforms.ConditionalPlanar` object that takes care of constructing a dense network with the correct input/output dimensions. :param input_dim: Dimension of input variable :type input_dim: int :param context_dim: Dimension of context variable :type context_dim: int :param hidden_dims: The desired hidden dimensions of the dense network. Defaults to using [input_dim * 10, input_dim * 10] :type hidden_dims: list[int] """ if hidden_dims is None: hidden_dims = [input_dim * 10, input_dim * 10] nn = DenseNN(context_dim, hidden_dims, param_dims=[1, input_dim, input_dim]) return ConditionalPlanar(nn)
apache-2.0
matthiasdiener/spack
var/spack/repos/builtin/packages/r-gdsfmt/package.py
3
2449
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class RGdsfmt(RPackage): """This package provides a high-level R interface to CoreArray Genomic Data Structure (GDS) data files, which are portable across platforms with hierarchical structure to store multiple scalable array-oriented data sets with metadata information. It is suited for large-scale datasets, especially for data which are much larger than the available random-access memory. The gdsfmt package offers the efficient operations specifically designed for integers of less than 8 bits, since a diploid genotype, like single-nucleotide polymorphism (SNP), usually occupies fewer bits than a byte. Data compression and decompression are available with relatively efficient random access. It is also allowed to read a GDS file in parallel with multiple R processes supported by the package parallel.""" homepage = "http://bioconductor.org/packages/gdsfmt/" url = "https://git.bioconductor.org/packages/gdsfmt" version('1.14.1', git='https://git.bioconductor.org/packages/gdsfmt', commit='15743647b7eea5b82d3284858b4591fb6e59959d') depends_on('r@3.4.0:3.4.9', when='@1.14.1')
lgpl-2.1
uber/pyro
tests/contrib/test_util.py
1
3036
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 from collections import OrderedDict import pytest import torch from pyro.contrib.util import ( get_indices, lexpand, rdiag, rexpand, rmv, rtril, rvv, tensor_to_dict, ) from tests.common import assert_equal def test_get_indices_sizes(): sizes = OrderedDict([("a", 2), ("b", 2), ("c", 2)]) assert_equal(get_indices(["b"], sizes=sizes), torch.tensor([2, 3])) assert_equal(get_indices(["b", "c"], sizes=sizes), torch.tensor([2, 3, 4, 5])) tensors = OrderedDict( [("a", torch.ones(2)), ("b", torch.ones(2)), ("c", torch.ones(2))] ) assert_equal(get_indices(["b"], tensors=tensors), torch.tensor([2, 3])) assert_equal(get_indices(["b", "c"], tensors=tensors), torch.tensor([2, 3, 4, 5])) def test_tensor_to_dict(): sizes = OrderedDict([("a", 2), ("b", 2), ("c", 2)]) vector = torch.tensor([1.0, 2, 3, 4, 5, 6]) assert_equal( tensor_to_dict(sizes, vector), { "a": torch.tensor([1.0, 2.0]), "b": torch.tensor([3.0, 4.0]), "c": torch.tensor([5.0, 6.0]), }, ) assert_equal( tensor_to_dict(sizes, vector, subset=["b"]), {"b": torch.tensor([3.0, 4.0])} ) @pytest.mark.parametrize( "A,b", [(torch.tensor([[1.0, 2.0], [2.0, -3.0]]), torch.tensor([-1.0, 2.0]))] ) def test_rmv(A, b): assert_equal(rmv(A, b), A.mv(b), prec=1e-8) batched_A = lexpand(A, 5, 4) batched_b = lexpand(b, 5, 4) expected_Ab = lexpand(A.mv(b), 5, 4) assert_equal(rmv(batched_A, batched_b), expected_Ab, prec=1e-8) @pytest.mark.parametrize("a,b", [(torch.tensor([1.0, 2.0]), torch.tensor([-1.0, 2.0]))]) def test_rvv(a, b): assert_equal(rvv(a, b), torch.dot(a, b), prec=1e-8) batched_a = lexpand(a, 5, 4) batched_b = lexpand(b, 5, 4) expected_ab = lexpand(torch.dot(a, b), 5, 4) assert_equal(rvv(batched_a, batched_b), expected_ab, prec=1e-8) def test_lexpand(): A = torch.tensor([[1.0, 2.0], [-2.0, 0]]) assert_equal(lexpand(A), A, prec=1e-8) assert_equal(lexpand(A, 4), A.expand(4, 2, 2), prec=1e-8) assert_equal(lexpand(A, 4, 2), A.expand(4, 2, 2, 2), prec=1e-8) def test_rexpand(): A = torch.tensor([[1.0, 2.0], [-2.0, 0]]) assert_equal(rexpand(A), A, prec=1e-8) assert_equal(rexpand(A, 4), A.unsqueeze(-1).expand(2, 2, 4), prec=1e-8) assert_equal( rexpand(A, 4, 2), A.unsqueeze(-1).unsqueeze(-1).expand(2, 2, 4, 2), prec=1e-8 ) def test_rtril(): A = torch.tensor([[1.0, 2.0], [-2.0, 0]]) assert_equal(rtril(A), torch.tril(A), prec=1e-8) expanded = lexpand(A, 5, 4) expected = lexpand(torch.tril(A), 5, 4) assert_equal(rtril(expanded), expected, prec=1e-8) def test_rdiag(): v = torch.tensor([1.0, 2.0, -1.0]) assert_equal(rdiag(v), torch.diag(v), prec=1e-8) expanded = lexpand(v, 5, 4) expeceted = lexpand(torch.diag(v), 5, 4) assert_equal(rdiag(expanded), expeceted, prec=1e-8)
apache-2.0
matthew-tucker/mne-python
examples/inverse/plot_tf_lcmv.py
14
5869
""" ===================================== Time-frequency beamforming using LCMV ===================================== Compute LCMV source power in a grid of time-frequency windows and display results. The original reference is: Dalal et al. Five-dimensional neuroimaging: Localization of the time-frequency dynamics of cortical activity. NeuroImage (2008) vol. 40 (4) pp. 1686-1700 """ # Author: Roman Goj <roman.goj@gmail.com> # # License: BSD (3-clause) import mne from mne import compute_covariance from mne.io import Raw from mne.datasets import sample from mne.event import make_fixed_length_events from mne.beamformer import tf_lcmv from mne.viz import plot_source_spectrogram print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' noise_fname = data_path + '/MEG/sample/ernoise_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' subjects_dir = data_path + '/subjects' label_name = 'Aud-lh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name ############################################################################### # Read raw data, preload to allow filtering raw = Raw(raw_fname, preload=True) raw.info['bads'] = ['MEG 2443'] # 1 bad MEG channel # Pick a selection of magnetometer channels. A subset of all channels was used # to speed up the example. For a solution based on all MEG channels use # meg=True, selection=None and add grad=4000e-13 to the reject dictionary. left_temporal_channels = mne.read_selection('Left-temporal') picks = mne.pick_types(raw.info, meg='mag', eeg=False, eog=False, stim=False, exclude='bads', selection=left_temporal_channels) reject = dict(mag=4e-12) # Setting time limits for reading epochs. Note that tmin and tmax are set so # that time-frequency beamforming will be performed for a wider range of time # points than will later be displayed on the final spectrogram. This ensures # that all time bins displayed represent an average of an equal number of time # windows. tmin, tmax = -0.55, 0.75 # s tmin_plot, tmax_plot = -0.3, 0.5 # s # Read epochs. Note that preload is set to False to enable tf_lcmv to read the # underlying raw object. # Filtering is then performed on raw data in tf_lcmv and the epochs # parameters passed here are used to create epochs from filtered data. However, # reading epochs without preloading means that bad epoch rejection is delayed # until later. To perform bad epoch rejection based on the reject parameter # passed here, run epochs.drop_bad_epochs(). This is done automatically in # tf_lcmv to reject bad epochs based on unfiltered data. event_id = 1 events = mne.read_events(event_fname) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=False, reject=reject) # Read empty room noise, preload to allow filtering raw_noise = Raw(noise_fname, preload=True) raw_noise.info['bads'] = ['MEG 2443'] # 1 bad MEG channel # Create artificial events for empty room noise data events_noise = make_fixed_length_events(raw_noise, event_id, duration=1.) # Create an epochs object using preload=True to reject bad epochs based on # unfiltered data epochs_noise = mne.Epochs(raw_noise, events_noise, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True, reject=reject) # Make sure the number of noise epochs is the same as data epochs epochs_noise = epochs_noise[:len(epochs.events)] # Read forward operator forward = mne.read_forward_solution(fname_fwd, surf_ori=True) # Read label label = mne.read_label(fname_label) ############################################################################### # Time-frequency beamforming based on LCMV # Setting frequency bins as in Dalal et al. 2008 (high gamma was subdivided) freq_bins = [(4, 12), (12, 30), (30, 55), (65, 299)] # Hz win_lengths = [0.3, 0.2, 0.15, 0.1] # s # Setting the time step tstep = 0.05 # Setting the whitened data covariance regularization parameter data_reg = 0.001 # Subtract evoked response prior to computation? subtract_evoked = False # Calculating covariance from empty room noise. To use baseline data as noise # substitute raw for raw_noise, epochs.events for epochs_noise.events, tmin for # desired baseline length, and 0 for tmax_plot. # Note, if using baseline data, the averaged evoked response in the baseline # period should be flat. noise_covs = [] for (l_freq, h_freq) in freq_bins: raw_band = raw_noise.copy() raw_band.filter(l_freq, h_freq, picks=epochs.picks, method='iir', n_jobs=1) epochs_band = mne.Epochs(raw_band, epochs_noise.events, event_id, tmin=tmin_plot, tmax=tmax_plot, baseline=None, picks=epochs.picks, proj=True) noise_cov = compute_covariance(epochs_band, method='shrunk') noise_covs.append(noise_cov) del raw_band # to save memory # Computing LCMV solutions for time-frequency windows in a label in source # space for faster computation, use label=None for full solution stcs = tf_lcmv(epochs, forward, noise_covs, tmin, tmax, tstep, win_lengths, freq_bins=freq_bins, subtract_evoked=subtract_evoked, reg=data_reg, label=label) # Plotting source spectrogram for source with maximum activity. # Note that tmin and tmax are set to display a time range that is smaller than # the one for which beamforming estimates were calculated. This ensures that # all time bins shown are a result of smoothing across an identical number of # time windows. plot_source_spectrogram(stcs, freq_bins, tmin=tmin_plot, tmax=tmax_plot, source_index=None, colorbar=True)
bsd-3-clause
uber/pyro
pyro/infer/mcmc/nuts.py
1
21893
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 from collections import namedtuple import pyro import pyro.distributions as dist from pyro.distributions.util import scalar_like from pyro.infer.autoguide import init_to_uniform from pyro.infer.mcmc.hmc import HMC from pyro.ops.integrator import potential_grad, velocity_verlet from pyro.util import optional, torch_isnan def _logaddexp(x, y): minval, maxval = (x, y) if x < y else (y, x) return (minval - maxval).exp().log1p() + maxval # sum_accept_probs and num_proposals are used to calculate # the statistic accept_prob for Dual Averaging scheme; # z_left_grads and z_right_grads are kept to avoid recalculating # grads at left and right leaves; # r_sum is used to check turning condition; # z_proposal_pe and z_proposal_grads are used to cache the # potential energy and potential energy gradient values for # the proposal trace. # weight is the number of valid points in case we use slice sampling # and is the log sum of (unnormalized) probabilites of valid points # when we use multinomial sampling _TreeInfo = namedtuple( "TreeInfo", [ "z_left", "r_left", "r_left_unscaled", "z_left_grads", "z_right", "r_right", "r_right_unscaled", "z_right_grads", "z_proposal", "z_proposal_pe", "z_proposal_grads", "r_sum", "weight", "turning", "diverging", "sum_accept_probs", "num_proposals", ], ) class NUTS(HMC): """ No-U-Turn Sampler kernel, which provides an efficient and convenient way to run Hamiltonian Monte Carlo. The number of steps taken by the integrator is dynamically adjusted on each call to ``sample`` to ensure an optimal length for the Hamiltonian trajectory [1]. As such, the samples generated will typically have lower autocorrelation than those generated by the :class:`~pyro.infer.mcmc.HMC` kernel. Optionally, the NUTS kernel also provides the ability to adapt step size during the warmup phase. Refer to the `baseball example <https://github.com/pyro-ppl/pyro/blob/dev/examples/baseball.py>`_ to see how to do Bayesian inference in Pyro using NUTS. **References** [1] `The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo`, Matthew D. Hoffman, and Andrew Gelman. [2] `A Conceptual Introduction to Hamiltonian Monte Carlo`, Michael Betancourt [3] `Slice Sampling`, Radford M. Neal :param model: Python callable containing Pyro primitives. :param potential_fn: Python callable calculating potential energy with input is a dict of real support parameters. :param float step_size: Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1. :param bool adapt_step_size: A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme. :param bool adapt_mass_matrix: A flag to decide if we want to adapt mass matrix during warm-up phase using Welford scheme. :param bool full_mass: A flag to decide if mass matrix is dense or diagonal. :param bool use_multinomial_sampling: A flag to decide if we want to sample candidates along its trajectory using "multinomial sampling" or using "slice sampling". Slice sampling is used in the original NUTS paper [1], while multinomial sampling is suggested in [2]. By default, this flag is set to True. If it is set to `False`, NUTS uses slice sampling. :param dict transforms: Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement `log_abs_det_jacobian`. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in :mod:`torch.distributions.constraint_registry`. :param int max_plate_nesting: Optional bound on max number of nested :func:`pyro.plate` contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel. :param bool jit_compile: Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator. :param dict jit_options: A dictionary contains optional arguments for :func:`torch.jit.trace` function. :param bool ignore_jit_warnings: Flag to ignore warnings from the JIT tracer when ``jit_compile=True``. Default is False. :param float target_accept_prob: Target acceptance probability of step size adaptation scheme. Increasing this value will lead to a smaller step size, so the sampling will be slower but more robust. Default to 0.8. :param int max_tree_depth: Max depth of the binary tree created during the doubling scheme of NUTS sampler. Default to 10. :param callable init_strategy: A per-site initialization function. See :ref:`autoguide-initialization` section for available functions. Example: >>> true_coefs = torch.tensor([1., 2., 3.]) >>> data = torch.randn(2000, 3) >>> dim = 3 >>> labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample() >>> >>> def model(data): ... coefs_mean = torch.zeros(dim) ... coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3))) ... y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)), obs=labels) ... return y >>> >>> nuts_kernel = NUTS(model, adapt_step_size=True) >>> mcmc = MCMC(nuts_kernel, num_samples=500, warmup_steps=300) >>> mcmc.run(data) >>> mcmc.get_samples()['beta'].mean(0) # doctest: +SKIP tensor([ 0.9221, 1.9464, 2.9228]) """ def __init__( self, model=None, potential_fn=None, step_size=1, adapt_step_size=True, adapt_mass_matrix=True, full_mass=False, use_multinomial_sampling=True, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, ignore_jit_warnings=False, target_accept_prob=0.8, max_tree_depth=10, init_strategy=init_to_uniform, ): super().__init__( model, potential_fn, step_size, adapt_step_size=adapt_step_size, adapt_mass_matrix=adapt_mass_matrix, full_mass=full_mass, transforms=transforms, max_plate_nesting=max_plate_nesting, jit_compile=jit_compile, jit_options=jit_options, ignore_jit_warnings=ignore_jit_warnings, target_accept_prob=target_accept_prob, init_strategy=init_strategy, ) self.use_multinomial_sampling = use_multinomial_sampling self._max_tree_depth = max_tree_depth # There are three conditions to stop doubling process: # + Tree is becoming too big. # + The trajectory is making a U-turn. # + The probability of the states becoming negligible: p(z, r) << u, # here u is the "slice" variable introduced at the `self.sample(...)` method. # Denote E_p = -log p(z, r), E_u = -log u, the third condition is equivalent to # sliced_energy := E_p - E_u > some constant =: max_sliced_energy. # This also suggests the notion "diverging" in the implemenation: # when the energy E_p diverges from E_u too much, we stop doubling. # Here, as suggested in [1], we set dE_max = 1000. self._max_sliced_energy = 1000 def _is_turning(self, r_left_unscaled, r_right_unscaled, r_sum): # We follow the strategy in Section A.4.2 of [2] for this implementation. left_angle = 0.0 right_angle = 0.0 for site_names, value in r_sum.items(): rho = ( value - (r_left_unscaled[site_names] + r_right_unscaled[site_names]) / 2 ) left_angle += r_left_unscaled[site_names].dot(rho) right_angle += r_right_unscaled[site_names].dot(rho) return (left_angle <= 0) or (right_angle <= 0) def _build_basetree(self, z, r, z_grads, log_slice, direction, energy_current): step_size = self.step_size if direction == 1 else -self.step_size z_new, r_new, z_grads, potential_energy = velocity_verlet( z, r, self.potential_fn, self.mass_matrix_adapter.kinetic_grad, step_size, z_grads=z_grads, ) r_new_unscaled = self.mass_matrix_adapter.unscale(r_new) energy_new = potential_energy + self._kinetic_energy(r_new_unscaled) # handle the NaN case energy_new = ( scalar_like(energy_new, float("inf")) if torch_isnan(energy_new) else energy_new ) sliced_energy = energy_new + log_slice diverging = sliced_energy > self._max_sliced_energy delta_energy = energy_new - energy_current accept_prob = (-delta_energy).exp().clamp(max=1.0) if self.use_multinomial_sampling: tree_weight = -sliced_energy else: # As a part of the slice sampling process (see below), along the trajectory # we eliminate states which p(z, r) < u, or dE > 0. # Due to this elimination (and stop doubling conditions), # the weight of binary tree might not equal to 2^tree_depth. tree_weight = scalar_like(sliced_energy, 1.0 if sliced_energy <= 0 else 0.0) r_sum = r_new_unscaled return _TreeInfo( z_new, r_new, r_new_unscaled, z_grads, z_new, r_new, r_new_unscaled, z_grads, z_new, potential_energy, z_grads, r_sum, tree_weight, False, diverging, accept_prob, 1, ) def _build_tree( self, z, r, z_grads, log_slice, direction, tree_depth, energy_current ): if tree_depth == 0: return self._build_basetree( z, r, z_grads, log_slice, direction, energy_current ) # build the first half of tree half_tree = self._build_tree( z, r, z_grads, log_slice, direction, tree_depth - 1, energy_current ) z_proposal = half_tree.z_proposal z_proposal_pe = half_tree.z_proposal_pe z_proposal_grads = half_tree.z_proposal_grads # Check conditions to stop doubling. If we meet that condition, # there is no need to build the other tree. if half_tree.turning or half_tree.diverging: return half_tree # Else, build remaining half of tree. # If we are going to the right, start from the right leaf of the first half. if direction == 1: z = half_tree.z_right r = half_tree.r_right z_grads = half_tree.z_right_grads else: # otherwise, start from the left leaf of the first half z = half_tree.z_left r = half_tree.r_left z_grads = half_tree.z_left_grads other_half_tree = self._build_tree( z, r, z_grads, log_slice, direction, tree_depth - 1, energy_current ) if self.use_multinomial_sampling: tree_weight = _logaddexp(half_tree.weight, other_half_tree.weight) else: tree_weight = half_tree.weight + other_half_tree.weight sum_accept_probs = half_tree.sum_accept_probs + other_half_tree.sum_accept_probs num_proposals = half_tree.num_proposals + other_half_tree.num_proposals r_sum = { site_names: half_tree.r_sum[site_names] + other_half_tree.r_sum[site_names] for site_names in self.inverse_mass_matrix } # The probability of that proposal belongs to which half of tree # is computed based on the weights of each half. if self.use_multinomial_sampling: other_half_tree_prob = (other_half_tree.weight - tree_weight).exp() else: # For the special case that the weights of each half are both 0, # we choose the proposal from the first half # (any is fine, because the probability of picking it at the end is 0!). other_half_tree_prob = ( other_half_tree.weight / tree_weight if tree_weight > 0 else scalar_like(tree_weight, 0.0) ) is_other_half_tree = pyro.sample( "is_other_half_tree", dist.Bernoulli(probs=other_half_tree_prob) ) if is_other_half_tree == 1: z_proposal = other_half_tree.z_proposal z_proposal_pe = other_half_tree.z_proposal_pe z_proposal_grads = other_half_tree.z_proposal_grads # leaves of the full tree are determined by the direction if direction == 1: z_left = half_tree.z_left r_left = half_tree.r_left r_left_unscaled = half_tree.r_left_unscaled z_left_grads = half_tree.z_left_grads z_right = other_half_tree.z_right r_right = other_half_tree.r_right r_right_unscaled = other_half_tree.r_right_unscaled z_right_grads = other_half_tree.z_right_grads else: z_left = other_half_tree.z_left r_left = other_half_tree.r_left r_left_unscaled = other_half_tree.r_left_unscaled z_left_grads = other_half_tree.z_left_grads z_right = half_tree.z_right r_right = half_tree.r_right r_right_unscaled = half_tree.r_right_unscaled z_right_grads = half_tree.z_right_grads # We already check if first half tree is turning. Now, we check # if the other half tree or full tree are turning. turning = other_half_tree.turning or self._is_turning( r_left_unscaled, r_right_unscaled, r_sum ) # The divergence is checked by the second half tree (the first half is already checked). diverging = other_half_tree.diverging return _TreeInfo( z_left, r_left, r_left_unscaled, z_left_grads, z_right, r_right, r_right_unscaled, z_right_grads, z_proposal, z_proposal_pe, z_proposal_grads, r_sum, tree_weight, turning, diverging, sum_accept_probs, num_proposals, ) def sample(self, params): z, potential_energy, z_grads = self._fetch_from_cache() # recompute PE when cache is cleared if z is None: z = params z_grads, potential_energy = potential_grad(self.potential_fn, z) self._cache(z, potential_energy, z_grads) # return early if no sample sites elif len(z) == 0: self._t += 1 self._mean_accept_prob = 1.0 if self._t > self._warmup_steps: self._accept_cnt += 1 return z r, r_unscaled = self._sample_r(name="r_t={}".format(self._t)) energy_current = self._kinetic_energy(r_unscaled) + potential_energy # Ideally, following a symplectic integrator trajectory, the energy is constant. # In that case, we can sample the proposal uniformly, and there is no need to use "slice". # However, it is not the case for real situation: there are errors during the computation. # To deal with that problem, as in [1], we introduce an auxiliary "slice" variable (denoted # by u). # The sampling process goes as follows: # first sampling u from initial state (z_0, r_0) according to # u ~ Uniform(0, p(z_0, r_0)), # then sampling state (z, r) from the integrator trajectory according to # (z, r) ~ Uniform({(z', r') in trajectory | p(z', r') >= u}). # # For more information about slice sampling method, see [3]. # For another version of NUTS which uses multinomial sampling instead of slice sampling, # see [2]. if self.use_multinomial_sampling: log_slice = -energy_current else: # Rather than sampling the slice variable from `Uniform(0, exp(-energy))`, we can # sample log_slice directly using `energy`, so as to avoid potential underflow or # overflow issues ([2]). slice_exp_term = pyro.sample( "slicevar_exp_t={}".format(self._t), dist.Exponential(scalar_like(energy_current, 1.0)), ) log_slice = -energy_current - slice_exp_term z_left = z_right = z r_left = r_right = r r_left_unscaled = r_right_unscaled = r_unscaled z_left_grads = z_right_grads = z_grads accepted = False r_sum = r_unscaled sum_accept_probs = 0.0 num_proposals = 0 tree_weight = scalar_like( energy_current, 0.0 if self.use_multinomial_sampling else 1.0 ) # Temporarily disable distributions args checking as # NaNs are expected during step size adaptation. with optional(pyro.validation_enabled(False), self._t < self._warmup_steps): # doubling process, stop when turning or diverging tree_depth = 0 while tree_depth < self._max_tree_depth: direction = pyro.sample( "direction_t={}_treedepth={}".format(self._t, tree_depth), dist.Bernoulli(probs=scalar_like(tree_weight, 0.5)), ) direction = int(direction.item()) if ( direction == 1 ): # go to the right, start from the right leaf of current tree new_tree = self._build_tree( z_right, r_right, z_right_grads, log_slice, direction, tree_depth, energy_current, ) # update leaf for the next doubling process z_right = new_tree.z_right r_right = new_tree.r_right r_right_unscaled = new_tree.r_right_unscaled z_right_grads = new_tree.z_right_grads else: # go the the left, start from the left leaf of current tree new_tree = self._build_tree( z_left, r_left, z_left_grads, log_slice, direction, tree_depth, energy_current, ) z_left = new_tree.z_left r_left = new_tree.r_left r_left_unscaled = new_tree.r_left_unscaled z_left_grads = new_tree.z_left_grads sum_accept_probs = sum_accept_probs + new_tree.sum_accept_probs num_proposals = num_proposals + new_tree.num_proposals # stop doubling if new_tree.diverging: if self._t >= self._warmup_steps: self._divergences.append(self._t - self._warmup_steps) break if new_tree.turning: break tree_depth += 1 if self.use_multinomial_sampling: new_tree_prob = (new_tree.weight - tree_weight).exp() else: new_tree_prob = new_tree.weight / tree_weight rand = pyro.sample( "rand_t={}_treedepth={}".format(self._t, tree_depth), dist.Uniform( scalar_like(new_tree_prob, 0.0), scalar_like(new_tree_prob, 1.0) ), ) if rand < new_tree_prob: accepted = True z = new_tree.z_proposal z_grads = new_tree.z_proposal_grads self._cache(z, new_tree.z_proposal_pe, z_grads) r_sum = { site_names: r_sum[site_names] + new_tree.r_sum[site_names] for site_names in r_unscaled } if self._is_turning( r_left_unscaled, r_right_unscaled, r_sum ): # stop doubling break else: # update tree_weight if self.use_multinomial_sampling: tree_weight = _logaddexp(tree_weight, new_tree.weight) else: tree_weight = tree_weight + new_tree.weight accept_prob = sum_accept_probs / num_proposals self._t += 1 if self._t > self._warmup_steps: n = self._t - self._warmup_steps if accepted: self._accept_cnt += 1 else: n = self._t self._adapter.step(self._t, z, accept_prob, z_grads) self._mean_accept_prob += (accept_prob.item() - self._mean_accept_prob) / n return z.copy()
apache-2.0
vitaly-krugl/nupic
examples/opf/experiments/multistep/base/description.py
10
15963
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '~/nupic/eng/lib/python2.6/site-packages/nupic/frameworks/opf/expGenerator/experiment_generator.py' """ from nupic.frameworks.opf.exp_description_api import ExperimentDescriptionAPI from nupic.frameworks.opf.exp_description_helpers import ( updateConfigFromSubConfig, applyValueGettersToContainer, DeferredDictLookup) from nupic.frameworks.opf.htm_prediction_model_callbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opf_utils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opf_task_driver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # # NOTE: Use of DEFERRED VALUE-GETTERs: dictionary fields and list elements # within the config dictionary may be assigned futures derived from the # ValueGetterBase class, such as DeferredDictLookup. # This facility is particularly handy for enabling substitution of values in # the config dictionary from other values in the config dictionary, which is # needed by permutation.py-based experiments. These values will be resolved # during the call to applyValueGettersToContainer(), # which we call after the base experiment's config dictionary is updated from # the sub-experiment. See ValueGetterBase and # DeferredDictLookup for more details about value-getters. # # For each custom encoder parameter to be exposed to the sub-experiment/ # permutation overrides, define a variable in this section, using key names # beginning with a single underscore character to avoid collisions with # pre-defined keys (e.g., _dsEncoderFieldName2_N). # # Example: # config = dict( # _dsEncoderFieldName2_N = 70, # _dsEncoderFieldName2_W = 5, # dsEncoderSchema = [ # base=dict( # fieldname='Name2', type='ScalarEncoder', # name='Name2', minval=0, maxval=270, clipInput=True, # n=DeferredDictLookup('_dsEncoderFieldName2_N'), # w=DeferredDictLookup('_dsEncoderFieldName2_W')), # ], # ) # updateConfigFromSubConfig(config) # applyValueGettersToContainer(config) config = { # Type of model that the rest of these parameters apply to. 'model': "HTMPrediction", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'days': 0, 'fields': [], 'hours': 0, 'microseconds': 0, 'milliseconds': 0, 'minutes': 0, 'months': 0, 'seconds': 0, 'weeks': 0, 'years': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'TemporalMultiStep', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : 0, # Example: # dsEncoderSchema = [ # DeferredDictLookup('__field_name_encoder'), # ], # # (value generated from DS_ENCODER_SCHEMA) 'encoders': { 'field1': { 'fieldname': u'field1', 'n': 100, 'name': u'field1', 'type': 'SDRCategoryEncoder', 'w': 21}, 'field2': { 'clipInput': True, 'fieldname': u'field2', 'maxval': 50, 'minval': 0, 'n': 500, 'name': u'field2', 'type': 'ScalarEncoder', 'w': 21}}, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : None, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : 0, 'spatialImp' : 'cpp', 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TM and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, # boostStrength controls the strength of boosting. It should be a # a number greater or equal than 0.0. No boosting is applied if # boostStrength=0.0. Boosting encourages efficient usage of columns. 'boostStrength': 0.0, }, # Controls whether TM is enabled or disabled; # TM is necessary for making temporal predictions, such as predicting # the next inputs. Without TM, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tmEnable' : True, 'tmParams': { # TM diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/backtracking_tm.py and backtracking_tm_cpp.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 16, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TM how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { # Classifier implementation selection. 'implementation': 'py', 'regionName' : 'SDRClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'verbosity' : 0, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.25, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '1', }, 'trainSPNetOnlyIfRequested': False, }, 'predictionSteps': [1], 'predictedField': 'field1', 'dataSource': 'fillInBySubExperiment', } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Fill in classifier steps config['modelParams']['clParams']['steps'] = '%s' % \ (','.join([str(x) for x in config['predictionSteps']])) # If the predicted field is field1 (category), use avg_err else if field 2 # (scalar) use aae as the metric if config['predictedField'] == 'field1': metricName = 'avg_err' loggedMetrics = ['.*avg_err.*'] else: metricName = 'aae' loggedMetrics = ['.*aae.*'] # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) control = { # The environment that the current model is being run in "environment": 'nupic', # Input stream specification per py/nupic/cluster/database/StreamDef.json. # 'dataset' : { 'info': 'multistep', 'streams': [ { 'columns': ['*'], 'info': 'multi-step', 'source': config['dataSource'], }], 'version': 1}, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : -1, # A dictionary containing all the supplementary parameters for inference "inferenceArgs":{'predictedField': config['predictedField'], 'predictionSteps': config['predictionSteps']}, # Metrics: A list of MetricSpecs that instantiate the metrics that are # computed for this experiment 'metrics':[ MetricSpec(field=config['predictedField'], metric=metricName, inferenceElement='prediction', params={'window': 200}), MetricSpec(field=config['predictedField'], metric='trivial', inferenceElement='prediction', params={'errorMetric': metricName, 'window': 200}), ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': loggedMetrics, } # Add multi-step prediction metrics for steps in config['predictionSteps']: control['metrics'].append( MetricSpec(field=config['predictedField'], metric='multiStep', inferenceElement='multiStepBestPredictions', params={'errorMetric': metricName, 'window': 200, 'steps': steps})) descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0
rahuldhote/scikit-learn
sklearn/datasets/species_distributions.py
197
7923
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause from io import BytesIO from os import makedirs from os.path import join from os.path import exists try: # Python 2 from urllib2 import urlopen PY2 = True except ImportError: # Python 3 from urllib.request import urlopen PY2 = False import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header[b'NODATA_value'] if nodata != -9999: print(nodata) M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY2: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') else: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
bsd-3-clause
vitaly-krugl/nupic
src/nupic/data/aggregator.py
10
28894
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from collections import defaultdict import datetime import os from pkg_resources import resource_filename import time from nupic.data import SENTINEL_VALUE_FOR_MISSING_DATA from nupic.data.field_meta import FieldMetaSpecial from nupic.data.file_record_stream import FileRecordStream """The aggregator aggregates PF datasets It supports aggregation of multiple records based on time. Common use cases: - Aggregate records by month - Aggregate records every 3 months starting April 15th - Aggregate records in 2.5 seconds intervals Assumption: aggregated slices fit in memory. All the records that are aggregated per period are stored in memory until the next slice starts and are only aggregated then. If this assumption is too strong the script will need to write slices to a temp storage or use incremental aggregation techniques. """ def initFilter(input, filterInfo = None): """ Initializes internal filter variables for further processing. Returns a tuple (function to call,parameters for the filter call) The filterInfo is a dict. Here is an example structure: {fieldName: {'min': x, 'max': y, 'type': 'category', # or 'number' 'acceptValues': ['foo', 'bar'], } } This returns the following: (filterFunc, ((fieldIdx, fieldFilterFunc, filterDict), ...) Where fieldIdx is the index of the field within each record fieldFilterFunc returns True if the value is "OK" (within min, max or part of acceptValues) fieldDict is a dict containing 'type', 'min', max', 'acceptValues' """ if filterInfo is None: return None # Build an array of index/func to call on record[index] filterList = [] for i, fieldName in enumerate(input.getFieldNames()): fieldFilter = filterInfo.get(fieldName, None) if fieldFilter == None: continue var = dict() var['acceptValues'] = None min = fieldFilter.get('min', None) max = fieldFilter.get('max', None) var['min'] = min var['max'] = max if fieldFilter['type'] == 'category': var['acceptValues'] = fieldFilter['acceptValues'] fp = lambda x: (x['value'] != SENTINEL_VALUE_FOR_MISSING_DATA and \ x['value'] in x['acceptValues']) elif fieldFilter['type'] == 'number': if min != None and max != None: fp = lambda x: (x['value'] != SENTINEL_VALUE_FOR_MISSING_DATA and \ x['value'] >= x['min'] and x['value'] <= x['max']) elif min != None: fp = lambda x: (x['value'] != SENTINEL_VALUE_FOR_MISSING_DATA and \ x['value'] >= x['min']) else: fp = lambda x: (x['value'] != SENTINEL_VALUE_FOR_MISSING_DATA and \ x['value'] <= x['max']) filterList.append((i, fp, var)) return (_filterRecord, filterList) def _filterRecord(filterList, record): """ Takes a record and returns true if record meets filter criteria, false otherwise """ for (fieldIdx, fp, params) in filterList: x = dict() x['value'] = record[fieldIdx] x['acceptValues'] = params['acceptValues'] x['min'] = params['min'] x['max'] = params['max'] if not fp(x): return False # None of the field filters triggered, accept the record as a good one return True def _aggr_first(inList): """ Returns first non-None element in the list, or None if all are None """ for elem in inList: if elem != SENTINEL_VALUE_FOR_MISSING_DATA: return elem return None def _aggr_last(inList): """ Returns last non-None element in the list, or None if all are None """ for elem in reversed(inList): if elem != SENTINEL_VALUE_FOR_MISSING_DATA: return elem return None def _aggr_sum(inList): """ Returns sum of the elements in the list. Missing items are replaced with the mean value """ aggrMean = _aggr_mean(inList) if aggrMean == None: return None aggrSum = 0 for elem in inList: if elem != SENTINEL_VALUE_FOR_MISSING_DATA: aggrSum += elem else: aggrSum += aggrMean return aggrSum def _aggr_mean(inList): """ Returns mean of non-None elements of the list """ aggrSum = 0 nonNone = 0 for elem in inList: if elem != SENTINEL_VALUE_FOR_MISSING_DATA: aggrSum += elem nonNone += 1 if nonNone != 0: return aggrSum / nonNone else: return None def _aggr_mode(inList): """ Returns most common value seen in the non-None elements of the list """ valueCounts = dict() nonNone = 0 for elem in inList: if elem == SENTINEL_VALUE_FOR_MISSING_DATA: continue nonNone += 1 if elem in valueCounts: valueCounts[elem] += 1 else: valueCounts[elem] = 1 # Get the most common one if nonNone == 0: return None # Sort by counts sortedCounts = valueCounts.items() sortedCounts.sort(cmp=lambda x,y: x[1] - y[1], reverse=True) return sortedCounts[0][0] def _aggr_weighted_mean(inList, params): """ Weighted mean uses params (must be the same size as inList) and makes weighed mean of inList""" assert(len(inList) == len(params)) # If all weights are 0, then the value is not defined, return None (missing) weightsSum = sum(params) if weightsSum == 0: return None weightedMean = 0 for i, elem in enumerate(inList): weightedMean += elem * params[i] return weightedMean / weightsSum class Aggregator(object): """ This class provides context and methods for aggregating records. The caller should construct an instance of Aggregator and then call the next() method repeatedly to get each aggregated record. This is an example aggregationInfo dict: { 'hours': 1, 'minutes': 15, 'fields': [ ('timestamp', 'first'), ('gym', 'first'), ('consumption', 'sum') ], } """ def __init__(self, aggregationInfo, inputFields, timeFieldName=None, sequenceIdFieldName=None, resetFieldName=None, filterInfo=None): """ Construct an aggregator instance Params: - aggregationInfo: a dictionary that contains the following entries - fields: a list of pairs. Each pair is a field name and an aggregation function (e.g. sum). The function will be used to aggregate multiple values during the aggregation period. - aggregation period: 0 or more of unit=value fields; allowed units are: [years months] | [weeks days hours minutes seconds milliseconds microseconds] NOTE: years and months are mutually-exclusive with the other units. See getEndTime() and _aggregate() for more details. Example1: years=1, months=6, Example2: hours=1, minutes=30, If none of the period fields are specified or if all that are specified have values of 0, then aggregation will be suppressed, and the given inputFile parameter value will be returned. - inputFields: The fields from the data source. This is a sequence of `nupic.data.fieldmeta.FieldMetaInfo` instances. - timeFieldName: name of the field to use as the time field. If None, then the time field will be queried from the reader. - sequenceIdFieldName: name of the field to use as the sequenecId. If None, then the time field will be queried from the reader. - resetFieldName: name of the field to use as the reset field. If None, then the time field will be queried from the reader. - filterInfo: a structure with rules for filtering records out If the input file contains a time field, sequence id field or reset field that were not specified in aggregationInfo fields, those fields will be added automatically with the following rules: 1. The order will be R, S, T, rest of the fields 2. The aggregation function for these will be to pick the first: lambda x: x[0] """ # ----------------------------------------------------------------------- # Save member variables. # The same aggregationInfo dict may be used by the caller for generating # more datasets (with slight changes), so it is safer to copy it here and # all changes made here will not affect the input aggregationInfo self._filterInfo = filterInfo self._nullAggregation = False self._inputFields = inputFields # See if this is a null aggregation self._nullAggregation = False if aggregationInfo is None: self._nullAggregation = True else: aggDef = defaultdict(lambda: 0, aggregationInfo) if (aggDef['years'] == aggDef['months'] == aggDef['weeks'] == aggDef['days'] == aggDef['hours'] == aggDef['minutes'] == aggDef['seconds'] == aggDef['milliseconds'] == aggDef['microseconds'] == 0): self._nullAggregation = True # Prepare the field filtering info. The filter allows us to ignore records # based on specified min or max values for each field. self._filter = initFilter(self._inputFields, self._filterInfo) # ---------------------------------------------------------------------- # Fill in defaults self._fields = None self._resetFieldIdx = None self._timeFieldIdx = None self._sequenceIdFieldIdx = None self._aggTimeDelta = datetime.timedelta() self._aggYears = 0 self._aggMonths = 0 # Init state variables used within next() self._aggrInputBookmark = None self._startTime = None self._endTime = None self._sequenceId = None self._firstSequenceStartTime = None self._inIdx = -1 self._slice = defaultdict(list) # ======================================================================== # Get aggregation params # self._fields will be a list of tuples: (fieldIdx, funcPtr, funcParam) if not self._nullAggregation: # --------------------------------------------------------------------- # Verify that all aggregation field names exist in the input fieldNames = [f[0] for f in aggregationInfo['fields']] readerFieldNames = [f[0] for f in self._inputFields] for name in fieldNames: if not name in readerFieldNames: raise Exception('No such input field: %s' % (name)) # --------------------------------------------------------------------- # Get the indices of the special fields, if given to our constructor if timeFieldName is not None: self._timeFieldIdx = readerFieldNames.index(timeFieldName) if resetFieldName is not None: self._resetFieldIdx = readerFieldNames.index(resetFieldName) if sequenceIdFieldName is not None: self._sequenceIdFieldIdx = readerFieldNames.index(sequenceIdFieldName) # --------------------------------------------------------------------- # Re-order the fields to match the order in the reader and add in any # fields from the reader that were not already in the aggregationInfo # fields list. self._fields = [] fieldIdx = -1 for (name, type, special) in self._inputFields: fieldIdx += 1 # See if it exists in the aggregationInfo found = False for field in aggregationInfo['fields']: if field[0] == name: aggFunctionName = field[1] found = True break if not found: aggFunctionName = 'first' # Convert to a function pointer and optional params (funcPtr, params) = self._getFuncPtrAndParams(aggFunctionName) # Add it self._fields.append((fieldIdx, funcPtr, params)) # Is it a special field that we are still looking for? if special == FieldMetaSpecial.reset and self._resetFieldIdx is None: self._resetFieldIdx = fieldIdx if special == FieldMetaSpecial.timestamp and self._timeFieldIdx is None: self._timeFieldIdx = fieldIdx if (special == FieldMetaSpecial.sequence and self._sequenceIdFieldIdx is None): self._sequenceIdFieldIdx = fieldIdx assert self._timeFieldIdx is not None, "No time field was found" # Create an instance of _AggregationPeriod with the aggregation period self._aggTimeDelta = datetime.timedelta(days=aggDef['days'], hours=aggDef['hours'], minutes=aggDef['minutes'], seconds=aggDef['seconds'], milliseconds=aggDef['milliseconds'], microseconds=aggDef['microseconds'], weeks=aggDef['weeks']) self._aggYears = aggDef['years'] self._aggMonths = aggDef['months'] if self._aggTimeDelta: assert self._aggYears == 0 assert self._aggMonths == 0 def _getEndTime(self, t): """Add the aggregation period to the input time t and return a datetime object Years and months are handled as aspecial case due to leap years and months with different number of dates. They can't be converted to a strict timedelta because a period of 3 months will have different durations actually. The solution is to just add the years and months fields directly to the current time. Other periods are converted to timedelta and just added to current time. """ assert isinstance(t, datetime.datetime) if self._aggTimeDelta: return t + self._aggTimeDelta else: year = t.year + self._aggYears + (t.month - 1 + self._aggMonths) / 12 month = (t.month - 1 + self._aggMonths) % 12 + 1 return t.replace(year=year, month=month) def _getFuncPtrAndParams(self, funcName): """ Given the name of an aggregation function, returns the function pointer and param. Parameters: ------------------------------------------------------------------------ funcName: a string (name of function) or funcPtr retval: (funcPtr, param) """ params = None if isinstance(funcName, basestring): if funcName == 'sum': fp = _aggr_sum elif funcName == 'first': fp = _aggr_first elif funcName == 'last': fp = _aggr_last elif funcName == 'mean': fp = _aggr_mean elif funcName == 'max': fp = max elif funcName == 'min': fp = min elif funcName == 'mode': fp = _aggr_mode elif funcName.startswith('wmean:'): fp = _aggr_weighted_mean paramsName = funcName[6:] params = [f[0] for f in self._inputFields].index(paramsName) else: fp = funcName return (fp, params) def _createAggregateRecord(self): """ Generate the aggregated output record Parameters: ------------------------------------------------------------------------ retval: outputRecord """ record = [] for i, (fieldIdx, aggFP, paramIdx) in enumerate(self._fields): if aggFP is None: # this field is not supposed to be aggregated. continue values = self._slice[i] refIndex = None if paramIdx is not None: record.append(aggFP(values, self._slice[paramIdx])) else: record.append(aggFP(values)) return record def isNullAggregation(self): """ Return True if no aggregation will be performed, either because the aggregationInfo was None or all aggregation params within it were 0. """ return self._nullAggregation def next(self, record, curInputBookmark): """ Return the next aggregated record, if any Parameters: ------------------------------------------------------------------------ record: The input record (values only) from the input source, or None if the input has reached EOF (this will cause this method to force completion of and return any partially aggregated time period) curInputBookmark: The bookmark to the next input record retval: (outputRecord, inputBookmark) outputRecord: the aggregated record inputBookmark: a bookmark to the last position from the input that contributed to this aggregated record. If we don't have any aggregated records yet, returns (None, None) The caller should generally do a loop like this: while True: inRecord = reader.getNextRecord() bookmark = reader.getBookmark() (aggRecord, aggBookmark) = aggregator.next(inRecord, bookmark) # reached EOF? if inRecord is None and aggRecord is None: break if aggRecord is not None: proessRecord(aggRecord, aggBookmark) This method makes use of the self._slice member variable to build up the values we need to aggregate. This is a dict of lists. The keys are the field indices and the elements of each list are the values for that field. For example: self._siice = { 0: [42, 53], 1: [4.0, 5.1] } """ # This will hold the aggregated record we return outRecord = None # This will hold the bookmark of the last input used within the # aggregated record we return. retInputBookmark = None if record is not None: # Increment input count self._inIdx += 1 #print self._inIdx, record # Apply the filter, ignore the record if any field is unacceptable if self._filter != None and not self._filter[0](self._filter[1], record): return (None, None) # If no aggregation info just return as-is if self._nullAggregation: return (record, curInputBookmark) # ---------------------------------------------------------------------- # Do aggregation # # Remember the very first record time stamp - it will be used as # the timestamp for all first records in all sequences to align # times for the aggregation/join of sequences. # # For a set of aggregated records, it will use the beginning of the time # window as a timestamp for the set # t = record[self._timeFieldIdx] if self._firstSequenceStartTime == None: self._firstSequenceStartTime = t # Create initial startTime and endTime if needed if self._startTime is None: self._startTime = t if self._endTime is None: self._endTime = self._getEndTime(t) assert self._endTime > t #print 'Processing line:', i, t, endTime #from dbgp.client import brk; brk(port=9011) # ---------------------------------------------------------------------- # Does this record have a reset signal or sequence Id associated with it? # If so, see if we've reached a sequence boundary if self._resetFieldIdx is not None: resetSignal = record[self._resetFieldIdx] else: resetSignal = None if self._sequenceIdFieldIdx is not None: currSequenceId = record[self._sequenceIdFieldIdx] else: currSequenceId = None newSequence = (resetSignal == 1 and self._inIdx > 0) \ or self._sequenceId != currSequenceId \ or self._inIdx == 0 if newSequence: self._sequenceId = currSequenceId # -------------------------------------------------------------------- # We end the aggregation chunk if we go past the end time # -OR- we get an out of order record (t < startTime) sliceEnded = (t >= self._endTime or t < self._startTime) # ------------------------------------------------------------------- # Time to generate a new output record? if (newSequence or sliceEnded) and len(self._slice) > 0: # Create aggregated record # print 'Creating aggregate record...' # Make first record timestamp as the beginning of the time period, # in case the first record wasn't falling on the beginning of the period for j, f in enumerate(self._fields): index = f[0] if index == self._timeFieldIdx: self._slice[j][0] = self._startTime break # Generate the aggregated record outRecord = self._createAggregateRecord() retInputBookmark = self._aggrInputBookmark # Reset the slice self._slice = defaultdict(list) # -------------------------------------------------------------------- # Add current record to slice (Note keeping slices in memory). Each # field in the slice is a list of field values from all the sliced # records for j, f in enumerate(self._fields): index = f[0] # append the parsed field value to the proper aggregated slice field. self._slice[j].append(record[index]) self._aggrInputBookmark = curInputBookmark # -------------------------------------------------------------------- # If we've encountered a new sequence, start aggregation over again if newSequence: # TODO: May use self._firstSequenceStartTime as a start for the new # sequence (to align all sequences) self._startTime = t self._endTime = self._getEndTime(t) # -------------------------------------------------------------------- # If a slice just ended, re-compute the start and end time for the # next aggregated record if sliceEnded: # Did we receive an out of order record? If so, go back and iterate # till we get to the next end time boundary. if t < self._startTime: self._endTime = self._firstSequenceStartTime while t >= self._endTime: self._startTime = self._endTime self._endTime = self._getEndTime(self._endTime) # If we have a record to return, do it now if outRecord is not None: return (outRecord, retInputBookmark) # --------------------------------------------------------------------- # Input reached EOF # Aggregate one last time in the end if necessary elif self._slice: # Make first record timestamp as the beginning of the time period, # in case the first record wasn't falling on the beginning of the period for j, f in enumerate(self._fields): index = f[0] if index == self._timeFieldIdx: self._slice[j][0] = self._startTime break outRecord = self._createAggregateRecord() retInputBookmark = self._aggrInputBookmark self._slice = defaultdict(list) # Return aggregated record return (outRecord, retInputBookmark) def generateDataset(aggregationInfo, inputFilename, outputFilename=None): """Generate a dataset of aggregated values Parameters: ---------------------------------------------------------------------------- aggregationInfo: a dictionary that contains the following entries - fields: a list of pairs. Each pair is a field name and an aggregation function (e.g. sum). The function will be used to aggregate multiple values during the aggregation period. aggregation period: 0 or more of unit=value fields; allowed units are: [years months] | [weeks days hours minutes seconds milliseconds microseconds] NOTE: years and months are mutually-exclusive with the other units. See getEndTime() and _aggregate() for more details. Example1: years=1, months=6, Example2: hours=1, minutes=30, If none of the period fields are specified or if all that are specified have values of 0, then aggregation will be suppressed, and the given inputFile parameter value will be returned. inputFilename: filename of the input dataset within examples/prediction/data outputFilename: name for the output file. If not given, a name will be generated based on the input filename and the aggregation params retval: Name of the generated output file. This will be the same as the input file name if no aggregation needed to be performed If the input file contained a time field, sequence id field or reset field that were not specified in aggregationInfo fields, those fields will be added automatically with the following rules: 1. The order will be R, S, T, rest of the fields 2. The aggregation function for all will be to pick the first: lambda x: x[0] Returns: the path of the aggregated data file if aggregation was performed (in the same directory as the given input file); if aggregation did not need to be performed, then the given inputFile argument value is returned. """ # Create the input stream inputFullPath = resource_filename("nupic.datafiles", inputFilename) inputObj = FileRecordStream(inputFullPath) # Instantiate the aggregator aggregator = Aggregator(aggregationInfo=aggregationInfo, inputFields=inputObj.getFields()) # Is it a null aggregation? If so, just return the input file unmodified if aggregator.isNullAggregation(): return inputFullPath # ------------------------------------------------------------------------ # If we were not given an output filename, create one based on the # aggregation settings if outputFilename is None: outputFilename = 'agg_%s' % \ os.path.splitext(os.path.basename(inputFullPath))[0] timePeriods = 'years months weeks days '\ 'hours minutes seconds milliseconds microseconds' for k in timePeriods.split(): if aggregationInfo.get(k, 0) > 0: outputFilename += '_%s_%d' % (k, aggregationInfo[k]) outputFilename += '.csv' outputFilename = os.path.join(os.path.dirname(inputFullPath), outputFilename) # ------------------------------------------------------------------------ # If some other process already started creating this file, simply # wait for it to finish and return without doing anything lockFilePath = outputFilename + '.please_wait' if os.path.isfile(outputFilename) or \ os.path.isfile(lockFilePath): while os.path.isfile(lockFilePath): print 'Waiting for %s to be fully written by another process' % \ lockFilePath time.sleep(1) return outputFilename # Create the lock file lockFD = open(lockFilePath, 'w') # ------------------------------------------------------------------------- # Create the output stream outputObj = FileRecordStream(streamID=outputFilename, write=True, fields=inputObj.getFields()) # ------------------------------------------------------------------------- # Write all aggregated records to the output while True: inRecord = inputObj.getNextRecord() (aggRecord, aggBookmark) = aggregator.next(inRecord, None) if aggRecord is None and inRecord is None: break if aggRecord is not None: outputObj.appendRecord(aggRecord) return outputFilename def getFilename(aggregationInfo, inputFile): """Generate the filename for aggregated dataset The filename is based on the input filename and the aggregation period. Returns the inputFile if no aggregation required (aggregation info has all 0's) """ # Find the actual file, with an absolute path inputFile = resource_filename("nupic.datafiles", inputFile) a = defaultdict(lambda: 0, aggregationInfo) outputDir = os.path.dirname(inputFile) outputFile = 'agg_%s' % os.path.splitext(os.path.basename(inputFile))[0] noAggregation = True timePeriods = 'years months weeks days '\ 'hours minutes seconds milliseconds microseconds' for k in timePeriods.split(): if a[k] > 0: noAggregation = False outputFile += '_%s_%d' % (k, a[k]) if noAggregation: return inputFile outputFile += '.csv' outputFile = os.path.join(outputDir, outputFile) return outputFile
agpl-3.0
kod3r/keras
examples/imdb_cnn.py
76
2878
from __future__ import absolute_import from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility from keras.preprocessing import sequence from keras.optimizers import RMSprop from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.embeddings import Embedding from keras.layers.convolutional import Convolution1D, MaxPooling1D from keras.datasets import imdb ''' This example demonstrates the use of Convolution1D for text classification. Run on GPU: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python imdb_cnn.py Get to 0.8330 test accuracy after 3 epochs. 100s/epoch on K520 GPU. ''' # set parameters: max_features = 5000 maxlen = 100 batch_size = 32 embedding_dims = 100 nb_filters = 250 filter_length = 3 hidden_dims = 250 nb_epoch = 3 print("Loading data...") (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features, test_split=0.2) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print("Pad sequences (samples x time)") X_train = sequence.pad_sequences(X_train, maxlen=maxlen) X_test = sequence.pad_sequences(X_test, maxlen=maxlen) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Build model...') model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add(Embedding(max_features, embedding_dims)) model.add(Dropout(0.25)) # we add a Convolution1D, which will learn nb_filters # word group filters of size filter_length: model.add(Convolution1D(input_dim=embedding_dims, nb_filter=nb_filters, filter_length=filter_length, border_mode="valid", activation="relu", subsample_length=1)) # we use standard max pooling (halving the output of the previous layer): model.add(MaxPooling1D(pool_length=2)) # We flatten the output of the conv layer, so that we can add a vanilla dense layer: model.add(Flatten()) # Computing the output shape of a conv layer can be tricky; # for a good tutorial, see: http://cs231n.github.io/convolutional-networks/ output_size = nb_filters * (((maxlen - filter_length) / 1) + 1) / 2 # We add a vanilla hidden layer: model.add(Dense(output_size, hidden_dims)) model.add(Dropout(0.25)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(hidden_dims, 1)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', class_mode="binary") model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, validation_data=(X_test, y_test))
mit
rahuldhote/scikit-learn
examples/applications/plot_species_distribution_modeling.py
252
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
BlazeLoader/BlazeLoader
util/apply_at.py
3
2819
""" This is a temporary and messy way to apply the AccessTransformer, the installer will take care of it when it is ready. """ import sys import os import subprocess import shlex def get_cp_sep(): os_name = sys.platform if os_name.startswith('win'): return ';' return ':' mc_ver = '1.7.2' mcp_dir = '../' jars_dir = os.path.join(mcp_dir, 'jars') libraries_dir = os.path.join(jars_dir, 'libraries') versions_dir = os.path.join(jars_dir, 'versions', '%s' % mc_ver) cp_sep = get_cp_sep() libs = '../jars/libraries/net/minecraft/launchwrapper/1.9/launchwrapper-1.9.jar;../jars/libraries/org/ow2/asm/asm-debug-all/4.1/asm-debug-all-4.1.jar;./res/bl_at.cfg'.replace('/', os.sep) libs = libs.replace(';', cp_sep) at = 'net/acomputerdog/BlazeLoader/transformers/BLAccessTransformer'.replace('/', os.sep) jar_target = '../jars/versions/"{mc_version}"/"{mc_version}".jar'.format(mc_version = mc_ver) compile_cmd = 'javac -cp' + ' ' + libs + ' ' + '-d bin ' + 'src/' + at + '.java' run_cmd = 'java -cp bin;'.replace(';', cp_sep) + libs + ' ' + at.replace(os.sep, '.') + ' ' + jar_target + ' ' + './res/bl_at.cfg' def check_install(): print '> Checking installation' if not os.path.isfile(os.path.join(versions_dir, '%s.jar' % mc_ver)): print '!!!! Minecraft %s jar not found!' % mc_ver return False if not os.path.isfile(os.path.join(versions_dir, '%s.json' % mc_ver)): print '!!!! Minecraft %s json not found!' % mc_ver return False if not os.path.isfile(os.path.join(libraries_dir, 'org', 'ow2', 'asm', 'asm-debug-all', '4.1', 'asm-debug-all-4.1.jar')): print '!!!! asm-debug-all-4.1.jar not found! get it at http://mvnrepository.com/artifact/org.ow2.asm/asm-debug-all/4.1' return False if not os.path.isfile(os.path.join(libraries_dir, 'net', 'minecraft', 'launchwrapper', '1.9', 'launchwrapper-1.9.jar')): print '!!!! launchwrapper-1.9 not found!' return False if not os.path.exists('bin') or not os.path.isdir('bin'): os.makedirs('bin') print '> Found all reqquired files' return True def compile_at(): print '> Compiling AccessTransformer' shlex.split(compile_cmd) process = subprocess.Popen(compile_cmd, shell=True, stdout=subprocess.PIPE) while True: nextline = process.stdout.readline() if nextline == '' and process.poll() != None: break if nextline != '': print nextline print '> Compiled AccessTransformer' def run_at(): print '> Running AccessTransformer' shlex.split(run_cmd) process = subprocess.Popen(run_cmd, shell=True, stdout=subprocess.PIPE) while True: nextline = process.stdout.readline() if nextline == '' and process.poll() != None: break if nextline != '': print nextline print '> AccessTransformer was successfully applied' if not check_install(): sys.exit(1) compile_at() run_at()
bsd-2-clause
ron1818/Singaboat_RobotX2016
robotx_nav/nodes/task1_nonprocess_1.py
3
5759
#!/usr/bin/env python import rospy import math import time import numpy as np import os import tf from sklearn.cluster import KMeans from nav_msgs.msg import Odometry from geometry_msgs.msg import Point, Pose, Twist, Vector3 from visualization_msgs.msg import MarkerArray, Marker from move_base_forward import Forward from move_base_force_cancel import ForceCancel from tf.transformations import euler_from_quaternion from move_base_waypoint import MoveTo from nav_msgs.msg import Odometry class PassGates(object): MAX_DATA=30 #stash data size of marker array for clustering mid_point_counter_max=20 distance=20 #distance to offset from center of gates replan_min=5 #replan waypoints if changes is more than this x0, y0, yaw0= 0, 0, 0 markers_array=MarkerArray() red_totem=np.zeros((MAX_DATA, 2)) #unordered list green_totem=np.zeros((MAX_DATA, 2)) red_centers=np.zeros((1, 2)) #ordered list of centers x, y green_centers=np.zeros((1, 2)) red_counter=0 green_counter=0 mid_point_counter=0 mid_point_x=list() mid_point_y=list() termination_displacement=50 m=0 d=10 def __init__(self): print("starting task 1") rospy.init_node('task_1', anonymous=True) rospy.Subscriber("/filtered_marker_array", MarkerArray, self.marker_callback, queue_size = 50) self.marker_pub= rospy.Publisher('waypoint_markers', Marker, queue_size=5) self.cmd_vel_pub = rospy.Publisher('move_base_cmd_vel', Twist, queue_size=5) self.base_frame = rospy.get_param("~base_frame", "base_link") self.fixed_frame = rospy.get_param("~fixed_frame", "map") # tf_listener self.tf_listener = tf.TransformListener() self.odom_received = False rospy.wait_for_message("/odometry/filtered/global", Odometry) rospy.Subscriber("/odometry/filtered/global", Odometry, self.odom_callback, queue_size=50) while not self.odom_received: rospy.sleep(1) self.moveto_obj = MoveTo("moveto", is_newnode=False, target=None, mode=1, mode_param=1, is_relative=False) init_position =np.array([self.x0, self.y0, 0]) while(self.red_counter<self.MAX_DATA or self.green_counter<self.MAX_DATA): #wait for data bucket to fill up, rotate around self.rotation(math.pi/4) time.sleep(3) self.rotation(-math.pi/2) time.sleep(1) print("bucket is full") while not rospy.is_shutdown(): #go to mid target if self.mid_point_counter<self.mid_point_counter_max: #at first move to mid point self.move_to_goal([self.mid_point_x[0], self.mid_point_y[0], math.pi/2+math.atan2(self.red_centers[0][1]-self.green_centers[0][1],self.red_centers[0][0]-self.green_centers[0][0])]) elif self.mid_point_counter > self.mid_point_counter_max: # later go along the direction of midpoint line angle=math.atan(self.m) self.move_to_goal([self.x0+self.d*math.sin(angle), self.y0+self.d*math.cos(angle), angle]) #pass all of the pool, stop if self.euclid_distance(np.array([self.x0, self.y0, 0]), init_position)>self.termination_displacement: print("Task 1 completed") break def marker_callback(self, msg): if len(msg.markers)>0: for i in range(len(msg.markers)): if msg.markers[i].type == 3: #may append more than 1 markers if msg.markers[i].id == 0: self.red_totem[self.red_counter%self.MAX_DATA]=[msg.markers[i].pose.position.x, msg.markers[i].pose.position.y] self.red_counter+=1 elif msg.markers[i].id == 1: self.green_totem[self.green_counter%self.MAX_DATA]=[msg.markers[i].pose.position.x, msg.markers[i].pose.position.y] self.green_counter+=1 else: pass #list is full if (self.red_counter>self.MAX_DATA): red_kmeans = KMeans(n_clusters=1).fit(self.red_totem) self.red_centers=red_kmeans.cluster_centers_ if(self.green_counter>self.MAX_DATA): green_kmeans = KMeans(n_clusters=1).fit(self.green_totem) self.green_centers=green_kmeans.cluster_centers_ #updating the mid point if(self.red_counter>self.MAX_DATA and self.green_counter>self.MAX_DATA): self.mid_point_x.append((self.red_centers[0][0]+self.green_centers[0][0])/2) self.mid_point_y.append((self.red_centers[0][1]+self.green_centers[0][1])/2) self.mid_point_counter+=1 self.m, self.b = np.polyfit(self.mid_point_x, self.mid_point_y, 1) def move_to_goal(self, goal): print("move to point") self.moveto_obj.respawn(goal, ) def euclid_distance(self, target1, target2): return math.sqrt((target1[0]-target2[0])**2+(target1[1]-target2[1])**2) def rotation(self, ang): rate = rospy.Rate(10) an_vel = 0.1 duration = ang / an_vel msg = Twist(Vector3(0.0, 0.0, 0.0), Vector3(0.0, 0.0, an_vel)) rate.sleep() start_time = rospy.get_time() while not rospy.is_shutdown(): current_time = rospy.get_time() if (current_time - start_time) > duration: self.cmd_vel_pub.publish(Twist(Vector3(0, 0.0, 0.0), Vector3(0.0, 0.0, -2 * an_vel))) self.cmd_vel_pub.publish(Twist()) break else: self.cmd_vel_pub.publish(msg) rate.sleep() def get_tf(self, fixed_frame, base_frame): """ transform from base_link to map """ trans_received = False while not trans_received: try: (trans, rot) = self.tf_listener.lookupTransform(fixed_frame, base_frame, rospy.Time(0)) trans_received = True return (Point(*trans), Quaternion(*rot)) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): pass def odom_callback(self, msg): trans, rot = self.get_tf("map", "base_link") self.x0 = trans.x self.y0 = trans.y _, _, self.yaw0 = euler_from_quaternion((rot.x, rot.y, rot.z, rot.w)) self.odom_received = True if __name__ == '__main__': try: PassGates() # stage 1: gps except rospy.ROSInterruptException: rospy.loginfo("Task 1 Finished")
gpl-3.0
mcgachey/edx-platform
lms/djangoapps/course_blocks/transformers/tests/test_user_partitions.py
26
17615
# pylint: disable=attribute-defined-outside-init, protected-access """ Tests for UserPartitionTransformer. """ from collections import namedtuple import ddt from openedx.core.djangoapps.course_groups.partition_scheme import CohortPartitionScheme from openedx.core.djangoapps.course_groups.tests.helpers import CohortFactory, config_course_cohorts from openedx.core.djangoapps.course_groups.cohorts import add_user_to_cohort from openedx.core.djangoapps.course_groups.views import link_cohort_to_partition_group from student.tests.factories import CourseEnrollmentFactory from xmodule.partitions.partitions import Group, UserPartition from xmodule.modulestore.tests.factories import CourseFactory from ...api import get_course_blocks from ..user_partitions import UserPartitionTransformer, _MergedGroupAccess from .test_helpers import CourseStructureTestCase, update_block class UserPartitionTestMixin(object): """ Helper Mixin for testing user partitions. """ def setup_groups_partitions(self, num_user_partitions=1, num_groups=4): """ Sets up groups and user partitions for testing. """ # Set up groups self.groups = [] for group_num in range(1, num_groups + 1): self.groups.append(Group(group_num, 'Group ' + unicode(group_num))) # Set up user partitions self.user_partitions = [] for user_partition_num in range(1, num_user_partitions + 1): user_partition = UserPartition( id=user_partition_num, name='Partition ' + unicode(user_partition_num), description='This is partition ' + unicode(user_partition_num), groups=self.groups, scheme=CohortPartitionScheme ) user_partition.scheme.name = "cohort" self.user_partitions.append(user_partition) def setup_cohorts(self, course): """ Sets up a cohort for each previously created user partition. """ config_course_cohorts(course, is_cohorted=True) self.partition_cohorts = [] for user_partition in self.user_partitions: partition_cohorts = [] for group in self.groups: cohort = CohortFactory(course_id=course.id) partition_cohorts.append(cohort) link_cohort_to_partition_group( cohort, user_partition.id, group.id, ) self.partition_cohorts.append(partition_cohorts) @ddt.ddt class UserPartitionTransformerTestCase(UserPartitionTestMixin, CourseStructureTestCase): """ UserPartitionTransformer Test """ def setUp(self): """ Setup course structure and create user for user partition transformer test. """ super(UserPartitionTransformerTestCase, self).setUp() # Set up user partitions and groups. self.setup_groups_partitions() self.user_partition = self.user_partitions[0] # Build course. self.course_hierarchy = self.get_course_hierarchy() self.blocks = self.build_course(self.course_hierarchy) self.course = self.blocks['course'] # Enroll user in course. CourseEnrollmentFactory.create(user=self.user, course_id=self.course.id, is_active=True) # Set up cohorts. self.setup_cohorts(self.course) self.transformer = UserPartitionTransformer() def get_course_hierarchy(self): """ Returns a course hierarchy to test with. """ # course # / \ # / \ # A[1, 2, 3] B # / | \ | # / | \ | # / | \ | # C[1, 2] D[2, 3] E / # / | \ | / \ / # / | \ | / \ / # / | \ | / \ / # F G[1] H[2] I J K[4] / # / \ / / \ / # / \ / / \ / # / \ / / \/ # L[1, 2] M[1, 2, 3] N O # return [ { 'org': 'UserPartitionTransformer', 'course': 'UP101F', 'run': 'test_run', 'user_partitions': [self.user_partition], '#type': 'course', '#ref': 'course', '#children': [ { '#type': 'vertical', '#ref': 'A', 'metadata': {'group_access': {self.user_partition.id: [0, 1, 2, 3]}}, }, {'#type': 'vertical', '#ref': 'B'}, ], }, { '#type': 'vertical', '#ref': 'C', '#parents': ['A'], 'metadata': {'group_access': {self.user_partition.id: [1, 2]}}, '#children': [ {'#type': 'vertical', '#ref': 'F'}, { '#type': 'vertical', '#ref': 'G', 'metadata': {'group_access': {self.user_partition.id: [1]}}, }, { '#type': 'vertical', '#ref': 'H', 'metadata': {'group_access': {self.user_partition.id: [2]}}, }, ], }, { '#type': 'vertical', '#ref': 'D', '#parents': ['A'], 'metadata': {'group_access': {self.user_partition.id: [2, 3]}}, '#children': [{'#type': 'vertical', '#ref': 'I'}], }, { '#type': 'vertical', '#ref': 'E', '#parents': ['A'], '#children': [{'#type': 'vertical', '#ref': 'J'}], }, { '#type': 'vertical', '#ref': 'K', '#parents': ['E'], 'metadata': {'group_access': {self.user_partition.id: [4]}}, '#children': [{'#type': 'vertical', '#ref': 'N'}], }, { '#type': 'vertical', '#ref': 'L', '#parents': ['G'], 'metadata': {'group_access': {self.user_partition.id: [1, 2]}}, }, { '#type': 'vertical', '#ref': 'M', '#parents': ['G', 'H'], 'metadata': {'group_access': {self.user_partition.id: [1, 2, 3]}}, }, { '#type': 'vertical', '#ref': 'O', '#parents': ['K', 'B'], }, ] @ddt.data( (None, ('course', 'B', 'O')), (1, ('course', 'A', 'B', 'C', 'E', 'F', 'G', 'J', 'L', 'M', 'O')), (2, ('course', 'A', 'B', 'C', 'D', 'E', 'F', 'H', 'I', 'J', 'M', 'O')), (3, ('course', 'A', 'B', 'D', 'E', 'I', 'J', 'O')), (4, ('course', 'B', 'O')), ) @ddt.unpack def test_transform(self, group_id, expected_blocks): if group_id: cohort = self.partition_cohorts[self.user_partition.id - 1][group_id - 1] add_user_to_cohort(cohort, self.user.username) trans_block_structure = get_course_blocks( self.user, self.course.location, transformers={self.transformer} ) self.assertSetEqual( set(trans_block_structure.get_block_keys()), self.get_block_key_set(self.blocks, *expected_blocks) ) @ddt.ddt class MergedGroupAccessTestData(UserPartitionTestMixin, CourseStructureTestCase): """ _MergedGroupAccess Test """ def setUp(self): """ Setup course structure and create user for user partition transformer test. """ super(MergedGroupAccessTestData, self).setUp() # Set up multiple user partitions and groups. self.setup_groups_partitions(num_user_partitions=3) self.course = CourseFactory.create(user_partitions=self.user_partitions) CourseEnrollmentFactory.create(user=self.user, course_id=self.course.id, is_active=True) # Set up cohorts. self.setup_cohorts(self.course) def get_course_hierarchy(self): """ Returns a course hierarchy to test with. """ # The block tree is as follows, with the numbers in the brackets # specifying the group_id for each of the 3 partitions. # A # / | \ # / | \ # B C D # [1][3][] [2][2][] [3][1][] # \ / # \ / # E # return [ { 'org': 'MergedGroupAccess', 'course': 'MGA101F', 'run': 'test_run', 'user_partitions': self.user_partitions, '#type': 'course', '#ref': 'A', }, { '#type': 'vertical', '#ref': 'B', '#parents': ['A'], 'metadata': {'group_access': {1: [1], 2:[3], 3:[]}}, }, { '#type': 'vertical', '#ref': 'C', '#parents': ['A'], 'metadata': {'group_access': {1: [2], 2:[2], 3:[]}}, }, { '#type': 'vertical', '#ref': 'D', '#parents': ['A'], 'metadata': {'group_access': {1: [3], 2:[1], 3:[]}}, }, { '#type': 'vertical', '#ref': 'E', '#parents': ['B', 'C'], }, ] AccessTestData = namedtuple( 'AccessTestData', ['partition_groups', 'xblock_access', 'merged_parents_list', 'expected_access'], ) AccessTestData.__new__.__defaults__ = ({}, None, [], False) @ddt.data( # universal access throughout AccessTestData(expected_access=True), AccessTestData(xblock_access={1: None}, expected_access=True), AccessTestData(xblock_access={1: []}, expected_access=True), # partition 1 requiring membership in group 1 AccessTestData(xblock_access={1: [1]}), AccessTestData(partition_groups={2: 1, 3: 1}, xblock_access={1: [1]}), AccessTestData(partition_groups={1: 1, 2: 1, 3: 1}, xblock_access={1: [1]}, expected_access=True), AccessTestData(partition_groups={1: 1, 2: 1}, xblock_access={1: [1], 2: [], 3: []}, expected_access=True), # partitions 1 and 2 requiring membership in group 1 AccessTestData(xblock_access={1: [1], 2: [1]}), AccessTestData(partition_groups={2: 1, 3: 1}, xblock_access={1: [1], 2: [1]}), AccessTestData(partition_groups={1: 1, 2: 1}, xblock_access={1: [1], 2: [1]}, expected_access=True), # partitions 1 and 2 requiring membership in different groups AccessTestData(xblock_access={1: [1], 2: [2]}), AccessTestData(partition_groups={2: 1, 3: 1}, xblock_access={1: [1], 2: [2]}), AccessTestData(partition_groups={1: 1, 2: 1, 3: 1}, xblock_access={1: [1], 2: [2]}), AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={1: [1], 2: [2]}, expected_access=True), # partitions 1 and 2 requiring membership in list of groups AccessTestData(partition_groups={1: 3, 2: 3}, xblock_access={1: [1, 2], 2: [1, 2]}), AccessTestData(partition_groups={1: 1, 2: 1}, xblock_access={1: [1, 2], 2: [1, 2]}, expected_access=True), AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={1: [1, 2], 2: [1, 2]}, expected_access=True), AccessTestData(partition_groups={1: 2, 2: 1}, xblock_access={1: [1, 2], 2: [1, 2]}, expected_access=True), AccessTestData(partition_groups={1: 2, 2: 2}, xblock_access={1: [1, 2], 2: [1, 2]}, expected_access=True), # parent inheritance # 1 parent allows AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {1}}], expected_access=True), # 2 parents allow AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {1}}, {1: {1}}], expected_access=True), AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {2}}, {1: {1}}], expected_access=True), AccessTestData( partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {2}, 2: {2}}, {1: {1}, 2: {1}}], expected_access=True, ), # 1 parent denies AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {}}]), AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {3}}]), # 1 parent denies, 1 parent allows all AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {}}, {}], expected_access=True), AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {}}, {1: {}}, {}], expected_access=True), AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {}}, {}, {1: {}}], expected_access=True), # 1 parent denies, 1 parent allows AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {3}}, {1: {1}}], expected_access=True), # 2 parents deny AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {}}, {1: {}}]), AccessTestData(partition_groups={1: 1, 2: 2}, merged_parents_list=[{1: {3}}, {1: {3}, 2: {2}}]), # intersect with parent # child denies, 1 parent allows AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={1: [3]}, merged_parents_list=[{1: {1}}]), AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={1: [2]}, merged_parents_list=[{1: {1}}]), # child denies, 2 parents allow AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={1: [3]}, merged_parents_list=[{1: {1}}, {2: {2}}]), AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={2: [3]}, merged_parents_list=[{1: {1}}, {2: {2}}]), # child allows, 1 parent denies AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={2: [2]}, merged_parents_list=[{1: {}}]), AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={1: [1]}, merged_parents_list=[{1: {2}}]), AccessTestData(partition_groups={1: 1, 2: 2}, xblock_access={2: [2]}, merged_parents_list=[{1: {2}}]), # child allows, 1 parent allows AccessTestData( partition_groups={1: 1, 2: 2}, xblock_access={1: [1]}, merged_parents_list=[{}], expected_access=True, ), AccessTestData( partition_groups={1: 1, 2: 2}, xblock_access={2: [2]}, merged_parents_list=[{1: {1}}], expected_access=True ), AccessTestData( partition_groups={1: 1, 2: 2}, xblock_access={1: [1, 3], 2: [2, 3]}, merged_parents_list=[{1: {1, 2, 3}}, {2: {1, 2, 3}}], expected_access=True, ), # child allows, 1 parent allows, 1 parent denies AccessTestData( partition_groups={1: 1, 2: 2}, xblock_access={1: [1]}, merged_parents_list=[{1: {3}}, {1: {1}}], expected_access=True, ), ) @ddt.unpack def test_merged_group_access(self, user_partition_groups, xblock_access, merged_parents_list, expected_access): # use the course as the block to test block = self.course # update block access if xblock_access is not None: block.group_access = xblock_access update_block(self.course) # convert merged_parents_list to _MergedGroupAccess objects for ind, merged_parent in enumerate(merged_parents_list): converted_object = _MergedGroupAccess([], block, []) converted_object._access = merged_parent merged_parents_list[ind] = converted_object merged_group_access = _MergedGroupAccess(self.user_partitions, block, merged_parents_list) # convert group_id to groups in user_partition_groups parameter for partition_id, group_id in user_partition_groups.iteritems(): user_partition_groups[partition_id] = self.groups[group_id - 1] self.assertEquals( merged_group_access.check_group_access(user_partition_groups), expected_access, ) @ddt.data( ([None], None), ([{1}, None], {1}), ([None, {1}], {1}), ([None, {1}, {1, 2}], {1}), ([None, {1, 2}, {1, 2}], {1, 2}), ([{1, 2, 3}, {1, 2}, None], {1, 2}), ([{1, 2}, {1, 2, 3, 4}, None], {1, 2}), ([{1}, {2}, None], set()), ([None, {1}, {2}, None], set()), ) @ddt.unpack def test_intersection_method(self, input_value, expected_result): self.assertEquals( _MergedGroupAccess._intersection(*input_value), expected_result, )
agpl-3.0
vitaly-krugl/nupic
src/nupic/frameworks/opf/experiment_runner.py
10
29504
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ This script provides the runExperiment() API function that is used by the command-line client run_opf_experiment.py of Online Prediction Framework (OPF). It executes a single experiment. This runner is generally run through `scripts/run_opf_experiment.py`. """ from collections import namedtuple import itertools import logging import optparse import os import sys import random import numpy from nupic.data import json_helpers from nupic.frameworks.opf import opf_basic_environment, helpers from nupic.frameworks.opf.exp_description_api import OpfEnvironment from nupic.frameworks.opf.model_factory import ModelFactory from nupic.frameworks.opf.opf_task_driver import OPFTaskDriver from nupic.frameworks.opf.opf_utils import (InferenceElement, matchPatterns, validateOpfJsonValue) from nupic.support import initLogging g_defaultCheckpointExtension = ".nta" # Schema of the Private Command-line Options dictionary returned by # _parseCommandLineOptions(). This "Private" options dict is consumed internally # by runExperiment (i.e. not passed to external modules). g_parsedPrivateCommandLineOptionsSchema = { "description":"OPF RunExperiment control args", "type":"object", "additionalProperties":False, "properties":{ "createCheckpointName":{ "description":"Create a model and save it under the checkpoint name, " + \ "but don't run it. " + \ "TODO: 'blank' is a non-standard JSON schema setting; " + \ "validictory 8.0 supports a blank_by_default arg.", "required":True, "type":"string", "minLength":0, "blank":True }, "listAvailableCheckpoints":{ "description":"List all checkpoints and exit", "required":True, "type":"boolean" }, "listTasks":{ "description":"List all tasks and exit", "required":True, "type":"boolean" }, "runCheckpointName":{ "description":"Name of saved checkpoint to load and run" + \ "TODO: 'blank' is a non-standard JSON schema setting; " + \ "validictory 8.0 supports a blank_by_default arg.", "required":True, "type":"string", "minLength":0, "blank":True }, "newSerialization":{ "description":"Use new capnproto serialization.", "required":True, "type":"boolean" }, #"reuseDatasets":{ # "description":"Keep existing generated/aggregated datasets", # "required":True, # "type":"boolean" #}, "testMode":{ "description":"True to override iteration counts with very small values", "required":True, "type":"boolean" }, "taskLabels":{ "required":False, "type":"array", "uniqueItems":False, "minItems":0, "items":{"type":"string", "minLength":1} }, "checkpointModel":{ "description":"True to checkpoint model after running each task", "required":True, "type":"boolean" }, } } def runExperiment(args, model=None): """ Run a single OPF experiment. .. note:: The caller is responsible for initializing python logging before calling this function (e.g., import :mod:`nupic.support`; :meth:`nupic.support.initLogging`) See also: :meth:`.initExperimentPrng`. :param args: (string) Experiment command-line args list. Too see all options, run with ``--help``: .. code-block:: text Options: -h, --help show this help message and exit -c <CHECKPOINT> Create a model and save it under the given <CHECKPOINT> name, but don't run it --listCheckpoints List all available checkpoints --listTasks List all task labels in description.py --load=<CHECKPOINT> Load a model from the given <CHECKPOINT> and run it. Run with --listCheckpoints flag for more details. --newSerialization Use new capnproto serialization --tasks Run the tasks with the given TASK LABELS in the order they are given. Either end of arg-list, or a standalone dot ('.') arg or the next short or long option name (-a or --blah) terminates the list. NOTE: FAILS TO RECOGNIZE task label names with one or more leading dashes. [default: run all of the tasks in description.py] --testMode Reduce iteration count for testing --noCheckpoint Don't checkpoint the model after running each task. :param model: (:class:`~nupic.frameworks.opf.model.Model`) For testing, may pass in an existing OPF Model to use instead of creating a new one. :returns: (:class:`~nupic.frameworks.opf.model.Model`) reference to OPF Model instance that was constructed (this is provided to aid with debugging) or None, if none was created. """ # Parse command-line options opt = _parseCommandLineOptions(args) #print "runExperiment: Parsed Command Options: ", opt model = _runExperimentImpl(opt, model) return model def initExperimentPrng(): """Initialize PRNGs that may be used by other modules in the experiment stack. .. note:: User may call this function to initialize PRNGs that are used by the experiment stack before calling runExperiment(), unless user has its own own logic for initializing these PRNGs. """ seed = 42 random.seed(seed) numpy.random.seed(seed) ParseCommandLineOptionsResult = namedtuple('ParseCommandLineOptionsResult', ('experimentDir', 'privateOptions')) """_parseCommandLineOptions() return value type Args: experimentDir: path of experiment directory that contains description.py privateOptions: dictionary of options of consumption only by this script; the schema is described by g_parsedPrivateCommandLineOptionsSchema """ def _parseCommandLineOptions(args): """Parse command line options Args: args: command line arguments (not including sys.argv[0]) Returns: namedtuple ParseCommandLineOptionsResult """ usageStr = ( "%prog [options] descriptionPyDirectory\n" "This script runs a single OPF Model described by description.py " "located in the given directory." ) parser = optparse.OptionParser(usage=usageStr) parser.add_option("-c", help="Create a model and save it under the given " "<CHECKPOINT> name, but don't run it", dest="createCheckpointName", action="store", type="string", default="", metavar="<CHECKPOINT>") parser.add_option("--listCheckpoints", help="List all available checkpoints", dest="listAvailableCheckpoints", action="store_true", default=False) parser.add_option("--listTasks", help="List all task labels in description.py", dest="listTasks", action="store_true", default=False) parser.add_option("--load", help="Load a model from the given <CHECKPOINT> and run it. " "Run with --listCheckpoints flag for more details. ", dest="runCheckpointName", action="store", type="string", default="", metavar="<CHECKPOINT>") parser.add_option("--newSerialization", help="Use new capnproto serialization", dest="newSerialization", action="store_true", default=False) #parser.add_option("--reuseDatasets", # help="Keep existing generated/aggregated datasets", # dest="reuseDatasets", action="store_true", # default=False) parser.add_option("--tasks", help="Run the tasks with the given TASK LABELS " "in the order they are given. Either end of " "arg-list, or a standalone dot ('.') arg or " "the next short or long option name (-a or " "--blah) terminates the list. NOTE: FAILS " "TO RECOGNIZE task label names with one or more " "leading dashes. [default: run all of the tasks in " "description.py]", dest="taskLabels", default=[], action="callback", callback=reapVarArgsCallback, metavar="TASK_LABELS") parser.add_option("--testMode", help="Reduce iteration count for testing", dest="testMode", action="store_true", default=False) parser.add_option("--noCheckpoint", help="Don't checkpoint the model after running each task.", dest="checkpointModel", action="store_false", default=True) options, experiments = parser.parse_args(args) # Validate args mutuallyExclusiveOptionCount = sum([bool(options.createCheckpointName), options.listAvailableCheckpoints, options.listTasks, bool(options.runCheckpointName)]) if mutuallyExclusiveOptionCount > 1: _reportCommandLineUsageErrorAndExit( parser, "Options: -c, --listCheckpoints, --listTasks, and --load are " "mutually exclusive. Please select only one") mutuallyExclusiveOptionCount = sum([bool(not options.checkpointModel), bool(options.createCheckpointName)]) if mutuallyExclusiveOptionCount > 1: _reportCommandLineUsageErrorAndExit( parser, "Options: -c and --noCheckpoint are " "mutually exclusive. Please select only one") if len(experiments) != 1: _reportCommandLineUsageErrorAndExit( parser, "Exactly ONE experiment must be specified, but got %s (%s)" % ( len(experiments), experiments)) # Done with parser parser.destroy() # Prepare results # Directory path of the experiment (that contain description.py) experimentDir = os.path.abspath(experiments[0]) # RunExperiment.py's private options (g_parsedPrivateCommandLineOptionsSchema) privateOptions = dict() privateOptions['createCheckpointName'] = options.createCheckpointName privateOptions['listAvailableCheckpoints'] = options.listAvailableCheckpoints privateOptions['listTasks'] = options.listTasks privateOptions['runCheckpointName'] = options.runCheckpointName privateOptions['newSerialization'] = options.newSerialization privateOptions['testMode'] = options.testMode #privateOptions['reuseDatasets'] = options.reuseDatasets privateOptions['taskLabels'] = options.taskLabels privateOptions['checkpointModel'] = options.checkpointModel result = ParseCommandLineOptionsResult(experimentDir=experimentDir, privateOptions=privateOptions) return result def reapVarArgsCallback(option, optStr, value, parser): """Used as optparse callback for reaping a variable number of option args. The option may be specified multiple times, and all the args associated with that option name will be accumulated in the order that they are encountered """ newValues = [] # Reap the args, taking care to stop before the next option or '.' gotDot = False for arg in parser.rargs: # Stop on --longname options if arg.startswith("--") and len(arg) > 2: break # Stop on -b options if arg.startswith("-") and len(arg) > 1: break if arg == ".": gotDot = True break newValues.append(arg) if not newValues: raise optparse.OptionValueError( ("Empty arg list for option %r expecting one or more args " "(remaining tokens: %r)") % (optStr, parser.rargs)) del parser.rargs[:len(newValues) + int(gotDot)] # Retrieve the existing arg accumulator, if any value = getattr(parser.values, option.dest, []) #print "Previous value: %r" % value if value is None: value = [] # Append the new args to the existing ones and save to the parser value.extend(newValues) setattr(parser.values, option.dest, value) def _reportCommandLineUsageErrorAndExit(parser, message): """Report usage error and exit program with error indication.""" print parser.get_usage() print message sys.exit(1) def _runExperimentImpl(options, model=None): """Creates and runs the experiment Args: options: namedtuple ParseCommandLineOptionsResult model: For testing: may pass in an existing OPF Model instance to use instead of creating a new one. Returns: reference to OPFExperiment instance that was constructed (this is provided to aid with debugging) or None, if none was created. """ json_helpers.validate(options.privateOptions, schemaDict=g_parsedPrivateCommandLineOptionsSchema) # Load the experiment's description.py module experimentDir = options.experimentDir descriptionPyModule = helpers.loadExperimentDescriptionScriptFromDir( experimentDir) expIface = helpers.getExperimentDescriptionInterfaceFromModule( descriptionPyModule) # Handle "list checkpoints" request if options.privateOptions['listAvailableCheckpoints']: _printAvailableCheckpoints(experimentDir) return None # Load experiment tasks experimentTasks = expIface.getModelControl().get('tasks', []) # If the tasks list is empty, and this is a nupic environment description # file being run from the OPF, convert it to a simple OPF description file. if (len(experimentTasks) == 0 and expIface.getModelControl()['environment'] == OpfEnvironment.Nupic): expIface.convertNupicEnvToOPF() experimentTasks = expIface.getModelControl().get('tasks', []) # Ensures all the source locations are either absolute paths or relative to # the nupic.datafiles package_data location. expIface.normalizeStreamSources() # Extract option newSerialization = options.privateOptions['newSerialization'] # Handle listTasks if options.privateOptions['listTasks']: print "Available tasks:" for label in [t['taskLabel'] for t in experimentTasks]: print "\t", label return None # Construct the experiment instance if options.privateOptions['runCheckpointName']: assert model is None checkpointName = options.privateOptions['runCheckpointName'] model = ModelFactory.loadFromCheckpoint( savedModelDir=_getModelCheckpointDir(experimentDir, checkpointName), newSerialization=newSerialization) elif model is not None: print "Skipping creation of OPFExperiment instance: caller provided his own" else: modelDescription = expIface.getModelDescription() model = ModelFactory.create(modelDescription) # Handle "create model" request if options.privateOptions['createCheckpointName']: checkpointName = options.privateOptions['createCheckpointName'] _saveModel(model=model, experimentDir=experimentDir, checkpointLabel=checkpointName, newSerialization=newSerialization) return model # Build the task list # Default task execution index list is in the natural list order of the tasks taskIndexList = range(len(experimentTasks)) customTaskExecutionLabelsList = options.privateOptions['taskLabels'] if customTaskExecutionLabelsList: taskLabelsList = [t['taskLabel'] for t in experimentTasks] taskLabelsSet = set(taskLabelsList) customTaskExecutionLabelsSet = set(customTaskExecutionLabelsList) assert customTaskExecutionLabelsSet.issubset(taskLabelsSet), \ ("Some custom-provided task execution labels don't correspond " "to actual task labels: mismatched labels: %r; actual task " "labels: %r.") % (customTaskExecutionLabelsSet - taskLabelsSet, customTaskExecutionLabelsList) taskIndexList = [taskLabelsList.index(label) for label in customTaskExecutionLabelsList] print "#### Executing custom task list: %r" % [taskLabelsList[i] for i in taskIndexList] # Run all experiment tasks for taskIndex in taskIndexList: task = experimentTasks[taskIndex] # Create a task runner and run it! taskRunner = _TaskRunner(model=model, task=task, cmdOptions=options) taskRunner.run() del taskRunner if options.privateOptions['checkpointModel']: _saveModel(model=model, experimentDir=experimentDir, checkpointLabel=task['taskLabel'], newSerialization=newSerialization) return model def _saveModel(model, experimentDir, checkpointLabel, newSerialization=False): """Save model""" checkpointDir = _getModelCheckpointDir(experimentDir, checkpointLabel) if newSerialization: model.writeToCheckpoint(checkpointDir) else: model.save(saveModelDir=checkpointDir) def _getModelCheckpointDir(experimentDir, checkpointLabel): """Creates directory for serialization of the model checkpointLabel: Checkpoint label (string) Returns: absolute path to the serialization directory """ checkpointDir = os.path.join(getCheckpointParentDir(experimentDir), checkpointLabel + g_defaultCheckpointExtension) checkpointDir = os.path.abspath(checkpointDir) return checkpointDir def getCheckpointParentDir(experimentDir): """Get checkpoint parent dir. Returns: absolute path to the base serialization directory within which model checkpoints for this experiment are created """ baseDir = os.path.join(experimentDir, "savedmodels") baseDir = os.path.abspath(baseDir) return baseDir def _checkpointLabelFromCheckpointDir(checkpointDir): """Returns a checkpoint label string for the given model checkpoint directory checkpointDir: relative or absolute model checkpoint directory path """ assert checkpointDir.endswith(g_defaultCheckpointExtension) lastSegment = os.path.split(checkpointDir)[1] checkpointLabel = lastSegment[0:-len(g_defaultCheckpointExtension)] return checkpointLabel def _isCheckpointDir(checkpointDir): """Return true iff checkpointDir appears to be a checkpoint directory.""" lastSegment = os.path.split(checkpointDir)[1] if lastSegment[0] == '.': return False if not checkpointDir.endswith(g_defaultCheckpointExtension): return False if not os.path.isdir(checkpointDir): return False return True def _printAvailableCheckpoints(experimentDir): """List available checkpoints for the specified experiment.""" checkpointParentDir = getCheckpointParentDir(experimentDir) if not os.path.exists(checkpointParentDir): print "No available checkpoints." return checkpointDirs = [x for x in os.listdir(checkpointParentDir) if _isCheckpointDir(os.path.join(checkpointParentDir, x))] if not checkpointDirs: print "No available checkpoints." return print "Available checkpoints:" checkpointList = [_checkpointLabelFromCheckpointDir(x) for x in checkpointDirs] for checkpoint in sorted(checkpointList): print "\t", checkpoint print print "To start from a checkpoint:" print " python run_opf_experiment.py experiment --load <CHECKPOINT>" print "For example, to start from the checkpoint \"MyCheckpoint\":" print " python run_opf_experiment.py experiment --load MyCheckpoint" class _TaskRunner(object): """This class is responsible for running a single experiment task on the given Model instance """ __FILE_SCHEME = "file://" def __init__(self, model, task, cmdOptions): """ Constructor Args: model: The OPF Model instance against which to run the task task: A dictionary conforming to opfTaskSchema.json cmdOptions: ParseCommandLineOptionsResult namedtuple """ validateOpfJsonValue(task, "opfTaskSchema.json") # Set up our logger self.__logger = logging.getLogger(".".join( ['com.numenta', self.__class__.__module__, self.__class__.__name__])) #self.__logger.setLevel(logging.DEBUG) self.__logger.debug(("Instantiated %s(" + \ "model=%r, " + \ "task=%r, " + \ "cmdOptions=%r)") % \ (self.__class__.__name__, model, task, cmdOptions)) # Generate a new dataset from streamDef and create the dataset reader streamDef = task['dataset'] datasetReader = opf_basic_environment.BasicDatasetReader(streamDef) self.__model = model self.__datasetReader = datasetReader self.__task = task self.__cmdOptions = cmdOptions self.__predictionLogger = opf_basic_environment.BasicPredictionLogger( fields=model.getFieldInfo(), experimentDir=cmdOptions.experimentDir, label=task['taskLabel'], inferenceType=self.__model.getInferenceType()) taskControl = task['taskControl'] # Create Task Driver self.__taskDriver = OPFTaskDriver( taskControl=taskControl, model=model) loggedMetricPatterns = taskControl.get('loggedMetrics', None) loggedMetricLabels = matchPatterns(loggedMetricPatterns, self.__taskDriver.getMetricLabels()) self.__predictionLogger.setLoggedMetrics(loggedMetricLabels) # Create a prediction metrics logger self.__metricsLogger = opf_basic_environment.BasicPredictionMetricsLogger( experimentDir=cmdOptions.experimentDir, label=task['taskLabel']) def __del__(self): """Destructor""" #print "IN %s.%r destructor" % (type(self), self) def run(self): """Runs a single experiment task""" self.__logger.debug("run(): Starting task <%s>", self.__task['taskLabel']) # Set up the task # Create our main loop-control iterator if self.__cmdOptions.privateOptions['testMode']: numIters = 10 else: numIters = self.__task['iterationCount'] if numIters >= 0: iterTracker = iter(xrange(numIters)) else: iterTracker = iter(itertools.count()) # Initialize periodic activities periodic = PeriodicActivityMgr( requestedActivities=self._createPeriodicActivities()) # Reset sequence states in the model, so it starts looking for a new # sequence # TODO: should this be done in OPFTaskDriver.setup(), instead? Is it always # desired in Nupic? self.__model.resetSequenceStates() # Have Task Driver perform its initial setup activities, including setup # callbacks self.__taskDriver.setup() # Run it! while True: # Check controlling iterator first try: next(iterTracker) except StopIteration: break # Read next input record try: inputRecord = self.__datasetReader.next() except StopIteration: break # Process input record result = self.__taskDriver.handleInputRecord(inputRecord=inputRecord) if InferenceElement.encodings in result.inferences: result.inferences.pop(InferenceElement.encodings) self.__predictionLogger.writeRecord(result) # Run periodic activities periodic.tick() # Dump the experiment metrics at the end of the task self._getAndEmitExperimentMetrics(final=True) # Have Task Driver perform its final activities self.__taskDriver.finalize() # Reset sequence states in the model, so it starts looking for a new # sequence # TODO: should this be done in OPFTaskDriver.setup(), instead? Is it always # desired in Nupic? self.__model.resetSequenceStates() def _createPeriodicActivities(self): """Creates and returns a list of activites for this TaskRunner instance Returns: a list of PeriodicActivityRequest elements """ # Initialize periodic activities periodicActivities = [] # Metrics reporting class MetricsReportCb(object): def __init__(self, taskRunner): self.__taskRunner = taskRunner return def __call__(self): self.__taskRunner._getAndEmitExperimentMetrics() reportMetrics = PeriodicActivityRequest( repeating=True, period=1000, cb=MetricsReportCb(self)) periodicActivities.append(reportMetrics) # Iteration progress class IterationProgressCb(object): PROGRESS_UPDATE_PERIOD_TICKS = 1000 def __init__(self, taskLabel, requestedIterationCount, logger): self.__taskLabel = taskLabel self.__requestedIterationCount = requestedIterationCount self.__logger = logger self.__numIterationsSoFar = 0 def __call__(self): self.__numIterationsSoFar += self.PROGRESS_UPDATE_PERIOD_TICKS self.__logger.debug("%s: ITERATION PROGRESS: %s of %s" % ( self.__taskLabel, self.__numIterationsSoFar, self.__requestedIterationCount)) iterationProgressCb = IterationProgressCb( taskLabel=self.__task['taskLabel'], requestedIterationCount=self.__task['iterationCount'], logger=self.__logger) iterationProgressReporter = PeriodicActivityRequest( repeating=True, period=IterationProgressCb.PROGRESS_UPDATE_PERIOD_TICKS, cb=iterationProgressCb) periodicActivities.append(iterationProgressReporter) return periodicActivities def _getAndEmitExperimentMetrics(self, final=False): # Get metrics metrics = self.__taskDriver.getMetrics() # Emit metrics if metrics is not None: if final: self.__metricsLogger.emitFinalMetrics(metrics) else: self.__metricsLogger.emitPeriodicMetrics(metrics) PeriodicActivityRequest = namedtuple("PeriodicActivityRequest", ("repeating", "period", "cb")) """Passed as parameter to PeriodicActivityMgr repeating: True if the activity is a repeating activite, False if one-shot period: period of activity's execution (number of "ticks") cb: a callable to call upon expiration of period; will be called as cb() """ class PeriodicActivityMgr(object): Activity = namedtuple("Activity", ("repeating", "period", "cb", "iteratorHolder")) """Activity iteratorHolder: a list holding one iterator; we use a list so that we can replace the iterator for repeating activities (a tuple would not allow it if the field was an imutable value) """ def __init__(self, requestedActivities): """ requestedActivities: a sequence of PeriodicActivityRequest elements """ self.__activities = [] for req in requestedActivities: act = self.Activity(repeating=req.repeating, period=req.period, cb=req.cb, iteratorHolder=[iter(xrange(req.period-1))]) self.__activities.append(act) def tick(self): """Activity tick handler; services all activities Returns: True if controlling iterator says it's okay to keep going; False to stop """ # Run activities whose time has come for act in self.__activities: if not act.iteratorHolder[0]: continue try: next(act.iteratorHolder[0]) except StopIteration: act.cb() if act.repeating: act.iteratorHolder[0] = iter(xrange(act.period-1)) else: act.iteratorHolder[0] = None return True def main(): """ Module-level entry point. Run according to options in sys.argv Usage: python -m python -m nupic.frameworks.opf.experiment_runner """ initLogging(verbose=True) # Initialize pseudo-random number generators (PRNGs) # # This will fix the seed that is used by numpy when generating 'random' # numbers. This allows for repeatability across experiments. initExperimentPrng() # Run it! runExperiment(sys.argv[1:]) if __name__ == "__main__": main()
agpl-3.0
rahuldhote/scikit-learn
examples/applications/plot_prediction_latency.py
233
11277
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <eustache@diemert.fr> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[i, :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[0]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
sstober/deepthought
deepthought/datasets/rwanda2013rhythms/Preprocessor.py
1
7638
''' Created on Apr 1, 2014 @author: sstober ''' import os; import glob; import csv; import math; import logging; log = logging.getLogger(__name__); import numpy as np; import theano; from pylearn2.utils.timing import log_timing from deepthought.util.fs_util import save, load; from deepthought.datasets.rwanda2013rhythms import LabelConverter def load_data_file(filename): #data = np.loadtxt(filename, dtype=float, delimiter=' ', skiprows=1); #, autostrip=True, names=False) with log_timing(log, 'loading data from {}'.format(filename)): data = np.genfromtxt(filename, dtype=theano.config.floatX, delimiter=' ', skip_header=1, autostrip=True); log.info('loaded {}'.format(data.shape)); # print data.shape; # print data[0]; # print data[-1]; return data; # with open(filename, 'rb') as csvfile: # csvreader = csv.reader(csvfile, delimiter=' ', skipinitialspace=True); # csvreader.next(); # skip header # for row in csvreader: # print row; # break def load_csv_meta_file(filename): # open in Universal mode with open(filename, 'rU') as csvfile: reader = csv.DictReader(csvfile, dialect='excel', delimiter=','); onsets = []; for line in reader: log.debug(line); # onsets[line['trial wav name']] = line['onset samples']; # onsets[line['onset samples']] = line['trial wav name']; onsets.append([line['onset samples'], line['trial wav name']]); return onsets; def load_xlsx_meta_file(filename): import xlrd; book = xlrd.open_workbook(filename, encoding_override="cp1252") sheet = book.sheet_by_index(0); onsets = []; for i in range(1, sheet.nrows): onsets.append([sheet.cell(i,2).value, sheet.cell(i,0).value.encode('ascii')]); log.debug(onsets[-1]); return onsets; def split_trial(path, trial_len): log.info('processing {}'.format(path)); datafile = glob.glob(os.path.join(path,'*.txt'))[0]; metafile = glob.glob(os.path.join(path,'*_Trials_Onsets.xlsx'))[0]; log.debug('data file: {}'.format(datafile)); log.debug('meta file: {}'.format(metafile)); onsets = load_xlsx_meta_file(metafile); data = load_data_file(datafile); log.debug(onsets); onsets.append([len(data), 'end']); # artificial last marker trials = {}; for i in xrange(len(onsets) - 1): onset, label = onsets[i]; next_onset = onsets[i+1][0]; # rounding to integers onset = int(math.floor(float(onset))); next_onset = int(math.floor(float(next_onset))); next_onset = min(onset+trial_len, next_onset); log.debug('[{}..{}) -> {}'.format(onset, next_onset, label)); trial_data = np.vstack(data[onset:next_onset]); log.debug('{} samples extracted'.format(trial_data.shape)); trials[label] = trial_data; filename = os.path.join(path, 'trials.pklz'); with log_timing(log, 'saving to {}'.format(filename)): save(filename, trials); return trials; def generate_cases(subject_id, trials, bad_channels=[]): ''' 3x60 4x60 -> 12 * 60 = 720ms -> 60ms overlap ''' label_converter = LabelConverter(); data = []; labels = []; channel_meta = []; # trial_meta = []; # trial_id = 0; for stimulus, trial_data in trials.iteritems(): label = label_converter.get_stimulus_id(stimulus); log.debug('processing {} with {} samples and label {}'.format(stimulus,trial_data.shape,label)); channels = trial_data.transpose(); for i, channel in enumerate(channels): channel_id = i+1; if channel_id in bad_channels: log.debug('skipping bad channel {}'.format(channel_id)); continue; # convert to float32 channel = np.asfarray(channel, dtype='float32'); data.append(channel); labels.append(label); # trial_meta.append([trial_id, stimulus]); channel_meta.append(i); # trial_id += 1; data = np.vstack(data); labels = np.vstack(labels); # trial_meta = np.vstack(trial_meta); channel_meta = np.vstack(channel_meta); # subject_meta = np.vstack(subject_meta); log.debug('generated {} data points and {} labels '.format(data.shape, labels.shape)); # return data, labels, trial_meta, channel_meta; return data, labels, channel_meta; # if __name__ == '__main__': def preprocess(config): # config = load_config(default_config='../train_sda.cfg'); DATA_ROOT = config.eeg.get('dataset_root', './'); SAMPLE_RATE = 400; # in Hz TRIAL_LENGTH = 32; # in sec TRIAL_LENGTH += 4; # add 4s after end of presentation TRIAL_SAMPLE_LENGTH = SAMPLE_RATE * TRIAL_LENGTH; log.info('using dataset at {}'.format(DATA_ROOT)); ''' Note from Dan: All subjects should have channels 15, 16, 17 and 18 removed [...] If you want to make them truly identical, you could remove channel 19 from the subjects with more channels, although this should be 'good' data. ''' bad_channels = {}; bad_channels[1] = [5, 6, 15, 16, 17, 18, 20, 21]; bad_channels[2] = [ 7, 8, 15, 16, 17, 18, 20, 21]; bad_channels[3] = [5, 6, 15, 16, 17, 18, 20, 21]; bad_channels[4] = [ 7, 8, 15, 16, 17, 18, 20, 21]; bad_channels[5] = [ 7, 8, 15, 16, 17, 18, 20, 21]; bad_channels[6] = [ 7, 8, 9, 12, 15, 16, 17, 18 ]; bad_channels[7] = [5, 6, 12, 15, 16, 17, 18, 20 ]; bad_channels[8] = [ 7, 8, 15, 16, 17, 18, 20, 21]; bad_channels[9] = [5, 6, 12, 15, 16, 17, 18, 20 ]; bad_channels[10] = [5, 6, 15, 16, 17, 18, 20, 21]; bad_channels[11] = [5, 6, 15, 16, 17, 18, 20, 21]; bad_channels[12] = [5, 6, 15, 16, 17, 18, 20, 21]; bad_channels[13] = [5, 6, 12, 15, 16, 17, 18, 20 ]; with log_timing(log, 'generating datasets'): for subject_id in xrange(1,14): search_path = os.path.join(DATA_ROOT, 'Sub{0:03d}*'.format(subject_id)); path = glob.glob(search_path); if path is None or len(path) == 0: log.warn('nothing found at {}'.format(search_path)); continue; else: path = path[0]; trials_filename = os.path.join(path, 'trials.pklz'); trials = None; if not os.path.isfile(trials_filename): log.debug('{} not found. running split_trial()'.format(trials_filename)); trials = split_trial(path, TRIAL_SAMPLE_LENGTH); else: with log_timing(log, 'loading data from {}'.format(trials_filename)): trials = load(trials_filename); assert trials; dataset_filename = os.path.join(path, 'dataset_13goodchannels_plus4s.pklz'); dataset = generate_cases(subject_id, trials, bad_channels[subject_id]); # = data, labels with log_timing(log, 'saving dataset to {}'.format(dataset_filename)): save(dataset_filename, dataset);
bsd-3-clause
uber/pyro
examples/eight_schools/mcmc.py
1
1818
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import argparse import logging import data import torch import pyro import pyro.distributions as dist import pyro.poutine as poutine from pyro.infer import MCMC, NUTS logging.basicConfig(format="%(message)s", level=logging.INFO) pyro.set_rng_seed(0) def model(sigma): eta = pyro.sample("eta", dist.Normal(torch.zeros(data.J), torch.ones(data.J))) mu = pyro.sample("mu", dist.Normal(torch.zeros(1), 10 * torch.ones(1))) tau = pyro.sample("tau", dist.HalfCauchy(scale=25 * torch.ones(1))) theta = mu + tau * eta return pyro.sample("obs", dist.Normal(theta, sigma)) def conditioned_model(model, sigma, y): return poutine.condition(model, data={"obs": y})(sigma) def main(args): nuts_kernel = NUTS(conditioned_model, jit_compile=args.jit) mcmc = MCMC( nuts_kernel, num_samples=args.num_samples, warmup_steps=args.warmup_steps, num_chains=args.num_chains, ) mcmc.run(model, data.sigma, data.y) mcmc.summary(prob=0.5) if __name__ == "__main__": assert pyro.__version__.startswith("1.7.0") parser = argparse.ArgumentParser(description="Eight Schools MCMC") parser.add_argument( "--num-samples", type=int, default=1000, help="number of MCMC samples (default: 1000)", ) parser.add_argument( "--num-chains", type=int, default=1, help="number of parallel MCMC chains (default: 1)", ) parser.add_argument( "--warmup-steps", type=int, default=1000, help="number of MCMC samples for warmup (default: 1000)", ) parser.add_argument("--jit", action="store_true", default=False) args = parser.parse_args() main(args)
apache-2.0
LamaHamadeh/Microsoft-DAT210x
Module 5/assignment5.py
1
5381
''' author Lama Hamadeh ''' import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib from sklearn import preprocessing from sklearn.decomposition import PCA matplotlib.style.use('ggplot') # Look Pretty #------------------------------------ def plotDecisionBoundary(model, X, y): fig = plt.figure() ax = fig.add_subplot(111) padding = 0.6 resolution = 0.0025 colors = ['royalblue','forestgreen','ghostwhite'] # Calculate the boundaries x_min, x_max = X[:, 0].min(), X[:, 0].max() y_min, y_max = X[:, 1].min(), X[:, 1].max() x_range = x_max - x_min y_range = y_max - y_min x_min -= x_range * padding y_min -= y_range * padding x_max += x_range * padding y_max += y_range * padding # Create a 2D Grid Matrix. The values stored in the matrix are the predictions of the class at at said location xx, yy = np.meshgrid(np.arange(x_min, x_max, resolution), np.arange(y_min, y_max, resolution)) # What class does the classifier say? Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour map cs = plt.contourf(xx, yy, Z, cmap=plt.cm.terrain) # Plot the test original points as well... for label in range(len(np.unique(y))): indices = np.where(y == label) plt.scatter(X[indices, 0], X[indices, 1], c=colors[label], label=str(label), alpha=0.8) p = model.get_params() plt.axis('tight') plt.title('K = ' + str(p['n_neighbors'])) #------------------------------------ # # TODO: Load up the dataset into a variable called X. Check the .head and # compare it to the file you loaded in a text editor. Make sure you're # loading your data properly--don't fail on the 1st step! # # .. your code here .. X = pd.read_csv('/Users/Admin/Desktop/DAT210x/DAT210x-master/Module5/Datasets/wheat.data') #print X.head() #------------------------------------ # # TODO: Copy the 'wheat_type' series slice out of X, and into a series # called 'y'. Then drop the original 'wheat_type' and the 'id' columns from the X # # .. your code here .. y=X['wheat_type'].copy() X.drop(labels = ['id', 'wheat_type'], inplace = True, axis = 1) #------------------------------------ # TODO: Do a quick, "ordinal" conversion of 'y'. In actuality our # classification isn't ordinal, but just as an experiment... # # .. your code here .. y = y.astype('category').cat.codes #------------------------------------ # # TODO: Basic nan munging. Fill each row's nans with the mean of the feature # # .. your code here .. #check which column have nans values in order o apply .fillna def num_missing(x): return sum(x.isnull()) #Applying per column: print "Missing values per column:" print X.apply(num_missing, axis=0) #axis=0 defines that function is to be applied on each column #As the result indicats that 'compactness', 'width' and 'groove' have nan values where #nans of compactness = 3 #nans of width = 1 #nans of groove = 4 #then we can apply the .fillna on them. X.compactness.fillna(X.compactness.mean(), inplace = True) X.width.fillna(X.width.mean(), inplace = True) X.groove.fillna(X.groove.mean(), inplace = True) #------------------------------------ # # TODO: Just like your preprocessing transformation, create a PCA # transformation as well. Fit it against your training data, and then # project your training and testing features into PCA space using the # PCA model's .transform() method. # # NOTE: This has to be done because the only way to visualize the decision # boundary in 2D would be if your KNN algo ran in 2D as well: # # .. your code here .. T = preprocessing.normalize(X) pca = PCA(n_components = 2) pca_X = pca.fit_transform(T) #------------------------------------ # # TODO: Split X into training and testing data sets using train_test_split(). # INFO: Use 0.33 test size, and use random_state=1. This is important # so that your answers are verifiable. In the real world, you wouldn't # specify a random_state. # # .. your code here .. from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(pca_X, y, test_size = 0.33, random_state = 1) #We use X_train and y_train for training (fit), and use X_test and y_test for predicting or scoring. ##------------------------------------ # # TODO: Create and train a KNeighborsClassifier. Start with K=9 neighbors. # NOTE: Be sure train your classifier against the pre-processed, PCA- # transformed training data above! You do not, of course, need to transform # your labels. # # .. your code here .. from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors = 9) knn.fit(X_train, y_train) # HINT: Ensure your KNeighbors classifier object from earlier is called 'knn' plotDecisionBoundary(knn, X_train, y_train) #------------------------------------ # # TODO: Display the accuracy score of your test data/labels, computed by # your KNeighbors model. # # NOTE: You do NOT have to run .predict before calling .score, since # .score will take care of running your predictions for you automatically. # # .. your code here .. print knn.score(X_test, y_test) #------------------------------------ # # BONUS: Instead of the ordinal conversion, try and get this assignment # working with a proper Pandas get_dummies for feature encoding. HINT: # You might have to update some of the plotDecisionBoundary code. plt.show()
mit
jlcarmic/producthunt_simulator
venv/lib/python2.7/site-packages/scipy/stats/mstats_basic.py
30
84684
""" An extension of scipy.stats.stats to support masked arrays """ # Original author (2007): Pierre GF Gerard-Marchant # TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ? # TODO : ttest_rel looks botched: what are x1,x2,v1,v2 for ? # TODO : reimplement ksonesamp from __future__ import division, print_function, absolute_import __all__ = ['argstoarray', 'betai', 'count_tied_groups', 'describe', 'f_oneway','f_value_wilks_lambda','find_repeats','friedmanchisquare', 'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis', 'ks_twosamp','ks_2samp','kurtosis','kurtosistest', 'linregress', 'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign', 'normaltest', 'obrientransform', 'pearsonr','plotting_positions','pointbiserialr', 'rankdata', 'scoreatpercentile','sem', 'sen_seasonal_slopes','signaltonoise','skew','skewtest','spearmanr', 'theilslopes','threshold','tmax','tmean','tmin','trim','trimboth', 'trimtail','trima','trimr','trimmed_mean','trimmed_std', 'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp', 'ttest_ind','ttest_rel','tvar', 'variation', 'winsorize', ] import numpy as np from numpy import ndarray import numpy.ma as ma from numpy.ma import masked, nomask from scipy._lib.six import iteritems import itertools import warnings from collections import namedtuple from . import distributions import scipy.special as special from ._stats_mstats_common import ( _find_repeats, linregress as stats_linregress, theilslopes as stats_theilslopes ) genmissingvaldoc = """ Notes ----- Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked. """ def _chk_asarray(a, axis): # Always returns a masked array, raveled for axis=None a = ma.asanyarray(a) if axis is None: a = ma.ravel(a) outaxis = 0 else: outaxis = axis return a, outaxis def _chk2_asarray(a, b, axis): a = ma.asanyarray(a) b = ma.asanyarray(b) if axis is None: a = ma.ravel(a) b = ma.ravel(b) outaxis = 0 else: outaxis = axis return a, b, outaxis def _chk_size(a,b): a = ma.asanyarray(a) b = ma.asanyarray(b) (na, nb) = (a.size, b.size) if na != nb: raise ValueError("The size of the input array should match!" " (%s <> %s)" % (na, nb)) return (a, b, na) def argstoarray(*args): """ Constructs a 2D array from a group of sequences. Sequences are filled with missing values to match the length of the longest sequence. Parameters ---------- args : sequences Group of sequences. Returns ------- argstoarray : MaskedArray A ( `m` x `n` ) masked array, where `m` is the number of arguments and `n` the length of the longest argument. Notes ----- `numpy.ma.row_stack` has identical behavior, but is called with a sequence of sequences. """ if len(args) == 1 and not isinstance(args[0], ndarray): output = ma.asarray(args[0]) if output.ndim != 2: raise ValueError("The input should be 2D") else: n = len(args) m = max([len(k) for k in args]) output = ma.array(np.empty((n,m), dtype=float), mask=True) for (k,v) in enumerate(args): output[k,:len(v)] = v output[np.logical_not(np.isfinite(output._data))] = masked return output def find_repeats(arr): """Find repeats in arr and return a tuple (repeats, repeat_count). The input is cast to float64. Masked values are discarded. Parameters ---------- arr : sequence Input array. The array is flattened if it is not 1D. Returns ------- repeats : ndarray Array of repeated values. counts : ndarray Array of counts. """ # Make sure we get a copy. ma.compressed promises a "new array", but can # actually return a reference. compr = np.asarray(ma.compressed(arr), dtype=np.float64) if compr is arr or compr.base is arr: compr = compr.copy() return _find_repeats(compr) def count_tied_groups(x, use_missing=False): """ Counts the number of tied values. Parameters ---------- x : sequence Sequence of data on which to counts the ties use_missing : bool, optional Whether to consider missing values as tied. Returns ------- count_tied_groups : dict Returns a dictionary (nb of ties: nb of groups). Examples -------- >>> from scipy.stats import mstats >>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6] >>> mstats.count_tied_groups(z) {2: 1, 3: 2} In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x). >>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6]) >>> mstats.count_tied_groups(z) {2: 2, 3: 1} >>> z[[1,-1]] = np.ma.masked >>> mstats.count_tied_groups(z, use_missing=True) {2: 2, 3: 1} """ nmasked = ma.getmask(x).sum() # We need the copy as find_repeats will overwrite the initial data data = ma.compressed(x).copy() (ties, counts) = find_repeats(data) nties = {} if len(ties): nties = dict(zip(np.unique(counts), itertools.repeat(1))) nties.update(dict(zip(*find_repeats(counts)))) if nmasked and use_missing: try: nties[nmasked] += 1 except KeyError: nties[nmasked] = 1 return nties def rankdata(data, axis=None, use_missing=False): """Returns the rank (also known as order statistics) of each data point along the given axis. If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is False, or set to the average rank of the unmasked values if use_missing is True. Parameters ---------- data : sequence Input data. The data is transformed to a masked array axis : {None,int}, optional Axis along which to perform the ranking. If None, the array is first flattened. An exception is raised if the axis is specified for arrays with a dimension larger than 2 use_missing : bool, optional Whether the masked values have a rank of 0 (False) or equal to the average rank of the unmasked values (True). """ def _rank1d(data, use_missing=False): n = data.count() rk = np.empty(data.size, dtype=float) idx = data.argsort() rk[idx[:n]] = np.arange(1,n+1) if use_missing: rk[idx[n:]] = (n+1)/2. else: rk[idx[n:]] = 0 repeats = find_repeats(data.copy()) for r in repeats[0]: condition = (data == r).filled(False) rk[condition] = rk[condition].mean() return rk data = ma.array(data, copy=False) if axis is None: if data.ndim > 1: return _rank1d(data.ravel(), use_missing).reshape(data.shape) else: return _rank1d(data, use_missing) else: return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray) ModeResult = namedtuple('ModeResult', ('mode', 'count')) def mode(a, axis=0): """ Returns an array of the modal (most common) value in the passed array. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. Returns ------- mode : ndarray Array of modal values. count : ndarray Array of counts for each mode. Notes ----- For more details, see `stats.mode`. """ a, axis = _chk_asarray(a, axis) def _mode1D(a): (rep,cnt) = find_repeats(a) if not cnt.ndim: return (0, 0) elif cnt.size: return (rep[cnt.argmax()], cnt.max()) else: not_masked_indices = ma.flatnotmasked_edges(a) first_not_masked_index = not_masked_indices[0] return (a[first_not_masked_index], 1) if axis is None: output = _mode1D(ma.ravel(a)) output = (ma.array(output[0]), ma.array(output[1])) else: output = ma.apply_along_axis(_mode1D, axis, a) newshape = list(a.shape) newshape[axis] = 1 slices = [slice(None)] * output.ndim slices[axis] = 0 modes = output[tuple(slices)].reshape(newshape) slices[axis] = 1 counts = output[tuple(slices)].reshape(newshape) output = (modes, counts) return ModeResult(*output) @np.deprecate(message="mstats.betai is deprecated in scipy 0.17.0; " "use special.betainc instead.") def betai(a, b, x): """ betai() is deprecated in scipy 0.17.0. For details about this function, see `stats.betai`. """ return _betai(a, b, x) def _betai(a, b, x): x = np.asanyarray(x) x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x) def msign(x): """Returns the sign of x, or 0 if x is masked.""" return ma.filled(np.sign(x), 0) def pearsonr(x,y): """ Calculates a Pearson correlation coefficient and the p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as `x` increases, so does `y`. Negative correlations imply that as `x` increases, `y` decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : 1-D array_like Input y : 1-D array_like Input Returns ------- pearsonr : float Pearson's correlation coefficient, 2-tailed p-value. References ---------- http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) # Get the common mask and the total nb of unmasked elements m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() df = n-2 if df < 0: return (masked, masked) (mx, my) = (x.mean(), y.mean()) (xm, ym) = (x-mx, y-my) r_num = ma.add.reduce(xm*ym) r_den = ma.sqrt(ma.dot(xm,xm) * ma.dot(ym,ym)) r = r_num / r_den # Presumably, if r > 1, then it is only some small artifact of floating # point arithmetic. r = min(r, 1.0) r = max(r, -1.0) df = n - 2 if r is masked or abs(r) == 1.0: prob = 0. else: t_squared = (df / ((1.0 - r) * (1.0 + r))) * r * r prob = _betai(0.5*df, 0.5, df/(df + t_squared)) return r, prob SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) def spearmanr(x, y, use_ties=True): """ Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as `x` increases, so does `y`. Negative correlations imply that as `x` increases, `y` decreases. Missing values are discarded pair-wise: if a value is missing in `x`, the corresponding value in `y` is masked. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : array_like The length of `x` must be > 2. y : array_like The length of `y` must be > 2. use_ties : bool, optional Whether the correction for ties should be computed. Returns ------- correlation : float Spearman correlation coefficient pvalue : float 2-tailed p-value. References ---------- [CRCProbStat2000] section 14.7 """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) df = n-2 if df < 0: raise ValueError("The input must have at least 3 entries!") # Gets the ranks and rank differences rankx = rankdata(x) ranky = rankdata(y) dsq = np.add.reduce((rankx-ranky)**2) # Tie correction if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum(v*k*(k**2-1) for (k,v) in iteritems(xties))/12. corr_y = np.sum(v*k*(k**2-1) for (k,v) in iteritems(yties))/12. else: corr_x = corr_y = 0 denom = n*(n**2 - 1)/6. if corr_x != 0 or corr_y != 0: rho = denom - dsq - corr_x - corr_y rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y)) else: rho = 1. - dsq/denom t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho if t is masked: prob = 0. else: prob = _betai(0.5*df, 0.5, df/(df + t * t)) return SpearmanrResult(rho, prob) KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue')) def kendalltau(x, y, use_ties=True, use_missing=False): """ Computes Kendall's rank correlation tau on two variables *x* and *y*. Parameters ---------- x : sequence First data list (for example, time). y : sequence Second data list. use_ties : {True, False}, optional Whether ties correction should be performed. use_missing : {False, True}, optional Whether missing data should be allocated a rank of 0 (False) or the average rank (True) Returns ------- correlation : float Kendall tau pvalue : float Approximate 2-side p-value. """ (x, y, n) = _chk_size(x, y) (x, y) = (x.flatten(), y.flatten()) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) n -= m.sum() if n < 2: return KendalltauResult(np.nan, np.nan) rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0) ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0) idx = rx.argsort() (rx, ry) = (rx[idx], ry[idx]) C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum([v*k*(k-1) for (k,v) in iteritems(xties)], dtype=float) corr_y = np.sum([v*k*(k-1) for (k,v) in iteritems(yties)], dtype=float) denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.) else: denom = n*(n-1)/2. tau = (C-D) / denom var_s = n*(n-1)*(2*n+5) if use_ties: var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(xties)) var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(yties)) v1 = np.sum([v*k*(k-1) for (k, v) in iteritems(xties)], dtype=float) *\ np.sum([v*k*(k-1) for (k, v) in iteritems(yties)], dtype=float) v1 /= 2.*n*(n-1) if n > 2: v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(xties)], dtype=float) * \ np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(yties)], dtype=float) v2 /= 9.*n*(n-1)*(n-2) else: v2 = 0 else: v1 = v2 = 0 var_s /= 18. var_s += (v1 + v2) z = (C-D)/np.sqrt(var_s) prob = special.erfc(abs(z)/np.sqrt(2)) return KendalltauResult(tau, prob) def kendalltau_seasonal(x): """ Computes a multivariate Kendall's rank correlation tau, for seasonal data. Parameters ---------- x : 2-D ndarray Array of seasonal data, with seasons in columns. """ x = ma.array(x, subok=True, copy=False, ndmin=2) (n,m) = x.shape n_p = x.count(0) S_szn = np.sum(msign(x[i:]-x[i]).sum(0) for i in range(n)) S_tot = S_szn.sum() n_tot = x.count() ties = count_tied_groups(x.compressed()) corr_ties = np.sum(v*k*(k-1) for (k,v) in iteritems(ties)) denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2. R = rankdata(x, axis=0, use_missing=True) K = ma.empty((m,m), dtype=int) covmat = ma.empty((m,m), dtype=float) denom_szn = ma.empty(m, dtype=float) for j in range(m): ties_j = count_tied_groups(x[:,j].compressed()) corr_j = np.sum(v*k*(k-1) for (k,v) in iteritems(ties_j)) cmb = n_p[j]*(n_p[j]-1) for k in range(j,m,1): K[j,k] = np.sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum() for i in range(n)) covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() - n*(n_p[j]+1)*(n_p[k]+1))/3. K[k,j] = K[j,k] covmat[k,j] = covmat[j,k] denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2. var_szn = covmat.diagonal() z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn) z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum()) z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum()) prob_szn = special.erfc(abs(z_szn)/np.sqrt(2)) prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2)) prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2)) chi2_tot = (z_szn*z_szn).sum() chi2_trd = m * z_szn.mean()**2 output = {'seasonal tau': S_szn/denom_szn, 'global tau': S_tot/denom_tot, 'global tau (alt)': S_tot/denom_szn.sum(), 'seasonal p-value': prob_szn, 'global p-value (indep)': prob_tot_ind, 'global p-value (dep)': prob_tot_dep, 'chi2 total': chi2_tot, 'chi2 trend': chi2_trd, } return output PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation', 'pvalue')) def pointbiserialr(x, y): """Calculates a point biserial correlation coefficient and its p-value. Parameters ---------- x : array_like of bools Input array. y : array_like Input array. Returns ------- correlation : float R value pvalue : float 2-tailed p-value Notes ----- Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked. For more details on `pointbiserialr`, see `stats.pointbiserialr`. """ x = ma.fix_invalid(x, copy=True).astype(bool) y = ma.fix_invalid(y, copy=True).astype(float) # Get rid of the missing data m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: unmask = np.logical_not(m) x = x[unmask] y = y[unmask] n = len(x) # phat is the fraction of x values that are True phat = x.sum() / float(n) y0 = y[~x] # y-values where x is False y1 = y[x] # y-values where x is True y0m = y0.mean() y1m = y1.mean() rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std() df = n-2 t = rpb*ma.sqrt(df/(1.0-rpb**2)) prob = _betai(0.5*df, 0.5, df/(df+t*t)) return PointbiserialrResult(rpb, prob) LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) def linregress(x, y=None): """ Linear regression calculation Note that the non-masked version is used, and that this docstring is replaced by the non-masked docstring + some info on missing data. """ if y is None: x = ma.array(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = ma.array(x) y = ma.array(y) x = x.flatten() y = y.flatten() m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False) if m is not nomask: x = ma.array(x, mask=m) y = ma.array(y, mask=m) if np.any(~m): slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m], y.data[~m]) else: # All data is masked return None, None, None, None, None else: slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data) return LinregressResult(slope, intercept, r, prob, sterrest) if stats_linregress.__doc__: linregress.__doc__ = stats_linregress.__doc__ + genmissingvaldoc def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- For more details on `theilslopes`, see `stats.theilslopes`. """ y = ma.asarray(y).flatten() if x is None: x = ma.arange(len(y), dtype=float) else: x = ma.asarray(x).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x))) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) y._mask = x._mask = m # Disregard any masked elements of x or y y = y.compressed() x = x.compressed().astype(float) # We now have unmasked arrays so can use `stats.theilslopes` return stats_theilslopes(y, x, alpha=alpha) def sen_seasonal_slopes(x): x = ma.array(x, subok=True, copy=False, ndmin=2) (n,_) = x.shape # Get list of slopes per season szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None] for i in range(n)]) szn_medslopes = ma.median(szn_slopes, axis=0) medslope = ma.median(szn_slopes, axis=None) return szn_medslopes, medslope Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue')) def ttest_1samp(a, popmean, axis=0): """ Calculates the T-test for the mean of ONE group of scores. Parameters ---------- a : array_like sample observation popmean : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension axis : int or None, optional Axis along which to compute test. If None, compute over the whole array `a`. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- For more details on `ttest_1samp`, see `stats.ttest_1samp`. """ a, axis = _chk_asarray(a, axis) if a.size == 0: return (np.nan, np.nan) x = a.mean(axis=axis) v = a.var(axis=axis, ddof=1) n = a.count(axis=axis) # force df to be an array for masked division not to throw a warning df = ma.asanyarray(n - 1.0) svar = ((n - 1.0) * v) / df with np.errstate(divide='ignore', invalid='ignore'): t = (x - popmean) / ma.sqrt(svar / n) prob = special.betainc(0.5*df, 0.5, df/(df + t*t)) return Ttest_1sampResult(t, prob) ttest_onesamp = ttest_1samp Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue')) def ttest_ind(a, b, axis=0, equal_var=True): """ Calculates the T-test for the means of TWO INDEPENDENT samples of scores. Parameters ---------- a, b : array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. equal_var : bool, optional If True, perform a standard independent 2 sample test that assumes equal population variances. If False, perform Welch's t-test, which does not assume equal population variance. .. versionadded:: 0.17.0 Returns ------- statistic : float or array The calculated t-statistic. pvalue : float or array The two-tailed p-value. Notes ----- For more details on `ttest_ind`, see `stats.ttest_ind`. """ a, b, axis = _chk2_asarray(a, b, axis) if a.size == 0 or b.size == 0: return Ttest_indResult(np.nan, np.nan) (x1, x2) = (a.mean(axis), b.mean(axis)) (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1)) (n1, n2) = (a.count(axis), b.count(axis)) if equal_var: # force df to be an array for masked division not to throw a warning df = ma.asanyarray(n1 + n2 - 2.0) svar = ((n1-1)*v1+(n2-1)*v2) / df denom = ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # n-D computation here! else: vn1 = v1/n1 vn2 = v2/n2 with np.errstate(divide='ignore', invalid='ignore'): df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)) # If df is undefined, variances are zero. # It doesn't matter what df is as long as it is not NaN. df = np.where(np.isnan(df), 1, df) denom = ma.sqrt(vn1 + vn2) with np.errstate(divide='ignore', invalid='ignore'): t = (x1-x2) / denom probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape) return Ttest_indResult(t, probs.squeeze()) Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue')) def ttest_rel(a, b, axis=0): """ Calculates the T-test on TWO RELATED samples of scores, a and b. Parameters ---------- a, b : array_like The arrays must have the same shape. axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- For more details on `ttest_rel`, see `stats.ttest_rel`. """ a, b, axis = _chk2_asarray(a, b, axis) if len(a) != len(b): raise ValueError('unequal length arrays') if a.size == 0 or b.size == 0: return Ttest_relResult(np.nan, np.nan) n = a.count(axis) df = ma.asanyarray(n-1.0) d = (a-b).astype('d') dm = d.mean(axis) v = d.var(axis=axis, ddof=1) denom = ma.sqrt(v / n) with np.errstate(divide='ignore', invalid='ignore'): t = dm / denom probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape).squeeze() return Ttest_relResult(t, probs) MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue')) def mannwhitneyu(x,y, use_continuity=True): """ Computes the Mann-Whitney statistic Missing values in `x` and/or `y` are discarded. Parameters ---------- x : sequence Input y : sequence Input use_continuity : {True, False}, optional Whether a continuity correction (1/2.) should be taken into account. Returns ------- statistic : float The Mann-Whitney statistics pvalue : float Approximate p-value assuming a normal distribution. """ x = ma.asarray(x).compressed().view(ndarray) y = ma.asarray(y).compressed().view(ndarray) ranks = rankdata(np.concatenate([x,y])) (nx, ny) = (len(x), len(y)) nt = nx + ny U = ranks[:nx].sum() - nx*(nx+1)/2. U = max(U, nx*ny - U) u = nx*ny - U mu = (nx*ny)/2. sigsq = (nt**3 - nt)/12. ties = count_tied_groups(ranks) sigsq -= np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/12. sigsq *= nx*ny/float(nt*(nt-1)) if use_continuity: z = (U - 1/2. - mu) / ma.sqrt(sigsq) else: z = (U - mu) / ma.sqrt(sigsq) prob = special.erfc(abs(z)/np.sqrt(2)) return MannwhitneyuResult(u, prob) KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue')) def kruskal(*args): """ Compute the Kruskal-Wallis H-test for independent samples Parameters ---------- sample1, sample2, ... : array_like Two or more arrays with the sample measurements can be given as arguments. Returns ------- statistic : float The Kruskal-Wallis H statistic, corrected for ties pvalue : float The p-value for the test using the assumption that H has a chi square distribution Notes ----- For more details on `kruskal`, see `stats.kruskal`. """ output = argstoarray(*args) ranks = ma.masked_equal(rankdata(output, use_missing=False), 0) sumrk = ranks.sum(-1) ngrp = ranks.count(-1) ntot = ranks.count() H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1) # Tie correction ties = count_tied_groups(ranks) T = 1. - np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/float(ntot**3-ntot) if T == 0: raise ValueError('All numbers are identical in kruskal') H /= T df = len(output) - 1 prob = distributions.chi2.sf(H, df) return KruskalResult(H, prob) kruskalwallis = kruskal def ks_twosamp(data1, data2, alternative="two-sided"): """ Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded. Parameters ---------- data1 : array_like First data set data2 : array_like Second data set alternative : {'two-sided', 'less', 'greater'}, optional Indicates the alternative hypothesis. Default is 'two-sided'. Returns ------- d : float Value of the Kolmogorov Smirnov test p : float Corresponding p-value. """ (data1, data2) = (ma.asarray(data1), ma.asarray(data2)) (n1, n2) = (data1.count(), data2.count()) n = (n1*n2/float(n1+n2)) mix = ma.concatenate((data1.compressed(), data2.compressed())) mixsort = mix.argsort(kind='mergesort') csum = np.where(mixsort < n1, 1./n1, -1./n2).cumsum() # Check for ties if len(np.unique(mix)) < (n1+n2): csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]] alternative = str(alternative).lower()[0] if alternative == 't': d = ma.abs(csum).max() prob = special.kolmogorov(np.sqrt(n)*d) elif alternative == 'l': d = -csum.min() prob = np.exp(-2*n*d**2) elif alternative == 'g': d = csum.max() prob = np.exp(-2*n*d**2) else: raise ValueError("Invalid value for the alternative hypothesis: " "should be in 'two-sided', 'less' or 'greater'") return (d, prob) ks_2samp = ks_twosamp @np.deprecate(message="mstats.threshold is deprecated in scipy 0.17.0") def threshold(a, threshmin=None, threshmax=None, newval=0): """ Clip array to a given value. Similar to numpy.clip(), except that values less than `threshmin` or greater than `threshmax` are replaced by `newval`, instead of by `threshmin` and `threshmax` respectively. Parameters ---------- a : ndarray Input data threshmin : {None, float}, optional Lower threshold. If None, set to the minimum value. threshmax : {None, float}, optional Upper threshold. If None, set to the maximum value. newval : {0, float}, optional Value outside the thresholds. Returns ------- threshold : ndarray Returns `a`, with values less then `threshmin` and values greater `threshmax` replaced with `newval`. """ a = ma.array(a, copy=True) mask = np.zeros(a.shape, dtype=bool) if threshmin is not None: mask |= (a < threshmin).filled(False) if threshmax is not None: mask |= (a > threshmax).filled(False) a[mask] = newval return a def trima(a, limits=None, inclusive=(True,True)): """ Trims an array by masking the data outside some given limits. Returns a masked version of the input array. Parameters ---------- a : array_like Input array. limits : {None, tuple}, optional Tuple of (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit will be masked. A limit is None indicates an open interval. inclusive : (bool, bool) tuple, optional Tuple of (lower flag, upper flag), indicating whether values exactly equal to the lower (upper) limit are allowed. """ a = ma.asarray(a) a.unshare_mask() if (limits is None) or (limits == (None, None)): return a (lower_lim, upper_lim) = limits (lower_in, upper_in) = inclusive condition = False if lower_lim is not None: if lower_in: condition |= (a < lower_lim) else: condition |= (a <= lower_lim) if upper_lim is not None: if upper_in: condition |= (a > upper_lim) else: condition |= (a >= upper_lim) a[condition.filled(True)] = masked return a def trimr(a, limits=None, inclusive=(True, True), axis=None): """ Trims an array by masking some proportion of the data on each end. Returns a masked version of the input array. Parameters ---------- a : sequence Input array. limits : {None, tuple}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)). The value of one limit can be set to None to indicate an open interval. inclusive : {(True,True) tuple}, optional Tuple of flags indicating whether the number of data being masked on the left (right) end should be truncated (True) or rounded (False) to integers. axis : {None,int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. """ def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive): n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n - np.round(n*up_limit) a[idx[upidx:]] = masked return a a = ma.asarray(a) a.unshare_mask() if limits is None: return a # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if axis is None: shp = a.shape return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp) else: return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc) trimdoc = """ Parameters ---------- a : sequence Input array limits : {None, tuple}, optional If `relative` is False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If `relative` is True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed inclusive : {(bool, bool) tuple}, optional If `relative` is False, tuple indicating whether values exactly equal to the absolute limits are allowed. If `relative` is True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). relative : bool, optional Whether to consider the limits as absolute values (False) or proportions to cut (True). axis : int, optional Axis along which to trim. """ def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None): """ Trims an array by masking the data outside some given limits. Returns a masked version of the input array. %s Examples -------- >>> from scipy.stats.mstats import trim >>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10] >>> print(trim(z,(3,8))) [-- -- 3 4 5 6 7 8 -- --] >>> print(trim(z,(0.1,0.2),relative=True)) [-- 2 3 4 5 6 7 8 -- --] """ if relative: return trimr(a, limits=limits, inclusive=inclusive, axis=axis) else: return trima(a, limits=limits, inclusive=inclusive) if trim.__doc__ is not None: trim.__doc__ = trim.__doc__ % trimdoc def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None): """ Trims the smallest and largest data values. Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and ``int(proportiontocut * n)`` largest values of data along the given axis, where n is the number of unmasked values before trimming. Parameters ---------- data : ndarray Data to trim. proportiontocut : float, optional Percentage of trimming (as a float between 0 and 1). If n is the number of unmasked values before trimming, the number of values after trimming is ``(1 - 2*proportiontocut) * n``. Default is 0.2. inclusive : {(bool, bool) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : int, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ return trimr(data, limits=(proportiontocut,proportiontocut), inclusive=inclusive, axis=axis) def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True), axis=None): """ Trims the data by masking values from one tail. Parameters ---------- data : array_like Data to trim. proportiontocut : float, optional Percentage of trimming. If n is the number of unmasked values before trimming, the number of values after trimming is ``(1 - proportiontocut) * n``. Default is 0.2. tail : {'left','right'}, optional If 'left' the `proportiontocut` lowest values will be masked. If 'right' the `proportiontocut` highest values will be masked. Default is 'left'. inclusive : {(bool, bool) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). Default is (True, True). axis : int, optional Axis along which to perform the trimming. If None, the input array is first flattened. Default is None. Returns ------- trimtail : ndarray Returned array of same shape as `data` with masked tail values. """ tail = str(tail).lower()[0] if tail == 'l': limits = (proportiontocut,None) elif tail == 'r': limits = (None, proportiontocut) else: raise TypeError("The tail argument should be in ('left','right')") return trimr(data, limits=limits, axis=axis, inclusive=inclusive) trim1 = trimtail def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None): """Returns the trimmed mean of the data along the given axis. %s """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis) else: return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis) def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed variance of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits, inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.var(axis=axis, ddof=ddof) def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed standard deviation of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits,inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.std(axis=axis,ddof=ddof) def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None): """ Returns the standard error of the trimmed mean along the given axis. Parameters ---------- a : sequence Input array limits : {(0.1,0.1), tuple of float}, optional tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. If n is the number of unmasked data before trimming, the values smaller than ``n * limits[0]`` and the values larger than ``n * `limits[1]`` are masked, and the total number of unmasked data after trimming is ``n * (1.-sum(limits))``. In each case, the value of one limit can be set to None to indicate an open interval. If `limits` is None, no trimming is performed. inclusive : {(bool, bool) tuple} optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : int, optional Axis along which to trim. Returns ------- trimmed_stde : scalar or ndarray """ def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive): "Returns the standard error of the trimmed mean for a 1D input data." n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n - np.round(n*up_limit) a[idx[upidx:]] = masked a[idx[:lowidx]] = a[idx[lowidx]] a[idx[upidx:]] = a[idx[upidx-1]] winstd = a.std(ddof=1) return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a))) a = ma.array(a, copy=True, subok=True) a.unshare_mask() if limits is None: return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis)) if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if (axis is None): return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc) else: if a.ndim > 2: raise ValueError("Array 'a' must be at most two dimensional, but got a.ndim = %d" % a.ndim) return ma.apply_along_axis(_trimmed_stde_1D, axis, a, lolim,uplim,loinc,upinc) def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am def tmean(a, limits=None, inclusive=(True, True), axis=None): """ Compute the trimmed mean. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. If None, compute over the whole array. Default is None. Returns ------- tmean : float Notes ----- For more details on `tmean`, see `stats.tmean`. """ return trima(a, limits=limits, inclusive=inclusive).mean(axis=axis) def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed variance This function computes the sample variance of an array of values, while ignoring values which are outside of given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. If None, compute over the whole array. Default is zero. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tvar : float Trimmed variance. Notes ----- For more details on `tvar`, see `stats.tvar`. """ a = a.astype(float).ravel() if limits is None: n = (~a.mask).sum() # todo: better way to do that? return np.ma.var(a) * n/(n-1.) am = _mask_to_limits(a, limits=limits, inclusive=inclusive) return np.ma.var(am, axis=axis, ddof=ddof) def tmin(a, lowerlimit=None, axis=0, inclusive=True): """ Compute the trimmed minimum Parameters ---------- a : array_like array of values lowerlimit : None or float, optional Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the lower limit are included. The default value is True. Returns ------- tmin : float, int or ndarray Notes ----- For more details on `tmin`, see `stats.tmin`. """ a, axis = _chk_asarray(a, axis) am = trima(a, (lowerlimit, None), (inclusive, False)) return ma.minimum.reduce(am, axis) def tmax(a, upperlimit=None, axis=0, inclusive=True): """ Compute the trimmed maximum This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit. Parameters ---------- a : array_like array of values upperlimit : None or float, optional Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the upper limit are included. The default value is True. Returns ------- tmax : float, int or ndarray Notes ----- For more details on `tmax`, see `stats.tmax`. """ a, axis = _chk_asarray(a, axis) am = trima(a, (None, upperlimit), (False, inclusive)) return ma.maximum.reduce(am, axis) def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed standard error of the mean. This function finds the standard error of the mean for given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. If None, compute over the whole array. Default is zero. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tsem : float Notes ----- For more details on `tsem`, see `stats.tsem`. """ a = ma.asarray(a).ravel() if limits is None: n = float(a.count()) return a.std(axis=axis, ddof=ddof)/ma.sqrt(n) am = trima(a.ravel(), limits, inclusive) sd = np.sqrt(am.var(axis=axis, ddof=ddof)) return sd / np.sqrt(am.count()) def winsorize(a, limits=None, inclusive=(True, True), inplace=False, axis=None): """Returns a Winsorized version of the input array. The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set to the (1 - limits[1])th percentile. Masked values are skipped. Parameters ---------- a : sequence Input array. limits : {None, tuple of float}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) The value of one limit can be set to None to indicate an open interval. inclusive : {(True, True) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). inplace : {False, True}, optional Whether to winsorize in place (True) or to use a copy (False) axis : {None, int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. Notes ----- This function is applied to reduce the effect of possibly spurious outliers by limiting the extreme values. """ def _winsorize1D(a, low_limit, up_limit, low_include, up_include): n = a.count() idx = a.argsort() if low_limit: if low_include: lowidx = int(low_limit * n) else: lowidx = np.round(low_limit * n) a[idx[:lowidx]] = a[idx[lowidx]] if up_limit is not None: if up_include: upidx = n - int(n * up_limit) else: upidx = n - np.round(n * up_limit) a[idx[upidx:]] = a[idx[upidx - 1]] return a # We are going to modify a: better make a copy a = ma.array(a, copy=np.logical_not(inplace)) if limits is None: return a if (not isinstance(limits, tuple)) and isinstance(limits, float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if axis is None: shp = a.shape return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc).reshape(shp) else: return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc, upinc) def moment(a, moment=1, axis=0): """ Calculates the nth moment about the mean for a sample. Parameters ---------- a : array_like data moment : int, optional order of central moment that is returned axis : int or None, optional Axis along which the central moment is computed. Default is 0. If None, compute over the whole array `a`. Returns ------- n-th central moment : ndarray or float The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done. Notes ----- For more details about `moment`, see `stats.moment`. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: # Exponentiation by squares: form exponent sequence n_list = [moment] current_n = moment while current_n > 2: if current_n % 2: current_n = (current_n-1)/2 else: current_n /= 2 n_list.append(current_n) # Starting point for exponentiation by squares a_zero_mean = a - ma.expand_dims(a.mean(axis), axis) if n_list[-1] == 1: s = a_zero_mean.copy() else: s = a_zero_mean**2 # Perform multiplications for n in n_list[-2::-1]: s = s**2 if n % 2: s *= a_zero_mean return s.mean(axis) def variation(a, axis=0): """ Computes the coefficient of variation, the ratio of the biased standard deviation to the mean. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array `a`. Returns ------- variation : ndarray The calculated variation along the requested axis. Notes ----- For more details about `variation`, see `stats.variation`. """ a, axis = _chk_asarray(a, axis) return a.std(axis)/a.mean(axis) def skew(a, axis=0, bias=True): """ Computes the skewness of a data set. Parameters ---------- a : ndarray data axis : int or None, optional Axis along which skewness is calculated. Default is 0. If None, compute over the whole array `a`. bias : bool, optional If False, then the calculations are corrected for statistical bias. Returns ------- skewness : ndarray The skewness of values along an axis, returning 0 where all values are equal. Notes ----- For more details about `skew`, see `stats.skew`. """ a, axis = _chk_asarray(a,axis) n = a.count(axis) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m3 / m2**1.5) finally: np.seterr(**olderr) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5 np.place(vals, can_correct, nval) return vals def kurtosis(a, axis=0, fisher=True, bias=True): """ Computes the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators Use `kurtosistest` to see if result is close enough to normal. Parameters ---------- a : array data for which the kurtosis is calculated axis : int or None, optional Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array `a`. fisher : bool, optional If True, Fisher's definition is used (normal ==> 0.0). If False, Pearson's definition is used (normal ==> 3.0). bias : bool, optional If False, then the calculations are corrected for statistical bias. Returns ------- kurtosis : array The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition. Notes ----- For more details about `kurtosis`, see `stats.kurtosis`. """ a, axis = _chk_asarray(a, axis) m2 = moment(a, 2, axis) m4 = moment(a, 4, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: n = a.count(axis) can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0) if can_correct.any(): n = np.extract(can_correct, n) m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0) np.place(vals, can_correct, nval+3.0) if fisher: return vals - 3 else: return vals DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis')) def describe(a, axis=0, ddof=0, bias=True): """ Computes several descriptive statistics of the passed array. Parameters ---------- a : array_like Data array axis : int or None, optional Axis along which to calculate statistics. Default 0. If None, compute over the whole array `a`. ddof : int, optional degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe bias : bool, optional If False, then the skewness and kurtosis calculations are corrected for statistical bias. Returns ------- nobs : int (size of the data (discarding missing values) minmax : (int, int) min, max mean : float arithmetic mean variance : float unbiased variance skewness : float biased skewness kurtosis : float biased kurtosis Examples -------- >>> from scipy.stats.mstats import describe >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) >>> describe(ma) DescribeResult(nobs=array(3), minmax=(masked_array(data = 0, mask = False, fill_value = 999999) , masked_array(data = 2, mask = False, fill_value = 999999) ), mean=1.0, variance=0.66666666666666663, skewness=masked_array(data = 0.0, mask = False, fill_value = 1e+20) , kurtosis=-1.5) """ a, axis = _chk_asarray(a, axis) n = a.count(axis) mm = (ma.minimum.reduce(a), ma.maximum.reduce(a)) m = a.mean(axis) v = a.var(axis, ddof=ddof) sk = skew(a, axis, bias=bias) kurt = kurtosis(a, axis, bias=bias) return DescribeResult(n, mm, m, v, sk, kurt) def stde_median(data, axis=None): """Returns the McKean-Schrader estimate of the standard error of the sample median along the given axis. masked values are discarded. Parameters ---------- data : ndarray Data to trim. axis : {None,int}, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ def _stdemed_1D(data): data = np.sort(data.compressed()) n = len(data) z = 2.5758293035489004 k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0)) return ((data[n-k] - data[k-1])/(2.*z)) data = ma.array(data, copy=False, subok=True) if (axis is None): return _stdemed_1D(data) else: if data.ndim > 2: raise ValueError("Array 'data' must be at most two dimensional, " "but got data.ndim = %d" % data.ndim) return ma.apply_along_axis(_stdemed_1D, axis, data) SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue')) def skewtest(a, axis=0): """ Tests whether the skew is different from the normal distribution. Parameters ---------- a : array The data to be tested axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float The computed z-score for this test. pvalue : float a 2-sided p-value for the hypothesis test Notes ----- For more details about `skewtest`, see `stats.skewtest`. """ a, axis = _chk_asarray(a, axis) if axis is None: a = a.ravel() axis = 0 b2 = skew(a,axis) n = a.count(axis) if np.min(n) < 8: raise ValueError( "skewtest is not valid with less than 8 samples; %i samples" " were given." % np.min(n)) y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2))) beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9)) W2 = -1 + ma.sqrt(2*(beta2-1)) delta = 1/ma.sqrt(0.5*ma.log(W2)) alpha = ma.sqrt(2.0/(W2-1)) y = ma.where(y == 0, 1, y) Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1)) return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue')) def kurtosistest(a, axis=0): """ Tests whether a dataset has normal kurtosis Parameters ---------- a : array array of the sample data axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float The computed z-score for this test. pvalue : float The 2-sided p-value for the hypothesis test Notes ----- For more details about `kurtosistest`, see `stats.kurtosistest`. """ a, axis = _chk_asarray(a, axis) n = a.count(axis=axis) if np.min(n) < 5: raise ValueError( "kurtosistest requires at least 5 observations; %i observations" " were given." % np.min(n)) if np.min(n) < 20: warnings.warn( "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % np.min(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) x = (b2-E)/ma.sqrt(varb2) sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2./(9.0*A) denom = 1 + x*ma.sqrt(2/(A-4.0)) if np.ma.isMaskedArray(denom): # For multi-dimensional array input denom[denom < 0] = masked elif denom < 0: denom = masked term2 = ma.power((1-2.0/A)/denom,1/3.0) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue')) def normaltest(a, axis=0): """ Tests whether a sample differs from a normal distribution. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. Notes ----- For more details about `normaltest`, see `stats.normaltest`. """ a, axis = _chk_asarray(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return NormaltestResult(k2, distributions.chi2.sf(k2, 2)) def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()): """ Computes empirical quantiles for a data array. Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``, where ``x[j]`` is the j-th order statistic, and gamma is a function of ``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and ``g = n*p + m - j``. Reinterpreting the above equations to compare to **R** lead to the equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)`` Typical values of (alphap,betap) are: - (0,1) : ``p(k) = k/n`` : linear interpolation of cdf (**R** type 4) - (.5,.5) : ``p(k) = (k - 1/2.)/n`` : piecewise linear function (**R** type 5) - (0,0) : ``p(k) = k/(n+1)`` : (**R** type 6) - (1,1) : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])]. (**R** type 7, **R** default) - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (**R** type 8) - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (**R** type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM Parameters ---------- a : array_like Input data, as a sequence or array of dimension at most 2. prob : array_like, optional List of quantiles to compute. alphap : float, optional Plotting positions parameter, default is 0.4. betap : float, optional Plotting positions parameter, default is 0.4. axis : int, optional Axis along which to perform the trimming. If None (default), the input array is first flattened. limit : tuple, optional Tuple of (lower, upper) values. Values of `a` outside this open interval are ignored. Returns ------- mquantiles : MaskedArray An array containing the calculated quantiles. Notes ----- This formulation is very similar to **R** except the calculation of ``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined with each type. References ---------- .. [1] *R* statistical software: http://www.r-project.org/ .. [2] *R* ``quantile`` function: http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html Examples -------- >>> from scipy.stats.mstats import mquantiles >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.]) >>> mquantiles(a) array([ 19.2, 40. , 42.8]) Using a 2D array, specifying axis and limit. >>> data = np.array([[ 6., 7., 1.], ... [ 47., 15., 2.], ... [ 49., 36., 3.], ... [ 15., 39., 4.], ... [ 42., 40., -999.], ... [ 41., 41., -999.], ... [ 7., -999., -999.], ... [ 39., -999., -999.], ... [ 43., -999., -999.], ... [ 40., -999., -999.], ... [ 36., -999., -999.]]) >>> print(mquantiles(data, axis=0, limit=(0, 50))) [[ 19.2 14.6 1.45] [ 40. 37.5 2.5 ] [ 42.8 40.05 3.55]] >>> data[:, 2] = -999. >>> print(mquantiles(data, axis=0, limit=(0, 50))) [[19.200000000000003 14.6 --] [40.0 37.5 --] [42.800000000000004 40.05 --]] """ def _quantiles1D(data,m,p): x = np.sort(data.compressed()) n = len(x) if n == 0: return ma.array(np.empty(len(p), dtype=float), mask=True) elif n == 1: return ma.array(np.resize(x, p.shape), mask=nomask) aleph = (n*p + m) k = np.floor(aleph.clip(1, n-1)).astype(int) gamma = (aleph-k).clip(0,1) return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()] data = ma.array(a, copy=False) if data.ndim > 2: raise TypeError("Array should be 2D at most !") if limit: condition = (limit[0] < data) & (data < limit[1]) data[~condition.filled(True)] = masked p = np.array(prob, copy=False, ndmin=1) m = alphap + p*(1.-alphap-betap) # Computes quantiles along axis (or globally) if (axis is None): return _quantiles1D(data, m, p) return ma.apply_along_axis(_quantiles1D, axis, data, m, p) def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4): """Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median. This function is a shortcut to mquantile """ if (per < 0) or (per > 100.): raise ValueError("The percentile should be between 0. and 100. !" " (got %s)" % per) return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap, limit=limit, axis=0).squeeze() def plotting_positions(data, alpha=0.4, beta=0.4): """ Returns plotting positions (or empirical percentile points) for the data. Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where: - i is the rank order statistics - n is the number of unmasked values along the given axis - `alpha` and `beta` are two parameters. Typical values for `alpha` and `beta` are: - (0,1) : ``p(k) = k/n``, linear interpolation of cdf (R, type 4) - (.5,.5) : ``p(k) = (k-1/2.)/n``, piecewise linear function (R, type 5) - (0,0) : ``p(k) = k/(n+1)``, Weibull (R type 6) - (1,1) : ``p(k) = (k-1)/(n-1)``, in this case, ``p(k) = mode[F(x[k])]``. That's R default (R type 7) - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then ``p(k) ~ median[F(x[k])]``. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8) - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM - (.3175, .3175): used in scipy.stats.probplot Parameters ---------- data : array_like Input data, as a sequence or array of dimension at most 2. alpha : float, optional Plotting positions parameter. Default is 0.4. beta : float, optional Plotting positions parameter. Default is 0.4. Returns ------- positions : MaskedArray The calculated plotting positions. """ data = ma.array(data, copy=False).reshape(1,-1) n = data.count() plpos = np.empty(data.size, dtype=float) plpos[n:] = 0 plpos[data.argsort()[:n]] = ((np.arange(1, n+1) - alpha) / (n + 1.0 - alpha - beta)) return ma.array(plpos, mask=data._mask) meppf = plotting_positions def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If an `f_oneway()` run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data @np.deprecate(message="mstats.signaltonoise is deprecated in scipy 0.16.0") def signaltonoise(data, axis=0): """Calculates the signal-to-noise ratio, as the ratio of the mean over standard deviation along the given axis. Parameters ---------- data : sequence Input data axis : {0, int}, optional Axis along which to compute. If None, the computation is performed on a flat version of the array. """ data = ma.array(data, copy=False) m = data.mean(axis) sd = data.std(axis, ddof=0) return m/sd def sem(a, axis=0, ddof=1): """ Calculates the standard error of the mean of the input array. Also sometimes called standard error of measurement. Parameters ---------- a : array_like An array containing the values for which the standard error is returned. axis : int or None, optional If axis is None, ravel `a` first. If axis is an integer, this will be the axis over which to operate. Defaults to 0. ddof : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1. Returns ------- s : ndarray or float The standard error of the mean in the sample(s), along the input axis. Notes ----- The default value for `ddof` changed in scipy 0.15.0 to be consistent with `stats.sem` as well as with the most common definition used (like in the R documentation). Examples -------- Find standard error along the first axis: >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> print(stats.mstats.sem(a)) [2.8284271247461903 2.8284271247461903 2.8284271247461903 2.8284271247461903] Find standard error across the whole array, using n degrees of freedom: >>> print(stats.mstats.sem(a, axis=None, ddof=0)) 1.2893796958227628 """ a, axis = _chk_asarray(a, axis) n = a.count(axis=axis) s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n) return s F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue')) def f_oneway(*args): """ Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7. Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays, one per treatment group. Returns ------- statistic : float The computed F-value of the test. pvalue : float The associated p-value from the F-distribution. """ # Construct a single array of arguments: each row is a group data = argstoarray(*args) ngroups = len(data) ntot = data.count() sstot = (data**2).sum() - (data.sum())**2/float(ntot) ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum() sswg = sstot-ssbg dfbg = ngroups-1 dfwg = ntot - ngroups msb = ssbg/float(dfbg) msw = sswg/float(dfwg) f = msb/msw prob = special.fdtrc(dfbg, dfwg, f) # equivalent to stats.f.sf return F_onewayResult(f, prob) @np.deprecate(message="mstats.f_value_wilks_lambda deprecated in scipy 0.17.0") def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b): """Calculation of Wilks lambda F-statistic for multivariate data, per Maxwell & Delaney p.657. """ ER = ma.array(ER, copy=False, ndmin=2) EF = ma.array(EF, copy=False, ndmin=2) if ma.getmask(ER).any() or ma.getmask(EF).any(): raise NotImplementedError("Not implemented when the inputs " "have missing data") lmbda = np.linalg.det(EF) / np.linalg.det(ER) q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5)) q = ma.filled(q, 1) n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1) d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1) return n_um / d_en FriedmanchisquareResult = namedtuple('FriedmanchisquareResult', ('statistic', 'pvalue')) def friedmanchisquare(*args): """Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value. Each input is considered a given group. Ideally, the number of treatments among each group should be equal. If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of the smallest group. If a group has some missing values, the corresponding treatments are masked in the other groups. The test statistic is corrected for ties. Masked values in one group are propagated to the other groups. Returns ------- statistic : float the test statistic. pvalue : float the associated p-value. """ data = argstoarray(*args).astype(float) k = len(data) if k < 3: raise ValueError("Less than 3 groups (%i): " % k + "the Friedman test is NOT appropriate.") ranked = ma.masked_values(rankdata(data, axis=0), 0) if ranked._mask is not nomask: ranked = ma.mask_cols(ranked) ranked = ranked.compressed().reshape(k,-1).view(ndarray) else: ranked = ranked._data (k,n) = ranked.shape # Ties correction repeats = np.array([find_repeats(_) for _ in ranked.T], dtype=object) ties = repeats[repeats.nonzero()].reshape(-1,2)[:,-1].astype(int) tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k)) ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2) chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k-1))
mit
jhseu/tensorflow
tensorflow/python/tpu/datasets_test.py
24
7572
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TPU datasets tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.core.protobuf import cluster_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import readers from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.lib.io import python_io from tensorflow.python.platform import test from tensorflow.python.tpu import datasets from tensorflow.python.training import server_lib from tensorflow.python.util import compat _NUM_FILES = 10 _NUM_ENTRIES = 20 class DatasetsTest(test.TestCase): def setUp(self): super(DatasetsTest, self).setUp() self._coord = server_lib.Server.create_local_server() self._worker = server_lib.Server.create_local_server() self._cluster_def = cluster_pb2.ClusterDef() worker_job = self._cluster_def.job.add() worker_job.name = 'worker' worker_job.tasks[0] = self._worker.target[len('grpc://'):] coord_job = self._cluster_def.job.add() coord_job.name = 'coordinator' coord_job.tasks[0] = self._coord.target[len('grpc://'):] session_config = config_pb2.ConfigProto(cluster_def=self._cluster_def) self._sess = session.Session(self._worker.target, config=session_config) self._worker_device = '/job:' + worker_job.name def testTextLineDataset(self): all_contents = [] for i in range(_NUM_FILES): filename = os.path.join(self.get_temp_dir(), 'text_line.%d.txt' % i) contents = [] for j in range(_NUM_ENTRIES): contents.append(compat.as_bytes('%d: %d' % (i, j))) with open(filename, 'wb') as f: f.write(b'\n'.join(contents)) all_contents.extend(contents) dataset = datasets.StreamingFilesDataset( os.path.join(self.get_temp_dir(), 'text_line.*.txt'), filetype='text') with ops.device(self._worker_device): iterator = dataset_ops.make_initializable_iterator(dataset) self._sess.run(iterator.initializer) get_next = iterator.get_next() retrieved_values = [] for _ in range(4 * len(all_contents)): retrieved_values.append(compat.as_bytes(self._sess.run(get_next))) self.assertEqual(set(all_contents), set(retrieved_values)) def testTFRecordDataset(self): all_contents = [] for i in range(_NUM_FILES): filename = os.path.join(self.get_temp_dir(), 'tf_record.%d' % i) writer = python_io.TFRecordWriter(filename) for j in range(_NUM_ENTRIES): record = compat.as_bytes('Record %d of file %d' % (j, i)) writer.write(record) all_contents.append(record) writer.close() dataset = datasets.StreamingFilesDataset( os.path.join(self.get_temp_dir(), 'tf_record*'), filetype='tfrecord') with ops.device(self._worker_device): iterator = dataset_ops.make_initializable_iterator(dataset) self._sess.run(iterator.initializer) get_next = iterator.get_next() retrieved_values = [] for _ in range(4 * len(all_contents)): retrieved_values.append(compat.as_bytes(self._sess.run(get_next))) self.assertEqual(set(all_contents), set(retrieved_values)) def testTFRecordDatasetFromDataset(self): filenames = [] all_contents = [] for i in range(_NUM_FILES): filename = os.path.join(self.get_temp_dir(), 'tf_record.%d' % i) filenames.append(filename) writer = python_io.TFRecordWriter(filename) for j in range(_NUM_ENTRIES): record = compat.as_bytes('Record %d of file %d' % (j, i)) writer.write(record) all_contents.append(record) writer.close() filenames = dataset_ops.Dataset.from_tensor_slices(filenames) dataset = datasets.StreamingFilesDataset(filenames, filetype='tfrecord') with ops.device(self._worker_device): iterator = dataset_ops.make_initializable_iterator(dataset) self._sess.run(iterator.initializer) get_next = iterator.get_next() retrieved_values = [] for _ in range(4 * len(all_contents)): retrieved_values.append(compat.as_bytes(self._sess.run(get_next))) self.assertEqual(set(all_contents), set(retrieved_values)) def testArbitraryReaderFunc(self): def MakeRecord(i, j): return compat.as_bytes('%04d-%04d' % (i, j)) record_bytes = len(MakeRecord(10, 200)) all_contents = [] for i in range(_NUM_FILES): filename = os.path.join(self.get_temp_dir(), 'fixed_length.%d' % i) with open(filename, 'wb') as f: for j in range(_NUM_ENTRIES): record = MakeRecord(i, j) f.write(record) all_contents.append(record) def FixedLengthFile(filename): return readers.FixedLengthRecordDataset(filename, record_bytes) dataset = datasets.StreamingFilesDataset( os.path.join(self.get_temp_dir(), 'fixed_length*'), filetype=FixedLengthFile) with ops.device(self._worker_device): iterator = dataset_ops.make_initializable_iterator(dataset) self._sess.run(iterator.initializer) get_next = iterator.get_next() retrieved_values = [] for _ in range(4 * len(all_contents)): retrieved_values.append(compat.as_bytes(self._sess.run(get_next))) self.assertEqual(set(all_contents), set(retrieved_values)) def testArbitraryReaderFuncFromDatasetGenerator(self): def my_generator(): yield (1, [1] * 10) def gen_dataset(dummy): return dataset_ops.Dataset.from_generator( my_generator, (dtypes.int64, dtypes.int64), (tensor_shape.TensorShape([]), tensor_shape.TensorShape([10]))) dataset = datasets.StreamingFilesDataset( dataset_ops.Dataset.range(10), filetype=gen_dataset) with ops.device(self._worker_device): iterator = dataset_ops.make_initializable_iterator(dataset) self._sess.run(iterator.initializer) get_next = iterator.get_next() retrieved_values = self._sess.run(get_next) self.assertIsInstance(retrieved_values, (list, tuple)) self.assertEqual(len(retrieved_values), 2) self.assertEqual(retrieved_values[0], 1) self.assertItemsEqual(retrieved_values[1], [1] * 10) def testUnexpectedFiletypeString(self): with self.assertRaises(ValueError): datasets.StreamingFilesDataset( os.path.join(self.get_temp_dir(), '*'), filetype='foo') def testUnexpectedFiletypeType(self): with self.assertRaises(ValueError): datasets.StreamingFilesDataset( os.path.join(self.get_temp_dir(), '*'), filetype=3) def testUnexpectedFilesType(self): with self.assertRaises(ValueError): datasets.StreamingFilesDataset(123, filetype='tfrecord') if __name__ == '__main__': test.main()
apache-2.0
rahuldhote/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
267
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <mr.phil.roth@gmail.com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
bmcfee/pescador
examples/frameworks/keras_example.py
1
6232
# -*- coding: utf-8 -*- """ =============== A Keras Example =============== An example of how to use Pescador with Keras. Original Code source: https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py """ ############################################## # Setup and Definitions ############################################## from __future__ import print_function import datetime import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K import numpy as np import pescador batch_size = 128 num_classes = 10 epochs = 12 # input image dimensions img_rows, img_cols = 28, 28 ############################################## # Load and preprocess data ############################################## def setup_data(): """Load and shape data for training with Keras + Pescador. Returns ------- input_shape : tuple, len=3 Shape of each sample; adapts to channel configuration of Keras. X_train, y_train : np.ndarrays Images and labels for training. X_test, y_test : np.ndarrays Images and labels for test. """ # The data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) return input_shape, (x_train, y_train), (x_test, y_test) ############################################## # Setup Keras model ############################################## def build_model(input_shape): """Create a compiled Keras model. Parameters ---------- input_shape : tuple, len=3 Shape of each image sample. Returns ------- model : keras.Model Constructed model. """ model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) return model ############################################## # Define Data Sampler ############################################## @pescador.streamable def sampler(X, y): '''A basic generator for sampling data. Parameters ---------- X : np.ndarray, len=n_samples, ndim=4 Image data. y : np.ndarray, len=n_samples, ndim=2 One-hot encoded class vectors. Yields ------ data : dict Single image sample, like {X: np.ndarray, y: np.ndarray} ''' X = np.atleast_2d(X) # y's are binary vectors, and should be of shape (10,) after this. y = np.atleast_1d(y) n = X.shape[0] while True: i = np.random.randint(0, n) yield {'X': X[i], 'y': y[i]} ############################################## # Define a Custom Map Function ############################################## @pescador.streamable def additive_noise(stream, key='X', scale=1e-1): '''Add noise to a data stream. Parameters ---------- stream : iterable A stream that yields data objects. key : string, default='X' Name of the field to add noise. scale : float, default=0.1 Scale factor for gaussian noise. Yields ------ data : dict Updated data objects in the stream. ''' for data in stream: noise_shape = data[key].shape noise = scale * np.random.randn(*noise_shape) data[key] = data[key] + noise yield data ############################################## # Put it all together ############################################## input_shape, (X_train, Y_train), (X_test, Y_test) = setup_data() steps_per_epoch = len(X_train) // batch_size # Create two streams from the same data, where one of the streams # adds a small amount of Gaussian noise. You could easily perform # other data augmentations using the same 'map' strategy. stream = sampler(X_train, Y_train) noisy_stream = additive_noise(stream, 'X') # Multiplex the two streamers together. mux = pescador.StochasticMux([stream, noisy_stream], # Two streams, always active. n_active=2, # We want to sample from each stream infinitely. rate=None) # Buffer the stream into minibatches. batches = pescador.buffer_stream(mux, batch_size) model = build_model(input_shape) try: print("Start time: {}".format(datetime.datetime.now())) model.fit_generator( pescador.tuples(batches, 'X', 'y'), steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=1, validation_data=(X_test, Y_test)) except KeyboardInterrupt: print("Stopping early") finally: print("Finished: {}".format(datetime.datetime.now())) scores = model.evaluate(X_test, Y_test, verbose=0) for val, name in zip(scores, model.metrics_names): print('Test {}: {:0.4f}'.format(name, val))
isc
matthew-tucker/mne-python
setup.py
3
5039
#! /usr/bin/env python # # Copyright (C) 2011-2014 Alexandre Gramfort # <alexandre.gramfort@telecom-paristech.fr> import os from os import path as op import setuptools # noqa; we are using a setuptools namespace from numpy.distutils.core import setup # get the version (don't import mne here, so dependencies are not needed) version = None with open(os.path.join('mne', '__init__.py'), 'r') as fid: for line in (line.strip() for line in fid): if line.startswith('__version__'): version = line.split('=')[1].strip().strip('\'') break if version is None: raise RuntimeError('Could not determine version') descr = """MNE python project for MEG and EEG data analysis.""" DISTNAME = 'mne' DESCRIPTION = descr MAINTAINER = 'Alexandre Gramfort' MAINTAINER_EMAIL = 'alexandre.gramfort@telecom-paristech.fr' URL = 'http://martinos.org/mne' LICENSE = 'BSD (3-clause)' DOWNLOAD_URL = 'http://github.com/mne-tools/mne-python' VERSION = version if __name__ == "__main__": if os.path.exists('MANIFEST'): os.remove('MANIFEST') setup(name=DISTNAME, maintainer=MAINTAINER, include_package_data=True, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=open('README.rst').read(), zip_safe=False, # the package can run out of an .egg file classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS'], platforms='any', packages=['mne', 'mne.tests', 'mne.beamformer', 'mne.beamformer.tests', 'mne.commands', 'mne.commands.tests', 'mne.connectivity', 'mne.connectivity.tests', 'mne.data', 'mne.datasets', 'mne.datasets.eegbci', 'mne.datasets._fake', 'mne.datasets.megsim', 'mne.datasets.sample', 'mne.datasets.somato', 'mne.datasets.spm_face', 'mne.datasets.testing', 'mne.datasets.tests', 'mne.externals', 'mne.io', 'mne.io.tests', 'mne.io.array', 'mne.io.array.tests', 'mne.io.brainvision', 'mne.io.brainvision.tests', 'mne.io.bti', 'mne.io.bti.tests', 'mne.io.edf', 'mne.io.edf.tests', 'mne.io.egi', 'mne.io.egi.tests', 'mne.io.fiff', 'mne.io.fiff.tests', 'mne.io.kit', 'mne.io.kit.tests', 'mne.forward', 'mne.forward.tests', 'mne.viz', 'mne.viz.tests', 'mne.gui', 'mne.gui.tests', 'mne.minimum_norm', 'mne.minimum_norm.tests', 'mne.inverse_sparse', 'mne.inverse_sparse.tests', 'mne.preprocessing', 'mne.preprocessing.tests', 'mne.simulation', 'mne.simulation.tests', 'mne.tests', 'mne.stats', 'mne.stats.tests', 'mne.time_frequency', 'mne.time_frequency.tests', 'mne.realtime', 'mne.realtime.tests', 'mne.decoding', 'mne.decoding.tests', 'mne.commands', 'mne.externals', 'mne.externals.tempita', 'mne.channels', 'mne.channels.tests'], package_data={'mne': [op.join('data', '*.sel'), op.join('data', 'icos.fif.gz'), op.join('data', 'coil_def*.dat'), op.join('data', 'helmets', '*.fif.gz'), op.join('data', 'FreeSurferColorLUT.txt'), op.join('channels', 'data', 'layouts', '*.lout'), op.join('channels', 'data', 'layouts', '*.lay'), op.join('channels', 'data', 'montages', '*.sfp'), op.join('channels', 'data', 'montages', '*.txt'), op.join('channels', 'data', 'montages', '*.elc'), op.join('channels', 'data', 'neighbors', '*.mat'), op.join('html', '*.js'), op.join('html', '*.css')]}, scripts=['bin/mne'])
bsd-3-clause
vitaly-krugl/nupic
examples/opf/experiments/opfrunexperiment_test/checkpoints/base.py
10
14780
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '~/nupic/eng/lib/python2.6/site-packages/nupic/frameworks/opf/expGenerator/ExpGenerator.pyc' """ from nupic.frameworks.opf.exp_description_api import ExperimentDescriptionAPI from nupic.frameworks.opf.exp_description_helpers import ( updateConfigFromSubConfig, applyValueGettersToContainer, DeferredDictLookup) from nupic.frameworks.opf.htm_prediction_model_callbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opf_utils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opf_task_driver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) VERBOSITY = 1 # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # # NOTE: Use of DEFERRED VALUE-GETTERs: dictionary fields and list elements # within the config dictionary may be assigned futures derived from the # ValueGetterBase class, such as DeferredDictLookup. # This facility is particularly handy for enabling substitution of values in # the config dictionary from other values in the config dictionary, which is # needed by permutation.py-based experiments. These values will be resolved # during the call to applyValueGettersToContainer(), # which we call after the base experiment's config dictionary is updated from # the sub-experiment. See ValueGetterBase and # DeferredDictLookup for more details about value-getters. # # For each custom encoder parameter to be exposed to the sub-experiment/ # permutation overrides, define a variable in this section, using key names # beginning with a single underscore character to avoid collisions with # pre-defined keys (e.g., _dsEncoderFieldName2_N). # # Example: # config = dict( # _dsEncoderFieldName2_N = 70, # _dsEncoderFieldName2_W = 5, # dsEncoderSchema = [ # base=dict( # fieldname='Name2', type='ScalarEncoder', # name='Name2', minval=0, maxval=270, clipInput=True, # n=DeferredDictLookup('_dsEncoderFieldName2_N'), # w=DeferredDictLookup('_dsEncoderFieldName2_W')), # ], # ) # updateConfigFromSubConfig(config) # applyValueGettersToContainer(config) config = { 'dataPath': None, # filled in by sub-experiment # Type of model that the rest of these parameters apply to. 'model': "HTMPrediction", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'days': 0, 'fields': [(u'c1', 'first'), (u'c0', 'first')], 'hours': 1, 'microseconds': 0, 'milliseconds': 0, 'minutes': 0, 'months': 0, 'seconds': 0, 'weeks': 0, 'years': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'TemporalMultiStep', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : VERBOSITY, # Example: # dsEncoderSchema = [ # DeferredDictLookup('__field_name_encoder'), # ], # # (value generated from DS_ENCODER_SCHEMA) 'encoders': { u'c0_timeOfDay': { 'fieldname': u'c0', 'name': u'c0_timeOfDay', 'timeOfDay': (21, 1), 'type': 'DateEncoder'}, u'c0_dayOfWeek': { 'dayOfWeek': (21, 1), 'fieldname': u'c0', 'name': u'c0_dayOfWeek', 'type': 'DateEncoder'}, u'c0_weekend': { 'fieldname': u'c0', 'name': u'c0_weekend', 'type': 'DateEncoder', 'weekend': 21}, u'c1': { 'clipInput': True, 'fieldname': u'c1', 'n': 100, 'name': u'c1', 'type': 'AdaptiveScalarEncoder', 'w': 21}, }, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : None, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : VERBOSITY, 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TM and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, }, # Controls whether TM is enabled or disabled; # TM is necessary for making temporal predictions, such as predicting # the next inputs. Without TM, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tmEnable' : True, 'tmParams': { # TM diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/backtracking_tm.py and backtracking_tm_cpp.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 20, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TM how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { 'regionName' : 'SDRClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'verbosity' : VERBOSITY, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.001, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '24', }, 'trainSPNetOnlyIfRequested': False, }, } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) control = { # The environment that the current model is being run in "environment": 'nupic', # Input stream specification per py/nupic/cluster/database/StreamDef.json. # 'dataset' : { 'aggregation': config['aggregationInfo'], u'info': u'82b42f21-7f86-47b3-bab4-3738703bf612', u'streams': [ { u'columns': [u'c0', u'c1'], u'info': u'82b42f21-7f86-47b3-bab4-3738703bf612', u'source': 'file://%s' % (os.path.abspath(config['dataPath'])), u'types': [u'datetime', u'float']}], u'timeField': u'c0', u'version': 1}, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : 4000, # A dictionary containing all the supplementary parameters for inference "inferenceArgs":{u'predictedField': u'c1', u'predictionSteps': [24]}, # Metrics: A list of MetricSpecs that instantiate the metrics that are # computed for this experiment 'metrics':[ MetricSpec(field=u'c1', metric='multiStep', inferenceElement='multiStepBestPredictions', params={'window': 1000, 'steps': [24], 'errorMetric': 'altMAPE'}), ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': ['.*'], } descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0
QuLogic/iris
lib/iris/experimental/stratify.py
5
7991
# (C) British Crown Copyright 2017, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """ Routines for putting data on new strata (aka. isosurfaces), often in the Z direction. """ from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa from functools import partial import six import numpy as np import stratify from iris.coords import Coord, AuxCoord, DimCoord from iris.cube import Cube def _copy_coords_without_z_dim(src, tgt, z_dim): """ Helper function to copy across non z-dimenson coordinates between cubes. Parameters ---------- src : :class:`~iris.cube.Cube` Incoming cube containing the coordinates to be copied from. tgt : :class:`~iris.cube.Cube` Outgoing cube for the coordinates to be copied to. z_dim : int Dimension within the `src` cube that is the z-dimension. This dimension will not be copied. For example, the incoming z-dimension cube has model level_height, whilst the outgoing z-dimension cube has pressure. """ # Copy across non z-dimension coordinates. for coord in src.dim_coords: [dim] = src.coord_dims(coord) if dim != z_dim: tgt.add_dim_coord(coord.copy(), dim) for coord in src.aux_coords: dims = src.coord_dims(coord) if z_dim not in dims: tgt.add_aux_coord(coord.copy(), dims) for coord in src.derived_coords: dims = src.coord_dims(coord) if z_dim not in dims: tgt.add_aux_coord(coord.copy(), dims) def relevel(cube, src_levels, tgt_levels, axis=None, interpolator=None): """ Interpolate the cube onto the specified target levels, given the source levels of the cube. For example, suppose we have two datasets `P(i,j,k)` and `H(i,j,k)` and we want `P(i,j,H)`. We call :func:`relevel` with `cube=P`, `src_levels=H` and `tgt_levels` being an array of the values of `H` we would like. This routine is especially useful for computing isosurfaces of phenomenon that are generally monotonic in the direction of interpolation, such as height/pressure or salinity/depth. Parameters ---------- cube : :class:`~iris.cube.Cube` The phenomenon data to be re-levelled. src_levels : :class:`~iris.cube.Cube`, :class:`~iris.coord.Coord` or string Describes the source levels of the `cube` that will be interpolated over. The `src_levels` must be in the same system as the `tgt_levels`. The dimensions of `src_levels` must be broadcastable to the dimensions of the `cube`. Note that, the coordinate name containing the source levels in the `cube` may be provided. tgt_levels : array-like Describes the target levels of the `cube` to be interpolated to. The `tgt_levels` must be in the same system as the `src_levels`. The dimensions of the `tgt_levels` must be broadcastable to the dimensions of the `cube`, except in the nominated axis of interpolation. axis : int, :class:`~iris.coords.Coord` or string The axis of interpolation. Defaults to the first dimension of the `cube`, which is typically the z-dimension. Note that, the coordinate name specifying the z-dimension of the `cube` may be provided. interpolator : callable or None The interpolator to use when computing the interpolation. The function will be passed the following positional arguments:: (tgt-data, src-data, cube-data, axis-of-interpolation) If the interpolator is None, :func:`stratify.interpolate` will be used with linear interpolation and NaN extrapolation. An example of constructing an alternative interpolation scheme: from functools import partial interpolator = partial(stratify.interpolate, interpolation=stratify.INTERPOLATE_NEAREST, extrapolation=stratify.EXTRAPOLATE_LINEAR) """ # Identify the z-coordinate within the phenomenon cube. if axis is None: axis = 0 if isinstance(axis, (six.string_types, Coord)): [axis] = cube.coord_dims(axis) # Get the source level data. if isinstance(src_levels, six.string_types): src_data = cube.coord(src_levels).points elif isinstance(src_levels, Coord): src_data = src_levels.points else: src_data = src_levels.data # The dimensions of cube and src_data must be broadcastable. try: cube_data, src_data = np.broadcast_arrays(cube.data, src_data) except ValueError: emsg = ('Cannot broadcast the cube and src_levels with ' 'shapes {} and {}.') raise ValueError(emsg.format(cube.shape, src_data.shape)) tgt_levels = np.asarray(tgt_levels) tgt_aux_dims = axis if tgt_levels.ndim != 1: # The dimensions of tgt_levels must be broadcastable to cube # in everything but the interpolation axis - otherwise raise # an exception. dim_delta = cube_data.ndim - tgt_levels.ndim # The axis is relative to the cube. Calculate the axis of # interplation relative to the tgt_levels. tgt_axis = axis - dim_delta # Calculate the cube shape without the axis of interpolation. data_shape = list(cube_data.shape) data_shape.pop(axis) # Calculate the tgt_levels shape without the axis of interpolation. target_shape = list(tgt_levels.shape) target_shape.pop(tgt_axis) # Now ensure that the shapes are broadcastable. try: np.broadcast_arrays(np.empty(data_shape), np.empty(target_shape)) except ValueError: emsg = ('Cannot broadcast the cube and tgt_levels with ' 'shapes {} and {}, whilst ignoring axis of interpolation.') raise ValueError(emsg.format(cube_data.shape, tgt_levels.shape)) # Calculate the dimensions over the cube that the tgt_levels span. tgt_aux_dims = list(range(cube_data.ndim))[dim_delta:] if interpolator is None: # Use the default stratify interpolator. interpolator = partial(stratify.interpolate, interpolation='linear', extrapolation='nan') # Now perform the interpolation. new_data = interpolator(tgt_levels, src_data, cube_data, axis=axis) # Create a result cube with the correct shape and metadata. result = Cube(new_data, **cube.copy().metadata._asdict()) # Copy across non z-dimension coordinates from the source cube # to the result cube. _copy_coords_without_z_dim(cube, result, axis) kwargs = dict(standard_name=src_levels.standard_name, long_name=src_levels.long_name, var_name=src_levels.var_name, units=src_levels.units, attributes=src_levels.attributes) # Add our new interpolated coordinate to the result cube. try: coord = DimCoord(tgt_levels, **kwargs) result.add_dim_coord(coord, axis) except ValueError: # Attach the data to the trailing dimensions. coord = AuxCoord(tgt_levels, **kwargs) result.add_aux_coord(coord, tgt_aux_dims) return result
gpl-3.0
rahuldhote/scikit-learn
sklearn/neighbors/base.py
114
29783
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <vanderplas@astro.washington.edu> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl> # Multi-output support by Arnaud Joly <a.joly@ulg.ac.be> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array from ..utils.fixes import argpartition from ..utils.validation import DataConversionWarning from ..utils.validation import NotFittedError from ..externals import six VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': # if user attempts to classify a point that was zero distance from one # or more training points, those training points are weighted as 1.0 # and the other points as 0.0 if dist.dtype is np.dtype(object): for point_dist_i, point_dist in enumerate(dist): # check if point_dist is iterable # (ex: RadiusNeighborClassifier.predict may set an element of # dist to 1e-6 to represent an 'outlier') if hasattr(point_dist, '__contains__') and 0. in point_dist: dist[point_dist_i] = point_dist == 0. else: dist[point_dist_i] = 1. / point_dist else: with np.errstate(divide='ignore'): dist = 1. / dist inf_mask = np.isinf(dist) inf_row = np.any(inf_mask, axis=1) dist[inf_row] = inf_mask[inf_row] return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): if kwargs: warnings.warn("Passing additional arguments to the metric " "function as **kwargs is deprecated " "and will no longer be supported in 0.18. " "Use metric_params instead.", DeprecationWarning, stacklevel=3) if metric_params is None: metric_params = {} metric_params.update(kwargs) self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if (self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) return self class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X=None, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns distance Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to points, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if n_neighbors is None: n_neighbors = self.n_neighbors if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X # Include an extra neighbor to account for the sample itself being # returned, which is removed later n_neighbors += 1 train_size = self._fit_X.shape[0] if n_neighbors > train_size: raise ValueError( "Expected n_neighbors <= n_samples, " " but n_samples = %d, n_neighbors = %d" % (train_size, n_neighbors) ) n_samples, _ = X.shape sample_range = np.arange(n_samples)[:, None] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again neigh_ind = neigh_ind[ sample_range, np.argsort(dist[sample_range, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind else: result = dist[sample_range, neigh_ind], neigh_ind else: result = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = self._tree.query(X, n_neighbors, return_distance=return_distance) else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return result else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = result else: neigh_ind = result sample_mask = neigh_ind != sample_range # Corner case: When the number of duplicates are more # than the number of neighbors, the first NN will not # be the sample, but a duplicate. # In that case mask the first duplicate. dup_gr_nbrs = np.all(sample_mask, axis=1) sample_mask[:, 0][dup_gr_nbrs] = False neigh_ind = np.reshape( neigh_ind[sample_mask], (n_samples, n_neighbors - 1)) if return_distance: dist = np.reshape( dist[sample_mask], (n_samples, n_neighbors - 1)) return dist, neigh_ind return neigh_ind def kneighbors_graph(self, X=None, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ if n_neighbors is None: n_neighbors = self.n_neighbors # kneighbors does the None handling. if X is not None: X = check_array(X, accept_sparse='csr') n_samples1 = X.shape[0] else: n_samples1 = self._fit_X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones(n_samples1 * n_neighbors) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': A_data, A_ind = self.kneighbors( X, n_neighbors, return_distance=True) A_data = np.ravel(A_data) else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) kneighbors_graph = csr_matrix((A_data, A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) return kneighbors_graph class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X=None, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1, 1, 1]: >>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> rng = neigh.radius_neighbors([1., 1., 1.]) >>> print(np.asarray(rng[0][0])) # doctest: +ELLIPSIS [ 1.5 0.5] >>> print(np.asarray(rng[1][0])) # doctest: +ELLIPSIS [1 2] The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X if radius is None: radius = self.radius n_samples = X.shape[0] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind_list = [np.where(d <= radius)[0] for d in dist] # See https://github.com/numpy/numpy/issues/5456 # if you want to understand why this is initialized this way. neigh_ind = np.empty(n_samples, dtype='object') neigh_ind[:] = neigh_ind_list if return_distance: dist_array = np.empty(n_samples, dtype='object') if self.effective_metric_ == 'euclidean': dist_list = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)] else: dist_list = [d[neigh_ind[i]] for i, d in enumerate(dist)] dist_array[:] = dist_list results = dist_array, neigh_ind else: results = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: results = results[::-1] else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return results else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = results else: neigh_ind = results for ind, ind_neighbor in enumerate(neigh_ind): mask = ind_neighbor != ind neigh_ind[ind] = ind_neighbor[mask] if return_distance: dist[ind] = dist[ind][mask] if return_distance: return dist, neigh_ind return neigh_ind def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if X is not None: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) n_samples2 = self._fit_X.shape[0] if radius is None: radius = self.radius # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_samples1 = A_ind.shape[0] n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] """ return self._fit(X)
bsd-3-clause
elvandy/nltools
examples/01_DataOperations/plot_download.py
3
5125
""" Basic Data Operations ===================== A simple example showing how to download a dataset from neurovault and perform basic data operations. The bulk of the nltools toolbox is built around the Brain_Data() class. This class represents imaging data as a vectorized features by observations matrix. Each image is an observation and each voxel is a feature. The concept behind the class is to have a similar feel to a pandas dataframe, which means that it should feel intuitive to manipulate the data. """ ######################################################################### # Download pain dataset from neurovault # --------------------------------------------------- # # Here we fetch the pain dataset used in `Chang et al., 2015 <http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002180>`_ # from `neurovault <http://neurovault.org/collections/504/>`_. In this dataset # there are 28 subjects with 3 separate beta images reflecting varying intensities # of thermal pain (i.e., high, medium, low). The data will be downloaded to ~/nilearn_data, # and automatically loaded as a Brain_Data() instance. The image metadata will be stored in data.X. from nltools.datasets import fetch_pain data = fetch_pain() ######################################################################### # Load files # --------------------------------------------------- # # Nifti images can be easily loaded simply by passing a string to a nifti file. # Many images can be loaded together by passing a list of nifti files. # For example, on linux or OSX systmes, the downloads from fetch_pain() will be # stored in ~/nilearn_data. We will load subject 1's data. # NOTES: Need to figure out how to get path to data working on rtd server # from nltools.data import Brain_Data # import glob # # sub1 = Brain_Data(glob.glob('~/nilearn_data/chang2015_pain/Pain_Subject_1*.nii.gz')) ######################################################################### # Basic Brain_Data() Operations # --------------------------------------------------------- # # Here are a few quick basic data operations. # Find number of images in Brain_Data() instance print(len(data)) ######################################################################### # Find the dimensions of the data. images x voxels print(data.shape()) ######################################################################### # We can use any type of indexing to slice the data such as integers, lists # of integers, or boolean. print(data[[1,6,2]]) ######################################################################### # Calculate the mean for every voxel over images data.mean() ######################################################################### # Calculate the standard deviation for every voxel over images data.std() ######################################################################### # Methods can be chained. Here we get the shape of the mean. print(data.mean().shape()) ######################################################################### # Brain_Data instances can be added and subtracted new = data[1]+data[2] ######################################################################### # Brain_Data instances can be manipulated with basic arithmetic operations # Here we add 10 to every voxel and scale by 2 data2 = (data+10)*2 ######################################################################### # Brain_Data instances can be copied new = data.copy() ######################################################################### # Brain_Data instances can be easily converted to nibabel instances, which # store the data in a 3D/4D matrix. This is useful for interfacing with other # python toolboxes such as `nilearn <http://nilearn.github.io/>`_ data.to_nifti() ######################################################################### # Brain_Data instances can be concatenated using the append method new = new.append(data[4]) ######################################################################### # Any Brain_Data object can be written out to a nifti file data.write('Tmp_Data.nii.gz') ######################################################################### # Images within a Brain_Data() instance are iterable. Here we use a list # comprehension to calculate the overall mean across all voxels within an # image. [x.mean() for x in data] ######################################################################### # Basic Brain_Data() Plotting # --------------------------------------------------------- # # There are multiple ways to plot data. First, Brain_Data() instances can be # converted to a nibabel instance and plotted using any plot method such as # nilearn. from nilearn.plotting import plot_glass_brain plot_glass_brain(data.mean().to_nifti()) ######################################################################### # There is also a fast montage plotting method. Here we plot the average image # it will render a separate plot for each image. There is a 'limit' flag # which allows you to specify the maximum number of images to display. data.mean().plot()
mit
avati/samba
lib/dnspython/dns/rrset.py
98
5895
# Copyright (C) 2003-2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """DNS RRsets (an RRset is a named rdataset)""" import dns.name import dns.rdataset import dns.rdataclass import dns.renderer class RRset(dns.rdataset.Rdataset): """A DNS RRset (named rdataset). RRset inherits from Rdataset, and RRsets can be treated as Rdatasets in most cases. There are, however, a few notable exceptions. RRsets have different to_wire() and to_text() method arguments, reflecting the fact that RRsets always have an owner name. """ __slots__ = ['name', 'deleting'] def __init__(self, name, rdclass, rdtype, covers=dns.rdatatype.NONE, deleting=None): """Create a new RRset.""" super(RRset, self).__init__(rdclass, rdtype, covers) self.name = name self.deleting = deleting def _clone(self): obj = super(RRset, self)._clone() obj.name = self.name obj.deleting = self.deleting return obj def __repr__(self): if self.covers == 0: ctext = '' else: ctext = '(' + dns.rdatatype.to_text(self.covers) + ')' if not self.deleting is None: dtext = ' delete=' + dns.rdataclass.to_text(self.deleting) else: dtext = '' return '<DNS ' + str(self.name) + ' ' + \ dns.rdataclass.to_text(self.rdclass) + ' ' + \ dns.rdatatype.to_text(self.rdtype) + ctext + dtext + ' RRset>' def __str__(self): return self.to_text() def __eq__(self, other): """Two RRsets are equal if they have the same name and the same rdataset @rtype: bool""" if not isinstance(other, RRset): return False if self.name != other.name: return False return super(RRset, self).__eq__(other) def match(self, name, rdclass, rdtype, covers, deleting=None): """Returns True if this rrset matches the specified class, type, covers, and deletion state.""" if not super(RRset, self).match(rdclass, rdtype, covers): return False if self.name != name or self.deleting != deleting: return False return True def to_text(self, origin=None, relativize=True, **kw): """Convert the RRset into DNS master file format. @see: L{dns.name.Name.choose_relativity} for more information on how I{origin} and I{relativize} determine the way names are emitted. Any additional keyword arguments are passed on to the rdata to_text() method. @param origin: The origin for relative names, or None. @type origin: dns.name.Name object @param relativize: True if names should names be relativized @type relativize: bool""" return super(RRset, self).to_text(self.name, origin, relativize, self.deleting, **kw) def to_wire(self, file, compress=None, origin=None, **kw): """Convert the RRset to wire format.""" return super(RRset, self).to_wire(self.name, file, compress, origin, self.deleting, **kw) def to_rdataset(self): """Convert an RRset into an Rdataset. @rtype: dns.rdataset.Rdataset object """ return dns.rdataset.from_rdata_list(self.ttl, list(self)) def from_text_list(name, ttl, rdclass, rdtype, text_rdatas): """Create an RRset with the specified name, TTL, class, and type, and with the specified list of rdatas in text format. @rtype: dns.rrset.RRset object """ if isinstance(name, (str, unicode)): name = dns.name.from_text(name, None) if isinstance(rdclass, (str, unicode)): rdclass = dns.rdataclass.from_text(rdclass) if isinstance(rdtype, (str, unicode)): rdtype = dns.rdatatype.from_text(rdtype) r = RRset(name, rdclass, rdtype) r.update_ttl(ttl) for t in text_rdatas: rd = dns.rdata.from_text(r.rdclass, r.rdtype, t) r.add(rd) return r def from_text(name, ttl, rdclass, rdtype, *text_rdatas): """Create an RRset with the specified name, TTL, class, and type and with the specified rdatas in text format. @rtype: dns.rrset.RRset object """ return from_text_list(name, ttl, rdclass, rdtype, text_rdatas) def from_rdata_list(name, ttl, rdatas): """Create an RRset with the specified name and TTL, and with the specified list of rdata objects. @rtype: dns.rrset.RRset object """ if isinstance(name, (str, unicode)): name = dns.name.from_text(name, None) if len(rdatas) == 0: raise ValueError("rdata list must not be empty") r = None for rd in rdatas: if r is None: r = RRset(name, rd.rdclass, rd.rdtype) r.update_ttl(ttl) first_time = False r.add(rd) return r def from_rdata(name, ttl, *rdatas): """Create an RRset with the specified name and TTL, and with the specified rdata objects. @rtype: dns.rrset.RRset object """ return from_rdata_list(name, ttl, rdatas)
gpl-3.0
daiqing2009/CLS_chatlog
CN_dfidf.py
1
2899
# -*- coding: utf-8 -*- """ Created on Tue Oct 28 17:40:42 2014 @author: david.dai """ import datetime import sqlite3 import os import codecs import re import jieba.posseg as pseg from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB def persist_chatlog(filename, conn): with conn: cur = conn.cursor() f = codecs.open(filename,'r+','gbk') messages = [] for line in f.readlines(): if line.startwith(): msg=generateMsg(line) print msg messages.append(msg.msgTime,msg.who,msg.said,False) cur.executemany('insert into messages(msg_time,who,said,is_confirmed) values (?,?,?,?)',messages) def generateMsg(line): s = line.split() msgTime = datetime.datetime.strptime(s[0],"%Y年%m月%d日%X") n = re.search('^(gelnic简妮:)?.+?:'.decode('utf-8','ignore'),s[1]) who = n.group(0) said = s[1][len(who):] return Message(msgTime,who,said) def JB_tokenizer(): words = pseg.cut(sentences) for w in words: #extract nouns & verbs only if(w.flag in ['n','v']): w.word #TODO: 1. traning 2. dateset 測試 def get_cls_model(sentences, categories): #extract features via jieba, only consider noun & verb #building pipeline text_clf = Pipeline([('vect', CountVectorizer(tokenizer=JB_tokenizer )), ('tfidf', TfidfTransformer()), ('clf', MultinomialNB()), ]) #return trained models text_clf = text_clf.fit(JB_tokenizer,categories) return text_clf #copy of https://docs.python.org/2/library/sqlite3.html class Message(object): def __init__(self,msgTime,who,said): self.msgTime, self.who, self.said = msgTime, who, said def __repr__(self): return "on %s, %s said: %s" % (self.msgTime.strftime("%Y-%m-%d %X"), self.who, self.said) #获取文件列表(该目录下放着100份文档) def getFilelist(path): filelist = [] files = os.listdir(path) for f in files: if(f[0] == '.'): pass else: filelist.append(f) return filelist,path if __name__ == "__main__": conn = sqlite3.connect("CN_CLS") with conn: cur.execute("create table messages(id INTEGER PRIMARY KEY AUTOINCREMENT, msg_time datetime, who TEXT, said TEXT, category TEXT, is_confirmed BOOLEAN)") #從目錄下读取文档 for filename in getFilelist("./chatlog"): persist_chatlog(filename,conn ) #模拟写入category #build models clsModel = get_cls_model(sentences, categories) #evaluate the model clsModel.predict()
mit
rahuldhote/scikit-learn
sklearn/tests/test_base.py
215
7045
# Author: Gael Varoquaux # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.base import BaseEstimator, clone, is_classifier from sklearn.svm import SVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.utils import deprecated ############################################################################# # A few test classes class MyEstimator(BaseEstimator): def __init__(self, l1=0, empty=None): self.l1 = l1 self.empty = empty class K(BaseEstimator): def __init__(self, c=None, d=None): self.c = c self.d = d class T(BaseEstimator): def __init__(self, a=None, b=None): self.a = a self.b = b class DeprecatedAttributeEstimator(BaseEstimator): def __init__(self, a=None, b=None): self.a = a if b is not None: DeprecationWarning("b is deprecated and renamed 'a'") self.a = b @property @deprecated("Parameter 'b' is deprecated and renamed to 'a'") def b(self): return self._b class Buggy(BaseEstimator): " A buggy estimator that does not set its parameters right. " def __init__(self, a=None): self.a = 1 class NoEstimator(object): def __init__(self): pass def fit(self, X=None, y=None): return self def predict(self, X=None): return None class VargEstimator(BaseEstimator): """Sklearn estimators shouldn't have vargs.""" def __init__(self, *vargs): pass ############################################################################# # The tests def test_clone(): # Tests that clone creates a correct deep copy. # We create an estimator, make a copy of its original state # (which, in this case, is the current state of the estimator), # and check that the obtained copy is a correct deep copy. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) new_selector = clone(selector) assert_true(selector is not new_selector) assert_equal(selector.get_params(), new_selector.get_params()) selector = SelectFpr(f_classif, alpha=np.zeros((10, 2))) new_selector = clone(selector) assert_true(selector is not new_selector) def test_clone_2(): # Tests that clone doesn't copy everything. # We first create an estimator, give it an own attribute, and # make a copy of its original state. Then we check that the copy doesn't # have the specific attribute we manually added to the initial estimator. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) selector.own_attribute = "test" new_selector = clone(selector) assert_false(hasattr(new_selector, "own_attribute")) def test_clone_buggy(): # Check that clone raises an error on buggy estimators. buggy = Buggy() buggy.a = 2 assert_raises(RuntimeError, clone, buggy) no_estimator = NoEstimator() assert_raises(TypeError, clone, no_estimator) varg_est = VargEstimator() assert_raises(RuntimeError, clone, varg_est) def test_clone_empty_array(): # Regression test for cloning estimators with empty arrays clf = MyEstimator(empty=np.array([])) clf2 = clone(clf) assert_array_equal(clf.empty, clf2.empty) clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]]))) clf2 = clone(clf) assert_array_equal(clf.empty.data, clf2.empty.data) def test_clone_nan(): # Regression test for cloning estimators with default parameter as np.nan clf = MyEstimator(empty=np.nan) clf2 = clone(clf) assert_true(clf.empty is clf2.empty) def test_repr(): # Smoke test the repr of the base estimator. my_estimator = MyEstimator() repr(my_estimator) test = T(K(), K()) assert_equal( repr(test), "T(a=K(c=None, d=None), b=K(c=None, d=None))" ) some_est = T(a=["long_params"] * 1000) assert_equal(len(repr(some_est)), 415) def test_str(): # Smoke test the str of the base estimator my_estimator = MyEstimator() str(my_estimator) def test_get_params(): test = T(K(), K()) assert_true('a__d' in test.get_params(deep=True)) assert_true('a__d' not in test.get_params(deep=False)) test.set_params(a__d=2) assert_true(test.a.d == 2) assert_raises(ValueError, test.set_params, a__a=2) def test_get_params_deprecated(): # deprecated attribute should not show up as params est = DeprecatedAttributeEstimator(a=1) assert_true('a' in est.get_params()) assert_true('a' in est.get_params(deep=True)) assert_true('a' in est.get_params(deep=False)) assert_true('b' not in est.get_params()) assert_true('b' not in est.get_params(deep=True)) assert_true('b' not in est.get_params(deep=False)) def test_is_classifier(): svc = SVC() assert_true(is_classifier(svc)) assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))) assert_true(is_classifier(Pipeline([('svc', svc)]))) assert_true(is_classifier(Pipeline([('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))) def test_set_params(): # test nested estimator parameter setting clf = Pipeline([("svc", SVC())]) # non-existing parameter in svc assert_raises(ValueError, clf.set_params, svc__stupid_param=True) # non-existing parameter of pipeline assert_raises(ValueError, clf.set_params, svm__stupid_param=True) # we don't currently catch if the things in pipeline are estimators # bad_pipeline = Pipeline([("bad", NoEstimator())]) # assert_raises(AttributeError, bad_pipeline.set_params, # bad__stupid_param=True) def test_score_sample_weight(): from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn import datasets rng = np.random.RandomState(0) # test both ClassifierMixin and RegressorMixin estimators = [DecisionTreeClassifier(max_depth=2), DecisionTreeRegressor(max_depth=2)] sets = [datasets.load_iris(), datasets.load_boston()] for est, ds in zip(estimators, sets): est.fit(ds.data, ds.target) # generate random sample weights sample_weight = rng.randint(1, 10, size=len(ds.target)) # check that the score with and without sample weights are different assert_not_equal(est.score(ds.data, ds.target), est.score(ds.data, ds.target, sample_weight=sample_weight), msg="Unweighted and weighted scores " "are unexpectedly equal")
bsd-3-clause
rahuldhote/scikit-learn
sklearn/svm/base.py
155
36018
from __future__ import print_function import numpy as np import scipy.sparse as sp import warnings from abc import ABCMeta, abstractmethod from . import libsvm, liblinear from . import libsvm_sparse from ..base import BaseEstimator, ClassifierMixin, ChangedBehaviorWarning from ..preprocessing import LabelEncoder from ..multiclass import _ovr_decision_function from ..utils import check_array, check_random_state, column_or_1d from ..utils import ConvergenceWarning, compute_class_weight, deprecated from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted, NotFittedError from ..externals import six LIBSVM_IMPL = ['c_svc', 'nu_svc', 'one_class', 'epsilon_svr', 'nu_svr'] def _one_vs_one_coef(dual_coef, n_support, support_vectors): """Generate primal coefficients from dual coefficients for the one-vs-one multi class LibSVM in the case of a linear kernel.""" # get 1vs1 weights for all n*(n-1) classifiers. # this is somewhat messy. # shape of dual_coef_ is nSV * (n_classes -1) # see docs for details n_class = dual_coef.shape[0] + 1 # XXX we could do preallocation of coef but # would have to take care in the sparse case coef = [] sv_locs = np.cumsum(np.hstack([[0], n_support])) for class1 in range(n_class): # SVs for class1: sv1 = support_vectors[sv_locs[class1]:sv_locs[class1 + 1], :] for class2 in range(class1 + 1, n_class): # SVs for class1: sv2 = support_vectors[sv_locs[class2]:sv_locs[class2 + 1], :] # dual coef for class1 SVs: alpha1 = dual_coef[class2 - 1, sv_locs[class1]:sv_locs[class1 + 1]] # dual coef for class2 SVs: alpha2 = dual_coef[class1, sv_locs[class2]:sv_locs[class2 + 1]] # build weight for class1 vs class2 coef.append(safe_sparse_dot(alpha1, sv1) + safe_sparse_dot(alpha2, sv2)) return coef class BaseLibSVM(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for estimators that use libsvm as backing library This implements support vector machine classification and regression. Parameter documentation is in the derived `SVC` class. """ # The order of these must match the integer values in LibSVM. # XXX These are actually the same in the dense case. Need to factor # this out. _sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"] @abstractmethod def __init__(self, impl, kernel, degree, gamma, coef0, tol, C, nu, epsilon, shrinking, probability, cache_size, class_weight, verbose, max_iter, random_state): if impl not in LIBSVM_IMPL: # pragma: no cover raise ValueError("impl should be one of %s, %s was given" % ( LIBSVM_IMPL, impl)) # FIXME Remove gamma=0.0 support in 0.18 if gamma == 0: msg = ("gamma=%s has been deprecated in favor of " "gamma='%s' as of 0.17. Backward compatibility" " for gamma=%s will be removed in %s") invalid_gamma = 0.0 warnings.warn(msg % (invalid_gamma, "auto", invalid_gamma, "0.18"), DeprecationWarning) self._impl = impl self.kernel = kernel self.degree = degree self.gamma = gamma self.coef0 = coef0 self.tol = tol self.C = C self.nu = nu self.epsilon = epsilon self.shrinking = shrinking self.probability = probability self.cache_size = cache_size self.class_weight = class_weight self.verbose = verbose self.max_iter = max_iter self.random_state = random_state @property def _pairwise(self): # Used by cross_val_score. kernel = self.kernel return kernel == "precomputed" or callable(kernel) def fit(self, X, y, sample_weight=None): """Fit the SVM model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel="precomputed", the expected shape of X is (n_samples, n_samples). y : array-like, shape (n_samples,) Target values (class labels in classification, real numbers in regression) sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ------ If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input. """ rnd = check_random_state(self.random_state) sparse = sp.isspmatrix(X) if sparse and self.kernel == "precomputed": raise TypeError("Sparse precomputed kernels are not supported.") self._sparse = sparse and not callable(self.kernel) X = check_array(X, accept_sparse='csr', dtype=np.float64, order='C') y = self._validate_targets(y) sample_weight = np.asarray([] if sample_weight is None else sample_weight, dtype=np.float64) solver_type = LIBSVM_IMPL.index(self._impl) # input validation if solver_type != 2 and X.shape[0] != y.shape[0]: raise ValueError("X and y have incompatible shapes.\n" + "X has %s samples, but y has %s." % (X.shape[0], y.shape[0])) if self.kernel == "precomputed" and X.shape[0] != X.shape[1]: raise ValueError("X.shape[0] should be equal to X.shape[1]") if sample_weight.shape[0] > 0 and sample_weight.shape[0] != X.shape[0]: raise ValueError("sample_weight and X have incompatible shapes: " "%r vs %r\n" "Note: Sparse matrices cannot be indexed w/" "boolean masks (use `indices=True` in CV)." % (sample_weight.shape, X.shape)) # FIXME remove (self.gamma == 0) in 0.18 if (self.kernel in ['poly', 'rbf']) and ((self.gamma == 0) or (self.gamma == 'auto')): # if custom gamma is not provided ... self._gamma = 1.0 / X.shape[1] elif self.gamma == 'auto': self._gamma = 0.0 else: self._gamma = self.gamma kernel = self.kernel if callable(kernel): kernel = 'precomputed' fit = self._sparse_fit if self._sparse else self._dense_fit if self.verbose: # pragma: no cover print('[LibSVM]', end='') seed = rnd.randint(np.iinfo('i').max) fit(X, y, sample_weight, solver_type, kernel, random_seed=seed) # see comment on the other call to np.iinfo in this file self.shape_fit_ = X.shape # In binary case, we need to flip the sign of coef, intercept and # decision function. Use self._intercept_ and self._dual_coef_ internally. self._intercept_ = self.intercept_.copy() self._dual_coef_ = self.dual_coef_ if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2: self.intercept_ *= -1 self.dual_coef_ = -self.dual_coef_ return self def _validate_targets(self, y): """Validation of y and class_weight. Default implementation for SVR and one-class; overridden in BaseSVC. """ # XXX this is ugly. # Regression models should not have a class_weight_ attribute. self.class_weight_ = np.empty(0) return column_or_1d(y, warn=True).astype(np.float64) def _warn_from_fit_status(self): assert self.fit_status_ in (0, 1) if self.fit_status_ == 1: warnings.warn('Solver terminated early (max_iter=%i).' ' Consider pre-processing your data with' ' StandardScaler or MinMaxScaler.' % self.max_iter, ConvergenceWarning) def _dense_fit(self, X, y, sample_weight, solver_type, kernel, random_seed): if callable(self.kernel): # you must store a reference to X to compute the kernel in predict # TODO: add keyword copy to copy on demand self.__Xfit = X X = self._compute_kernel(X) if X.shape[0] != X.shape[1]: raise ValueError("X.shape[0] should be equal to X.shape[1]") libsvm.set_verbosity_wrap(self.verbose) # we don't pass **self.get_params() to allow subclasses to # add other parameters to __init__ self.support_, self.support_vectors_, self.n_support_, \ self.dual_coef_, self.intercept_, self.probA_, \ self.probB_, self.fit_status_ = libsvm.fit( X, y, svm_type=solver_type, sample_weight=sample_weight, class_weight=self.class_weight_, kernel=kernel, C=self.C, nu=self.nu, probability=self.probability, degree=self.degree, shrinking=self.shrinking, tol=self.tol, cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma, epsilon=self.epsilon, max_iter=self.max_iter, random_seed=random_seed) self._warn_from_fit_status() def _sparse_fit(self, X, y, sample_weight, solver_type, kernel, random_seed): X.data = np.asarray(X.data, dtype=np.float64, order='C') X.sort_indices() kernel_type = self._sparse_kernels.index(kernel) libsvm_sparse.set_verbosity_wrap(self.verbose) self.support_, self.support_vectors_, dual_coef_data, \ self.intercept_, self.n_support_, \ self.probA_, self.probB_, self.fit_status_ = \ libsvm_sparse.libsvm_sparse_train( X.shape[1], X.data, X.indices, X.indptr, y, solver_type, kernel_type, self.degree, self._gamma, self.coef0, self.tol, self.C, self.class_weight_, sample_weight, self.nu, self.cache_size, self.epsilon, int(self.shrinking), int(self.probability), self.max_iter, random_seed) self._warn_from_fit_status() if hasattr(self, "classes_"): n_class = len(self.classes_) - 1 else: # regression n_class = 1 n_SV = self.support_vectors_.shape[0] dual_coef_indices = np.tile(np.arange(n_SV), n_class) dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1, dual_coef_indices.size / n_class) self.dual_coef_ = sp.csr_matrix( (dual_coef_data, dual_coef_indices, dual_coef_indptr), (n_class, n_SV)) def predict(self, X): """Perform regression on samples in X. For an one-class model, +1 or -1 is returned. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is (n_samples_test, n_samples_train). Returns ------- y_pred : array, shape (n_samples,) """ X = self._validate_for_predict(X) predict = self._sparse_predict if self._sparse else self._dense_predict return predict(X) def _dense_predict(self, X): n_samples, n_features = X.shape X = self._compute_kernel(X) if X.ndim == 1: X = check_array(X, order='C') kernel = self.kernel if callable(self.kernel): kernel = 'precomputed' if X.shape[1] != self.shape_fit_[0]: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of samples at training time" % (X.shape[1], self.shape_fit_[0])) svm_type = LIBSVM_IMPL.index(self._impl) return libsvm.predict( X, self.support_, self.support_vectors_, self.n_support_, self._dual_coef_, self._intercept_, self.probA_, self.probB_, svm_type=svm_type, kernel=kernel, degree=self.degree, coef0=self.coef0, gamma=self._gamma, cache_size=self.cache_size) def _sparse_predict(self, X): # Precondition: X is a csr_matrix of dtype np.float64. kernel = self.kernel if callable(kernel): kernel = 'precomputed' kernel_type = self._sparse_kernels.index(kernel) C = 0.0 # C is not useful here return libsvm_sparse.libsvm_sparse_predict( X.data, X.indices, X.indptr, self.support_vectors_.data, self.support_vectors_.indices, self.support_vectors_.indptr, self._dual_coef_.data, self._intercept_, LIBSVM_IMPL.index(self._impl), kernel_type, self.degree, self._gamma, self.coef0, self.tol, C, self.class_weight_, self.nu, self.epsilon, self.shrinking, self.probability, self.n_support_, self.probA_, self.probB_) def _compute_kernel(self, X): """Return the data transformed by a callable kernel""" if callable(self.kernel): # in the case of precomputed kernel given as a function, we # have to compute explicitly the kernel matrix kernel = self.kernel(X, self.__Xfit) if sp.issparse(kernel): kernel = kernel.toarray() X = np.asarray(kernel, dtype=np.float64, order='C') return X @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train]. Returns ------- X : array-like, shape (n_samples, n_class * (n_class-1) / 2) Returns the decision function of the sample for each class in the model. """ return self._decision_function(X) def _decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples, n_class * (n_class-1) / 2) Returns the decision function of the sample for each class in the model. """ # NOTE: _validate_for_predict contains check for is_fitted # hence must be placed before any other attributes are used. X = self._validate_for_predict(X) X = self._compute_kernel(X) if self._sparse: dec_func = self._sparse_decision_function(X) else: dec_func = self._dense_decision_function(X) # In binary case, we need to flip the sign of coef, intercept and # decision function. if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2: return -dec_func.ravel() return dec_func def _dense_decision_function(self, X): X = check_array(X, dtype=np.float64, order="C") kernel = self.kernel if callable(kernel): kernel = 'precomputed' return libsvm.decision_function( X, self.support_, self.support_vectors_, self.n_support_, self._dual_coef_, self._intercept_, self.probA_, self.probB_, svm_type=LIBSVM_IMPL.index(self._impl), kernel=kernel, degree=self.degree, cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma) def _sparse_decision_function(self, X): X.data = np.asarray(X.data, dtype=np.float64, order='C') kernel = self.kernel if hasattr(kernel, '__call__'): kernel = 'precomputed' kernel_type = self._sparse_kernels.index(kernel) return libsvm_sparse.libsvm_sparse_decision_function( X.data, X.indices, X.indptr, self.support_vectors_.data, self.support_vectors_.indices, self.support_vectors_.indptr, self._dual_coef_.data, self._intercept_, LIBSVM_IMPL.index(self._impl), kernel_type, self.degree, self._gamma, self.coef0, self.tol, self.C, self.class_weight_, self.nu, self.epsilon, self.shrinking, self.probability, self.n_support_, self.probA_, self.probB_) def _validate_for_predict(self, X): check_is_fitted(self, 'support_') X = check_array(X, accept_sparse='csr', dtype=np.float64, order="C") if self._sparse and not sp.isspmatrix(X): X = sp.csr_matrix(X) if self._sparse: X.sort_indices() if sp.issparse(X) and not self._sparse and not callable(self.kernel): raise ValueError( "cannot use sparse input in %r trained on dense data" % type(self).__name__) n_samples, n_features = X.shape if self.kernel == "precomputed": if X.shape[1] != self.shape_fit_[0]: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of samples at training time" % (X.shape[1], self.shape_fit_[0])) elif n_features != self.shape_fit_[1]: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of features at training time" % (n_features, self.shape_fit_[1])) return X @property def coef_(self): if self.kernel != 'linear': raise ValueError('coef_ is only available when using a ' 'linear kernel') coef = self._get_coef() # coef_ being a read-only property, it's better to mark the value as # immutable to avoid hiding potential bugs for the unsuspecting user. if sp.issparse(coef): # sparse matrix do not have global flags coef.data.flags.writeable = False else: # regular dense array coef.flags.writeable = False return coef def _get_coef(self): return safe_sparse_dot(self._dual_coef_, self.support_vectors_) class BaseSVC(six.with_metaclass(ABCMeta, BaseLibSVM, ClassifierMixin)): """ABC for LibSVM-based classifiers.""" @abstractmethod def __init__(self, impl, kernel, degree, gamma, coef0, tol, C, nu, shrinking, probability, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state): self.decision_function_shape = decision_function_shape super(BaseSVC, self).__init__( impl=impl, kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, random_state=random_state) def _validate_targets(self, y): y_ = column_or_1d(y, warn=True) cls, y = np.unique(y_, return_inverse=True) self.class_weight_ = compute_class_weight(self.class_weight, cls, y_) if len(cls) < 2: raise ValueError( "The number of classes has to be greater than one; got %d" % len(cls)) self.classes_ = cls return np.asarray(y, dtype=np.float64, order='C') def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples, n_classes * (n_classes-1) / 2) Returns the decision function of the sample for each class in the model. If decision_function_shape='ovr', the shape is (n_samples, n_classes) """ dec = self._decision_function(X) if self.decision_function_shape is None and len(self.classes_) > 2: warnings.warn("The decision_function_shape default value will " "change from 'ovo' to 'ovr' in 0.18. This will change " "the shape of the decision function returned by " "SVC.", ChangedBehaviorWarning) if self.decision_function_shape == 'ovr': return _ovr_decision_function(dec < 0, dec, len(self.classes_)) return dec def predict(self, X): """Perform classification on samples in X. For an one-class model, +1 or -1 is returned. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train] Returns ------- y_pred : array, shape (n_samples,) Class labels for samples in X. """ y = super(BaseSVC, self).predict(X) return self.classes_.take(np.asarray(y, dtype=np.intp)) # Hacky way of getting predict_proba to raise an AttributeError when # probability=False using properties. Do not use this in new code; when # probabilities are not available depending on a setting, introduce two # estimators. def _check_proba(self): if not self.probability: raise AttributeError("predict_proba is not available when " " probability=False") if self._impl not in ('c_svc', 'nu_svc'): raise AttributeError("predict_proba only implemented for SVC" " and NuSVC") @property def predict_proba(self): """Compute probabilities of possible outcomes for samples in X. The model need to have probability information computed at training time: fit with attribute `probability` set to True. Parameters ---------- X : array-like, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train] Returns ------- T : array-like, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. Notes ----- The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets. """ self._check_proba() return self._predict_proba def _predict_proba(self, X): X = self._validate_for_predict(X) if self.probA_.size == 0 or self.probB_.size == 0: raise NotFittedError("predict_proba is not available when fitted " "with probability=False") pred_proba = (self._sparse_predict_proba if self._sparse else self._dense_predict_proba) return pred_proba(X) @property def predict_log_proba(self): """Compute log probabilities of possible outcomes for samples in X. The model need to have probability information computed at training time: fit with attribute `probability` set to True. Parameters ---------- X : array-like, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train] Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probabilities of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. Notes ----- The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) def _dense_predict_proba(self, X): X = self._compute_kernel(X) kernel = self.kernel if callable(kernel): kernel = 'precomputed' svm_type = LIBSVM_IMPL.index(self._impl) pprob = libsvm.predict_proba( X, self.support_, self.support_vectors_, self.n_support_, self._dual_coef_, self._intercept_, self.probA_, self.probB_, svm_type=svm_type, kernel=kernel, degree=self.degree, cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma) return pprob def _sparse_predict_proba(self, X): X.data = np.asarray(X.data, dtype=np.float64, order='C') kernel = self.kernel if callable(kernel): kernel = 'precomputed' kernel_type = self._sparse_kernels.index(kernel) return libsvm_sparse.libsvm_sparse_predict_proba( X.data, X.indices, X.indptr, self.support_vectors_.data, self.support_vectors_.indices, self.support_vectors_.indptr, self._dual_coef_.data, self._intercept_, LIBSVM_IMPL.index(self._impl), kernel_type, self.degree, self._gamma, self.coef0, self.tol, self.C, self.class_weight_, self.nu, self.epsilon, self.shrinking, self.probability, self.n_support_, self.probA_, self.probB_) def _get_coef(self): if self.dual_coef_.shape[0] == 1: # binary classifier coef = safe_sparse_dot(self.dual_coef_, self.support_vectors_) else: # 1vs1 classifier coef = _one_vs_one_coef(self.dual_coef_, self.n_support_, self.support_vectors_) if sp.issparse(coef[0]): coef = sp.vstack(coef).tocsr() else: coef = np.vstack(coef) return coef def _get_liblinear_solver_type(multi_class, penalty, loss, dual): """Find the liblinear magic number for the solver. This number depends on the values of the following attributes: - multi_class - penalty - loss - dual The same number is also internally used by LibLinear to determine which solver to use. """ # nested dicts containing level 1: available loss functions, # level2: available penalties for the given loss functin, # level3: wether the dual solver is available for the specified # combination of loss function and penalty _solver_type_dict = { 'logistic_regression': { 'l1': {False: 6}, 'l2': {False: 0, True: 7}}, 'hinge': { 'l2': {True: 3}}, 'squared_hinge': { 'l1': {False: 5}, 'l2': {False: 2, True: 1}}, 'epsilon_insensitive': { 'l2': {True: 13}}, 'squared_epsilon_insensitive': { 'l2': {False: 11, True: 12}}, 'crammer_singer': 4 } if multi_class == 'crammer_singer': return _solver_type_dict[multi_class] elif multi_class != 'ovr': raise ValueError("`multi_class` must be one of `ovr`, " "`crammer_singer`, got %r" % multi_class) # FIXME loss.lower() --> loss in 0.18 _solver_pen = _solver_type_dict.get(loss.lower(), None) if _solver_pen is None: error_string = ("loss='%s' is not supported" % loss) else: # FIME penalty.lower() --> penalty in 0.18 _solver_dual = _solver_pen.get(penalty.lower(), None) if _solver_dual is None: error_string = ("The combination of penalty='%s' " "and loss='%s' is not supported" % (penalty, loss)) else: solver_num = _solver_dual.get(dual, None) if solver_num is None: error_string = ("The combination of penalty='%s' and " "loss='%s' are not supported when dual=%s" % (penalty, loss, dual)) else: return solver_num raise ValueError('Unsupported set of arguments: %s, ' 'Parameters: penalty=%r, loss=%r, dual=%r' % (error_string, penalty, loss, dual)) def _fit_liblinear(X, y, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, random_state=None, multi_class='ovr', loss='logistic_regression', epsilon=0.1): """Used by Logistic Regression (and CV) and LinearSVC. Preprocessing is done in this function before supplying it to liblinear. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X C : float Inverse of cross-validation parameter. Lower the C, the more the penalization. fit_intercept : bool Whether or not to fit the intercept, that is to add a intercept term to the decision function. intercept_scaling : float LibLinear internally penalizes the intercept and this term is subject to regularization just like the other terms of the feature vector. In order to avoid this, one should increase the intercept_scaling. such that the feature vector becomes [x, intercept_scaling]. class_weight : {dict, 'balanced'}, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` penalty : str, {'l1', 'l2'} The norm of the penalty used in regularization. dual : bool Dual or primal formulation, verbose : int Set verbose to any positive number for verbosity. max_iter : int Number of iterations. tol : float Stopping condition. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. multi_class : str, {'ovr', 'crammer_singer'} `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from an theoretical perspective as it is consistent it is seldom used in practice and rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. loss : str, {'logistic_regression', 'hinge', 'squared_hinge', 'epsilon_insensitive', 'squared_epsilon_insensitive} The loss function used to fit the model. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. Returns ------- coef_ : ndarray, shape (n_features, n_features + 1) The coefficent vector got by minimizing the objective function. intercept_ : float The intercept term added to the vector. n_iter_ : int Maximum number of iterations run across all classes. """ # FIXME Remove case insensitivity in 0.18 --------------------- loss_l, penalty_l = loss.lower(), penalty.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") if (not loss.islower()) and loss_l not in ('l1', 'l2'): warnings.warn(msg % (loss, loss_l, "0.18"), DeprecationWarning) if not penalty.islower(): warnings.warn(msg.replace("loss", "penalty") % (penalty, penalty_l, "0.18"), DeprecationWarning) # ------------------------------------------------------------- # FIXME loss_l --> loss in 0.18 if loss_l not in ['epsilon_insensitive', 'squared_epsilon_insensitive']: enc = LabelEncoder() y_ind = enc.fit_transform(y) classes_ = enc.classes_ if len(classes_) < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) class_weight_ = compute_class_weight(class_weight, classes_, y) else: class_weight_ = np.empty(0, dtype=np.float) y_ind = y liblinear.set_verbosity_wrap(verbose) rnd = check_random_state(random_state) if verbose: print('[LibLinear]', end='') # LinearSVC breaks when intercept_scaling is <= 0 bias = -1.0 if fit_intercept: if intercept_scaling <= 0: raise ValueError("Intercept scaling is %r but needs to be greater than 0." " To disable fitting an intercept," " set fit_intercept=False." % intercept_scaling) else: bias = intercept_scaling libsvm.set_verbosity_wrap(verbose) libsvm_sparse.set_verbosity_wrap(verbose) liblinear.set_verbosity_wrap(verbose) # LibLinear wants targets as doubles, even for classification y_ind = np.asarray(y_ind, dtype=np.float64).ravel() solver_type = _get_liblinear_solver_type(multi_class, penalty, loss, dual) raw_coef_, n_iter_ = liblinear.train_wrap( X, y_ind, sp.isspmatrix(X), solver_type, tol, bias, C, class_weight_, max_iter, rnd.randint(np.iinfo('i').max), epsilon) # Regarding rnd.randint(..) in the above signature: # seed for srand in range [0..INT_MAX); due to limitations in Numpy # on 32-bit platforms, we can't get to the UINT_MAX limit that # srand supports n_iter_ = max(n_iter_) if n_iter_ >= max_iter and verbose > 0: warnings.warn("Liblinear failed to converge, increase " "the number of iterations.", ConvergenceWarning) if fit_intercept: coef_ = raw_coef_[:, :-1] intercept_ = intercept_scaling * raw_coef_[:, -1] else: coef_ = raw_coef_ intercept_ = 0. return coef_, intercept_, n_iter_
bsd-3-clause
yepengxj/nmt
nmt/nmt.py
1
68062
''' Build a attention-based neural machine translation model ''' import theano import theano.tensor as tensor from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams import cPickle as pkl import numpy import copy import os import warnings import sys import time from scipy import optimize, stats from collections import OrderedDict from sklearn.cross_validation import KFold import wmt14enfr import iwslt14zhen import openmt15zhen import trans_enhi import stan profile = False # datasets: 'name', 'load_data: returns iterator', 'prepare_data: some preprocessing' datasets = {'wmt14enfr': (wmt14enfr.load_data, wmt14enfr.prepare_data), 'iwslt14zhen': (iwslt14zhen.load_data, iwslt14zhen.prepare_data), 'openmt15zhen': (openmt15zhen.load_data, openmt15zhen.prepare_data), 'trans_enhi': (trans_enhi.load_data, trans_enhi.prepare_data), 'stan': (stan.load_data, stan.prepare_data), } def get_dataset(name): return datasets[name][0], datasets[name][1] # push parameters to Theano shared variables def zipp(params, tparams): for kk, vv in params.iteritems(): tparams[kk].set_value(vv) # pull parameters from Theano shared variables def unzip(zipped): new_params = OrderedDict() for kk, vv in zipped.iteritems(): new_params[kk] = vv.get_value() return new_params # get the list of parameters: Note that tparams must be OrderedDict def itemlist(tparams): return [vv for kk, vv in tparams.iteritems()] # dropout def dropout_layer(state_before, use_noise, trng): proj = tensor.switch(use_noise, state_before * trng.binomial(state_before.shape, p=0.5, n=1, dtype=state_before.dtype), state_before * 0.5) return proj # make prefix-appended name def _p(pp, name): return '%s_%s'%(pp, name) # initialize Theano shared variables according to the initial parameters def init_tparams(params): tparams = OrderedDict() for kk, pp in params.iteritems(): tparams[kk] = theano.shared(params[kk], name=kk) return tparams # load parameters def load_params(path, params): pp = numpy.load(path) for kk, vv in params.iteritems(): if kk not in pp: warnings.warn('%s is not in the archive'%kk) continue params[kk] = pp[kk] return params # layers: 'name': ('parameter initializer', 'feedforward') layers = {'ff': ('param_init_fflayer', 'fflayer'), 'lstm': ('param_init_lstm', 'lstm_layer'), 'lstm_cond': ('param_init_lstm_cond', 'lstm_cond_layer'), 'gru': ('param_init_gru', 'gru_layer'), 'gru_cond': ('param_init_gru_cond', 'gru_cond_layer'), 'gru_cond_simple': ('param_init_gru_cond_simple', 'gru_cond_simple_layer'), 'gru_hiero': ('param_init_gru_hiero', 'gru_hiero_layer'), 'rnn': ('param_init_rnn', 'rnn_layer'), 'rnn_cond': ('param_init_rnn_cond', 'rnn_cond_layer'), 'rnn_hiero': ('param_init_rnn_hiero', 'rnn_hiero_layer'), } def get_layer(name): fns = layers[name] return (eval(fns[0]), eval(fns[1])) # some utilities def ortho_weight(ndim): W = numpy.random.randn(ndim, ndim) u, s, v = numpy.linalg.svd(W) return u.astype('float32') def norm_weight(nin,nout=None, scale=0.01, ortho=True): if nout == None: nout = nin if nout == nin and ortho: W = ortho_weight(nin) else: W = scale * numpy.random.randn(nin, nout) return W.astype('float32') def tanh(x): return tensor.tanh(x) def linear(x): return x def concatenate(tensor_list, axis=0): """ Alternative implementation of `theano.tensor.concatenate`. This function does exactly the same thing, but contrary to Theano's own implementation, the gradient is implemented on the GPU. Backpropagating through `theano.tensor.concatenate` yields slowdowns because the inverse operation (splitting) needs to be done on the CPU. This implementation does not have that problem. :usage: >>> x, y = theano.tensor.matrices('x', 'y') >>> c = concatenate([x, y], axis=1) :parameters: - tensor_list : list list of Theano tensor expressions that should be concatenated. - axis : int the tensors will be joined along this axis. :returns: - out : tensor the concatenated tensor expression. """ concat_size = sum(tt.shape[axis] for tt in tensor_list) output_shape = () for k in range(axis): output_shape += (tensor_list[0].shape[k],) output_shape += (concat_size,) for k in range(axis + 1, tensor_list[0].ndim): output_shape += (tensor_list[0].shape[k],) out = tensor.zeros(output_shape) offset = 0 for tt in tensor_list: indices = () for k in range(axis): indices += (slice(None),) indices += (slice(offset, offset + tt.shape[axis]),) for k in range(axis + 1, tensor_list[0].ndim): indices += (slice(None),) out = tensor.set_subtensor(out[indices], tt) offset += tt.shape[axis] return out # feedforward layer: affine transformation + point-wise nonlinearity def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None, ortho=True): if nin == None: nin = options['dim_proj'] if nout == None: nout = options['dim_proj'] params[_p(prefix,'W')] = norm_weight(nin, nout, scale=0.01, ortho=ortho) params[_p(prefix,'b')] = numpy.zeros((nout,)).astype('float32') return params def fflayer(tparams, state_below, options, prefix='rconv', activ='lambda x: tensor.tanh(x)', **kwargs): return eval(activ)(tensor.dot(state_below, tparams[_p(prefix,'W')])+tparams[_p(prefix,'b')]) # RNN layer def param_init_rnn(options, params, prefix='rnn', nin=None, dim=None): if nin == None: nin = options['dim_proj'] if dim == None: dim = options['dim_proj'] Wx = norm_weight(nin, dim) params[_p(prefix,'Wx')] = Wx Ux = ortho_weight(dim) params[_p(prefix,'Ux')] = Ux params[_p(prefix,'bx')] = numpy.zeros((dim,)).astype('float32') return params def rnn_layer(tparams, state_below, options, prefix='rnn', mask=None, **kwargs): nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 dim = tparams[_p(prefix,'Ux')].shape[0] if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')] def _step(m_, xx_, h_, Ux): preactx = tensor.dot(h_, Ux) preactx = preactx + xx_ h = tensor.tanh(preactx) h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h#, r, u, preact, preactx rval, updates = theano.scan(_step, sequences=[mask, state_belowx], outputs_info = [tensor.alloc(0., n_samples, dim)], #None, None, None, None], non_sequences=[tparams[_p(prefix, 'Ux')]], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile) rval = [rval] return rval # Conditional RNN layer with Attention def param_init_rnn_cond(options, params, prefix='rnn_cond', nin=None, dim=None, dimctx=None): if nin == None: nin = options['dim'] if dim == None: dim = options['dim'] if dimctx == None: dimctx = options['dim'] params = param_init_rnn(options, params, prefix, nin=nin, dim=dim) # context to LSTM Wcx = norm_weight(dimctx,dim) params[_p(prefix,'Wcx')] = Wcx # attention: prev -> hidden Wi_att = norm_weight(nin,dimctx) params[_p(prefix,'Wi_att')] = Wi_att # attention: context -> hidden Wc_att = norm_weight(dimctx) params[_p(prefix,'Wc_att')] = Wc_att # attention: LSTM -> hidden Wd_att = norm_weight(dim,dimctx) params[_p(prefix,'Wd_att')] = Wd_att # attention: hidden bias b_att = numpy.zeros((dimctx,)).astype('float32') params[_p(prefix,'b_att')] = b_att # attention: U_att = norm_weight(dimctx,1) params[_p(prefix,'U_att')] = U_att c_att = numpy.zeros((1,)).astype('float32') params[_p(prefix, 'c_tt')] = c_att return params def rnn_cond_layer(tparams, state_below, options, prefix='rnn', mask=None, context=None, one_step=False, init_memory=None, init_state=None, context_mask=None, **kwargs): assert context, 'Context must be provided' if one_step: assert init_state, 'previous state must be provided' nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 # mask if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) dim = tparams[_p(prefix, 'Ux')].shape[0] # initial/previous state if init_state == None: init_state = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 3, 'Context must be 3-d: #annotation x #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc_att')]) + tparams[_p(prefix,'b_att')] pctx_ += tparams[_p(prefix,'b_att')] # projected x state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')] state_belowx += tparams[_p(prefix, 'bx')] state_belowc = tensor.dot(state_below, tparams[_p(prefix, 'Wi_att')]) def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] def _step(m_, xx_, xc_, h_, ctx_, alpha_, pctx_, Wd_att, U_att, c_tt, Ux, Wcx): # attention pstate_ = tensor.dot(h_, Wd_att) pctx__ = pctx_ + pstate_[None,:,:] pctx__ += xc_ pctx__ = tensor.tanh(pctx__) alpha = tensor.dot(pctx__, U_att)+c_tt alpha = alpha.reshape([alpha.shape[0], alpha.shape[1]]) alpha = tensor.exp(alpha) if context_mask: alpha = alpha * context_mask alpha = alpha / alpha.sum(0, keepdims=True) ctx_ = (context * alpha[:,:,None]).sum(0) # current context preactx = tensor.dot(h_, Ux) preactx += xx_ preactx += tensor.dot(ctx_, Wcx) h = tensor.tanh(preactx) h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h, ctx_, alpha.T #, pstate_, preact, preactx, r, u if one_step: rval = _step(mask, state_belowx, state_belowc, init_state, None, None, pctx_, tparams[_p(prefix,'Wd_att')], tparams[_p(prefix,'U_att')], tparams[_p(prefix, 'c_tt')], tparams[_p(prefix, 'Ux')], tparams[_p(prefix, 'Wcx')] ) else: rval, updates = theano.scan(_step, sequences=[mask, state_belowx, state_belowc], outputs_info = [init_state, tensor.alloc(0., n_samples, context.shape[2]), tensor.alloc(0., n_samples, context.shape[0])], #None, None, None, #None, None], non_sequences=[pctx_, tparams[_p(prefix,'Wd_att')], tparams[_p(prefix,'U_att')], tparams[_p(prefix, 'c_tt')], tparams[_p(prefix, 'Ux')], tparams[_p(prefix, 'Wcx')] ], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile) return rval # Hierarchical RNN layer def param_init_rnn_hiero(options, params, prefix='rnn_hiero', nin=None, dimctx=None): if nin == None: nin = options['dim'] if dimctx == None: dimctx = options['dim'] dim = dimctx params = param_init_rnn(options, params, prefix, nin=nin, dim=dim) # attention: context -> hidden Wc_att = norm_weight(dimctx) params[_p(prefix,'Wc_att')] = Wc_att # attention: LSTM -> hidden Wd_att = norm_weight(dim,dimctx) params[_p(prefix,'Wd_att')] = Wd_att # attention: hidden bias b_att = numpy.zeros((dimctx,)).astype('float32') params[_p(prefix,'b_att')] = b_att # attention: U_att = norm_weight(dimctx,1) params[_p(prefix,'U_att')] = U_att c_att = numpy.zeros((1,)).astype('float32') params[_p(prefix, 'c_tt')] = c_att # stop probability: W_st = norm_weight(dim, 1) params[_p(prefix,'W_st')] = W_st b_st = numpy.zeros((1,)).astype('float32') params[_p(prefix,'b_st')] = b_st return params def rnn_hiero_layer(tparams, context, options, prefix='rnn_hiero', context_mask=None, **kwargs): nsteps = context.shape[0] if context.ndim == 3: n_samples = context.shape[1] else: n_samples = 1 # mask if context_mask == None: mask = tensor.alloc(1., context.shape[0], 1) else: mask = context_mask dim = tparams[_p(prefix, 'Ux')].shape[0] # initial/previous state init_state = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 3, 'Context must be 3-d: #annotation x #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc_att')]) + tparams[_p(prefix,'b_att')] def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] def _step(m_, h_, ctx_, alpha_, v_, pctx_, Wd_att, U_att, c_tt, Ux, Wx, bx, W_st, b_st): # attention pstate_ = tensor.dot(h_, Wd_att) pctx__ = pctx_ + pstate_[None,:,:] pctx__ = tensor.tanh(pctx__) alpha = tensor.dot(pctx__, U_att)+c_tt alpha = alpha.reshape([alpha.shape[0], alpha.shape[1]]) alpha = tensor.exp(alpha) if context_mask: alpha = alpha * context_mask alpha = alpha / alpha.sum(0, keepdims=True) ctx_ = (context * alpha[:,:,None]).sum(0) # current context preactx = tensor.dot(h_, Ux) preactx += tensor.dot(ctx_, Wx) preactx += bx h = tensor.tanh(preactx) h = m_[:,None] * h + (1. - m_)[:,None] * h_ # compute stopping probability ss = tensor.nnet.sigmoid(tensor.dot(h, W_st) + b_st) v_ = v_ * (1. - ss)[:,0][:,None] return h, ctx_, alpha.T, v_[:,0] #, pstate_, preact, preactx, r, u rval, updates = theano.scan(_step, sequences=[mask], outputs_info = [init_state, tensor.alloc(0., n_samples, context.shape[2]), tensor.alloc(0., n_samples, context.shape[0]), tensor.alloc(1., n_samples)], #None, None, None, #None, None], non_sequences=[pctx_, tparams[_p(prefix,'Wd_att')], tparams[_p(prefix,'U_att')], tparams[_p(prefix, 'c_tt')], tparams[_p(prefix, 'Ux')], tparams[_p(prefix, 'Wx')], tparams[_p(prefix, 'bx')], tparams[_p(prefix, 'W_st')], tparams[_p(prefix, 'b_st')]], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile) rval[0] = rval[0] * rval[3][:,:,None] return rval # GRU layer def param_init_gru(options, params, prefix='gru', nin=None, dim=None, hiero=False): if nin == None: nin = options['dim_proj'] if dim == None: dim = options['dim_proj'] if not hiero: W = numpy.concatenate([norm_weight(nin,dim), norm_weight(nin,dim)], axis=1) params[_p(prefix,'W')] = W params[_p(prefix,'b')] = numpy.zeros((2 * dim,)).astype('float32') U = numpy.concatenate([ortho_weight(dim), ortho_weight(dim)], axis=1) params[_p(prefix,'U')] = U Wx = norm_weight(nin, dim) params[_p(prefix,'Wx')] = Wx Ux = ortho_weight(dim) params[_p(prefix,'Ux')] = Ux params[_p(prefix,'bx')] = numpy.zeros((dim,)).astype('float32') return params def gru_layer(tparams, state_below, options, prefix='gru', mask=None, **kwargs): nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 dim = tparams[_p(prefix,'Ux')].shape[1] if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')] state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')] U = tparams[_p(prefix, 'U')] Ux = tparams[_p(prefix, 'Ux')] def _step_slice(m_, x_, xx_, h_, U, Ux): preact = tensor.dot(h_, U) preact += x_ r = tensor.nnet.sigmoid(_slice(preact, 0, dim)) u = tensor.nnet.sigmoid(_slice(preact, 1, dim)) preactx = tensor.dot(h_, Ux) preactx = preactx * r preactx = preactx + xx_ h = tensor.tanh(preactx) h = u * h_ + (1. - u) * h h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h#, r, u, preact, preactx seqs = [mask, state_below_, state_belowx] _step = _step_slice rval, updates = theano.scan(_step, sequences=seqs, outputs_info = [tensor.alloc(0., n_samples, dim)], #None, None, None, None], non_sequences = [tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Ux')]], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) rval = [rval] return rval # Conditional GRU layer without Attention def param_init_gru_cond_simple(options, params, prefix='gru_cond', nin=None, dim=None, dimctx=None): if nin == None: nin = options['dim'] if dim == None: dim = options['dim'] if dimctx == None: dimctx = options['dim'] params = param_init_gru(options, params, prefix, nin=nin, dim=dim) # context to LSTM Wc = norm_weight(dimctx,dim*2) params[_p(prefix,'Wc')] = Wc Wcx = norm_weight(dimctx,dim) params[_p(prefix,'Wcx')] = Wcx return params def gru_cond_simple_layer(tparams, state_below, options, prefix='gru', mask=None, context=None, one_step=False, init_memory=None, init_state=None, context_mask=None, **kwargs): assert context, 'Context must be provided' if one_step: assert init_state, 'previous state must be provided' nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 # mask if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) dim = tparams[_p(prefix, 'Ux')].shape[1] # initial/previous state if init_state == None: init_state = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 2, 'Context must be 2-d: #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc')]) pctxx_ = tensor.dot(context, tparams[_p(prefix,'Wcx')]) def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] # projected x state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')] state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')] def _step_slice(m_, x_, xx_, h_, pctx_, pctxx_, U, Ux): preact = tensor.dot(h_, U) preact += x_ preact += pctx_ preact = tensor.nnet.sigmoid(preact) r = _slice(preact, 0, dim) u = _slice(preact, 1, dim) preactx = tensor.dot(h_, Ux) preactx *= r preactx += xx_ preactx += pctxx_ h = tensor.tanh(preactx) h = u * h_ + (1. - u) * h h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h seqs = [mask, state_below_, state_belowx] _step = _step_slice shared_vars = [tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Ux')]] if one_step: rval = _step(*(seqs+[init_state, pctx_, pctxx_]+shared_vars)) else: rval, updates = theano.scan(_step, sequences=seqs, outputs_info=[init_state], non_sequences=[pctx_, pctxx_]+shared_vars, name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) return rval # Conditional GRU layer with Attention def param_init_gru_cond(options, params, prefix='gru_cond', nin=None, dim=None, dimctx=None): if nin == None: nin = options['dim'] if dim == None: dim = options['dim'] if dimctx == None: dimctx = options['dim'] params = param_init_gru(options, params, prefix, nin=nin, dim=dim) # context to LSTM Wc = norm_weight(dimctx,dim*2) params[_p(prefix,'Wc')] = Wc Wcx = norm_weight(dimctx,dim) params[_p(prefix,'Wcx')] = Wcx # attention: prev -> hidden Wi_att = norm_weight(nin,dimctx) params[_p(prefix,'Wi_att')] = Wi_att # attention: context -> hidden Wc_att = norm_weight(dimctx) params[_p(prefix,'Wc_att')] = Wc_att # attention: LSTM -> hidden Wd_att = norm_weight(dim,dimctx) params[_p(prefix,'Wd_att')] = Wd_att # attention: hidden bias b_att = numpy.zeros((dimctx,)).astype('float32') params[_p(prefix,'b_att')] = b_att # attention: U_att = norm_weight(dimctx,1) params[_p(prefix,'U_att')] = U_att c_att = numpy.zeros((1,)).astype('float32') params[_p(prefix, 'c_tt')] = c_att return params def gru_cond_layer(tparams, state_below, options, prefix='gru', mask=None, context=None, one_step=False, init_memory=None, init_state=None, context_mask=None, **kwargs): assert context, 'Context must be provided' if one_step: assert init_state, 'previous state must be provided' nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 # mask if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) dim = tparams[_p(prefix, 'Wcx')].shape[1] # initial/previous state if init_state == None: init_state = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 3, 'Context must be 3-d: #annotation x #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc_att')]) + tparams[_p(prefix,'b_att')] def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] # projected x state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')] state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')] state_belowc = tensor.dot(state_below, tparams[_p(prefix, 'Wi_att')]) def _step_slice(m_, x_, xx_, xc_, h_, ctx_, alpha_, pctx_, cc_, U, Wc, Wd_att, U_att, c_tt, Ux, Wcx): # attention pstate_ = tensor.dot(h_, Wd_att) pctx__ = pctx_ + pstate_[None,:,:] pctx__ += xc_ pctx__ = tensor.tanh(pctx__) alpha = tensor.dot(pctx__, U_att)+c_tt alpha = alpha.reshape([alpha.shape[0], alpha.shape[1]]) alpha = tensor.exp(alpha) if context_mask: alpha = alpha * context_mask alpha = alpha / alpha.sum(0, keepdims=True) ctx_ = (cc_ * alpha[:,:,None]).sum(0) # current context preact = tensor.dot(h_, U) preact += x_ preact += tensor.dot(ctx_, Wc) preact = tensor.nnet.sigmoid(preact) r = _slice(preact, 0, dim) u = _slice(preact, 1, dim) preactx = tensor.dot(h_, Ux) preactx *= r preactx += xx_ preactx += tensor.dot(ctx_, Wcx) h = tensor.tanh(preactx) h = u * h_ + (1. - u) * h h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h, ctx_, alpha.T #, pstate_, preact, preactx, r, u seqs = [mask, state_below_, state_belowx, state_belowc] _step = _step_slice shared_vars = [tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Wc')], tparams[_p(prefix,'Wd_att')], tparams[_p(prefix,'U_att')], tparams[_p(prefix, 'c_tt')], tparams[_p(prefix, 'Ux')], tparams[_p(prefix, 'Wcx')]] if one_step: rval = _step(*(seqs+[init_state, None, None, pctx_, context]+shared_vars)) else: rval, updates = theano.scan(_step, sequences=seqs, outputs_info = [init_state, tensor.alloc(0., n_samples, context.shape[2]), tensor.alloc(0., n_samples, context.shape[0])], #None, None, None, #None, None], non_sequences=[pctx_, context]+shared_vars, name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) return rval # Hierarchical GRU layer def param_init_gru_hiero(options, params, prefix='gru_hiero', nin=None, dimctx=None): if nin == None: nin = options['dim'] if dimctx == None: dimctx = options['dim'] dim = dimctx params = param_init_gru(options, params, prefix, nin=nin, dim=dim, hiero=True) # context to LSTM Wc = norm_weight(dimctx,dim*2) params[_p(prefix,'Wc')] = Wc # attention: context -> hidden Wc_att = norm_weight(dimctx) params[_p(prefix,'Wc_att')] = Wc_att # attention: LSTM -> hidden Wd_att = norm_weight(dim,dimctx) params[_p(prefix,'Wd_att')] = Wd_att # attention: hidden bias b_att = numpy.zeros((dimctx,)).astype('float32') params[_p(prefix,'b_att')] = b_att # attention: U_att = norm_weight(dimctx,1) params[_p(prefix,'U_att')] = U_att c_att = numpy.zeros((1,)).astype('float32') params[_p(prefix, 'c_tt')] = c_att # stop probability: W_st = norm_weight(dim, 1) params[_p(prefix,'W_st')] = W_st b_st = -0. * numpy.ones((1,)).astype('float32') params[_p(prefix,'b_st')] = b_st return params def gru_hiero_layer(tparams, context, options, prefix='gru_hiero', context_mask=None, **kwargs): nsteps = context.shape[0] if context.ndim == 3: n_samples = context.shape[1] else: n_samples = 1 # mask if context_mask == None: mask = tensor.alloc(1., context.shape[0], 1) else: mask = context_mask dim = tparams[_p(prefix, 'W_st')].shape[0] # initial/previous state init_state = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 3, 'Context must be 3-d: #annotation x #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc_att')]) + tparams[_p(prefix,'b_att')] def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] def _step_slice(m_, h_, ctx_, alpha_, v_, pp_, cc_, U, Wc, Wd_att, U_att, c_tt, Ux, Wx, bx, W_st, b_st): # attention pstate_ = tensor.dot(h_, Wd_att) pctx__ = pp_ + pstate_[None,:,:] pctx__ = tensor.tanh(pctx__) alpha = tensor.dot(pctx__, U_att)+c_tt alpha = alpha.reshape([alpha.shape[0], alpha.shape[1]]) alpha = tensor.exp(alpha) if context_mask: alpha = alpha * context_mask alpha = alpha / alpha.sum(0, keepdims=True) ctx = (cc_ * alpha[:,:,None]).sum(0) # current context preact = tensor.dot(h_, U) preact += tensor.dot(ctx, Wc) preact = tensor.nnet.sigmoid(preact) r = _slice(preact, 0, dim) u = _slice(preact, 1, dim) preactx = tensor.dot(h_, Ux) preactx = preactx * r preactx += tensor.dot(ctx, Wx) preactx += bx h = tensor.tanh(preactx) h = u * h_ + (1. - u) * h h = m_[:,None] * h + (1. - m_)[:,None] * h_ # compute stopping probability ss = tensor.nnet.sigmoid(tensor.dot(h, W_st) + b_st) v_ = v_ * (1. - ss)[:,0][:,None] return h, ctx, alpha.T, v_[:,0] #, pstate_, preact, preactx, r, u _step = _step_slice rval, updates = theano.scan(_step, sequences=[mask], outputs_info = [init_state, tensor.alloc(0., n_samples, context.shape[2]), tensor.alloc(0., n_samples, context.shape[0]), tensor.alloc(1., n_samples)], #None, None, None, #None, None], non_sequences=[pctx_, context, tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Wc')], tparams[_p(prefix,'Wd_att')], tparams[_p(prefix,'U_att')], tparams[_p(prefix, 'c_tt')], tparams[_p(prefix, 'Ux')], tparams[_p(prefix, 'Wx')], tparams[_p(prefix, 'bx')], tparams[_p(prefix, 'W_st')], tparams[_p(prefix, 'b_st')]], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) rval[0] = rval[0] * rval[3][:,:,None] return rval # LSTM layer def param_init_lstm(options, params, prefix='lstm', nin=None, dim=None, hiero=False): if nin == None: nin = options['dim_proj'] if dim == None: dim = options['dim_proj'] if not hiero: W = numpy.concatenate([norm_weight(nin,dim), norm_weight(nin,dim), norm_weight(nin,dim), norm_weight(nin,dim)], axis=1) params[_p(prefix,'W')] = W U = numpy.concatenate([ortho_weight(dim), ortho_weight(dim), ortho_weight(dim), ortho_weight(dim)], axis=1) params[_p(prefix,'U')] = U params[_p(prefix,'b')] = numpy.zeros((4 * dim,)).astype('float32') return params def lstm_layer(tparams, state_below, options, prefix='lstm', mask=None, **kwargs): nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 dim = tparams[_p(prefix,'U')].shape[0] if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] def _step(m_, x_, h_, c_): preact = tensor.dot(h_, tparams[_p(prefix, 'U')]) preact += x_ preact += tparams[_p(prefix, 'b')] i = tensor.nnet.sigmoid(_slice(preact, 0, dim)) f = tensor.nnet.sigmoid(_slice(preact, 1, dim)) o = tensor.nnet.sigmoid(_slice(preact, 2, dim)) c = tensor.tanh(_slice(preact, 3, dim)) c = f * c_ + i * c c = m_[:,None] * c + (1. - m_)[:,None] * c_ h = o * tensor.tanh(c) h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h, c, i, f, o, preact state_below = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')] rval, updates = theano.scan(_step, sequences=[mask, state_below], outputs_info = [tensor.alloc(0., n_samples, dim), tensor.alloc(0., n_samples, dim), None, None, None, None], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile) return rval # Conditional LSTM layer with Attention def param_init_lstm_cond(options, params, prefix='lstm_cond', nin=None, dim=None, dimctx=None): if nin == None: nin = options['dim'] if dim == None: dim = options['dim'] if dimctx == None: dimctx = options['dim'] params = param_init_lstm(options, params, prefix, nin, dim) # context to LSTM Wc = norm_weight(dimctx,dim*4) params[_p(prefix,'Wc')] = Wc # attention: prev -> hidden Wi_att = norm_weight(nin,dimctx) params[_p(prefix,'Wi_att')] = Wi_att # attention: context -> hidden Wc_att = norm_weight(dimctx) params[_p(prefix,'Wc_att')] = Wc_att # attention: LSTM -> hidden Wd_att = norm_weight(dim,dimctx) params[_p(prefix,'Wd_att')] = Wd_att # attention: hidden bias b_att = numpy.zeros((dimctx,)).astype('float32') params[_p(prefix,'b_att')] = b_att # attention: U_att = norm_weight(dimctx,1) params[_p(prefix,'U_att')] = U_att c_att = numpy.zeros((1,)).astype('float32') params[_p(prefix, 'c_tt')] = c_att return params def lstm_cond_layer(tparams, state_below, options, prefix='lstm', mask=None, context=None, one_step=False, init_memory=None, init_state=None, context_mask=None, **kwargs): assert context, 'Context must be provided' if one_step: assert init_memory, 'previous memory must be provided' assert init_state, 'previous state must be provided' nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 # mask if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) dim = tparams[_p(prefix, 'U')].shape[0] # initial/previous state if init_state == None: init_state = tensor.alloc(0., n_samples, dim) # initial/previous memory if init_memory == None: init_memory = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 3, 'Context must be 3-d: #annotation x #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc_att')]) + tparams[_p(prefix,'b_att')] # projected x state_below = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')] state_belowc = tensor.dot(state_below, tparams[_p(prefix, 'Wi_att')]) def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] def _step(m_, x_, xc_, h_, c_, ctx_, alpha_, pctx_): # attention pstate_ = tensor.dot(h_, tparams[_p(prefix,'Wd_att')]) pctx__ = pctx_ + pstate_[None,:,:] pctx__ += xc_ pctx__ = tensor.tanh(pctx__) alpha = tensor.dot(pctx__, tparams[_p(prefix,'U_att')])+tparams[_p(prefix, 'c_tt')] alpha = alpha.reshape([alpha.shape[0], alpha.shape[1]]) alpha = tensor.exp(alpha) if context_mask: alpha = alpha * context_mask alpha = alpha / alpha.sum(0, keepdims=True) ctx_ = (context * alpha[:,:,None]).sum(0) # current context preact = tensor.dot(h_, tparams[_p(prefix, 'U')]) preact += x_ preact += tensor.dot(ctx_, tparams[_p(prefix, 'Wc')]) i = tensor.nnet.sigmoid(_slice(preact, 0, dim)) f = tensor.nnet.sigmoid(_slice(preact, 1, dim)) o = tensor.nnet.sigmoid(_slice(preact, 2, dim)) c = tensor.tanh(_slice(preact, 3, dim)) c = f * c_ + i * c c = m_[:,None] * c + (1. - m_)[:,None] * c_ h = o * tensor.tanh(c) h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h, c, ctx_, alpha.T, pstate_, preact, i, f, o if one_step: rval = _step(mask, state_below, state_belowc, init_state, init_memory, None, None, pctx_) else: rval, updates = theano.scan(_step, sequences=[mask, state_below, state_belowc], outputs_info = [init_state, init_memory, tensor.alloc(0., n_samples, context.shape[2]), tensor.alloc(0., n_samples, context.shape[0]), None, None, None, None, None], non_sequences=[pctx_], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile) return rval # initialize all parameters def init_params(options): params = OrderedDict() # embedding params['Wemb'] = norm_weight(options['n_words_src'], options['dim_word']) params['Wemb_dec'] = norm_weight(options['n_words'], options['dim_word']) # encoder: LSTM params = get_layer(options['encoder'])[0](options, params, prefix='encoder', nin=options['dim_word'], dim=options['dim']) ctxdim = options['dim'] if not options['decoder'].endswith('simple'): ctxdim = options['dim'] * 2 params = get_layer(options['encoder'])[0](options, params, prefix='encoder_r', nin=options['dim_word'], dim=options['dim']) if options['hiero']: params = get_layer(options['hiero'])[0](options, params, prefix='hiero', nin=2*options['dim'], dimctx=2*options['dim']) # init_state, init_cell params = get_layer('ff')[0](options, params, prefix='ff_state', nin=ctxdim, nout=options['dim']) if options['encoder'] == 'lstm': params = get_layer('ff')[0](options, params, prefix='ff_memory', nin=ctxdim, nout=options['dim']) # decoder: LSTM params = get_layer(options['decoder'])[0](options, params, prefix='decoder', nin=options['dim_word'], dim=options['dim'], dimctx=ctxdim) # readout params = get_layer('ff')[0](options, params, prefix='ff_logit_lstm', nin=options['dim'], nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit_prev', nin=options['dim_word'], nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit_ctx', nin=ctxdim, nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['dim_word'], nout=options['n_words']) return params # build a training model def build_model(tparams, options): opt_ret = dict() trng = RandomStreams(1234) use_noise = theano.shared(numpy.float32(0.)) # description string: #words x #samples x = tensor.matrix('x', dtype='int64') x_mask = tensor.matrix('x_mask', dtype='float32') y = tensor.matrix('y', dtype='int64') y_mask = tensor.matrix('y_mask', dtype='float32') xr = x[::-1] xr_mask = x_mask[::-1] n_timesteps = x.shape[0] n_timesteps_trg = y.shape[0] n_samples = x.shape[1] emb = tparams['Wemb'][x.flatten()].reshape([n_timesteps, n_samples, options['dim_word']]) proj = get_layer(options['encoder'])[1](tparams, emb, options, prefix='encoder', mask=x_mask) if options['decoder'].endswith('simple'): ctx = proj[0][-1] ctx_mean = ctx else: embr = tparams['Wemb'][xr.flatten()].reshape([n_timesteps, n_samples, options['dim_word']]) projr = get_layer(options['encoder'])[1](tparams, embr, options, prefix='encoder_r', mask=xr_mask) ctx = concatenate([proj[0], projr[0][::-1]], axis=proj[0].ndim-1) if options['hiero']: #ctx = tensor.dot(ctx, tparams['W_hiero']) rval = get_layer(options['hiero'])[1](tparams, ctx, options, prefix='hiero', context_mask=x_mask) ctx = rval[0] opt_ret['hiero_alphas'] = rval[2] opt_ret['hiero_betas'] = rval[3] # initial state/cell ctx_mean = ctx.mean(0) init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') init_memory = None if options['encoder'] == 'lstm': init_memory = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory', activ='tanh') # word embedding (target) emb = tparams['Wemb_dec'][y.flatten()].reshape([n_timesteps_trg, n_samples, options['dim_word']]) emb_shifted = tensor.zeros_like(emb) emb_shifted = tensor.set_subtensor(emb_shifted[1:], emb[:-1]) emb = emb_shifted # decoder proj = get_layer(options['decoder'])[1](tparams, emb, options, prefix='decoder', mask=y_mask, context=ctx, context_mask=x_mask, one_step=False, init_state=init_state, init_memory=init_memory) proj_h = proj[0] if options['decoder'].endswith('simple'): ctxs = ctx[None,:,:] else: if options['decoder'].startswith('lstm'): ctxs = proj[2] opt_ret['dec_alphas'] = proj[3] else: ctxs = proj[1] opt_ret['dec_alphas'] = proj[2] # compute word probabilities logit_lstm = get_layer('ff')[1](tparams, proj_h, options, prefix='ff_logit_lstm', activ='linear') logit_prev = get_layer('ff')[1](tparams, emb, options, prefix='ff_logit_prev', activ='linear') logit_ctx = get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') logit = tensor.tanh(logit_lstm+logit_prev+logit_ctx) logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') logit_shp = logit.shape probs = tensor.nnet.softmax(logit.reshape([logit_shp[0]*logit_shp[1], logit_shp[2]])) # cost y_flat = y.flatten() y_flat_idx = tensor.arange(y_flat.shape[0]) * options['n_words'] + y_flat cost = -tensor.log(probs.flatten()[y_flat_idx]) cost = cost.reshape([y.shape[0],y.shape[1]]) cost = (cost * y_mask).sum(0) return trng, use_noise, x, x_mask, y, y_mask, opt_ret, cost # build a sampler def build_sampler(tparams, options, trng): x = tensor.matrix('x', dtype='int64') xr = x[::-1] n_timesteps = x.shape[0] n_samples = x.shape[1] # word embedding (source) emb = tparams['Wemb'][x.flatten()].reshape([n_timesteps, n_samples, options['dim_word']]) embr = tparams['Wemb'][xr.flatten()].reshape([n_timesteps, n_samples, options['dim_word']]) # encoder proj = get_layer(options['encoder'])[1](tparams, emb, options, prefix='encoder') if options['decoder'].endswith('simple'): ctx = proj[0][-1] ctx_mean = ctx else: projr = get_layer(options['encoder'])[1](tparams, embr, options, prefix='encoder_r') ctx = concatenate([proj[0],projr[0][::-1]], axis=proj[0].ndim-1) if options['hiero']: rval = get_layer(options['hiero'])[1](tparams, ctx, options, prefix='hiero') ctx = rval[0] # initial state/cell ctx_mean = ctx.mean(0) init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') if options['encoder'] == 'lstm': init_memory = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory', activ='tanh') print 'Building f_init...', outs = [init_state, ctx] if options['decoder'].startswith('lstm'): outs += [init_memory] f_init = theano.function([x], outs, name='f_init', profile=profile) print 'Done' # x: 1 x 1 y = tensor.vector('y_sampler', dtype='int64') init_state = tensor.matrix('init_state', dtype='float32') if options['decoder'].startswith('lstm'): init_memory = tensor.matrix('init_memory', dtype='float32') else: init_memory = None # if it's the first word, emb should be all zero emb = tensor.switch(y[:,None] < 0, tensor.alloc(0., 1, tparams['Wemb_dec'].shape[1]), tparams['Wemb_dec'][y]) proj = get_layer(options['decoder'])[1](tparams, emb, options, prefix='decoder', mask=None, context=ctx, one_step=True, init_state=init_state, init_memory=init_memory) if options['decoder'].endswith('simple'): next_state = proj ctxs = ctx else: next_state = proj[0] ctxs = proj[1] if options['decoder'].startswith('lstm'): next_memory = proj[1] ctxs = proj[2] logit_lstm = get_layer('ff')[1](tparams, next_state, options, prefix='ff_logit_lstm', activ='linear') logit_prev = get_layer('ff')[1](tparams, emb, options, prefix='ff_logit_prev', activ='linear') logit_ctx = get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') logit = tensor.tanh(logit_lstm+logit_prev+logit_ctx) logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') next_probs = tensor.nnet.softmax(logit) next_sample = trng.multinomial(pvals=next_probs).argmax(1) # next word probability print 'Building f_next..', inps = [y, ctx, init_state] outs = [next_probs, next_sample, next_state] if options['decoder'].startswith('lstm'): inps += [init_memory] outs += [next_memory] f_next = theano.function(inps, outs, name='f_next', profile=profile) print 'Done' return f_init, f_next # generate sample def gen_sample(tparams, f_init, f_next, x, options, trng=None, k=1, maxlen=30, stochastic=True, argmax=False): if k > 1: assert not stochastic, 'Beam search does not support stochastic sampling' sample = [] sample_score = [] if stochastic: sample_score = 0 live_k = 1 dead_k = 0 hyp_samples = [[]] * live_k hyp_scores = numpy.zeros(live_k).astype('float32') hyp_states = [] if options['decoder'].startswith('lstm'): hyp_memories = [] ret = f_init(x) next_state, ctx0 = ret[0], ret[1] if options['decoder'].startswith('lstm'): next_memory = ret[2] next_w = -1 * numpy.ones((1,)).astype('int64') for ii in xrange(maxlen): if options['decoder'].endswith('simple'): ctx = numpy.tile(ctx0, [live_k, 1]) else: ctx = numpy.tile(ctx0.reshape((ctx0.shape[0],ctx0.shape[2])), [live_k, 1, 1]).transpose((1,0,2)) inps = [next_w, ctx, next_state] if options['decoder'].startswith('lstm'): inps += [next_memory] ret = f_next(*inps) next_p, next_w, next_state = ret[0], ret[1], ret[2] if options['decoder'].startswith('lstm'): next_memory = ret[3] if stochastic: if argmax: nw = next_p[0].argmax() else: nw = next_w[0] sample.append(nw) sample_score += next_p[0,nw] if nw == 0: break else: cand_scores = hyp_scores[:,None] - numpy.log(next_p) cand_flat = cand_scores.flatten() ranks_flat = cand_flat.argsort()[:(k-dead_k)] voc_size = next_p.shape[1] trans_indices = ranks_flat / voc_size word_indices = ranks_flat % voc_size costs = cand_flat[ranks_flat] new_hyp_samples = [] new_hyp_scores = numpy.zeros(k-dead_k).astype('float32') new_hyp_states = [] if options['decoder'].startswith('lstm'): new_hyp_memories = [] for idx, [ti, wi] in enumerate(zip(trans_indices, word_indices)): new_hyp_samples.append(hyp_samples[ti]+[wi]) new_hyp_scores[idx] = copy.copy(costs[ti]) new_hyp_states.append(copy.copy(next_state[ti])) if options['decoder'].startswith('lstm'): new_hyp_memories.append(copy.copy(next_memory[ti])) # check the finished samples new_live_k = 0 hyp_samples = [] hyp_scores = [] hyp_states = [] if options['decoder'].startswith('lstm'): hyp_memories = [] for idx in xrange(len(new_hyp_samples)): if new_hyp_samples[idx][-1] == 0: sample.append(new_hyp_samples[idx]) sample_score.append(new_hyp_scores[idx]) dead_k += 1 else: new_live_k += 1 hyp_samples.append(new_hyp_samples[idx]) hyp_scores.append(new_hyp_scores[idx]) hyp_states.append(new_hyp_states[idx]) if options['decoder'].startswith('lstm'): hyp_memories.append(new_hyp_memories[idx]) hyp_scores = numpy.array(hyp_scores) live_k = new_live_k if new_live_k < 1: break if dead_k >= k: break next_w = numpy.array([w[-1] for w in hyp_samples]) next_state = numpy.array(hyp_states) if options['decoder'].startswith('lstm'): next_memory = numpy.array(hyp_memories) if not stochastic: # dump every remaining one if live_k > 0: for idx in xrange(live_k): sample.append(hyp_samples[idx]) sample_score.append(hyp_scores[idx]) return sample, sample_score def pred_probs(f_log_probs, prepare_data, options, iterator, verbose=True): probs = [] n_done = 0 iterator.start() for x, y in iterator: n_done += len(x) x, x_mask, y, y_mask = prepare_data(x, y, n_words_src=options['n_words_src'], n_words=options['n_words']) pprobs = f_log_probs(x,x_mask,y,y_mask) for pp in pprobs: probs.append(pp) if verbose: print >>sys.stderr, '%d samples computed'%(n_done) return numpy.array(probs) # optimizers # name(hyperp, tparams, grads, inputs (list), cost) = f_grad_shared, f_update def adam(lr, tparams, grads, inp, cost): gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) for k, p in tparams.iteritems()] gsup = [(gs, g) for gs, g in zip(gshared, grads)] f_grad_shared = theano.function(inp, cost, updates=gsup, profile=profile) lr0 = 0.0002 b1 = 0.1 b2 = 0.001 e = 1e-8 updates = [] i = theano.shared(numpy.float32(0.)) i_t = i + 1. fix1 = 1. - b1**(i_t) fix2 = 1. - b2**(i_t) lr_t = lr0 * (tensor.sqrt(fix2) / fix1) for p, g in zip(tparams.values(), gshared): m = theano.shared(p.get_value() * 0.) v = theano.shared(p.get_value() * 0.) m_t = (b1 * g) + ((1. - b1) * m) v_t = (b2 * tensor.sqr(g)) + ((1. - b2) * v) g_t = m_t / (tensor.sqrt(v_t) + e) p_t = p - (lr_t * g_t) updates.append((m, m_t)) updates.append((v, v_t)) updates.append((p, p_t)) updates.append((i, i_t)) f_update = theano.function([lr], [], updates=updates, on_unused_input='ignore', profile=profile) return f_grad_shared, f_update def adadelta(lr, tparams, grads, inp, cost): zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_grad'%k) for k, p in tparams.iteritems()] running_up2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rup2'%k) for k, p in tparams.iteritems()] running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad2'%k) for k, p in tparams.iteritems()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] f_grad_shared = theano.function(inp, cost, updates=zgup+rg2up, profile=profile) updir = [-tensor.sqrt(ru2 + 1e-6) / tensor.sqrt(rg2 + 1e-6) * zg for zg, ru2, rg2 in zip(zipped_grads, running_up2, running_grads2)] ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2)) for ru2, ud in zip(running_up2, updir)] param_up = [(p, p + ud) for p, ud in zip(itemlist(tparams), updir)] f_update = theano.function([lr], [], updates=ru2up+param_up, on_unused_input='ignore', profile=profile) return f_grad_shared, f_update def rmsprop(lr, tparams, grads, inp, cost): zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_grad'%k) for k, p in tparams.iteritems()] running_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad'%k) for k, p in tparams.iteritems()] running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad2'%k) for k, p in tparams.iteritems()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rgup = [(rg, 0.95 * rg + 0.05 * g) for rg, g in zip(running_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] f_grad_shared = theano.function(inp, cost, updates=zgup+rgup+rg2up, profile=profile) updir = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_updir'%k) for k, p in tparams.iteritems()] updir_new = [(ud, 0.9 * ud - 1e-4 * zg / tensor.sqrt(rg2 - rg ** 2 + 1e-4)) for ud, zg, rg, rg2 in zip(updir, zipped_grads, running_grads, running_grads2)] param_up = [(p, p + udn[1]) for p, udn in zip(itemlist(tparams), updir_new)] f_update = theano.function([lr], [], updates=updir_new+param_up, on_unused_input='ignore', profile=profile) return f_grad_shared, f_update def sgd(lr, tparams, grads, x, mask, y, cost): gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) for k, p in tparams.iteritems()] gsup = [(gs, g) for gs, g in zip(gshared, grads)] f_grad_shared = theano.function([x, mask, y], cost, updates=gsup, profile=profile) pup = [(p, p - lr * g) for p, g in zip(itemlist(tparams), gshared)] f_update = theano.function([lr], [], updates=pup, profile=profile) return f_grad_shared, f_update def train(dim_word=100, # word vector dimensionality dim=1000, # the number of LSTM units encoder='gru', decoder='gru_cond', hiero=None, #'gru_hiero', # or None patience=10, max_epochs=5000, dispFreq=100, decay_c=0., alpha_c=0., diag_c=0., lrate=0.01, n_words_src=100000, n_words=100000, maxlen=100, # maximum length of the description optimizer='rmsprop', batch_size = 16, valid_batch_size = 16, saveto='model.npz', validFreq=1000, saveFreq=1000, # save the parameters after every saveFreq updates sampleFreq=100, # generate some samples after every sampleFreq updates dataset='wmt14enfr', dictionary=None, # word dictionary dictionary_src=None, # word dictionary use_dropout=False, reload_=False): # Model options model_options = locals().copy() if dictionary: with open(dictionary, 'rb') as f: word_dict = pkl.load(f) word_idict = dict() for kk, vv in word_dict.iteritems(): word_idict[vv] = kk if dictionary_src: with open(dictionary_src, 'rb') as f: word_dict_src = pkl.load(f) word_idict_src = dict() for kk, vv in word_dict_src.iteritems(): word_idict_src[vv] = kk # reload options if reload_ and os.path.exists(saveto): with open('%s.pkl'%saveto, 'rb') as f: models_options = pkl.load(f) print 'Loading data' load_data, prepare_data = get_dataset(dataset) train, valid, test = load_data(batch_size=batch_size) print 'Building model' params = init_params(model_options) # reload parameters if reload_ and os.path.exists(saveto): params = load_params(saveto, params) tparams = init_tparams(params) trng, use_noise, \ x, x_mask, y, y_mask, \ opt_ret, \ cost = \ build_model(tparams, model_options) inps = [x, x_mask, y, y_mask] theano.printing.debugprint(cost.mean(), file=open('cost.txt', 'w')) print 'Buliding sampler' f_init, f_next = build_sampler(tparams, model_options, trng) # before any regularizer print 'Building f_log_probs...', f_log_probs = theano.function(inps, cost, profile=profile) print 'Done' cost = cost.mean() if decay_c > 0.: decay_c = theano.shared(numpy.float32(decay_c), name='decay_c') weight_decay = 0. for kk, vv in tparams.iteritems(): weight_decay += (vv ** 2).sum() weight_decay *= decay_c cost += weight_decay if alpha_c > 0. and not model_options['decoder'].endswith('simple'): alpha_c = theano.shared(numpy.float32(alpha_c), name='alpha_c') alpha_reg = alpha_c * ((tensor.cast(y_mask.sum(0)//x_mask.sum(0), 'float32')[:,None]- opt_ret['dec_alphas'].sum(0))**2).sum(1).mean() cost += alpha_reg # after any regularizer print 'Building f_cost...', f_cost = theano.function(inps, cost, profile=profile) print 'Done' if model_options['hiero'] != None: print 'Building f_beta...', f_beta = theano.function([x, x_mask], opt_ret['hiero_betas'], profile=profile) print 'Done' print 'Computing gradient...', grads = tensor.grad(cost, wrt=itemlist(tparams)) print 'Done' print 'Building f_grad...', f_grad = theano.function(inps, grads, profile=profile) print 'Done' lr = tensor.scalar(name='lr') print 'Building optimizers...', f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost) print 'Done' print 'Optimization' history_errs = [] # reload history if reload_ and os.path.exists(saveto): history_errs = list(numpy.load(saveto)['history_errs']) best_p = None bad_count = 0 if validFreq == -1: validFreq = len(train[0])/batch_size if saveFreq == -1: saveFreq = len(train[0])/batch_size if sampleFreq == -1: sampleFreq = len(train[0])/batch_size uidx = 0 estop = False for eidx in xrange(max_epochs): n_samples = 0 train.start() for x, y in train: n_samples += len(x) uidx += 1 use_noise.set_value(1.) x, x_mask, y, y_mask = prepare_data(x, y, maxlen=maxlen, n_words_src=n_words_src, n_words=n_words) if x == None: print 'Minibatch with zero sample under length ', maxlen uidx -= 1 continue ud_start = time.time() cost = f_grad_shared(x, x_mask, y, y_mask) f_update(lrate) ud = time.time() - ud_start if numpy.isnan(cost) or numpy.isinf(cost): print 'NaN detected' return 1., 1., 1. if numpy.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'UD ', ud if numpy.mod(uidx, saveFreq) == 0: print 'Saving...', #import ipdb; ipdb.set_trace() if best_p != None: params = best_p else: params = unzip(tparams) numpy.savez(saveto, history_errs=history_errs, **params) pkl.dump(model_options, open('%s.pkl'%saveto, 'wb')) print 'Done' if numpy.mod(uidx, sampleFreq) == 0: # FIXME: random selection? for jj in xrange(numpy.minimum(5,x.shape[1])): stochastic = False sample, score = gen_sample(tparams, f_init, f_next, x[:,jj][:,None], model_options, trng=trng, k=1, maxlen=30, stochastic=stochastic, argmax=True) print 'Source ',jj,': ', for vv in x[:,jj]: if vv == 0: break if vv in word_idict_src: print word_idict_src[vv], else: print 'UNK', print print 'Truth ',jj,' : ', for vv in y[:,jj]: if vv == 0: break if vv in word_idict: print word_idict[vv], else: print 'UNK', print if model_options['hiero']: betas = f_beta(x[:,jj][:,None], x_mask[:,jj][:,None]) print 'Validity ', jj,': ', for vv,bb in zip(y[:,jj],betas[:,0]): if vv == 0: break print bb, print print 'Sample ', jj, ': ', if stochastic: ss = sample else: score = score / numpy.array([len(s) for s in sample]) ss = sample[score.argmin()] for vv in ss: if vv == 0: break if vv in word_idict: print word_idict[vv], else: print 'UNK', print if numpy.mod(uidx, validFreq) == 0: use_noise.set_value(0.) train_err = 0 valid_err = 0 test_err = 0 #for _, tindex in kf: # x, mask = prepare_data(train[0][train_index]) # train_err += (f_pred(x, mask) == train[1][tindex]).sum() #train_err = 1. - numpy.float32(train_err) / train[0].shape[0] #train_err = pred_error(f_pred, prepare_data, train, kf) if valid != None: valid_err = pred_probs(f_log_probs, prepare_data, model_options, valid).mean() if test != None: test_err = pred_probs(f_log_probs, prepare_data, model_options, test).mean() history_errs.append([valid_err, test_err]) if uidx == 0 or valid_err <= numpy.array(history_errs)[:,0].min(): best_p = unzip(tparams) bad_counter = 0 if len(history_errs) > patience and valid_err >= numpy.array(history_errs)[:-patience,0].min(): bad_counter += 1 if bad_counter > patience: print 'Early Stop!' estop = True break print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err #print 'Epoch ', eidx, 'Update ', uidx, 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err print 'Seen %d samples'%n_samples if estop: break if best_p is not None: zipp(best_p, tparams) use_noise.set_value(0.) train_err = 0 valid_err = 0 test_err = 0 #train_err = pred_error(f_pred, prepare_data, train, kf) if valid != None: valid_err = pred_probs(f_log_probs, prepare_data, model_options, valid).mean() if test != None: test_err = pred_probs(f_log_probs, prepare_data, model_options, test).mean() print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err if best_p != None: params = copy.copy(best_p) else: params = unzip(tparams) numpy.savez(saveto, zipped_params=best_p, train_err=train_err, valid_err=valid_err, test_err=test_err, history_errs=history_errs, **params) return train_err, valid_err, test_err if __name__ == '__main__': pass
bsd-3-clause
rahuldhote/scikit-learn
sklearn/neighbors/graph.py
207
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
hyperspy/hyperspy
hyperspy/_signals/eds.py
2
47066
# -*- coding: utf-8 -*- # Copyright 2007-2022 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <https://www.gnu.org/licenses/#GPL>. import itertools import logging import numpy as np import warnings from collections.abc import Iterable from matplotlib import pyplot as plt from hyperspy import utils from hyperspy.signal import BaseSignal from hyperspy._signals.signal1d import Signal1D, LazySignal1D from hyperspy.misc.elements import elements as elements_db from hyperspy.misc.eds import utils as utils_eds from hyperspy.misc.utils import isiterable from hyperspy.utils.plot import markers from hyperspy.docstrings.plot import (BASE_PLOT_DOCSTRING_PARAMETERS, PLOT1D_DOCSTRING) _logger = logging.getLogger(__name__) class EDSSpectrum(Signal1D): """General 1D signal class for EDS spectra.""" _signal_type = "EDS" def __init__(self, *args, **kwards): super().__init__(*args, **kwards) if self.metadata.Signal.signal_type == 'EDS': warnings.warn('The microscope type is not set. Use ' 'set_signal_type(\'EDS_TEM\') ' 'or set_signal_type(\'EDS_SEM\')') self.axes_manager.signal_axes[0].is_binned = True self._xray_markers = {} def _get_line_energy(self, Xray_line, FWHM_MnKa=None): """ Get the line energy and the energy resolution of a Xray line. The return values are in the same units than the signal axis Parameters ---------- Xray_line : strings Valid element X-ray lines e.g. Fe_Kb FWHM_MnKa: {None, float, 'auto'} The energy resolution of the detector in eV if 'auto', used the one in 'self.metadata.Acquisition_instrument.SEM.Detector.EDS.energy_resolution_MnKa' Returns ------- float: the line energy, if FWHM_MnKa is None (float,float): the line energy and the energy resolution, if FWHM_MnKa is not None """ units_name = self.axes_manager.signal_axes[0].units if FWHM_MnKa == 'auto': if self.metadata.Signal.signal_type == "EDS_SEM": FWHM_MnKa = self.metadata.Acquisition_instrument.SEM.\ Detector.EDS.energy_resolution_MnKa elif self.metadata.Signal.signal_type == "EDS_TEM": FWHM_MnKa = self.metadata.Acquisition_instrument.TEM.\ Detector.EDS.energy_resolution_MnKa else: raise NotImplementedError( "This method only works for EDS_TEM or EDS_SEM signals. " "You can use `set_signal_type('EDS_TEM')` or" "`set_signal_type('EDS_SEM')` to convert to one of these" "signal types.") line_energy = utils_eds._get_energy_xray_line(Xray_line) if units_name == 'eV': line_energy *= 1000 if FWHM_MnKa is not None: line_FWHM = utils_eds.get_FWHM_at_Energy( FWHM_MnKa, line_energy / 1000) * 1000 elif units_name == 'keV': if FWHM_MnKa is not None: line_FWHM = utils_eds.get_FWHM_at_Energy(FWHM_MnKa, line_energy) else: raise ValueError( f"{units_name} is not a valid units for the energy axis. " "Only `eV` and `keV` are supported. " "If `s` is the variable containing this EDS spectrum:\n " ">>> s.axes_manager.signal_axes[0].units = 'keV' \n") if FWHM_MnKa is None: return line_energy else: return line_energy, line_FWHM def _get_beam_energy(self): """ Get the beam energy. The return value is in the same units than the signal axis """ if "Acquisition_instrument.SEM.beam_energy" in self.metadata: beam_energy = self.metadata.Acquisition_instrument.SEM.beam_energy elif "Acquisition_instrument.TEM.beam_energy" in self.metadata: beam_energy = self.metadata.Acquisition_instrument.TEM.beam_energy else: raise AttributeError( "The beam energy is not defined in `metadata`. " "Use `set_microscope_parameters` to set it.") units_name = self.axes_manager.signal_axes[0].units if units_name == 'eV': beam_energy *= 1000 return beam_energy def _get_xray_lines_in_spectral_range(self, xray_lines): """ Return the lines in the energy range Parameters ---------- xray_lines: List of string The xray_lines Return ------ The list of xray_lines in the energy range """ ax = self.axes_manager.signal_axes[0] low_value = ax.low_value high_value = ax.high_value try: if self._get_beam_energy() < high_value: high_value = self._get_beam_energy() except AttributeError: # in case the beam energy is not defined in the metadata pass xray_lines_in_range = [] xray_lines_not_in_range = [] for xray_line in xray_lines: line_energy = self._get_line_energy(xray_line) if low_value < line_energy < high_value: xray_lines_in_range.append(xray_line) else: xray_lines_not_in_range.append(xray_line) return xray_lines_in_range, xray_lines_not_in_range def sum(self, axis=None, out=None): if axis is None: axis = self.axes_manager.navigation_axes s = super().sum(axis=axis, out=out) s = out or s # Update live time by the change in navigation axes dimensions time_factor = ( np.prod([ax.size for ax in self.axes_manager.navigation_axes]) / np.prod([ax.size for ax in s.axes_manager.navigation_axes]) ) aimd = s.metadata.get_item('Acquisition_instrument', None) if aimd is not None: aimd = s.metadata.Acquisition_instrument if "SEM.Detector.EDS.live_time" in aimd: aimd.SEM.Detector.EDS.live_time *= time_factor elif "TEM.Detector.EDS.live_time" in aimd: aimd.TEM.Detector.EDS.live_time *= time_factor else: _logger.info("Live_time could not be found in the metadata and " "has not been updated.") if out is None: return s sum.__doc__ = Signal1D.sum.__doc__ def rebin(self, new_shape=None, scale=None, crop=True, dtype=None, out=None): factors = self._validate_rebin_args_and_get_factors( new_shape=new_shape, scale=scale,) m = super().rebin(new_shape=new_shape, scale=scale, crop=crop, dtype=dtype, out=out) m = out or m time_factor = np.prod([factors[axis.index_in_array] for axis in m.axes_manager.navigation_axes]) aimd = m.metadata.Acquisition_instrument if "Acquisition_instrument.SEM.Detector.EDS.real_time" in m.metadata: aimd.SEM.Detector.EDS.real_time *= time_factor elif "Acquisition_instrument.TEM.Detector.EDS.real_time" in m.metadata: aimd.TEM.Detector.EDS.real_time *= time_factor else: _logger.info( "real_time could not be found in the metadata and has not been updated.") if "Acquisition_instrument.SEM.Detector.EDS.live_time" in m.metadata: aimd.SEM.Detector.EDS.live_time *= time_factor elif "Acquisition_instrument.TEM.Detector.EDS.live_time" in m.metadata: aimd.TEM.Detector.EDS.live_time *= time_factor else: _logger.info( "Live_time could not be found in the metadata and has not been updated.") if out is None: return m else: out.events.data_changed.trigger(obj=out) return m rebin.__doc__ = BaseSignal.rebin.__doc__ def set_elements(self, elements): """Erase all elements and set them. Parameters ---------- elements : list of strings A list of chemical element symbols. See also -------- add_elements, set_lines, add_lines Examples -------- >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> print(s.metadata.Sample.elements) >>> s.set_elements(['Al']) >>> print(s.metadata.Sample.elements) ['Al' 'C' 'Cu' 'Mn' 'Zr'] ['Al'] """ # Erase previous elements and X-ray lines if "Sample.elements" in self.metadata: del self.metadata.Sample.elements self.add_elements(elements) def add_elements(self, elements): """Add elements and the corresponding X-ray lines. The list of elements is stored in `metadata.Sample.elements` Parameters ---------- elements : list of strings The symbol of the elements. Examples -------- >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> print(s.metadata.Sample.elements) >>> s.add_elements(['Ar']) >>> print(s.metadata.Sample.elements) ['Al' 'C' 'Cu' 'Mn' 'Zr'] ['Al', 'Ar', 'C', 'Cu', 'Mn', 'Zr'] See also -------- set_elements, add_lines, set_lines """ if not isiterable(elements) or isinstance(elements, str): raise ValueError( "Input must be in the form of a list. For example, " "if `s` is the variable containing this EDS spectrum:\n " ">>> s.add_elements(('C',))\n" "See the docstring for more information.") if "Sample.elements" in self.metadata: elements_ = set(self.metadata.Sample.elements) else: elements_ = set() for element in elements: if element in elements_db: elements_.add(element) else: raise ValueError( f"{element} is not a valid chemical element symbol.") self.metadata.set_item('Sample.elements', sorted(list(elements_))) def _get_xray_lines(self, xray_lines=None, only_one=None, only_lines=('a',)): if xray_lines is None: if 'Sample.xray_lines' in self.metadata: xray_lines = self.metadata.Sample.xray_lines elif 'Sample.elements' in self.metadata: xray_lines = self._get_lines_from_elements( self.metadata.Sample.elements, only_one=only_one, only_lines=only_lines) else: raise ValueError( "Not X-ray line, set them with `add_elements`.") return xray_lines def set_lines(self, lines, only_one=True, only_lines=('a',)): """Erase all Xrays lines and set them. See add_lines for details. Parameters ---------- lines : list of strings A list of valid element X-ray lines to add e.g. Fe_Kb. Additionally, if `metadata.Sample.elements` is defined, add the lines of those elements that where not given in this list. only_one: bool If False, add all the lines of each element in `metadata.Sample.elements` that has not line defined in lines. If True (default), only add the line at the highest energy above an overvoltage of 2 (< beam energy / 2). only_lines : {None, list of strings} If not None, only the given lines will be added. Examples -------- >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.add_lines() >>> print(s.metadata.Sample.xray_lines) >>> s.set_lines(['Cu_Ka']) >>> print(s.metadata.Sample.xray_lines) ['Al_Ka', 'C_Ka', 'Cu_La', 'Mn_La', 'Zr_La'] ['Al_Ka', 'C_Ka', 'Cu_Ka', 'Mn_La', 'Zr_La'] See also -------- add_lines, add_elements, set_elements """ only_lines = utils_eds._parse_only_lines(only_lines) if "Sample.xray_lines" in self.metadata: del self.metadata.Sample.xray_lines self.add_lines(lines=lines, only_one=only_one, only_lines=only_lines) def add_lines(self, lines=(), only_one=True, only_lines=("a",)): """Add X-rays lines to the internal list. Although most functions do not require an internal list of X-ray lines because they can be calculated from the internal list of elements, ocassionally it might be useful to customize the X-ray lines to be use by all functions by default using this method. The list of X-ray lines is stored in `metadata.Sample.xray_lines` Parameters ---------- lines : list of strings A list of valid element X-ray lines to add e.g. Fe_Kb. Additionally, if `metadata.Sample.elements` is defined, add the lines of those elements that where not given in this list. If the list is empty (default), and `metadata.Sample.elements` is defined, add the lines of all those elements. only_one: bool If False, add all the lines of each element in `metadata.Sample.elements` that has not line defined in lines. If True (default), only add the line at the highest energy above an overvoltage of 2 (< beam energy / 2). only_lines : {None, list of strings} If not None, only the given lines will be added. Examples -------- >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.add_lines() >>> print(s.metadata.Sample.xray_lines) ['Al_Ka', 'C_Ka', 'Cu_La', 'Mn_La', 'Zr_La'] >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.set_microscope_parameters(beam_energy=30) >>> s.add_lines() >>> print(s.metadata.Sample.xray_lines) ['Al_Ka', 'C_Ka', 'Cu_Ka', 'Mn_Ka', 'Zr_La'] >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.add_lines() >>> print(s.metadata.Sample.xray_lines) >>> s.add_lines(['Cu_Ka']) >>> print(s.metadata.Sample.xray_lines) ['Al_Ka', 'C_Ka', 'Cu_La', 'Mn_La', 'Zr_La'] ['Al_Ka', 'C_Ka', 'Cu_Ka', 'Cu_La', 'Mn_La', 'Zr_La'] See also -------- set_lines, add_elements, set_elements """ only_lines = utils_eds._parse_only_lines(only_lines) if "Sample.xray_lines" in self.metadata: xray_lines = set(self.metadata.Sample.xray_lines) else: xray_lines = set() # Define the elements which Xray lines has been customized # So that we don't attempt to add new lines automatically elements = set() for line in xray_lines: elements.add(line.split("_")[0]) for line in lines: try: element, subshell = line.split("_") except ValueError: raise ValueError( "Invalid line symbol. " "Please provide a valid line symbol e.g. Fe_Ka") if element in elements_db: elements.add(element) if subshell in elements_db[element]['Atomic_properties' ]['Xray_lines']: lines_len = len(xray_lines) xray_lines.add(line) if lines_len != len(xray_lines): _logger.info(f"{line} line added,") else: _logger.info(f"{line} line already in.") else: raise ValueError( f"{line} is not a valid line of {element}.") else: raise ValueError( f"{element} is not a valid symbol of an element.") xray_not_here = self._get_xray_lines_in_spectral_range(xray_lines)[1] for xray in xray_not_here: warnings.warn(f"{xray} is not in the data energy range.", UserWarning) if "Sample.elements" in self.metadata: extra_elements = (set(self.metadata.Sample.elements) - elements) if extra_elements: new_lines = self._get_lines_from_elements( extra_elements, only_one=only_one, only_lines=only_lines) if new_lines: self.add_lines(list(new_lines) + list(lines)) self.add_elements(elements) if not hasattr(self.metadata, 'Sample'): self.metadata.add_node('Sample') if "Sample.xray_lines" in self.metadata: xray_lines = xray_lines.union( self.metadata.Sample.xray_lines) self.metadata.Sample.xray_lines = sorted(list(xray_lines)) def _get_lines_from_elements(self, elements, only_one=False, only_lines=("a",)): """Returns the X-ray lines of the given elements in spectral range of the data. Parameters ---------- elements : list of strings A list containing the symbol of the chemical elements. only_one : bool If False, add all the lines of each element in the data spectral range. If True only add the line at the highest energy above an overvoltage of 2 (< beam energy / 2). only_lines : {None, list of strings} If not None, only the given lines will be returned. Returns ------- list of X-ray lines alphabetically sorted """ only_lines = utils_eds._parse_only_lines(only_lines) try: beam_energy = self._get_beam_energy() except BaseException: # Fall back to the high_value of the energy axis beam_energy = self.axes_manager.signal_axes[0].high_value lines = [] elements = [el if isinstance(el, str) else el.decode() for el in elements] for element in elements: # Possible line (existing and excited by electron) element_lines = [] for subshell in list(elements_db[element]['Atomic_properties' ]['Xray_lines'].keys()): if only_lines and subshell not in only_lines: continue element_lines.append(element + "_" + subshell) element_lines = self._get_xray_lines_in_spectral_range( element_lines)[0] if only_one and element_lines: # Choose the best line select_this = -1 element_lines.sort() for i, line in enumerate(element_lines): if (self._get_line_energy(line) < beam_energy / 2): select_this = i break element_lines = [element_lines[select_this], ] if not element_lines: _logger.info(f"There is no X-ray line for element {element} " "in the data spectral range") else: lines.extend(element_lines) lines.sort() return lines def _parse_xray_lines(self, xray_lines, only_one, only_lines): only_lines = utils_eds._parse_only_lines(only_lines) xray_lines = self._get_xray_lines(xray_lines, only_one=only_one, only_lines=only_lines) xray_lines, xray_not_here = self._get_xray_lines_in_spectral_range( xray_lines) for xray in xray_not_here: warnings.warn(f"{xray} is not in the data energy range. " "You can remove it with: " f"`s.metadata.Sample.xray_lines.remove('{xray}')`") return xray_lines def get_lines_intensity(self, xray_lines=None, integration_windows=2., background_windows=None, plot_result=False, only_one=True, only_lines=("a",), **kwargs): """Return the intensity map of selected Xray lines. The intensities, the number of X-ray counts, are computed by suming the spectrum over the different X-ray lines. The sum window width is calculated from the energy resolution of the detector as defined in 'energy_resolution_MnKa' of the metadata. Backgrounds average in provided windows can be subtracted from the intensities. Parameters ---------- xray_lines: {None, Iterable* of strings} If None, if `metadata.Sample.elements.xray_lines` contains a list of lines use those. If `metadata.Sample.elements.xray_lines` is undefined or empty but `metadata.Sample.elements` is defined, use the same syntax as `add_line` to select a subset of lines for the operation. Alternatively, provide an iterable containing a list of valid X-ray lines symbols. * Note that while dictionaries and strings are iterable, their use is ambiguous and specifically not allowed. integration_windows: Float or array If float, the width of the integration windows is the 'integration_windows_width' times the calculated FWHM of the line. Else provide an array for which each row corresponds to a X-ray line. Each row contains the left and right value of the window. background_windows: None or 2D array of float If None, no background subtraction. Else, the backgrounds average in the windows are subtracted from the return intensities. 'background_windows' provides the position of the windows in energy. Each line corresponds to a X-ray line. In a line, the two first values correspond to the limits of the left window and the two last values correspond to the limits of the right window. plot_result : bool If True, plot the calculated line intensities. If the current object is a single spectrum it prints the result instead. only_one : bool If False, use all the lines of each element in the data spectral range. If True use only the line at the highest energy above an overvoltage of 2 (< beam energy / 2). only_lines : {None, list of strings} If not None, use only the given lines. kwargs The extra keyword arguments for plotting. See `utils.plot.plot_signals` Returns ------- intensities : list A list containing the intensities as BaseSignal subclasses. Examples -------- >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.get_lines_intensity(['Mn_Ka'], plot_result=True) Mn_La at 0.63316 keV : Intensity = 96700.00 >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.plot(['Mn_Ka'], integration_windows=2.1) >>> s.get_lines_intensity(['Mn_Ka'], >>> integration_windows=2.1, plot_result=True) Mn_Ka at 5.8987 keV : Intensity = 53597.00 >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.set_elements(['Mn']) >>> s.set_lines(['Mn_Ka']) >>> bw = s.estimate_background_windows() >>> s.plot(background_windows=bw) >>> s.get_lines_intensity(background_windows=bw, plot_result=True) Mn_Ka at 5.8987 keV : Intensity = 46716.00 See also -------- set_elements, add_elements, estimate_background_windows, plot """ if xray_lines is not None and \ (not isinstance(xray_lines, Iterable) or \ isinstance(xray_lines, (str, dict))): raise TypeError( "xray_lines must be a compatible iterable, but was " f"mistakenly provided as a {type(xray_lines)}.") xray_lines = self._parse_xray_lines(xray_lines, only_one, only_lines) if hasattr(integration_windows, '__iter__') is False: integration_windows = self.estimate_integration_windows( windows_width=integration_windows, xray_lines=xray_lines) intensities = [] ax = self.axes_manager.signal_axes[0] # test Signal1D (0D problem) # signal_to_index = self.axes_manager.navigation_dimension - 2 for i, (Xray_line, window) in enumerate( zip(xray_lines, integration_windows)): element, line = utils_eds._get_element_and_line(Xray_line) line_energy = self._get_line_energy(Xray_line) img = self.isig[window[0]:window[1]].integrate1D(-1) if np.issubdtype(img.data.dtype, np.integer): # The operations below require a float dtype with the default # numpy casting rule ('same_kind') img.change_dtype("float") if background_windows is not None: bw = background_windows[i] # TODO: test to prevent slicing bug. To be reomved when fixed indexes = [float(ax.value2index(de)) for de in list(bw) + window] if indexes[0] == indexes[1]: bck1 = self.isig[bw[0]] else: bck1 = self.isig[bw[0]:bw[1]].integrate1D(-1) if indexes[2] == indexes[3]: bck2 = self.isig[bw[2]] else: bck2 = self.isig[bw[2]:bw[3]].integrate1D(-1) corr_factor = (indexes[5] - indexes[4]) / ( (indexes[1] - indexes[0]) + (indexes[3] - indexes[2])) img = img - (bck1 + bck2) * corr_factor img.metadata.General.title = ( f'X-ray line intensity of {self.metadata.General.title}: ' f'{Xray_line} at {line_energy:.2f} ' f'{self.axes_manager.signal_axes[0].units}') img = img.transpose(signal_axes=[]) if plot_result and img.axes_manager.navigation_size == 1: if img._lazy: img.compute() print(f"{Xray_line} at {line_energy} {ax.units} : " f"Intensity = {img.data[0]:.2f}") img.metadata.set_item("Sample.elements", ([element])) img.metadata.set_item("Sample.xray_lines", ([Xray_line])) intensities.append(img) if plot_result and img.axes_manager.navigation_size != 1: utils.plot.plot_signals(intensities, **kwargs) return intensities def get_take_off_angle(self): """Calculate the take-off-angle (TOA). TOA is the angle with which the X-rays leave the surface towards the detector. Parameters are read in 'SEM.Stage.tilt_alpha', 'Acquisition_instrument.SEM.Detector.EDS.azimuth_angle' and 'SEM.Detector.EDS.elevation_angle' and 'SEM.Stage.tilt_beta in 'metadata'. Returns ------- take_off_angle: float in Degree Examples -------- >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.get_take_off_angle() 37.0 >>> s.set_microscope_parameters(tilt_stage=20.) >>> s.get_take_off_angle() 57.0 See also -------- hs.eds.take_off_angle """ if self.metadata.Signal.signal_type == "EDS_SEM": mp = self.metadata.Acquisition_instrument.SEM elif self.metadata.Signal.signal_type == "EDS_TEM": mp = self.metadata.Acquisition_instrument.TEM tilt_stage = mp.get_item('Stage.tilt_alpha', None) azimuth_angle = mp.get_item('Detector.EDS.azimuth_angle', None) elevation_angle = mp.get_item('Detector.EDS.elevation_angle', None) beta_tilt = mp.get_item('Stage.tilt_beta', 0.0) return utils.eds.take_off_angle( tilt_stage, azimuth_angle, elevation_angle, beta_tilt ) def estimate_integration_windows(self, windows_width=2., xray_lines=None): """ Estimate a window of integration for each X-ray line. Parameters ---------- windows_width: float The width of the integration windows is the 'windows_width' times the calculated FWHM of the line. xray_lines: None or list of string If None, use 'metadata.Sample.elements.xray_lines'. Else, provide an iterable containing a list of valid X-ray lines symbols. Return ------ integration_windows: 2D array of float The positions of the windows in energy. Each row corresponds to a X-ray line. Each row contains the left and right value of the window. Examples -------- >>> s = hs.datasets.example_signals.EDS_TEM_Spectrum() >>> s.add_lines() >>> iw = s.estimate_integration_windows() >>> s.plot(integration_windows=iw) >>> s.get_lines_intensity(integration_windows=iw, plot_result=True) Fe_Ka at 6.4039 keV : Intensity = 3710.00 Pt_La at 9.4421 keV : Intensity = 15872.00 See also -------- plot, get_lines_intensity """ xray_lines = self._get_xray_lines(xray_lines) integration_windows = [] for Xray_line in xray_lines: line_energy, line_FWHM = self._get_line_energy(Xray_line, FWHM_MnKa='auto') element, line = utils_eds._get_element_and_line(Xray_line) det = windows_width * line_FWHM / 2. integration_windows.append([line_energy - det, line_energy + det]) return integration_windows def estimate_background_windows(self, line_width=[2, 2], windows_width=1, xray_lines=None): """ Estimate two windows around each X-ray line containing only the background. Parameters ---------- line_width: list of two floats The position of the two windows around the X-ray line is given by the `line_width` (left and right) times the calculated FWHM of the line. windows_width: float The width of the windows is is the `windows_width` times the calculated FWHM of the line. xray_lines: None or list of string If None, use `metadata.Sample.elements.xray_lines`. Else, provide an iterable containing a list of valid X-ray lines symbols. Return ------ windows_position: 2D array of float The position of the windows in energy. Each line corresponds to a X-ray line. In a line, the two first values correspond to the limits of the left window and the two last values correspond to the limits of the right window. Examples -------- >>> s = hs.datasets.example_signals.EDS_TEM_Spectrum() >>> s.add_lines() >>> bw = s.estimate_background_windows(line_width=[5.0, 2.0]) >>> s.plot(background_windows=bw) >>> s.get_lines_intensity(background_windows=bw, plot_result=True) Fe_Ka at 6.4039 keV : Intensity = 2754.00 Pt_La at 9.4421 keV : Intensity = 15090.00 See also -------- plot, get_lines_intensity """ xray_lines = self._get_xray_lines(xray_lines) windows_position = [] for xray_line in xray_lines: line_energy, line_FWHM = self._get_line_energy(xray_line, FWHM_MnKa='auto') tmp = [ line_energy - line_FWHM * line_width[0] - line_FWHM * windows_width, line_energy - line_FWHM * line_width[0], line_energy + line_FWHM * line_width[1], line_energy + line_FWHM * line_width[1] + line_FWHM * windows_width ] windows_position.append(tmp) windows_position = np.array(windows_position) # merge ovelapping windows index = windows_position.argsort(axis=0)[:, 0] for i in range(len(index) - 1): ia, ib = index[i], index[i + 1] if windows_position[ia, 2] > windows_position[ib, 0]: interv = np.append(windows_position[ia, :2], windows_position[ib, 2:]) windows_position[ia] = interv windows_position[ib] = interv return windows_position def plot(self, xray_lines=False, only_lines=("a", "b"), only_one=False, background_windows=None, integration_windows=None, navigator="auto", plot_markers=True, autoscale='v', norm="auto", axes_manager=None, navigator_kwds={}, **kwargs): """Plot the EDS spectrum. The following markers can be added - The position of the X-ray lines and their names. - The background windows associated with each X-ray lines. A black line links the left and right window with the average value in each window. Parameters ---------- xray_lines: {False, True, 'from_elements', list of string} If not False, indicate the position and the name of the X-ray lines. If True, if `metadata.Sample.elements.xray_lines` contains a list of lines use those. If `metadata.Sample.elements.xray_lines` is undefined or empty or if xray_lines equals 'from_elements' and `metadata.Sample.elements` is defined, use the same syntax as `add_line` to select a subset of lines for the operation. Alternatively, provide an iterable containing a list of valid X-ray lines symbols. only_lines : None or list of strings If not None, use only the given lines (eg. ('a','Kb')). If None, use all lines. only_one : bool If False, use all the lines of each element in the data spectral range. If True use only the line at the highest energy above an overvoltage of 2 (< beam energy / 2). background_windows: None or 2D array of float If not None, add markers at the position of the windows in energy. Each line corresponds to a X-ray lines. In a line, the two first value corresponds to the limit of the left window and the two last values corresponds to the limit of the right window. integration_windows: None or 'auto' or float or 2D array of float If not None, add markers at the position of the integration windows. If 'auto' (or float), the width of the integration windows is 2.0 (or float) times the calculated FWHM of the line. see 'estimate_integration_windows'. Else provide an array for which each row corresponds to a X-ray line. Each row contains the left and right value of the window. %s %s Examples -------- >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.plot() >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.plot(True) >>> s = hs.datasets.example_signals.EDS_TEM_Spectrum() >>> s.add_lines() >>> bw = s.estimate_background_windows() >>> s.plot(background_windows=bw) >>> s = hs.datasets.example_signals.EDS_SEM_Spectrum() >>> s.plot(['Mn_Ka'], integration_windows='auto') >>> s = hs.datasets.example_signals.EDS_TEM_Spectrum() >>> s.add_lines() >>> bw = s.estimate_background_windows() >>> s.plot(background_windows=bw, integration_windows=2.1) See also -------- set_elements, add_elements, estimate_integration_windows, get_lines_intensity, estimate_background_windows """ super().plot(navigator=navigator, plot_markers=plot_markers, autoscale=autoscale, norm=norm, axes_manager=axes_manager, navigator_kwds=navigator_kwds, **kwargs) self._plot_xray_lines(xray_lines, only_lines, only_one, background_windows, integration_windows, render_figure=False) self._render_figure(plot=['signal_plot']) plot.__doc__ %= (BASE_PLOT_DOCSTRING_PARAMETERS, PLOT1D_DOCSTRING) def _plot_xray_lines(self, xray_lines=False, only_lines=("a", "b"), only_one=False, background_windows=None, integration_windows=None, render_figure=True): if (xray_lines is not False or background_windows is not None or integration_windows is not None): if xray_lines is False: xray_lines = True only_lines = utils_eds._parse_only_lines(only_lines) if xray_lines is True or xray_lines == 'from_elements': if ('Sample.xray_lines' in self.metadata and xray_lines != 'from_elements'): xray_lines = self.metadata.Sample.xray_lines elif 'Sample.elements' in self.metadata: xray_lines = self._get_lines_from_elements( self.metadata.Sample.elements, only_one=only_one, only_lines=only_lines) else: _logger.warning( "No elements defined, set them with `add_elements`") # No X-rays lines, nothing to do then return xray_lines, xray_not_here = self._get_xray_lines_in_spectral_range( xray_lines) for xray in xray_not_here: _logger.warning(f"{xray} is not in the data energy range.") xray_lines = np.unique(xray_lines) self.add_xray_lines_markers(xray_lines, render_figure=False) if background_windows is not None: self._add_background_windows_markers(background_windows, render_figure=False) if integration_windows is not None: if integration_windows == 'auto': integration_windows = 2.0 if hasattr(integration_windows, '__iter__') is False: integration_windows = self.estimate_integration_windows( windows_width=integration_windows, xray_lines=xray_lines) self._add_vertical_lines_groups(integration_windows, linestyle='--', render_figure=False) # Render figure only at the end if render_figure: self._render_figure(plot=['signal_plot']) def _add_vertical_lines_groups(self, position, render_figure=True, **kwargs): """ Add vertical markers for each group that shares the color. Parameters ---------- position: 2D array of float The position on the signal axis. Each row corresponds to a group. kwargs keywords argument for markers.vertical_line """ per_xray = len(position[0]) colors = itertools.cycle(np.sort( plt.rcParams['axes.prop_cycle'].by_key()["color"] * per_xray)) for x, color in zip(np.ravel(position), colors): line = markers.vertical_line(x=x, color=color, **kwargs) self.add_marker(line, render_figure=False) if render_figure: self._render_figure(plot=['signal_plot']) def add_xray_lines_markers(self, xray_lines, render_figure=True): """ Add marker on a spec.plot() with the name of the selected X-ray lines Parameters ---------- xray_lines: list of string A valid list of X-ray lines """ if self._plot is None or not self._plot.is_active: raise RuntimeError("The signal needs to be plotted.") # in case of log scale, if some lines have intensity zero, then # the line and label will not be displayed. norm = self._plot.signal_plot.ax_lines[0].norm minimum_intensity = self.data[self.data>0].min() if norm == 'log' else 0 line_energy = [] intensity = [] for xray_line in xray_lines: element, line = utils_eds._get_element_and_line(xray_line) line_energy.append(self._get_line_energy(xray_line)) relative_factor = elements_db[element][ 'Atomic_properties']['Xray_lines'][line]['weight'] a_eng = self._get_line_energy(f'{element}_{line[0]}a') idx = self.axes_manager.signal_axes[0].value2index(a_eng) intensity.append(self.data[..., idx] * relative_factor) for i in range(len(line_energy)): # When using `log` norm, clip value to minimum value > 0 if norm == 'log': intensity_ = np.max( intensity[i], axis=-1, initial=minimum_intensity ) else: intensity_ = intensity[i] line = markers.vertical_line_segment( x=line_energy[i], y1=None, y2=intensity_ * 0.8) self.add_marker(line, render_figure=False) string = (r'$\mathrm{%s}_{\mathrm{%s}}$' % utils_eds._get_element_and_line(xray_lines[i])) text = markers.text( x=line_energy[i], y=intensity_ * 1.1, text=string, rotation=90) self.add_marker(text, render_figure=False) self._xray_markers[xray_lines[i]] = [line, text] line.events.closed.connect(self._xray_marker_closed) text.events.closed.connect(self._xray_marker_closed) if render_figure: self._render_figure(plot=['signal_plot']) def _xray_marker_closed(self, obj): marker = obj for xray_line, line_markers in reversed(list( self._xray_markers.items())): if marker in line_markers: line_markers.remove(marker) if not line_markers: self._xray_markers.pop(xray_line) def remove_xray_lines_markers(self, xray_lines, render_figure=True): """ Remove marker previosuly added on a spec.plot() with the name of the selected X-ray lines Parameters ---------- xray_lines: list of string A valid list of X-ray lines to remove """ for xray_line in xray_lines: if xray_line in self._xray_markers: line_markers = self._xray_markers[xray_line] while line_markers: m = line_markers.pop() m.close(render_figure=False) if render_figure: self._render_figure(plot=['signal_plot']) def _add_background_windows_markers(self, windows_position, render_figure=True): """ Plot the background windows associated with each X-ray lines. For X-ray lines, a black line links the left and right window with the average value in each window. Parameters ---------- windows_position: 2D array of float The position of the windows in energy. Each line corresponds to a X-ray lines. In a line, the two first value corresponds to the limit of the left window and the two last values corresponds to the limit of the right window. See also -------- estimate_background_windows, get_lines_intensity """ self._add_vertical_lines_groups(windows_position) ax = self.axes_manager.signal_axes[0] for bw in windows_position: # TODO: test to prevent slicing bug. To be reomved when fixed if ax.value2index(bw[0]) == ax.value2index(bw[1]): y1 = self.isig[bw[0]].data else: y1 = self.isig[bw[0]:bw[1]].mean(-1).data if ax.value2index(bw[2]) == ax.value2index(bw[3]): y2 = self.isig[bw[2]].data else: y2 = self.isig[bw[2]:bw[3]].mean(-1).data line = markers.line_segment( x1=(bw[0] + bw[1]) / 2., x2=(bw[2] + bw[3]) / 2., y1=y1, y2=y2, color='black') self.add_marker(line, render_figure=False) if render_figure: self._render_figure(plot=['signal_plot']) class LazyEDSSpectrum(EDSSpectrum, LazySignal1D): pass
gpl-3.0
Ldpe2G/mxnet
example/torch/torch_module.py
15
1651
# pylint: skip-file from data import mnist_iterator import mxnet as mx import numpy as np import logging # define mlp use_torch_criterion = False data = mx.symbol.Variable('data') fc1 = mx.symbol.TorchModule(data_0=data, lua_string='nn.Linear(784, 128)', num_data=1, num_params=2, num_outputs=1, name='fc1') act1 = mx.symbol.TorchModule(data_0=fc1, lua_string='nn.ReLU(false)', num_data=1, num_params=0, num_outputs=1, name='relu1') fc2 = mx.symbol.TorchModule(data_0=act1, lua_string='nn.Linear(128, 64)', num_data=1, num_params=2, num_outputs=1, name='fc2') act2 = mx.symbol.TorchModule(data_0=fc2, lua_string='nn.ReLU(false)', num_data=1, num_params=0, num_outputs=1, name='relu2') fc3 = mx.symbol.TorchModule(data_0=act2, lua_string='nn.Linear(64, 10)', num_data=1, num_params=2, num_outputs=1, name='fc3') if use_torch_criterion: logsoftmax = mx.symbol.TorchModule(data_0=fc3, lua_string='nn.LogSoftMax()', num_data=1, num_params=0, num_outputs=1, name='logsoftmax') # Torch's label starts from 1 label = mx.symbol.Variable('softmax_label') + 1 mlp = mx.symbol.TorchCriterion(data=logsoftmax, label=label, lua_string='nn.ClassNLLCriterion()', name='softmax') else: mlp = mx.symbol.SoftmaxOutput(data=fc3, name='softmax') # data train, val = mnist_iterator(batch_size=100, input_shape = (784,)) # train logging.basicConfig(level=logging.DEBUG) model = mx.model.FeedForward( ctx = mx.cpu(0), symbol = mlp, num_epoch = 20, learning_rate = 0.1, momentum = 0.9, wd = 0.00001) if use_torch_criterion: model.fit(X=train, eval_data=val, eval_metric=mx.metric.Torch()) else: model.fit(X=train, eval_data=val)
apache-2.0
Ldpe2G/mxnet
python/mxnet/__init__.py
9
1519
#!/usr/bin/env python # coding: utf-8 """MXNet: a concise, fast and flexible framework for deep learning.""" from __future__ import absolute_import from .context import Context, current_context, cpu, gpu from .base import MXNetError from . import base from . import contrib from . import ndarray from . import name # use mx.sym as short for symbol from . import symbol as sym from . import symbol from . import symbol_doc from . import io from . import recordio from . import operator # use mx.nd as short for mx.ndarray from . import ndarray as nd # use mx.rnd as short for mx.random from . import random as rnd from . import random from . import optimizer from . import model from . import notebook from . import initializer # use mx.init as short for mx.initializer from . import initializer as init from . import visualization # use viz as short for mx.ndarray from . import visualization as viz from . import callback # from . import misc from . import lr_scheduler # use mx.kv as short for kvstore from . import kvstore as kv from . import kvstore_server # Runtime compile module from .rtc import Rtc as rtc # Attribute scope to add attributes to symbolic graphs from .attribute import AttrScope from . import monitor from . import monitor as mon from . import torch from . import torch as th from . import profiler from . import log from . import module from . import module as mod from . import image from . import image as img from . import test_utils from . import rnn __version__ = base.__version__
apache-2.0
justincassidy/scikit-learn
examples/linear_model/plot_robust_fit.py
237
2414
""" Robust linear estimator fitting =============================== Here a sine function is fit with a polynomial of order 3, for values close to zero. Robust fitting is demoed in different situations: - No measurement errors, only modelling errors (fitting a sine with a polynomial) - Measurement errors in X - Measurement errors in y The median absolute deviation to non corrupt new data is used to judge the quality of the prediction. What we can see that: - RANSAC is good for strong outliers in the y direction - TheilSen is good for small outliers, both in direction X and y, but has a break point above which it performs worst than OLS. """ from matplotlib import pyplot as plt import numpy as np from sklearn import linear_model, metrics from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline np.random.seed(42) X = np.random.normal(size=400) y = np.sin(X) # Make sure that it X is 2D X = X[:, np.newaxis] X_test = np.random.normal(size=200) y_test = np.sin(X_test) X_test = X_test[:, np.newaxis] y_errors = y.copy() y_errors[::3] = 3 X_errors = X.copy() X_errors[::3] = 3 y_errors_large = y.copy() y_errors_large[::3] = 10 X_errors_large = X.copy() X_errors_large[::3] = 10 estimators = [('OLS', linear_model.LinearRegression()), ('Theil-Sen', linear_model.TheilSenRegressor(random_state=42)), ('RANSAC', linear_model.RANSACRegressor(random_state=42)), ] x_plot = np.linspace(X.min(), X.max()) for title, this_X, this_y in [ ('Modeling errors only', X, y), ('Corrupt X, small deviants', X_errors, y), ('Corrupt y, small deviants', X, y_errors), ('Corrupt X, large deviants', X_errors_large, y), ('Corrupt y, large deviants', X, y_errors_large)]: plt.figure(figsize=(5, 4)) plt.plot(this_X[:, 0], this_y, 'k+') for name, estimator in estimators: model = make_pipeline(PolynomialFeatures(3), estimator) model.fit(this_X, this_y) mse = metrics.mean_squared_error(model.predict(X_test), y_test) y_plot = model.predict(x_plot[:, np.newaxis]) plt.plot(x_plot, y_plot, label='%s: error = %.3f' % (name, mse)) plt.legend(loc='best', frameon=False, title='Error: mean absolute deviation\n to non corrupt data') plt.xlim(-4, 10.2) plt.ylim(-2, 10.2) plt.title(title) plt.show()
bsd-3-clause
QijunPan/ansible
lib/ansible/modules/storage/zfs/zfs_facts.py
9
8678
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2016, Adam Števko <adam.stevko@gmail.com> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'version': '1.0'} DOCUMENTATION = ''' --- module: zfs_facts short_description: Gather facts about ZFS datasets. description: - Gather facts from ZFS dataset properties. version_added: "2.3" author: Adam Števko (@xen0l) options: name: description: - ZFS dataset name. alias: [ "ds", "dataset" ] type: str required: yes recurse: description: - Specifies if properties for any children should be recursively displayed. type: bool default: False required: false parsable: description: - Specifies if property values should be displayed in machine friendly format. type: bool default: False required: false properties: description: - Specifies which dataset properties should be queried in comma-separated format. For more information about dataset properties, check zfs(1M) man page. alias: [ "props" ] type: str default: all required: false type: description: - Specifies which datasets types to display. Multiple values have to be provided in comma-separated form. alias: [ "props" ] type: str default: all choices: [ 'all', 'filesystem', 'volume', 'snapshot', 'bookmark' ] required: false depth: description: - Specifiies recurion depth. type: int default: None required: false ''' EXAMPLES = ''' name: Gather facts about ZFS dataset rpool/export/home zfs_facts: dataset=rpool/export/home name: Report space usage on ZFS filesystems under data/home zfs_facts: name=data/home recurse=yes type=filesystem debug: msg='ZFS dataset {{ item.name }} consumes {{ item.used }} of disk space.' with_items: '{{ ansible_zfs_datasets }} ''' RETURN = ''' name: description: ZFS dataset name returned: always type: string sample: rpool/var/spool parsable: description: if parsable output should be provided in machine friendly format. returned: if 'parsable' is set to True type: boolean sample: True recurse: description: if we should recurse over ZFS dataset returned: if 'recurse' is set to True type: boolean sample: True zfs_datasets: description: ZFS dataset facts returned: always type: string sample: { "aclinherit": "restricted", "aclmode": "discard", "atime": "on", "available": "43.8G", "canmount": "on", "casesensitivity": "sensitive", "checksum": "on", "compression": "off", "compressratio": "1.00x", "copies": "1", "creation": "Thu Jun 16 11:37 2016", "dedup": "off", "devices": "on", "exec": "on", "filesystem_count": "none", "filesystem_limit": "none", "logbias": "latency", "logicalreferenced": "18.5K", "logicalused": "3.45G", "mlslabel": "none", "mounted": "yes", "mountpoint": "/rpool", "name": "rpool", "nbmand": "off", "normalization": "none", "org.openindiana.caiman:install": "ready", "primarycache": "all", "quota": "none", "readonly": "off", "recordsize": "128K", "redundant_metadata": "all", "refcompressratio": "1.00x", "referenced": "29.5K", "refquota": "none", "refreservation": "none", "reservation": "none", "secondarycache": "all", "setuid": "on", "sharenfs": "off", "sharesmb": "off", "snapdir": "hidden", "snapshot_count": "none", "snapshot_limit": "none", "sync": "standard", "type": "filesystem", "used": "4.41G", "usedbychildren": "4.41G", "usedbydataset": "29.5K", "usedbyrefreservation": "0", "usedbysnapshots": "0", "utf8only": "off", "version": "5", "vscan": "off", "written": "29.5K", "xattr": "on", "zoned": "off" } ''' import os from collections import defaultdict from ansible.module_utils.six import iteritems from ansible.module_utils.basic import AnsibleModule SUPPORTED_TYPES = ['all', 'filesystem', 'volume', 'snapshot', 'bookmark'] class ZFSFacts(object): def __init__(self, module): self.module = module self.name = module.params['name'] self.recurse = module.params['recurse'] self.parsable = module.params['parsable'] self.properties = module.params['properties'] self.type = module.params['type'] self.depth = module.params['depth'] self._datasets = defaultdict(dict) self.facts = [] def dataset_exists(self): cmd = [self.module.get_bin_path('zfs')] cmd.append('list') cmd.append(self.name) (rc, out, err) = self.module.run_command(cmd) if rc == 0: return True else: return False def get_facts(self): cmd = [self.module.get_bin_path('zfs')] cmd.append('get') cmd.append('-H') if self.parsable: cmd.append('-p') if self.recurse: cmd.append('-r') if int(self.depth) != 0: cmd.append('-d') cmd.append('%s' % self.depth) if self.type: cmd.append('-t') cmd.append(self.type) cmd.append('-o') cmd.append('name,property,value') cmd.append(self.properties) cmd.append(self.name) (rc, out, err) = self.module.run_command(cmd) if rc == 0: for line in out.splitlines(): dataset, property, value = line.split('\t') self._datasets[dataset].update({property: value}) for k, v in iteritems(self._datasets): v.update({'name': k}) self.facts.append(v) return {'ansible_zfs_datasets': self.facts} else: self.module.fail_json(msg='Error while trying to get facts about ZFS dataset: %s' % self.name, stderr=err, rc=rc) def main(): module = AnsibleModule( argument_spec=dict( name=dict(required=True, aliases=['ds', 'dataset'], type='str'), recurse=dict(required=False, default=False, type='bool'), parsable=dict(required=False, default=False, type='bool'), properties=dict(required=False, default='all', type='str'), type=dict(required=False, default='all', type='str', choices=SUPPORTED_TYPES), depth=dict(required=False, default=0, type='int') ), supports_check_mode=True ) zfs_facts = ZFSFacts(module) result = {} result['changed'] = False result['name'] = zfs_facts.name if zfs_facts.parsable: result['parsable'] = zfs_facts.parsable if zfs_facts.recurse: result['recurse'] = zfs_facts.recurse if zfs_facts.dataset_exists(): result['ansible_facts'] = zfs_facts.get_facts() else: module.fail_json(msg='ZFS dataset %s does not exist!' % zfs_facts.name) module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
fishcorn/pylearn2
pylearn2/datasets/tests/test_mnistplus.py
35
1978
""" This file tests the MNISTPlus class. majorly concerning the X and y member of the dataset and their corresponding sizes, data scales and topological views. """ from pylearn2.datasets.mnistplus import MNISTPlus from pylearn2.space import IndexSpace, VectorSpace import unittest from pylearn2.testing.skip import skip_if_no_data import numpy as np def test_MNISTPlus(): """ Test the MNISTPlus warper. Tests the scale of data, the splitting of train, valid, test sets. Tests that a topological batch has 4 dimensions. Tests that it work well with selected type of augmentation. """ skip_if_no_data() for subset in ['train', 'valid', 'test']: ids = MNISTPlus(which_set=subset) assert 0.01 >= ids.X.min() >= 0.0 assert 0.99 <= ids.X.max() <= 1.0 topo = ids.get_batch_topo(1) assert topo.ndim == 4 del ids train_y = MNISTPlus(which_set='train', label_type='label') assert 0.99 <= train_y.X.max() <= 1.0 assert 0.0 <= train_y.X.min() <= 0.01 assert train_y.y.max() == 9 assert train_y.y.min() == 0 assert train_y.y.shape == (train_y.X.shape[0], 1) train_y = MNISTPlus(which_set='train', label_type='azimuth') assert 0.99 <= train_y.X.max() <= 1.0 assert 0.0 <= train_y.X.min() <= 0.01 assert 0.0 <= train_y.y.max() <= 1.0 assert 0.0 <= train_y.y.min() <= 1.0 assert train_y.y.shape == (train_y.X.shape[0], 1) train_y = MNISTPlus(which_set='train', label_type='rotation') assert 0.99 <= train_y.X.max() <= 1.0 assert 0.0 <= train_y.X.min() <= 0.01 assert train_y.y.max() == 9 assert train_y.y.min() == 0 assert train_y.y.shape == (train_y.X.shape[0], 1) train_y = MNISTPlus(which_set='train', label_type='texture_id') assert 0.99 <= train_y.X.max() <= 1.0 assert 0.0 <= train_y.X.min() <= 0.01 assert train_y.y.max() == 9 assert train_y.y.min() == 0 assert train_y.y.shape == (train_y.X.shape[0], 1)
bsd-3-clause
quheng/scikit-learn
sklearn/datasets/tests/test_20news.py
277
3045
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_length_consistency(): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract the full dataset data = datasets.fetch_20newsgroups(subset='all') assert_equal(len(data['data']), len(data.data)) assert_equal(len(data['target']), len(data.target)) assert_equal(len(data['filenames']), len(data.filenames)) def test_20news_vectorized(): # This test is slow. raise SkipTest("Test too slow.") bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 107428)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 107428)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="all") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 107428)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
fishcorn/pylearn2
pylearn2/train_extensions/window_flip.py
41
7218
""" TrainExtensions for doing random spatial windowing and flipping of an image dataset on every epoch. TODO: fill out properly.""" import warnings import numpy from . import TrainExtension from pylearn2.datasets.preprocessing import CentralWindow from pylearn2.utils.exc import reraise_as from pylearn2.utils.rng import make_np_rng from pylearn2.utils import py_integer_types try: from ..utils._window_flip import random_window_and_flip_c01b from ..utils._window_flip import random_window_and_flip_b01c except ImportError: reraise_as(ImportError("Import of Cython module failed. Please make sure " "you have run 'python setup.py develop' in the " "pylearn2 directory")) __authors__ = "David Warde-Farley" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["David Warde-Farley"] __license__ = "3-clause BSD" __maintainer__ = "David Warde-Farley" __email__ = "wardefar@iro" def _zero_pad(array, amount, axes=(1, 2)): """ Returns a copy of <array> with zero-filled padding around the margins. The new array has the same dimensions as the input array, except for the dimensions given by <axes>, which are increased by 2*<amount>. Parameters ---------- array: numpy.ndarray The array to zero-pad. amount: int The number of zeros to append to the beginning and end of each dimension in <axes>. (That axis will grow by 2*<amount>). axes: tuple The dimensions to pad. These are indices, not axis names like the 0, 1 in ('b', 0, 1, 'c'). """ if amount == 0: return array new_shape = [] slices = [] for i, s in enumerate(array.shape): if i in axes: new_shape.append(s + 2 * amount) slices.append(slice(amount, -amount)) else: new_shape.append(s) slices.append(slice(None)) new_shape = tuple(new_shape) slices = tuple(slices) new_array = numpy.zeros(new_shape, dtype=array.dtype) new_array[slices] = array return new_array class WindowAndFlip(TrainExtension): """ An extension that allows an image dataset to be flipped and windowed after each epoch of training. Parameters ---------- window_shape : WRITEME randomize : list, optional If specified, a list of Datasets to randomly window and flip at each epoch. randomize_once : list, optional If specified, a list of Datasets to randomly window and flip once at the start of training. center : list, optional If specified, a list of Datasets to centrally window once at the start of training. rng : numpy.random.RandomState object or seed, optional A random number generator or seed used to create one. Seeded deterministically by default. pad_randomized : int, optional Amount of padding to add to each side of the images in `randomize` and `randomize_once`. Useful if you want to do zero-padded windowing with `window_shape` the actual size of the dataset, and validate/test on full-size images instead of central patches. Default is 0. flip : bool, optional Reflect images on the horizontal axis with probability 0.5. `True` by default. """ def __init__(self, window_shape, randomize=None, randomize_once=None, center=None, rng=(2013, 2, 20), pad_randomized=0, flip=True): self._window_shape = tuple(window_shape) # Defined in setup(). A dict that maps Datasets in self._randomize and # self._randomize_once to zero-padded versions of their topological # views. self._original = None self._randomize = randomize if randomize else [] self._randomize_once = randomize_once if randomize_once else [] self._center = center if center else [] self._pad_randomized = pad_randomized self._flip = flip assert isinstance(self._randomize, list), ( "The 'randomize' parameter of WindowAndFlip should be a list") assert isinstance(self._randomize_once, list), ( "The 'randomize_once' parameter of WindowAndFlip should be a list") assert isinstance(self._center, list), ( "The 'center' parameter of WindowAndFlip should be a list") assert isinstance(self._pad_randomized, py_integer_types), ( "The 'pad_randomized' parameter of WindowAndFlip should be an int") if randomize is None and randomize_once is None and center is None: warnings.warn(self.__class__.__name__ + " instantiated without " "any dataset arguments, and therefore does nothing", stacklevel=2) self._rng = make_np_rng(rng, which_method="random_integers") def setup(self, model, dataset, algorithm): """ .. todo:: WRITEME Notes ----- `dataset` argument is ignored """ dataset = None # Central windowing of auxiliary datasets (e.g. validation sets) preprocessor = CentralWindow(self._window_shape) for data in self._center: preprocessor.apply(data) # # Do the initial random windowing # randomize_now = self._randomize + self._randomize_once # maps each dataset in randomize_now to a zero-padded topological view # of its data. self._original = dict((data, _zero_pad( data.get_topological_view().astype('float32'), self._pad_randomized)) for data in randomize_now) # For each dataset, for each image, extract a randomly positioned and # potentially horizontal-flipped window self.randomize_datasets(randomize_now) def randomize_datasets(self, datasets): """ Applies random translations and flips to the selected datasets. Parameters ---------- datasets : WRITEME """ for dataset in datasets: if tuple(dataset.view_converter.axes) == ('c', 0, 1, 'b'): wf_func = random_window_and_flip_c01b elif tuple(dataset.view_converter.axes) == ('b', 0, 1, 'c'): wf_func = random_window_and_flip_b01c else: raise ValueError("Axes of dataset is not supported: %s" % (str(dataset.view_converter.axes))) arr = wf_func(self._original[dataset], self._window_shape, rng=self._rng, flip=self._flip) dataset.set_topological_view(arr, axes=dataset.view_converter.axes) def on_monitor(self, model, dataset, algorithm): """ .. todo:: WRITEME Notes ----- All arguments are ignored. """ model = None dataset = None algorithm = None self.randomize_datasets(self._randomize)
bsd-3-clause
justincassidy/scikit-learn
benchmarks/bench_glmnet.py
295
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
Lawrence-Liu/scikit-learn
examples/classification/plot_classification_probability.py
241
2624
""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'L2 logistic (Multinomial)': LogisticRegression( C=C, solver='lbfgs', multi_class='multinomial' )} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print("classif_rate for %s : %f " % (name, classif_rate)) # View probabilities= probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
bsd-3-clause
adammenges/statsmodels
docs/source/plots/graphics_gofplots_qqplot.py
37
1911
# -*- coding: utf-8 -*- """ Created on Sun May 06 05:32:15 2012 Author: Josef Perktold editted by: Paul Hobson (2012-08-19) """ from scipy import stats from matplotlib import pyplot as plt import statsmodels.api as sm #example from docstring data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog, prepend=True) mod_fit = sm.OLS(data.endog, data.exog).fit() res = mod_fit.resid left = -1.8 #x coordinate for text insert fig = plt.figure() ax = fig.add_subplot(2, 2, 1) sm.graphics.qqplot(res, ax=ax) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, 'no keywords', verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 2) sm.graphics.qqplot(res, line='s', ax=ax) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "line='s'", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 3) sm.graphics.qqplot(res, line='45', fit=True, ax=ax) ax.set_xlim(-2, 2) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "line='45', \nfit=True", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 4) sm.graphics.qqplot(res, dist=stats.t, line='45', fit=True, ax=ax) ax.set_xlim(-2, 2) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "dist=stats.t, \nline='45', \nfit=True", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) fig.tight_layout() plt.gcf() # example with the new ProbPlot class import numpy as np x = np.random.normal(loc=8.25, scale=3.5, size=37) y = np.random.normal(loc=8.00, scale=3.25, size=37) pp_x = sm.ProbPlot(x, fit=True) pp_y = sm.ProbPlot(y, fit=True) # probability of exceedance fig2 = pp_x.probplot(exceed=True) # compare x quantiles to y quantiles fig3 = pp_x.qqplot(other=pp_y, line='45') # same as above with probabilities/percentiles fig4 = pp_x.ppplot(other=pp_y, line='45')
bsd-3-clause
ITA-Solar/helita
helita/io/sdf.py
2
3207
""" Set of tools to read SDF format. First coded: 20111227 by Tiago Pereira (tiago.pereira@nasa.gov) """ import numpy as np class SDFHeader: def __init__(self, filename, verbose=False): self.verbose = verbose self.query(filename) def query(self, filename, verbose=False): ''' Queries the file, returning datasets and shapes.''' f = open(filename, 'r') h = f.read(11) hdstr = str(h[:-1]) if hdstr != 'SDF format': raise IOError('SDF header not found in' + ' %s, probably wrong or corrupt file.' % filename) self.hdrpos = np.fromfile(f, dtype='>l', count=1)[0] self.datapos = np.fromfile(f, dtype='>l', count=1)[0] self.norder = np.fromfile(f, dtype='>i', count=1)[0] self.hdrsize = np.fromfile(f, dtype='>l', count=1)[0] header = f.read(self.hdrpos - f.tell()) self.header = header if self.verbose: print(header) f.close() self.header_data(header) return def header_data(self, header): ''' Breaks header string into variable informationp. ''' self.variables = {} offset = 19 + self.hdrsize for line in header.split('\n')[:-1]: l = line.split() label = l.pop(1) order = int(l[0]) dtype = '>' + l[1] + l[2] # force big endian nbpw = int(l[2]) ndims = int(l[3]) shape = () for i in range(ndims): shape += (int(l[4 + i]),) nbytes = nbpw * np.prod(shape) if dtype[1] == 'c': nbytes *= 2 if dtype[1:] == 'c4': # these are the same internally to numpy dtype = '>c8' self.variables[label] = [order, dtype, nbpw, offset, shape] offset += nbytes return def getvar(filename, variable, memmap=False): ''' Reads variable from SDF file. IN: filename - string with filename variable - string with variable name memmap - [OPTIONAL] booleanp. If true, will return a memmap object (ie, data is only loaded into memory when needed) OUT: data - array with data ''' ff = SDFHeader(filename, verbose=False) if variable not in ff.variables: raise KeyError( '(EEE) getvar: variable %s not found in %s' % (variable, filename)) order, dtype, nbpw, offset, shape = ff.variables[variable] if memmap: data = np.memmap(filename, dtype=dtype, mode='r', shape=shape, offset=offset, order='F') else: f = open(filename, 'r') f.seek(offset) data = np.fromfile(f, dtype=dtype, count=np.prod(shape)).reshape(shape[::-1]).T f.close() return data def getall(filename, memmap=False): ''' Reads all the variables of an SDF file. Loads into a dictionary indexed by variable name. ''' ff = SDFHeader(filename, verbose=False) result = {} for v in ff.variables: result[v] = getvar(filename, v, memmap) return result
bsd-3-clause
saurabh3949/mxnet
example/image-classification/symbols/resnext.py
56
9928
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ''' Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py Original author Wei Wu Implemented the following paper: Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, Kaiming He. "Aggregated Residual Transformations for Deep Neural Network" ''' import mxnet as mx import numpy as np def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, num_group=32, bn_mom=0.9, workspace=256, memonger=False): """Return ResNet Unit symbol for building ResNet Parameters ---------- data : str Input data num_filter : int Number of output channels bnf : int Bottle neck channels factor with regard to num_filter stride : tuple Stride used in convolution dim_match : Boolean True means channel number between input and output is the same, otherwise means differ name : str Base name of the operators workspace : int Workspace used in convolution operator """ if bottle_neck: # the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper conv1 = mx.sym.Convolution(data=data, num_filter=int(num_filter*0.5), kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv1') bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1') act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') conv2 = mx.sym.Convolution(data=act1, num_filter=int(num_filter*0.5), num_group=num_group, kernel=(3,3), stride=stride, pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2') bn2 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2') act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2') conv3 = mx.sym.Convolution(data=act2, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv3') bn3 = mx.sym.BatchNorm(data=conv3, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3') if dim_match: shortcut = data else: shortcut_conv = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_sc') shortcut = mx.sym.BatchNorm(data=shortcut_conv, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_sc_bn') if memonger: shortcut._set_attr(mirror_stage='True') eltwise = bn3 + shortcut return mx.sym.Activation(data=eltwise, act_type='relu', name=name + '_relu') else: conv1 = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv1') bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn1') act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') conv2 = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2') bn2 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn2') if dim_match: shortcut = data else: shortcut_conv = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_sc') shortcut = mx.sym.BatchNorm(data=shortcut_conv, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_sc_bn') if memonger: shortcut._set_attr(mirror_stage='True') eltwise = bn2 + shortcut return mx.sym.Activation(data=eltwise, act_type='relu', name=name + '_relu') def resnext(units, num_stages, filter_list, num_classes, num_group, image_shape, bottle_neck=True, bn_mom=0.9, workspace=256, dtype='float32', memonger=False): """Return ResNeXt symbol of Parameters ---------- units : list Number of units in each stage num_stages : int Number of stage filter_list : list Channel size of each stage num_classes : int Ouput size of symbol num_groupes: int Number of conv groups dataset : str Dataset type, only cifar10 and imagenet supports workspace : int Workspace used in convolution operator dtype : str Precision (float32 or float16) """ num_unit = len(units) assert(num_unit == num_stages) data = mx.sym.Variable(name='data') if dtype == 'float32': data = mx.sym.identity(data=data, name='id') else: if dtype == 'float16': data = mx.sym.Cast(data=data, dtype=np.float16) data = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='bn_data') (nchannel, height, width) = image_shape if height <= 32: # such as cifar10 body = mx.sym.Convolution(data=data, num_filter=filter_list[0], kernel=(3, 3), stride=(1,1), pad=(1, 1), no_bias=True, name="conv0", workspace=workspace) else: # often expected to be 224 such as imagenet body = mx.sym.Convolution(data=data, num_filter=filter_list[0], kernel=(7, 7), stride=(2,2), pad=(3, 3), no_bias=True, name="conv0", workspace=workspace) body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn0') body = mx.sym.Activation(data=body, act_type='relu', name='relu0') body = mx.sym.Pooling(data=body, kernel=(3, 3), stride=(2,2), pad=(1,1), pool_type='max') for i in range(num_stages): body = residual_unit(body, filter_list[i+1], (1 if i==0 else 2, 1 if i==0 else 2), False, name='stage%d_unit%d' % (i + 1, 1), bottle_neck=bottle_neck, num_group=num_group, bn_mom=bn_mom, workspace=workspace, memonger=memonger) for j in range(units[i]-1): body = residual_unit(body, filter_list[i+1], (1,1), True, name='stage%d_unit%d' % (i + 1, j + 2), bottle_neck=bottle_neck, num_group=num_group, bn_mom=bn_mom, workspace=workspace, memonger=memonger) pool1 = mx.sym.Pooling(data=body, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1') flat = mx.sym.Flatten(data=pool1) fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name='fc1') if dtype == 'float16': fc1 = mx.sym.Cast(data=fc1, dtype=np.float32) return mx.sym.SoftmaxOutput(data=fc1, name='softmax') def get_symbol(num_classes, num_layers, image_shape, num_group=32, conv_workspace=256, dtype='float32', **kwargs): """ Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py Original author Wei Wu """ image_shape = [int(l) for l in image_shape.split(',')] (nchannel, height, width) = image_shape if height <= 32: num_stages = 3 if (num_layers-2) % 9 == 0 and num_layers >= 164: per_unit = [(num_layers-2)//9] filter_list = [16, 64, 128, 256] bottle_neck = True elif (num_layers-2) % 6 == 0 and num_layers < 164: per_unit = [(num_layers-2)//6] filter_list = [16, 16, 32, 64] bottle_neck = False else: raise ValueError("no experiments done on num_layers {}, you can do it yourself".format(num_layers)) units = per_unit * num_stages else: if num_layers >= 50: filter_list = [64, 256, 512, 1024, 2048] bottle_neck = True else: filter_list = [64, 64, 128, 256, 512] bottle_neck = False num_stages = 4 if num_layers == 18: units = [2, 2, 2, 2] elif num_layers == 34: units = [3, 4, 6, 3] elif num_layers == 50: units = [3, 4, 6, 3] elif num_layers == 101: units = [3, 4, 23, 3] elif num_layers == 152: units = [3, 8, 36, 3] elif num_layers == 200: units = [3, 24, 36, 3] elif num_layers == 269: units = [3, 30, 48, 8] else: raise ValueError("no experiments done on num_layers {}, you can do it yourself".format(num_layers)) return resnext(units = units, num_stages = num_stages, filter_list = filter_list, num_classes = num_classes, num_group = num_group, image_shape = image_shape, bottle_neck = bottle_neck, workspace = conv_workspace, dtype = dtype)
apache-2.0
nick-klingaman/ASoP
ASoP-Coherence/asop_coherence_example.py
1
8365
import asop_coherence as asop import numpy as np """ Example use of ASoP Coherence package to compute and plot diagnostics of the spatial and temporal coherence of precipitation in a dataset. This example uses TRMM 3B42v7A and CMORPH v1.0 data for October 2009 - January 2010, as shown in Klingaman et al. (2017, GMD, doi:10.5194/gmd-10-57-2017) Written by Nicholas Klingaman nicholas.klingaman@ncas.ac.uk (C) The author 2017 """ def get_dictionary(key): """ The Coherence package relies on a dataset dictionary, for which currently the user must specify most values. This function shows how to build a dictionary. The dictionary to be returned to the main program is selected through the use of a "key", here either "TRMM" or "CMORPH" Arguments: * key: A string used to select the correct dataset Returns: * asop_dict: A dictionary containing required and optional parameters for the ASoP Coherence package. Required dictionary keys: infile - Path to input file (must be readable by Iris) name - Name for model in plot files (no spaces) legend_name - Name for model in legends and titles on plots (spaces allowed) dt - Timestep of input data (in seconds) dx - Longitudinal grid spacing at equator (in km) dy - Latitudinal grid spacing (in km) constraint - standard_name of data to read from netCDF file (e.g., precipitation flux) scale_factor - Multiplier necessary to convert precipitation to units of mm/day region - Region of data to read [minlat, maxlat, minlon, maxlon] box_size - Length of sub-regions (square boxes) to consider for correlation analysis as a function of physical distance (in km, recommended value is > 6.5*dx). color - Name of color to use on line graphs (must be recognised by matplotlib). region_size - Length of sub-regions (square boxes) to consider for correlation analysis as a function of model gridpoints (including lag correlations, see below) (in units of native gridpoints, odd integers strongly recommended). lag_length - Maximum lag to consider for correlation analysis as a function of model gridpoints, for constructing distance vs. lag correlation diagrams. Correlations for lags from 0 (coincidence) until lag_length will be computed. autocorr_length - The maximum autocorrelation to analyse (in seconds). Optional dictionary keys, which are useful mainly if analysing the same dataset on more than one grid / temporal sampling interval: grid_type - A string describing the grid, used in output filenames (recommend no spaces). time_type - A string describing the temporal sampling, used in output filenames (recommend no spaces). grid_desc - A string describing the grid, used in plot titles (can contain spaces). time_desc - A string describing the temporal sampling, used in plot titles (can contain spaces). """ asop_dict = {} if key == 'TRMM': asop_dict['infile'] = 'TRMM_3B42V7A.mjodiab_period_3hrmeans.precip.nc' asop_dict['name'] = 'TRMM_3B42v7A' asop_dict['dt'] = 10800 asop_dict['dx'] = 27 asop_dict['dy'] = 27 asop_dict['constraint'] = 'precipitation' asop_dict['scale_factor'] = 8.0 asop_dict['legend_name'] = 'TRMM 3B42v7A' asop_dict['region'] = [-10,10,60,90] asop_dict['box_size'] = 1680 asop_dict['color'] = 'red' asop_dict['region_size'] = 7 asop_dict['lag_length'] = 6 asop_dict['grid_type'] = 'native' asop_dict['time_type'] = '3hr' asop_dict['grid_desc'] = 'native' asop_dict['time_desc'] = '3-hourly' asop_dict['autocorr_length'] = 60*60*24 elif key == 'CMORPH': asop_dict['infile'] = 'CMORPH_V1.0.mjodiab_period_3hrmeans.precip.nc' asop_dict['name'] = 'CMORPH_V1.0' asop_dict['dt'] = 10800 asop_dict['dx'] = 27 asop_dict['dy'] = 27 asop_dict['constraint'] = 'precip' asop_dict['scale_factor'] = 8.0 asop_dict['legend_name'] = 'CMORPH 1.0' asop_dict['region'] = [-10,10,60,90] asop_dict['box_size'] = 1680 asop_dict['color'] = 'blue' asop_dict['region_size'] = 7 asop_dict['lag_length'] = 6 asop_dict['grid_type'] = 'native' asop_dict['time_type'] = '3hr' asop_dict['grid_desc'] = 'native' asop_dict['time_desc'] = '3-hourly' asop_dict['autocorr_length'] = 60*60*24 return(asop_dict) if __name__ == '__main__': datasets = ('TRMM','CMORPH') n_datasets = len(datasets) # Allocate memory for multi-model fields max_box_distance,max_timesteps,max_boxes = asop.parameters() all_distance_correlations = np.zeros((n_datasets,max_box_distance)) all_distance_ranges = np.zeros((n_datasets,3,max_box_distance)) all_distance_max = np.zeros((n_datasets),dtype=np.int) all_time_correlations = np.zeros((n_datasets,max_timesteps)) all_time_max = np.zeros((n_datasets),dtype=np.int) all_dt = np.zeros((n_datasets),dtype=np.int) all_colors = [] all_legend_names = [] for i in xrange(n_datasets): print '--> '+datasets[i] asop_dict = get_dictionary(datasets[i]) # Read precipitation data precip = asop.read_precip(asop_dict) # Define edges of bins for 1D and 2D histograms # Note that on plots, the first and last edges will be # replaced by < and > signs, respectively. bins=[0,1,2,4,6,9,12,16,20,25,30,40,60,90,130,180,2e20] bins=np.asarray(bins) # Compute 1D and 2D histograms oned_hist, twod_hist = asop.compute_histogram(precip,bins) # Plot 1D and 2D histograms (e.g., Fig. 2a in Klingaman et al. 2017). asop.plot_histogram(oned_hist,twod_hist,asop_dict,bins) # Compute correlations as a function of native gridpoints, by dividing # analysis region into sub-regions (boxes of length region_size). Also # computes lag correlations to a maximum lag of lag_length. corr_map,lag_vs_distance,autocorr,npts_map,npts = asop.compute_equalgrid_corr(precip,asop_dict) # Plot correlations as a function of native gridpoints and time lag # (e.g., Figs. 2c and 2e in Klingaman et al. 2017). asop.plot_equalgrid_corr(corr_map,lag_vs_distance,autocorr,npts,asop_dict) # Compute correlations as a function of physical distance, by dividing # analysis region into sub-regions (boxes of length box_size). all_distance_correlations[i,:],all_distance_ranges[i,:,:],all_distance_max[i] = asop.compute_equalarea_corr(precip,asop_dict) # Compute lagged autocorrelations over all points all_time_correlations[i,:],all_time_max[i] = asop.compute_autocorr(precip,asop_dict) # Compute spatial and temporal coherence metrics, based on quartiles (4 divisions) space_inter, time_inter = asop.compute_spacetime_summary(precip,4) # Save dataset timestep information all_dt[i] = asop_dict['dt'] # Save color and legend information all_colors.append(asop_dict['color']) all_legend_names.append(asop_dict['legend_name']) # Plot correlations as a function of physical distance for all datasets asop.plot_equalarea_corr(all_distance_correlations,all_distance_ranges,all_distance_max,colors=all_colors,legend_names=all_legend_names,set_desc='satobs') # Plot correlations as a function of physical time for all datasets asop.plot_autocorr(all_time_correlations,all_time_max,dt=all_dt,colors=all_colors,legend_names=all_legend_names,set_desc='satobs')
apache-2.0
zhangfengesri/MLPython
script/exercise_bmlsp_postclustering.py
1
1790
""" Exercise 2 - Posts<BMLSP> Clustering Machine Learning Example """ # Author: Feng Zhang <fzhang@esri.com> # License: Simplified BSD import os import sys import numpy as np import scipy as sp import nltk.stem import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans # Define Stemmed Class for TfidfVectorizer english_stemmer = nltk.stem.SnowballStemmer('english') class StemmedTfidfVectorizer(TfidfVectorizer): def build_analyzer(self): analyzer = super(TfidfVectorizer, self).build_analyzer() return lambda doc: (english_stemmer.stem(w) for w in analyzer(doc)) # Read the data from file data_folder = sys.argv[1] data_train = sklearn.datasets.load_mlcomp("20news-18828", "train", mlcomp_root=data_folder, categories=['comp.graphics', 'com.sys.ibm.pc.hardware', 'sci.space']) data_test = sklearn.datasets.load_mlcomp("20news-18828", "test", mlcomp_root=data_folder, categories=['comp.graphics', 'com.sys.ibm.pc.hardware', 'sci.space']) print(len(data_train.filenames)) # Clean and load the data vectorizer = StemmedTfidfVectorizer(min_df=10, max_df=0.5, stop_words='english', charset_error='ignore') data_train_vector = vectorizer.fit_tranform(data_train.data) data_test_vector = vectorizer.tranform(data_test.data) # Print and explore the data num_samples, num_features = data_train_vector.shape print("# of Samples %d, # of Features %d" %(num_samples, num_features)) # Fit the polynomial regression model clf_KMeans = KMeans(n_clusters=50, init="ramdom", n_init=1, verbose=1).fit(data_train_vector) # Plot the fitted model print(clf_KMeans.labels_) print(clf_KMeans.labels_.shape) # predict using the model y_predicted = clf_KMeans.predict(data_test_vector) # validate the model # print the result
bsd-2-clause
pystruct/pystruct
benchmarks/random_tree_crf.py
1
1467
import numpy as np from scipy import sparse try: from sklearn.model_selection import train_test_split except ImportError: from sklearn.cross_validation import train_test_split from scipy.sparse.csgraph import minimum_spanning_tree from pystruct.learners import SubgradientSSVM from pystruct.models import GraphCRF def make_random_trees(n_samples=50, n_nodes=100, n_states=7, n_features=10): crf = GraphCRF(inference_method='max-product', n_states=n_states, n_features=n_features) weights = np.random.randn(crf.size_joint_feature) X, y = [], [] for i in range(n_samples): distances = np.random.randn(n_nodes, n_nodes) features = np.random.randn(n_nodes, n_features) tree = minimum_spanning_tree(sparse.csr_matrix(distances)) edges = np.c_[tree.nonzero()] X.append((features, edges)) y.append(crf.inference(X[-1], weights)) return X, y, weights X, y, weights = make_random_trees(n_nodes=1000) X_train, X_test, y_train, y_test = train_test_split(X, y) #tree_model = MultiLabelClf(edges=tree, inference_method=('ogm', {'alg': 'dyn'})) tree_model = GraphCRF(inference_method='max-product') tree_ssvm = SubgradientSSVM(tree_model, max_iter=4, C=1, verbose=10) print("fitting tree model...") tree_ssvm.fit(X_train, y_train) print("Training loss tree model: %f" % tree_ssvm.score(X_train, y_train)) print("Test loss tree model: %f" % tree_ssvm.score(X_test, y_test))
bsd-2-clause
QijunPan/ansible
lib/ansible/modules/cloud/smartos/vmadm.py
10
24627
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2017, Jasper Lievisse Adriaanse <j@jasper.la> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'version': '1.0'} DOCUMENTATION = ''' --- module: vmadm short_description: Manage SmartOS virtual machines and zones. description: - Manage SmartOS virtual machines through vmadm(1M). version_added: "2.3" author: Jasper Lievisse Adriaanse (@jasperla) options: archive_on_delete: required: false description: - When enabled, the zone dataset will be mounted on C(/zones/archive) upon removal. autoboot: required: false description: - Whether or not a VM is booted when the system is rebooted. brand: required: true choices: [ joyent, joyent-minimal, kvm, lx ] default: joyent description: - Type of virtual machine. boot: required: false description: - Set the boot order for KVM VMs. cpu_cap: required: false description: - Sets a limit on the amount of CPU time that can be used by a VM. Use C(0) for no cap. cpu_shares: required: false description: - Sets a limit on the number of fair share scheduler (FSS) CPU shares for a VM. This limit is relative to all other VMs on the system. cpu_type: required: false choices: [ qemu64, host ] default: qemu64 description: - Control the type of virtual CPU exposed to KVM VMs. customer_metadata: required: false description: - Metadata to be set and associated with this VM, this contain customer modifiable keys. delegate_dataset: required: false description: - Whether to delegate a ZFS dataset to an OS VM. disk_driver: required: false description: - Default value for a virtual disk model for KVM guests. disks: required: false description: - A list of disks to add, valid properties are documented in vmadm(1M). dns_domain: required: false description: - Domain value for C(/etc/hosts). filesystems: required: false description: - Mount additional filesystems into an OS VM. firewall_enabled: required: false description: - Enables the firewall, allowing fwadm(1M) rules to be applied. force: required: false description: - Force a particular action (i.e. stop or delete a VM). fs_allowed: required: false description: - Comma separated list of filesystem types this zone is allowed to mount. hostname: required: false description: - Zone/VM hostname. image_uuid: required: false description: - Image UUID. indestructible_delegated: required: false description: - Adds an C(@indestructible) snapshot to delegated datasets. indestructible_zoneroot: required: false description: - Adds an C(@indestructible) snapshot to zoneroot. internal_metadata: required: false description: - Metadata to be set and associated with this VM, this contains operator generated keys. internal_metadata_namespace: required: false description: - List of namespaces to be set as I(internal_metadata-only); these namespaces will come from I(internal_metadata) rather than I(customer_metadata). kernel_version: required: false description: - Kernel version to emulate for LX VMs. limit_priv: required: false description: - Set (comma separated) list of privileges the zone is allowed to use. maintain_resolvers: required: false description: - Resolvers in C(/etc/resolv.conf) will be updated when updating the I(resolvers) property. max_locked_memory: required: false description: - Total amount of memory (in MiBs) on the host that can be locked by this VM. max_lwps: required: false description: - Maximum number of lightweight processes this VM is allowed to have running. max_physical_memory: required: false description: - Maximum amount of memory (in MiBs) on the host that the VM is allowed to use. max_swap: required: false description: - Maximum amount of virtual memory (in MiBs) the VM is allowed to use. mdata_exec_timeout: required: false description: - Timeout in seconds (or 0 to disable) for the C(svc:/smartdc/mdata:execute) service that runs user-scripts in the zone. name: required: false aliases: [ alias ] description: - Name of the VM. vmadm(1M) uses this as an optional name. nic_driver: required: false description: - Default value for a virtual NIC model for KVM guests. nics: required: false description: - A list of nics to add, valid properties are documented in vmadm(1M). nowait: required: false description: - Consider the provisioning complete when the VM first starts, rather than when the VM has rebooted. qemu_opts: required: false description: - Additional qemu arguments for KVM guests. This overwrites the default arguments provided by vmadm(1M) and should only be used for debugging. qemu_extra_opts: required: false description: - Additional qemu cmdline arguments for KVM guests. quota: required: false description: - Quota on zone filesystems (in MiBs). ram: required: false description: - Amount of virtual RAM for a KVM guest (in MiBs). resolvers: required: false description: - List of resolvers to be put into C(/etc/resolv.conf). routes: required: false description: - Dictionary that maps destinations to gateways, these will be set as static routes in the VM. spice_opts: required: false description: - Addition options for SPICE-enabled KVM VMs. spice_password: required: false description: - Password required to connect to SPICE. By default no password is set. Please note this can be read from the Global Zone. state: required: true choices: [ present, absent, stopped, restarted ] description: - States for the VM to be in. Please note that C(present), C(stopped) and C(restarted) operate on a VM that is currently provisioned. C(present) means that the VM will be created if it was absent, and that it will be in a running state. C(absent) will shutdown the zone before removing it. C(stopped) means the zone will be created if it doesn't exist already, before shutting it down. tmpfs: required: false description: - Amount of memory (in MiBs) that will be available in the VM for the C(/tmp) filesystem. uuid: required: false description: - UUID of the VM. Can either be a full UUID or C(*) for all VMs. vcpus: required: false description: - Number of virtual CPUs for a KVM guest. vga: required: false description: - Specify VGA emulation used by KVM VMs. virtio_txburst: required: false description: - Number of packets that can be sent in a single flush of the tx queue of virtio NICs. virtio_txtimer: required: false description: - Timeout (in nanoseconds) for the TX timer of virtio NICs. vnc_password: required: false description: - Password required to connect to VNC. By default no password is set. Please note this can be read from the Global Zone. vnc_port: required: false description: - TCP port to listen of the VNC server. Or set C(0) for random, or C(-1) to disable. zfs_data_compression: required: false description: - Specifies compression algorithm used for this VMs data dataset. This option only has effect on delegated datasets. zfs_data_recsize: required: false description: - Suggested block size (power of 2) for files in the delegated dataset's filesystem. zfs_filesystem_limit: required: false description: - Maximum number of filesystems the VM can have. zfs_io_priority: required: false description: - IO throttle priority value relative to other VMs. zfs_root_compression: required: false description: - Specifies compression algorithm used for this VMs root dataset. This option only has effect on the zoneroot dataset. zfs_root_recsize: required: false description: - Suggested block size (power of 2) for files in the zoneroot dataset's filesystem. zfs_snapshot_limit: required: false description: - Number of snapshots the VM can have. zpool: required: false description: - ZFS pool the VM's zone dataset will be created in. requirements: - python >= 2.6 ''' EXAMPLES = ''' - name: create SmartOS zone vmadm: brand: joyent state: present alias: fw_zone image_uuid: 95f265b8-96b2-11e6-9597-972f3af4b6d5 firewall_enabled: yes indestructible_zoneroot: yes nics: - nic_tag: admin ip: dhcp primary: true internal_metadata: root_pw: 'secret' quota: 1 - name: Delete a zone vmadm: alias: test_zone state: deleted - name: Stop all zones vmadm: uuid: '*' state: stopped ''' RETURN = ''' uuid: description: UUID of the managed VM. returned: always type: string sample: 'b217ab0b-cf57-efd8-cd85-958d0b80be33' alias: description: Alias of the managed VM. returned: When addressing a VM by alias. type: string sample: 'dns-zone' state: description: State of the target, after execution. returned: success type: string sample: 'running' ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.pycompat24 import get_exception from ansible.module_utils._text import to_native import os import re import tempfile import traceback try: import json except ImportError: import simplejson as json # While vmadm(1M) supports a -E option to return any errors in JSON, the # generated JSON does not play well with the JSON parsers of Python. # The returned message contains '\n' as part of the stacktrace, # which breaks the parsers. def get_vm_prop(module, uuid, prop): # Lookup a property for the given VM. # Returns the property, or None if not found. cmd = '{0} lookup -j -o {1} uuid={2}'.format(module.vmadm, prop, uuid) (rc, stdout, stderr) = module.run_command(cmd) if rc != 0: module.fail_json( msg='Could not perform lookup of {0} on {1}'.format(prop, uuid), exception=stderr) try: stdout_json = json.loads(stdout) except: e = get_exception() module.fail_json( msg='Invalid JSON returned by vmadm for uuid lookup of {0}'.format(alias), details=to_native(e)) if len(stdout_json) > 0 and prop in stdout_json[0]: return stdout_json[0][prop] else: return None def get_vm_uuid(module, alias): # Lookup the uuid that goes with the given alias. # Returns the uuid or '' if not found. cmd = '{0} lookup -j -o uuid alias={1}'.format(module.vmadm, alias) (rc, stdout, stderr) = module.run_command(cmd) if rc != 0: module.fail_json( msg='Could not retrieve UUID of {0}'.format(alias), exception=stderr) # If no VM was found matching the given alias, we get back an empty array. # That is not an error condition as we might be explicitly checking it's # absence. if stdout.strip() == '[]': return None else: try: stdout_json = json.loads(stdout) except: e = get_exception() module.fail_json( msg='Invalid JSON returned by vmadm for uuid lookup of {0}'.format(alias), details=to_native(e)) if len(stdout_json) > 0 and 'uuid' in stdout_json[0]: return stdout_json[0]['uuid'] def get_all_vm_uuids(module): # Retrieve the UUIDs for all VMs. cmd = '{0} lookup -j -o uuid'.format(module.vmadm) (rc, stdout, stderr) = module.run_command(cmd) if rc != 0: module.fail_json(msg='Failed to get VMs list', exception=stderr) try: stdout_json = json.loads(stdout) return [v['uuid'] for v in stdout_json] except: e = get_exception() module.fail_json(msg='Could not retrieve VM UUIDs', details=to_native(e)) def new_vm(module, uuid, vm_state): payload_file = create_payload(module, uuid) (rc, stdout, stderr) = vmadm_create_vm(module, payload_file) if rc != 0: changed = False module.fail_json(msg='Could not create VM', exception=stderr) else: changed = True # 'vmadm create' returns all output to stderr... match = re.match('Successfully created VM (.*)', stderr) if match: vm_uuid = match.groups()[0] if not is_valid_uuid(vm_uuid): module.fail_json(msg='Invalid UUID for VM {0}?'.format(vm_uuid)) else: module.fail_json(msg='Could not retrieve UUID of newly created(?) VM') # Now that the VM is created, ensure it is in the desired state (if not 'running') if vm_state != 'running': ret = set_vm_state(module, vm_uuid, vm_state) if not ret: module.fail_json(msg='Could not set VM {0} to state {1}'.format(vm_uuid, vm_state)) try: os.unlink(payload_file) except Exception as e: # Since the payload may contain sensitive information, fail hard # if we cannot remove the file so the operator knows about it. module.fail_json( msg='Could not remove temporary JSON payload file {0}'.format(payload_file), exception=traceback.format_exc(e)) return changed, vm_uuid def vmadm_create_vm(module, payload_file): # Create a new VM using the provided payload. cmd = '{0} create -f {1}'.format(module.vmadm, payload_file) return module.run_command(cmd) def set_vm_state(module, vm_uuid, vm_state): p = module.params # Check if the VM is already in the desired state. state = get_vm_prop(module, vm_uuid, 'state') if state and (state == vm_state): return None # Lookup table for the state to be in, and which command to use for that. # vm_state: [vmadm commandm, forceable?] cmds = { 'stopped': ['stop', True], 'running': ['start', False], 'deleted': ['delete', True], 'rebooted': ['reboot', False] } if p['force'] and cmds[vm_state][1]: force = '-F' else: force = '' cmd = 'vmadm {0} {1} {2}'.format(cmds[vm_state][0], force, vm_uuid) (rc, stdout, stderr) = module.run_command(cmd) match = re.match('^Successfully.*', stderr) if match: return True else: return False def create_payload(module, uuid): # Create the JSON payload (vmdef) and return the filename. p = module.params # Filter out the few options that are not valid VM properties. module_options = ['debug', 'force', 'state'] vmattrs = filter(lambda prop: prop not in module_options, p) vmdef = {} for attr in vmattrs: if p[attr]: vmdef[attr] = p[attr] try: vmdef_json = json.dumps(vmdef) except Exception as e: module.fail_json( msg='Could not create valid JSON payload', exception=traceback.format_exc(e)) # Create the temporary file that contains our payload, and set tight # permissions for it may container sensitive information. try: # XXX: When there's a way to get the current ansible temporary directory # drop the mkstemp call and rely on ANSIBLE_KEEP_REMOTE_FILES to retain # the payload (thus removing the `save_payload` option). fname = tempfile.mkstemp()[1] fh = open(fname, 'w') os.chmod(fname, 0o400) fh.write(vmdef_json) fh.close() except Exception as e: module.fail_json( msg='Could not save JSON payload', exception=traceback.format_exc(e)) return fname def vm_state_transition(module, uuid, vm_state): ret = set_vm_state(module, uuid, vm_state) # Whether the VM changed state. if ret is None: return False elif ret: return True else: module.fail_json(msg='Failed to set VM {0} to state {1}'.format(uuid, vm_state)) def is_valid_uuid(uuid): if re.match('^[0-9a-f]{8}-([0-9a-f]{4}-){3}[0-9a-f]{12}$', uuid, re.IGNORECASE): return True else: return False def validate_uuids(module): # Perform basic UUID validation. failed = [] for u in [['uuid', module.params['uuid']], ['image_uuid', module.params['image_uuid']]]: if u[1] and u[1] != '*': if not is_valid_uuid(u[1]): failed.append(u[0]) if len(failed) > 0: module.fail_json(msg='No valid UUID(s) found for: {0}'.format(", ".join(failed))) def manage_all_vms(module, vm_state): # Handle operations for all VMs, which can by definition only # be state transitions. state = module.params['state'] if state == 'created': module.fail_json(msg='State "created" is only valid for tasks with a single VM') # If any of the VMs has a change, the task as a whole has a change. any_changed = False # First get all VM uuids and for each check their state, and adjust it if needed. for uuid in get_all_vm_uuids(module): current_vm_state = get_vm_prop(module, uuid, 'state') if not current_vm_state and vm_state == 'deleted': any_changed = False else: if module.check_mode: if (not current_vm_state) or (get_vm_prop(module, uuid, 'state') != state): any_changed = True else: any_changed = (vm_state_transition(module, uuid, vm_state) | any_changed) return any_changed def main(): # In order to reduce the clutter and boilerplate for trivial options, # abstract the vmadm properties and build the dict of arguments later. # Dict of all options that are simple to define based on their type. # They're not required and have a default of None. properties = { 'str': [ 'boot', 'disk_driver', 'dns_domain', 'fs_allowed', 'hostname', 'image_uuid', 'internal_metadata_namespace', 'kernel_version', 'limit_priv', 'nic_driver', 'qemu_opts', 'qemu_extra_opts', 'spice_opts', 'uuid', 'vga', 'zfs_data_compression', 'zfs_root_compression', 'zpool' ], 'bool': [ 'archive_on_delete', 'autoboot', 'debug', 'delegate_dataset', 'firewall_enabled', 'force', 'indestructible_delegated', 'indestructible_zoneroot', 'maintain_resolvers', 'nowait' ], 'int': [ 'cpu_cap', 'cpu_shares', 'max_locked_memory', 'max_lwps', 'max_physical_memory', 'max_swap', 'mdata_exec_timeout', 'quota', 'ram', 'tmpfs', 'vcpus', 'virtio_txburst', 'virtio_txtimer', 'vnc_port', 'zfs_data_recsize', 'zfs_filesystem_limit', 'zfs_io_priority', 'zfs_root_recsize', 'zfs_snapshot_limit' ], 'dict': ['customer_metadata', 'internal_metadata', 'routes'], 'list': ['disks', 'nics', 'resolvers', 'filesystems'] } # Start with the options that are not as trivial as those above. options = dict( state=dict( default='running', type='str', choices=['present', 'running', 'absent', 'deleted', 'stopped', 'created', 'restarted', 'rebooted'] ), name=dict( default=None, type='str', aliases=['alias'] ), brand=dict( default='joyent', type='str', choices=['joyent', 'joyent-minimal', 'kvm', 'lx'] ), cpu_type=dict( default='qemu64', type='str', choices=['host','qemu64'] ), # Regular strings, however these require additional options. spice_password=dict(type='str', no_log=True), vnc_password=dict(type='str', no_log=True), ) # Add our 'simple' options to options dict. for type in properties: for p in properties[type]: option = dict(default=None, type=type) options[p] = option module = AnsibleModule( argument_spec=options, supports_check_mode=True, required_one_of=[['name', 'uuid']] ) module.vmadm = module.get_bin_path('vmadm', required=True) p = module.params uuid = p['uuid'] state = p['state'] # Translate the state paramter into something we can use later on. if state in ['present', 'running']: vm_state = 'running' elif state in ['stopped', 'created']: vm_state = 'stopped' elif state in ['absent', 'deleted']: vm_state = 'deleted' elif state in ['restarted', 'rebooted']: vm_state = 'rebooted' result = {'state': state} # While it's possible to refer to a given VM by it's `alias`, it's easier # to operate on VMs by their UUID. So if we're not given a `uuid`, look # it up. if not uuid: uuid = get_vm_uuid(module, p['name']) # Bit of a chicken and egg problem here for VMs with state == deleted. # If they're going to be removed in this play, we have to lookup the # uuid. If they're already deleted there's nothing to looup. # So if state == deleted and get_vm_uuid() returned '', the VM is already # deleted and there's nothing else to do. if uuid is None and vm_state == 'deleted': result['name'] = p['name'] module.exit_json(**result) validate_uuids(module) if p['name']: result['name'] = p['name'] result['uuid'] = uuid if uuid == '*': result['changed'] = manage_all_vms(module, vm_state) module.exit_json(**result) # The general flow is as follows: # - first the current state of the VM is obtained by it's UUID. # - If the state was not found and the desired state is 'deleted', return. # - If the state was not found, it means the VM has to be created. # Subsequently the VM will be set to the desired state (i.e. stopped) # - Otherwise, it means the VM exists already and we operate on it's # state (i.e. reboot it.) # # In the future it should be possible to query the VM for a particular # property as a valid state (i.e. queried) so the result can be # registered. # Also, VMs should be able to get their properties updated. # Managing VM snapshots should be part of a standalone module. # First obtain the VM state to determine what needs to be done with it. current_vm_state = get_vm_prop(module, uuid, 'state') # First handle the case where the VM should be deleted and is not present. if not current_vm_state and vm_state == 'deleted': result['changed'] = False elif module.check_mode: # Shortcut for check mode, if there is no VM yet, it will need to be created. # Or, if the VM is not in the desired state yet, it needs to transition. if (not current_vm_state) or (get_vm_prop(module, uuid, 'state') != state): result['changed'] = True else: result['changed'] = False module.exit_json(**result) # No VM was found that matched the given ID (alias or uuid), so we create it. elif not current_vm_state: result['changed'], result['uuid'] = new_vm(module, uuid, vm_state) else: # VM was found, operate on its state directly. result['changed'] = vm_state_transition(module, uuid, vm_state) module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
letconex/MMT
src/decoder-neural/src/main/python/nmmt/torch_utils.py
1
1144
import torch _torch_gpus = None def torch_setup(gpus=None, random_seed=None): global _torch_gpus if torch.cuda.is_available(): if gpus is None: gpus = range(torch.cuda.device_count()) if torch.cuda.is_available() else None else: # remove indexes of GPUs which are not valid, # because larger than the number of available GPU or smaller than 0 gpus = [x for x in gpus if x < torch.cuda.device_count() or x < 0] if len(gpus) == 0: gpus = None else: gpus = None if random_seed is not None: torch.manual_seed(random_seed) if torch.cuda.is_available(): torch.cuda.random.manual_seed_all(random_seed) if gpus is not None and len(gpus) > 0: torch.cuda.set_device(gpus[0]) _torch_gpus = gpus def torch_get_gpus(): global _torch_gpus return _torch_gpus def torch_is_using_cuda(): global _torch_gpus return _torch_gpus is not None and len(_torch_gpus) > 0 def torch_is_multi_gpu(): global _torch_gpus return _torch_gpus is not None and len(_torch_gpus) > 1
apache-2.0
gsig/srnn
srnn-pytorch/srnn.py
1
2966
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np def tensorchoice(n, scores): p = scores.detach().numpy() p = p / p.sum() return np.random.choice(n, p=p) def tensormax(n, scores): p = scores.detach().numpy() return np.argmax(p) def pick_probabilities(k, numberspicked, n, current): # probabilities of picking each of the future elements # if we are picking k elements sequentially without replacement prob = torch.zeros(n) no = 1. remaining_picks = k - numberspicked for i in range(current, n - remaining_picks + 1): s = remaining_picks / float(n - i) prob[i] = s * no no = no * (1 - s) return prob class SRNN(nn.Module): # This should follow similar semantics as nn.LSTM def __init__(self, input_dim, hidden_dim, subset=10, input_fun=lambda x: x, output_fun=lambda x: x, similarity=lambda x, y: (x * y).sum(2).sum(1), choice=tensormax): super(SRNN, self).__init__() self.hidden_dim = hidden_dim self.lstm = nn.LSTM(input_dim, hidden_dim) self.input_fun = input_fun self.output_fun = output_fun self.similarity = similarity self.choice = choice self.hidden = self.init_hidden() self.output = self.init_output() self.subset = subset def init_hidden(self): # The axes semantics are (num_layers, minibatch_size, hidden_dim) return (torch.zeros(1, 1, self.hidden_dim), torch.zeros(1, 1, self.hidden_dim)) def scores(self, embeds, numberspicked, current): n = len(embeds) scores = self.similarity(self.output, embeds) scores = F.softmax(scores, dim=0) scores = scores * pick_probabilities(self.subset, numberspicked, n, current) scores = scores / scores.sum() return scores def init_output(self): return self.output_fun(torch.zeros(1, 1, self.hidden_dim)) def forward(self, input): n = len(input) embeds = self.input_fun(input) # pick first node scores = self.scores(embeds, 0, 0) choice = self.choice(n, scores) picks = [choice] loss = -torch.log(scores[choice]) / n outputs = [] for i, e in enumerate(embeds): outputs.append(self.output) if picks[-1] > i: # skip elements until next node continue lstm_out, self.hidden = self.lstm(e.view(1, 1, -1), self.hidden) self.output = self.output_fun(lstm_out.view(1, -1)) if len(picks) < self.subset: # pick next node scores = self.scores(embeds, len(picks), i + 1) choice = self.choice(n, scores) picks.append(choice) loss -= torch.log(scores[choice]) / (n - i) return loss, outputs, picks
gpl-3.0
Lawrence-Liu/scikit-learn
examples/neighbors/plot_regression.py
346
1402
""" ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # # License: BSD 3 clause (C) INRIA ############################################################################### # Generate sample data import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model n_neighbors = 5 for i, weights in enumerate(['uniform', 'distance']): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(T) plt.subplot(2, 1, i + 1) plt.scatter(X, y, c='k', label='data') plt.plot(T, y_, c='g', label='prediction') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
quheng/scikit-learn
examples/neighbors/plot_regression.py
346
1402
""" ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # # License: BSD 3 clause (C) INRIA ############################################################################### # Generate sample data import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors np.random.seed(0) X = np.sort(5 * np.random.rand(40, 1), axis=0) T = np.linspace(0, 5, 500)[:, np.newaxis] y = np.sin(X).ravel() # Add noise to targets y[::5] += 1 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model n_neighbors = 5 for i, weights in enumerate(['uniform', 'distance']): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(T) plt.subplot(2, 1, i + 1) plt.scatter(X, y, c='k', label='data') plt.plot(T, y_, c='g', label='prediction') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
edhuckle/statsmodels
statsmodels/robust/robust_linear_model.py
27
25571
""" Robust linear models with support for the M-estimators listed under :ref:`norms <norms>`. References ---------- PJ Huber. 'Robust Statistics' John Wiley and Sons, Inc., New York. 1981. PJ Huber. 1973, 'The 1972 Wald Memorial Lectures: Robust Regression: Asymptotics, Conjectures, and Monte Carlo.' The Annals of Statistics, 1.5, 799-821. R Venables, B Ripley. 'Modern Applied Statistics in S' Springer, New York, 2002. """ from statsmodels.compat.python import string_types import numpy as np import scipy.stats as stats from statsmodels.tools.decorators import (cache_readonly, resettable_cache) import statsmodels.regression.linear_model as lm import statsmodels.robust.norms as norms import statsmodels.robust.scale as scale import statsmodels.base.model as base import statsmodels.base.wrapper as wrap from statsmodels.compat.numpy import np_matrix_rank __all__ = ['RLM'] def _check_convergence(criterion, iteration, tol, maxiter): return not (np.any(np.fabs(criterion[iteration] - criterion[iteration-1]) > tol) and iteration < maxiter) class RLM(base.LikelihoodModel): __doc__ = """ Robust Linear Models Estimate a robust linear model via iteratively reweighted least squares given a robust criterion estimator. %(params)s M : statsmodels.robust.norms.RobustNorm, optional The robust criterion function for downweighting outliers. The current options are LeastSquares, HuberT, RamsayE, AndrewWave, TrimmedMean, Hampel, and TukeyBiweight. The default is HuberT(). See statsmodels.robust.norms for more information. %(extra_params)s Notes ----- **Attributes** df_model : float The degrees of freedom of the model. The number of regressors p less one for the intercept. Note that the reported model degrees of freedom does not count the intercept as a regressor, though the model is assumed to have an intercept. df_resid : float The residual degrees of freedom. The number of observations n less the number of regressors p. Note that here p does include the intercept as using a degree of freedom. endog : array See above. Note that endog is a reference to the data so that if data is already an array and it is changed, then `endog` changes as well. exog : array See above. Note that endog is a reference to the data so that if data is already an array and it is changed, then `endog` changes as well. M : statsmodels.robust.norms.RobustNorm See above. Robust estimator instance instantiated. nobs : float The number of observations n pinv_wexog : array The pseudoinverse of the design / exogenous data array. Note that RLM has no whiten method, so this is just the pseudo inverse of the design. normalized_cov_params : array The p x p normalized covariance of the design / exogenous data. This is approximately equal to (X.T X)^(-1) Examples --------- >>> import statsmodels.api as sm >>> data = sm.datasets.stackloss.load() >>> data.exog = sm.add_constant(data.exog) >>> rlm_model = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT()) >>> rlm_results = rlm_model.fit() >>> rlm_results.params array([ 0.82938433, 0.92606597, -0.12784672, -41.02649835]) >>> rlm_results.bse array([ 0.11100521, 0.30293016, 0.12864961, 9.79189854]) >>> rlm_results_HC2 = rlm_model.fit(cov="H2") >>> rlm_results_HC2.params array([ 0.82938433, 0.92606597, -0.12784672, -41.02649835]) >>> rlm_results_HC2.bse array([ 0.11945975, 0.32235497, 0.11796313, 9.08950419]) >>> >>> rlm_hamp_hub = sm.RLM(data.endog, data.exog, M=sm.robust.norms.Hampel()).fit( sm.robust.scale.HuberScale()) >>> rlm_hamp_hub.params array([ 0.73175452, 1.25082038, -0.14794399, -40.27122257]) """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc} def __init__(self, endog, exog, M=norms.HuberT(), missing='none', **kwargs): self.M = M super(base.LikelihoodModel, self).__init__(endog, exog, missing=missing, **kwargs) self._initialize() #things to remove_data self._data_attr.extend(['weights', 'pinv_wexog']) def _initialize(self): """ Initializes the model for the IRLS fit. Resets the history and number of iterations. """ self.pinv_wexog = np.linalg.pinv(self.exog) self.normalized_cov_params = np.dot(self.pinv_wexog, np.transpose(self.pinv_wexog)) self.df_resid = (np.float(self.exog.shape[0] - np_matrix_rank(self.exog))) self.df_model = np.float(np_matrix_rank(self.exog)-1) self.nobs = float(self.endog.shape[0]) def score(self, params): raise NotImplementedError def information(self, params): raise NotImplementedError def predict(self, params, exog=None): """ Return linear predicted values from a design matrix. Parameters ---------- params : array-like, optional after fit has been called Parameters of a linear model exog : array-like, optional. Design / exogenous data. Model exog is used if None. Returns ------- An array of fitted values Notes ----- If the model as not yet been fit, params is not optional. """ #copied from linear_model if exog is None: exog = self.exog return np.dot(exog, params) def loglike(self, params): raise NotImplementedError def deviance(self, tmp_results): """ Returns the (unnormalized) log-likelihood from the M estimator. """ return self.M((self.endog - tmp_results.fittedvalues) / tmp_results.scale).sum() def _update_history(self, tmp_results, history, conv): history['params'].append(tmp_results.params) history['scale'].append(tmp_results.scale) if conv == 'dev': history['deviance'].append(self.deviance(tmp_results)) elif conv == 'sresid': history['sresid'].append(tmp_results.resid/tmp_results.scale) elif conv == 'weights': history['weights'].append(tmp_results.model.weights) return history def _estimate_scale(self, resid): """ Estimates the scale based on the option provided to the fit method. """ if isinstance(self.scale_est, str): if self.scale_est.lower() == 'mad': return scale.mad(resid, center=0) if self.scale_est.lower() == 'stand_mad': return scale.mad(resid) else: raise ValueError("Option %s for scale_est not understood" % self.scale_est) elif isinstance(self.scale_est, scale.HuberScale): return self.scale_est(self.df_resid, self.nobs, resid) else: return scale.scale_est(self, resid)**2 def fit(self, maxiter=50, tol=1e-8, scale_est='mad', init=None, cov='H1', update_scale=True, conv='dev'): """ Fits the model using iteratively reweighted least squares. The IRLS routine runs until the specified objective converges to `tol` or `maxiter` has been reached. Parameters ---------- conv : string Indicates the convergence criteria. Available options are "coefs" (the coefficients), "weights" (the weights in the iteration), "sresid" (the standardized residuals), and "dev" (the un-normalized log-likelihood for the M estimator). The default is "dev". cov : string, optional 'H1', 'H2', or 'H3' Indicates how the covariance matrix is estimated. Default is 'H1'. See rlm.RLMResults for more information. init : string Specifies method for the initial estimates of the parameters. Default is None, which means that the least squares estimate is used. Currently it is the only available choice. maxiter : int The maximum number of iterations to try. Default is 50. scale_est : string or HuberScale() 'mad' or HuberScale() Indicates the estimate to use for scaling the weights in the IRLS. The default is 'mad' (median absolute deviation. Other options are 'HuberScale' for Huber's proposal 2. Huber's proposal 2 has optional keyword arguments d, tol, and maxiter for specifying the tuning constant, the convergence tolerance, and the maximum number of iterations. See statsmodels.robust.scale for more information. tol : float The convergence tolerance of the estimate. Default is 1e-8. update_scale : Bool If `update_scale` is False then the scale estimate for the weights is held constant over the iteration. Otherwise, it is updated for each fit in the iteration. Default is True. Returns ------- results : object statsmodels.rlm.RLMresults """ if not cov.upper() in ["H1","H2","H3"]: raise ValueError("Covariance matrix %s not understood" % cov) else: self.cov = cov.upper() conv = conv.lower() if not conv in ["weights","coefs","dev","sresid"]: raise ValueError("Convergence argument %s not understood" \ % conv) self.scale_est = scale_est if (isinstance(scale_est, string_types) and scale_est.lower() == "stand_mad"): from warnings import warn warn("stand_mad is deprecated and will be removed in 0.7.0", FutureWarning) wls_results = lm.WLS(self.endog, self.exog).fit() if not init: self.scale = self._estimate_scale(wls_results.resid) history = dict(params = [np.inf], scale = []) if conv == 'coefs': criterion = history['params'] elif conv == 'dev': history.update(dict(deviance = [np.inf])) criterion = history['deviance'] elif conv == 'sresid': history.update(dict(sresid = [np.inf])) criterion = history['sresid'] elif conv == 'weights': history.update(dict(weights = [np.inf])) criterion = history['weights'] # done one iteration so update history = self._update_history(wls_results, history, conv) iteration = 1 converged = 0 while not converged: self.weights = self.M.weights(wls_results.resid/self.scale) wls_results = lm.WLS(self.endog, self.exog, weights=self.weights).fit() if update_scale is True: self.scale = self._estimate_scale(wls_results.resid) history = self._update_history(wls_results, history, conv) iteration += 1 converged = _check_convergence(criterion, iteration, tol, maxiter) results = RLMResults(self, wls_results.params, self.normalized_cov_params, self.scale) history['iteration'] = iteration results.fit_history = history results.fit_options = dict(cov=cov.upper(), scale_est=scale_est, norm=self.M.__class__.__name__, conv=conv) #norm is not changed in fit, no old state #doing the next causes exception #self.cov = self.scale_est = None #reset for additional fits #iteration and history could contain wrong state with repeated fit return RLMResultsWrapper(results) class RLMResults(base.LikelihoodModelResults): """ Class to contain RLM results Returns ------- **Attributes** bcov_scaled : array p x p scaled covariance matrix specified in the model fit method. The default is H1. H1 is defined as ``k**2 * (1/df_resid*sum(M.psi(sresid)**2)*scale**2)/ ((1/nobs*sum(M.psi_deriv(sresid)))**2) * (X.T X)^(-1)`` where ``k = 1 + (df_model +1)/nobs * var_psiprime/m**2`` where ``m = mean(M.psi_deriv(sresid))`` and ``var_psiprime = var(M.psi_deriv(sresid))`` H2 is defined as ``k * (1/df_resid) * sum(M.psi(sresid)**2) *scale**2/ ((1/nobs)*sum(M.psi_deriv(sresid)))*W_inv`` H3 is defined as ``1/k * (1/df_resid * sum(M.psi(sresid)**2)*scale**2 * (W_inv X.T X W_inv))`` where `k` is defined as above and ``W_inv = (M.psi_deriv(sresid) exog.T exog)^(-1)`` See the technical documentation for cleaner formulae. bcov_unscaled : array The usual p x p covariance matrix with scale set equal to 1. It is then just equivalent to normalized_cov_params. bse : array An array of the standard errors of the parameters. The standard errors are taken from the robust covariance matrix specified in the argument to fit. chisq : array An array of the chi-squared values of the paramter estimates. df_model See RLM.df_model df_resid See RLM.df_resid fit_history : dict Contains information about the iterations. Its keys are `deviance`, `params`, `iteration` and the convergence criteria specified in `RLM.fit`, if different from `deviance` or `params`. fit_options : dict Contains the options given to fit. fittedvalues : array The linear predicted values. dot(exog, params) model : statsmodels.rlm.RLM A reference to the model instance nobs : float The number of observations n normalized_cov_params : array See RLM.normalized_cov_params params : array The coefficients of the fitted model pinv_wexog : array See RLM.pinv_wexog pvalues : array The p values associated with `tvalues`. Note that `tvalues` are assumed to be distributed standard normal rather than Student's t. resid : array The residuals of the fitted model. endog - fittedvalues scale : float The type of scale is determined in the arguments to the fit method in RLM. The reported scale is taken from the residuals of the weighted least squares in the last IRLS iteration if update_scale is True. If update_scale is False, then it is the scale given by the first OLS fit before the IRLS iterations. sresid : array The scaled residuals. tvalues : array The "t-statistics" of params. These are defined as params/bse where bse are taken from the robust covariance matrix specified in the argument to fit. weights : array The reported weights are determined by passing the scaled residuals from the last weighted least squares fit in the IRLS algortihm. See also -------- statsmodels.model.LikelihoodModelResults """ def __init__(self, model, params, normalized_cov_params, scale): super(RLMResults, self).__init__(model, params, normalized_cov_params, scale) self.model = model self.df_model = model.df_model self.df_resid = model.df_resid self.nobs = model.nobs self._cache = resettable_cache() #for remove_data self.data_in_cache = ['sresid'] self.cov_params_default = self.bcov_scaled #TODO: "pvals" should come from chisq on bse? @cache_readonly def fittedvalues(self): return np.dot(self.model.exog, self.params) @cache_readonly def resid(self): return self.model.endog - self.fittedvalues # before bcov @cache_readonly def sresid(self): return self.resid/self.scale @cache_readonly def bcov_unscaled(self): return self.normalized_cov_params @cache_readonly def weights(self): return self.model.weights @cache_readonly def bcov_scaled(self): model = self.model m = np.mean(model.M.psi_deriv(self.sresid)) var_psiprime = np.var(model.M.psi_deriv(self.sresid)) k = 1 + (self.df_model+1)/self.nobs * var_psiprime/m**2 if model.cov == "H1": return k**2 * (1/self.df_resid*\ np.sum(model.M.psi(self.sresid)**2)*self.scale**2)\ /((1/self.nobs*np.sum(model.M.psi_deriv(self.sresid)))**2)\ *model.normalized_cov_params else: W = np.dot(model.M.psi_deriv(self.sresid)*model.exog.T, model.exog) W_inv = np.linalg.inv(W) # [W_jk]^-1 = [SUM(psi_deriv(Sr_i)*x_ij*x_jk)]^-1 # where Sr are the standardized residuals if model.cov == "H2": # These are correct, based on Huber (1973) 8.13 return k*(1/self.df_resid)*np.sum(\ model.M.psi(self.sresid)**2)*self.scale**2\ /((1/self.nobs)*np.sum(\ model.M.psi_deriv(self.sresid)))*W_inv elif model.cov == "H3": return k**-1*1/self.df_resid*np.sum(\ model.M.psi(self.sresid)**2)*self.scale**2\ *np.dot(np.dot(W_inv, np.dot(model.exog.T,model.exog)),\ W_inv) @cache_readonly def pvalues(self): return stats.norm.sf(np.abs(self.tvalues))*2 @cache_readonly def bse(self): return np.sqrt(np.diag(self.bcov_scaled)) @cache_readonly def chisq(self): return (self.params/self.bse)**2 def remove_data(self): super(self.__class__, self).remove_data() #self.model.history['sresid'] = None #self.model.history['weights'] = None remove_data.__doc__ = base.LikelihoodModelResults.remove_data.__doc__ def summary(self, yname=None, xname=None, title=0, alpha=.05, return_fmt='text'): """ This is for testing the new summary setup """ from statsmodels.iolib.summary import (summary_top, summary_params, summary_return) ## left = [(i, None) for i in ( ## 'Dependent Variable:', ## 'Model type:', ## 'Method:', ## 'Date:', ## 'Time:', ## 'Number of Obs:', ## 'df resid', ## 'df model', ## )] top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['IRLS']), ('Norm:', [self.fit_options['norm']]), ('Scale Est.:', [self.fit_options['scale_est']]), ('Cov Type:', [self.fit_options['cov']]), ('Date:', None), ('Time:', None), ('No. Iterations:', ["%d" % self.fit_history['iteration']]) ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None) ] if not title is None: title = "Robust linear Model Regression Results" #boiler plate from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=self.use_t) #diagnostic table is not used yet # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") #add warnings/notes, added to text format only etext =[] wstr = \ '''If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore .''' etext.append(wstr) if etext: smry.add_extra_txt(etext) return smry def summary2(self, xname=None, yname=None, title=None, alpha=.05, float_format="%.4f"): """Experimental summary function for regression results Parameters ----------- xname : List of strings of length equal to the number of parameters Names of the independent variables (optional) yname : string Name of the dependent variable (optional) title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format: string print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ # Summary from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_base(results=self, alpha=alpha, float_format=float_format, xname=xname, yname=yname, title=title) return smry class RLMResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(RLMResultsWrapper, RLMResults) if __name__=="__main__": #NOTE: This is to be removed #Delivery Time Data is taken from Montgomery and Peck import statsmodels.api as sm #delivery time(minutes) endog = np.array([16.68, 11.50, 12.03, 14.88, 13.75, 18.11, 8.00, 17.83, 79.24, 21.50, 40.33, 21.00, 13.50, 19.75, 24.00, 29.00, 15.35, 19.00, 9.50, 35.10, 17.90, 52.32, 18.75, 19.83, 10.75]) #number of cases, distance (Feet) exog = np.array([[7, 3, 3, 4, 6, 7, 2, 7, 30, 5, 16, 10, 4, 6, 9, 10, 6, 7, 3, 17, 10, 26, 9, 8, 4], [560, 220, 340, 80, 150, 330, 110, 210, 1460, 605, 688, 215, 255, 462, 448, 776, 200, 132, 36, 770, 140, 810, 450, 635, 150]]) exog = exog.T exog = sm.add_constant(exog) # model_ols = models.regression.OLS(endog, exog) # results_ols = model_ols.fit() # model_ramsaysE = RLM(endog, exog, M=norms.RamsayE()) # results_ramsaysE = model_ramsaysE.fit(update_scale=False) # model_andrewWave = RLM(endog, exog, M=norms.AndrewWave()) # results_andrewWave = model_andrewWave.fit(update_scale=False) # model_hampel = RLM(endog, exog, M=norms.Hampel(a=1.7,b=3.4,c=8.5)) # convergence problems with scale changed, not with 2,4,8 though? # results_hampel = model_hampel.fit(update_scale=False) ####################### ### Stack Loss Data ### ####################### from statsmodels.datasets.stackloss import load data = load() data.exog = sm.add_constant(data.exog) ############# ### Huber ### ############# # m1_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber1 = m1_Huber.fit() # m2_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber2 = m2_Huber.fit(cov="H2") # m3_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber3 = m3_Huber.fit(cov="H3") ############## ### Hampel ### ############## # m1_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel1 = m1_Hampel.fit() # m2_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel2 = m2_Hampel.fit(cov="H2") # m3_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel3 = m3_Hampel.fit(cov="H3") ################ ### Bisquare ### ################ # m1_Bisquare = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results_Bisquare1 = m1_Bisquare.fit() # m2_Bisquare = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results_Bisquare2 = m2_Bisquare.fit(cov="H2") # m3_Bisquare = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results_Bisquare3 = m3_Bisquare.fit(cov="H3") ############################################## # Huber's Proposal 2 scaling # ############################################## ################ ### Huber'sT ### ################ m1_Huber_H = RLM(data.endog, data.exog, M=norms.HuberT()) results_Huber1_H = m1_Huber_H.fit(scale_est=scale.HuberScale()) # m2_Huber_H # m3_Huber_H # m4 = RLM(data.endog, data.exog, M=norms.HuberT()) # results4 = m1.fit(scale_est="Huber") # m5 = RLM(data.endog, data.exog, M=norms.Hampel()) # results5 = m2.fit(scale_est="Huber") # m6 = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results6 = m3.fit(scale_est="Huber") # print """Least squares fit #%s #Huber Params, t = 2. #%s #Ramsay's E Params #%s #Andrew's Wave Params #%s #Hampel's 17A Function #%s #""" % (results_ols.params, results_huber.params, results_ramsaysE.params, # results_andrewWave.params, results_hampel.params)
bsd-3-clause
maurofaccenda/ansible
lib/ansible/modules/cloud/smartos/imgadm.py
68
10313
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2016, 2017 Jasper Lievisse Adriaanse <j@jasper.la> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: imgadm short_description: Manage SmartOS images description: - Manage SmartOS virtual machine images through imgadm(1M) version_added: "2.3" author: Jasper Lievisse Adriaanse (@jasperla) options: force: required: false choices: [ yes, no ] description: - Force a given operation (where supported by imgadm(1M)). pool: required: false default: zones description: - zpool to import to or delete images from. source: required: false description: - URI for the image source. state: required: true choices: [ present, absent, deleted, imported, updated, vacuumed ] description: - State the object operated on should be in. C(imported) is an alias for for C(present) and C(deleted) for C(absent). When set to C(vacuumed) and C(uuid) to C(*), it will remove all unused images. type: required: false choices: [ imgapi, docker, dsapi ] default: imgapi description: - Type for image sources. uuid: required: false description: - Image UUID. Can either be a full UUID or C(*) for all images. requirements: - python >= 2.6 ''' EXAMPLES = ''' - name: Import an image imgadm: uuid: '70e3ae72-96b6-11e6-9056-9737fd4d0764' state: imported - name: Delete an image imgadm: uuid: '70e3ae72-96b6-11e6-9056-9737fd4d0764' state: deleted - name: Update all images imgadm: uuid: '*' state: updated - name: Update a single image imgadm: uuid: '70e3ae72-96b6-11e6-9056-9737fd4d0764' state: updated - name: Add a source imgadm: source: 'https://datasets.project-fifo.net' state: present - name: Add a Docker source imgadm: source: 'https://docker.io' type: docker state: present - name: Remove a source imgadm: source: 'https://docker.io' state: absent ''' RETURN = ''' source: description: Source that is managed. returned: When not managing an image. type: string sample: https://datasets.project-fifo.net uuid: description: UUID for an image operated on. returned: When not managing an image source. type: string sample: 70e3ae72-96b6-11e6-9056-9737fd4d0764 state: description: State of the target, after execution. returned: success type: string sample: 'present' ''' from ansible.module_utils.basic import AnsibleModule import re # Shortcut for the imgadm(1M) command. While imgadm(1M) supports a # -E option to return any errors in JSON, the generated JSON does not play well # with the JSON parsers of Python. The returned message contains '\n' as part of # the stacktrace, which breaks the parsers. class Imgadm(object): def __init__(self, module): self.module = module self.params = module.params self.cmd = module.get_bin_path('imgadm', required=True) self.changed = False self.uuid = module.params['uuid'] # Since there are a number of (natural) aliases, prevent having to look # them up everytime we operate on `state`. if self.params['state'] in ['present', 'imported', 'updated']: self.present = True else: self.present = False # Perform basic UUID validation upfront. if self.uuid and self.uuid != '*': if not re.match('^[0-9a-f]{8}-([0-9a-f]{4}-){3}[0-9a-f]{12}$', self.uuid, re.IGNORECASE): module.fail_json(msg='Provided value for uuid option is not a valid UUID.') # Helper method to massage stderr def errmsg(self, stderr): match = re.match('^imgadm .*?: error \(\w+\): (.*): .*', stderr) if match: return match.groups()[0] else: return 'Unexpected failure' def update_images(self): if self.uuid == '*': cmd = '{0} update'.format(self.cmd) else: cmd = '{0} update {1}'.format(self.cmd, self.uuid) (rc, stdout, stderr) = self.module.run_command(cmd) if rc != 0: self.module.fail_json(msg='Failed to update images: {0}'.format(self.errmsg(stderr))) # There is no feedback from imgadm(1M) to determine if anything # was actually changed. So treat this as an 'always-changes' operation. # Note that 'imgadm -v' produces unparseable JSON... self.changed = True def manage_sources(self): force = self.params['force'] source = self.params['source'] imgtype = self.params['type'] cmd = '{0} sources'.format(self.cmd) if force: cmd += ' -f' if self.present: cmd = '{0} -a {1} -t {2}'.format(cmd, source, imgtype) (rc, stdout, stderr) = self.module.run_command(cmd) if rc != 0: self.module.fail_json(msg='Failed to add source: {0}'.format(self.errmsg(stderr))) # Check the various responses. # Note that trying to add a source with the wrong type is handled # above as it results in a non-zero status. regex = 'Already have "{0}" image source "{1}", no change'.format(imgtype, source) if re.match(regex, stdout): self.changed = False regex = 'Added "%s" image source "%s"' % (imgtype, source) if re.match(regex, stdout): self.changed = True else: # Type is ignored by imgadm(1M) here cmd += ' -d %s' % (source) (rc, stdout, stderr) = self.module.run_command(cmd) if rc != 0: self.module.fail_json(msg='Failed to remove source: {0}'.format(self.errmsg(stderr))) regex = 'Do not have image source "%s", no change' % (source) if re.match(regex, stdout): self.changed = False regex = 'Deleted ".*" image source "%s"' % (source) if re.match(regex, stdout): self.changed = True def manage_images(self): pool = self.params['pool'] state = self.params['state'] if state == 'vacuumed': # Unconditionally pass '--force', otherwise we're prompted with 'y/N' cmd = '{0} vacuum -f'.format(self.cmd) (rc, stdout, stderr) = self.module.run_command(cmd) if rc != 0: self.module.fail_json(msg='Failed to vacuum images: {0}'.format(self.errmsg(stderr))) else: if stdout == '': self.changed = False else: self.changed = True if self.present: cmd = '{0} import -P {1} -q {2}'.format(self.cmd, pool, self.uuid) (rc, stdout, stderr) = self.module.run_command(cmd) if rc != 0: self.module.fail_json(msg='Failed to import image: {0}'.format(self.errmsg(stderr))) regex = 'Image {0} \(.*\) is already installed, skipping'.format(self.uuid) if re.match(regex, stdout): self.changed = False regex = '.*ActiveImageNotFound.*' if re.match(regex, stderr): self.changed = False regex = 'Imported image {0}.*'.format(self.uuid) if re.match(regex, stdout.splitlines()[-1]): self.changed = True else: cmd = '{0} delete -P {1} {2}'.format(self.cmd, pool, self.uuid) (rc, stdout, stderr) = self.module.run_command(cmd) regex = '.*ImageNotInstalled.*' if re.match(regex, stderr): # Even if the 'rc' was non-zero (3), we handled the situation # in order to determine if there was a change. self.changed = False regex = 'Deleted image {0}'.format(self.uuid) if re.match(regex, stdout): self.changed = True def main(): module = AnsibleModule( argument_spec=dict( force=dict(default=None, type='bool'), pool=dict(default='zones'), source=dict(default=None), state=dict(default=None, required=True, choices=['present', 'absent', 'deleted', 'imported', 'updated', 'vacuumed']), type=dict(default='imgapi', choices=['imgapi', 'docker', 'dsapi']), uuid=dict(default=None) ), # This module relies largely on imgadm(1M) to enforce idempotency, which does not # provide a "noop" (or equivalent) mode to do a dry-run. supports_check_mode=False, ) imgadm = Imgadm(module) uuid = module.params['uuid'] source = module.params['source'] state = module.params['state'] result = {'state': state} # Either manage sources or images. if source: result['source'] = source imgadm.manage_sources() else: result['uuid'] = uuid if state == 'updated': imgadm.update_images() else: # Make sure operate on a single image for the following actions if (uuid == '*') and (state != 'vacuumed'): module.fail_json(msg='Can only specify uuid as "*" when updating image(s)') imgadm.manage_images() result['changed'] = imgadm.changed module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
google/learned_optimization
learned_optimization/research/hysteresis/data_in_state_tasks.py
1
4624
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tasks with deterministic data that is managed throught the state variable.""" # pylint: disable=invalid-name import functools from typing import Any, Mapping, Tuple import gin import haiku as hk import jax import jax.numpy as jnp from learned_optimization import profile from learned_optimization.tasks import base from learned_optimization.tasks.datasets import base as datasets_base import numpy as onp import tensorflow_datasets as tfds Params = Any ModelState = Any PRNGKey = jnp.ndarray class _MLPImageTask(base.Task): """MLP based image task.""" def __init__(self, datasetname, hidden_sizes, act_fn=jax.nn.relu, dropout_rate=0.0): super().__init__() self.num_classes = 10 sizes = list(hidden_sizes) + [self.num_classes] self.datasetname = datasetname self.batch_size = 128 def _forward(inp): inp = jnp.reshape(inp, [inp.shape[0], -1]) return hk.nets.MLP( sizes, activation=act_fn)( inp, dropout_rate=dropout_rate, rng=hk.next_rng_key()) self._mod = hk.transform(_forward) def init_with_state(self, key: PRNGKey): data = batch_from_idx(self.datasetname, (8, 8), "train", self.batch_size, 0) key1, key2 = jax.random.split(key) ### random batch by sampling a large random value start_batch = jax.random.randint(key1, [], 0, int(1e6)) return self._mod.init(key2, data["image"]), start_batch def loss_with_state(self, params: Any, state: Any, key: jnp.ndarray, data: Any): data_idx = state data = batch_from_idx(self.datasetname, (8, 8), "train", self.batch_size, data_idx) logits = self._mod.apply(params, key, data["image"]) labels = jax.nn.one_hot(data["label"], self.num_classes) vec_loss = base.softmax_cross_entropy(logits=logits, labels=labels) return jnp.mean(vec_loss), data_idx + 1 def loss_with_state_and_aux(self, params, state, key, data): l, s = self.loss_with_state(params, state, key, data) return l, s, {} def normalizer(self, loss): maxval = 1.5 * onp.log(self.num_classes) loss = jnp.clip(loss, 0, maxval) return jnp.nan_to_num(loss, nan=maxval, posinf=maxval, neginf=maxval) @functools.lru_cache(None) def all_data(datasetname, split, image_size, seed=0): cfg = { "image_size": image_size, "stack_channels": 1, "aug_flip_left_right": False, "aug_flip_up_down": False, "normalize_mean": None, "normalize_std": None, "convert_to_black_and_white": True, } with profile.Profile(f"tfds.load({datasetname})"): dataset = datasets_base._cached_tfds_load( # pylint:disable=protected-access datasetname, split=split, batch_size=-1) data = tfds.as_numpy(datasets_base._image_map_fn(cfg, dataset)) # pylint:disable=protected-access idx = onp.arange(data["image"].shape[0]) onp.random.RandomState(seed).shuffle(idx) return jax.tree_util.tree_map(lambda x: jnp.asarray(x[idx]), data) def batch_from_idx(datasetname, image_size, split, batch_size, idx, seed=0): """Deterministically get a batch of data with an offset of `idx`.""" with jax.ensure_compile_time_eval(): data = all_data(datasetname, split, image_size=image_size, seed=seed) batches = data["image"].shape[0] // batch_size idx = idx % batches b = {} b["image"] = jax.lax.dynamic_slice(data["image"], [idx * batch_size, 0, 0, 0], [batch_size, 8, 8, 1]) b["label"] = jax.lax.dynamic_slice(data["label"], [idx * batch_size], [batch_size]) return b @gin.configurable def DataInState_ImageMLP_Cifar10BW8_Relu32(): """A 1 hidden layer, 32 unit MLP for 8x8 black and white cifar10.""" return _MLPImageTask("cifar10", [32]) @gin.configurable def DataInState_ImageMLP_FashionMnist8_Relu32(): """A 1 hidden layer, 32 hidden unit MLP designed for 8x8 fashion mnist.""" return _MLPImageTask("fashion_mnist", [32])
apache-2.0
justincassidy/scikit-learn
examples/linear_model/plot_ols_3d.py
347
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
quheng/scikit-learn
examples/linear_model/plot_ols_3d.py
347
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
LUTAN/tensorflow
tensorflow/contrib/learn/python/learn/datasets/mnist.py
1
9594
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for downloading and reading MNIST data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import numpy from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(f): """Extract the images into a 4D uint8 numpy array [index, y, x, depth]. Args: f: A file object that can be passed into a gzip reader. Returns: data: A 4D uint8 numpy array [index, y, x, depth]. Raises: ValueError: If the bytestream does not start with 2051. """ print('Extracting', f.name) with gzip.GzipFile(fileobj=f) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError('Invalid magic number %d in MNIST image file: %s' % (magic, f.name)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(f, one_hot=False, num_classes=10): """Extract the labels into a 1D uint8 numpy array [index]. Args: f: A file object that can be passed into a gzip reader. one_hot: Does one hot encoding for the result. num_classes: Number of classes for the one hot encoding. Returns: labels: a 1D uint8 numpy array. Raises: ValueError: If the bystream doesn't start with 2049. """ print('Extracting', f.name) with gzip.GzipFile(fileobj=f) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError('Invalid magic number %d in MNIST label file: %s' % (magic, f.name)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels, num_classes) return labels class DataSet(object): def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True, seed=None): """Construct a DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. Seed arg provides for convenient deterministic testing. """ seed1, seed2 = random_seed.get_seed(seed) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seed1 if seed is None else seed2) dtype = dtypes.as_dtype(dtype).base_dtype if dtype not in (dtypes.uint8, dtypes.float32): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype) if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) if dtype == dtypes.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False, shuffle=True): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size) ] start = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: perm0 = numpy.arange(self._num_examples) numpy.random.shuffle(perm0) self._images = self.images[perm0] self._labels = self.labels[perm0] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch rest_num_examples = self._num_examples - start images_rest_part = self._images[start:self._num_examples] labels_rest_part = self._labels[start:self._num_examples] # Shuffle the data if shuffle: perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self.images[perm] self._labels = self.labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size - rest_num_examples end = self._index_in_epoch images_new_part = self._images[start:end] labels_new_part = self._labels[start:end] return numpy.concatenate((images_rest_part, images_new_part), axis=0) , numpy.concatenate((labels_rest_part, labels_new_part), axis=0) else: self._index_in_epoch += batch_size end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True, validation_size=5000, seed=None): if fake_data: def fake(): return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype, seed=seed) train = fake() validation = fake() test = fake() return base.Datasets(train=train, validation=validation, test=test) TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' local_file = base.maybe_download(TRAIN_IMAGES, train_dir, SOURCE_URL + TRAIN_IMAGES) with open(local_file, 'rb') as f: train_images = extract_images(f) local_file = base.maybe_download(TRAIN_LABELS, train_dir, SOURCE_URL + TRAIN_LABELS) with open(local_file, 'rb') as f: train_labels = extract_labels(f, one_hot=one_hot) local_file = base.maybe_download(TEST_IMAGES, train_dir, SOURCE_URL + TEST_IMAGES) with open(local_file, 'rb') as f: test_images = extract_images(f) local_file = base.maybe_download(TEST_LABELS, train_dir, SOURCE_URL + TEST_LABELS) with open(local_file, 'rb') as f: test_labels = extract_labels(f, one_hot=one_hot) if not 0 <= validation_size <= len(train_images): raise ValueError( 'Validation size should be between 0 and {}. Received: {}.' .format(len(train_images), validation_size)) validation_images = train_images[:validation_size] validation_labels = train_labels[:validation_size] train_images = train_images[validation_size:] train_labels = train_labels[validation_size:] train = DataSet(train_images, train_labels, dtype=dtype, reshape=reshape, seed=seed) validation = DataSet(validation_images, validation_labels, dtype=dtype, reshape=reshape, seed=seed) test = DataSet(test_images, test_labels, dtype=dtype, reshape=reshape, seed=seed) return base.Datasets(train=train, validation=validation, test=test) def load_mnist(train_dir='MNIST-data'): return read_data_sets(train_dir)
apache-2.0
micadeyeye/Blongo
django/contrib/gis/tests/test_geoip.py
290
4204
import os, unittest from django.db import settings from django.contrib.gis.geos import GEOSGeometry from django.contrib.gis.utils import GeoIP, GeoIPException # Note: Requires use of both the GeoIP country and city datasets. # The GEOIP_DATA path should be the only setting set (the directory # should contain links or the actual database files 'GeoIP.dat' and # 'GeoLiteCity.dat'. class GeoIPTest(unittest.TestCase): def test01_init(self): "Testing GeoIP initialization." g1 = GeoIP() # Everything inferred from GeoIP path path = settings.GEOIP_PATH g2 = GeoIP(path, 0) # Passing in data path explicitly. g3 = GeoIP.open(path, 0) # MaxMind Python API syntax. for g in (g1, g2, g3): self.assertEqual(True, bool(g._country)) self.assertEqual(True, bool(g._city)) # Only passing in the location of one database. city = os.path.join(path, 'GeoLiteCity.dat') cntry = os.path.join(path, 'GeoIP.dat') g4 = GeoIP(city, country='') self.assertEqual(None, g4._country) g5 = GeoIP(cntry, city='') self.assertEqual(None, g5._city) # Improper parameters. bad_params = (23, 'foo', 15.23) for bad in bad_params: self.assertRaises(GeoIPException, GeoIP, cache=bad) if isinstance(bad, basestring): e = GeoIPException else: e = TypeError self.assertRaises(e, GeoIP, bad, 0) def test02_bad_query(self): "Testing GeoIP query parameter checking." cntry_g = GeoIP(city='<foo>') # No city database available, these calls should fail. self.assertRaises(GeoIPException, cntry_g.city, 'google.com') self.assertRaises(GeoIPException, cntry_g.coords, 'yahoo.com') # Non-string query should raise TypeError self.assertRaises(TypeError, cntry_g.country_code, 17) self.assertRaises(TypeError, cntry_g.country_name, GeoIP) def test03_country(self): "Testing GeoIP country querying methods." g = GeoIP(city='<foo>') fqdn = 'www.google.com' addr = '12.215.42.19' for query in (fqdn, addr): for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) def test04_city(self): "Testing GeoIP city querying methods." g = GeoIP(country='<foo>') addr = '130.80.29.3' fqdn = 'chron.com' for query in (fqdn, addr): # Country queries should still work. for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) # City information dictionary. d = g.city(query) self.assertEqual('USA', d['country_code3']) self.assertEqual('Houston', d['city']) self.assertEqual('TX', d['region']) self.assertEqual(713, d['area_code']) geom = g.geos(query) self.failIf(not isinstance(geom, GEOSGeometry)) lon, lat = (-95.3670, 29.7523) lat_lon = g.lat_lon(query) lat_lon = (lat_lon[1], lat_lon[0]) for tup in (geom.tuple, g.coords(query), g.lon_lat(query), lat_lon): self.assertAlmostEqual(lon, tup[0], 4) self.assertAlmostEqual(lat, tup[1], 4) def suite(): s = unittest.TestSuite() s.addTest(unittest.makeSuite(GeoIPTest)) return s def run(verbosity=2): unittest.TextTestRunner(verbosity=verbosity).run(suite())
bsd-3-clause
ridfrustum/lettuce
tests/integration/lib/Django-1.2.5/django/contrib/gis/tests/test_geoip.py
290
4204
import os, unittest from django.db import settings from django.contrib.gis.geos import GEOSGeometry from django.contrib.gis.utils import GeoIP, GeoIPException # Note: Requires use of both the GeoIP country and city datasets. # The GEOIP_DATA path should be the only setting set (the directory # should contain links or the actual database files 'GeoIP.dat' and # 'GeoLiteCity.dat'. class GeoIPTest(unittest.TestCase): def test01_init(self): "Testing GeoIP initialization." g1 = GeoIP() # Everything inferred from GeoIP path path = settings.GEOIP_PATH g2 = GeoIP(path, 0) # Passing in data path explicitly. g3 = GeoIP.open(path, 0) # MaxMind Python API syntax. for g in (g1, g2, g3): self.assertEqual(True, bool(g._country)) self.assertEqual(True, bool(g._city)) # Only passing in the location of one database. city = os.path.join(path, 'GeoLiteCity.dat') cntry = os.path.join(path, 'GeoIP.dat') g4 = GeoIP(city, country='') self.assertEqual(None, g4._country) g5 = GeoIP(cntry, city='') self.assertEqual(None, g5._city) # Improper parameters. bad_params = (23, 'foo', 15.23) for bad in bad_params: self.assertRaises(GeoIPException, GeoIP, cache=bad) if isinstance(bad, basestring): e = GeoIPException else: e = TypeError self.assertRaises(e, GeoIP, bad, 0) def test02_bad_query(self): "Testing GeoIP query parameter checking." cntry_g = GeoIP(city='<foo>') # No city database available, these calls should fail. self.assertRaises(GeoIPException, cntry_g.city, 'google.com') self.assertRaises(GeoIPException, cntry_g.coords, 'yahoo.com') # Non-string query should raise TypeError self.assertRaises(TypeError, cntry_g.country_code, 17) self.assertRaises(TypeError, cntry_g.country_name, GeoIP) def test03_country(self): "Testing GeoIP country querying methods." g = GeoIP(city='<foo>') fqdn = 'www.google.com' addr = '12.215.42.19' for query in (fqdn, addr): for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) def test04_city(self): "Testing GeoIP city querying methods." g = GeoIP(country='<foo>') addr = '130.80.29.3' fqdn = 'chron.com' for query in (fqdn, addr): # Country queries should still work. for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) # City information dictionary. d = g.city(query) self.assertEqual('USA', d['country_code3']) self.assertEqual('Houston', d['city']) self.assertEqual('TX', d['region']) self.assertEqual(713, d['area_code']) geom = g.geos(query) self.failIf(not isinstance(geom, GEOSGeometry)) lon, lat = (-95.3670, 29.7523) lat_lon = g.lat_lon(query) lat_lon = (lat_lon[1], lat_lon[0]) for tup in (geom.tuple, g.coords(query), g.lon_lat(query), lat_lon): self.assertAlmostEqual(lon, tup[0], 4) self.assertAlmostEqual(lat, tup[1], 4) def suite(): s = unittest.TestSuite() s.addTest(unittest.makeSuite(GeoIPTest)) return s def run(verbosity=2): unittest.TextTestRunner(verbosity=verbosity).run(suite())
gpl-3.0
hankcs/HanLP
hanlp/layers/dropout.py
1
5436
# -*- coding:utf-8 -*- # Date: 2020-06-05 17:47 from typing import List import torch import torch.nn as nn class WordDropout(nn.Module): def __init__(self, p: float, oov_token: int, exclude_tokens: List[int] = None) -> None: super().__init__() self.oov_token = oov_token self.p = p if not exclude_tokens: exclude_tokens = [0] self.exclude = exclude_tokens @staticmethod def token_dropout(tokens: torch.LongTensor, oov_token: int, exclude_tokens: List[int], p: float = 0.2, training: float = True) -> torch.LongTensor: """During training, randomly replaces some of the non-padding tokens to a mask token with probability ``p`` Adopted from https://github.com/Hyperparticle/udify Args: tokens: The current batch of padded sentences with word ids oov_token: The mask token exclude_tokens: The tokens for padding the input batch p: The probability a word gets mapped to the unknown token training: Applies the dropout if set to ``True`` tokens: torch.LongTensor: oov_token: int: exclude_tokens: List[int]: p: float: (Default value = 0.2) training: float: (Default value = True) Returns: A copy of the input batch with token dropout applied """ if training and p > 0: # This creates a mask that only considers unpadded tokens for mapping to oov padding_mask = tokens.new_ones(tokens.size(), dtype=torch.bool) for pad in exclude_tokens: padding_mask &= (tokens != pad) # Create a uniformly random mask selecting either the original words or OOV tokens dropout_mask = (tokens.new_empty(tokens.size(), dtype=torch.float).uniform_() < p) oov_mask = dropout_mask & padding_mask oov_fill = tokens.new_empty(tokens.size(), dtype=torch.long).fill_(oov_token) result = torch.where(oov_mask, oov_fill, tokens) return result else: return tokens def forward(self, tokens: torch.LongTensor) -> torch.LongTensor: return self.token_dropout(tokens, self.oov_token, self.exclude, self.p, self.training) class SharedDropout(nn.Module): def __init__(self, p=0.5, batch_first=True): super(SharedDropout, self).__init__() self.p = p self.batch_first = batch_first def extra_repr(self): s = f"p={self.p}" if self.batch_first: s += f", batch_first={self.batch_first}" return s def forward(self, x): if self.training: if self.batch_first: mask = self.get_mask(x[:, 0], self.p) else: mask = self.get_mask(x[0], self.p) x *= mask.unsqueeze(1) if self.batch_first else mask return x @staticmethod def get_mask(x, p): mask = x.new_empty(x.shape).bernoulli_(1 - p) mask = mask / (1 - p) return mask class IndependentDropout(nn.Module): def __init__(self, p=0.5): r""" For :math:`N` tensors, they use different dropout masks respectively. When :math:`N-M` of them are dropped, the remaining :math:`M` ones are scaled by a factor of :math:`N/M` to compensate, and when all of them are dropped together, zeros are returned. Copied from https://github.com/yzhangcs/parser/master/supar/modules/dropout.py. Args: p (float): The probability of an element to be zeroed. Default: 0.5. Examples: >>> x, y = torch.ones(1, 3, 5), torch.ones(1, 3, 5) >>> x, y = IndependentDropout()(x, y) >>> x tensor([[[1., 1., 1., 1., 1.], [0., 0., 0., 0., 0.], [2., 2., 2., 2., 2.]]]) >>> y tensor([[[1., 1., 1., 1., 1.], [2., 2., 2., 2., 2.], [0., 0., 0., 0., 0.]]]) """ super(IndependentDropout, self).__init__() self.p = p def extra_repr(self): return f"p={self.p}" def forward(self, *items): if self.training: masks = [x.new_empty(x.shape[:2]).bernoulli_(1 - self.p) for x in items] total = sum(masks) scale = len(items) / total.max(torch.ones_like(total)) masks = [mask * scale for mask in masks] items = [item * mask.unsqueeze(dim=-1) for item, mask in zip(items, masks)] return items class LockedDropout(nn.Module): def __init__(self, dropout_rate=0.5): super(LockedDropout, self).__init__() self.dropout_rate = dropout_rate def forward(self, x): if not self.training or not self.dropout_rate: return x if x.dim() == 3: mask = x.new(x.size(0), 1, x.size(2)).bernoulli_(1 - self.dropout_rate) / (1 - self.dropout_rate) mask = mask.expand_as(x) elif x.dim() == 2: mask = torch.empty_like(x).bernoulli_(1 - self.dropout_rate) / (1 - self.dropout_rate) else: raise ValueError(f'Unsupported dim: {x.dim()}. Only 2d (T,C) or 3d (B,T,C) is supported') return mask * x
apache-2.0
mohamedkeid/Image-Captioning
eval.py
1
2555
import argparse import etl import helpers import torch import torchvision.models as models from decoder import DecoderRNN from language import Language from torch.autograd import Variable parser = argparse.ArgumentParser() parser.add_argument('path') args = parser.parse_args() helpers.validate_path(args.path) # Parse argument for input sentence parser = argparse.ArgumentParser() parser.add_argument('path') args = parser.parse_args() helpers.validate_path(args.path) n_layers = 2 # Initialize models lang = helpers.load_object('language') encoder = models.vgg16(pretrained=True) decoder = DecoderRNN('general', 512, lang.n_words, n_layers, dropout_p=0.) # Load model parameters decoder.load_state_dict(torch.load('data/decoder_params')) decoder.attention.load_state_dict(torch.load('data/attention_params')) # Move models to GPU encoder.cuda() decoder.cuda() def evaluate(path, encoder, max_length=256): input_variable = etl.get_image_from_path(path, encoder) # Create starting vectors for decoder decoder_input = Variable(torch.LongTensor([[0]])) decoder_input = decoder_input.cuda() decoder_context = Variable(torch.zeros(1, decoder.hidden_size)) decoder_context = decoder_context.cuda() decoder_hidden = decoder.init_hidden() decoded_words = [] decoder_attentions = torch.zeros(max_length, max_length) # Run through decoder for di in range(max_length): decoder_output, decoder_context, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_context, decoder_hidden, input_variable) decoder_attentions[di, :decoder_attention.size(2)] += decoder_attention.squeeze(0).squeeze(0).cpu().data # Choose top word from output topv, topi = decoder_output.data.topk(1) ni = topi[0][0] if ni == Language.eos_token: decoded_words.append('<EOS>') break else: decoded_words.append(lang.index2word[ni]) # Next input is chosen word decoder_input = Variable(torch.LongTensor([[ni]])) decoder_input = decoder_input.cuda() return decoded_words, decoder_attentions[:di + 1, :len(input_variable)] output_words, decoder_attn = evaluate(args.path, encoder) output_sentence = ' '.join(output_words) print(output_sentence)
mit
justincassidy/scikit-learn
sklearn/utils/tests/test_linear_assignment.py
412
1349
# Author: Brian M. Clapper, G Varoquaux # License: BSD import numpy as np # XXX we should be testing the public API here from sklearn.utils.linear_assignment_ import _hungarian def test_hungarian(): matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850 # expected cost ), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452 # expected cost ), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18 ), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15 ), # n == 2, m == 0 matrix ([[], []], 0 ), ] for cost_matrix, expected_total in matrices: cost_matrix = np.array(cost_matrix) indexes = _hungarian(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost indexes = _hungarian(cost_matrix.T) total_cost = 0 for c, r in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost
bsd-3-clause
Lawrence-Liu/scikit-learn
examples/applications/plot_species_distribution_modeling.py
252
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
justincassidy/scikit-learn
examples/applications/plot_species_distribution_modeling.py
252
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
justincassidy/scikit-learn
sklearn/metrics/pairwise.py
103
42995
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Robert Layton <robertlayton@gmail.com> # Andreas Mueller <amueller@ais.uni-bonn.de> # Philippe Gervais <philippe.gervais@inria.fr> # Lars Buitinck <larsmans@gmail.com> # Joel Nothman <joel.nothman@gmail.com> # License: BSD 3 clause import itertools import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.fixes import partial from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib.parallel import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = np.float return X, Y, dtype def check_pairwise_arrays(X, Y): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the second dimension of the two arrays is equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype = _return_float_dtype(X, Y) if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr', dtype=dtype) else: X = check_array(X, accept_sparse='csr', dtype=dtype) Y = check_array(Y, accept_sparse='csr', dtype=dtype) if X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if x varies but y remains unchanged, then the right-most dot product `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ # should not need X_norm_squared because if you could precompute that as # well as Y, then you should just pre-compute the output and not even # call this function. X, Y = check_pairwise_arrays(X, Y) if Y_norm_squared is not None: YY = check_array(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] if X is Y: # shortcut in the common case euclidean_distances(X, X) XX = YY.T else: XX = row_norms(X, squared=True)[:, np.newaxis] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X, Y : {array-like, sparse matrix} Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable, default 'euclidean' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x][flags] = min_indices[flags] + chunk_y.start values[chunk_x][flags] = min_values[flags] if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ---------- X : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_kwargs : dict keyword arguments to pass to specified metric function. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ if metric_kwargs is None: metric_kwargs = {} return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=5e8): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Unused parameter. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances(3, 3)#doctest:+ELLIPSIS array([[ 0.]]) >>> manhattan_distances(3, 2)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances(2, 3)#doctest:+ELLIPSIS array([[ 1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[ 0., 2.], [ 4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[ 1., 1.], [ 1., 1.]]...) """ X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """ Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances} def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray (n_samples, n_features) Array 1 for distance computation. Y : ndarray (n_samples, n_features) Array 2 for distance computation. metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([ 0., 1.]) See also -------- pairwise_distances : pairwise distances. """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=True) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Read more in the :ref:`User Guide <polynomial_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 degree : int, default 3 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Read more in the :ref:`User Guide <sigmoid_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) coef0 : int, default 1 Returns ------- Gram matrix: array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <rbf_kernel>`. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None, dense_output=True): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the :ref:`User Guide <cosine_similarity>`. Parameters ---------- X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array, shape: (n_samples_Y, n_features) Input data. If ``None``, the output will be the pairwise similarities between all samples in ``X``. dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X if n_jobs == 1: # Special case to avoid picklability checks in delayed return func(X, Y, **kwds) # TODO: in some cases, backend='threading' may be appropriate fd = delayed(func) ret = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def _pairwise_callable(X, Y, metric, **kwds): """Handle the callable case for pairwise_{distances,kernels} """ X, Y = check_pairwise_arrays(X, Y) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features], optional An optional second feature array. Only allowed if metric != "precomputed". metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if n_jobs == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": (), "cosine": (), "exp_chi2": frozenset(["gamma"]), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. filter_params: boolean Whether to filter invalid parameters or not. `**kwds` : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ if metric == "precomputed": return X elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
edhuckle/statsmodels
examples/python/regression_diagnostics.py
28
2876
## Regression diagnostics # This example file shows how to use a few of the ``statsmodels`` regression diagnostic tests in a real-life context. You can learn about more tests and find out more information abou the tests here on the [Regression Diagnostics page.](http://statsmodels.sourceforge.net/stable/diagnostic.html) # # Note that most of the tests described here only return a tuple of numbers, without any annotation. A full description of outputs is always included in the docstring and in the online ``statsmodels`` documentation. For presentation purposes, we use the ``zip(name,test)`` construct to pretty-print(short descriptions in the examples below. # ## Estimate a regression model from __future__ import print_function from statsmodels.compat import lzip import statsmodels import numpy as np import pandas as pd import statsmodels.formula.api as smf import statsmodels.stats.api as sms # Load data url = 'http://vincentarelbundock.github.io/Rdatasets/csv/HistData/Guerry.csv' dat = pd.read_csv(url) # Fit regression model (using the natural log of one of the regressaors) results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit() # Inspect the results print(results.summary()) # ## Normality of the residuals # Jarque-Bera test: name = ['Jarque-Bera', 'Chi^2 two-tail prob.', 'Skew', 'Kurtosis'] test = sms.jarque_bera(results.resid) lzip(name, test) # Omni test: name = ['Chi^2', 'Two-tail probability'] test = sms.omni_normtest(results.resid) lzip(name, test) # ## Influence tests # # Once created, an object of class ``OLSInfluence`` holds attributes and methods that allow users to assess the influence of each observation. For example, we can compute and extract the first few rows of DFbetas by: from statsmodels.stats.outliers_influence import OLSInfluence test_class = OLSInfluence(results) test_class.dfbetas[:5,:] # Explore other options by typing ``dir(influence_test)`` # # Useful information on leverage can also be plotted: from statsmodels.graphics.regressionplots import plot_leverage_resid2 print(plot_leverage_resid2(results)) # Other plotting options can be found on the [Graphics page.](http://statsmodels.sourceforge.net/stable/graphics.html) # ## Multicollinearity # # Condition number: np.linalg.cond(results.model.exog) # ## Heteroskedasticity tests # # Breush-Pagan test: name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value'] test = sms.het_breushpagan(results.resid, results.model.exog) lzip(name, test) # Goldfeld-Quandt test name = ['F statistic', 'p-value'] test = sms.het_goldfeldquandt(results.resid, results.model.exog) lzip(name, test) # ## Linearity # # Harvey-Collier multiplier test for Null hypothesis that the linear specification is correct: name = ['t value', 'p value'] test = sms.linear_harvey_collier(results) lzip(name, test)
bsd-3-clause
adammenges/statsmodels
examples/python/regression_diagnostics.py
28
2876
## Regression diagnostics # This example file shows how to use a few of the ``statsmodels`` regression diagnostic tests in a real-life context. You can learn about more tests and find out more information abou the tests here on the [Regression Diagnostics page.](http://statsmodels.sourceforge.net/stable/diagnostic.html) # # Note that most of the tests described here only return a tuple of numbers, without any annotation. A full description of outputs is always included in the docstring and in the online ``statsmodels`` documentation. For presentation purposes, we use the ``zip(name,test)`` construct to pretty-print(short descriptions in the examples below. # ## Estimate a regression model from __future__ import print_function from statsmodels.compat import lzip import statsmodels import numpy as np import pandas as pd import statsmodels.formula.api as smf import statsmodels.stats.api as sms # Load data url = 'http://vincentarelbundock.github.io/Rdatasets/csv/HistData/Guerry.csv' dat = pd.read_csv(url) # Fit regression model (using the natural log of one of the regressaors) results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit() # Inspect the results print(results.summary()) # ## Normality of the residuals # Jarque-Bera test: name = ['Jarque-Bera', 'Chi^2 two-tail prob.', 'Skew', 'Kurtosis'] test = sms.jarque_bera(results.resid) lzip(name, test) # Omni test: name = ['Chi^2', 'Two-tail probability'] test = sms.omni_normtest(results.resid) lzip(name, test) # ## Influence tests # # Once created, an object of class ``OLSInfluence`` holds attributes and methods that allow users to assess the influence of each observation. For example, we can compute and extract the first few rows of DFbetas by: from statsmodels.stats.outliers_influence import OLSInfluence test_class = OLSInfluence(results) test_class.dfbetas[:5,:] # Explore other options by typing ``dir(influence_test)`` # # Useful information on leverage can also be plotted: from statsmodels.graphics.regressionplots import plot_leverage_resid2 print(plot_leverage_resid2(results)) # Other plotting options can be found on the [Graphics page.](http://statsmodels.sourceforge.net/stable/graphics.html) # ## Multicollinearity # # Condition number: np.linalg.cond(results.model.exog) # ## Heteroskedasticity tests # # Breush-Pagan test: name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value'] test = sms.het_breushpagan(results.resid, results.model.exog) lzip(name, test) # Goldfeld-Quandt test name = ['F statistic', 'p-value'] test = sms.het_goldfeldquandt(results.resid, results.model.exog) lzip(name, test) # ## Linearity # # Harvey-Collier multiplier test for Null hypothesis that the linear specification is correct: name = ['t value', 'p value'] test = sms.linear_harvey_collier(results) lzip(name, test)
bsd-3-clause
hankcs/HanLP
hanlp/datasets/qa/hotpotqa.py
1
6170
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2020-03-20 19:46 from enum import Enum, auto import torch import ujson from torch.nn.utils.rnn import pad_sequence from hanlp.common.dataset import TransformableDataset from hanlp_common.util import merge_list_of_dict HOTPOT_QA_TRAIN = 'http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_train_v1.1.json' HOTPOT_QA_DISTRACTOR_DEV = 'http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_distractor_v1.json' HOTPOT_QA_FULLWIKI_DEV = 'http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_fullwiki_v1.json' class HotpotQADataset(TransformableDataset): def load_file(self, filepath): with open(filepath) as fd: return ujson.load(fd) class BuildGraph(object): def __init__(self, dst='graph') -> None: super().__init__() self.dst = dst def __call__(self, sample: dict): sample[self.dst] = build_graph(sample) return sample def hotpotqa_collate_fn(samples): batch = merge_list_of_dict(samples) max_seq_len = len(max([x['graph'] for x in samples], key=len)) arc = torch.zeros([len(samples), max_seq_len, max_seq_len]) token_offset = torch.zeros([len(samples), max_seq_len], dtype=torch.long) src_mask = torch.zeros([len(samples), max_seq_len], dtype=torch.bool) sp_candidate_mask = torch.zeros([len(samples), max_seq_len], dtype=torch.bool) sp_label = torch.zeros([len(samples), max_seq_len], dtype=torch.float) # sp = torch.zeros([len(samples), max_seq_len], dtype=torch.bool) tokens = [] offset = 0 for i, sample in enumerate(samples): graph = sample['graph'] for j, u in enumerate(graph): u: Vertex = u for v in u.to: v: Vertex = v arc[i, v.id, u.id] = 1 arc[i, u.id, v.id] = 1 # record each vertex's token offset token_offset[i, u.id] = offset src_mask[i, u.id] = True sp_candidate_mask[i, u.id] = u.is_sp_root_candidate() sp_label[i, u.id] = u.is_sp_root() offset += 1 tokens.extend(sample['token_id']) seq_lengths = torch.LongTensor(list(map(len, tokens))) tokens = [torch.LongTensor(x) for x in tokens] tokens = pad_sequence(tokens, batch_first=True) batch['adj'] = arc batch['tokens'] = tokens batch['src_mask'] = src_mask batch['seq_lengths'] = seq_lengths batch['token_offset'] = token_offset batch['sp_candidate_mask'] = sp_candidate_mask batch['sp_label'] = sp_label return batch def flat_sentence(sample: dict) -> dict: sample['token'] = token = [] for sent in sample['parsed_sentences']: token.append(['bos'] + [x.lower() for x in sent[0]]) return sample def create_sp_label(sample: dict) -> dict: sample['sp_label'] = sp_label = [] def label(title_, index_): for t, i in sample['supporting_facts']: if t == title_ and i == index_: return 1 return 0 for context in sample['context']: title, sents = context for idx, sent in enumerate(sents): sp_label.append(label(title, idx)) assert len(sample['supporting_facts']) == sum(sp_label) return sample class Type(Enum): Q_ROOT = auto() Q_WORD = auto() SP_ROOT = auto() SP_WORD = auto() NON_SP_ROOT = auto() NON_SP_WORD = auto() DOCUMENT_TITLE = auto() class Vertex(object): def __init__(self, id, type: Type, text=None) -> None: super().__init__() self.id = id self.type = type if not text: text = str(type).split('.')[-1] self.text = text self.to = [] self.rel = [] def connect(self, to, rel): self.to.append(to) self.rel.append(rel) def __str__(self) -> str: return f'{self.text} {self.id}' def __hash__(self) -> int: return self.id def is_word(self): return self.type in {Type.SP_WORD, Type.Q_WORD, Type.NON_SP_WORD} def is_question(self): return self.type in {Type.Q_ROOT, Type.Q_WORD} def is_sp(self): return self.type in {Type.SP_ROOT, Type.SP_WORD} def is_sp_root(self): return self.type in {Type.SP_ROOT} def is_sp_root_candidate(self): return self.type in {Type.SP_ROOT, Type.NON_SP_ROOT} def build_graph(each: dict, debug=False): raw_sents = [] raw_sents.append(each['question']) sp_idx = set() sp_sents = {} for sp in each['supporting_facts']: title, offset = sp ids = sp_sents.get(title, None) if ids is None: sp_sents[title] = ids = set() ids.add(offset) idx = 1 for document in each['context']: title, sents = document raw_sents += sents for i, s in enumerate(sents): if title in sp_sents and i in sp_sents[title]: sp_idx.add(idx) idx += 1 assert idx == len(raw_sents) parsed_sents = each['parsed_sentences'] assert len(raw_sents) == len(parsed_sents) graph = [] for idx, (raw, sent) in enumerate(zip(raw_sents, parsed_sents)): if debug: if idx > 1 and idx not in sp_idx: continue offset = len(graph) if idx == 0: if debug: print(f'Question: {raw}') graph.append(Vertex(len(graph), Type.Q_ROOT)) else: if debug: if idx in sp_idx: print(f'Supporting Fact: {raw}') graph.append(Vertex(len(graph), Type.SP_ROOT if idx in sp_idx else Type.NON_SP_ROOT)) tokens, heads, deprels = sent for t, h, d in zip(tokens, heads, deprels): graph.append( Vertex(len(graph), (Type.SP_WORD if idx in sp_idx else Type.NON_SP_WORD) if idx else Type.Q_WORD, t)) for i, (h, d) in enumerate(zip(heads, deprels)): graph[offset + h].connect(graph[offset + i + 1], d) q_root = graph[0] for u in graph: if u.type == Type.SP_ROOT or u.type == Type.NON_SP_ROOT: q_root.connect(u, 'supporting fact?') return graph
apache-2.0
augustoppimenta/crab
scikits/crab/datasets/book_crossing.py
10
5317
"""Caching loader for the Book-Crossing Dataset The description of the dataset is available on the official website at: http://www.informatik.uni-freiburg.de/~cziegler/BX/ Quoting the introduction: Collected by Cai-Nicolas Ziegler in a 4-week crawl (August / September 2004) from the Book-Crossing community with kind permission from Ron Hornbaker, CTO of Humankind Systems. Contains 278,858 users (anonymized but with demographic information) providing 1,149,780 ratings (explicit / implicit) about 271,379 books. This dataset loader will download the dataset, which its size is around 22 Mb compressed. Once uncompressed the train set is around 130 MB. The data is downloaded, extracted and cached in the '~/scikit_crab_data' folder. References ---------- Improving Recommendation Lists Through Topic Diversification, Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen; Proceedings of the 14th International World Wide Web Conference (WWW '05), May 10-14, 2005, Chiba, Japan. """ # Copyright (c) 2011 Marcel Caraciolo <marcel@muricoca.com> # License: Simplified BSD import os import urllib import logging import zipfile from os.path import dirname from os.path import join import numpy as np from base import Bunch import csv logger = logging.getLogger(__name__) URL = "http://www.informatik.uni-freiburg.de/~cziegler/BX/BX-CSV-Dump.zip" ARCHIVE_NAME = "BX-CSV-Dump.zip" def download_book_crossings(target_dir): """ Download the book-crossing data and unzip it """ archive_path = os.path.join(target_dir, ARCHIVE_NAME) if not os.path.exists(target_dir): os.makedirs(target_dir) if not os.path.exists(archive_path): logger.warn("Downloading dataset from %s (77 MB)", URL) opener = urllib.urlopen(URL) open(archive_path, 'wb').write(opener.read()) logger.info("Decompressing %s", archive_path) source_zip = zipfile.ZipFile(archive_path, 'r') archives = [] for name in source_zip.namelist(): if name.find('.csv') != -1: source_zip.extract(name, target_dir) archives.append(name) source_zip.close() os.remove(archive_path) return archives def load_bookcrossings(data_home=None, download_if_missing=True, implicit=False): """ Load the filenames of the Book Crossings dataset data_home: optional, default: None Specify the storage folder for the datasets. If None, all files is stored in '~/data subfolders. download_if_missing: optional, True by default If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site. implicit: optional, False by default If True, it will load the implicit ratings expressed by rating 0, otherwise it will load the explicit ratings expressed by rating 1-10. Examples -------- >>> from os.path import join >>> from os.path import dirname >>> from scikits.crab.datasets.book_crossing import load_bookcrossings >>> data_home = join(dirname(__file__), 'scikits/crab/datasets/tests/data/') >>> books = load_bookcrossings(data_home) >>> len(books.data) 26 >>> len(books.item_ids) 100 """ if data_home: if not os.path.exists(data_home): os.makedirs(data_home) else: data_home = join(dirname(__file__), 'data/') try: if not os.path.exists(os.path.join(data_home, 'BX-Book-Ratings.csv')) \ and not open(os.path.join(data_home, 'BX-Books.csv')): raise IOError except Exception, e: print 80 * '_' print 'Loading files failed' print 80 * '_' print e if download_if_missing: print 'downloading the dataset...' try: download_book_crossings(data_home) except: raise Exception('FAIL: Problems during the download.') print 'dataset downloaded.' else: raise IOError('Book-Crossing dataset not found') #TO FIX: it is not working for np.loadtxt #ratings_m = np.loadtxt(os.path.join(data_home, 'BX-Book-Ratings.csv'), # delimiter=';', skiprows=1) ratings_m = csv.reader(open(os.path.join(data_home, 'BX-Book-Ratings.csv')), delimiter=';') ratings_m.next() data_books = {} if implicit: for user_id, item_id, rating in ratings_m: if rating == "0": data_books.setdefault(user_id, {}) data_books[user_id][item_id] = True else: for user_id, item_id, rating in ratings_m: rating = int(rating) if rating != "0": data_books.setdefault(user_id, {}) data_books[user_id][item_id] = int(rating) #Read the titles data_titles = np.loadtxt(os.path.join(data_home, 'BX-Books.csv'), delimiter=';', usecols=(0, 1), dtype=str) data_t = [] for item_id, label in data_titles: data_t.append((item_id, label)) data_titles = dict(data_t) fdescr = open(dirname(__file__) + '/descr/book-crossing.rst') return Bunch(data=data_books, item_ids=data_titles, user_ids=None, DESCR=fdescr.read())
bsd-3-clause
harshaneelhg/scikit-learn
sklearn/cluster/birch.py
206
22706
# Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com> # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Joel Nothman <joel.nothman@gmail.com> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy import sparse from math import sqrt from ..metrics.pairwise import euclidean_distances from ..base import TransformerMixin, ClusterMixin, BaseEstimator from ..externals.six.moves import xrange from ..utils import check_array from ..utils.extmath import row_norms, safe_sparse_dot from ..utils.validation import NotFittedError, check_is_fitted from .hierarchical import AgglomerativeClustering def _iterate_sparse_X(X): """This little hack returns a densified row when iterating over a sparse matrix, insted of constructing a sparse matrix for every row that is expensive. """ n_samples = X.shape[0] X_indices = X.indices X_data = X.data X_indptr = X.indptr for i in xrange(n_samples): row = np.zeros(X.shape[1]) startptr, endptr = X_indptr[i], X_indptr[i + 1] nonzero_indices = X_indices[startptr:endptr] row[nonzero_indices] = X_data[startptr:endptr] yield row def _split_node(node, threshold, branching_factor): """The node has to be split if there is no place for a new subcluster in the node. 1. Two empty nodes and two empty subclusters are initialized. 2. The pair of distant subclusters are found. 3. The properties of the empty subclusters and nodes are updated according to the nearest distance between the subclusters to the pair of distant subclusters. 4. The two nodes are set as children to the two subclusters. """ new_subcluster1 = _CFSubcluster() new_subcluster2 = _CFSubcluster() new_node1 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_node2 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_subcluster1.child_ = new_node1 new_subcluster2.child_ = new_node2 if node.is_leaf: if node.prev_leaf_ is not None: node.prev_leaf_.next_leaf_ = new_node1 new_node1.prev_leaf_ = node.prev_leaf_ new_node1.next_leaf_ = new_node2 new_node2.prev_leaf_ = new_node1 new_node2.next_leaf_ = node.next_leaf_ if node.next_leaf_ is not None: node.next_leaf_.prev_leaf_ = new_node2 dist = euclidean_distances( node.centroids_, Y_norm_squared=node.squared_norm_, squared=True) n_clusters = dist.shape[0] farthest_idx = np.unravel_index( dist.argmax(), (n_clusters, n_clusters)) node1_dist, node2_dist = dist[[farthest_idx]] node1_closer = node1_dist < node2_dist for idx, subcluster in enumerate(node.subclusters_): if node1_closer[idx]: new_node1.append_subcluster(subcluster) new_subcluster1.update(subcluster) else: new_node2.append_subcluster(subcluster) new_subcluster2.update(subcluster) return new_subcluster1, new_subcluster2 class _CFNode(object): """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : array-like list of subclusters for a particular CFNode. prev_leaf_ : _CFNode prev_leaf. Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray, shape (branching_factor + 1, n_features) manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray, shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray view of ``init_centroids_``. squared_norm_ : ndarray view of ``init_sq_norm_``. """ def __init__(self, threshold, branching_factor, is_leaf, n_features): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features)) self.init_sq_norm_ = np.zeros((branching_factor + 1)) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[:n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[:n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2. dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster( subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = \ self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = \ self.subclusters_[closest_index].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accomodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster( subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = \ closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = \ closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True class _CFSubcluster(object): """Each subcluster in a CFNode is called a CFSubcluster. A CFSubcluster can have a CFNode has its child. Parameters ---------- linear_sum : ndarray, shape (n_features,), optional Sample. This is kept optional to allow initialization of empty subclusters. Attributes ---------- n_samples_ : int Number of samples that belong to each subcluster. linear_sum_ : ndarray Linear sum of all the samples in a subcluster. Prevents holding all sample data in memory. squared_sum_ : float Sum of the squared l2 norms of all samples belonging to a subcluster. centroid_ : ndarray Centroid of the subcluster. Prevent recomputing of centroids when ``CFNode.centroids_`` is called. child_ : _CFNode Child Node of the subcluster. Once a given _CFNode is set as the child of the _CFNode, it is set to ``self.child_``. sq_norm_ : ndarray Squared norm of the subcluster. Used to prevent recomputing when pairwise minimum distances are computed. """ def __init__(self, linear_sum=None): if linear_sum is None: self.n_samples_ = 0 self.squared_sum_ = 0.0 self.linear_sum_ = 0 else: self.n_samples_ = 1 self.centroid_ = self.linear_sum_ = linear_sum self.squared_sum_ = self.sq_norm_ = np.dot( self.linear_sum_, self.linear_sum_) self.child_ = None def update(self, subcluster): self.n_samples_ += subcluster.n_samples_ self.linear_sum_ += subcluster.linear_sum_ self.squared_sum_ += subcluster.squared_sum_ self.centroid_ = self.linear_sum_ / self.n_samples_ self.sq_norm_ = np.dot(self.centroid_, self.centroid_) def merge_subcluster(self, nominee_cluster, threshold): """Check if a cluster is worthy enough to be merged. If yes then merge. """ new_ss = self.squared_sum_ + nominee_cluster.squared_sum_ new_ls = self.linear_sum_ + nominee_cluster.linear_sum_ new_n = self.n_samples_ + nominee_cluster.n_samples_ new_centroid = (1 / new_n) * new_ls new_norm = np.dot(new_centroid, new_centroid) dot_product = (-2 * new_n) * new_norm sq_radius = (new_ss + dot_product) / new_n + new_norm if sq_radius <= threshold ** 2: (self.n_samples_, self.linear_sum_, self.squared_sum_, self.centroid_, self.sq_norm_) = \ new_n, new_ls, new_ss, new_centroid, new_norm return True return False @property def radius(self): """Return radius of the subcluster""" dot_product = -2 * np.dot(self.linear_sum_, self.centroid_) return sqrt( ((self.squared_sum_ + dot_product) / self.n_samples_) + self.sq_norm_) class Birch(BaseEstimator, TransformerMixin, ClusterMixin): """Implements the Birch clustering algorithm. Every new sample is inserted into the root of the Clustering Feature Tree. It is then clubbed together with the subcluster that has the centroid closest to the new sample. This is done recursively till it ends up at the subcluster of the leaf of the tree has the closest centroid. Read more in the :ref:`User Guide <birch>`. Parameters ---------- threshold : float, default 0.5 The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. branching_factor : int, default 50 Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then the node has to be split. The corresponding parent also has to be split and if the number of subclusters in the parent is greater than the branching factor, then it has to be split recursively. n_clusters : int, instance of sklearn.cluster model, default None Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. By default, this final clustering step is not performed and the subclusters are returned as they are. If a model is provided, the model is fit treating the subclusters as new samples and the initial data is mapped to the label of the closest subcluster. If an int is provided, the model fit is AgglomerativeClustering with n_clusters set to the int. compute_labels : bool, default True Whether or not to compute labels for each fit. copy : bool, default True Whether or not to make a copy of the given data. If set to False, the initial data will be overwritten. Attributes ---------- root_ : _CFNode Root of the CFTree. dummy_leaf_ : _CFNode Start pointer to all the leaves. subcluster_centers_ : ndarray, Centroids of all subclusters read directly from the leaves. subcluster_labels_ : ndarray, Labels assigned to the centroids of the subclusters after they are clustered globally. labels_ : ndarray, shape (n_samples,) Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data. Examples -------- >>> from sklearn.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1]) References ---------- * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/p/jbirch/ """ def __init__(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True): self.threshold = threshold self.branching_factor = branching_factor self.n_clusters = n_clusters self.compute_labels = compute_labels self.copy = copy def fit(self, X, y=None): """ Build a CF Tree for the input data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. """ self.fit_, self.partial_fit_ = True, False return self._fit(X) def _fit(self, X): X = check_array(X, accept_sparse='csr', copy=self.copy) threshold = self.threshold branching_factor = self.branching_factor if branching_factor <= 1: raise ValueError("Branching_factor should be greater than one.") n_samples, n_features = X.shape # If partial_fit is called for the first time or fit is called, we # start a new tree. partial_fit = getattr(self, 'partial_fit_') has_root = getattr(self, 'root_', None) if getattr(self, 'fit_') or (partial_fit and not has_root): # The first root is the leaf. Manipulate this object throughout. self.root_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) # To enable getting back subclusters. self.dummy_leaf_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) self.dummy_leaf_.next_leaf_ = self.root_ self.root_.prev_leaf_ = self.dummy_leaf_ # Cannot vectorize. Enough to convince to use cython. if not sparse.issparse(X): iter_func = iter else: iter_func = _iterate_sparse_X for sample in iter_func(X): subcluster = _CFSubcluster(linear_sum=sample) split = self.root_.insert_cf_subcluster(subcluster) if split: new_subcluster1, new_subcluster2 = _split_node( self.root_, threshold, branching_factor) del self.root_ self.root_ = _CFNode(threshold, branching_factor, is_leaf=False, n_features=n_features) self.root_.append_subcluster(new_subcluster1) self.root_.append_subcluster(new_subcluster2) centroids = np.concatenate([ leaf.centroids_ for leaf in self._get_leaves()]) self.subcluster_centers_ = centroids self._global_clustering(X) return self def _get_leaves(self): """ Retrieve the leaves of the CF Node. Returns ------- leaves: array-like List of the leaf nodes. """ leaf_ptr = self.dummy_leaf_.next_leaf_ leaves = [] while leaf_ptr is not None: leaves.append(leaf_ptr) leaf_ptr = leaf_ptr.next_leaf_ return leaves def partial_fit(self, X=None, y=None): """ Online learning. Prevents rebuilding of CFTree from scratch. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features), None Input data. If X is not provided, only the global clustering step is done. """ self.partial_fit_, self.fit_ = True, False if X is None: # Perform just the final global clustering step. self._global_clustering() return self else: self._check_fit(X) return self._fit(X) def _check_fit(self, X): is_fitted = hasattr(self, 'subcluster_centers_') # Called by partial_fit, before fitting. has_partial_fit = hasattr(self, 'partial_fit_') # Should raise an error if one does not fit before predicting. if not (is_fitted or has_partial_fit): raise NotFittedError("Fit training data before predicting") if is_fitted and X.shape[1] != self.subcluster_centers_.shape[1]: raise ValueError( "Training data and predicted data do " "not have same number of features.") def predict(self, X): """ Predict data using the ``centroids_`` of subclusters. Avoid computation of the row norms of X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- labels: ndarray, shape(n_samples) Labelled data. """ X = check_array(X, accept_sparse='csr') self._check_fit(X) reduced_distance = safe_sparse_dot(X, self.subcluster_centers_.T) reduced_distance *= -2 reduced_distance += self._subcluster_norms return self.subcluster_labels_[np.argmin(reduced_distance, axis=1)] def transform(self, X, y=None): """ Transform X into subcluster centroids dimension. Each dimension represents the distance from the sample point to each cluster centroid. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters) Transformed data. """ check_is_fitted(self, 'subcluster_centers_') return euclidean_distances(X, self.subcluster_centers_) def _global_clustering(self, X=None): """ Global clustering for the subclusters obtained after fitting """ clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, int): clusterer = AgglomerativeClustering( n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True elif (clusterer is not None and not hasattr(clusterer, 'fit_predict')): raise ValueError("n_clusters should be an instance of " "ClusterMixin or an int") # To use in predict to avoid recalculation. self._subcluster_norms = row_norms( self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by Birch is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters)) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict( self.subcluster_centers_) if compute_labels: self.labels_ = self.predict(X)
bsd-3-clause
tongwang01/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
4
59870
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = tf.contrib.learn.datasets.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = tf.contrib.learn.datasets.base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris def _iris_input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150, 1], dtype=tf.int32) class LinearClassifierTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': tf.SparseTensor(values=['1'], indices=[[0, 0]], shape=[1, 1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.sparse_column_with_hash_bucket('age', 2) classifier = tf.contrib.learn.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [150] instead of [150, 1].""" def _input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = tf.contrib.learn.datasets.load_iris() train_x = iris.data train_y = iris.target feature_column = tf.contrib.layers.real_valued_column('', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100, 1], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [tf.contrib.layers.real_valued_column('', dimension=4)] classifier = tf.contrib.learn.LinearClassifier( feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) self.assertEqual(4, len(classifier.weights_)) self.assertEqual(3, len(classifier.bias_)) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=tf.train.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) def _optimizer(): return tf.train.FtrlOptimizer(learning_rate=0.1) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = tf.constant([[1], [0], [0], [0]], dtype=tf.float32) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = tf.slice(predictions, [0, 1], [-1, 1]) return tf.reduce_sum(tf.mul(predictions, labels)) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[tf.contrib.layers.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=tf.contrib.metrics.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=tf.contrib.metrics.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric' ]).issubset(set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict(input_fn=predict_input_fn))) self.assertEqual(_sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Tests the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=tf.contrib.metrics.streaming_auc, prediction_key='bad_type')}) # Tests the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): tf.contrib.metrics.streaming_auc}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): tf.contrib.metrics.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': tf.train.limit_epochs( tf.constant([[1], [2]]), num_epochs=num_epochs), }, tf.constant([[.7], [0]], dtype=tf.float32) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the labels column, which proves that the # classifier learns from float input. self.assertAllClose([[.3, .7], [1., 0.]], predictions_proba, atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } labels = tf.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7) ] classifier = tf.contrib.learn.LinearClassifier( feature_columns=sparse_features, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}))) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': tf.train.limit_epochs(tf.constant([1]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=['english'], indices=[[0, 0]], shape=[1, 1]), }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list(classifier.predict(input_fn=predict_input_fn, as_iterable=True)) out1_proba = list(classifier.predict_proba(input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list(classifier2.predict(input_fn=predict_input_fn, as_iterable=True)) out2_proba = list(classifier2.predict_proba(input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = tf.constant([[1], [0], [0], [0]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = tf.constant([[1], [1], [1], [1]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = tf.contrib.learn.LinearClassifier( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_label_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean label should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_label_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': tf.constant([[20], [20], [20]]), 'weights': tf.constant([[100], [1], [1]]), } labels = tf.constant([[1], [0], [0]]) return features, labels age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertFalse('centered_bias_weight' in classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertTrue('centered_bias_weight' in classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': tf.SparseTensor(values=['hindi'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language]) classifier_with_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language], optimizer=tf.train.FtrlOptimizer(learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': tf.SparseTensor(values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[1], [1], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier = tf.contrib.learn.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'maintenance_cost': tf.constant([[500.0], [200.0]]), 'sq_footage': tf.constant([[800.0], [600.0]]), 'weights': tf.constant([[1.0], [1.0]]) }, tf.constant([[0], [1]]) maintenance_cost = tf.contrib.layers.real_valued_column('maintenance_cost') sq_footage = tf.contrib.layers.real_valued_column('sq_footage') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'dense_feature': tf.constant([[500.0, 800.0], [200.0, 600.0]]) }, tf.constant([[0], [1]]) dense_feature = tf.contrib.layers.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': tf.constant([[1000.0], [600.0], [700.0]]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClasssifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.SparseTensor(values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]) }, tf.constant([[1], [0], [1]]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = tf.contrib.layers.weighted_sparse_column( country, 'price') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'language': tf.SparseTensor(values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]), 'country': tf.SparseTensor(values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[0], [0], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = tf.contrib.layers.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': tf.constant([[1], [2]]), 'language': tf.SparseTensor(values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], shape=[2, 1]), }, tf.constant([[1], [0]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[10.]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearRegressor( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] regressor = tf.contrib.learn.LinearRegressor( feature_columns=cont_features, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_iris_input_fn, steps=100) scores = regressor.evaluate(input_fn=_iris_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), } return features, labels regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = tf.constant([[1.], [1.], [1.], [1.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(labels, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predictions, atol=0.1) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(labels, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predictions, atol=0.1) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = tf.constant([[1.], [0.], [0.], [0.]]) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, labels def _my_metric_op(predictions, labels): return tf.reduce_sum(tf.mul(predictions, labels)) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=tf.contrib.metrics.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=tf.contrib.metrics.streaming_auc, prediction_key='bad_type')}) # Tests the case where the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={('my_error', 'predictions' ): tf.contrib.metrics.streaming_mean_squared_error}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): tf.contrib.metrics.streaming_mean_squared_error }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict(input_fn=predict_input_fn)) del regressor regressor2 = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}), tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(x) regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, optimizer=tf.train.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor.weights_.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'x': tf.constant(x), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant(y) x_column = tf.contrib.layers.real_valued_column('x', dimension=3) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertAllClose([w[0] for w in weights], regressor.weights_.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [5.0], [7.0]]) }, tf.constant([[1.55], [-1.25], [-3.0]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant([[1.4], [-0.8], [2.6]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] no_l1_reg_weights = regressor.weights_ # Regressor with L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = regressor.weights_ # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': tf.constant([[0.0]]*num_examples), }, tf.constant([[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = tf.contrib.layers.real_valued_column('place_holder') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear(regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half/10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half/10)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[1 if x%10 == 0 else 0] for x in range(half)] + [[-1 if x%10 == 0 else 0] for x in range(half)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.1, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], -0.1, err=0.05) def boston_input_fn(): boston = tf.contrib.learn.datasets.load_boston() features = tf.cast(tf.reshape(tf.constant(boston.data), [-1, 13]), tf.float32) labels = tf.cast(tf.reshape(tf.constant(boston.target), [-1, 1]), tf.float32) return features, labels class FeatureColumnTest(tf.test.TestCase): def testTrain(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( boston_input_fn) est = tf.contrib.learn.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': tf.test.main()
apache-2.0
edhuckle/statsmodels
tools/hash_funcs.py
27
1305
""" A collection of utilities to see if new ReST files need to be automatically generated from certain files in the project (examples, datasets). """ import os from statsmodels.compat import cPickle file_path = os.path.dirname(__file__) def get_hash(f): """ Gets hexadmecimal md5 hash of a string """ import hashlib m = hashlib.md5() m.update(f) return m.hexdigest() def update_hash_dict(filehash, filename): """ Opens the pickled hash dictionary, adds an entry, and dumps it back. """ try: with open(file_path+'/hash_dict.pickle','r') as f: hash_dict = cPickle.load(f) except IOError as err: hash_dict = {} hash_dict.update({filename : filehash}) with open(os.path.join(file_path,'hash_dict.pickle'),'w') as f: cPickle.dump(hash_dict, f) def check_hash(rawfile, filename): """ Returns True if hash does not match the previous one. """ try: with open(file_path+'/hash_dict.pickle','r') as f: hash_dict = cPickle.load(f) except IOError as err: hash_dict = {} try: checkhash = hash_dict[filename] except: checkhash = None filehash = get_hash(rawfile) if filehash == checkhash: return False, None return True, filehash
bsd-3-clause
harshaneelhg/scikit-learn
benchmarks/bench_covertype.py
153
7296
""" =========================== Covertype dataset benchmark =========================== Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- liblinear 15.9744s 0.0705s 0.2305 GaussianNB 3.0666s 0.3884s 0.4841 SGD 1.0558s 0.1152s 0.2300 CART 79.4296s 0.0523s 0.0469 RandomForest 1190.1620s 0.5881s 0.0243 ExtraTrees 640.3194s 0.6495s 0.0198 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype """ from __future__ import division, print_function # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Arnaud Joly <arnaud.v.joly@gmail.com> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_covtype, get_data_home from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import zero_one_loss from sklearn.externals.joblib import Memory from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'covertype_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='C', random_state=13): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_covtype(download_if_missing=True, shuffle=True, random_state=random_state) X = check_array(data['data'], dtype=dtype, order=order) y = (data['target'] != 1).astype(np.int) ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 522911 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] ## Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std return X_train, X_test, y_train, y_test ESTIMATORS = { 'GBRT': GradientBoostingClassifier(n_estimators=250), 'ExtraTrees': ExtraTreesClassifier(n_estimators=20), 'RandomForest': RandomForestClassifier(n_estimators=20), 'CART': DecisionTreeClassifier(min_samples_split=5), 'SGD': SGDClassifier(alpha=0.001, n_iter=2), 'GaussianNB': GaussianNB(), 'liblinear': LinearSVC(loss="l2", penalty="l2", C=1000, dual=False, tol=1e-3) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['liblinear', 'GaussianNB', 'SGD', 'CART'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=13, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data( order=args["order"], random_state=args["random_seed"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == 0), int(X_train.nbytes / 1e6))) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == 0), int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) for name in sorted(args["classifiers"], key=error.get): print("%s %s %s %s" % (name.ljust(12), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % error[name]).center(10))) print()
bsd-3-clause
justincassidy/scikit-learn
examples/neighbors/plot_nearest_centroid.py
263
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/utils/tests/test_class_weight.py
139
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
justincassidy/scikit-learn
sklearn/utils/tests/test_class_weight.py
139
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
justincassidy/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
205
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause