repo_name
stringlengths
6
103
path
stringlengths
5
191
copies
stringlengths
1
4
size
stringlengths
4
6
content
stringlengths
986
970k
license
stringclasses
15 values
Nu3001/external_chromium_org
third_party/jinja2/visitor.py
1402
3316
# -*- coding: utf-8 -*- """ jinja2.visitor ~~~~~~~~~~~~~~ This module implements a visitor for the nodes. :copyright: (c) 2010 by the Jinja Team. :license: BSD. """ from jinja2.nodes import Node class NodeVisitor(object): """Walks the abstract syntax tree and call visitor functions for every node found. The visitor functions may return values which will be forwarded by the `visit` method. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `get_visitor` function. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. """ def get_visitor(self, node): """Return the visitor function for this node or `None` if no visitor exists for this node. In that case the generic visit function is used instead. """ method = 'visit_' + node.__class__.__name__ return getattr(self, method, None) def visit(self, node, *args, **kwargs): """Visit a node.""" f = self.get_visitor(node) if f is not None: return f(node, *args, **kwargs) return self.generic_visit(node, *args, **kwargs) def generic_visit(self, node, *args, **kwargs): """Called if no explicit visitor function exists for a node.""" for node in node.iter_child_nodes(): self.visit(node, *args, **kwargs) class NodeTransformer(NodeVisitor): """Walks the abstract syntax tree and allows modifications of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor functions to replace or remove the old node. If the return value of the visitor function is `None` the node will be removed from the previous location otherwise it's replaced with the return value. The return value may be the original node in which case no replacement takes place. """ def generic_visit(self, node, *args, **kwargs): for field, old_value in node.iter_fields(): if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, Node): value = self.visit(value, *args, **kwargs) if value is None: continue elif not isinstance(value, Node): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, Node): new_node = self.visit(old_value, *args, **kwargs) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node def visit_list(self, node, *args, **kwargs): """As transformers may return lists in some places this method can be used to enforce a list as return value. """ rv = self.visit(node, *args, **kwargs) if not isinstance(rv, list): rv = [rv] return rv
bsd-3-clause
anapaulagomes/dashboard
lib/jinja2/visitor.py
1402
3316
# -*- coding: utf-8 -*- """ jinja2.visitor ~~~~~~~~~~~~~~ This module implements a visitor for the nodes. :copyright: (c) 2010 by the Jinja Team. :license: BSD. """ from jinja2.nodes import Node class NodeVisitor(object): """Walks the abstract syntax tree and call visitor functions for every node found. The visitor functions may return values which will be forwarded by the `visit` method. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `get_visitor` function. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. """ def get_visitor(self, node): """Return the visitor function for this node or `None` if no visitor exists for this node. In that case the generic visit function is used instead. """ method = 'visit_' + node.__class__.__name__ return getattr(self, method, None) def visit(self, node, *args, **kwargs): """Visit a node.""" f = self.get_visitor(node) if f is not None: return f(node, *args, **kwargs) return self.generic_visit(node, *args, **kwargs) def generic_visit(self, node, *args, **kwargs): """Called if no explicit visitor function exists for a node.""" for node in node.iter_child_nodes(): self.visit(node, *args, **kwargs) class NodeTransformer(NodeVisitor): """Walks the abstract syntax tree and allows modifications of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor functions to replace or remove the old node. If the return value of the visitor function is `None` the node will be removed from the previous location otherwise it's replaced with the return value. The return value may be the original node in which case no replacement takes place. """ def generic_visit(self, node, *args, **kwargs): for field, old_value in node.iter_fields(): if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, Node): value = self.visit(value, *args, **kwargs) if value is None: continue elif not isinstance(value, Node): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, Node): new_node = self.visit(old_value, *args, **kwargs) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node def visit_list(self, node, *args, **kwargs): """As transformers may return lists in some places this method can be used to enforce a list as return value. """ rv = self.visit(node, *args, **kwargs) if not isinstance(rv, list): rv = [rv] return rv
apache-2.0
AOSPU/external_chromium_org
third_party/jinja2/visitor.py
1402
3316
# -*- coding: utf-8 -*- """ jinja2.visitor ~~~~~~~~~~~~~~ This module implements a visitor for the nodes. :copyright: (c) 2010 by the Jinja Team. :license: BSD. """ from jinja2.nodes import Node class NodeVisitor(object): """Walks the abstract syntax tree and call visitor functions for every node found. The visitor functions may return values which will be forwarded by the `visit` method. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `get_visitor` function. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. """ def get_visitor(self, node): """Return the visitor function for this node or `None` if no visitor exists for this node. In that case the generic visit function is used instead. """ method = 'visit_' + node.__class__.__name__ return getattr(self, method, None) def visit(self, node, *args, **kwargs): """Visit a node.""" f = self.get_visitor(node) if f is not None: return f(node, *args, **kwargs) return self.generic_visit(node, *args, **kwargs) def generic_visit(self, node, *args, **kwargs): """Called if no explicit visitor function exists for a node.""" for node in node.iter_child_nodes(): self.visit(node, *args, **kwargs) class NodeTransformer(NodeVisitor): """Walks the abstract syntax tree and allows modifications of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor functions to replace or remove the old node. If the return value of the visitor function is `None` the node will be removed from the previous location otherwise it's replaced with the return value. The return value may be the original node in which case no replacement takes place. """ def generic_visit(self, node, *args, **kwargs): for field, old_value in node.iter_fields(): if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, Node): value = self.visit(value, *args, **kwargs) if value is None: continue elif not isinstance(value, Node): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, Node): new_node = self.visit(old_value, *args, **kwargs) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node def visit_list(self, node, *args, **kwargs): """As transformers may return lists in some places this method can be used to enforce a list as return value. """ rv = self.visit(node, *args, **kwargs) if not isinstance(rv, list): rv = [rv] return rv
bsd-3-clause
SaschaMester/delicium
third_party/jinja2/visitor.py
1402
3316
# -*- coding: utf-8 -*- """ jinja2.visitor ~~~~~~~~~~~~~~ This module implements a visitor for the nodes. :copyright: (c) 2010 by the Jinja Team. :license: BSD. """ from jinja2.nodes import Node class NodeVisitor(object): """Walks the abstract syntax tree and call visitor functions for every node found. The visitor functions may return values which will be forwarded by the `visit` method. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `get_visitor` function. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. """ def get_visitor(self, node): """Return the visitor function for this node or `None` if no visitor exists for this node. In that case the generic visit function is used instead. """ method = 'visit_' + node.__class__.__name__ return getattr(self, method, None) def visit(self, node, *args, **kwargs): """Visit a node.""" f = self.get_visitor(node) if f is not None: return f(node, *args, **kwargs) return self.generic_visit(node, *args, **kwargs) def generic_visit(self, node, *args, **kwargs): """Called if no explicit visitor function exists for a node.""" for node in node.iter_child_nodes(): self.visit(node, *args, **kwargs) class NodeTransformer(NodeVisitor): """Walks the abstract syntax tree and allows modifications of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor functions to replace or remove the old node. If the return value of the visitor function is `None` the node will be removed from the previous location otherwise it's replaced with the return value. The return value may be the original node in which case no replacement takes place. """ def generic_visit(self, node, *args, **kwargs): for field, old_value in node.iter_fields(): if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, Node): value = self.visit(value, *args, **kwargs) if value is None: continue elif not isinstance(value, Node): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, Node): new_node = self.visit(old_value, *args, **kwargs) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node def visit_list(self, node, *args, **kwargs): """As transformers may return lists in some places this method can be used to enforce a list as return value. """ rv = self.visit(node, *args, **kwargs) if not isinstance(rv, list): rv = [rv] return rv
bsd-3-clause
krisgiesing/sky_engine
tools/generate_package_files.py
3
1316
#!/usr/bin/env python # Copyright 2018 The Flutter Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This script generates .packages file for frontend_server and # flutter_kernel_transformers from Dart SDKs .packages file located in # third_party/dart/.packages import os import shutil ALL_PACKAGES = { 'frontend_server': ['flutter_kernel_transformers'], 'flutter_kernel_transformers': [], } SRC_DIR = os.getcwd() DOT_PACKAGES = '.packages' DART_PACKAGES_FILE = os.path.join(SRC_DIR, 'third_party', 'dart', DOT_PACKAGES) # Generate .packages file in the given package. def GeneratePackages(package, local_deps): with open(os.path.join('flutter', package, DOT_PACKAGES), 'w') as packages: with open(DART_PACKAGES_FILE, 'r') as dart_packages: for line in dart_packages: if line.startswith('#'): packages.write(line) else: [name, path] = line.split(':', 1) packages.write('%s:../../third_party/dart/%s' % (name, path)) packages.write('%s:./lib\n' % (package)) for other_package in local_deps: packages.write('%s:../%s/lib\n' % (other_package, other_package)) for package, local_deps in ALL_PACKAGES.iteritems(): GeneratePackages(package, local_deps)
bsd-3-clause
ageron/tensorflow
tensorflow/contrib/learn/python/learn/__init__.py
40
2715
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """High level API for learning with TensorFlow (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn import basic_session_run_hooks from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn import estimators from tensorflow.contrib.learn.python.learn import graph_actions from tensorflow.contrib.learn.python.learn import learn_io as io from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn import monitors from tensorflow.contrib.learn.python.learn import ops from tensorflow.contrib.learn.python.learn import preprocessing from tensorflow.contrib.learn.python.learn import utils from tensorflow.contrib.learn.python.learn.estimators import * from tensorflow.contrib.learn.python.learn.evaluable import Evaluable from tensorflow.contrib.learn.python.learn.experiment import Experiment from tensorflow.contrib.learn.python.learn.export_strategy import ExportStrategy from tensorflow.contrib.learn.python.learn.graph_actions import evaluate from tensorflow.contrib.learn.python.learn.graph_actions import infer from tensorflow.contrib.learn.python.learn.graph_actions import run_feeds from tensorflow.contrib.learn.python.learn.graph_actions import run_n from tensorflow.contrib.learn.python.learn.graph_actions import train from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.learn.python.learn.monitors import NanLossDuringTrainingError from tensorflow.contrib.learn.python.learn.trainable import Trainable from tensorflow.contrib.learn.python.learn.utils import * # pylint: enable=wildcard-import
apache-2.0
pandegroup/vs-utils
vs_utils/scripts/datasets/parse_tox21_datasets.py
3
2618
#!/usr/bin/env python """ Get Tox21 challenge datasets. Some SMILES strings are represented by multiple compounds, with some overlap of assays. These compounds need to be condensed and their assay outcomes need to be reconciled. """ __author__ = "Steven Kearnes" __copyright__ = "Copyright 2014, Stanford University" __license__ = "3-clause BSD" import argparse import cPickle import gzip import numpy as np import os import warnings from vs_utils.utils.target_utils import Tox21Parser def get_args(input_args=None): """ Get command-line arguments. Parameters ---------- input_args : list, optional Input arguments. If not provided, defaults to sys.argv[1:]. """ parser = argparse.ArgumentParser() parser.add_argument('input', help='Input filename.') parser.add_argument('--merge', choices=['max', 'min', 'majority_neg', 'majority_pos'], default='max', help='Target merge strategy.') parser.add_argument('-d', '--dir', default='.', help='Directory in which to write target files.') return parser.parse_args(input_args) def main(filename, merge_strategy, directory='.'): """ Get Tox21 chellenge datasets. Parameters ---------- filename : str Data filename. merge_strategy : str, optional (default 'max') Strategy to use when merging targets for duplicated molecules. Choose from 'max' (active if active in any assay), 'min' (inactive if inactive in any assay), 'majority_pos' (majority vote with ties assigned active), or 'majority_neg' (majority vote with ties assigned inactive). directory : str, optional (default '.') Directory in which to write target files. """ parser = Tox21Parser(filename, merge_strategy=merge_strategy) data = parser.get_targets() # save individual datasets for dataset in data: if not len(data[dataset]): warnings.warn('Dataset "{}" is empty.'.format(dataset)) continue targets = data[dataset]['targets'] pos = np.count_nonzero(targets == 1) neg = np.count_nonzero(targets == 0) assert pos + neg == targets.size print '{}\t{}\t{}'.format(dataset, pos, neg) filename = os.path.join(directory, '{}-classes.pkl.gz'.format(dataset)) with gzip.open(filename, 'wb') as f: cPickle.dump(data[dataset], f, cPickle.HIGHEST_PROTOCOL) if __name__ == '__main__': args = get_args() main(args.input, args.merge, args.dir)
gpl-3.0
nick-monto/SpeechRecog_CNN
model_keras_16k.py
1
5268
import os import fnmatch import pandas as pd import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.callbacks import ModelCheckpoint img_height, img_width = 120, 200 num_epochs = 5 def find(pattern, path): result = [] for root, dirs, files in os.walk(path): for name in files: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(root, name)) return result[0] def load_image(path): img = Image.open(path).convert('L') # read in as grayscale img = img.resize((img_width, img_height)) # img.load() # loads the image into memory img_data = np.asarray(img, dtype="float") return img_data df_train = pd.read_table('img_set_16k_train.txt', delim_whitespace=True, names=['stimulus', 'language']) stim_train = df_train['stimulus'] labels_train = pd.get_dummies(df_train['language']) labels_train = labels_train.values df_val = pd.read_table('img_set_16k_val.txt', delim_whitespace=True, names=['stimulus', 'language']) stim_val = df_val['stimulus'] labels_val = pd.get_dummies(df_val['language']) labels_val = labels_val.values training_data_dir = 'Input_spectrogram_16k/Training' # directory for training data val_data_dir = 'Input_spectrogram_16k/Validation' # directory for test data print("Preparing the input and labels...") specs_train_input = [] for i in range(len(stim_train)): specs_train_input.append(load_image(find(stim_train.iloc[i], training_data_dir))) specs_train_input = np.asarray(specs_train_input) specs_train_input = specs_train_input.reshape((len(stim_train), img_height, img_width, 1)) print('There are a total of {} training stimuli!'.format(specs_train_input.shape[0])) specs_val_input = [] for i in range(len(stim_val)): specs_val_input.append(load_image(find(stim_val.iloc[i], val_data_dir))) specs_val_input = np.asarray(specs_val_input) specs_val_input = specs_val_input.reshape((len(stim_val), img_height, img_width, 1)) print('There are a total of {} validation stimuli!'.format(specs_val_input.shape[0])) print("Done!") # set of augments that will be applied to the training data datagen = ImageDataGenerator(rescale=1./255) checkpoint = ModelCheckpoint('./weights_16k_updated.best.hdf5', monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] # Define the model: 4 convolutional layers, 4 max pools model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=(img_height, img_width, 1), strides=(2, 2), activation='relu', kernel_initializer='TruncatedNormal', name='conv1')) model.add(MaxPooling2D(pool_size=(2, 2), name='pool1')) model.add(Conv2D(64, (3, 3), padding='same', strides=(2, 2), activation='relu', kernel_initializer='TruncatedNormal', name='conv2')) model.add(MaxPooling2D(pool_size=(2, 2), name='pool2')) model.add(Conv2D(128, (3, 3), padding='same', activation='relu', kernel_initializer='TruncatedNormal', name='conv3')) model.add(MaxPooling2D(pool_size=(2, 2), name='pool3')) model.add(Conv2D(256, (3, 3), padding='same', activation='relu', kernel_initializer='TruncatedNormal', name='conv4')) model.add(MaxPooling2D(pool_size=(2, 2), name='pool4')) model.add(Flatten(name='flat1')) # converts 3D feature mapes to 1D feature vectors model.add(Dense(256, activation='relu', kernel_initializer='TruncatedNormal', name='fc1')) model.add(Dropout(0.5, name='do1')) # reset half of the weights to zero model.add(Dense(8, activation='softmax', name='output')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # compute quantities required for featurewise normalization datagen.fit(specs_train_input) datagen.fit(specs_val_input) print("Initializing the model...") # fits the model on batches with real-time data augmentation: model.fit_generator(datagen.flow(specs_train_input, labels_train, batch_size=16), steps_per_epoch=len(stim_train) / 16, epochs=num_epochs, verbose=1, callbacks=callbacks_list, validation_data=datagen.flow(specs_val_input, labels_val, batch_size=8), validation_steps=len(stim_val) / 8) model.save('LangNet_4Conv_updated.h5')
mit
mxjl620/scikit-learn
sklearn/linear_model/bayes.py
219
15248
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) n_samples, n_features = X.shape ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 ### Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): ### Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, None]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) ### Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) ### Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ self._set_intercept(X_mean, y_mean, X_std) return self ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) ### Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None ### Iterative procedure of ARDRegression for iter_ in range(self.n_iter): ### Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) ### Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 ### Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) ### Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_mean, y_mean, X_std) return self
bsd-3-clause
pansapiens/mytardis
tardis/tardis_portal/south_migrations/0028_convert_replicas.py
3
27093
# -*- coding: utf-8 -*- import datetime import os from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." # Note: Don't use "from appname.models import ModelName". # Use orm.ModelName to refer to models in this application, # and orm['appname.ModelName'] for models in other applications. # Locations for location in orm.Location.objects.all(): newsb = orm.StorageBox() newsb.name = location.name newsb.description = "converted from Location" newsb.status = "dirty" if location.type in ('local', 'online') and \ location.transfer_provider in ('local', ): base_dir = location.url.replace('file://', '') try: base_dir_stat = os.statvfs(base_dir) except OSError: # for running this on a test db print 'Cannot access location %s. OK for testing only' % ( location.name,) base_dir_stat = os.statvfs('/') disk_size = base_dir_stat.f_frsize * base_dir_stat.f_blocks newsb.max_size = disk_size newsb.save() sb_opt = orm.StorageBoxOption(storage_box=newsb, key="location", value=base_dir) sb_opt.save() else: # placeholder storage class. Manual intervention required newsb.django_storage_class = \ 'tardis.tardis_portal.storage.DummyStorage' newsb.max_size = 0 newsb.save() # Replicas total = float(orm.Replica.objects.all().count()) counter = 0 percent = 0 print 'total replicas: %d ' % int(total) import resource print 'memory used: %d' % resource.getrusage(resource.RUSAGE_SELF).ru_maxrss for replica in orm.Replica.objects.all().iterator(): new_dfo = orm.DataFileObject() new_dfo.datafile = replica.datafile new_dfo.uri = replica.url new_dfo.storage_box = orm.StorageBox.objects.get( name=replica.location.name) new_dfo.save() new_dfo.datafile.dataset.storage_boxes.add(new_dfo.storage_box) counter += 1 if int(counter/total * 100) > percent: percent += 1 print '{0} % done '.format(percent), print 'memory used: %d' % resource.getrusage(resource.RUSAGE_SELF).ru_maxrss if 0 == 1: files_failed_verification = [] # verify all files for dfo in orm.DataFileObject.objects.all(): if dfo.storage_box.django_storage_class != \ 'tardis.tardis_portal.storage.DummyStorage': if not dfo.verify(): files_failed_verification.append(dfo) print files_failed_verification or "All files migrated fine" def backwards(self, orm): "Write your backwards methods here." raise RuntimeError("Cannot reverse this migration.") models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'tardis_portal.author_experiment': { 'Meta': {'ordering': "['order']", 'unique_together': "(('experiment', 'author'),)", 'object_name': 'Author_Experiment'}, 'author': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Experiment']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '2000', 'blank': 'True'}) }, 'tardis_portal.datafile': { 'Meta': {'ordering': "['filename']", 'unique_together': "(['directory', 'filename', 'version'],)", 'object_name': 'DataFile'}, 'created_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'dataset': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Dataset']"}), 'deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'deleted_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'directory': ('tardis.tardis_portal.models.fields.DirectoryField', [], {'null': 'True', 'blank': 'True'}), 'filename': ('django.db.models.fields.CharField', [], {'max_length': '400'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'md5sum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'blank': 'True'}), 'mimetype': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}), 'modification_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'sha512sum': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'size': ('django.db.models.fields.CharField', [], {'max_length': '400', 'blank': 'True'}), 'version': ('django.db.models.fields.IntegerField', [], {'default': '1'}) }, 'tardis_portal.datafileobject': { 'Meta': {'unique_together': "(['datafile', 'storage_box'],)", 'object_name': 'DataFileObject'}, 'created_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'datafile': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'file_objects'", 'to': "orm['tardis_portal.DataFile']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_verified_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'storage_box': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'file_objects'", 'to': "orm['tardis_portal.StorageBox']"}), 'uri': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'tardis_portal.datafileparameter': { 'Meta': {'ordering': "['name']", 'object_name': 'DatafileParameter'}, 'datetime_value': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.ParameterName']"}), 'numerical_value': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'parameterset': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.DatafileParameterSet']"}), 'string_value': ('django.db.models.fields.TextField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}) }, 'tardis_portal.datafileparameterset': { 'Meta': {'ordering': "['id']", 'object_name': 'DatafileParameterSet'}, 'datafile': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.DataFile']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'schema': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Schema']"}), 'storage_box': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'datafileparametersets'", 'symmetrical': 'False', 'to': "orm['tardis_portal.StorageBox']"}) }, 'tardis_portal.dataset': { 'Meta': {'ordering': "['-id']", 'object_name': 'Dataset'}, 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'directory': ('tardis.tardis_portal.models.fields.DirectoryField', [], {'null': 'True', 'blank': 'True'}), 'experiments': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'datasets'", 'symmetrical': 'False', 'to': "orm['tardis_portal.Experiment']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immutable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'storage_boxes': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'datasets'", 'blank': 'True', 'to': "orm['tardis_portal.StorageBox']"}) }, 'tardis_portal.datasetparameter': { 'Meta': {'ordering': "['name']", 'object_name': 'DatasetParameter'}, 'datetime_value': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.ParameterName']"}), 'numerical_value': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'parameterset': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.DatasetParameterSet']"}), 'string_value': ('django.db.models.fields.TextField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}) }, 'tardis_portal.datasetparameterset': { 'Meta': {'ordering': "['id']", 'object_name': 'DatasetParameterSet'}, 'dataset': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Dataset']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'schema': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Schema']"}), 'storage_box': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'datasetparametersets'", 'symmetrical': 'False', 'to': "orm['tardis_portal.StorageBox']"}) }, 'tardis_portal.experiment': { 'Meta': {'object_name': 'Experiment'}, 'approved': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), 'created_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'end_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'handle': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'institution_name': ('django.db.models.fields.CharField', [], {'default': "'Monash University'", 'max_length': '400'}), 'license': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.License']", 'null': 'True', 'blank': 'True'}), 'locked': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'public_access': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1'}), 'start_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '400'}), 'update_time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'tardis_portal.experimentparameter': { 'Meta': {'ordering': "['name']", 'object_name': 'ExperimentParameter'}, 'datetime_value': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.ParameterName']"}), 'numerical_value': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'parameterset': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.ExperimentParameterSet']"}), 'string_value': ('django.db.models.fields.TextField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}) }, 'tardis_portal.experimentparameterset': { 'Meta': {'ordering': "['id']", 'object_name': 'ExperimentParameterSet'}, 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Experiment']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'schema': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Schema']"}), 'storage_box': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'experimentparametersets'", 'symmetrical': 'False', 'to': "orm['tardis_portal.StorageBox']"}) }, 'tardis_portal.freetextsearchfield': { 'Meta': {'object_name': 'FreeTextSearchField'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parameter_name': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.ParameterName']"}) }, 'tardis_portal.groupadmin': { 'Meta': {'object_name': 'GroupAdmin'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, 'tardis_portal.license': { 'Meta': {'object_name': 'License'}, 'allows_distribution': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image_url': ('django.db.models.fields.URLField', [], {'max_length': '2000', 'blank': 'True'}), 'internal_description': ('django.db.models.fields.TextField', [], {}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '400'}), 'url': ('django.db.models.fields.URLField', [], {'unique': 'True', 'max_length': '2000'}) }, 'tardis_portal.location': { 'Meta': {'object_name': 'Location'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_available': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '10'}), 'priority': ('django.db.models.fields.IntegerField', [], {}), 'transfer_provider': ('django.db.models.fields.CharField', [], {'default': "'local'", 'max_length': '10'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'url': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '400'}) }, 'tardis_portal.objectacl': { 'Meta': {'ordering': "['content_type', 'object_id']", 'object_name': 'ObjectACL'}, 'aclOwnershipType': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'canDelete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'canRead': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'canWrite': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), 'effectiveDate': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'entityId': ('django.db.models.fields.CharField', [], {'max_length': '320'}), 'expiryDate': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'isOwner': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'pluginId': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, 'tardis_portal.parametername': { 'Meta': {'ordering': "('order', 'name')", 'unique_together': "(('schema', 'name'),)", 'object_name': 'ParameterName'}, 'choices': ('django.db.models.fields.CharField', [], {'max_length': '500', 'blank': 'True'}), 'comparison_type': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'data_type': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'full_name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immutable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_searchable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'order': ('django.db.models.fields.PositiveIntegerField', [], {'default': '9999', 'null': 'True', 'blank': 'True'}), 'schema': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Schema']"}), 'units': ('django.db.models.fields.CharField', [], {'max_length': '60', 'blank': 'True'}) }, 'tardis_portal.providerparameter': { 'Meta': {'unique_together': "(('location', 'name'),)", 'object_name': 'ProviderParameter'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Location']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}) }, 'tardis_portal.replica': { 'Meta': {'unique_together': "(('datafile', 'location'),)", 'object_name': 'Replica'}, 'datafile': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.DataFile']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Location']"}), 'protocol': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'stay_remote': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '400'}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'tardis_portal.schema': { 'Meta': {'object_name': 'Schema'}, 'hidden': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immutable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'namespace': ('django.db.models.fields.URLField', [], {'unique': 'True', 'max_length': '255'}), 'subtype': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '1'}) }, 'tardis_portal.storagebox': { 'Meta': {'object_name': 'StorageBox'}, 'description': ('django.db.models.fields.TextField', [], {'default': "'Default Storage'"}), 'django_storage_class': ('django.db.models.fields.TextField', [], {'default': "'tardis.tardis_portal.storage.MyTardisLocalFileSystemStorage'"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_size': ('django.db.models.fields.BigIntegerField', [], {}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.TextField', [], {'default': "'default'", 'unique': 'True'}) }, 'tardis_portal.storageboxattribute': { 'Meta': {'object_name': 'StorageBoxAttribute'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.TextField', [], {}), 'storage_box': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attributes'", 'to': "orm['tardis_portal.StorageBox']"}), 'value': ('django.db.models.fields.TextField', [], {}) }, 'tardis_portal.storageboxoption': { 'Meta': {'object_name': 'StorageBoxOption'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.TextField', [], {}), 'storage_box': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'options'", 'to': "orm['tardis_portal.StorageBox']"}), 'value': ('django.db.models.fields.TextField', [], {}) }, 'tardis_portal.token': { 'Meta': {'object_name': 'Token'}, 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.Experiment']"}), 'expiry_date': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2014, 4, 23, 0, 0)'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'token': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, 'tardis_portal.userauthentication': { 'Meta': {'object_name': 'UserAuthentication'}, 'authenticationMethod': ('django.db.models.fields.CharField', [], {'max_length': '30'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'userProfile': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tardis_portal.UserProfile']"}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'tardis_portal.userprofile': { 'Meta': {'object_name': 'UserProfile'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'isDjangoAccount': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['tardis_portal'] symmetrical = True
bsd-3-clause
mxjl620/scikit-learn
sklearn/svm/tests/test_bounds.py
277
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
yonglehou/scikit-learn
doc/sphinxext/gen_rst.py
141
40026
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ from __future__ import division, print_function from time import time import ast import os import re import shutil import traceback import glob import sys import gzip import posixpath import subprocess import warnings from sklearn.externals import six # Try Python 2 first, otherwise load from Python 3 try: from StringIO import StringIO import cPickle as pickle import urllib2 as urllib from urllib2 import HTTPError, URLError except ImportError: from io import StringIO import pickle import urllib.request import urllib.error import urllib.parse from urllib.error import HTTPError, URLError try: # Python 2 built-in execfile except NameError: def execfile(filename, global_vars=None, local_vars=None): with open(filename, encoding='utf-8') as f: code = compile(f.read(), filename, 'exec') exec(code, global_vars, local_vars) try: basestring except NameError: basestring = str import token import tokenize import numpy as np try: # make sure that the Agg backend is set before importing any # matplotlib import matplotlib matplotlib.use('Agg') except ImportError: # this script can be imported by nosetest to find tests to run: we should not # impose the matplotlib requirement in that case. pass from sklearn.externals import joblib ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def _get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): # Try Python 2, use Python 3 on exception try: resp = urllib.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') except AttributeError: resp = urllib.request.urlopen(url) encoding = resp.headers.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data mem = joblib.Memory(cachedir='_build') get_data = mem.cache(_get_data) def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # Make sure searchindex uses UTF-8 encoding if hasattr(searchindex, 'decode'): searchindex = searchindex.decode('UTF-8') # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[next(iter(value.keys()))] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if hasattr(link, 'decode'): link = link.decode('utf-8', 'replace') if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False if hasattr(html, 'decode'): # Decode bytes under Python 3 html = html.decode('utf-8', 'replace') for comb_name in comb_names: if hasattr(comb_name, 'decode'): # Decode bytes under Python 3 comb_name = comb_name.decode('utf-8', 'replace') if comb_name in html: url = link + u'#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds (%(time_m) .0f minutes %(time_s) .2f seconds) """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_classifier_comparison_001.png': (1, 600), 'plot_outlier_detection_001.png': (3, 372), 'plot_gp_regression_001.png': (2, 250), 'plot_adaboost_twoclass_001.png': (1, 372), 'plot_compare_methods_001.png': (1, 349)} def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ if six.PY2: lines = open(filename).readlines() else: lines = open(filename, encoding='utf-8').readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery.\n" "Please check the layout of your" " example file:\n {}\n and make sure" " it's correct".format(filename)) else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(os.path.join(app.builder.srcdir, '..', 'examples')) generated_dir = os.path.abspath(os.path.join(app.builder.srcdir, 'modules', 'generated')) try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) if not os.path.exists(generated_dir): os.makedirs(generated_dir) # we create an index.rst with all examples fhindex = open(os.path.join(root_dir, 'index.rst'), 'w') # Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { /* hide the sidebar collapser, while ensuring vertical arrangement */ display: none; } </style> .. _examples-index: Examples ======== """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. seen_backrefs = set() generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) for directory in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, directory)): generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) if six.PY2: lines = open(example_file).readlines() else: lines = open(example_file, encoding='utf-8').readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 line_iterator = iter(lines) tokens = tokenize.generate_tokens(lambda: next(line_iterator)) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif (tok_type == 'STRING') and check_docstring: erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = [x for x in file_list if x.endswith('.py')] unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def _thumbnail_div(subdir, full_dir, fname, snippet): """Generates RST to place a thumbnail in a gallery""" thumb = os.path.join(full_dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(full_dir, fname).replace(os.path.sep, '_') ref_name = os.path.join(subdir, fname).replace(os.path.sep, '_') if ref_name.startswith('._'): ref_name = ref_name[2:] out = [] out.append(""" .. raw:: html <div class="thumbnailContainer" tooltip="{}"> """.format(snippet)) out.append('.. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if full_dir != '.': out.append(' :target: ./%s/%s.html\n\n' % (full_dir, fname[:-3])) else: out.append(' :target: ./%s.html\n\n' % link_name[:-3]) out.append(""" :ref:`example_%s` .. raw:: html </div> """ % (ref_name)) return ''.join(out) def generate_dir_rst(directory, fhindex, example_dir, root_dir, plot_gallery, seen_backrefs): """ Generate the rst file for an example directory. """ if not directory == '.': target_dir = os.path.join(root_dir, directory) src_dir = os.path.join(example_dir, directory) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): raise ValueError('Example directory %s does not have a README.txt' % src_dir) fhindex.write(""" %s """ % open(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) if not os.path.exists(os.path.join(directory, 'images', 'thumb')): os.makedirs(os.path.join(directory, 'images', 'thumb')) for fname in sorted_listdir: if fname.endswith('py'): backrefs = generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, snippet, _ = extract_docstring(new_fname, True) fhindex.write(_thumbnail_div(directory, directory, fname, snippet)) fhindex.write(""" .. toctree:: :hidden: %s/%s """ % (directory, fname[:-3])) for backref in backrefs: include_path = os.path.join(root_dir, '../modules/generated/%s.examples' % backref) seen = backref in seen_backrefs with open(include_path, 'a' if seen else 'w') as ex_file: if not seen: # heading print(file=ex_file) print('Examples using ``%s``' % backref, file=ex_file) print('-----------------%s--' % ('-' * len(backref)), file=ex_file) print(file=ex_file) rel_dir = os.path.join('../../auto_examples', directory) ex_file.write(_thumbnail_div(directory, rel_dir, fname, snippet)) seen_backrefs.add(backref) fhindex.write(""" .. raw:: html <div class="clearer"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ # local import to avoid testing dependency on PIL: try: from PIL import Image except ImportError: import Image img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) // 2, (height - height_sc) // 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: subprocess.call(["optipng", "-quiet", "-o", "9", out_fname]) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name class NameFinder(ast.NodeVisitor): """Finds the longest form of variable names and their imports in code Only retains names from imported modules. """ def __init__(self): super(NameFinder, self).__init__() self.imported_names = {} self.accessed_names = set() def visit_Import(self, node, prefix=''): for alias in node.names: local_name = alias.asname or alias.name self.imported_names[local_name] = prefix + alias.name def visit_ImportFrom(self, node): self.visit_Import(node, node.module + '.') def visit_Name(self, node): self.accessed_names.add(node.id) def visit_Attribute(self, node): attrs = [] while isinstance(node, ast.Attribute): attrs.append(node.attr) node = node.value if isinstance(node, ast.Name): # This is a.b, not e.g. a().b attrs.append(node.id) self.accessed_names.add('.'.join(reversed(attrs))) else: # need to get a in a().b self.visit(node) def get_mapping(self): for name in self.accessed_names: local_name = name.split('.', 1)[0] remainder = name[len(local_name):] if local_name in self.imported_names: # Join import path to relative path full_name = self.imported_names[local_name] + remainder yield name, full_name def identify_names(code): """Builds a codeobj summary by identifying and resovles used names >>> code = ''' ... from a.b import c ... import d as e ... print(c) ... e.HelloWorld().f.g ... ''' >>> for name, o in sorted(identify_names(code).items()): ... print(name, o['name'], o['module'], o['module_short']) c c a.b a.b e.HelloWorld HelloWorld d d """ finder = NameFinder() finder.visit(ast.parse(code)) example_code_obj = {} for name, full_name in finder.get_mapping(): # name is as written in file (e.g. np.asarray) # full_name includes resolved import path (e.g. numpy.asarray) module, attribute = full_name.rsplit('.', 1) # get shortened module name module_short = get_short_module_name(module, attribute) cobj = {'name': attribute, 'module': module, 'module_short': module_short} example_code_obj[name] = cobj return example_code_obj def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. Returns the set of sklearn functions/classes imported in the example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%03d.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, base_image_name + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print('plotting %s' % fname) t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip().expandtabs() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers() for fig_mngr in fig_managers: # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. fig = plt.figure(fig_mngr.num) kwargs = {} to_rgba = matplotlib.colors.colorConverter.to_rgba for attr in ['facecolor', 'edgecolor']: fig_attr = getattr(fig, 'get_' + attr)() default_attr = matplotlib.rcParams['figure.' + attr] if to_rgba(fig_attr) != to_rgba(default_attr): kwargs[attr] = fig_attr fig.savefig(image_path % fig_mngr.num, **kwargs) figure_list.append(image_fname % fig_mngr.num) except: print(80 * '_') print('%s is not compiling:' % fname) traceback.print_exc() print(80 * '_') finally: os.chdir(cwd) sys.stdout = orig_stdout print(" - time elapsed : %.2g sec" % time_elapsed) else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path.replace("%03d", '[0-9][0-9][0-9]'))] figure_list.sort() # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to _build/html/stable/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, base_image_name + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') time_m, time_s = divmod(time_elapsed, 60) f = open(os.path.join(target_dir, base_image_name + '.rst'), 'w') f.write(this_template % locals()) f.flush() # save variables so we can later add links to the documentation if six.PY2: example_code_obj = identify_names(open(example_file).read()) else: example_code_obj = \ identify_names(open(example_file, encoding='utf-8').read()) if example_code_obj: codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: pickle.dump(example_code_obj, fid, pickle.HIGHEST_PROTOCOL) backrefs = set('{module_short}.{name}'.format(**entry) for entry in example_code_obj.values() if entry['module'].startswith('sklearn')) return backrefs def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" if exception is not None: return print('Embedding documentation hyperlinks in examples..') if app.builder.name == 'latex': # Don't embed hyperlinks when a latex builder is used. return # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) resolver_urls = { 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.6.0', 'scipy': 'http://docs.scipy.org/doc/scipy-0.11.0/reference', } for this_module, url in resolver_urls.items(): try: doc_resolvers[this_module] = SphinxDocLinkResolver(url) except HTTPError as e: print("The following HTTP Error has occurred:\n") print(e.code) except URLError as e: print("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding `{0}` links due to a URL " "Error:\n".format(this_module)) print(e.args) example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print('\tprocessing: %s' % fname) full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = pickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.items(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue try: link = doc_resolvers[this_module].resolve(cobj, full_fname) except (HTTPError, URLError) as e: print("The following error has occurred:\n") print(repr(e)) continue if link is not None: parts = name.split('.') name_html = period.join(orig_pattern % part for part in parts) str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file # ensure greediness names = sorted(str_repl, key=len, reverse=True) expr = re.compile(r'(?<!\.)\b' + # don't follow . or word '|'.join(re.escape(name) for name in names)) def substitute_link(match): return str_repl[match.group()] if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') line = expr.sub(substitute_link, line) fid.write(line.encode('utf-8')) print('[done]') def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename)) def setup_module(): # HACK: Stop nosetests running setup() above pass
bsd-3-clause
pkruskal/scikit-learn
sklearn/neighbors/unsupervised.py
105
4461
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> rng = neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False) >>> np.asarray(rng[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs)
bsd-3-clause
pansapiens/mytardis
tardis/tardis_portal/download.py
1
22005
# -*- coding: utf-8 -*- """ download.py .. moduleauthor:: Steve Androulakis <steve.androulakis@monash.edu> .. moduleauthor:: Ulrich Felzmann <ulrich.felzmann@versi.edu.au> .. moduleauthor:: Grischa Meyer <grischa.meyer@monash.edu> """ import logging import urllib import os import cStringIO as StringIO import time try: import zlib # We may need its compression method crc32 = zlib.crc32 except ImportError: zlib = None import binascii crc32 = binascii.crc32 from itertools import chain import tarfile from tarfile import TarFile import gzip import io from django.core.servers.basehttp import FileWrapper from django.http import HttpResponseRedirect, StreamingHttpResponse from django.conf import settings from django.utils.dateformat import format as dateformatter from django.utils.importlib import import_module from django.core.exceptions import ImproperlyConfigured from django.contrib.auth.decorators import login_required from tardis.tardis_portal.models import Dataset from tardis.tardis_portal.models import DataFile from tardis.tardis_portal.models import Experiment from tardis.tardis_portal.auth.decorators import has_datafile_download_access from tardis.tardis_portal.auth.decorators import experiment_download_required from tardis.tardis_portal.auth.decorators import dataset_download_required from tardis.tardis_portal.shortcuts import render_error_message from tardis.tardis_portal.views import return_response_not_found, \ return_response_error logger = logging.getLogger(__name__) DEFAULT_ORGANIZATION = settings.DEFAULT_ARCHIVE_ORGANIZATION def _create_download_response(request, datafile_id, disposition='attachment'): # too complex # noqa # Get datafile (and return 404 if absent) try: datafile = DataFile.objects.get(pk=datafile_id) except DataFile.DoesNotExist: return return_response_not_found(request) # Check users has access to datafile if not has_datafile_download_access(request=request, datafile_id=datafile.id): return return_response_error(request) # Send an image that can be seen in the browser if disposition == 'inline' and datafile.is_image(): from tardis.tardis_portal.iiif import download_image args = (request, datafile.id, 'full', 'full', '0', 'native') # Send unconverted image if web-compatible if datafile.get_mimetype() in ('image/gif', 'image/jpeg', 'image/png'): return download_image(*args) # Send converted image return download_image(*args, format='png') # Send local file try: verified_only = True # Query parameter to allow download of unverified files ignore_verif = request.GET.get('ignore_verification_status', '0') # Ensure ignore_verification_status=0 etc works as expected # a bare ?ignore_verification_status is True if ignore_verif.lower() in [u'', u'1', u'true']: verified_only = False # Get file object for datafile file_obj = datafile.get_file(verified_only=verified_only) if not file_obj: # If file path doesn't resolve, return not found if verified_only: return render_error_message(request, "File is unverified, " "please try again later.", status=503) else: return return_response_not_found(request) wrapper = FileWrapper(file_obj, blksize=65535) response = StreamingHttpResponse(wrapper, content_type=datafile.get_mimetype()) response['Content-Disposition'] = \ '%s; filename="%s"' % (disposition, datafile.filename) return response except IOError: # If we can't read the file, return not found return return_response_not_found(request) except ValueError: # raised when replica not verified TODO: custom excptn redirect = request.META.get('HTTP_REFERER', 'http://%s/' % request.META.get('HTTP_HOST')) message = """The file you are trying to access has not yet been verified. Verification is an automated background process. Please try again later or contact the system administrator if the issue persists.""" message = ' '.join(message.split()) # removes spaces redirect = redirect + '#error:' + message return HttpResponseRedirect(redirect) def view_datafile(request, datafile_id): return _create_download_response(request, datafile_id, 'inline') def download_datafile(request, datafile_id): return _create_download_response(request, datafile_id) __mapper_makers = None def get_download_organizations(): return _get_mapper_makers().keys() def _get_mapper_makers(): global __mapper_makers if not __mapper_makers: __mapper_makers = {} mappers = getattr(settings, 'ARCHIVE_FILE_MAPPERS', []) for (organization, mapper_desc) in mappers.items(): mapper_fn = _safe_import(mapper_desc[0]) if len(mapper_desc) >= 2: kwarg = mapper_desc[1] else: kwarg = {} def mapper_maker_maker(kwarg): def mapper_maker(rootdir): myKwarg = dict(kwarg) myKwarg['rootdir'] = rootdir def mapper(datafile): return mapper_fn(datafile, **myKwarg) return mapper return mapper_maker __mapper_makers[organization] = mapper_maker_maker(kwarg) return __mapper_makers def _safe_import(path): try: dot = path.rindex('.') except ValueError: raise ImproperlyConfigured('%s isn\'t an archive mapper' % path) mapper_module, mapper_fname = path[:dot], path[dot + 1:] try: mod = import_module(mapper_module) except ImportError, e: raise ImproperlyConfigured('Error importing mapper %s: "%s"' % (mapper_module, e)) try: return getattr(mod, mapper_fname) except AttributeError: raise ImproperlyConfigured( 'Mapper module "%s" does not define a "%s" function' % (mapper_module, mapper_fname)) def _make_mapper(organization, rootdir): if organization == 'classic': return classic_mapper(rootdir) else: mapper_makers = _get_mapper_makers() mapper_maker = mapper_makers.get(organization) if mapper_maker: return mapper_maker(rootdir) else: return None def classic_mapper(rootdir): def _get_filename(df): return os.path.join(rootdir, str(df.dataset.id), df.filename) return _get_filename def _get_datafile_details_for_archive(mapper, datafiles): # It would be simplest to do this lazily. But if we do that, we implicitly # passing the database context to the thread that will write the archive, # and that is a bit dodgy. (It breaks in unit tests!) Instead, we # populate the list eagerly, but with a file getter rather than the file # itself. If we populate with actual File objects, we risk running out # of file descriptors. res = [] for df in datafiles: mapped_pathname = mapper(df) if mapped_pathname: res.append((df, mapper(df))) return res ########### NEW DOWNLOAD ############## class UncachedTarStream(TarFile): ''' Stream files into a compressed tar stream on the fly ''' def __init__(self, mapped_file_objs, filename, do_gzip=False, buffersize=2*65536, comp_level=6, http_buffersize=65535): self.errors = 'strict' self.pax_headers = {} self.mode = 'w' self.closed = False self.members = [] self._loaded = False self.offset = 0 self.inodes = {} self._loaded = True self.mapped_file_objs = mapped_file_objs filenum = len(mapped_file_objs) self.tarinfos = [None] * filenum self.tarinfo_bufs = [None] * filenum self.filename = filename self.buffersize = buffersize self.http_buffersize = http_buffersize self.do_gzip = do_gzip if do_gzip: self.binary_buffer = io.BytesIO() self.gzipfile = gzip.GzipFile(bytes(filename), 'w', comp_level, self.binary_buffer) else: self.tar_size = self.compute_size() def compute_size(self): total_size = 0 for num, fobj in enumerate(self.mapped_file_objs): df, name = fobj tarinfo = self.tarinfo_for_df(df, name) self.tarinfos[num] = tarinfo tarinfo_buf = tarinfo.tobuf(self.format, self.encoding, self.errors) self.tarinfo_bufs[num] = tarinfo_buf total_size += len(tarinfo_buf) size = int(tarinfo.size) blocks, remainder = divmod(size, tarfile.BLOCKSIZE) if remainder > 0: blocks += 1 total_size += blocks * tarfile.BLOCKSIZE blocks, remainder = divmod(total_size, tarfile.RECORDSIZE) if remainder > 0: blocks += 1 total_size = blocks * tarfile.RECORDSIZE return total_size def tarinfo_for_df(self, df, name): tarinfo = self.tarinfo(name) tarinfo.size = int(df.get_size()) mtime = None dj_mtime = df.modification_time if dj_mtime is not None: mtime = dateformatter(dj_mtime, 'U') else: try: fileobj = df.file_object mtime = os.fstat(fileobj.fileno()).st_mtime except: raise Exception('cannot read size for downloads') if mtime is None: mtime = time.time() tarinfo.mtime = mtime return tarinfo def compress(self, buf): self.gzipfile.write(buf) self.gzipfile.flush() self.binary_buffer.seek(0) result = self.binary_buffer.read() self.binary_buffer.seek(0) self.binary_buffer.truncate() return result def prepare_output(self, uc_buf, remainder): if self.do_gzip: result_buf = self.compress(uc_buf) else: result_buf = uc_buf if remainder is not None: result_buf = ''.join([remainder, result_buf]) stream_buffers = [] while len(result_buf) >= self.http_buffersize: stream_buffers.append(result_buf[:self.http_buffersize]) result_buf = result_buf[self.http_buffersize:] return stream_buffers, result_buf def close_gzip(self): self.gzipfile.close() self.binary_buffer.seek(0) result = self.binary_buffer.read() self.binary_buffer.seek(0) self.binary_buffer.truncate() print len(result) return result def make_tar(self): # noqa ''' main tar generator. until python 3 needs to be in one function because 'yield's don't bubble up. ''' remainder_buf = None for num, fobj in enumerate(self.mapped_file_objs): df, name = fobj fileobj = df.file_object self._check('aw') tarinfo = self.tarinfos[num] buf = self.tarinfo_bufs[num] stream_buffers, remainder_buf = self.prepare_output( buf, remainder_buf) for stream_buf in stream_buffers: yield stream_buf self.offset += len(buf or '') if tarinfo.isreg(): if tarinfo.size == 0: continue # split into file read buffer sized chunks blocks, remainder = divmod(tarinfo.size, self.buffersize) for b in xrange(blocks): buf = fileobj.read(self.buffersize) if len(buf) < self.buffersize: raise IOError("end of file reached") # send in http_buffersize sized chunks stream_buffers, remainder_buf = self.prepare_output( buf, remainder_buf) for stream_buf in stream_buffers: yield stream_buf # in case the file has remaining read bytes if remainder != 0: buf = fileobj.read(remainder) if len(buf) < remainder: raise IOError("end of file reached") # send remaining file data stream_buffers, remainder_buf = self.prepare_output( buf, remainder_buf) for stream_buf in stream_buffers: yield stream_buf blocks, remainder = divmod(tarinfo.size, tarfile.BLOCKSIZE) if remainder > 0: buf = (tarfile.NUL * (tarfile.BLOCKSIZE - remainder)) stream_buffers, remainder_buf = self.prepare_output( buf, remainder_buf) for stream_buf in stream_buffers: yield stream_buf blocks += 1 self.offset += blocks * tarfile.BLOCKSIZE fileobj.close() # fill up the end with zero-blocks # (like option -b20 for tar does) blocks, remainder = divmod(self.offset, tarfile.RECORDSIZE) if remainder > 0: buf = tarfile.NUL * (tarfile.RECORDSIZE - remainder) stream_buffers, remainder_buf = self.prepare_output( buf, remainder_buf) for stream_buf in stream_buffers: yield stream_buf if remainder_buf and len(remainder_buf) > 0: yield remainder_buf if self.do_gzip: yield self.close_gzip() def get_response(self): if self.do_gzip: content_type = 'application/x-gzip' content_length = None self.filename += '.gz' else: content_type = 'application/x-tar' content_length = self.tar_size response = StreamingHttpResponse(self.make_tar(), content_type=content_type) response['Content-Disposition'] = 'attachment; filename="%s"' % \ self.filename response['X-Accel-Buffering'] = 'no' if content_length is not None: response['Content-Length'] = content_length return response def _streaming_downloader(request, datafiles, rootdir, filename, comptype='tgz', organization=DEFAULT_ORGANIZATION): ''' private function to be called by wrappers creates download response with given files and names ''' mapper = _make_mapper(organization, rootdir) if not mapper: return render_error_message( request, 'Unknown download organization: %s' % organization, status=400) try: files = _get_datafile_details_for_archive(mapper, datafiles) tfs = UncachedTarStream( files, filename=filename, do_gzip=comptype != 'tar') return tfs.get_response() except ValueError: # raised when replica not verified TODO: custom excptn redirect = request.META.get('HTTP_REFERER', 'http://%s/' % request.META.get('HTTP_HOST')) message = """The experiment you are trying to access has not yet been verified completely. Verification is an automated background process. Please try again later or contact the system administrator if the issue persists.""" message = ' '.join(message.split()) # removes spaces redirect = redirect + '#error:' + message return HttpResponseRedirect(redirect) @experiment_download_required def streaming_download_experiment(request, experiment_id, comptype='tgz', organization=DEFAULT_ORGANIZATION): experiment = Experiment.objects.get(id=experiment_id) rootdir = experiment.title.replace(' ', '_') filename = '%s-complete.tar' % rootdir datafiles = DataFile.objects.filter( dataset__experiments__id=experiment_id) return _streaming_downloader(request, datafiles, rootdir, filename, comptype, organization) @dataset_download_required def streaming_download_dataset(request, dataset_id, comptype='tgz', organization=DEFAULT_ORGANIZATION): dataset = Dataset.objects.get(id=dataset_id) rootdir = dataset.description.replace(' ', '_') filename = '%s-complete.tar' % rootdir datafiles = DataFile.objects.filter(dataset=dataset) return _streaming_downloader(request, datafiles, rootdir, filename, comptype, organization) def streaming_download_datafiles(request): # too complex # noqa """ takes string parameter "comptype" for compression method. Currently implemented: "tgz" and "tar" The datafiles to be downloaded are selected using "datafile", "dataset" or "url" parameters. An "expid" parameter may be supplied for use in the download archive name. If "url" is used, the "expid" parameter is also used to limit the datafiles to be downloaded to a given experiment. """ # Create the HttpResponse object with the appropriate headers. # TODO: handle no datafile, invalid filename, all http links # TODO: intelligent selection of temp file versus in-memory buffering. logger.error('In download_datafiles !!') comptype = getattr(settings, 'DEFAULT_ARCHIVE_FORMATS', ['tar'])[0] organization = getattr(settings, 'DEFAULT_ARCHIVE_ORGANIZATION', 'classic') if 'comptype' in request.POST: comptype = request.POST['comptype'] if 'organization' in request.POST: organization = request.POST['organization'] if 'datafile' in request.POST or 'dataset' in request.POST: if (len(request.POST.getlist('datafile')) > 0 or len(request.POST.getlist('dataset'))) > 0: datasets = request.POST.getlist('dataset') datafiles = request.POST.getlist('datafile') # Generator to produce datafiles from dataset id def get_dataset_datafiles(dsid): for datafile in DataFile.objects.filter(dataset=dsid): if has_datafile_download_access( request=request, datafile_id=datafile.id): yield datafile # Generator to produce datafile from datafile id def get_datafile(dfid): datafile = DataFile.objects.get(pk=dfid) if has_datafile_download_access(request=request, datafile_id=datafile.id): yield datafile # Take chained generators and turn them into a set of datafiles df_set = set(chain(chain.from_iterable(map(get_dataset_datafiles, datasets)), chain.from_iterable(map(get_datafile, datafiles)))) else: return render_error_message( request, 'No Datasets or Datafiles were selected for downloaded', status=404) elif 'url' in request.POST: if len(request.POST.getlist('url')) != 0: return render_error_message( request, 'No Datasets or Datafiles were selected for downloaded', status=404) for url in request.POST.getlist('url'): url = urllib.unquote(url) raw_path = url.partition('//')[2] experiment_id = request.POST['expid'] datafile = DataFile.objects.filter( url__endswith=raw_path, dataset__experiment__id=experiment_id)[0] if has_datafile_download_access(request=request, datafile_id=datafile.id): df_set = set([datafile]) else: return render_error_message( request, 'No Datasets or Datafiles were selected for downloaded', status=404) logger.info('Files for archive command: %s' % df_set) if len(df_set) == 0: return render_error_message( request, 'You do not have download access for any of the ' 'selected Datasets or Datafiles ', status=403) try: expid = request.POST['expid'] experiment = Experiment.objects.get(id=expid) except (KeyError, Experiment.DoesNotExist): experiment = iter(df_set).next().dataset.get_first_experiment() filename = '%s-selection.tar' % experiment.title.replace(' ', '_') rootdir = '%s-selection' % experiment.title.replace(' ', '_') return _streaming_downloader(request, df_set, rootdir, filename, comptype, organization) @login_required def download_api_key(request): user = request.user api_key_file = StringIO.StringIO() api_key_file.write("ApiKey {0}:{1}".format(user, user.api_key.key)) api_key_file.seek(0) response = StreamingHttpResponse(FileWrapper(api_key_file), content_type='text/plain') response['Content-Disposition'] = \ 'attachment; filename="{0}.key"' .format(user) return response
bsd-3-clause
dimkal/mne-python
examples/time_frequency/plot_source_label_time_frequency.py
19
3767
""" ========================================================= Compute power and phase lock in label of the source space ========================================================= Compute time-frequency maps of power and phase lock in the source space. The inverse method is linear based on dSPM inverse operator. The example also shows the difference in the time-frequency maps when they are computed with and without subtracting the evoked response from each epoch. The former results in induced activity only while the latter also includes evoked (stimulus-locked) activity. """ # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, source_induced_power print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' label_name = 'Aud-rh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name tmin, tmax, event_id = -0.2, 0.5, 2 # Setup for reading the raw data raw = io.Raw(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # Picks MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) # Load epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, preload=True) # Compute a source estimate per frequency band including and excluding the # evoked response frequencies = np.arange(7, 30, 2) # define frequencies of interest label = mne.read_label(fname_label) n_cycles = frequencies / 3. # different number of cycle per frequency # subtract the evoked response in order to exclude evoked activity epochs_induced = epochs.copy().subtract_evoked() plt.close('all') for ii, (this_epochs, title) in enumerate(zip([epochs, epochs_induced], ['evoked + induced', 'induced only'])): # compute the source space power and phase lock power, phase_lock = source_induced_power( this_epochs, inverse_operator, frequencies, label, baseline=(-0.1, 0), baseline_mode='percent', n_cycles=n_cycles, n_jobs=1) power = np.mean(power, axis=0) # average over sources phase_lock = np.mean(phase_lock, axis=0) # average over sources times = epochs.times ########################################################################## # View time-frequency plots plt.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.43) plt.subplot(2, 2, 2 * ii + 1) plt.imshow(20 * power, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0., vmax=30., cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Power (%s)' % title) plt.colorbar() plt.subplot(2, 2, 2 * ii + 2) plt.imshow(phase_lock, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0, vmax=0.7, cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Phase-lock (%s)' % title) plt.colorbar() plt.show()
bsd-3-clause
ageron/tensorflow
tensorflow/tools/compatibility/tf_upgrade_v2.py
1
78824
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Upgrader for Python scripts from 1.* TensorFlow to 2.0 TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import ast import functools import sys import pasta from tensorflow.tools.compatibility import ast_edits from tensorflow.tools.compatibility import renames_v2 from tensorflow.tools.compatibility import reorders_v2 # These pylint warnings are a mistake. # pylint: disable=g-explicit-bool-comparison,g-bool-id-comparison class TFAPIChangeSpec(ast_edits.APIChangeSpec): """List of maps that describe what changed in the API.""" def __init__(self): # Maps from a function name to a dictionary that describes how to # map from an old argument keyword to the new argument keyword. # If the new argument is None, it will be removed. # Only keyword args are handled, so make sure to also put any function in # function_reorders to ensure that all args are made into keywords first. self.function_keyword_renames = { "tf.test.assert_equal_graph_def": { "checkpoint_v2": None, }, "tf.nn.embedding_lookup": { "validate_indices": None, }, "tf.image.sample_distorted_bounding_box": { "seed2": None, }, "tf.gradients": { "colocate_gradients_with_ops": None, }, "tf.hessians": { "colocate_gradients_with_ops": None, }, "*.minimize": { "colocate_gradients_with_ops": None, }, "*.compute_gradients": { "colocate_gradients_with_ops": None, }, "tf.cond": { "strict": None, "fn1": "true_fn", "fn2": "false_fn" }, "tf.argmin": { "dimension": "axis", }, "tf.argmax": { "dimension": "axis", }, "tf.arg_min": { "dimension": "axis", }, "tf.arg_max": { "dimension": "axis", }, "tf.math.argmin": { "dimension": "axis", }, "tf.math.argmax": { "dimension": "axis", }, "tf.image.crop_and_resize": { "box_ind": "box_indices", }, "tf.image.extract_image_patches": { "ksizes": "sizes", }, "tf.image.resize": { "align_corners": None, }, "tf.image.resize_images": { "align_corners": None, }, "tf.extract_image_patches": { "ksizes": "sizes", }, "tf.expand_dims": { "dim": "axis", }, "tf.batch_to_space": { "block_size": "block_shape", }, "tf.space_to_batch": { "block_size": "block_shape", }, "tf.nn.space_to_batch": { "block_size": "block_shape", }, "tf.constant": { "verify_shape": "verify_shape_is_now_always_true", }, "tf.convert_to_tensor": { "preferred_dtype": "dtype_hint" }, "tf.nn.softmax_cross_entropy_with_logits": { "dim": "axis", "_sentinel": None, }, "tf.nn.softmax_cross_entropy_with_logits_v2": { "dim": "axis" }, "tf.linalg.l2_normalize": { "dim": "axis", }, "tf.linalg.norm": { "keep_dims": "keepdims", }, "tf.norm": { "keep_dims": "keepdims", }, "tf.load_file_system_library": { "library_filename": "library_location", }, "tf.count_nonzero": { "input_tensor": "input", "keep_dims": "keepdims", "reduction_indices": "axis", }, "tf.math.count_nonzero": { "input_tensor": "input", "keep_dims": "keepdims", "reduction_indices": "axis", }, "tf.nn.erosion2d": { "kernel": "filters", "rates": "dilations", }, "tf.math.l2_normalize": { "dim": "axis", }, "tf.math.log_softmax": { "dim": "axis", }, "tf.math.softmax": { "dim": "axis" }, "tf.nn.l2_normalize": { "dim": "axis", }, "tf.nn.log_softmax": { "dim": "axis", }, "tf.nn.moments": { "keep_dims": "keepdims", }, "tf.nn.pool": { "dilation_rate": "dilations" }, "tf.nn.separable_conv2d": { "rate": "dilations" }, "tf.nn.depthwise_conv2d": { "rate": "dilations" }, "tf.nn.softmax": { "dim": "axis" }, "tf.nn.sufficient_statistics": { "keep_dims": "keepdims" }, "tf.debugging.assert_all_finite": { "t": "x", "msg": "message", }, "tf.sparse.add": { "thresh": "threshold", }, "tf.sparse_add": { "thresh": "threshold", }, "tf.sparse.concat": { "concat_dim": "axis", "expand_nonconcat_dim": "expand_nonconcat_dims", }, "tf.sparse_concat": { "concat_dim": "axis", "expand_nonconcat_dim": "expand_nonconcat_dims", }, "tf.sparse.split": { "split_dim": "axis", }, "tf.sparse_split": { "split_dim": "axis", }, "tf.sparse.reduce_max": { "reduction_axes": "axis", "keep_dims": "keepdims", }, "tf.sparse_reduce_max": { "reduction_axes": "axis", "keep_dims": "keepdims", }, "tf.sparse.reduce_sum": { "reduction_axes": "axis", "keep_dims": "keepdims", }, "tf.sparse_reduce_sum": { "reduction_axes": "axis", "keep_dims": "keepdims", }, "tf.nn.max_pool_with_argmax": { "Targmax": "output_dtype", }, "tf.nn.max_pool": { "value": "input" }, "tf.nn.avg_pool": { "value": "input" }, "tf.nn.avg_pool2d": { "value": "input" }, "tf.multinomial": { "output_dtype": "dtype", }, "tf.random.multinomial": { "output_dtype": "dtype", }, "tf.reverse_sequence": { "seq_dim": "seq_axis", "batch_dim": "batch_axis", }, "tf.nn.batch_norm_with_global_normalization": { "t": "input", "m": "mean", "v": "variance", }, "tf.nn.dilation2d": { "filter": "filters", "rates": "dilations", }, "tf.nn.conv3d": { "filter": "filters" }, "tf.zeros_like": { "tensor": "input", }, "tf.ones_like": { "tensor": "input", }, "tf.nn.conv2d_transpose": { "value": "input", "filter": "filters", }, "tf.nn.conv3d_transpose": { "value": "input", "filter": "filters", }, "tf.nn.convolution": { "filter": "filters", "dilation_rate": "dilations", }, "tf.gfile.Exists": { "filename": "path", }, "tf.gfile.Remove": { "filename": "path", }, "tf.gfile.Stat": { "filename": "path", }, "tf.gfile.Glob": { "filename": "pattern", }, "tf.gfile.MkDir": { "dirname": "path", }, "tf.gfile.MakeDirs": { "dirname": "path", }, "tf.gfile.DeleteRecursively": { "dirname": "path", }, "tf.gfile.IsDirectory": { "dirname": "path", }, "tf.gfile.ListDirectory": { "dirname": "path", }, "tf.gfile.Copy": { "oldpath": "src", "newpath": "dst", }, "tf.gfile.Rename": { "oldname": "src", "newname": "dst", }, "tf.gfile.Walk": { "in_order": "topdown", }, "tf.random.stateless_multinomial": { "output_dtype": "dtype", }, "tf.string_to_number": { "string_tensor": "input", }, "tf.strings.to_number": { "string_tensor": "input", }, "tf.string_to_hash_bucket": { "string_tensor": "input", }, "tf.strings.to_hash_bucket": { "string_tensor": "input", }, "tf.reduce_all": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_all": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_any": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_any": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_min": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_min": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_max": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_max": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_sum": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_sum": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_mean": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_mean": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_prod": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_prod": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_logsumexp": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.math.reduce_logsumexp": { "reduction_indices": "axis", "keep_dims": "keepdims", }, "tf.reduce_join": { "keep_dims": "keepdims", "reduction_indices": "axis" }, "tf.strings.reduce_join": { "keep_dims": "keepdims", "reduction_indices": "axis" }, "tf.squeeze": { "squeeze_dims": "axis", }, "tf.nn.weighted_moments": { "keep_dims": "keepdims" }, "tf.nn.conv1d": { "value": "input", "use_cudnn_on_gpu": None, }, "tf.nn.conv2d": { "filter": "filters", "use_cudnn_on_gpu": None, }, "tf.nn.conv2d_backprop_input": { "use_cudnn_on_gpu": None, "input_sizes": "output_shape", "out_backprop": "input", "filter": "filters", }, "tf.contrib.summary.audio": { "tensor": "data", "family": None, }, "tf.contrib.summary.histogram": { "tensor": "data", "family": None, }, "tf.contrib.summary.image": { "tensor": "data", "bad_color": None, "max_images": "max_outputs", "family": None, }, "tf.contrib.summary.scalar": { "tensor": "data", "family": None, }, } # pylint: disable=line-too-long # Add additional renames not in renames_v2.py here. # IMPORTANT: For the renames in here, if you also need to add to # function_reorders or function_keyword_renames, use the OLD function name. # These renames happen after the arguments have been processed. self.manual_symbol_renames = { "tf.batch_to_space_nd": "tf.batch_to_space", "tf.batch_gather": "tf.compat.v1.batch_gather", "tf.space_to_batch_nd": "tf.space_to_batch", "tf.nn.space_to_batch": "tf.space_to_batch", "tf.estimator.inputs": "tf.compat.v1.estimator.inputs", "tf.extract_image_patches": "tf.image.extract_image_patches", "tf.gfile.Copy": "tf.io.gfile.copy", "tf.gfile.DeleteRecursively": "tf.io.gfile.rmtree", "tf.gfile.Exists": "tf.io.gfile.exists", "tf.gfile.Glob": "tf.io.gfile.glob", "tf.gfile.GFile": "tf.io.gfile.GFile", "tf.gfile.IsDirectory": "tf.io.gfile.isdir", "tf.gfile.ListDirectory": "tf.io.gfile.listdir", "tf.gfile.MakeDirs": "tf.io.gfile.makedirs", "tf.gfile.MkDir": "tf.io.gfile.mkdir", "tf.gfile.Open": "tf.io.gfile.GFile", "tf.gfile.Remove": "tf.io.gfile.remove", "tf.gfile.Rename": "tf.io.gfile.rename", "tf.gfile.Stat": "tf.io.gfile.stat", "tf.gfile.Walk": "tf.io.gfile.walk", "tf.contrib.data.AUTOTUNE": "tf.data.experimental.AUTOTUNE", "tf.contrib.data.Counter": "tf.data.experimental.Counter", "tf.contrib.data.CheckpointInputPipelineHook": "tf.data.experimental.CheckpointInputPipelineHook", "tf.contrib.data.CsvDataset": "tf.data.experimental.CsvDataset", "tf.contrib.data.Optional": "tf.data.experimental.Optional", "tf.contrib.data.RandomDataset": "tf.data.experimental.RandomDataset", "tf.contrib.data.Reducer": "tf.data.experimental.Reducer", "tf.contrib.data.SqlDataset": "tf.data.experimental.SqlDataset", "tf.contrib.data.StatsAggregator": "tf.data.experimental.StatsAggregator", "tf.contrib.data.TFRecordWriter": "tf.data.experimental.TFRecordWriter", "tf.contrib.data.assert_element_shape": "tf.data.experimental.assert_element_shape", "tf.contrib.data.batch_and_drop_remainder": "tf.compat.v1.contrib.data.batch_and_drop_remainder", "tf.contrib.data.bucket_by_sequence_length": "tf.data.experimental.bucket_by_sequence_length", "tf.contrib.data.choose_from_datasets": "tf.data.experimental.choose_from_datasets", "tf.contrib.data.copy_to_device": "tf.data.experimental.copy_to_device", "tf.contrib.data.dense_to_sparse_batch": "tf.data.experimental.dense_to_sparse_batch", "tf.contrib.data.enumerate_dataset": "tf.data.experimental.enumerate_dataset", "tf.contrib.data.get_next_as_optional": "tf.data.experimental.get_next_as_optional", "tf.contrib.data.get_single_element": "tf.data.experimental.get_single_element", "tf.contrib.data.group_by_reducer": "tf.data.experimental.group_by_reducer", "tf.contrib.data.group_by_window": "tf.data.experimental.group_by_window", "tf.contrib.data.ignore_errors": "tf.data.experimental.ignore_errors", "tf.contrib.data.latency_stats": "tf.data.experimental.latency_stats", "tf.contrib.data.make_batched_features_dataset": "tf.data.experimental.make_batched_features_dataset", "tf.contrib.data.make_csv_dataset": "tf.data.experimental.make_csv_dataset", "tf.contrib.data.make_saveable_from_iterator": "tf.data.experimental.make_saveable_from_iterator", "tf.contrib.data.map_and_batch": "tf.data.experimental.map_and_batch", "tf.contrib.data.padded_batch_and_drop_remainder": "tf.compat.v1.contrib.data.padded_batch_and_drop_remainder", "tf.contrib.data.parallel_interleave": "tf.data.experimental.parallel_interleave", "tf.contrib.data.parse_example_dataset": "tf.data.experimental.parse_example_dataset", "tf.contrib.data.prefetch_to_device": "tf.data.experimental.prefetch_to_device", "tf.contrib.data.read_batch_features": "tf.compat.v1.contrib.data.read_batch_features", "tf.contrib.data.reduce_dataset": "tf.compat.v1.contrib.data.reduce_dataset", "tf.contrib.data.rejection_resample": "tf.data.experimental.rejection_resample", "tf.contrib.data.sample_from_datasets": "tf.data.experimental.sample_from_datasets", "tf.contrib.data.scan": "tf.data.experimental.scan", "tf.contrib.data.set_stats_aggregator": "tf.data.experimental.set_stats_aggregator", "tf.contrib.data.shuffle_and_repeat": "tf.data.experimental.shuffle_and_repeat", "tf.contrib.data.sliding_window_batch": "tf.compat.v1.contrib.data.sliding_window_batch", "tf.contrib.data.sloppy_interleave": "tf.compat.v1.contrib.data.sloppy_interleave", "tf.contrib.data.unbatch": "tf.data.experimental.unbatch", "tf.contrib.data.unique": "tf.data.experimental.unique", "tf.contrib.estimator.make_early_stopping_hook": "tf.estimator.experimental.make_early_stopping_hook", "tf.contrib.estimator.stop_if_higher_hook": "tf.estimator.experimental.stop_if_higher_hook", "tf.contrib.estimator.stop_if_lower_hook": "tf.estimator.experimental.stop_if_lower_hook", "tf.contrib.estimator.stop_if_no_decrease_hook": "tf.estimator.experimental.stop_if_no_decrease_hook", "tf.contrib.estimator.stop_if_no_increase_hook": "tf.estimator.experimental.stop_if_no_increase_hook", "tf.contrib.framework.CriticalSection": "tf.CriticalSection", "tf.contrib.framework.is_tensor": "tf.is_tensor", "tf.contrib.framework.nest.assert_same_structure": "tf.nest.assert_same_structure", "tf.contrib.framework.nest.flatten": "tf.nest.flatten", "tf.contrib.framework.nest.is_sequence": "tf.nest.is_nested", "tf.contrib.framework.nest.map_structure": "tf.nest.map_structure", "tf.contrib.framework.nest.pack_sequence_as": "tf.nest.pack_sequence_as", "tf.contrib.util.constant_value": "tf.get_static_value", "tf.contrib.saved_model.load_keras_model": "tf.keras.experimental.load_from_saved_model", "tf.contrib.saved_model.save_keras_model": "tf.keras.experimental.export_saved_model", "tf.contrib.rnn.RNNCell": "tf.compat.v1.nn.rnn_cell.RNNCell", "tf.contrib.rnn.LSTMStateTuple": "tf.nn.rnn_cell.LSTMStateTuple", "tf.contrib.rnn.BasicLSTMCell": "tf.compat.v1.nn.rnn_cell.BasicLSTMCell", "tf.contrib.rnn.BasicRNNCell": "tf.compat.v1.nn.rnn_cell.BasicRNNCell", "tf.contrib.rnn.GRUCell": "tf.compat.v1.nn.rnn_cell.GRUCell", "tf.contrib.rnn.LSTMCell": "tf.compat.v1.nn.rnn_cell.LSTMCell", "tf.contrib.rnn.MultiRNNCell": "tf.compat.v1.nn.rnn_cell.MultiRNNCell", "tf.contrib.framework.sort": "tf.sort", "tf.contrib.framework.argsort": "tf.argsort", "tf.contrib.summary.audio": "tf.compat.v2.summary.audio", "tf.contrib.summary.histogram": "tf.compat.v2.summary.histogram", "tf.contrib.summary.image": "tf.compat.v2.summary.image", "tf.contrib.summary.initialize": "tf.compat.v1.summary.initialize", "tf.contrib.summary.scalar": "tf.compat.v2.summary.scalar", "tf.count_nonzero": "tf.math.count_nonzero", "tf.manip.batch_to_space_nd": "tf.batch_to_space", "tf.quantize_v2": "tf.quantization.quantize", "tf.sparse_add": "tf.sparse.add", "tf.sparse_concat": "tf.sparse.concat", "tf.sparse_split": "tf.sparse.split", "tf.sparse_matmul": "tf.linalg.matmul", "tf.sparse_reduce_sum": "tf.sparse.reduce_sum", "tf.sparse_reduce_max": "tf.sparse.reduce_max", "tf.random.stateless_multinomial": "tf.random.stateless_categorical", "tf.substr": "tf.strings.substr", "tf.string_to_hash_bucket": "tf.strings.to_hash_bucket", "tf.string_to_number": "tf.strings.to_number", "tf.multinomial": "tf.random.categorical", "tf.random.multinomial": "tf.random.categorical", "tf.reduce_join": "tf.strings.reduce_join", "tf.load_file_system_library": "tf.load_library", "tf.pywrap_tensorflow": "tf.compat.v1.pywrap_tensorflow", "tf.bincount": "tf.math.bincount", "tf.confusion_matrix": "tf.math.confusion_matrix", "tf.train.confusion_matrix": "tf.math.confusion_matrix", "tf.decode_csv": "tf.io.decode_csv", "tf.data.Iterator": "tf.compat.v1.data.Iterator", "tf.parse_example": "tf.io.parse_example", "tf.parse_single_example": "tf.io.parse_single_example", "tf.nn.fused_batch_norm": "tf.compat.v1.nn.fused_batch_norm", "tf.nn.softmax_cross_entropy_with_logits_v2": "tf.nn.softmax_cross_entropy_with_logits", "tf.losses.Reduction.MEAN": "tf.compat.v1.losses.Reduction.MEAN", "tf.losses.Reduction.SUM_BY_NONZERO_WEIGHTS": "tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS", "tf.losses.Reduction.SUM_OVER_NONZERO_WEIGHTS": "tf.compat.v1.losses.Reduction.SUM_OVER_NONZERO_WEIGHTS", "tf.lite.constants.FLOAT": "tf.float32", "tf.lite.constants.INT32": "tf.int32", "tf.lite.constants.INT64": "tf.int64", "tf.lite.constants.STRING": "tf.string", "tf.lite.constants.QUANTIZED_UINT8": "tf.uint8", "tf.arg_max": "tf.argmax", "tf.arg_min": "tf.argmin", # tf.nn.ctc_loss is still available in 2.0 but behavior # changed significantly. "tf.nn.ctc_loss": "tf.compat.v1.nn.ctc_loss", # tf.saved_model.load in 1.x has no equivalent in 2.x, but there is a # symbol with the same name. "tf.saved_model.load": "tf.compat.v1.saved_model.load", "tf.saved_model.load_v2": "tf.compat.v2.saved_model.load", "tf.zeros_initializer": "tf.compat.v1.initializers.zeros", "tf.ones_initializer": "tf.compat.v1.initializers.ones", "tf.constant_initializer": "tf.compat.v1.initializers.constant", "tf.random_uniform_initializer": "tf.compat.v1.initializers.random_uniform", "tf.random_normal_initializer": "tf.compat.v1.initializers.random_normal", "tf.truncated_normal_initializer": "tf.compat.v1.initializers.truncated_normal", "tf.image.resize_images": "tf.image.resize", "tf.random_poisson": "tf.random.poisson", "tf.debugging.assert_greater": "tf.compat.v1.debugging.assert_greater", "tf.debugging.assert_greater_equal": "tf.compat.v1.debugging.assert_greater_equal", "tf.debugging.assert_integer": "tf.compat.v1.debugging.assert_integer", "tf.debugging.assert_less": "tf.compat.v1.debugging.assert_less", "tf.debugging.assert_less_equal": "tf.compat.v1.debugging.assert_less_equal", "tf.debugging.assert_near": "tf.compat.v1.debugging.assert_near", "tf.debugging.assert_negative": "tf.compat.v1.debugging.assert_negative", "tf.debugging.assert_non_negative": "tf.compat.v1.debugging.assert_non_negative", "tf.debugging.assert_non_positive": "tf.compat.v1.debugging.assert_non_positive", "tf.debugging.assert_none_equal": "tf.compat.v1.debugging.assert_none_equal", "tf.debugging.assert_type": "tf.compat.v1.debugging.assert_type", "tf.debugging.assert_positive": "tf.compat.v1.debugging.assert_positive", "tf.debugging.assert_equal": "tf.compat.v1.debugging.assert_equal", "tf.debugging.assert_scalar": "tf.compat.v1.debugging.assert_scalar", "tf.assert_equal": "tf.compat.v1.assert_equal", "tf.assert_less": "tf.compat.v1.assert_less", "tf.assert_greater": "tf.compat.v1.assert_greater", "tf.debugging.assert_rank": "tf.compat.v1.debugging.assert_rank", "tf.debugging.assert_rank_at_least": "tf.compat.v1.debugging.assert_rank_at_least", "tf.debugging.assert_rank_in": "tf.compat.v1.debugging.assert_rank_in", "tf.assert_rank": "tf.compat.v1.assert_rank", "tf.nn.max_pool": "tf.nn.max_pool2d", "tf.nn.avg_pool": "tf.nn.avg_pool2d", "tf.keras.initializers.zeros": "tf.compat.v1.keras.initializers.zeros", "tf.keras.initializers.ones": "tf.compat.v1.keras.initializers.ones", "tf.keras.initializers.constant": "tf.compat.v1.keras.initializers.constant", "tf.data.experimental.map_and_batch_with_legacy_function": "tf.compat.v1.data.experimental.map_and_batch_with_legacy_function", "tf.nn.conv2d_backprop_input": "tf.nn.conv2d_transpose", "tf.test.compute_gradient": "tf.compat.v1.test.compute_gradient", } # pylint: enable=line-too-long # Mapping from function to the new name of the function self.symbol_renames = renames_v2.renames self.symbol_renames.update(self.manual_symbol_renames) self.symbol_renames = { name: new_name for name, new_name in self.symbol_renames.items() } # Variables that should be changed to functions. self.change_to_function = {} # pylint: disable=line-too-long # This list should just contain names of functions that had # their arguments reordered. After adding a function name to the list # run the following to update reorders_v2.py: # bazel build tensorflow/tools/compatibility/update:generate_v2_reorders_map # bazel-bin/tensorflow/tools/compatibility/update/generate_v2_reorders_map # pylint: enable=line-too-long self.reordered_function_names = { "tf.io.serialize_sparse", "tf.io.serialize_many_sparse", "tf.argmax", "tf.argmin", "tf.batch_to_space", "tf.cond", "tf.nn.space_to_batch", "tf.boolean_mask", "tf.convert_to_tensor", "tf.nn.conv1d", "tf.nn.conv2d", "tf.nn.conv2d_backprop_input", "tf.nn.ctc_beam_search_decoder", "tf.nn.moments", "tf.nn.convolution", "tf.nn.crelu", "tf.nn.weighted_moments", "tf.nn.pool", "tf.nn.separable_conv2d", "tf.nn.depthwise_conv2d", "tf.multinomial", "tf.random.multinomial", "tf.pad", "tf.quantize_v2", "tf.feature_column.categorical_column_with_vocabulary_file", "tf.shape", "tf.size", "tf.random.poisson", "tf.sparse.add", "tf.sparse_add", "tf.sparse.concat", "tf.sparse_concat", "tf.sparse.segment_mean", "tf.sparse.segment_sqrt_n", "tf.sparse.segment_sum", "tf.sparse_matmul", "tf.sparse.reduce_max", "tf.sparse_reduce_max", "tf.io.decode_csv", "tf.strings.length", "tf.strings.reduce_join", "tf.strings.substr", "tf.substr", "tf.transpose", "tf.tuple", "tf.parse_example", "tf.parse_single_example", "tf.io.parse_example", "tf.io.parse_single_example", "tf.while_loop", "tf.reduce_all", "tf.math.reduce_all", "tf.reduce_any", "tf.math.reduce_any", "tf.reduce_min", "tf.math.reduce_min", "tf.reduce_max", "tf.math.reduce_max", "tf.reduce_sum", "tf.math.reduce_sum", "tf.reduce_mean", "tf.math.reduce_mean", "tf.reduce_prod", "tf.math.reduce_prod", "tf.reduce_logsumexp", "tf.math.reduce_logsumexp", "tf.reduce_join", "tf.confusion_matrix", "tf.math.confusion_matrix", "tf.math.in_top_k", "tf.nn.depth_to_space", "tf.nn.embedding_lookup", "tf.nn.embedding_lookup_sparse", "tf.nn.in_top_k", "tf.nn.space_to_depth", "tf.test.assert_equal_graph_def", "tf.linalg.norm", "tf.norm", "tf.reverse_sequence", "tf.sparse_split", # tf.nn.softmax_cross_entropy_with_logits *must* be called with # keyword arguments. Add keyword arguments in rare case when they # are not specified. "tf.nn.softmax_cross_entropy_with_logits", "tf.nn.fractional_avg_pool", "tf.nn.fractional_max_pool", "tf.image.sample_distorted_bounding_box", "tf.gradients", "tf.hessians", "tf.nn.max_pool", "tf.nn.avg_pool", "tf.estimator.LinearClassifier", "tf.estimator.LinearRegressor", "tf.estimator.DNNLinearCombinedClassifier", "tf.estimator.DNNLinearCombinedRegressor", "tf.estimator.DNNRegressor", "tf.estimator.DNNClassifier", "tf.estimator.BaselineClassifier", "tf.estimator.BaselineRegressor", "tf.initializers.uniform_unit_scaling", "tf.uniform_unit_scaling_initializer", } # Manual mapping of function names to be reordered to their list of argument # names, in order. Only use this if argument names cannot be autodetected, # e.g. if the functions are in contrib. self.manual_function_reorders = { "tf.contrib.summary.audio": [ "name", "tensor", "sample_rate", "max_outputs", "family", "step"], "tf.contrib.summary.histogram": [ "name", "tensor", "family", "step"], "tf.contrib.summary.image": [ "name", "tensor", "bad_color", "max_images", "family", "step"], "tf.contrib.summary.scalar": [ "name", "tensor", "family", "step"], } # Functions that were reordered should be changed to the new keyword args # for safety, if positional arguments are used. If you have reversed the # positional arguments yourself, this could do the wrong thing. self.function_reorders = dict(reorders_v2.reorders) self.function_reorders.update(self.manual_function_reorders) contrib_warning = ( ast_edits.ERROR, "<function name> cannot be converted automatically. tf.contrib will not" " be distributed with TensorFlow 2.0, please consider an alternative in" " non-contrib TensorFlow, a community-maintained repository, or fork " "the required code." ) flags_warning = ( ast_edits.ERROR, "tf.flags has been removed, please use the argparse or absl" " modules if you need command line parsing.") decay_function_comment = ( ast_edits.INFO, "To use learning rate decay schedules with TensorFlow 2.0, switch to " "the schedules in `tf.keras.optimizers.schedules`.\n" ) assert_return_type_comment = ( ast_edits.INFO, "<function name> has been changed to return None, the " "data argument has been removed, and arguments have been reordered." "\nThe calls have been converted to compat.v1 for safety (even though " " they may already have been correct)." ) assert_rank_comment = ( ast_edits.INFO, "<function name> has been changed to return None, and" " the data and summarize arguments have been removed." "\nThe calls have been converted to compat.v1 for safety (even though " " they may already have been correct)." ) initializers_no_dtype_comment = ( ast_edits.INFO, "Initializers no longer have the " "dtype argument in the constructor or partition_info argument in the " "__call__ method.\nThe calls have been converted to compat.v1 for" "safety (even though they may already have been correct).") metrics_comment = ( ast_edits.INFO, "tf.metrics have been replaced with object oriented versions in" " TF 2.0 and after. The metric function calls have been converted to " "compat.v1 for backward compatibility. Please update these calls to " "the TF 2.0 versions.") losses_comment = ( ast_edits.INFO, "tf.losses have been replaced with object oriented versions in" " TF 2.0 and after. The loss function calls have been converted to " "compat.v1 for backward compatibility. Please update these calls to " "the TF 2.0 versions.") # This could be done with a _rename_if_arg_not_found_transformer deprecate_partition_strategy_comment = ( ast_edits.WARNING, "`partition_strategy` has been removed from <function name>. " " The 'div' strategy will be used by default.") # make change instead uniform_unit_scaling_initializer_comment = ( ast_edits.ERROR, "uniform_unit_scaling_initializer has been removed. Please use" " tf.initializers.variance_scaling instead with distribution=uniform " "to get equivalent behaviour.") # Make change instead (issue warning about strip_...) export_saved_model_renamed = ( ast_edits.ERROR, "(Manual edit required) Please rename the method export_savedmodel() " "to export_saved_model(). Two things to note:\n\t(1) The argument " "strip_default_attributes has been removed. The function will always " "strip the default attributes from ops. If this breaks your code, " "please switch to tf.compat.v1.estimator.Estimator.\n\t(2) This change " "only effects core estimator. If you are using " "tf.contrib.learn.Estimator, please switch to using core estimator.") # TODO(b/124529441): if possible eliminate need for manual checking. contrib_summary_comment = ( ast_edits.WARNING, "(Manual check required) tf.contrib.summary.* functions have been " "migrated best-effort to tf.compat.v2.summary.* equivalents where " "possible, but the resulting code may not always work. Please check " "manually; you can report migration failures on b/124529441.") # Function warnings. <function name> placeholder inside warnings will be # replaced by function name. # You can use *. to add items which do not check the FQN, and apply to e.g., # methods. self.function_warnings = { "*.export_savedmodel": export_saved_model_renamed, "tf.assert_equal": assert_return_type_comment, "tf.assert_none_equal": assert_return_type_comment, "tf.assert_negative": assert_return_type_comment, "tf.assert_positive": assert_return_type_comment, "tf.assert_non_negative": assert_return_type_comment, "tf.assert_non_positive": assert_return_type_comment, "tf.assert_near": assert_return_type_comment, "tf.assert_less": assert_return_type_comment, "tf.assert_less_equal": assert_return_type_comment, "tf.assert_greater": assert_return_type_comment, "tf.assert_greater_equal": assert_return_type_comment, "tf.assert_integer": assert_return_type_comment, "tf.assert_type": assert_return_type_comment, "tf.assert_scalar": assert_return_type_comment, "tf.assert_rank": assert_rank_comment, "tf.assert_rank_at_least": assert_rank_comment, "tf.assert_rank_in": assert_rank_comment, "tf.contrib.summary.audio": contrib_summary_comment, "tf.contrib.summary.histogram": contrib_summary_comment, "tf.contrib.summary.image": contrib_summary_comment, "tf.contrib.summary.scalar": contrib_summary_comment, "tf.debugging.assert_equal": assert_return_type_comment, "tf.debugging.assert_greater": assert_return_type_comment, "tf.debugging.assert_greater_equal": assert_return_type_comment, "tf.debugging.assert_integer": assert_return_type_comment, "tf.debugging.assert_less": assert_return_type_comment, "tf.debugging.assert_less_equal": assert_return_type_comment, "tf.debugging.assert_near": assert_return_type_comment, "tf.debugging.assert_negative": assert_return_type_comment, "tf.debugging.assert_non_negative": assert_return_type_comment, "tf.debugging.assert_non_positive": assert_return_type_comment, "tf.debugging.assert_none_equal": assert_return_type_comment, "tf.debugging.assert_positive": assert_return_type_comment, "tf.debugging.assert_type": assert_return_type_comment, "tf.debugging.assert_scalar": assert_return_type_comment, "tf.debugging.assert_rank": assert_rank_comment, "tf.debugging.assert_rank_at_least": assert_rank_comment, "tf.debugging.assert_rank_in": assert_rank_comment, "tf.train.exponential_decay": decay_function_comment, "tf.train.piecewise_constant_decay": decay_function_comment, "tf.train.polynomial_decay": decay_function_comment, "tf.train.natural_exp_decay": decay_function_comment, "tf.train.inverse_time_decay": decay_function_comment, "tf.train.cosine_decay": decay_function_comment, "tf.train.cosine_decay_restarts": decay_function_comment, "tf.train.linear_cosine_decay": decay_function_comment, "tf.train.noisy_linear_cosine_decay": decay_function_comment, "tf.nn.embedding_lookup": deprecate_partition_strategy_comment, "tf.nn.embedding_lookup_sparse": deprecate_partition_strategy_comment, "tf.nn.nce_loss": deprecate_partition_strategy_comment, "tf.nn.safe_embedding_lookup_sparse": deprecate_partition_strategy_comment, "tf.nn.sampled_softmax_loss": deprecate_partition_strategy_comment, "tf.keras.initializers.Zeros": initializers_no_dtype_comment, "tf.keras.initializers.zeros": initializers_no_dtype_comment, "tf.keras.initializers.Ones": initializers_no_dtype_comment, "tf.keras.initializers.ones": initializers_no_dtype_comment, "tf.keras.initializers.Constant": initializers_no_dtype_comment, "tf.keras.initializers.constant": initializers_no_dtype_comment, "tf.keras.initializers.VarianceScaling": initializers_no_dtype_comment, "tf.keras.initializers.Orthogonal": initializers_no_dtype_comment, "tf.keras.initializers.orthogonal": initializers_no_dtype_comment, "tf.keras.initializers.Identity": initializers_no_dtype_comment, "tf.keras.initializers.identity": initializers_no_dtype_comment, "tf.keras.initializers.glorot_uniform": initializers_no_dtype_comment, "tf.keras.initializers.glorot_normal": initializers_no_dtype_comment, "tf.initializers.zeros": initializers_no_dtype_comment, "tf.zeros_initializer": initializers_no_dtype_comment, "tf.initializers.ones": initializers_no_dtype_comment, "tf.ones_initializer": initializers_no_dtype_comment, "tf.initializers.constant": initializers_no_dtype_comment, "tf.constant_initializer": initializers_no_dtype_comment, "tf.initializers.random_uniform": initializers_no_dtype_comment, "tf.random_uniform_initializer": initializers_no_dtype_comment, "tf.initializers.random_normal": initializers_no_dtype_comment, "tf.random_normal_initializer": initializers_no_dtype_comment, "tf.initializers.truncated_normal": initializers_no_dtype_comment, "tf.truncated_normal_initializer": initializers_no_dtype_comment, "tf.initializers.variance_scaling": initializers_no_dtype_comment, "tf.variance_scaling_initializer": initializers_no_dtype_comment, "tf.initializers.orthogonal": initializers_no_dtype_comment, "tf.orthogonal_initializer": initializers_no_dtype_comment, "tf.initializers.identity": initializers_no_dtype_comment, "tf.glorot_uniform_initializer": initializers_no_dtype_comment, "tf.initializers.glorot_uniform": initializers_no_dtype_comment, "tf.glorot_normal_initializer": initializers_no_dtype_comment, "tf.initializers.glorot_normal": initializers_no_dtype_comment, "tf.losses.absolute_difference": losses_comment, "tf.losses.add_loss": losses_comment, "tf.losses.compute_weighted_loss": losses_comment, "tf.losses.cosine_distance": losses_comment, "tf.losses.get_losses": losses_comment, "tf.losses.get_regularization_loss": losses_comment, "tf.losses.get_regularization_losses": losses_comment, "tf.losses.get_total_loss": losses_comment, "tf.losses.hinge_loss": losses_comment, "tf.losses.huber_loss": losses_comment, "tf.losses.log_loss": losses_comment, "tf.losses.mean_pairwise_squared_error": losses_comment, "tf.losses.mean_squared_error": losses_comment, "tf.losses.sigmoid_cross_entropy": losses_comment, "tf.losses.softmax_cross_entropy": losses_comment, "tf.losses.sparse_softmax_cross_entropy": losses_comment, "tf.metrics.accuracy": metrics_comment, "tf.metrics.auc": metrics_comment, "tf.metrics.average_precision_at_k": metrics_comment, "tf.metrics.false_negatives": metrics_comment, "tf.metrics.false_negatives_at_thresholds": metrics_comment, "tf.metrics.false_positives": metrics_comment, "tf.metrics.false_positives_at_thresholds": metrics_comment, "tf.metrics.mean": metrics_comment, "tf.metrics.mean_absolute_error": metrics_comment, "tf.metrics.mean_cosine_distance": metrics_comment, "tf.metrics.mean_iou": metrics_comment, "tf.metrics.mean_per_class_accuracy": metrics_comment, "tf.metrics.mean_relative_error": metrics_comment, "tf.metrics.mean_squared_error": metrics_comment, "tf.metrics.mean_tensor": metrics_comment, "tf.metrics.percentage_below": metrics_comment, "tf.metrics.precision": metrics_comment, "tf.metrics.precision_at_k": metrics_comment, "tf.metrics.precision_at_thresholds": metrics_comment, "tf.metrics.precision_at_top_k": metrics_comment, "tf.metrics.recall": metrics_comment, "tf.metrics.recall_at_k": metrics_comment, "tf.metrics.recall_at_thresholds": metrics_comment, "tf.metrics.recall_at_top_k": metrics_comment, "tf.metrics.root_mean_squared_error": metrics_comment, "tf.metrics.sensitivity_at_specificity": metrics_comment, "tf.metrics.sparse_average_precision_at_k": metrics_comment, "tf.metrics.sparse_precision_at_k": metrics_comment, "tf.metrics.specificity_at_sensitivity": metrics_comment, "tf.metrics.true_negatives": metrics_comment, "tf.metrics.true_negatives_at_thresholds": metrics_comment, "tf.metrics.true_positives": metrics_comment, "tf.metrics.true_positives_at_thresholds": metrics_comment, "tf.get_variable": (ast_edits.WARNING, "<function name> returns ResourceVariables by default in 2.0, " "which have well-defined semantics and are stricter about shapes. " "You can disable this behavior by passing use_resource=False, or " "by calling tf.compat.v1.disable_resource_variables().") } # Warnings that are emitted only if a specific arg is found. self.function_arg_warnings = { "tf.nn.conv1d": { ("use_cudnn_on_gpu", 4): ( ast_edits.WARNING, "use_cudnn_on_gpu has been removed, behavior is now equivalent" "to setting it to True."), }, "tf.nn.conv2d": { ("use_cudnn_on_gpu", 4): ( ast_edits.WARNING, "use_cudnn_on_gpu has been removed, behavior is now equivalent" "to setting it to True."), }, "tf.nn.conv2d_backprop_filter": { ("use_cudnn_on_gpu", 5): ( ast_edits.WARNING, "use_cudnn_on_gpu has been removed, behavior is now equivalent" "to setting it to True."), }, "tf.nn.conv2d_backprop_input": { ("use_cudnn_on_gpu", 5): ( ast_edits.WARNING, "use_cudnn_on_gpu has been removed, behavior is now equivalent" "to setting it to True."), }, "tf.gradients": { ("colocate_gradients_with_ops", 4): ( ast_edits.INFO, "tf.gradients no longer takes " "'colocate_gradients_with_ops' argument, it behaves as if it " "was set to True."), }, "*.minimize": { ("colocate_gradients_with_ops", 5): ( ast_edits.INFO, "Optimizer.minimize no longer takes " "'colocate_gradients_with_ops' argument, it behaves as if it " "was set to True."), }, "*.compute_gradients": { ("colocate_gradients_with_ops", 4): ( ast_edits.INFO, "Optimizer.compute_gradients no " "longer takes 'colocate_gradients_with_ops' argument, it " "behaves as if it was set to True."), }, "tf.cond": { ("strict", 3): ( ast_edits.WARNING, "tf.cond no longer takes 'strict' argument, it behaves as " "if was set to True.") }, "tf.contrib.summary.audio": { ("family", 4): ( ast_edits.WARNING, "tf.contrib.summary.* functions no longer take the 'family' " "argument; instead name scoping should be used. This call site " "specifies a family argument so it cannot be converted safely.") }, "tf.contrib.summary.histogram": { ("family", 2): ( ast_edits.WARNING, "tf.contrib.summary.* functions no longer take the 'family' " "argument; instead name scoping should be used. This call site " "specifies a family argument so it cannot be converted safely.") }, "tf.contrib.summary.image": { ("bad_color", 2): ( ast_edits.WARNING, "tf.contrib.summary.image no longer takes the 'bad_color' " "argument; caller must now preprocess if needed. This call " "site specifies a bad_color argument so it cannot be converted " "safely."), ("family", 4): ( ast_edits.WARNING, "tf.contrib.summary.* functions no longer take the 'family' " "argument; instead name scoping should be used. This call site " "specifies a family argument so it cannot be converted safely.") }, "tf.contrib.summary.scalar": { ("family", 2): ( ast_edits.WARNING, "tf.contrib.summary.* functions no longer take the 'family' " "argument; instead name scoping should be used. This call site " "specifies a family argument so it cannot be converted safely.") }, "tf.image.resize": { ("align_corners", 3): (ast_edits.WARNING, "align_corners is not supported by tf.image.resize, the new " "default transformation is close to what v1 provided. If you " "require exactly the same transformation as before, use " "compat.v1.image.resize."), }, "tf.image.resize_bilinear": { ("align_corners", 2): (ast_edits.WARNING, "align_corners is not supported by tf.image.resize, the new " "default transformation is close to what v1 provided. If you " "require exactly the same transformation as before, use " "compat.v1.image.resize_bilinear."), }, "tf.image.resize_area": { ("align_corners", 2): (ast_edits.WARNING, "align_corners is not supported by tf.image.resize, the new " "default transformation is close to what v1 provided. If you " "require exactly the same transformation as before, use " "compat.v1.image.resize_area."), }, "tf.image.resize_bicubic": { ("align_corners", 2): (ast_edits.WARNING, "align_corners is not supported by tf.image.resize, the new " "default transformation is close to what v1 provided. If you " "require exactly the same transformation as before, use " "compat.v1.image.resize_bicubic."), }, "tf.image.resize_nearest_neighbor": { ("align_corners", 2): (ast_edits.WARNING, "align_corners is not supported by tf.image.resize, the new " "default transformation is close to what v1 provided. If you " "require exactly the same transformation as before, use " "compat.v1.image.resize_nearest_neighbor."), }, } # Specially handled functions # Each transformer is a callable which will be called with the arguments # transformer(parent, node, full_name, name, logs) # Where logs is a list to which (level, line, col, msg) tuples can be # appended, full_name is the FQN of the function called (or None if that is # unknown), name is the name of the function called (or None is that is # unknown). node is an ast.Call node representing this function call, and # parent is its parent in the AST. # The function may modify node (but not parent), and must return # - none, if nothing was modified # - node, if node was modified in place (make sure to use # pasta.ast_utils.replace_child to swap out children, otherwise formatting # may get messy) # - a replacement for node, if the whole call node was replaced. The caller # will take care of changing parent. self.function_transformers = { "*.make_initializable_iterator": _iterator_transformer, "*.make_one_shot_iterator": _iterator_transformer, "tf.nn.dropout": _dropout_transformer, "tf.to_bfloat16": _cast_transformer, "tf.to_complex128": _cast_transformer, "tf.to_complex64": _cast_transformer, "tf.to_double": _cast_transformer, "tf.to_float": _cast_transformer, "tf.to_int32": _cast_transformer, "tf.to_int64": _cast_transformer, "tf.nn.softmax_cross_entropy_with_logits": _softmax_cross_entropy_with_logits_transformer, "tf.image.extract_glimpse": _extract_glimpse_transformer, "tf.image.resize_area": _image_resize_transformer, "tf.image.resize_bicubic": _image_resize_transformer, "tf.image.resize_bilinear": _image_resize_transformer, "tf.image.resize_nearest_neighbor": _image_resize_transformer, "tf.nn.fractional_avg_pool": _pool_seed_transformer, "tf.nn.fractional_max_pool": _pool_seed_transformer, "tf.name_scope": _name_scope_transformer, "tf.device": functools.partial( _rename_if_arg_found_transformer, arg_name="device_name", arg_ok_predicate=_is_ast_str, remove_if_ok=False, message="tf.device no longer takes functions as an argument. " "We could not determine that the argument value is a string, so " "the call was converted to compat.v1."), "tf.zeros_like": functools.partial( _rename_if_arg_found_transformer, arg_name="optimize", arg_ok_predicate=_is_ast_true, remove_if_ok=True, message="tf.zeros_like no longer takes an optimize argument, and " "behaves as if optimize=True. This call site specifies something " "other than optimize=True, so it was converted to compat.v1."), "tf.ones_like": functools.partial( _rename_if_arg_found_transformer, arg_name="optimize", arg_ok_predicate=_is_ast_true, remove_if_ok=True, message="tf.ones_like no longer takes an optimize argument, and " "behaves as if optimize=True. This call site specifies something " "other than optimize=True, so it was converted to compat.v1."), "tf.while_loop": functools.partial( _rename_if_arg_found_transformer, arg_name="return_same_structure", arg_ok_predicate=_is_ast_true, remove_if_ok=True, message="tf.while_loop no longer takes 'return_same_structure' " "argument and behaves as if return_same_structure=True. This call " "site specifies something other than return_same_structure=True, " "so it was converted to compat.v1."), "tf.nn.ctc_beam_search_decoder": functools.partial( _rename_if_arg_found_transformer, arg_name="merge_repeated", arg_ok_predicate=_is_ast_false, remove_if_ok=True, message="tf.nn.ctc_beam_search_decoder no longer takes the " "'merge_repeated' argument and behaves as if merge_repeated=False. " "This call site specifies something other than " "merge_repeated=False, so it was converted to compat.v1."), "tf.nn.erosion2d": functools.partial( _add_argument_transformer, arg_name="data_format", arg_value_ast=ast.Str("NHWC")), "tf.contrib.summary.audio": _add_summary_step_transformer, "tf.contrib.summary.histogram": _add_summary_step_transformer, "tf.contrib.summary.image": _add_summary_step_transformer, "tf.contrib.summary.scalar": _add_summary_step_transformer, "tf.estimator.LinearClassifier": _add_loss_reduction_transformer, "tf.estimator.LinearRegressor": _add_loss_reduction_transformer, "tf.estimator.DNNLinearCombinedClassifier": _add_loss_reduction_transformer, "tf.estimator.DNNLinearCombinedRegressor": _add_loss_reduction_transformer, "tf.estimator.DNNRegressor": _add_loss_reduction_transformer, "tf.estimator.DNNClassifier": _add_loss_reduction_transformer, "tf.estimator.BaselineClassifier": _add_loss_reduction_transformer, "tf.estimator.BaselineRegressor": _add_loss_reduction_transformer, "tf.initializers.uniform_unit_scaling": _add_uniform_scaling_initializer_transformer, "tf.uniform_unit_scaling_initializer": _add_uniform_scaling_initializer_transformer, } self.module_deprecations = { "tf.contrib": contrib_warning, "tf.flags": flags_warning, } def _is_ast_str(node): """Determine whether this node represents a string.""" allowed_types = [ast.Str] if hasattr(ast, "Bytes"): allowed_types += [ast.Bytes] if hasattr(ast, "JoinedStr"): allowed_types += [ast.JoinedStr] if hasattr(ast, "FormattedValue"): allowed_types += [ast.FormattedValue] return isinstance(node, allowed_types) def _is_ast_true(node): if hasattr(ast, "NameConstant"): return isinstance(node, ast.NameConstant) and node.value is True else: return isinstance(node, ast.Name) and node.id == "True" def _is_ast_false(node): if hasattr(ast, "NameConstant"): return isinstance(node, ast.NameConstant) and node.value is False else: return isinstance(node, ast.Name) and node.id == "False" # Lots of unused arguments below, since these are called in a standard manner. # pylint: disable=unused-argument def _rename_if_arg_found_transformer(parent, node, full_name, name, logs, arg_name=None, arg_ok_predicate=None, remove_if_ok=False, message=None): """Replaces the given call with tf.compat.v1 if the given arg is found. This requires the function to be called with all named args, so for using this transformer, the function should also be added to renames. If the arg is not found, the call site is left alone. If the arg is found, and if arg_ok_predicate is given, it is called with the ast Expression representing the argument value found. If it returns True, the function is left alone. If the arg is found, arg_ok_predicate is not None and returns ok, and remove_if_ok is True, the argument is removed from the call. Otherwise, `compat.v1` is inserted between tf and the function name. Args: parent: Parent of node. node: ast.Call node to maybe modify. full_name: full name of function to modify name: name of function to modify logs: list of logs to append to arg_name: name of the argument to look for arg_ok_predicate: predicate callable with the ast of the argument value, returns whether the argument value is allowed. remove_if_ok: remove the argument if present and ok as determined by arg_ok_predicate. message: message to print if a non-ok arg is found (and hence, the function is renamed to its compat.v1 version). Returns: node, if it was modified, else None. """ # Check whether arg is there. arg_present, arg_value = ast_edits.get_arg_value(node, arg_name) if not arg_present: return # Check whether arg is problematic (and if not, maybe remove it). if arg_ok_predicate and arg_ok_predicate(arg_value): if remove_if_ok: for i, kw in enumerate(node.keywords): if kw.arg == arg_name: node.keywords.pop(i) logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Removed argument %s for function %s" % ( arg_name, full_name or name))) break return node else: return # All conditions met, insert v1 and log what we did. # We must have a full name, so the func is an attribute. new_name = full_name.replace("tf.", "tf.compat.v1.", 1) node.func = ast_edits.full_name_node(new_name) logs.append(( ast_edits.INFO, node.lineno, node.col_offset, "Renaming %s to %s because argument %s is present. %s" % (full_name, new_name, arg_name, message if message is not None else "") )) return node def _add_argument_transformer(parent, node, full_name, name, logs, arg_name, arg_value_ast): """Adds an argument (as a final kwarg arg_name=arg_value_ast).""" node.keywords.append(ast.keyword(arg=arg_name, value=arg_value_ast)) logs.append(( ast_edits.INFO, node.lineno, node.col_offset, "Adding argument '%s' to call to %s." % (pasta.dump(node.keywords[-1], full_name or name)) )) return node def _iterator_transformer(parent, node, full_name, name, logs): """Transform iterator methods to compat function calls.""" # First, check that node.func.value is not already something we like # (tf.compat.v1.data), or something which is handled in the rename # (tf.data). This transformer only handles the method call to function call # conversion. if full_name and (full_name.startswith("tf.compat.v1.data") or full_name.startswith("tf.data")): return # This should never happen, since we're only called for Attribute nodes. if not isinstance(node.func, ast.Attribute): return # Transform from x.f(y) to tf.compat.v1.data.f(x, y) # Fortunately, node.func.value should already have valid position info node.args = [node.func.value] + node.args node.func.value = ast_edits.full_name_node("tf.compat.v1.data") logs.append((ast_edits.WARNING, node.lineno, node.col_offset, "Changing dataset.%s() to tf.compat.v1.data.%s(dataset). " "Please check this transformation.\n" % (name, name))) return node def _dropout_transformer(parent, node, full_name, name, logs): """Replace keep_prob with 1-rate.""" def _replace_keep_prob_node(parent, old_value): """Replaces old_value with 1-(old_value).""" one = ast.Num(n=1) one.lineno = 0 one.col_offset = 0 new_value = ast.BinOp(left=one, op=ast.Sub(), right=old_value) # This copies the prefix and suffix on old_value to new_value. pasta.ast_utils.replace_child(parent, old_value, new_value) ast.copy_location(new_value, old_value) # Put parentheses around keep_prob.value (and remove the old prefix/ # suffix, they should only be around new_value). pasta.base.formatting.set(old_value, "prefix", "(") pasta.base.formatting.set(old_value, "suffix", ")") # Check if we have a keep_prob keyword arg for keep_prob in node.keywords: if keep_prob.arg == "keep_prob": logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Changing keep_prob arg of tf.nn.dropout to rate\n")) keep_prob.arg = "rate" _replace_keep_prob_node(keep_prob, keep_prob.value) return node # Maybe it was a positional arg if len(node.args) < 2: logs.append((ast_edits.ERROR, node.lineno, node.col_offset, "tf.nn.dropout called without arguments, so " "automatic fix was disabled. tf.nn.dropout has changed " "the semantics of the second argument.")) else: _replace_keep_prob_node(node, node.args[1]) logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Changing keep_prob arg of tf.nn.dropout to rate, and " "recomputing value.\n")) return node def _cast_transformer(parent, node, full_name, name, logs): """Transforms to_int and to_float to cast(..., dtype=...).""" # Find out the dtype to cast to from the function name dtype_str = name[3:] # Special cases where the full dtype is not given if dtype_str == "float": dtype_str = "float32" elif dtype_str == "double": dtype_str = "float64" new_arg = ast.keyword(arg="dtype", value=ast.Attribute(value=ast.Name(id="tf", ctx=ast.Load()), attr=dtype_str, ctx=ast.Load())) # Ensures a valid transformation when a positional name arg is given if len(node.args) == 2: name_arg = ast.keyword(arg="name", value=node.args[-1]) node.args = node.args[:-1] node.keywords.append(name_arg) # Python3 ast requires the args for the Attribute, but codegen will mess up # the arg order if we just set them to 0. new_arg.value.lineno = node.lineno new_arg.value.col_offset = node.col_offset+100 node.keywords.append(new_arg) if isinstance(node.func, ast.Attribute): node.func.attr = "cast" else: assert isinstance(node.func, ast.Name) node.func.id = "cast" logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Changed %s call to tf.cast(..., dtype=tf.%s)." % (full_name, dtype_str))) return node def _softmax_cross_entropy_with_logits_transformer( parent, node, full_name, name, logs): """Wrap labels argument with stop_gradients.""" def _wrap_label(parent, old_value): """Wrap labels with tf.stop_gradient.""" already_stop_grad = (isinstance(old_value, ast.Call) and isinstance(old_value.func, ast.Attribute) and old_value.func.attr == "stop_gradient" and isinstance(old_value.func.value, ast.Name) and old_value.func.value.id == "tf") if already_stop_grad: return False try: new_value = ast.Call( ast.Name(id="tf.stop_gradient", ctx=ast.Load()), [old_value], []) except TypeError: new_value = ast.Call( ast.Name(id="tf.stop_gradient", ctx=ast.Load()), [old_value], [], None, None) # This copies the prefix and suffix on old_value to new_value. pasta.ast_utils.replace_child(parent, old_value, new_value) ast.copy_location(new_value, old_value) return True # Check if we have a labels keyword arg for karg in node.keywords: if karg.arg == "labels": if _wrap_label(karg, karg.value): logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Changing labels arg of " "tf.nn.softmax_cross_entropy_with_logits to " "tf.stop_gradient(labels). Please check this " "transformation.\n")) return node return node def _image_resize_transformer(parent, node, full_name, name, logs): """Transforms image.resize_* to image.resize(..., method=*, ...).""" resize_method = name[7:].upper() new_arg = ast.keyword(arg="method", value=ast.Attribute( value=ast.Attribute( value=ast.Attribute( value=ast.Name(id="tf", ctx=ast.Load()), attr="image", ctx=ast.Load()), attr="ResizeMethod", ctx=ast.Load()), attr=resize_method, ctx=ast.Load())) # Ensures a valid transformation when a positional name arg is given if len(node.args) == 4: pos_arg = ast.keyword(arg="preserve_aspect_ratio", value=node.args[-1]) node.args = node.args[:-1] node.keywords.append(pos_arg) if len(node.args) == 3: pos_arg = ast.keyword(arg="align_corners", value=node.args[-1]) node.args = node.args[:-1] new_keywords = [] for kw in node.keywords: if kw.arg != "align_corners": new_keywords.append(kw) node.keywords = new_keywords # Python3 ast requires the args for the Attribute, but codegen will mess up # the arg order if we just set them to 0. new_arg.value.lineno = node.lineno new_arg.value.col_offset = node.col_offset+100 node.keywords.append(new_arg) if isinstance(node.func, ast.Attribute): node.func.attr = "resize" else: assert isinstance(node.func, ast.Name) node.func.id = "resize" logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Changed %s call to tf.image.resize(..., " "method=tf.image.ResizeMethod.%s)." % (full_name, resize_method))) return node def _pool_seed_transformer(parent, node, full_name, name, logs): """Removes seed2 and deterministic, and adds non-zero seed if needed.""" # This requires that this function uses all kwargs (add to renames!). seed_arg = None deterministic = False modified = False new_keywords = [] for kw in node.keywords: if sys.version_info[:2] >= (3, 5) and isinstance(kw, ast.Starred): pass elif kw.arg == "seed": seed_arg = kw elif kw.arg == "seed2" or kw.arg == "deterministic": lineno = getattr(kw, "lineno", node.lineno) col_offset = getattr(kw, "col_offset", node.col_offset) logs.append((ast_edits.INFO, lineno, col_offset, "Removed argument %s for function %s" % ( kw.arg, full_name or name))) if kw.arg == "deterministic": if not _is_ast_false(kw.value): deterministic = True modified = True continue new_keywords.append(kw) if deterministic: if seed_arg is None: new_keywords.append(ast.keyword(arg="seed", value=ast.Num(42))) logs.add(( ast_edits.INFO, node.lineno, node.col_offset, "Adding seed=42 to call to %s since determinism was requested" % ( full_name or name) )) else: logs.add(( ast_edits.WARNING, node.lineno, node.col_offset, "The deterministic argument is deprecated for %s, pass a " "non-zero seed for determinism. The deterministic argument is " "present, possibly not False, and the seed is already set. The " "converter cannot determine whether it is nonzero, please check." )) if modified: node.keywords = new_keywords return node else: return def _extract_glimpse_transformer(parent, node, full_name, name, logs): def _replace_uniform_noise_node(parent, old_value): """Replaces old_value with 'uniform' or 'guassian'.""" uniform = ast.Str(s="uniform") gaussian = ast.Str(s="gaussian") new_value = ast.IfExp(body=uniform, test=old_value, orelse=gaussian) # This copies the prefix and suffix on old_value to new_value. pasta.ast_utils.replace_child(parent, old_value, new_value) ast.copy_location(new_value, old_value) # Put parentheses around noise.value.test (and remove the old prefix/ # suffix, they should only be around new_value.test), so that: # "uniform" if (a if b else c) else "gaussian" is valid. pasta.base.formatting.set(new_value.test, "prefix", "(") pasta.base.formatting.set(new_value.test, "suffix", ")") # Check if we have a uniform_noise keyword arg for uniform_noise in node.keywords: if uniform_noise.arg == "uniform_noise": logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Changing uniform_noise arg of tf.image.extract_glimpse " "to noise, and recomputing value. Please check this " "transformation.\n")) uniform_noise.arg = "noise" value = "uniform" if uniform_noise.value else "gaussian" _replace_uniform_noise_node(uniform_noise, uniform_noise.value) return node # Since `noise`/`uniform_noise` is optional arg, nothing needs to be # done if len(node.args) < 5. if len(node.args) >= 5: _replace_uniform_noise_node(node, node.args[5]) logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Changing uniform_noise arg of tf.image.extract_glimpse to " "noise, and recomputing value.\n")) return node def _add_summary_step_transformer(parent, node, full_name, name, logs): """Adds a step argument to the summary API call if not specified. The inserted argument value is tf.compat.v1.train.get_or_create_global_step(). """ for keyword_arg in node.keywords: if keyword_arg.arg == "step": return node default_value = "tf.compat.v1.train.get_or_create_global_step()" # Parse with pasta instead of ast to avoid emitting a spurious trailing \n. ast_value = pasta.parse(default_value) node.keywords.append(ast.keyword(arg="step", value=ast_value)) logs.append(( ast_edits.WARNING, node.lineno, node.col_offset, "Summary API writing function %s now requires a 'step' argument; " "inserting default of %s." % (full_name or name, default_value))) return node def _add_loss_reduction_transformer(parent, node, full_name, name, logs): """Adds a loss_reduction argument if not specified. Default value for tf.estimator.*Classifier and tf.estimator.*Regressor loss_reduction argument changed to SUM_OVER_BATCH_SIZE. So, we update existing calls to use the old default value `tf.losses.Reduction.SUM`. Note: to apply this transformation, symbol must be added to reordered_function_names above. """ for keyword_arg in node.keywords: if keyword_arg.arg == "loss_reduction": return node # TODO(annarev): this should be updated to tf.keras.losses.Reduction.SUM # once b/125525822 is fixed. default_value = "tf.compat.v1.losses.Reduction.SUM" # Parse with pasta instead of ast to avoid emitting a spurious trailing \n. ast_value = pasta.parse(default_value) node.keywords.append(ast.keyword(arg="loss_reduction", value=ast_value)) logs.append(( ast_edits.INFO, node.lineno, node.col_offset, "%s: Default value of loss_reduction has been changed to " "SUM_OVER_BATCH_SIZE; inserting old default value %s.\n" % (full_name or name, default_value))) return node def _add_uniform_scaling_initializer_transformer( parent, node, full_name, name, logs): """Updates references to uniform_unit_scaling_initializer. Transforms: tf.uniform_unit_scaling_initializer(factor, seed, dtype) to tf.keras.initializers.VarianceScaling( scale=factor, distribution="uniform", seed=seed) Note: to apply this transformation, symbol must be added to reordered_function_names above. """ for keyword_arg in node.keywords: if keyword_arg.arg == "factor": keyword_arg.arg = "scale" distribution_value = "\"uniform\"" # Parse with pasta instead of ast to avoid emitting a spurious trailing \n. ast_value = pasta.parse(distribution_value) node.keywords.append(ast.keyword(arg="distribution", value=ast_value)) lineno = node.func.value.lineno col_offset = node.func.value.col_offset node.func.value = ast_edits.full_name_node("tf.keras.initializers") node.func.value.lineno = lineno node.func.value.col_offset = col_offset node.func.attr = "VarianceScaling" return node def _name_scope_transformer(parent, node, full_name, name, logs): """Fix name scope invocation to use 'default_name' and omit 'values' args.""" name_found, name = ast_edits.get_arg_value(node, "name", 0) default_found, default_name = ast_edits.get_arg_value(node, "default_name", 1) # If an actual name was given... if name_found and pasta.dump(name) != "None": logs.append((ast_edits.INFO, node.lineno, node.col_offset, "`name` passed to `name_scope`. Because you may be re-entering" " an existing scope, it is not safe to convert automatically, " " the v2 name_scope does not support re-entering scopes by" " name.\n")) # Rename to compat.v1 new_name = "tf.compat.v1.name_scope" logs.append((ast_edits.INFO, node.func.lineno, node.func.col_offset, "Renamed %r to %r" % (full_name, new_name))) new_name_node = ast_edits.full_name_node(new_name, node.func.ctx) ast.copy_location(new_name_node, node.func) pasta.ast_utils.replace_child(node, node.func, new_name_node) return node if default_found: # New name scope doesn't have name, but it has a default name. We use # name=default_name, and values can be dropped (it's only for # error reporting and useless outside of graph mode). logs.append((ast_edits.INFO, node.lineno, node.col_offset, "Using default_name as name in call to name_scope.\n")) # Remove all args other than name node.args = [] node.keywords = [ast.keyword(arg="name", value=default_name)] return node logs.append((ast_edits.ERROR, node.lineno, node.col_offset, "name_scope call with neither name nor default_name cannot be " "converted properly."))
apache-2.0
openaid-IATI/OIPA
OIPA/task_queue/utils.py
1
7272
import time import requests from celery.task.control import inspect from iati_synchroniser.models import ( AsyncTasksFinished, Dataset, DatasetDownloadsStarted ) from task_queue.validation import DatasetValidationTask class Tasks: """ The logic: if only one task is running then the task will be continued to run. - parent_task: if only this task is running then continued to run - children_task: if the active task has one or more children_task then not continue to run the task. """ def __init__(self, parent_task, children_tasks): self.inspect = inspect() self.parent_task = parent_task self.children_tasks = children_tasks def workers(self): return self.inspect.active() def list(self): task_list = [self.parent_task] task_list.extend(self.children_tasks) return task_list def count(self): count = 0 try: for worker in self.workers(): for task in self.workers()[worker]: if task['type'] in self.list(): count += 1 except TypeError: pass return count def active(self): tasks = list() try: for worker in self.workers(): for task in self.workers()[worker]: if task['type'] in self.list() \ and task['type'] not in tasks: tasks.append(task['type']) except TypeError: pass return tasks def is_parent(self): if self.count() == 1 and self.active() == [self.parent_task]: return True return False def extract_values(obj, key): """Pull all values of specified key from nested JSON.""" arr = [] def extract(obj, arr, key): """Recursively search for values of key in JSON tree.""" if isinstance(obj, dict): for k, v in obj.items(): if isinstance(v, (dict, list)): extract(v, arr, key) elif k == key: arr.append(v) elif isinstance(obj, list): for item in obj: extract(item, arr, key) return arr results = extract(obj, arr, key) return results def reset_automatic_incremental_parse_dbs(): dds = DatasetDownloadsStarted.objects.all() dds.delete() ddf = AsyncTasksFinished.objects.all() ddf.delete() # Await asynchronous subtasks from other tasks. Started is the number of # elements that are expected to be in def await_async_subtasks(started=-1, started_not_set=True): check_iteration_count = 0 check_iteration_maximum = 3 check_previous_finished_length = 0 check_grace_iteration_count = 0 check_grace_iteration_maximum = 10 check_grace_maximum_disparity = 10 while True: # Get the size of the started datasets if not started_not_set: started = len(DatasetDownloadsStarted.objects.all()) finished = len(AsyncTasksFinished.objects.all()) # Check if the grace should take effect. # Grace is when the number of failed tasks is very small but the # number of finished tasks no longer changes. This makes sure that # the automatic parsing does not get stuck waiting for an unfinished # async task. if finished == check_previous_finished_length: check_grace_iteration_count += 1 if check_grace_iteration_count == check_grace_iteration_maximum: if started - finished < check_grace_maximum_disparity: break else: # More async tasks than expected failed, # exit automatic parsing return True else: check_grace_iteration_count = 0 # Check if the async tasks are done if started == finished: if finished == check_previous_finished_length: check_iteration_count += 1 if check_iteration_count == check_iteration_maximum: break else: check_iteration_count = 0 # Wait a minute and check again time.sleep(60) check_previous_finished_length = finished # After this while loop finishes, we clear the DatasetDownloads tables reset_automatic_incremental_parse_dbs() def automatic_incremental_validation(start_at, check_validation): # STEP THREE -- DATASET VALIDATION TASK # # Only execute this step if validation should be active. if start_at in (1, 2, 3) and check_validation: # Prepare checks check_validation_has_started = False check_validation_is_active = False check_empty_iteration_count = 0 check_empty_iteration_maximum = 3 while True: url = "https://iativalidator.iatistandard.org/api/v1/queue/next" response = requests.get(url, timeout=30) # If the response is not 200, reset and check back later. if response.status_code != 200: check_validation_has_started = False check_validation_is_active = False time.sleep(60) continue check_content_is_empty = response.content.decode("utf-8") == "" """ Case 1: content empty - started = false - active = false wait for the validator to start Case 2: content has data - started = false - active = false set started to true and active to true Case 3: content has data - started = true - active = true wait for the content to stop having data! Case 4: content empty - started = true - active = true with three iterations, confirm the content is actually empty! set active to false. """ # if check_content_is_empty and not check_validation_has_started and not check_validation_is_active: # NOQA: E501 if not check_content_is_empty and not check_validation_has_started and not check_validation_is_active: # NOQA: E501 check_validation_has_started = True check_validation_is_active = True if not check_content_is_empty and check_validation_has_started and check_validation_is_active: # NOQA: E501 check_empty_iteration_count = 0 if check_content_is_empty and check_validation_has_started and check_validation_is_active: # NOQA: E501 if check_empty_iteration_count < check_empty_iteration_maximum: check_empty_iteration_count += 1 else: # Validation has finished break time.sleep(60) # Now that the "waiting for validator to finish" loop is over, we know # The validator is finished. Run the task. To reduce complexity, reuse # the AsyncTasksFinished table. datasets = Dataset.objects.all() for dataset in datasets: DatasetValidationTask.delay(dataset_id=dataset.id) started = len(Dataset.objects.all()) await_async_subtasks(started) # STEP THREE -- End #
agpl-3.0
IONISx/edx-platform
setup.py
11
3320
""" Setup script for the Open edX package. """ from setuptools import setup setup( name="Open edX", version="0.5", install_requires=["setuptools"], requires=[], # NOTE: These are not the names we should be installing. This tree should # be reorganized to be a more conventional Python tree. packages=[ "openedx.core.djangoapps.course_groups", "openedx.core.djangoapps.credit", "openedx.core.djangoapps.user_api", "lms", "cms", ], entry_points={ "openedx.course_tab": [ "ccx = lms.djangoapps.ccx.plugins:CcxCourseTab", "courseware = lms.djangoapps.courseware.tabs:CoursewareTab", "course_info = lms.djangoapps.courseware.tabs:CourseInfoTab", "discussion = lms.djangoapps.django_comment_client.forum.views:DiscussionTab", "edxnotes = lms.djangoapps.edxnotes.plugins:EdxNotesTab", "external_discussion = lms.djangoapps.courseware.tabs:ExternalDiscussionCourseTab", "external_link = lms.djangoapps.courseware.tabs:ExternalLinkCourseTab", "html_textbooks = lms.djangoapps.courseware.tabs:HtmlTextbookTabs", "instructor = lms.djangoapps.instructor.views.instructor_dashboard:InstructorDashboardTab", "notes = lms.djangoapps.notes.views:NotesTab", "pdf_textbooks = lms.djangoapps.courseware.tabs:PDFTextbookTabs", "progress = lms.djangoapps.courseware.tabs:ProgressTab", "static_tab = xmodule.tabs:StaticTab", "syllabus = lms.djangoapps.courseware.tabs:SyllabusTab", "teams = lms.djangoapps.teams.plugins:TeamsTab", "textbooks = lms.djangoapps.courseware.tabs:TextbookTabs", "wiki = lms.djangoapps.course_wiki.tab:WikiTab", # ORA 1 tabs (deprecated) "peer_grading = lms.djangoapps.open_ended_grading.views:PeerGradingTab", "staff_grading = lms.djangoapps.open_ended_grading.views:StaffGradingTab", "open_ended = lms.djangoapps.open_ended_grading.views:OpenEndedGradingTab", ], "openedx.user_partition_scheme": [ "random = openedx.core.djangoapps.user_api.partition_schemes:RandomUserPartitionScheme", "cohort = openedx.core.djangoapps.course_groups.partition_scheme:CohortPartitionScheme", "verification = openedx.core.djangoapps.credit.partition_schemes:VerificationPartitionScheme", ], "openedx.block_structure_transformer": [ "library_content = lms.djangoapps.course_blocks.transformers.library_content:ContentLibraryTransformer", "split_test = lms.djangoapps.course_blocks.transformers.split_test:SplitTestTransformer", "start_date = lms.djangoapps.course_blocks.transformers.start_date:StartDateTransformer", "user_partitions = lms.djangoapps.course_blocks.transformers.user_partitions:UserPartitionTransformer", "visibility = lms.djangoapps.course_blocks.transformers.visibility:VisibilityTransformer", "course_blocks_api = lms.djangoapps.course_api.blocks.transformers.blocks_api:BlocksAPITransformer", "proctored_exam = lms.djangoapps.course_api.blocks.transformers.proctored_exam:ProctoredExamTransformer", ], } )
agpl-3.0
yonglehou/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
250
1895
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] plt.plot(x_plot, f(x_plot), label="ground truth") plt.scatter(x, y, label="training points") for degree in [3, 4, 5]: model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
GoogleCloudPlatform/public-datasets-pipelines
datasets/scalable_open_source/pipelines/deps_dev/deps_dev_dag.py
1
2740
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from airflow import DAG from airflow.providers.cncf.kubernetes.operators import kubernetes_pod default_args = { "owner": "Google", "depends_on_past": False, "start_date": "2022-05-01", } with DAG( dag_id="scalable_open_source.deps_dev", default_args=default_args, max_active_runs=1, schedule_interval="@weekly", catchup=False, default_view="graph", ) as dag: # Copy deps.dev dataset copy_bq_datasets = kubernetes_pod.KubernetesPodOperator( task_id="copy_bq_datasets", name="copy_bq_datasets", namespace="composer", service_account_name="datasets", image_pull_policy="Always", image="{{ var.json.scalable_open_source.container_registry.copy_bq_datasets }}", env_vars={ "SOURCE_PROJECT_ID": "{{ var.json.scalable_open_source.source_project_id }}", "SOURCE_BQ_DATASET": "{{ var.json.scalable_open_source.source_bq_dataset }}", "TARGET_PROJECT_ID": "{{ var.json.scalable_open_source.target_project_id }}", "TARGET_BQ_DATASET": "deps_dev_v1", "SERVICE_ACCOUNT": "{{ var.json.scalable_open_source.service_account }}", }, resources={"request_memory": "128M", "request_cpu": "200m"}, ) # Generate BQ views generate_bq_views = kubernetes_pod.KubernetesPodOperator( task_id="generate_bq_views", name="generate_bq_views", namespace="composer", service_account_name="datasets", image_pull_policy="Always", image="{{ var.json.scalable_open_source.container_registry.generate_bq_views }}", env_vars={ "SOURCE_PROJECT_ID": "{{ var.json.scalable_open_source.source_project_id }}", "TARGET_PROJECT_ID": "{{ var.json.scalable_open_source.target_project_id }}", "SOURCE_DATASET": "{{ var.json.scalable_open_source.source_bq_dataset }}", "TARGET_DATASET": "deps_dev_v1", "SERVICE_ACCOUNT": "{{ var.json.scalable_open_source.service_account }}", }, resources={"request_memory": "128M", "request_cpu": "200m"}, ) copy_bq_datasets >> generate_bq_views
apache-2.0
mxjl620/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
274
3790
# Authors: Lars Buitinck <L.J.Buitinck@uva.nl> # Dan Blanchard <dblanchard@ets.org> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
yonglehou/scikit-learn
sklearn/utils/tests/test_shortest_path.py
87
2828
from collections import defaultdict import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.utils.graph import (graph_shortest_path, single_source_shortest_path_length) def floyd_warshall_slow(graph, directed=False): N = graph.shape[0] #set nonzero entries to infinity graph[np.where(graph == 0)] = np.inf #set diagonal to zero graph.flat[::N + 1] = 0 if not directed: graph = np.minimum(graph, graph.T) for k in range(N): for i in range(N): for j in range(N): graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j]) graph[np.where(np.isinf(graph))] = 0 return graph def generate_graph(N=20): #sparse grid of distances rng = np.random.RandomState(0) dist_matrix = rng.random_sample((N, N)) #make symmetric: distances are not direction-dependent dist_matrix += dist_matrix.T #make graph sparse i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2)) dist_matrix[i] = 0 #set diagonal to zero dist_matrix.flat[::N + 1] = 0 return dist_matrix def test_floyd_warshall(): dist_matrix = generate_graph(20) for directed in (True, False): graph_FW = graph_shortest_path(dist_matrix, directed, 'FW') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_FW, graph_py) def test_dijkstra(): dist_matrix = generate_graph(20) for directed in (True, False): graph_D = graph_shortest_path(dist_matrix, directed, 'D') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_D, graph_py) def test_shortest_path(): dist_matrix = generate_graph(20) # We compare path length and not costs (-> set distances to 0 or 1) dist_matrix[dist_matrix != 0] = 1 for directed in (True, False): if not directed: dist_matrix = np.minimum(dist_matrix, dist_matrix.T) graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) for i in range(dist_matrix.shape[0]): # Non-reachable nodes have distance 0 in graph_py dist_dict = defaultdict(int) dist_dict.update(single_source_shortest_path_length(dist_matrix, i)) for j in range(graph_py[i].shape[0]): assert_array_almost_equal(dist_dict[j], graph_py[i, j]) def test_dijkstra_bug_fix(): X = np.array([[0., 0., 4.], [1., 0., 2.], [0., 5., 0.]]) dist_FW = graph_shortest_path(X, directed=False, method='FW') dist_D = graph_shortest_path(X, directed=False, method='D') assert_array_almost_equal(dist_D, dist_FW)
bsd-3-clause
datalogai/recurrentshop
examples/recurrent_highway_networks.py
1
5919
''' Recurrent Highway Networks ------------------------------------------------------------------------------- Julian Georg Zilly | Rupesh Kumar Srivastava | Jan Koutnik | Jurgen Schmidhuber https://arxiv.org/abs/1607.03474 This is an implementation of language modeling experiments on text8 dataset as specified in the paper Visit https://github.com/julian121266/RecurrentHighwayNetworks for implementations using Tensorflow, Torch7 and Brainstorm frameworks and other datasets ''' from recurrentshop import RecurrentModel from recurrentshop.advanced_cells import RHNCell from keras.models import Model from keras.layers import Dense, Dropout, Input, Lambda from keras.layers import add, multiply from keras.layers import Activation, Embedding from keras.constraints import max_norm from keras.initializers import Constant, RandomUniform from keras.regularizers import l2 from keras.preprocessing.text import Tokenizer from keras.callbacks import Callback from keras import backend as K import numpy as np import os import urllib import zipfile # # Hyperparameters # batch_size = 128 timesteps = 10 learning_rate = 0.2 hidden_dim = 10 recurrence_depth = 10 weight_decay = 1e-7 lr_decay = 1.04 gradient_clip = 10 embedding_drop = 0.05 output_drop = 0.3 input_drop = 0.3 hidden_drop = 0.05 transform_bias = -4.0 weight_init = RandomUniform(-0.04, 0.04) def download_data(path): print('Downloading data . . .') url = "http://mattmahoney.net/dc/text8.zip" directory = os.path.dirname(path) if not os.path.exists(directory): os.makedirs(directory) urllib.urlretrieve(url, path) with zipfile.ZipFile(path) as zf: zf.extractall(path=path) def load_text(): recurrentshop_directory = os.path.expanduser('~') + '/.recurrentshop' datasets_directory = recurrentshop_directory + '/datasets' FILE_PATH = os.path.join(recurrentshop_directory, datasets_directory, 'text8') if not os.path.exists(FILE_PATH): download_data(FILE_PATH) raw_text = open(FILE_PATH, 'r').read(100000) tokenizer = Tokenizer(filters='', char_level=True, lower=False) tokenizer.fit_on_texts(raw_text) tokenized_text = tokenizer.texts_to_sequences(raw_text) return tokenized_text, len(tokenizer.word_index) tokenized_text, vocab_size = load_text() embedding_dim = vocab_size # Size of character set def generate_batch(text, batch_size, num_steps): raw_data = np.squeeze(np.array(text, dtype=np.int32)) data_len = len(raw_data) batch_len = data_len // batch_size data = np.zeros([batch_size, batch_len], dtype=np.int32) for i in range(batch_size): data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") i = 0 while i in range(epoch_size): x = data[:, i*num_steps:(i+1)*num_steps] y = data[:, (i+1)*num_steps] if i + 1 >= epoch_size: i = 0 else: i += 1 yield (x, y) def RHN(input_dim, hidden_dim, depth): # Wrapped model inp = Input(batch_shape=(batch_size, input_dim)) state = Input(batch_shape=(batch_size, hidden_dim)) drop_mask = Input(batch_shape=(batch_size, hidden_dim)) # To avoid all zero mask causing gradient to vanish inverted_drop_mask = Lambda(lambda x: 1.0 - x, output_shape=lambda s: s)(drop_mask) drop_mask_2 = Lambda(lambda x: x + 0., output_shape=lambda s: s)(inverted_drop_mask) dropped_state = multiply([state, inverted_drop_mask]) y, new_state = RHNCell(units=hidden_dim, recurrence_depth=depth, kernel_initializer=weight_init, kernel_regularizer=l2(weight_decay), kernel_constraint=max_norm(gradient_clip), bias_initializer=Constant(transform_bias), recurrent_initializer=weight_init, recurrent_regularizer=l2(weight_decay), recurrent_constraint=max_norm(gradient_clip))([inp, dropped_state]) return RecurrentModel(input=inp, output=y, initial_states=[state, drop_mask], final_states=[new_state, drop_mask_2]) # lr decay Scheduler class lr_scheduler(Callback): def on_epoch_begin(self, epoch, logs=None): if epoch > 5: lr = self.lr / 1.04 K.set_value(self.model.optimizer.lr, lr) ########################################### # Build Model ########################################### inp = Input(batch_shape=(batch_size, timesteps)) x = Dropout(embedding_drop)(inp) x = Embedding(vocab_size+1, embedding_dim, input_length=timesteps)(inp) x = Dropout(input_drop)(x) # Create a dropout mask for variational dropout drop_mask = Lambda(lambda x: x[:, 0, :1] * 0., output_shape=lambda s: (s[0], 1))(x) drop_mask = Lambda(lambda x, dim: K.tile(x, (1, dim)), arguments={'dim': hidden_dim}, output_shape=(hidden_dim,))(drop_mask) drop_mask = Lambda(K.ones_like, output_shape=lambda s: s)(drop_mask) drop_mask = Dropout(hidden_drop)(drop_mask) zero_init = Lambda(K.zeros_like, output_shape=lambda s:s)(drop_mask) x = RHN(embedding_dim, hidden_dim, recurrence_depth)(x, initial_state=[zero_init, drop_mask]) x = Dropout(output_drop)(x) out = Dense(vocab_size+1, activation='softmax')(x) model = Model(inputs=[inp], outputs=[out]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) data_gen = generate_batch(tokenized_text, batch_size, timesteps) model.fit_generator(generator=data_gen, steps_per_epoch=(len(tokenized_text)//batch_size), epochs=5, verbose=1, callbacks=[lr_scheduler()])
mit
yonglehou/scikit-learn
examples/linear_model/plot_omp.py
379
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
markslwong/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
22
57502
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { embedding_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') wire_var = dnn_linear_combined._get_embedding_variable( embedding_wire, 'dnn', 'dnn/input_from_feature_columns') for _ in range(2): _, language_value, wire_value = sess.run( [model_ops.train_op, language_var, wire_var]) initial_value = np.full_like(language_value, 0.1) self.assertTrue(np.all(np.isclose(language_value, initial_value))) self.assertFalse(np.all(np.isclose(wire_value, initial_value))) class DNNEstimatorTest(test.TestCase): def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNEstimator) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels dnn_estimator = dnn.DNNEstimator( head=head_lib.multi_class_head(2, weight_column_name='w'), feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) dnn_estimator.fit(input_fn=_input_fn_train, steps=5) scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) class DNNClassifierTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNClassifier) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn.DNNClassifier( feature_columns=[embedding_language], hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertEqual(1, classifier.params['input_layer_min_slice_size']) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predictions_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[10, 10], label_keys=label_keys, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn.DNNClassifier( n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predicted_classes = classifier.predict_classes( input_fn=_input_fn, as_iterable=False) self._assertBinaryPredictions(3, predicted_classes) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertAllEqual(predicted_classes, predictions) probabilities = classifier.predict_proba( input_fn=_input_fn, as_iterable=False) self._assertProbabilities(3, n_classes, probabilities) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertListEqual(predicted_classes, [1, 0, 0]) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predicted_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose( predicted_proba, [[0., 1., 0.], [1., 0., 0.], [1., 0., 0.]], atol=0.3) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn.DNNClassifier( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=5) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertIn('dnn/multi_class_head/centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) class DNNRegressorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNRegressor( feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics that use MetricSpec.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertIn('dnn/regression_head/centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertNotIn('centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = dnn.DNNRegressor(feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
markslwong/tensorflow
tensorflow/tools/docs/generate_1_0.py
18
3157
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generate docs for the TensorFlow Python API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import tensorflow as tf from tensorflow.python import debug as tf_debug from tensorflow.python.util import tf_inspect from tensorflow.tools.docs import generate_lib if __name__ == '__main__': doc_generator = generate_lib.DocGenerator() doc_generator.add_output_dir_argument() doc_generator.add_src_dir_argument() # This doc generator works on the TensorFlow codebase. Since this script lives # at tensorflow/tools/docs, and all code is defined somewhere inside # tensorflow/, we can compute the base directory (two levels up), which is # valid unless we're trying to apply this to a different code base, or are # moving the script around. script_dir = os.path.dirname(tf_inspect.getfile(tf_inspect.currentframe())) default_base_dir = os.path.join(script_dir, '..', '..') doc_generator.add_base_dir_argument(default_base_dir) flags = doc_generator.parse_known_args() # tf_debug is not imported with tf, it's a separate module altogether doc_generator.set_py_modules([('tf', tf), ('tfdbg', tf_debug)]) doc_generator.set_do_not_descend_map({ '': ['cli', 'lib', 'wrappers'], 'contrib': [ 'compiler', 'factorization', 'grid_rnn', 'labeled_tensor', 'ndlstm', 'quantization', 'session_bundle', 'slim', 'solvers', 'specs', 'tensor_forest', 'tensorboard', 'testing', 'training', 'tfprof', ], 'contrib.bayesflow': [ 'entropy', 'monte_carlo', 'special_math', 'stochastic_gradient_estimators', 'stochastic_graph', 'stochastic_tensor', 'stochastic_variables', 'variational_inference' ], 'contrib.distributions': ['bijector'], 'contrib.ffmpeg': ['ffmpeg_ops'], 'contrib.graph_editor': [ 'edit', 'match', 'reroute', 'subgraph', 'transform', 'select', 'util' ], 'contrib.layers': ['feature_column', 'summaries'], 'contrib.learn': [ 'datasets', 'head', 'graph_actions', 'io', 'models', 'monitors', 'ops', 'preprocessing', 'utils', ], 'contrib.util': ['loader'], }) sys.exit(doc_generator.build(flags))
apache-2.0
xuezhisd/DeepLearningTutorials
code/SdA.py
30
18975
""" This tutorial introduces stacked denoising auto-encoders (SdA) using Theano. Denoising autoencoders are the building blocks for SdA. They are based on auto-encoders as the ones used in Bengio et al. 2007. An autoencoder takes an input x and first maps it to a hidden representation y = f_{\theta}(x) = s(Wx+b), parameterized by \theta={W,b}. The resulting latent representation y is then mapped back to a "reconstructed" vector z \in [0,1]^d in input space z = g_{\theta'}(y) = s(W'y + b'). The weight matrix W' can optionally be constrained such that W' = W^T, in which case the autoencoder is said to have tied weights. The network is trained such that to minimize the reconstruction error (the error between x and z). For the denosing autoencoder, during training, first x is corrupted into \tilde{x}, where \tilde{x} is a partially destroyed version of x by means of a stochastic mapping. Afterwards y is computed as before (using \tilde{x}), y = s(W\tilde{x} + b) and z as s(W'y + b'). The reconstruction error is now measured between z and the uncorrupted input x, which is computed as the cross-entropy : - \sum_{k=1}^d[ x_k \log z_k + (1-x_k) \log( 1-z_k)] References : - P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol: Extracting and Composing Robust Features with Denoising Autoencoders, ICML'08, 1096-1103, 2008 - Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19, 2007 """ import os import sys import timeit import numpy import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams from logistic_sgd import LogisticRegression, load_data from mlp import HiddenLayer from dA import dA # start-snippet-1 class SdA(object): """Stacked denoising auto-encoder class (SdA) A stacked denoising autoencoder model is obtained by stacking several dAs. The hidden layer of the dA at layer `i` becomes the input of the dA at layer `i+1`. The first layer dA gets as input the input of the SdA, and the hidden layer of the last dA represents the output. Note that after pretraining, the SdA is dealt with as a normal MLP, the dAs are only used to initialize the weights. """ def __init__( self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10, corruption_levels=[0.1, 0.1] ): """ This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the sdA :type n_layers_sizes: list of ints :param n_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network :type corruption_levels: list of float :param corruption_levels: amount of corruption to use for each layer """ self.sigmoid_layers = [] self.dA_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels # end-snippet-1 # The SdA is an MLP, for which all weights of intermediate layers # are shared with a different denoising autoencoders # We will first construct the SdA as a deep multilayer perceptron, # and when constructing each sigmoidal layer we also construct a # denoising autoencoder that shares weights with that layer # During pretraining we will train these autoencoders (which will # lead to chainging the weights of the MLP as well) # During finetunining we will finish training the SdA by doing # stochastich gradient descent on the MLP # start-snippet-2 for i in xrange(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... # but we are going to only declare that the parameters of the # sigmoid_layers are parameters of the StackedDAA # the visible biases in the dA are parameters of those # dA, but not the SdA self.params.extend(sigmoid_layer.params) # Construct a denoising autoencoder that shared weights with this # layer dA_layer = dA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, bhid=sigmoid_layer.b) self.dA_layers.append(dA_layer) # end-snippet-2 # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs ) self.params.extend(self.logLayer.params) # construct a function that implements one step of finetunining # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) def pretraining_functions(self, train_set_x, batch_size): ''' Generates a list of functions, each of them implementing one step in trainnig the dA corresponding to the layer with same index. The function will require as input the minibatch index, and to train a dA you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared variable that contains all datapoints used for training the dA :type batch_size: int :param batch_size: size of a [mini]batch :type learning_rate: float :param learning_rate: learning rate used during training for any of the dA layers ''' # index to a [mini]batch index = T.lscalar('index') # index to a minibatch corruption_level = T.scalar('corruption') # % of corruption to use learning_rate = T.scalar('lr') # learning rate to use # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for dA in self.dA_layers: # get the cost and the updates list cost, updates = dA.get_cost_updates(corruption_level, learning_rate) # compile the theano function fn = theano.function( inputs=[ index, theano.Param(corruption_level, default=0.2), theano.Param(learning_rate, default=0.1) ], outputs=cost, updates=updates, givens={ self.x: train_set_x[batch_begin: batch_end] } ) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets, batch_size, learning_rate): '''Generates a function `train` that implements one step of finetuning, a function `validate` that computes the error on a batch from the validation set, and a function `test` that computes the error on a batch from the testing set :type datasets: list of pairs of theano.tensor.TensorType :param datasets: It is a list that contain all the datasets; the has to contain three pairs, `train`, `valid`, `test` in this order, where each pair is formed of two Theano variables, one for the datapoints, the other for the labels :type batch_size: int :param batch_size: size of a minibatch :type learning_rate: float :param learning_rate: learning rate used during finetune stage ''' (train_set_x, train_set_y) = datasets[0] (valid_set_x, valid_set_y) = datasets[1] (test_set_x, test_set_y) = datasets[2] # compute number of minibatches for training, validation and testing n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_valid_batches /= batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_test_batches /= batch_size index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = [ (param, param - gparam * learning_rate) for param, gparam in zip(self.params, gparams) ] train_fn = theano.function( inputs=[index], outputs=self.finetune_cost, updates=updates, givens={ self.x: train_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: train_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='train' ) test_score_i = theano.function( [index], self.errors, givens={ self.x: test_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: test_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='test' ) valid_score_i = theano.function( [index], self.errors, givens={ self.x: valid_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: valid_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='valid' ) # Create a function that scans the entire validation set def valid_score(): return [valid_score_i(i) for i in xrange(n_valid_batches)] # Create a function that scans the entire test set def test_score(): return [test_score_i(i) for i in xrange(n_test_batches)] return train_fn, valid_score, test_score def test_SdA(finetune_lr=0.1, pretraining_epochs=15, pretrain_lr=0.001, training_epochs=1000, dataset='mnist.pkl.gz', batch_size=1): """ Demonstrates how to train and test a stochastic denoising autoencoder. This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used in the finetune stage (factor for the stochastic gradient) :type pretraining_epochs: int :param pretraining_epochs: number of epoch to do pretraining :type pretrain_lr: float :param pretrain_lr: learning rate to be used during pre-training :type n_iter: int :param n_iter: maximal number of iterations ot run the optimizer :type dataset: string :param dataset: path the the pickled dataset """ datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size # numpy random generator # start-snippet-3 numpy_rng = numpy.random.RandomState(89677) print '... building the model' # construct the stacked denoising autoencoder class sda = SdA( numpy_rng=numpy_rng, n_ins=28 * 28, hidden_layers_sizes=[1000, 1000, 1000], n_outs=10 ) # end-snippet-3 start-snippet-4 ######################### # PRETRAINING THE MODEL # ######################### print '... getting the pretraining functions' pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x, batch_size=batch_size) print '... pre-training the model' start_time = timeit.default_timer() ## Pre-train layer-wise corruption_levels = [.1, .2, .3] for i in xrange(sda.n_layers): # go through pretraining epochs for epoch in xrange(pretraining_epochs): # go through the training set c = [] for batch_index in xrange(n_train_batches): c.append(pretraining_fns[i](index=batch_index, corruption=corruption_levels[i], lr=pretrain_lr)) print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch), print numpy.mean(c) end_time = timeit.default_timer() print >> sys.stderr, ('The pretraining code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) # end-snippet-4 ######################## # FINETUNING THE MODEL # ######################## # get the training, validation and testing function for the model print '... getting the finetuning functions' train_fn, validate_model, test_model = sda.build_finetune_functions( datasets=datasets, batch_size=batch_size, learning_rate=finetune_lr ) print '... finetunning the model' # early-stopping parameters patience = 10 * n_train_batches # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf test_score = 0. start_time = timeit.default_timer() done_looping = False epoch = 0 while (epoch < training_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_fn(minibatch_index) iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: validation_losses = validate_model() this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if ( this_validation_loss < best_validation_loss * improvement_threshold ): patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = test_model() test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print( ( 'Optimization complete with best validation score of %f %%, ' 'on iteration %i, ' 'with test performance %f %%' ) % (best_validation_loss * 100., best_iter + 1, test_score * 100.) ) print >> sys.stderr, ('The training code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == '__main__': test_SdA()
bsd-3-clause
benoitsteiner/tensorflow-xsmm
tensorflow/contrib/factorization/python/ops/gmm_test.py
39
8716
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ops.gmm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib from tensorflow.contrib.learn.python.learn.estimators import kmeans from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed as random_seed_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.training import queue_runner class GMMTest(test.TestCase): def input_fn(self, batch_size=None, points=None): batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] def _fn(): x = constant_op.constant(points) if batch_size == num_points: return x, None indices = random_ops.random_uniform(constant_op.constant([batch_size]), minval=0, maxval=num_points-1, dtype=dtypes.int32, seed=10) return array_ops.gather(x, indices), None return _fn def setUp(self): np.random.seed(3) random_seed_lib.set_random_seed(2) self.num_centers = 2 self.num_dims = 2 self.num_points = 4000 self.batch_size = self.num_points self.true_centers = self.make_random_centers(self.num_centers, self.num_dims) self.points, self.assignments = self.make_random_points( self.true_centers, self.num_points) # Use initial means from kmeans (just like scikit-learn does). clusterer = kmeans.KMeansClustering(num_clusters=self.num_centers) clusterer.fit(input_fn=lambda: (constant_op.constant(self.points), None), steps=30) self.initial_means = clusterer.clusters() @staticmethod def make_random_centers(num_centers, num_dims): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * 500) @staticmethod def make_random_points(centers, num_points): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * 20) points = centers[assignments] + offsets return (points, assignments) def test_weights(self): """Tests the shape of the weights.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) weights = gmm.weights() self.assertAllEqual(list(weights.shape), [self.num_centers]) def test_clusters(self): """Tests the shape of the clusters.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) clusters = gmm.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters='random', random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=1) score1 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) gmm.fit(input_fn=self.input_fn(), steps=10) score2 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertLess(score1, score2) def test_infer(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=60) clusters = gmm.clusters() # Make a small test set num_points = 40 points, true_assignments = self.make_random_points(clusters, num_points) assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=num_points)): assignments.append(item) assignments = np.ravel(assignments) self.assertAllEqual(true_assignments, assignments) def _compare_with_sklearn(self, cov_type): # sklearn version. iterations = 40 np.random.seed(5) sklearn_assignments = np.asarray([0, 0, 1, 0, 0, 0, 1, 0, 0, 1]) sklearn_means = np.asarray([[144.83417719, 254.20130341], [274.38754816, 353.16074346]]) sklearn_covs = np.asarray([[[395.0081194, -4.50389512], [-4.50389512, 408.27543989]], [[385.17484203, -31.27834935], [-31.27834935, 391.74249925]]]) # skflow version. gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, covariance_type=cov_type, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=iterations) points = self.points[:10, :] skflow_assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=10)): skflow_assignments.append(item) self.assertAllClose(sklearn_assignments, np.ravel(skflow_assignments).astype(int)) self.assertAllClose(sklearn_means, gmm.clusters()) if cov_type == 'full': self.assertAllClose(sklearn_covs, gmm.covariances(), rtol=0.01) else: for d in [0, 1]: self.assertAllClose( np.diag(sklearn_covs[d]), gmm.covariances()[d, :], rtol=0.01) def test_compare_full(self): self._compare_with_sklearn('full') def test_compare_diag(self): self._compare_with_sklearn('diag') def test_random_input_large(self): # sklearn version. iterations = 5 # that should be enough to know whether this diverges np.random.seed(5) num_classes = 20 x = np.array([[np.random.random() for _ in range(100)] for _ in range(num_classes)], dtype=np.float32) # skflow version. gmm = gmm_lib.GMM(num_classes, covariance_type='full', config=run_config.RunConfig(tf_random_seed=2)) def get_input_fn(x): def input_fn(): return constant_op.constant(x.astype(np.float32)), None return input_fn gmm.fit(input_fn=get_input_fn(x), steps=iterations) self.assertFalse(np.isnan(gmm.clusters()).any()) class GMMTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue(capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): gmm = gmm_lib.GMM(2, covariance_type='diag') gmm.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
ageron/tensorflow
tensorflow/contrib/learn/python/learn/datasets/base_test.py
132
3072
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.platform import test mock = test.mock _TIMEOUT = IOError(110, "timeout") class BaseTest(test.TestCase): """Test load csv functions.""" def testUrlretrieveRetriesOnIOError(self): with mock.patch.object(base, "time") as mock_time: with mock.patch.object(base, "urllib") as mock_urllib: mock_urllib.request.urlretrieve.side_effect = [ _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, None ] base.urlretrieve_with_retry("http://dummy.com", "/tmp/dummy") # Assert full backoff was tried actual_list = [arg[0][0] for arg in mock_time.sleep.call_args_list] expected_list = [1, 2, 4, 8, 16] for actual, expected in zip(actual_list, expected_list): self.assertLessEqual(abs(actual - expected), 0.25 * expected) self.assertEquals(len(actual_list), len(expected_list)) def testUrlretrieveRaisesAfterRetriesAreExhausted(self): with mock.patch.object(base, "time") as mock_time: with mock.patch.object(base, "urllib") as mock_urllib: mock_urllib.request.urlretrieve.side_effect = [ _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, ] with self.assertRaises(IOError): base.urlretrieve_with_retry("http://dummy.com", "/tmp/dummy") # Assert full backoff was tried actual_list = [arg[0][0] for arg in mock_time.sleep.call_args_list] expected_list = [1, 2, 4, 8, 16] for actual, expected in zip(actual_list, expected_list): self.assertLessEqual(abs(actual - expected), 0.25 * expected) self.assertEquals(len(actual_list), len(expected_list)) def testUrlretrieveRaisesOnNonRetriableErrorWithoutRetry(self): with mock.patch.object(base, "time") as mock_time: with mock.patch.object(base, "urllib") as mock_urllib: mock_urllib.request.urlretrieve.side_effect = [ IOError(2, "No such file or directory"), ] with self.assertRaises(IOError): base.urlretrieve_with_retry("http://dummy.com", "/tmp/dummy") # Assert no retries self.assertFalse(mock_time.called) if __name__ == "__main__": test.main()
apache-2.0
ageron/tensorflow
tensorflow/contrib/factorization/python/ops/gmm_test.py
39
8716
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ops.gmm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib from tensorflow.contrib.learn.python.learn.estimators import kmeans from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed as random_seed_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.training import queue_runner class GMMTest(test.TestCase): def input_fn(self, batch_size=None, points=None): batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] def _fn(): x = constant_op.constant(points) if batch_size == num_points: return x, None indices = random_ops.random_uniform(constant_op.constant([batch_size]), minval=0, maxval=num_points-1, dtype=dtypes.int32, seed=10) return array_ops.gather(x, indices), None return _fn def setUp(self): np.random.seed(3) random_seed_lib.set_random_seed(2) self.num_centers = 2 self.num_dims = 2 self.num_points = 4000 self.batch_size = self.num_points self.true_centers = self.make_random_centers(self.num_centers, self.num_dims) self.points, self.assignments = self.make_random_points( self.true_centers, self.num_points) # Use initial means from kmeans (just like scikit-learn does). clusterer = kmeans.KMeansClustering(num_clusters=self.num_centers) clusterer.fit(input_fn=lambda: (constant_op.constant(self.points), None), steps=30) self.initial_means = clusterer.clusters() @staticmethod def make_random_centers(num_centers, num_dims): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * 500) @staticmethod def make_random_points(centers, num_points): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * 20) points = centers[assignments] + offsets return (points, assignments) def test_weights(self): """Tests the shape of the weights.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) weights = gmm.weights() self.assertAllEqual(list(weights.shape), [self.num_centers]) def test_clusters(self): """Tests the shape of the clusters.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) clusters = gmm.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters='random', random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=1) score1 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) gmm.fit(input_fn=self.input_fn(), steps=10) score2 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertLess(score1, score2) def test_infer(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=60) clusters = gmm.clusters() # Make a small test set num_points = 40 points, true_assignments = self.make_random_points(clusters, num_points) assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=num_points)): assignments.append(item) assignments = np.ravel(assignments) self.assertAllEqual(true_assignments, assignments) def _compare_with_sklearn(self, cov_type): # sklearn version. iterations = 40 np.random.seed(5) sklearn_assignments = np.asarray([0, 0, 1, 0, 0, 0, 1, 0, 0, 1]) sklearn_means = np.asarray([[144.83417719, 254.20130341], [274.38754816, 353.16074346]]) sklearn_covs = np.asarray([[[395.0081194, -4.50389512], [-4.50389512, 408.27543989]], [[385.17484203, -31.27834935], [-31.27834935, 391.74249925]]]) # skflow version. gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, covariance_type=cov_type, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=iterations) points = self.points[:10, :] skflow_assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=10)): skflow_assignments.append(item) self.assertAllClose(sklearn_assignments, np.ravel(skflow_assignments).astype(int)) self.assertAllClose(sklearn_means, gmm.clusters()) if cov_type == 'full': self.assertAllClose(sklearn_covs, gmm.covariances(), rtol=0.01) else: for d in [0, 1]: self.assertAllClose( np.diag(sklearn_covs[d]), gmm.covariances()[d, :], rtol=0.01) def test_compare_full(self): self._compare_with_sklearn('full') def test_compare_diag(self): self._compare_with_sklearn('diag') def test_random_input_large(self): # sklearn version. iterations = 5 # that should be enough to know whether this diverges np.random.seed(5) num_classes = 20 x = np.array([[np.random.random() for _ in range(100)] for _ in range(num_classes)], dtype=np.float32) # skflow version. gmm = gmm_lib.GMM(num_classes, covariance_type='full', config=run_config.RunConfig(tf_random_seed=2)) def get_input_fn(x): def input_fn(): return constant_op.constant(x.astype(np.float32)), None return input_fn gmm.fit(input_fn=get_input_fn(x), steps=iterations) self.assertFalse(np.isnan(gmm.clusters()).any()) class GMMTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue(capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): gmm = gmm_lib.GMM(2, covariance_type='diag') gmm.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
mxjl620/scikit-learn
sklearn/neighbors/regression.py
100
11017
"""Nearest Neighbor Regression""" # Authors: Jake Vanderplas <vanderplas@astro.washington.edu> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl> # Multi-output support by Arnaud Joly <a.joly@ulg.ac.be> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from .base import _get_weights, _check_weights, NeighborsBase, KNeighborsMixin from .base import RadiusNeighborsMixin, SupervisedFloatMixin from ..base import RegressorMixin from ..utils import check_array class KNeighborsRegressor(NeighborsBase, KNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on k-nearest neighbors. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Doesn't affect :meth:`fit` method. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsRegressor >>> neigh = KNeighborsRegressor(n_neighbors=2) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors RadiusNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.mean(_y[neigh_ind], axis=1) else: y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float) denom = np.sum(weights, axis=1) for j in range(_y.shape[1]): num = np.sum(_y[neigh_ind, j] * weights, axis=1) y_pred[:, j] = num / denom if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred class RadiusNeighborsRegressor(NeighborsBase, RadiusNeighborsMixin, SupervisedFloatMixin, RegressorMixin): """Regression based on neighbors within a fixed radius. The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set. Read more in the :ref:`User Guide <regression>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsRegressor >>> neigh = RadiusNeighborsRegressor(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsRegressor(...) >>> print(neigh.predict([[1.5]])) [ 0.5] See also -------- NearestNeighbors KNeighborsRegressor KNeighborsClassifier RadiusNeighborsClassifier Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, p=p, metric=metric, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the target for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of int, shape = [n_samples] or [n_samples, n_outputs] Target values """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.radius_neighbors(X) weights = _get_weights(neigh_dist, self.weights) _y = self._y if _y.ndim == 1: _y = _y.reshape((-1, 1)) if weights is None: y_pred = np.array([np.mean(_y[ind, :], axis=0) for ind in neigh_ind]) else: y_pred = np.array([(np.average(_y[ind, :], axis=0, weights=weights[i])) for (i, ind) in enumerate(neigh_ind)]) if self._y.ndim == 1: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
GoogleCloudPlatform/public-datasets-pipelines
datasets/cdc_places/pipelines/local_data_for_better_health_county_data/local_data_for_better_health_county_data_dag.py
2
5538
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from airflow import DAG from airflow.providers.cncf.kubernetes.operators import kubernetes_pod from airflow.providers.google.cloud.transfers import gcs_to_bigquery default_args = { "owner": "Google", "depends_on_past": False, "start_date": "2021-03-01", } with DAG( dag_id="cdc_places.local_data_for_better_health_county_data", default_args=default_args, max_active_runs=1, schedule_interval="@daily", catchup=False, default_view="graph", ) as dag: # Run CSV transform within kubernetes pod local_data_transform_csv = kubernetes_pod.KubernetesPodOperator( task_id="local_data_transform_csv", startup_timeout_seconds=600, name="cdc_places_local_data_for_better_health_county_data", namespace="composer", service_account_name="datasets", image_pull_policy="Always", image="{{ var.json.cdc_places.container_registry.run_csv_transform_kub }}", env_vars={ "SOURCE_URL": "https://chronicdata.cdc.gov/resource/swc5-untb.csv", "SOURCE_FILE": "files/data.csv", "TARGET_FILE": "files/data_output.csv", "TARGET_GCS_BUCKET": "{{ var.value.composer_bucket }}", "TARGET_GCS_PATH": "data/cdc_places/local_data_for_better_health_county_data/data_output.csv", "CSV_HEADERS": '["year","stateabbr","statedesc","locationname","datasource","category","measure","data_value_unit","data_value_type","data_value","data_value_footnote_symbol","data_value_footnote","low_confidence_limit","high_confidence_limit","totalpopulation","locationid","categoryid","measureid","datavaluetypeid","short_question_text","geolocation"]', "RENAME_MAPPINGS": '{"year": "year","stateabbr": "stateabbr","statedesc": "statedesc","locationname": "locationname","datasource": "datasource","category": "category","measure": "measure","data_value_unit": "data_value_unit","data_value_type": "data_value_type","data_value": "data_value","data_value_footnote_symbol": "data_value_footnote_symbol","data_value_footnote": "data_value_footnote","low_confidence_limit": "low_confidence_limit","high_confidence_limit": "high_confidence_limit","totalpopulation": "totalpopulation","locationid": "locationid","categoryid": "categoryid","measureid": "measureid","datavaluetypeid": "datavaluetypeid","short_question_text": "short_question_text","geolocation": "geolocation"}', "PIPELINE_NAME": "local_data_for_better_health_county_data", }, resources={ "request_memory": "4G", "request_cpu": "2", "request_ephemeral_storage": "10G", }, ) # Task to load CSV data to a BigQuery table load_local_data_to_bq = gcs_to_bigquery.GCSToBigQueryOperator( task_id="load_local_data_to_bq", bucket="{{ var.value.composer_bucket }}", source_objects=[ "data/cdc_places/local_data_for_better_health_county_data/data_output.csv" ], source_format="CSV", destination_project_dataset_table="cdc_places.local_data_for_better_health_county_data", skip_leading_rows=1, write_disposition="WRITE_TRUNCATE", schema_fields=[ {"name": "year", "type": "INTEGER", "mode": "NULLABLE"}, {"name": "stateabbr", "type": "STRING", "mode": "NULLABLE"}, {"name": "statedesc", "type": "STRING", "mode": "NULLABLE"}, {"name": "locationname", "type": "STRING", "mode": "NULLABLE"}, {"name": "datasource", "type": "STRING", "mode": "NULLABLE"}, {"name": "category", "type": "STRING", "mode": "NULLABLE"}, {"name": "measure", "type": "STRING", "mode": "NULLABLE"}, {"name": "data_value_unit", "type": "STRING", "mode": "NULLABLE"}, {"name": "data_value_type", "type": "STRING", "mode": "NULLABLE"}, {"name": "data_value", "type": "FLOAT", "mode": "NULLABLE"}, { "name": "data_value_footnote_symbol", "type": "STRING", "mode": "NULLABLE", }, {"name": "data_value_footnote", "type": "STRING", "mode": "NULLABLE"}, {"name": "low_confidence_limit", "type": "FLOAT", "mode": "NULLABLE"}, {"name": "high_confidence_limit", "type": "FLOAT", "mode": "NULLABLE"}, {"name": "totalpopulation", "type": "INTEGER", "mode": "NULLABLE"}, {"name": "locationid", "type": "INTEGER", "mode": "NULLABLE"}, {"name": "categoryid", "type": "STRING", "mode": "NULLABLE"}, {"name": "measureid", "type": "STRING", "mode": "NULLABLE"}, {"name": "datavaluetypeid", "type": "STRING", "mode": "NULLABLE"}, {"name": "short_question_text", "type": "STRING", "mode": "NULLABLE"}, {"name": "geolocation", "type": "GEOGRAPHY", "mode": "NULLABLE"}, ], ) local_data_transform_csv >> load_local_data_to_bq
apache-2.0
IONISx/edx-platform
openedx/core/lib/block_cache/tests/test_block_structure_factory.py
32
4070
""" Tests for block_structure_factory.py """ # pylint: disable=protected-access from mock import patch from unittest import TestCase from ..block_structure_factory import BlockStructureFactory from .test_utils import ( MockCache, MockModulestoreFactory, MockTransformer, ChildrenMapTestMixin ) class TestBlockStructureFactory(TestCase, ChildrenMapTestMixin): """ Tests for BlockStructureFactory """ def setUp(self): super(TestBlockStructureFactory, self).setUp() self.children_map = self.SIMPLE_CHILDREN_MAP self.modulestore = MockModulestoreFactory.create(self.children_map) self.block_structure = BlockStructureFactory.create_from_modulestore( root_block_usage_key=0, modulestore=self.modulestore ) self.transformers = [MockTransformer] mock_registry = patch( 'openedx.core.lib.block_cache.transformer_registry.TransformerRegistry.get_available_plugins' ) mock_registry.return_value = {transformer.name(): transformer for transformer in self.transformers} self.addCleanup(mock_registry.stop) mock_registry.start() def add_transformers(self): """ Add each registered transformer to the block structure. Mimic collection by setting test transformer block data. """ for transformer in self.transformers: self.block_structure._add_transformer(transformer) self.block_structure.set_transformer_block_field( usage_key=0, transformer=transformer, key='test', value='{} val'.format(transformer.name()) ) def test_create_from_modulestore(self): self.assert_block_structure(self.block_structure, self.children_map) def test_not_in_cache(self): cache = MockCache() self.assertIsNone( BlockStructureFactory.create_from_cache( root_block_usage_key=0, cache=cache, transformers=self.transformers, ) ) def test_uncollected_transformers(self): cache = MockCache() # serialize the structure to cache, but without collecting any transformer data BlockStructureFactory.serialize_to_cache(self.block_structure, cache) with patch('openedx.core.lib.block_cache.block_structure_factory.logger.info') as mock_logger: # cached data does not have collected information for all registered transformers self.assertIsNone( BlockStructureFactory.create_from_cache( root_block_usage_key=0, cache=cache, transformers=self.transformers, ) ) self.assertTrue(mock_logger.called) def test_cache(self): cache = MockCache() # collect transformer data self.add_transformers() # serialize to cache BlockStructureFactory.serialize_to_cache(self.block_structure, cache) # test re-create from cache self.modulestore.get_items_call_count = 0 from_cache_block_structure = BlockStructureFactory.create_from_cache( root_block_usage_key=0, cache=cache, transformers=self.transformers, ) self.assertIsNotNone(from_cache_block_structure) self.assert_block_structure(from_cache_block_structure, self.children_map) self.assertEquals(self.modulestore.get_items_call_count, 0) def test_remove_from_cache(self): cache = MockCache() # collect transformer data self.add_transformers() # serialize to cache BlockStructureFactory.serialize_to_cache(self.block_structure, cache) # remove from cache BlockStructureFactory.remove_from_cache(root_block_usage_key=0, cache=cache) self.assertIsNone( BlockStructureFactory.create_from_cache( root_block_usage_key=0, cache=cache, transformers=self.transformers ) )
agpl-3.0
IONISx/edx-platform
lms/djangoapps/course_blocks/usage_info.py
89
1246
""" Declares CourseUsageInfo class to be used by the transform method in Transformers. """ from lms.djangoapps.courseware.access import _has_access_to_course class CourseUsageInfo(object): ''' A class object that encapsulates the course and user context to be used as currency across block structure transformers, by passing an instance of it in calls to BlockStructureTransformer.transform methods. ''' def __init__(self, course_key, user): # Course identifier (opaque_keys.edx.keys.CourseKey) self.course_key = course_key # User object (django.contrib.auth.models.User) self.user = user # Cached value of whether the user has staff access (bool/None) self._has_staff_access = None @property def has_staff_access(self): ''' Returns whether the user has staff access to the course associated with this CourseUsageInfo instance. For performance reasons (minimizing multiple SQL calls), the value is cached within this instance. ''' if self._has_staff_access is None: self._has_staff_access = _has_access_to_course(self.user, 'staff', self.course_key) return self._has_staff_access
agpl-3.0
mwalton/artificial-olfaction
python/deepRegressor.py
1
7005
import climate import theanets import numpy as np from sklearn.cross_validation import train_test_split from os import path from math import sqrt import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler import platform def loadData(XPath, yPath): X = np.genfromtxt(XPath, delimiter=",", dtype="float32") y = np.genfromtxt(yPath, delimiter=",", dtype="float32") return (X, y) def scale(label): #label[label<1e-5]=1e-5 return np.power(label, 0.25) #return np.log10(label) def standardize(featureVector): scaler = StandardScaler() return scaler.fit_transform(featureVector) # model prediction assessment functions def unit_vector(vector): """ Returns the unit vector of the input. """ return vector / np.linalg.norm(vector) """computes the angle between two vectors in radians""" def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) angle = np.arccos(np.dot(v1_u, v2_u)) if np.isnan(angle): if (v1_u == v2_u).all(): return 0.0 else: return np.pi return angle """computes the accuracy given a target and a prediciton vector""" def vector_accuracy(v1, v2): #radAngle = angle_between(v1, v2) #return 1 - (np.degrees(radAngle) / 90) v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.dot(v1_u, v2_u) def avg_va(yPred, yTrue, minC): # declare a container to hold the vector accuracy timeseries vecA = [] # for each timestep, if at least minEvalC is present, compute vector_accuracy for i in range(np.shape(yTrue)[0]): if (np.argmax(yTrue[i,:]) > minC): vecA.append(vector_accuracy(yPred[i,:], yTrue[i,:])) return np.mean(vecA, dtype=float) if(platform.system() == 'Darwin'): basePath="/Users/michaelwalton/Dropbox/Evolved Machines 2014/Machine Learning/datasets/kaggle" else: basePath="/home/myke/Dropbox/Evolved Machines 2014/Machine Learning/datasets/kaggle" xtrainpath=path.join(basePath, "paul_medC_BG2/train/sensorActivation.csv") ytrainpath=path.join(basePath, "paul_medC_BG2/train/concentration.csv") xtestpath=path.join(basePath, "paul_highC_BG1/test/sensorActivation.csv") ytestpath=path.join(basePath, "paul_highC_BG1/test/concentration.csv") (Xtrain, ytrain) = loadData(xtrainpath, ytrainpath) (Xtest, ytest) = loadData(xtestpath, ytestpath) ytest=ytest[:,1:] ytrain=ytrain[:,1:] #Xtrain=standardize(Xtrain) #Xtest=standardize(Xtest) ytrain=scale(ytrain) ytest=scale(ytest) # split up the training data into train and validation Xtrain, Xvalidate, ytrain, yvalidate = train_test_split( Xtrain, ytrain, test_size=0.10, random_state=0) training_data = [Xtrain, ytrain] validation_data = [Xvalidate, yvalidate] test_data = [Xtest, ytest] climate.enable_default_logging() exp = theanets.Experiment( theanets.Regressor, layers=(100, 50, 4), #hidden_l1=0.1, ) if (path.isfile("mdl.pkl")): print "loading model from file" exp.load("mdl.pkl") else: print "training network" t_loss=[] v_loss=[] """ for t in trainer: (train,valid) = t t_loss.append(train['loss']) v_loss.append(valid['loss']) fig = plt.figure(figsize=(10,10)) ax1 = fig.add_subplot(111) ax1.plot(t_loss, c='r', label='Training') ax1.plot(v_loss, c='b', label='Validation') ax1.set_xlabel('batch') ax1.set_ylabel('log(loss)') ax1.set_yscale('log') ax1.set_ylim(1e-2,1e-1) ax1.legend() plt.show() """ """ exp.train( training_data, validation_data, optimize='sgd', #learning_rate=0.01, #momentum=0.5, ) """ exp.network.save("mdl.pkl") print exp.network.params[0] #print next(m) y_pls=exp.network.predict(Xtest) print("Normalized VA: %s\n" % avg_va(y_pls, ytest, 0.001)) pls_rmse=[] pls_rmse.append(sqrt(mean_squared_error(ytest[:,0], y_pls[:,0]))) pls_rmse.append(sqrt(mean_squared_error(ytest[:,1], y_pls[:,1]))) pls_rmse.append(sqrt(mean_squared_error(ytest[:,2], y_pls[:,2]))) pls_rmse.append(sqrt(mean_squared_error(ytest[:,3], y_pls[:,3]))) fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(241) ax1.plot(y_pls[:,0], c='r', label='NN Fit') ax1.plot(ytest[:,0], c='grey', label='Target') ax1.set_xlabel('Time') ax1.set_ylabel('[c]') #ax1.set_yscale('log') ax1.set_title('RED') ax1.legend() ax2 = fig.add_subplot(242) ax2.plot(y_pls[:,1], c='g', label='NN Fit') ax2.plot(ytest[:,1], c='grey', label='Target') ax2.set_xlabel('Time') ax2.set_title('GREEN') ax2.legend() ax3 = fig.add_subplot(243) ax3.plot(y_pls[:,2], c='b', label='NN Fit') #ax3.plot(y_lin[2], c='r', label='Linear Fit') #ax3.plot(y_poly[2], c='b', label='Poly Fit') ax3.plot(ytest[:,2], c='grey', label='Target') ax3.set_xlabel('Time') #ax3.set_ylabel('log[c]') ax3.set_title('BLUE') ax3.legend() ax4 = fig.add_subplot(244) ax4.plot(y_pls[:,3], c='y', label='NN Fit') #ax4.plot(y_lin[3], c='r', label='Linear Fit') #ax4.plot(y_poly[3], c='b', label='Poly Fit') ax4.plot(ytest[:,3], c='grey', label='Target') ax4.set_xlabel('Time') #ax4.set_ylabel('log[c]') ax4.set_title('YELLOW') ax4.legend() ax5 = fig.add_subplot(245) ax5.scatter(ytest[:,0], y_pls[:,0], c='r', label=('NN nRMSE=%0.2f' % pls_rmse[0])) #ax5.scatter(y[:,0], y_lin[0], c='r', label=('Linear RMSE=%0.2f' % lin_rmse[0])) #ax5.scatter(y[:,0], y_poly[0], c='b', label=('Polynomial RMSE=%0.2f' % poly_rmse[0])) ax5.plot(ytest[:,0],ytest[:,0],c='grey') ax5.set_xlim(np.min(ytest[:,0]), np.max(ytest[:,0])) ax5.set_xlabel('Prediction') ax5.set_ylabel('Actual') ax5.legend() ax6 = fig.add_subplot(246) ax6.scatter(ytest[:,1], y_pls[:,1], c='g', label=('NN nRMSE=%0.2f' % pls_rmse[1])) #ax6.scatter(y[:,1], y_lin[1], c='r', label=('Linear RMSE=%0.2f' % lin_rmse[1])) #ax6.scatter(y[:,1], y_poly[1], c='b', label=('Polynomial RMSE=%0.2f' % poly_rmse[1])) ax6.plot(ytest[:,1],ytest[:,1],c='grey') ax6.set_xlim(np.min(ytest[:,1]), np.max(ytest[:,1])) ax6.set_xlabel('Prediction') #ax6.set_ylabel('Actual') ax6.legend() ax7 = fig.add_subplot(247) ax7.scatter(ytest[:,2], y_pls[:,2], c='b', label=('NN nRMSE=%0.2f' % pls_rmse[2])) #ax7.scatter(y[:,2], y_lin[2], c='r', label=('Linear RMSE=%0.2f' % lin_rmse[2])) #ax7.scatter(y[:,2], y_poly[2], c='b', label=('Polynomial RMSE=%0.2f' % poly_rmse[2])) ax7.plot(ytest[:,2],ytest[:,2],c='grey') ax7.set_xlim(np.min(ytest[:,2]), np.max(ytest[:,2])) ax7.set_xlabel('Prediction') #ax7.set_ylabel('Actual') ax7.legend() ax8 = fig.add_subplot(248) ax8.scatter(ytest[:,3], y_pls[:,3], c='y', label=('NN nRMSE=%0.2f' % pls_rmse[3])) #ax8.scatter(y[:,3], y_lin[3], c='r', label=('Linear RMSE=%0.2f' % lin_rmse[3])) #ax8.scatter(y[:,3], y_poly[3], c='b', label=('Polynomial RMSE=%0.2f' % poly_rmse[3])) ax8.plot(ytest[:,3],ytest[:,3],c='grey') ax8.set_xlim(np.min(ytest[:,3]), np.max(ytest[:,3])) ax8.set_xlabel('Prediction') #ax8.set_ylabel('Actual') ax8.legend() plt.show()
mit
markslwong/tensorflow
tensorflow/contrib/learn/python/learn/estimators/stability_test.py
110
6455
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Estimator regression tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.training import optimizer as optimizer_lib def _get_input_fn(x, y, batch_size=None): df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size) return df.input_builder, df.get_feed_dict_fn() # We use a null optimizer since we can't get deterministic results out of # supervisor's multiple threads. class _NullOptimizer(optimizer_lib.Optimizer): def __init__(self): super(_NullOptimizer, self).__init__(use_locking=False, name='Null') def _apply_dense(self, grad, var): return control_flow_ops.no_op() def _apply_sparse(self, grad, var): return control_flow_ops.no_op() def _prepare(self): pass _NULL_OPTIMIZER = _NullOptimizer() class StabilityTest(test.TestCase): """Tests that estiamtors are reproducible.""" def testRandomStability(self): my_seed = 42 minval = -0.3333 maxval = 0.3333 with ops.Graph().as_default() as g: with self.test_session(graph=g) as session: g.seed = my_seed x = random_ops.random_uniform([10, 10], minval=minval, maxval=maxval) val1 = session.run(x) with ops.Graph().as_default() as g: with self.test_session(graph=g) as session: g.seed = my_seed x = random_ops.random_uniform([10, 10], minval=minval, maxval=maxval) val2 = session.run(x) self.assertAllClose(val1, val2) def testLinearRegression(self): my_seed = 42 config = run_config.RunConfig(tf_random_seed=my_seed) boston = base.load_boston() columns = [feature_column.real_valued_column('', dimension=13)] # We train with with ops.Graph().as_default() as g1: random.seed(my_seed) g1.seed = my_seed variables.create_global_step() regressor1 = linear.LinearRegressor( optimizer=_NULL_OPTIMIZER, feature_columns=columns, config=config) regressor1.fit(x=boston.data, y=boston.target, steps=1) with ops.Graph().as_default() as g2: random.seed(my_seed) g2.seed = my_seed variables.create_global_step() regressor2 = linear.LinearRegressor( optimizer=_NULL_OPTIMIZER, feature_columns=columns, config=config) regressor2.fit(x=boston.data, y=boston.target, steps=1) variable_names = regressor1.get_variable_names() self.assertIn('linear//weight', variable_names) self.assertIn('linear/bias_weight', variable_names) regressor1_weights = regressor1.get_variable_value('linear//weight') regressor2_weights = regressor2.get_variable_value('linear//weight') regressor1_bias = regressor1.get_variable_value('linear/bias_weight') regressor2_bias = regressor2.get_variable_value('linear/bias_weight') self.assertAllClose(regressor1_weights, regressor2_weights) self.assertAllClose(regressor1_bias, regressor2_bias) self.assertAllClose( list(regressor1.predict_scores( boston.data, as_iterable=True)), list(regressor2.predict_scores( boston.data, as_iterable=True)), atol=1e-05) def testDNNRegression(self): my_seed = 42 config = run_config.RunConfig(tf_random_seed=my_seed) boston = base.load_boston() columns = [feature_column.real_valued_column('', dimension=13)] with ops.Graph().as_default() as g1: random.seed(my_seed) g1.seed = my_seed variables.create_global_step() regressor1 = dnn.DNNRegressor( hidden_units=[10], feature_columns=columns, optimizer=_NULL_OPTIMIZER, config=config) regressor1.fit(x=boston.data, y=boston.target, steps=1) with ops.Graph().as_default() as g2: random.seed(my_seed) g2.seed = my_seed variables.create_global_step() regressor2 = dnn.DNNRegressor( hidden_units=[10], feature_columns=columns, optimizer=_NULL_OPTIMIZER, config=config) regressor2.fit(x=boston.data, y=boston.target, steps=1) weights1 = ([regressor1.get_variable_value('dnn/hiddenlayer_0/weights')] + [regressor1.get_variable_value('dnn/logits/weights')]) weights2 = ([regressor2.get_variable_value('dnn/hiddenlayer_0/weights')] + [regressor2.get_variable_value('dnn/logits/weights')]) for w1, w2 in zip(weights1, weights2): self.assertAllClose(w1, w2) biases1 = ([regressor1.get_variable_value('dnn/hiddenlayer_0/biases')] + [regressor1.get_variable_value('dnn/logits/biases')]) biases2 = ([regressor2.get_variable_value('dnn/hiddenlayer_0/biases')] + [regressor2.get_variable_value('dnn/logits/biases')]) for b1, b2 in zip(biases1, biases2): self.assertAllClose(b1, b2) self.assertAllClose( list(regressor1.predict_scores( boston.data, as_iterable=True)), list(regressor2.predict_scores( boston.data, as_iterable=True)), atol=1e-05) if __name__ == '__main__': test.main()
apache-2.0
yonglehou/scikit-learn
sklearn/tests/test_learning_curve.py
224
10791
# Author: Alexander Fabisch <afabisch@informatik.uni-bremen.de> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
yonglehou/scikit-learn
sklearn/feature_selection/tests/test_feature_select.py
142
22295
""" Todo: cross-check the F-value with stats model """ from __future__ import division import itertools import warnings import numpy as np from scipy import stats, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils import safe_mask from sklearn.datasets.samples_generator import (make_classification, make_regression) from sklearn.feature_selection import (chi2, f_classif, f_oneway, f_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert_true(np.allclose(f, f2)) assert_true(np.allclose(pv, pv2)) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(np.float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(np.int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(np.float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert_true(sparse.issparse(X_r2inv)) support_mask = safe_mask(X_r2inv, support) assert_equal(X_r2inv.shape, X.shape) assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert_equal(X_r2inv.getnnz(), X_r.getnnz()) ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert_equal(X_selected.shape, (20, 0)) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) assert_raises(ValueError, SelectPercentile(percentile=-1).fit, X, y) assert_raises(ValueError, SelectPercentile(percentile=101).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=101).fit, X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 3) def test_select_fdr_regression(): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate for alpha in [0.001, 0.01, 0.1]: for n_informative in [1, 5, 10]: # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(30)]) assert_greater_equal(alpha, false_discovery_rate) # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert_greater(false_discovery_rate, alpha / 10) def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 2) def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([0, 1, 2]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: assert_raises(TypeError, SelectFeatures(score_func=10).fit, X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] assert_raises(ValueError, SelectKBest(k=-1).fit, X, y) assert_raises(ValueError, SelectKBest(k=4).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=4).fit, X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert_equal(X_selected.shape, (40, 0))
bsd-3-clause
kubernetes/test-infra
kettle/monitor.py
6
2625
#!/usr/bin/env python3 # Copyright 2018 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A dead-simple Influxdb data pusher to report BigQuery database statistics. """ import argparse import json import sys import time try: from google.cloud import bigquery import google.cloud.exceptions except ImportError: print('WARNING: unable to load google cloud (test environment?)') import traceback traceback.print_exc() def collect(tables, stale_hours): stale = False for table_spec in tables: print(f'Checking {table_spec}...') project, dataset_name = table_spec.split(':') dataset, name = dataset_name.split('.') table = bigquery.Client(project).dataset(dataset).table(name) try: table.reload() except google.cloud.exceptions.NotFound: # pylint: disable=no-member continue # converting datetimes back into epoch-milliseconds is tiresome # pylint: disable=protected-access fields = { 'table_spec': table_spec, 'size_bytes': table.num_bytes, 'modified_time': int(table._properties.get('lastModifiedTime')), 'row_count': table.num_rows } hours_old = (time.time() - fields['modified_time'] / 1000) / (3600.0) fields['hours_old'] = hours_old if stale_hours and hours_old > stale_hours: print('ERROR: table %s is %.1f hours old. Max allowed: %s hours.' % ( table.table_id, hours_old, stale_hours)) stale = True print(json.dumps(fields)) print(f'Finished checking tables') return int(stale) def main(args): parser = argparse.ArgumentParser() parser.add_argument('--table', nargs='+', required=True, help='List of datasets to return information about.') parser.add_argument('--stale', type=int, help='Number of hours to consider stale.') opts = parser.parse_args(args) return collect(opts.table, opts.stale) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
apache-2.0
davidam/python-examples
scikit/plot_color_quantization.py
31
3356
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <robertlayton@gmail.com> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1]) china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
gpl-3.0
yonglehou/scikit-learn
examples/neighbors/plot_classification.py
285
1790
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
markslwong/tensorflow
tensorflow/contrib/learn/python/learn/datasets/base.py
123
6584
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base utilities for loading datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os from os import path import random import tempfile import time import numpy as np from six.moves import urllib from tensorflow.contrib.framework import deprecated from tensorflow.python.platform import gfile Dataset = collections.namedtuple('Dataset', ['data', 'target']) Datasets = collections.namedtuple('Datasets', ['train', 'validation', 'test']) def load_csv_with_header(filename, target_dtype, features_dtype, target_column=-1): """Load dataset from CSV file with a header row.""" with gfile.Open(filename) as csv_file: data_file = csv.reader(csv_file) header = next(data_file) n_samples = int(header[0]) n_features = int(header[1]) data = np.zeros((n_samples, n_features), dtype=features_dtype) target = np.zeros((n_samples,), dtype=target_dtype) for i, row in enumerate(data_file): target[i] = np.asarray(row.pop(target_column), dtype=target_dtype) data[i] = np.asarray(row, dtype=features_dtype) return Dataset(data=data, target=target) def load_csv_without_header(filename, target_dtype, features_dtype, target_column=-1): """Load dataset from CSV file without a header row.""" with gfile.Open(filename) as csv_file: data_file = csv.reader(csv_file) data, target = [], [] for row in data_file: target.append(row.pop(target_column)) data.append(np.asarray(row, dtype=features_dtype)) target = np.array(target, dtype=target_dtype) data = np.array(data) return Dataset(data=data, target=target) def shrink_csv(filename, ratio): """Create a smaller dataset of only 1/ratio of original data.""" filename_small = filename.replace('.', '_small.') with gfile.Open(filename_small, 'w') as csv_file_small: writer = csv.writer(csv_file_small) with gfile.Open(filename) as csv_file: reader = csv.reader(csv_file) i = 0 for row in reader: if i % ratio == 0: writer.writerow(row) i += 1 def load_iris(data_path=None): """Load Iris dataset. Args: data_path: string, path to iris dataset (optional) Returns: Dataset object containing data in-memory. """ if data_path is None: module_path = path.dirname(__file__) data_path = path.join(module_path, 'data', 'iris.csv') return load_csv_with_header( data_path, target_dtype=np.int, features_dtype=np.float) def load_boston(data_path=None): """Load Boston housing dataset. Args: data_path: string, path to boston dataset (optional) Returns: Dataset object containing data in-memory. """ if data_path is None: module_path = path.dirname(__file__) data_path = path.join(module_path, 'data', 'boston_house_prices.csv') return load_csv_with_header( data_path, target_dtype=np.float, features_dtype=np.float) def retry(initial_delay, max_delay, factor=2.0, jitter=0.25, is_retriable=None): """Simple decorator for wrapping retriable functions. Args: initial_delay: the initial delay. factor: each subsequent retry, the delay is multiplied by this value. (must be >= 1). jitter: to avoid lockstep, the returned delay is multiplied by a random number between (1-jitter) and (1+jitter). To add a 20% jitter, set jitter = 0.2. Must be < 1. max_delay: the maximum delay allowed (actual max is max_delay * (1 + jitter). is_retriable: (optional) a function that takes an Exception as an argument and returns true if retry should be applied. """ if factor < 1: raise ValueError('factor must be >= 1; was %f' % (factor,)) if jitter >= 1: raise ValueError('jitter must be < 1; was %f' % (jitter,)) # Generator to compute the individual delays def delays(): delay = initial_delay while delay <= max_delay: yield delay * random.uniform(1 - jitter, 1 + jitter) delay *= factor def wrap(fn): """Wrapper function factory invoked by decorator magic.""" def wrapped_fn(*args, **kwargs): """The actual wrapper function that applies the retry logic.""" for delay in delays(): try: return fn(*args, **kwargs) except Exception as e: # pylint: disable=broad-except) if is_retriable is None: continue if is_retriable(e): time.sleep(delay) else: raise return fn(*args, **kwargs) return wrapped_fn return wrap _RETRIABLE_ERRNOS = { 110, # Connection timed out [socket.py] } def _is_retriable(e): return isinstance(e, IOError) and e.errno in _RETRIABLE_ERRNOS @retry(initial_delay=1.0, max_delay=16.0, is_retriable=_is_retriable) def urlretrieve_with_retry(url, filename=None): return urllib.request.urlretrieve(url, filename) def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. work_directory: string, path to working directory. source_url: url to download from if file doesn't exist. Returns: Path to resulting file. """ if not gfile.Exists(work_directory): gfile.MakeDirs(work_directory) filepath = os.path.join(work_directory, filename) if not gfile.Exists(filepath): temp_file_name, _ = urlretrieve_with_retry(source_url) gfile.Copy(temp_file_name, filepath) with gfile.GFile(filepath) as f: size = f.size() print('Successfully downloaded', filename, size, 'bytes.') return filepath
apache-2.0
blackye/luscan-devel
thirdparty_libs/nltk/corpus/reader/rte.py
17
4586
# Natural Language Toolkit: RTE Corpus Reader # # Copyright (C) 2001-2012 NLTK Project # Author: Ewan Klein <ewan@inf.ed.ac.uk> # URL: <http://www.nltk.org/> # For license information, see LICENSE.TXT """ Corpus reader for the Recognizing Textual Entailment (RTE) Challenge Corpora. The files were taken from the RTE1, RTE2 and RTE3 datasets and the files were regularized. Filenames are of the form rte*_dev.xml and rte*_test.xml. The latter are the gold standard annotated files. Each entailment corpus is a list of 'text'/'hypothesis' pairs. The following example is taken from RTE3:: <pair id="1" entailment="YES" task="IE" length="short" > <t>The sale was made to pay Yukos' US$ 27.5 billion tax bill, Yuganskneftegaz was originally sold for US$ 9.4 billion to a little known company Baikalfinansgroup which was later bought by the Russian state-owned oil company Rosneft .</t> <h>Baikalfinansgroup was sold to Rosneft.</h> </pair> In order to provide globally unique IDs for each pair, a new attribute ``challenge`` has been added to the root element ``entailment-corpus`` of each file, taking values 1, 2 or 3. The GID is formatted 'm-n', where 'm' is the challenge number and 'n' is the pair ID. """ from util import * from api import * from xmldocs import * def norm(value_string): """ Normalize the string value in an RTE pair's ``value`` or ``entailment`` attribute as an integer (1, 0). :param value_string: the label used to classify a text/hypothesis pair :type value_string: str :rtype: int """ valdict = {"TRUE": 1, "FALSE": 0, "YES": 1, "NO": 0} return valdict[value_string.upper()] class RTEPair: """ Container for RTE text-hypothesis pairs. The entailment relation is signalled by the ``value`` attribute in RTE1, and by ``entailment`` in RTE2 and RTE3. These both get mapped on to the ``entailment`` attribute of this class. """ def __init__(self, pair, challenge=None, id=None, text=None, hyp=None, value=None, task=None, length=None): """ :param challenge: version of the RTE challenge (i.e., RTE1, RTE2 or RTE3) :param id: identifier for the pair :param text: the text component of the pair :param hyp: the hypothesis component of the pair :param value: classification label for the pair :param task: attribute for the particular NLP task that the data was drawn from :param length: attribute for the length of the text of the pair """ self.challenge = challenge self.id = pair.attrib["id"] self.gid = "%s-%s" % (self.challenge, self.id) self.text = pair[0].text self.hyp = pair[1].text if "value" in pair.attrib: self.value = norm(pair.attrib["value"]) elif "entailment" in pair.attrib: self.value = norm(pair.attrib["entailment"]) else: self.value = value if "task" in pair.attrib: self.task = pair.attrib["task"] else: self.task = task if "length" in pair.attrib: self.length = pair.attrib["length"] else: self.length = length def __repr__(self): if self.challenge: return '<RTEPair: gid=%s-%s>' % (self.challenge, self.id) else: return '<RTEPair: id=%s>' % self.id class RTECorpusReader(XMLCorpusReader): """ Corpus reader for corpora in RTE challenges. This is just a wrapper around the XMLCorpusReader. See module docstring above for the expected structure of input documents. """ def _read_etree(self, doc): """ Map the XML input into an RTEPair. This uses the ``getiterator()`` method from the ElementTree package to find all the ``<pair>`` elements. :param doc: a parsed XML document :rtype: list(RTEPair) """ try: challenge = doc.attrib['challenge'] except KeyError: challenge = None return [RTEPair(pair, challenge=challenge) for pair in doc.getiterator("pair")] def pairs(self, fileids): """ Build a list of RTEPairs from a RTE corpus. :param fileids: a list of RTE corpus fileids :type: list :rtype: list(RTEPair) """ if isinstance(fileids, basestring): fileids = [fileids] return concat([self._read_etree(self.xml(fileid)) for fileid in fileids])
gpl-2.0
dimkal/mne-python
examples/forward/plot_make_forward.py
20
2669
""" ====================================================== Create a forward operator and display sensitivity maps ====================================================== Sensitivity maps can be produced from forward operators that indicate how well different sensor types will be able to detect neural currents from different regions of the brain. """ # Author: Eric Larson <larson.eric.d@gmail.com> # # License: BSD (3-clause) import mne from mne.datasets import sample import matplotlib.pyplot as plt print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' trans = data_path + '/MEG/sample/sample_audvis_raw-trans.fif' src = data_path + '/subjects/sample/bem/sample-oct-6-src.fif' bem = data_path + '/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif' subjects_dir = data_path + '/subjects' # Note that forward solutions can also be read with read_forward_solution fwd = mne.make_forward_solution(raw_fname, trans, src, bem, fname=None, meg=True, eeg=True, mindist=5.0, n_jobs=2, overwrite=True) # convert to surface orientation for better visualization fwd = mne.convert_forward_solution(fwd, surf_ori=True) leadfield = fwd['sol']['data'] print("Leadfield size : %d x %d" % leadfield.shape) grad_map = mne.sensitivity_map(fwd, ch_type='grad', mode='fixed') mag_map = mne.sensitivity_map(fwd, ch_type='mag', mode='fixed') eeg_map = mne.sensitivity_map(fwd, ch_type='eeg', mode='fixed') ############################################################################### # Show gain matrix a.k.a. leadfield matrix with sensitivity map picks_meg = mne.pick_types(fwd['info'], meg=True, eeg=False) picks_eeg = mne.pick_types(fwd['info'], meg=False, eeg=True) fig, axes = plt.subplots(2, 1, figsize=(10, 8), sharex=True) fig.suptitle('Lead field matrix (500 dipoles only)', fontsize=14) for ax, picks, ch_type in zip(axes, [picks_meg, picks_eeg], ['meg', 'eeg']): im = ax.imshow(leadfield[picks, :500], origin='lower', aspect='auto', cmap='RdBu_r') ax.set_title(ch_type.upper()) ax.set_xlabel('sources') ax.set_ylabel('sensors') plt.colorbar(im, ax=ax, cmap='RdBu_r') plt.show() plt.figure() plt.hist([grad_map.data.ravel(), mag_map.data.ravel(), eeg_map.data.ravel()], bins=20, label=['Gradiometers', 'Magnetometers', 'EEG'], color=['c', 'b', 'k']) plt.legend() plt.title('Normal orientation sensitivity') plt.xlabel('sensitivity') plt.ylabel('count') plt.show() grad_map.plot(time_label='Gradiometer sensitivity', subjects_dir=subjects_dir, clim=dict(lims=[0, 50, 100]))
bsd-3-clause
Cyber-Neuron/inception_v3
inception/inception/image_processing.py
1
20664
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Read and preprocess image data. Image processing occurs on a single image at a time. Image are read and preprocessed in parallel across multiple threads. The resulting images are concatenated together to form a single batch for training or evaluation. -- Provide processed image data for a network: inputs: Construct batches of evaluation examples of images. distorted_inputs: Construct batches of training examples of images. batch_inputs: Construct batches of training or evaluation examples of images. -- Data processing: parse_example_proto: Parses an Example proto containing a training example of an image. -- Image decoding: decode_jpeg: Decode a JPEG encoded string into a 3-D float32 Tensor. -- Image preprocessing: image_preprocessing: Decode and preprocess one image for evaluation or training distort_image: Distort one image for training a network. eval_image: Prepare one image for evaluation. distort_color: Distort the color in one image for training. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('batch_size', 32, """Number of images to process in a batch.""") tf.app.flags.DEFINE_integer('image_size', 299, """Provide square images of this size.""") tf.app.flags.DEFINE_integer('num_preprocess_threads', 1, """Number of preprocessing threads per tower. """ """Please make this a multiple of 4.""") tf.app.flags.DEFINE_integer('num_readers', 4, """Number of parallel readers during train.""") # Images are preprocessed asynchronously using multiple threads specified by # --num_preprocss_threads and the resulting processed images are stored in a # random shuffling queue. The shuffling queue dequeues --batch_size images # for processing on a given Inception tower. A larger shuffling queue guarantees # better mixing across examples within a batch and results in slightly higher # predictive performance in a trained model. Empirically, # --input_queue_memory_factor=16 works well. A value of 16 implies a queue size # of 1024*16 images. Assuming RGB 299x299 images, this implies a queue size of # 16GB. If the machine is memory limited, then decrease this factor to # decrease the CPU memory footprint, accordingly. tf.app.flags.DEFINE_integer('input_queue_memory_factor', 16, """Size of the queue of preprocessed images. """ """Default is ideal but try smaller values, e.g. """ """4, 2 or 1, if host memory is constrained. See """ """comments in code for more details.""") def inputs(dataset, batch_size=None, num_preprocess_threads=None): """Generate batches of ImageNet images for evaluation. Use this function as the inputs for evaluating a network. Note that some (minimal) image preprocessing occurs during evaluation including central cropping and resizing of the image to fit the network. Args: dataset: instance of Dataset class specifying the dataset. batch_size: integer, number of examples in batch num_preprocess_threads: integer, total number of preprocessing threads but None defaults to FLAGS.num_preprocess_threads. Returns: images: Images. 4D tensor of size [batch_size, FLAGS.image_size, image_size, 3]. labels: 1-D integer Tensor of [FLAGS.batch_size]. """ if not batch_size: batch_size = FLAGS.batch_size # Force all input processing onto CPU in order to reserve the GPU for # the forward inference and back-propagation. with tf.device('/cpu:0'): images, labels, filenames = batch_inputs( dataset, batch_size, train=False, num_preprocess_threads=num_preprocess_threads, num_readers=1) return images, labels, filenames def distorted_inputs(dataset, batch_size=None, num_preprocess_threads=None): """Generate batches of distorted versions of ImageNet images. Use this function as the inputs for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Args: dataset: instance of Dataset class specifying the dataset. batch_size: integer, number of examples in batch num_preprocess_threads: integer, total number of preprocessing threads but None defaults to FLAGS.num_preprocess_threads. Returns: images: Images. 4D tensor of size [batch_size, FLAGS.image_size, FLAGS.image_size, 3]. labels: 1-D integer Tensor of [batch_size]. """ if not batch_size: batch_size = FLAGS.batch_size # Force all input processing onto CPU in order to reserve the GPU for # the forward inference and back-propagation. with tf.device('/cpu:0'): images, labels, _ = batch_inputs( dataset, batch_size, train=True, num_preprocess_threads=num_preprocess_threads, num_readers=FLAGS.num_readers) return images, labels def decode_jpeg(image_buffer, scope=None): """Decode a JPEG string into one 3-D float image Tensor. Args: image_buffer: scalar string Tensor. scope: Optional scope for op_scope. Returns: 3-D float Tensor with values ranging from [0, 1). """ with tf.op_scope([image_buffer], scope, 'decode_jpeg'): # Decode the string as an RGB JPEG. # Note that the resulting image contains an unknown height and width # that is set dynamically by decode_jpeg. In other words, the height # and width of image is unknown at compile-time. image = tf.image.decode_jpeg(image_buffer, channels=3) # After this point, all image pixels reside in [0,1) # until the very end, when they're rescaled to (-1, 1). The various # adjust_* ops all require this range for dtype float. image = tf.image.convert_image_dtype(image, dtype=tf.float32) return image def distort_color(image, thread_id=0, scope=None): """Distort the color of the image. Each color distortion is non-commutative and thus ordering of the color ops matters. Ideally we would randomly permute the ordering of the color ops. Rather then adding that level of complication, we select a distinct ordering of color ops for each preprocessing thread. Args: image: Tensor containing single image. thread_id: preprocessing thread ID. scope: Optional scope for op_scope. Returns: color-distorted image """ with tf.op_scope([image], scope, 'distort_color'): color_ordering = thread_id % 2 if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) # The random_* ops do not necessarily clamp. image = tf.clip_by_value(image, 0.0, 1.0) return image def distort_image(image, height, width, bbox, thread_id=0, scope=None): """Distort one image for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Args: image: 3-D float Tensor of image height: integer width: integer bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. thread_id: integer indicating the preprocessing thread. scope: Optional scope for op_scope. Returns: 3-D float Tensor of distorted image used for training. """ with tf.op_scope([image, height, width, bbox], scope, 'distort_image'): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # Display the bounding box in the first thread only. if not thread_id: image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox) tf.image_summary('image_with_bounding_boxes', image_with_box) # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an allowed # range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=0.1, aspect_ratio_range=[0.75, 1.33], area_range=[0.05, 1.0], max_attempts=100, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box if not thread_id: image_with_distorted_box = tf.image.draw_bounding_boxes( tf.expand_dims(image, 0), distort_bbox) tf.image_summary('images_with_distorted_bounding_box', image_with_distorted_box) # Crop the image to the specified bounding box. distorted_image = tf.slice(image, bbox_begin, bbox_size) # This resizing operation may distort the images because the aspect # ratio is not respected. We select a resize method in a round robin # fashion based on the thread number. # Note that ResizeMethod contains 4 enumerated resizing methods. resize_method = thread_id % 4 distorted_image = tf.image.resize_images(distorted_image, [height, width], method=resize_method) # Restore the shape since the dynamic slice based upon the bbox_size loses # the third dimension. distorted_image.set_shape([height, width, 3]) if not thread_id: tf.image_summary('cropped_resized_image', tf.expand_dims(distorted_image, 0)) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Randomly distort the colors. distorted_image = distort_color(distorted_image, thread_id) if not thread_id: tf.image_summary('final_distorted_image', tf.expand_dims(distorted_image, 0)) return distorted_image def eval_image(image, height, width, scope=None): """Prepare one image for evaluation. Args: image: 3-D float Tensor height: integer width: integer scope: Optional scope for op_scope. Returns: 3-D float Tensor of prepared image. """ with tf.op_scope([image, height, width], scope, 'eval_image'): # Crop the central region of the image with an area containing 87.5% of # the original image. image = tf.image.central_crop(image, central_fraction=0.875) # Resize the image to the original height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) return image def image_preprocessing(image_buffer, bbox, train, thread_id=0): """Decode and preprocess one image for evaluation or training. Args: image_buffer: JPEG encoded string Tensor bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. train: boolean thread_id: integer indicating preprocessing thread Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box """ if bbox is None: raise ValueError('Please supply a bounding box.') image = decode_jpeg(image_buffer) height = FLAGS.image_size width = FLAGS.image_size if train: image = distort_image(image, height, width, bbox, thread_id) else: image = eval_image(image, height, width) # Finally, rescale to [-1,1] instead of [0, 1) image = tf.sub(image, 0.5) image = tf.mul(image, 2.0) return image def debug_print(y): with tf.Session(): print(y.eval()) def parse_example_proto(example_serialized): """Parses an Example proto containing a training example of an image. The output of the build_image_data.py image preprocessing script is a dataset containing serialized Example protocol buffers. Each Example proto contains the following fields: image/height: 462 image/width: 581 image/colorspace: 'RGB' image/channels: 3 image/class/label: 615 image/class/synset: 'n03623198' image/class/text: 'knee pad' image/object/bbox/xmin: 0.1 image/object/bbox/xmax: 0.9 image/object/bbox/ymin: 0.2 image/object/bbox/ymax: 0.6 image/object/bbox/label: 615 image/format: 'JPEG' image/filename: 'ILSVRC2012_val_00041207.JPEG' image/encoded: <JPEG encoded string> Args: example_serialized: scalar Tensor tf.string containing a serialized Example protocol buffer. Returns: image_buffer: Tensor tf.string containing the contents of a JPEG file. label: Tensor tf.int32 containing the label. bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. text: Tensor tf.string containing the human-readable label. """ # Dense features in Example proto. feature_map = { 'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''), 'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64, default_value=-1), 'image/class/text': tf.FixedLenFeature([], dtype=tf.string, default_value=''), 'image/filename': tf.FixedLenFeature([], dtype=tf.string, default_value=''), } sparse_float32 = tf.VarLenFeature(dtype=tf.float32) # Sparse features in Example proto. feature_map.update( {k: sparse_float32 for k in ['image/object/bbox/xmin', 'image/object/bbox/ymin', 'image/object/bbox/xmax', 'image/object/bbox/ymax']}) features = tf.parse_single_example(example_serialized, feature_map) label = tf.cast(features['image/class/label'], dtype=tf.int32) xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0) ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0) xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0) ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0) # Note that we impose an ordering of (y, x) just to make life difficult. bbox = tf.concat(0, [ymin, xmin, ymax, xmax]) # Force the variable number of bounding boxes into the shape # [1, num_boxes, coords]. bbox = tf.expand_dims(bbox, 0) bbox = tf.transpose(bbox, [0, 2, 1]) return features['image/encoded'], label, bbox, features['image/class/text'], features['image/filename'] def batch_inputs(dataset, batch_size, train, num_preprocess_threads=None, num_readers=1): """Contruct batches of training or evaluation examples from the image dataset. Args: dataset: instance of Dataset class specifying the dataset. See dataset.py for details. batch_size: integer train: boolean num_preprocess_threads: integer, total number of preprocessing threads num_readers: integer, number of parallel readers Returns: images: 4-D float Tensor of a batch of images labels: 1-D integer Tensor of [batch_size]. filename list: the list of filename Raises: ValueError: if data is not found """ with tf.name_scope('batch_processing'): data_files = dataset.data_files() if data_files is None: raise ValueError('No data files found for this dataset') # Create filename_queue if train: filename_queue = tf.train.string_input_producer(data_files, shuffle=True, capacity=16) else: filename_queue = tf.train.string_input_producer(data_files, shuffle=False, capacity=1) if num_preprocess_threads is None: num_preprocess_threads = FLAGS.num_preprocess_threads if num_preprocess_threads % 4: _=1 #raise ValueError('Please make num_preprocess_threads a multiple ' # 'of 4 (%d % 4 != 0).', num_preprocess_threads) if num_readers is None: num_readers = FLAGS.num_readers if num_readers < 1: raise ValueError('Please make num_readers at least 1') # Approximate number of examples per shard. examples_per_shard = 1024 # Size the random shuffle queue to balance between good global # mixing (more examples) and memory use (fewer examples). # 1 image uses 299*299*3*4 bytes = 1MB # The default input_queue_memory_factor is 16 implying a shuffling queue # size: examples_per_shard * 16 * 1MB = 17.6GB min_queue_examples = examples_per_shard * FLAGS.input_queue_memory_factor if train: examples_queue = tf.RandomShuffleQueue( capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples, dtypes=[tf.string]) else: examples_queue = tf.FIFOQueue( capacity=examples_per_shard + 3 * batch_size, dtypes=[tf.string]) # Create multiple readers to populate the queue of examples. if num_readers > 1: enqueue_ops = [] for _ in range(num_readers): reader = dataset.reader() _, value = reader.read(filename_queue) enqueue_ops.append(examples_queue.enqueue([value])) tf.train.queue_runner.add_queue_runner( tf.train.queue_runner.QueueRunner(examples_queue, enqueue_ops)) example_serialized = examples_queue.dequeue() else: reader = dataset.reader() _, example_serialized = reader.read(filename_queue) images_and_labels = [] for thread_id in range(num_preprocess_threads): # Parse a serialized Example proto to extract the image and metadata. image_buffer, label_index, bbox, _, filename = parse_example_proto( example_serialized) image = image_preprocessing(image_buffer, bbox, train, thread_id) images_and_labels.append([image, label_index,filename]) images, label_index_batch,filenames = tf.train.batch_join( images_and_labels, batch_size=batch_size, capacity=3 * num_preprocess_threads * batch_size) # Reshape images into these desired dimensions. height = FLAGS.image_size width = FLAGS.image_size depth = 3 images = tf.cast(images, tf.float32) images = tf.reshape(images, shape=[batch_size, height, width, depth]) # Display the training images in the visualizer. tf.image_summary('images', images) return images, tf.reshape(label_index_batch, [batch_size]), tf.reshape(filenames, [batch_size])
apache-2.0
GoogleCloudPlatform/public-datasets-pipelines
datasets/fec/pipelines/committee_contributions_2020/committee_contributions_2020_dag.py
1
7284
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from airflow import DAG from airflow.providers.cncf.kubernetes.operators import kubernetes_pod from airflow.providers.google.cloud.transfers import gcs_to_bigquery default_args = { "owner": "Google", "depends_on_past": False, "start_date": "2021-03-01", } with DAG( dag_id="fec.committee_contributions_2020", default_args=default_args, max_active_runs=1, schedule_interval="@daily", catchup=False, default_view="graph", ) as dag: # Run CSV transform within kubernetes pod committee_contributions_2020_transform_csv = kubernetes_pod.KubernetesPodOperator( task_id="committee_contributions_2020_transform_csv", startup_timeout_seconds=600, name="committee_contributions_2020", namespace="composer", service_account_name="datasets", image_pull_policy="Always", image="{{ var.json.fec.container_registry.run_csv_transform_kub }}", env_vars={ "SOURCE_URL": "https://www.fec.gov/files/bulk-downloads/2020/pas220.zip", "SOURCE_FILE_ZIP_FILE": "files/zip_file.zip", "SOURCE_FILE_PATH": "files/", "SOURCE_FILE": "files/itpas2.txt", "TARGET_FILE": "files/data_output.csv", "TARGET_GCS_BUCKET": "{{ var.value.composer_bucket }}", "TARGET_GCS_PATH": "data/fec/committee_contributions_2020/data_output.csv", "PIPELINE_NAME": "committee_contributions_2020", "CSV_HEADERS": '["cmte_id","amndt_ind","rpt_tp","transaction_pgi","image_num","transaction_tp","entity_tp", "name","city","state","zip_code","employer","occupation","transaction_dt","transaction_amt","other_id", "cand_id","tran_id","file_num","memo_cd","memo_text","sub_id"]', }, resources={ "request_memory": "4G", "request_cpu": "1", "request_ephemeral_storage": "10G", }, ) # Task to load CSV data to a BigQuery table load_committee_contributions_2020_to_bq = gcs_to_bigquery.GCSToBigQueryOperator( task_id="load_committee_contributions_2020_to_bq", bucket="{{ var.value.composer_bucket }}", source_objects=["data/fec/committee_contributions_2020/data_output.csv"], source_format="CSV", destination_project_dataset_table="fec.committee_contributions_2020", skip_leading_rows=1, allow_quoted_newlines=True, write_disposition="WRITE_TRUNCATE", schema_fields=[ { "name": "cmte_id", "type": "string", "description": "Filer Identification Number", "mode": "nullable", }, { "name": "amndt_ind", "type": "string", "description": "Amendment Indicator", "mode": "nullable", }, { "name": "rpt_tp", "type": "string", "description": "Report Type", "mode": "nullable", }, { "name": "transaction_pgi", "type": "string", "description": "Primary-General Indicator", "mode": "nullable", }, { "name": "image_num", "type": "integer", "description": "Image Number", "mode": "nullable", }, { "name": "transaction_tp", "type": "string", "description": "Transaction Type", "mode": "nullable", }, { "name": "entity_tp", "type": "string", "description": "Entity Type", "mode": "nullable", }, { "name": "name", "type": "string", "description": "Recipient/Payee", "mode": "nullable", }, { "name": "city", "type": "string", "description": "City/Town", "mode": "nullable", }, { "name": "state", "type": "string", "description": "State", "mode": "nullable", }, { "name": "zip_code", "type": "string", "description": "Zip Code", "mode": "nullable", }, { "name": "employer", "type": "string", "description": "Employer", "mode": "nullable", }, { "name": "occupation", "type": "string", "description": "Occupation", "mode": "nullable", }, { "name": "transaction_dt", "type": "date", "description": "Transaction Date(MMDDYYYY)", "mode": "nullable", }, { "name": "transaction_amt", "type": "integer", "description": "Transaction Amount", "mode": "nullable", }, { "name": "other_id", "type": "string", "description": "Other Identification Number", "mode": "nullable", }, { "name": "cand_id", "type": "string", "description": "Candidate Identification Number", "mode": "nullable", }, { "name": "tran_id", "type": "string", "description": "Transaction ID", "mode": "nullable", }, { "name": "file_num", "type": "integer", "description": "File Number / Report ID", "mode": "nullable", }, { "name": "memo_cd", "type": "string", "description": "Memo Code", "mode": "nullable", }, { "name": "memo_text", "type": "string", "description": "Memo Text", "mode": "nullable", }, { "name": "sub_id", "type": "integer", "description": "FEC Record Number", "mode": "required", }, ], ) ( committee_contributions_2020_transform_csv >> load_committee_contributions_2020_to_bq )
apache-2.0
davidam/python-examples
scikit/classify/document_clustering.py
20
8531
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent semantic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Lars Buitinck # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() def is_interactive(): return not hasattr(sys.modules['__main__'], '__file__') # work-around for Jupyter notebook and IPython console argv = [] if is_interactive() else sys.argv[1:] (opts, args) = op.parse_args(argv) if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) # ############################################################################# # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories # categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', alternate_sign=False, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', alternate_sign=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() # ############################################################################# # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
gpl-3.0
yonglehou/scikit-learn
sklearn/tests/test_isotonic.py
228
11087
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w)
bsd-3-clause
ageron/tensorflow
tensorflow/python/distribute/input_lib.py
3
19584
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Various classes representing distributed inputs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.experimental.ops import batching from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import multi_device_iterator_ops from tensorflow.python.distribute import device_util from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.distribute import input_ops from tensorflow.python.distribute import values from tensorflow.python.eager import context from tensorflow.python.framework import device as tf_device from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util class InputWorkers(object): """A 1-to-many mapping from input worker devices to compute devices.""" def __init__(self, device_map, worker_device_pairs=None, logical_device=0): """Initialize an `InputWorkers` object. Args: device_map: A `DeviceMap` with the computation devices fed by the input workers. worker_device_pairs: A sequence of pairs: `(input device, a tuple of compute devices fed by that input device)`. logical_device: The logical device of `device_map` to feed. """ self._device_map = device_map self._logical_device = logical_device if worker_device_pairs is None: worker_device_pairs = (( device_util.canonicalize("/device:CPU:0"), device_map.logical_to_actual_devices(logical_device)),) self._input_worker_devices = tuple(d for d, _ in worker_device_pairs) self._fed_devices = tuple(tuple(device_util.canonicalize(d) for d in f) for _, f in worker_device_pairs) flattened = tuple(d for l in self._fed_devices for d in l) assert (flattened == device_map.logical_to_actual_devices(logical_device)), ( "flattened: %s logical device %d: %s" % (flattened, logical_device, device_map.logical_to_actual_devices(logical_device))) @property def device_map(self): return self._device_map @property def logical_device(self): return self._logical_device @property def num_workers(self): return len(self._input_worker_devices) @property def worker_devices(self): return self._input_worker_devices def compute_devices_for_worker(self, worker_index): return self._fed_devices[worker_index] def __repr__(self): devices = self.worker_devices debug_repr = ",\n".join(" %d %s: %s" % (i, devices[i], self._fed_devices[i]) for i in range(len(devices))) return "%s:{\n%s\n device_map: %s}" % ( self.__class__.__name__, debug_repr, self._device_map) class InputIterator(object): """An input iterator, intended to be passed to `DistributionStrategy.run`.""" def get_next(self): """Returns the next inputs for all replicas.""" raise NotImplementedError("must be implemented in descendants") def initialize(self): """Initialize the underlying input dataset, when applicable. In eager mode, this will create a new iterator and return it. In graph mode, this will initialize the same underlying iterator(s). Users are required to call this if - This iterator was returned from a call to `make_input_fn_iterator` with an input function that returns a dataset. - Or this iterator was returned from a call to `make_dataset_iterator`. Returns: A list of initialization ops to be executed. """ raise NotImplementedError("must be implemented in descendants") class InputIteratorImpl(InputIterator): """Common implementation for all input iterators.""" def __init__(self, input_workers, iterators): assert isinstance(input_workers, InputWorkers) if not input_workers.worker_devices: raise ValueError("Should have at least one worker for input iterator.") self._iterators = iterators self._input_workers = input_workers def get_next(self, name=None): """Returns the next input from the iterator for all replicas.""" replicas = [] for i, worker in enumerate(self._input_workers.worker_devices): if name is not None: d = tf_device.DeviceSpec.from_string(worker) new_name = "%s_%s_%d" % (name, d.job, d.task) else: new_name = None with ops.device(worker): # Make `replicas` a flat list of values across all replicas. replicas.extend(self._iterators[i].get_next_as_list(new_name)) return values.regroup(self._input_workers.device_map, replicas) def initialize(self): """Initialze underlying iterators. Returns: A list of any initializer ops that should be run. """ init_ops = [] for it in self._iterators: init_ops.extend(it.initialize()) return init_ops # TODO(priyag): Remove when we switch to using `MultiDeviceIterator` for TPUs. @property def output_classes(self): return self._iterators[0].output_classes # TODO(priyag): Remove when we switch to using `MultiDeviceIterator` for TPUs. @property def output_shapes(self): return self._iterators[0].output_shapes # TODO(priyag): Remove when we switch to using `MultiDeviceIterator` for TPUs. @property def output_types(self): return self._iterators[0].output_types # TODO(priyag): Remove when we switch to using `MultiDeviceIterator` for TPUs. def get_iterator(self, worker): for i, w in enumerate(self._input_workers.worker_devices): if worker == w: return self._iterators[i] return None class InputFunctionIterator(InputIteratorImpl): """Iterator created from input function.""" def __init__(self, input_fn, input_workers, input_contexts): """Make an iterator for input provided via an input function. Currently implements PER_WORKER mode, in which the `input_fn` is called once on each worker. TODO(priyag): Add other replication modes. Args: input_fn: Input function that returns a `tf.data.Dataset` object. input_workers: an `InputWorkers` object. input_contexts: A list of `InputContext` instances to be passed to call(s) to `input_fn`. Length and order should match worker order in `worker_device_pairs`. """ assert isinstance(input_workers, InputWorkers) if input_workers.num_workers != len(input_contexts): raise ValueError( "Number of input workers (%d) is not same as number of " "input_contexts (%d)" % (input_workers.num_workers, len(input_contexts))) iterators = [] for i, ctx in enumerate(input_contexts): worker = input_workers.worker_devices[i] with ops.device(worker): result = input_fn(ctx) devices = input_workers.compute_devices_for_worker(i) if isinstance(result, dataset_ops.DatasetV2): iterator = _SingleWorkerDatasetIterator(result, worker, devices) elif callable(result): iterator = _SingleWorkerCallableIterator(result, worker, devices) else: raise ValueError( "input_fn must return a tf.data.Dataset or a callable.") iterators.append(iterator) super(InputFunctionIterator, self).__init__(input_workers, iterators) class DatasetIterator(InputIteratorImpl): """Iterator created from input dataset.""" def __init__(self, dataset, input_workers, split_batch_by=None): """Make an iterator for the dataset on given devices. If `split_batch_by` is not None, we "split" each batch of the dataset by `split_batch_by` value. To achieve this, we first unbatch the input dataset and then rebatch it with the per replica batch size that is calculated using `global_batch_size // split_batch_by`. The currently supported datasets are as follows: `dataset.batch()` is the last operation on the dataset OR `dataset.apply(map_and_batch)` is the last operation on the dataset OR `dataset.batch().prefetch()` are the last 2 operations on the dataset OR `dataset.apply(map_and_batch).prefetch()` are the last 2 operations. TODO(priyag): Support multi worker / host cases properly by cloning and sharding the dataset on each worker. Current setup will only work in some cases, such as in-graph multi worker GPU case. If the input pipeline has random shuffling (with a different seed on each worker), each worker will see random input from the same overall dataset in each step. Otherwise, each worker will see the same input in each step. Args: dataset: `tf.data.Dataset` that will be used as the input source. input_workers: an `InputWorkers` object. split_batch_by: Optional integer. If present, we "split" each batch of the dataset by `split_batch_by` value. """ assert isinstance(input_workers, InputWorkers) if split_batch_by: dataset = batching._RebatchDataset(dataset, split_batch_by) # pylint: disable=protected-access iterators = [] for i, worker in enumerate(input_workers.worker_devices): with ops.device(worker): worker_devices = input_workers.compute_devices_for_worker(i) cloned_dataset = dataset if not context.executing_eagerly(): cloned_dataset = input_ops._clone_dataset(dataset) # pylint: disable=protected-access cloned_dataset = cloned_dataset.with_options(dataset.options()) iterator = _SingleWorkerDatasetIterator(cloned_dataset, worker, worker_devices) iterators.append(iterator) self._element_structure = dataset._element_structure # pylint: disable=protected-access super(DatasetIterator, self).__init__(input_workers, iterators) class _SingleWorkerDatasetIterator(object): """Iterator for a single `tf.data.Dataset`.""" def __init__(self, dataset, worker, devices): """Create iterator for the `dataset` to fetch data to worker's `devices` . `MultiDeviceIterator` is used to prefetch input to the devices on the given worker. Args: dataset: A `tf.data.Dataset` instance. worker: Worker on which ops should be created. devices: Distribute data from `dataset` to these devices. """ self._dataset = dataset self._worker = worker self._devices = devices self._make_iterator() def _make_iterator(self): """Make appropriate iterator on the dataset.""" with ops.device(self._worker): self._iterator = multi_device_iterator_ops.MultiDeviceIterator( self._dataset, self._devices) def get_next_as_list(self, name=None): """Get next element from the underlying iterator.""" del name with ops.device(self._worker): data_list = self._iterator.get_next() return data_list def initialize(self): """Initialze underlying iterator. In eager execution, this simply recreates the underlying iterator. In graph execution, it returns the initializer ops for the underlying iterator. Returns: A list of any initializer ops that should be run. """ if context.executing_eagerly(): self._iterator._eager_reset() # pylint: disable=protected-access return [] else: return [self._iterator.initializer] @property def output_classes(self): return dataset_ops.get_legacy_output_classes(self._iterator) @property def output_shapes(self): return dataset_ops.get_legacy_output_shapes(self._iterator) @property def output_types(self): return dataset_ops.get_legacy_output_types(self._iterator) class _SingleWorkerCallableIterator(object): """Iterator for a single tensor-returning callable.""" def __init__(self, fn, worker, devices): self._fn = fn self._worker = worker self._devices = devices def get_next_as_list(self, name=None): """Get next element from the callable.""" del name with ops.device(self._worker): data_list = [self._fn() for _ in self._devices] return data_list def initialize(self): # TODO(petebu) Should this throw an exception instead? return [] # TODO(sourabhbajaj): Remove this in lieu of distributed datasets def _get_batched_dataset(d): """Get the batched dataset from `d`.""" # pylint: disable=protected-access if isinstance(d, dataset_ops.DatasetV1Adapter): d = d._dataset if isinstance(d, (dataset_ops.BatchDataset, batching._MapAndBatchDataset)): return d elif isinstance(d, (dataset_ops.PrefetchDataset, dataset_ops._OptionsDataset)): return _get_batched_dataset(d._input_dataset) raise ValueError( "Unable to get batched dataset from the input dataset. `batch` " "`map_and_batch` need to be the last operations on the dataset. " "The batch operations can be followed by a prefetch.") def _get_batched_dataset_attributes(d): """Get `batch_size`, `drop_remainder` of dataset.""" # pylint: disable=protected-access assert isinstance(d, (dataset_ops.BatchDataset, batching._MapAndBatchDataset)) if isinstance(d, dataset_ops.BatchDataset): batch_size = d._batch_size drop_remainder = d._drop_remainder elif isinstance(d, batching._MapAndBatchDataset): batch_size = d._batch_size_t drop_remainder = d._drop_remainder_t # pylint: enable=protected-access if tensor_util.is_tensor(batch_size): batch_size = tensor_util.constant_value(batch_size) if tensor_util.is_tensor(drop_remainder): drop_remainder = tensor_util.constant_value(drop_remainder) return batch_size, drop_remainder # TODO(sourabhbajaj): Remove this in lieu of distributed datasets def _get_dataset_attributes(dataset): """Get the underlying attributes from the dataset object.""" # pylint: disable=protected-access # First, get batch_size and drop_remainder from the dataset. We need # to walk back the dataset creation process and find the batched version in # order to get the attributes. batched_dataset = _get_batched_dataset(dataset) batch_size, drop_remainder = _get_batched_dataset_attributes(batched_dataset) # Second, prefetch buffer should be get from the original dataset. prefetch_buffer = None if isinstance(dataset, dataset_ops.PrefetchDataset): prefetch_buffer = dataset._buffer_size elif (isinstance(dataset, dataset_ops.DatasetV1Adapter) and isinstance(dataset._dataset, dataset_ops.PrefetchDataset)): prefetch_buffer = dataset._dataset._buffer_size return batch_size, drop_remainder, prefetch_buffer class MultiStepContext(object): """A context object that can be used to capture things when running steps. This context object is useful when running multiple steps at a time using the `experimental_run_steps_on_iterator` API. For e.g. it allows the user's step function to specify which outputs to emit at what frequency. Currently it supports capturing output from the last step, as well as capturing non tensor outputs. In the future it will be augmented to support other use cases such as output each N steps. """ def __init__(self): """Initialize an output context. Returns: A context object. """ self._last_step_outputs = {} self._last_step_outputs_reduce_ops = {} self._non_tensor_outputs = {} @property def last_step_outputs(self): """A dictionary consisting of outputs to be captured on last step. Keys in the dictionary are names of tensors to be captured, as specified when `set_last_step_output` is called. Values in the dictionary are the tensors themselves. If `set_last_step_output` was called with a `reduce_op` for this output, then the value is the reduced value. Returns: A dictionary with last step outputs. """ return self._last_step_outputs def _set_last_step_outputs(self, outputs): """Replace the entire dictionary of last step outputs.""" if not isinstance(outputs, dict): raise ValueError("Need a dictionary to set last_step_outputs.") self._last_step_outputs = outputs def set_last_step_output(self, name, output, reduce_op=None): """Set `output` with `name` to be outputted from the last step. Args: name: String, name to identify the output. Doesn't need to match tensor name. output: The tensors that should be outputted with `name`. See below for actual types supported. reduce_op: Reduction method to use to reduce outputs from multiple replicas. Required if `set_last_step_output` is called in a replica context. Optional in cross_replica_context. When present, the outputs from all the replicas are reduced using the current distribution strategy's `reduce` method. Hence, the type of `output` must be what's supported by the corresponding `reduce` method. For e.g. if using MirroredStrategy and reduction is set, output must be a `PerReplica` value. The reduce method is also recorded in a dictionary `_last_step_outputs_reduce_ops` for later interpreting of the outputs as already reduced or not. """ if distribution_strategy_context.in_cross_replica_context(): self._last_step_outputs_reduce_ops[name] = reduce_op if reduce_op is None: self._last_step_outputs[name] = output else: distribution = distribution_strategy_context.get_strategy() self._last_step_outputs[name] = distribution.reduce(reduce_op, output) else: assert reduce_op is not None def merge_fn(distribution, value): self._last_step_outputs[name] = distribution.reduce(reduce_op, value) # Setting this inside the `merge_fn` because all replicas share the same # context object, so it's more robust to set it only once (even if all # the replicas are trying to set the same value). self._last_step_outputs_reduce_ops[name] = reduce_op distribution_strategy_context.get_replica_context().merge_call( merge_fn, args=(output,)) @property def non_tensor_outputs(self): """A dictionary consisting of any non tensor outputs to be captured.""" return self._non_tensor_outputs def set_non_tensor_output(self, name, output): """Set `output` with `name` to be captured as a non tensor output.""" if distribution_strategy_context.in_cross_replica_context(): self._non_tensor_outputs[name] = output else: def merge_fn(distribution, value): # NOTE(priyag): For non tensor outputs, we simply return all the values # in a list as reduction doesn't make sense on non tensors. self._non_tensor_outputs[name] = distribution.unwrap(value) distribution_strategy_context.get_replica_context().merge_call( merge_fn, args=(output,))
apache-2.0
ResidentMario/geoplot
examples/plot_los_angeles_flights.py
1
1907
""" Sankey of Los Angeles flight volumes with Cartopy globes ======================================================== This example plots passenger volumes for commercial flights out of Los Angeles International Airport. Some globe-modification options available in ``cartopy`` are demonstrated. Visit `the cartopy docs <https://scitools.org.uk/cartopy/docs/latest/matplotlib/feature_interface.html>`_ for more information. """ import geopandas as gpd import geoplot as gplt import geoplot.crs as gcrs import matplotlib.pyplot as plt import cartopy import mapclassify as mc la_flights = gpd.read_file(gplt.datasets.get_path('la_flights')) scheme = mc.Quantiles(la_flights['Passengers'], k=5) f, axarr = plt.subplots(2, 2, figsize=(12, 12), subplot_kw={ 'projection': gcrs.Orthographic(central_latitude=40.7128, central_longitude=-74.0059) }) plt.suptitle('Popular Flights out of Los Angeles, 2016', fontsize=16) plt.subplots_adjust(top=0.95) ax = gplt.sankey( la_flights, scale='Passengers', hue='Passengers', cmap='Purples', scheme=scheme, ax=axarr[0][0] ) ax.set_global() ax.outline_patch.set_visible(True) ax.coastlines() ax = gplt.sankey( la_flights, scale='Passengers', hue='Passengers', cmap='Purples', scheme=scheme, ax=axarr[0][1] ) ax.set_global() ax.outline_patch.set_visible(True) ax.stock_img() ax = gplt.sankey( la_flights, scale='Passengers', hue='Passengers', cmap='Purples', scheme=scheme, ax=axarr[1][0] ) ax.set_global() ax.outline_patch.set_visible(True) ax.gridlines() ax.coastlines() ax.add_feature(cartopy.feature.BORDERS) ax = gplt.sankey( la_flights, scale='Passengers', hue='Passengers', cmap='Purples', scheme=scheme, ax=axarr[1][1] ) ax.set_global() ax.outline_patch.set_visible(True) ax.coastlines() ax.add_feature(cartopy.feature.LAND) ax.add_feature(cartopy.feature.OCEAN) ax.add_feature(cartopy.feature.LAKES) ax.add_feature(cartopy.feature.RIVERS)
mit
WMD-Bath/dvxc
rvo_stats.py
3
36130
#! /usr/bin/env python # rvo_stats.py # Copyright 2015 Adam J. Jackson and Jonathan M. Skelton from __future__ import print_function import csv import math import numpy as np from collections import namedtuple import matplotlib as mpl import matplotlib.pyplot as plt # from matplotlib.ticker import FuncFormatter import rvo from rvo import EVPerCubicAngstromInGPa ### set up data files ### # src_dir = os.path.dirname(__file__) # # Append a trailing slash to make coherent directory name - this would select # # the root directory in the case of no prefix, so we need to check # if src_dir: # src_dir = src_dir + '/' # data_dir = src_dir + '../data/' ### Plotting configuration ### functional_colours = { 'LDA' : ( 0, 0, 204), 'PW91' : (204, 0, 0), 'PBE' : ( 0, 153, 0), 'PBEsol' : (112, 48, 160), 'TPSS' : (255, 192, 0), 'revTPSS' : (214, 0, 147), 'PBE+D2' : ( 0, 176, 240), 'B3LYP' : (100, 100, 50), 'HSE06' : ( 50, 80, 50) } functional_markers = { 'LDA' : "^", 'PW91' : "o", 'PBE' : "s", 'PBEsol' : "D", 'TPSS' : "x", 'revTPSS' : "p", 'PBE+D2' : "+" , 'B3LYP' : "<", 'HSE06' : ">"} iter_plot_bar_hatches = [None, "//", "/", "---", 'o', 'oo'] # Global initialisation of Matplotlib settings and variables/objects; the font # size is kept as a variable, because calls to plt.legend() don't seem to use # the rc settings. COMMENT: Note that the line width *is* hard-coded in # places, so changing the variable here won't update everything on the plots. mpl.rc('font', **{ 'family' : 'sans-serif', 'size' : 10, 'sans-serif' : 'Arial' }) mpl.rc('lines', **{ 'linewidth' : 0.5 }) font_size = 10 global data_dir def main(verbosity=False, to_plot=["none"], data_path="", to_write=["none"], compounds=False, compact=False): global data_dir data_dir = data_path if data_dir[-1] != '/': data_dir += '/' all_data_sets = [ ("PbS", data_dir + u"PbS-EVPData.csv"), ("PbTe", data_dir + u"PbTe-EVPData.csv"), ("ZnS", data_dir + u"ZnS-EVPData.csv"), ("ZnTe", data_dir +u"ZnTe-EVPData.csv") ] ### Set up verbose printing ### if verbosity: def vprint(*args): for arg in args: print(arg, end=' ') print('') else: def vprint(*args): pass ### Let "none" override other output selections if "none" in to_plot: to_plot = ["none"] if "none" in to_write: to_write = ["none"] ### Trim down data_sets if requested: ### # global data_sets # Python is weird about global variables: # # this line is needed by the "if" statement but not the # # "for" loop! if compounds: data_sets = [entry for entry in all_data_sets if entry[0] in compounds] else: data_sets = all_data_sets # Main loop: Simulated RVO over selected materials for output_prefix, filename in data_sets: ### Import data and find optimal volumes ### print("Processing: {0}\n".format(filename)) vprint(" -> Reading input data...") functionals, data = read_dataset(filename) vprint(" -> Determining Veq by Murnaghan fitting...") eos_fits = {} for functional in functionals: murnaghan_params = rvo.murnaghan_fit(data[functional].e_values, data[functional].v_values) vprint(" -> {0}: {1:.2f} A^3 (RMS = {2:.2e})".format( functional, murnaghan_params.v0, murnaghan_params.eRMS)) eos_fits[functional] = murnaghan_params vprint("\n") if "eos" in to_plot or "all" in to_plot: plot_filename = "{0}_EoS.png".format(output_prefix) print(" -> Plotting {0}...".format(plot_filename)) plot_EVP_data(functionals, data, eos_fits, plot_filename=plot_filename, compact=compact) if "eos" in to_write or "all" in to_write: out_filename = "{0}_EoS.csv".format(output_prefix) print(" -> Outputting {0}...".format(out_filename)) with open(out_filename, 'w') as f: csv_writer = csv.writer(f, delimiter = ',',quotechar = '\"', quoting = csv.QUOTE_ALL) csv_writer.writerow(["Functional", "E0 / eV", "V0 / A^3", "K0 / GPa", "K'0", "RMS Error"]) for functional in functionals: fit = eos_fits[functional] csv_writer.writerow([functional, fit.e0, fit.v0, fit.k0 * EVPerCubicAngstromInGPa, fit.kPrime0, fit.eRMS]) ### Carry out RVO method for all functionals ### print(" -> Applying RVO correction to all " + "combinations of functionals...") RvoResult = namedtuple('RvoResult', 'functional delta_v residual_p') rvo_results={} for test_functional in functionals: initial_v_values = data[test_functional].v_values initial_p_values = data[test_functional].p_values delta_v = {} residual_p = {} # Compare with all other functionals for ref_functional in (f for f in functionals if f != functional): dv = [rvo.apply_rvo_murnaghan(p, eos_fits[ref_functional]) \ for p in initial_p_values] p = [rvo.murnaghan_pressure(v + dv_v, eos_fits[test_functional]) \ for (v, dv_v) in zip(initial_v_values, dv)] delta_v.update({ref_functional: dv}) residual_p.update({ref_functional: p}) rvo_results.update({test_functional: RvoResult( test_functional, delta_v, residual_p)}) if "rvo" in to_write: ### write out table of delta p xc corrections ### out_filename = "{0}_rvo.csv".format(output_prefix) vprint(" --> Writing to file {0}...".format(out_filename)) with open(out_filename, 'w') as f: csv_writer = csv.writer(f, delimiter = ',') csv_writer.writerow(["Test functional", "Reference functional", "v / AA^3", "p / kbar", "Delta V / AA^3", "residual pressure / kbar"]) for test_functional in functionals: for ref_functional in rvo_results[test_functional].delta_v: # Zip together numbers and concatenate to labels for row in zip( data[test_functional].v_values, data[test_functional].p_values, rvo_results[test_functional].delta_v[ref_functional], rvo_results[test_functional].residual_p[ref_functional] ): # print(row) # print(list(row)) csv_writer.writerow([test_functional, ref_functional] + list(row)) # Iterative procedure print(" -> Applying correction iteratively to all combinations") iter_results = {} for functional in functionals: iter_results.update({functional:{}}) for ref_functional in (f for f in functionals if f!= functional): iter_result = sim_iterative_rvo(eos_fits[functional], eos_fits[ref_functional], max_iter=5) iter_results[functional].update({ref_functional:iter_result}) for option in ("iterative_p", "iterative_v", "all"): if option in to_write: print("Sorry, data file not yet available for iterations") if "iterative_p" in to_plot or "all" in to_plot: filename = "{0}_Iterative_P.png".format(output_prefix) print(" -> Plotting iterative P results to {0}".format(filename)) plot_iterative_results(functionals, iter_results, eos_fits, filename, mode='pressure') if "iterative_v" in to_plot or "all" in to_plot: filename = "{0}_Iterative_V.png".format(output_prefix) print(" -> Plotting iterative V results to {0}".format(filename)) plot_iterative_results(functionals, iter_results, eos_fits, filename, mode='volume') ### Sensitivity to initial distance ### # Calculate volume shift corresponding to an RVO calculation at each # point of one data set, calculate residual pressure associated with # this point from fit iterations = 4 # Check if this is required: if ("v_sensitivity" in to_plot or "all" in to_plot or "v_sensitivity" in to_write or "all" in to_write): for (test_functional, ref_functional) in ( ("B3LYP", "PW91"), ("HSE06", "PBE") ): (v_init, v_corrected) = v_sensitivity(eos_fits[test_functional], eos_fits[ref_functional], range_percent=3, iterations=iterations) if "v_sensitivity" in to_plot or "all" in to_plot: filename = "{0}_{1}_Initial_V_sensitivity.png".format( output_prefix, test_functional) print((" -> Plotting V sensitivity for {0} " + "(ref. {1}) to {2}").format(test_functional, ref_functional, filename)) plot_v_sensitivity(v_init,v_corrected, test_functional,ref_functional, v0=eos_fits[test_functional].v0, filename=filename) if "v_sensitivity" in to_write or "all" in to_write: filename = "{0}_{1}_Initial_V_sensitivity.csv".format( output_prefix, test_functional) print((" -> Writing V sensitivity data for {0} " + "(ref. {1}) to {2}").format(test_functional, ref_functional, filename)) with open(filename,'w') as f: csv_writer = csv.writer(f, delimiter = ',') header = (["v_initial / AA"] + ["v_corrected (iteration {0})".format(x) for x in range(1,iterations+1)]) csv_writer.writerow(header) for i in range(len(v_init)): csv_writer.writerow( [v_init[i]] + list(v_corrected[i,:]) ) print('\n') if "v_bandgap" in to_plot or "all" in to_plot: plot_bandgaps([x[0] for x in data_sets], do_plot=True, plot_filename="v-bandgaps.png", compact=compact) def read_dataset(filename): """Read in data from CSV file Arguments: "filename" (text string containing path to file) Returns: tuple (functionals, datasets) where "functionals" is a list of functional names and "datasets" is a set of "DataSet" namedtuple objects containing v_values, e_values and p_values (numpy arrays of volumes, energies and pressures in units of eV and angstrom) Required file format: Line 1: Functional1,,,Functional2,,, ... ,FunctionalN,, Line 2: (unused, contain units for readability) Remaining lines (data): volume, energy, p_ext, volume, energy, p_ext ... """ with open(filename, 'r') as f: input_reader_csv = csv.reader(f) # Read functional names from first line functionals = next(input_reader_csv)[::3] # Skip second line next(input_reader_csv) #fill datasets datasets = {} DataSet = namedtuple('DataSet', 'v_values e_values p_values') for functional in functionals: datasets[functional] = DataSet([],[],[]) for row in input_reader_csv: for i, name in enumerate(functionals): datasets[name].v_values.append(float(row[i*3])) datasets[name].e_values.append(float(row[i*3+1])) datasets[name].p_values.append(float(row[i*3+2])) # Finally, convert to numpy arrays for functional in functionals: datasets[functional] = DataSet( np.array(datasets[functional].v_values), np.array(datasets[functional].e_values), np.array(datasets[functional].p_values) ) return (functionals, datasets) def plot_EVP_data(functionals, evp_data, eos_fits, plot_filename=False, compact=False): """ Plot energy-volume and pressure-volume curves Arguments: functionals: list of named functionals evp_data: dict of namedtuple objects containing lists of values: {'functional1':DataSet([v1,v2,v3...],[e1,e2,e3...],[p1,p2,p3...], 'functional2': ...} where DataSet = namedtuple('DataSet', 'v_values e_values p_values') eos_fits: dict of namedtuple objects containing Murnaghan parameters: {'functional1': MurnaghanFit('e0, v0, k0, kPrime0, eRMS'), 'functional2': ...} where MurnaghanFit = namedtuple('MurnaghanFit', 'e0 v0 k0 kPrime0 eRMS') plot_filename: File name/path for plotted output. If False, plot is displayed onscreen instead. compact: [boolean] If True, show 2 plots instead of 4 (for publication) """ if compact: fig_dimensions = (8 / 2.54, 14 / 2.54) else: fig_dimensions = (17.2 / 2.54, 12 / 2.54) plt.figure(figsize = fig_dimensions) subplot_axes = [] ### Plot 1: E-V curve ### if compact: plt.subplot(2,1,1) else: plt.subplot(2,2,1) for functional in functionals: (r,g,b), marker = (functional_colours[functional], functional_markers[functional]) plt.plot(evp_data[functional].v_values, evp_data[functional].e_values - eos_fits[functional].e0, color = (r / 255.0, g / 255.0, b / 255.0), marker = marker, fillstyle = 'none', label=functional) plt.xlabel(r"$V$ / $\AA^{3}$", fontweight = 'bold') plt.ylabel("$E - E_{0}$ / eV", fontweight = 'bold') x_ticks = plt.xticks()[0] x_tick_spacing = x_ticks[1] - x_ticks[0] y_min, y_max = plt.ylim() plt.ylim(0.0, y_max) axes=plt.gca() subplot_axes.append(axes) if compact: handles, labels = axes.get_legend_handles_labels() # Print legends for first half of list # N.B. // is notation for integer floor division axes.legend(handles[:len(handles) // 2], labels[:len(handles) // 2], loc = 'upper right', frameon = False, prop = {'size' : font_size}) ### Plot 2: Relative volume ### if not compact: plt.subplot(2,2,3) x_min, x_max = None, None for functional in functionals: v_values_adjusted = (evp_data[functional].v_values - eos_fits[functional].v0) e_values_adjusted = (evp_data[functional].e_values - eos_fits[functional].e0) (r,g,b), marker = (functional_colours[functional], functional_markers[functional]) plt.plot(v_values_adjusted, e_values_adjusted, color = (r / 255.0, g /255.0, b / 255.0), marker=marker, fillstyle='none') x_min = np.min(v_values_adjusted) if not x_min \ else min(x_min, np.min(v_values_adjusted)) x_max = np.max(v_values_adjusted) if not x_max \ else max(x_max, np.max(v_values_adjusted)) plt.xlabel(r"$V - V_{0}$ / $\AA^{3}$", fontweight = 'bold') plt.ylabel("$E - E_{0}$ / eV", fontweight = 'bold') plot_x_min = math.floor(x_min / x_tick_spacing) * x_tick_spacing plot_x_max = math.ceil(x_max / x_tick_spacing) * x_tick_spacing plt.xlim(plot_x_min, plot_x_max) y_min, y_max = plt.ylim() plt.ylim(0.0, y_max) subplot_axes.append(plt.gca()) ### Plot 3: P-V curve ### if compact: plt.subplot(2,1,2) else: plt.subplot(2,2,2) def zeroline(): plt.axhline(y=0,color='k',linestyle='-') zeroline() for functional in functionals: (r,g,b), marker = (functional_colours[functional], functional_markers[functional]) plt.plot(evp_data[functional].v_values, evp_data[functional].p_values / 10, label = functional, color = (r / 255.0, g / 255.0, b / 255.0), marker = marker, fillstyle = 'none' ) plt.xlabel(r"$V$ / $\AA^{3}$", fontweight = 'bold') plt.ylabel("$P$ / GPa", fontweight = 'bold') axes = plt.gca() handles, labels = axes.get_legend_handles_labels() if compact: # Print legends for second half of list axes.legend(handles[len(handles) // 2:], labels[len(handles) // 2:], loc = 'upper right', frameon = False, prop = { 'size' : font_size }) else: # Print legends for first half of list # N.B. // is notation for integer floor division axes.legend(handles[:len(handles) // 2], labels[:len(handles) // 2], loc = 'upper right', frameon = False, prop = {'size' : font_size}) subplot_axes.append(axes) ### Plot 4: P-V for normalised V ### if not compact: plt.subplot(2,2,4) x_min, x_max = None, None zeroline() for functional in functionals: v_values_adjusted = (evp_data[functional].v_values - eos_fits[functional].v0) (r,g,b), marker = (functional_colours[functional], functional_markers[functional]) x_min = np.min(v_values_adjusted) if not x_min \ else min(x_min, np.min(v_values_adjusted)) x_max = np.max(v_values_adjusted) if not x_max \ else max(x_max, np.max(v_values_adjusted)) plt.plot(evp_data[functional].v_values - eos_fits[functional].v0, evp_data[functional].p_values / 10.0, label=functional, color = (r / 255.0, g /255.0, b / 255.0), marker=marker, fillstyle='none') plt.xlabel(r"$V - V_{0}$ / $\AA^{3}$", fontweight = 'bold') plt.ylabel("$P$ / GPa", fontweight = 'bold') plot_x_min = math.floor(x_min / x_tick_spacing) * x_tick_spacing plot_x_max = math.ceil(x_max / x_tick_spacing) * x_tick_spacing plt.xlim(plot_x_min, plot_x_max) axes = plt.gca() handles, labels = axes.get_legend_handles_labels() axes.legend(handles[len(handles) // 2:], labels[len(handles) // 2:], loc = 'upper right', frameon = False, prop = { 'size' : font_size }) subplot_axes.append(axes) ### Finish up plots ### for axes in subplot_axes: for spine in axes.spines.values(): spine.set_linewidth(0.5) plt.tight_layout() if plot_filename: plt.savefig(plot_filename, format = 'png', dpi = 300) else: plt.show() plt.close() def sim_iterative_rvo(test_functional_murnaghan_fit, ref_functional_murnaghan_fit, max_iter = 5): """Simulate the iterative application of RVO procedure Rather than carry out new calculations for every combination of functionals, we use a Murnaghan fit for both the test functional and the reference functional. Calculated pressure values from the reference functional fit are a stand-in for what would be a quantum chemical calculation at the volume predicted by the delta V xc procedure. Arguments: test_functional_murnaghan_fit: a MurnaghanFit namedtuple, containing the fitted parameters for a Murnaghan EoS describing the P-V curve to be minimised. (i.e. results from an expensive DFT functional.) ref_functional_murnaghan_fit: a corresponding MurnaghanFit namedtuple, parameterising an EoS to be used in the RVO correction. (e.g. results from an inexpensive DFT functional.) max_iter: Integer number of iterative steps to carry out. Returns: v_iterations: A list [v0, v1, v2 ... ] of volumes corresponding to the iterative steps taken. p_iterations: A list [p0, p1, p2 ... ] of pressures corresponding to iterative steps taken. Beware that these are in the units of the EoS, typically eV AA^-3. """ try: max_iter = int(max_iter) except ValueError: raise Exception( "Couldn't use '{0}' as a number of iterations".format(max_iter)) # Initialise arrays and variables v = ref_functional_murnaghan_fit.v0 p = rvo.murnaghan_pressure(v, test_functional_murnaghan_fit) v_iterations = [v] + [False]*(max_iter) p_iterations = [p] + [False]*(max_iter) for index in range(1,max_iter+1): delta_v = rvo.apply_rvo_murnaghan(p, ref_functional_murnaghan_fit) v = v + delta_v p = rvo.murnaghan_pressure(v, test_functional_murnaghan_fit) v_iterations[index] = v p_iterations[index] = p return (v_iterations, p_iterations) def plot_iterative_results(functionals, iter_results, eos_fits, filename, mode='pressure', n_columns=3): """Plot values from iterative application of RVO Arguments: functionals: list of functionals to include in plot iter_results: dict of dict of tuples containing result lists {test_functional: {ref_functional: ([v0,v1,v2...], [p0,p1,p2...]) , ...} , ...} filename: string containing target plot file path mode: string 'volume' or 'pressure', denoting property to plot [default value = 'pressure'] n_columns: width of plot array [default value = 3] Raises: Exception "Plotting mode [mode] not accepted." if invalid mode Exception "Couldn't convert [n_columns] to a meaningful number of columns." if n_columns can't be converted to an int. Exception "No data for test functional [functional name]"; functional appears in list "functionals" but not "iter_results" Exception "[test functional] has not been tested with [ref functional]" ; [test functional] appears in iter_results, but does not appear in the results for [ref functional]. """ # Check input supported_modes = ('volume', 'pressure') if mode not in supported_modes: raise Exception("Plotting mode '{0}' not accepted.".format(mode) + "Valid output modes: {0}".format(supported_modes)) try: n_columns = int(n_columns) except ValueError: raise Exception("Couldn't convert '{0}' to ".format(n_columns) + "a meaningful number of columns.") # Check requested set of functionals are in results for test_functional in functionals: try: test_results = iter_results[test_functional] except KeyError: raise Exception( "No data for test functional {0}".format(test_functional)) for ref_functional in (x for x in functionals if x != test_functional): try: ref_result = iter_results[test_functional][ref_functional] except ValueError: raise Exception("{0} has not been".format(test_functional) + "tested with ref functional " + "{0}".format(ref_functional)) # Work out number of rows given n_columns n_rows, remainder = divmod(len(iter_results), n_columns) if remainder: n_rows += 1 plt.figure(figsize = (25.8 / 2.54, (6.5 * n_rows) / 2.54)) subplot_axes = [] # Take number of bars for first combination, assume(!) rest are consistent n_bars = len(iter_results[functionals[0]][functionals[1]][0]) n_groups = len(functionals) # Set other plot parameters bar_width = 0.8 # Work out bar positions left_edges_base = [(bar_width + i * n_bars * bar_width + i * bar_width) for i in range(n_groups)] # Get plotting for subplot_index, test_functional in enumerate(functionals): plot_data = iter_results[test_functional] # Modification to (potentially) make the layout look prettier: If the last # plot is on its own in a row with an odd number of columns, put it in the # middle. if (n_columns % 2 != 0 and subplot_index == len(functionals) - 1 and len(functionals) % n_columns == 1): plt.subplot(n_rows, n_columns, subplot_index + 1 + (n_columns - 1) // 2) else: plt.subplot(n_rows, n_columns, subplot_index + 1) for group_index, ref_functional in enumerate( [f for f in functionals if f != test_functional]): if mode == 'volume': volumes = plot_data[ref_functional][0] v0 = eos_fits[test_functional].v0 bar_heights = [abs(v - v0) for v in volumes] elif mode == 'pressure': bar_heights = [abs(p)/10.0 for p in plot_data[ref_functional][1]] left_edges = [(left_edges_base[group_index] + bar_index * bar_width ) for bar_index in range(len(bar_heights))] r, g, b = functional_colours[ref_functional] bar_group_colour = (r / 255.0, g / 255.0, b / 255.0) # Individual bars are plotted separately in order to set the hatch # styles. The "bottom" argument needs to be set to a small (but # non-zero) number due to some Matplotlib issues with plt.bar() and # log scale y axes. 10^-3 was chosen as 0.001 % / 0.001 GPa is a # very high error margin for predicting volumes/pressures! lower_lim = 1E-5 for bar_index in range(len(bar_heights)): plt.bar(left_edges[bar_index], bar_heights[bar_index], bottom = lower_lim, color = bar_group_colour, edgecolor = bar_group_colour, linewidth = 0.5, fill = iter_plot_bar_hatches[bar_index] == None, hatch = iter_plot_bar_hatches[bar_index]) # Add outline in independent colour plt.bar(left_edges[bar_index], bar_heights[bar_index], bottom = lower_lim, edgecolor = 'k', linewidth = 0.5, fill = False) plt.title("Reference: {0}".format(test_functional), size = font_size, fontweight = 'bold') if mode == 'volume': plt.ylabel(r"abs($\Delta V$) / %", fontweight = 'bold') elif mode == 'pressure': plt.ylabel(r"$\mathrm{abs}(P)$ / GPa", fontweight = 'bold') plt.xticks([value + (bar_width * n_bars) / 2.0 for value in left_edges_base], [f for f in functionals if f != test_functional], rotation = 30, ha='center') # plt.xlim(0.0, left_edges_base[-1] + # n_bars * bar_width + bar_width) plt.xlim(0.0, left_edges_base[-1]) subplot_axes.append(plt.gca()) for axes in subplot_axes: axes.set_ylim(lower_lim, 10.0) axes.set_yscale('log', noposy = 'clip') for spine in axes.spines.values(): spine.set_linewidth(0.5) plt.tight_layout() plt.savefig(filename, format = 'png', dpi = 300) def v_sensitivity(test_functional_fit, ref_functional_fit, range_percent=3, points=100, iterations=4): v0 = test_functional_fit.v0 v_upper = v0 * (1.+range_percent/100.) v_lower = v0 * (1.-range_percent/100.) v_init = np.linspace(v_lower,v_upper,points) v_corrected = [] v = v_init.copy() for i in range(iterations): p = rvo.murnaghan_pressure(v, test_functional_fit) delta_v = rvo.apply_rvo_murnaghan(p, ref_functional_fit) v = v + delta_v v_corrected.append(v) return (v_init, np.array(v_corrected).T) def plot_v_sensitivity(v_init,v_corrected, test_functional,ref_functional, v0=False, filename=False): """ Plot showing convergence over iterations and range of initial volumes Arguments: v_init: 1D numpy array of volume values v_corrected: list of 1D numpy arrays, corresponding to iterative volume estimates test_functional: String containing name of test functional ref_functional: String containing name of reference functional v0: Optionally provide actual minimum volume. X axis is rescaled to show this. filename: Target file for plot export. If not provided, graph is drawn to screen """ if v0: x = v_init/v0 y = v_corrected/v0 xlabel = "Initial volume / Optimum volume" ylabel = "Corrected volume / Optimum volume" else: x = v_init y = v_corrected xlabel = "Initial volume / $\AA^3$" ylabel = "Corrected volume / $\AA^3$" plt.figure(figsize = (8 / 2.54, 8 / 2.54)) plt.plot(x, y) axes = plt.gca() for spine in axes.spines.values(): spine.set_linewidth(0.5) y_formatter = mpl.ticker.ScalarFormatter(useOffset=False) axes.yaxis.set_major_formatter(y_formatter) plt.title("Corrected functional: {0}\n".format(test_functional) + "Reference functional: {0}".format(ref_functional)) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend(range(1,len(v_corrected)+1), loc='best', title="Iterations") plt.tight_layout() if filename: plt.savefig(filename) else: plt.show() def plot_bandgaps(materials,do_plot=True,do_write=False,plot_filename=False, compact=False): data, kpoints = {}, {} BandGapData = namedtuple("BandGapData","factor v eg kpoint") markers = {'PbS':'^', 'PbTe':'>', 'ZnS':'o', 'ZnTe':'x'} colours = {'PbS':'b', 'PbTe':'g', 'ZnS':'r', 'ZnTe':'k'} functionals = ["B3LYP","HSE06"] for functional in functionals: data.update({functional: {}}) for material in materials: with open(data_dir + "{0} - {1} - Direct Bandgaps.csv".format(material, functional), "r") as f: csv_reader = csv.reader(f) # skip first line next(csv_reader) # First row text_row = next(csv_reader) row = [float(x) for x in text_row] factor, v, eg = [row[0]], [row[1]], [row[2]] kpoint = row[3:] for text_row in csv_reader: row = [float(x) for x in text_row] factor.append(row[0]) v.append(row[1]) eg.append(row[2]) data[functional].update({material:BandGapData(factor,v,eg,kpoint)}) if do_plot: if compact: fig_dimensions = (8 / 2.54, 14 / 2.54) else: fig_dimensions = (17.2 / 2.54, 12 / 2.54) plt.figure(figsize = fig_dimensions) subplot_axes = [] collect_factors, collect_eg = [], [] # List all values to get ranges for i, functional in enumerate(functionals): if compact: plt.subplot(len(functionals),1,i) else: plt.subplot(1,len(functionals),i) for material in materials: # Scale factor is in each dimension; cube to obtain volume change x = np.power(data[functional][material].factor, 3) y = data[functional][material].eg plt.plot(x,y, label=material, color=colours[material], marker=markers[material], linestyle='none') collect_factors += data[functional][material].factor collect_eg += data[functional][material].eg plt.xlabel(r"$v/v_0$",fontweight = 'bold') plt.ylabel("Bandgap / eV",fontweight = 'bold') plt.title(functional,fontweight = 'bold') plt.legend(loc="best", frameon = False, prop = {'size' : font_size}, ncol=2) subplot_axes.append(plt.gca()) x_min, x_max = float(min(collect_factors))**3, float(max(collect_factors))**3 y_min, y_max = 0, math.ceil(float(max(collect_eg))) for axes in subplot_axes: axes.set_xlim((x_min, x_max)) axes.set_ylim((y_min, y_max)) for spine in axes.spines.values(): spine.set_linewidth(0.5) plt.tight_layout() if plot_filename: plt.savefig(plot_filename, format='png',dpi=300) else: plt.show() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Simulate application of RVO method to a dataset of binary chalcogenides.") parser.add_argument("data_directory", help="path to 'binary_chalcogenides' folder") parser.add_argument("-v", "--verbose", help="increase output verbosity", action="store_true") parser.add_argument("-p", "--plot", choices=["eos","iterative_p","iterative_v", "v_sensitivity","v_bandgap", "none", "all"], nargs='*', default=["all"], help="Output plots") parser.add_argument("-w", "--write", choices=["eos","rvo","iterative_p","v_bandgap", "v_sensitivity","none","all"], nargs='*', default=["all"], help="Write CSV files") parser.add_argument("-m", "--material", choices=["PbS","PbTe","ZnS","ZnTe"], nargs='*', default=False) parser.add_argument("-c", "--compact", action="store_true", help="Output compact versions of some plots") args = parser.parse_args() main(data_path=args.data_directory, verbosity=args.verbose, to_plot=args.plot, to_write=args.write, compounds=args.material, compact=args.compact)
gpl-3.0
pkruskal/scikit-learn
sklearn/covariance/graph_lasso_.py
126
25626
"""GraphLasso: sparse inverse covariance estimation with an l1-penalized estimator. """ # Author: Gael Varoquaux <gael.varoquaux@normalesup.org> # License: BSD 3 clause # Copyright: INRIA import warnings import operator import sys import time import numpy as np from scipy import linalg from .empirical_covariance_ import (empirical_covariance, EmpiricalCovariance, log_likelihood) from ..utils import ConvergenceWarning from ..utils.extmath import pinvh from ..utils.validation import check_random_state, check_array from ..linear_model import lars_path from ..linear_model import cd_fast from ..cross_validation import check_cv, cross_val_score from ..externals.joblib import Parallel, delayed import collections # Helper functions to compute the objective and dual objective functions # of the l1-penalized estimator def _objective(mle, precision_, alpha): """Evaluation of the graph-lasso objective function the objective function is made of a shifted scaled version of the normalized log-likelihood (i.e. its empirical mean over the samples) and a penalisation term to promote sparsity """ p = precision_.shape[0] cost = - 2. * log_likelihood(mle, precision_) + p * np.log(2 * np.pi) cost += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum()) return cost def _dual_gap(emp_cov, precision_, alpha): """Expression of the dual gap convergence criterion The specific definition is given in Duchi "Projected Subgradient Methods for Learning Sparse Gaussians". """ gap = np.sum(emp_cov * precision_) gap -= precision_.shape[0] gap += alpha * (np.abs(precision_).sum() - np.abs(np.diag(precision_)).sum()) return gap def alpha_max(emp_cov): """Find the maximum alpha for which there are some non-zeros off-diagonal. Parameters ---------- emp_cov : 2D array, (n_features, n_features) The sample covariance matrix Notes ----- This results from the bound for the all the Lasso that are solved in GraphLasso: each time, the row of cov corresponds to Xy. As the bound for alpha is given by `max(abs(Xy))`, the result follows. """ A = np.copy(emp_cov) A.flat[::A.shape[0] + 1] = 0 return np.max(np.abs(A)) # The g-lasso algorithm def graph_lasso(emp_cov, alpha, cov_init=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, return_costs=False, eps=np.finfo(np.float64).eps, return_n_iter=False): """l1-penalized covariance estimator Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- emp_cov : 2D ndarray, shape (n_features, n_features) Empirical covariance from which to compute the covariance estimate. alpha : positive float The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. cov_init : 2D array (n_features, n_features), optional The initial guess for the covariance. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : boolean, optional If verbose is True, the objective function and dual gap are printed at each iteration. return_costs : boolean, optional If return_costs is True, the objective function and dual gap at each iteration are returned. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) The estimated covariance matrix. precision : 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrix. costs : list of (objective, dual_gap) pairs The list of values of the objective function and the dual gap at each iteration. Returned only if return_costs is True. n_iter : int Number of iterations. Returned only if `return_n_iter` is set to True. See Also -------- GraphLasso, GraphLassoCV Notes ----- The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R `glasso` package. One possible difference with the `glasso` R package is that the diagonal coefficients are not penalized. """ _, n_features = emp_cov.shape if alpha == 0: if return_costs: precision_ = linalg.inv(emp_cov) cost = - 2. * log_likelihood(emp_cov, precision_) cost += n_features * np.log(2 * np.pi) d_gap = np.sum(emp_cov * precision_) - n_features if return_n_iter: return emp_cov, precision_, (cost, d_gap), 0 else: return emp_cov, precision_, (cost, d_gap) else: if return_n_iter: return emp_cov, linalg.inv(emp_cov), 0 else: return emp_cov, linalg.inv(emp_cov) if cov_init is None: covariance_ = emp_cov.copy() else: covariance_ = cov_init.copy() # As a trivial regularization (Tikhonov like), we scale down the # off-diagonal coefficients of our starting point: This is needed, as # in the cross-validation the cov_init can easily be # ill-conditioned, and the CV loop blows. Beside, this takes # conservative stand-point on the initial conditions, and it tends to # make the convergence go faster. covariance_ *= 0.95 diagonal = emp_cov.flat[::n_features + 1] covariance_.flat[::n_features + 1] = diagonal precision_ = pinvh(covariance_) indices = np.arange(n_features) costs = list() # The different l1 regression solver have different numerical errors if mode == 'cd': errors = dict(over='raise', invalid='ignore') else: errors = dict(invalid='raise') try: # be robust to the max_iter=0 edge case, see: # https://github.com/scikit-learn/scikit-learn/issues/4134 d_gap = np.inf for i in range(max_iter): for idx in range(n_features): sub_covariance = covariance_[indices != idx].T[indices != idx] row = emp_cov[idx, indices != idx] with np.errstate(**errors): if mode == 'cd': # Use coordinate descent coefs = -(precision_[indices != idx, idx] / (precision_[idx, idx] + 1000 * eps)) coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram( coefs, alpha, 0, sub_covariance, row, row, max_iter, enet_tol, check_random_state(None), False) else: # Use LARS _, _, coefs = lars_path( sub_covariance, row, Xy=row, Gram=sub_covariance, alpha_min=alpha / (n_features - 1), copy_Gram=True, method='lars', return_path=False) # Update the precision matrix precision_[idx, idx] = ( 1. / (covariance_[idx, idx] - np.dot(covariance_[indices != idx, idx], coefs))) precision_[indices != idx, idx] = (- precision_[idx, idx] * coefs) precision_[idx, indices != idx] = (- precision_[idx, idx] * coefs) coefs = np.dot(sub_covariance, coefs) covariance_[idx, indices != idx] = coefs covariance_[indices != idx, idx] = coefs d_gap = _dual_gap(emp_cov, precision_, alpha) cost = _objective(emp_cov, precision_, alpha) if verbose: print( '[graph_lasso] Iteration % 3i, cost % 3.2e, dual gap %.3e' % (i, cost, d_gap)) if return_costs: costs.append((cost, d_gap)) if np.abs(d_gap) < tol: break if not np.isfinite(cost) and i > 0: raise FloatingPointError('Non SPD result: the system is ' 'too ill-conditioned for this solver') else: warnings.warn('graph_lasso: did not converge after %i iteration:' ' dual gap: %.3e' % (max_iter, d_gap), ConvergenceWarning) except FloatingPointError as e: e.args = (e.args[0] + '. The system is too ill-conditioned for this solver',) raise e if return_costs: if return_n_iter: return covariance_, precision_, costs, i + 1 else: return covariance_, precision_, costs else: if return_n_iter: return covariance_, precision_, i + 1 else: return covariance_, precision_ class GraphLasso(EmpiricalCovariance): """Sparse inverse covariance estimation with an l1-penalized estimator. Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- alpha : positive float, default 0.01 The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance. mode : {'cd', 'lars'}, default 'cd' The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, default 1e-4 The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, default 100 The maximum number of iterations. verbose : boolean, default False If verbose is True, the objective function and dual gap are plotted at each iteration. assume_centered : boolean, default False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Attributes ---------- covariance_ : array-like, shape (n_features, n_features) Estimated covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. n_iter_ : int Number of iterations run. See Also -------- graph_lasso, GraphLassoCV """ def __init__(self, alpha=.01, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False, assume_centered=False): self.alpha = alpha self.mode = mode self.tol = tol self.enet_tol = enet_tol self.max_iter = max_iter self.verbose = verbose self.assume_centered = assume_centered # The base class needs this for the score method self.store_precision = True def fit(self, X, y=None): X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance( X, assume_centered=self.assume_centered) self.covariance_, self.precision_, self.n_iter_ = graph_lasso( emp_cov, alpha=self.alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=self.verbose, return_n_iter=True) return self # Cross-validation with GraphLasso def graph_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd', tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False): """l1-penalized covariance estimator along a path of decreasing alphas Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- X : 2D ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate. alphas : list of positive floats The list of regularization parameters, decreasing order. X_test : 2D array, shape (n_test_samples, n_features), optional Optional test matrix to measure generalisation error. mode : {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable. tol : positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter : integer, optional The maximum number of iterations. verbose : integer, optional The higher the verbosity flag, the more information is printed during the fitting. Returns ------- covariances_ : List of 2D ndarray, shape (n_features, n_features) The estimated covariance matrices. precisions_ : List of 2D ndarray, shape (n_features, n_features) The estimated (sparse) precision matrices. scores_ : List of float The generalisation error (log-likelihood) on the test data. Returned only if test data is passed. """ inner_verbose = max(0, verbose - 1) emp_cov = empirical_covariance(X) if cov_init is None: covariance_ = emp_cov.copy() else: covariance_ = cov_init covariances_ = list() precisions_ = list() scores_ = list() if X_test is not None: test_emp_cov = empirical_covariance(X_test) for alpha in alphas: try: # Capture the errors, and move on covariance_, precision_ = graph_lasso( emp_cov, alpha=alpha, cov_init=covariance_, mode=mode, tol=tol, enet_tol=enet_tol, max_iter=max_iter, verbose=inner_verbose) covariances_.append(covariance_) precisions_.append(precision_) if X_test is not None: this_score = log_likelihood(test_emp_cov, precision_) except FloatingPointError: this_score = -np.inf covariances_.append(np.nan) precisions_.append(np.nan) if X_test is not None: if not np.isfinite(this_score): this_score = -np.inf scores_.append(this_score) if verbose == 1: sys.stderr.write('.') elif verbose > 1: if X_test is not None: print('[graph_lasso_path] alpha: %.2e, score: %.2e' % (alpha, this_score)) else: print('[graph_lasso_path] alpha: %.2e' % alpha) if X_test is not None: return covariances_, precisions_, scores_ return covariances_, precisions_ class GraphLassoCV(GraphLasso): """Sparse inverse covariance w/ cross-validated choice of the l1 penalty Read more in the :ref:`User Guide <sparse_inverse_covariance>`. Parameters ---------- alphas : integer, or list positive float, optional If an integer is given, it fixes the number of points on the grids of alpha to be used. If a list is given, it gives the grid to be used. See the notes in the class docstring for more details. n_refinements: strictly positive integer The number of times the grid is refined. Not used if explicit values of alphas are passed. cv : cross-validation generator, optional see sklearn.cross_validation module. If None is passed, defaults to a 3-fold strategy tol: positive float, optional The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped. enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'. max_iter: integer, optional Maximum number of iterations. mode: {'cd', 'lars'} The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where number of features is greater than number of samples. Elsewhere prefer cd which is more numerically stable. n_jobs: int, optional number of jobs to run in parallel (default 1). verbose: boolean, optional If verbose is True, the objective function and duality gap are printed at each iteration. assume_centered : Boolean If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Attributes ---------- covariance_ : numpy.ndarray, shape (n_features, n_features) Estimated covariance matrix. precision_ : numpy.ndarray, shape (n_features, n_features) Estimated precision matrix (inverse covariance). alpha_ : float Penalization parameter selected. cv_alphas_ : list of float All penalization parameters explored. `grid_scores`: 2D numpy.ndarray (n_alphas, n_folds) Log-likelihood score on left-out data across folds. n_iter_ : int Number of iterations run for the optimal alpha. See Also -------- graph_lasso, GraphLasso Notes ----- The search for the optimal penalization parameter (alpha) is done on an iteratively refined grid: first the cross-validated scores on a grid are computed, then a new refined grid is centered around the maximum, and so on. One of the challenges which is faced here is that the solvers can fail to converge to a well-conditioned estimate. The corresponding values of alpha then come out as missing values, but the optimum may be close to these missing values. """ def __init__(self, alphas=4, n_refinements=4, cv=None, tol=1e-4, enet_tol=1e-4, max_iter=100, mode='cd', n_jobs=1, verbose=False, assume_centered=False): self.alphas = alphas self.n_refinements = n_refinements self.mode = mode self.tol = tol self.enet_tol = enet_tol self.max_iter = max_iter self.verbose = verbose self.cv = cv self.n_jobs = n_jobs self.assume_centered = assume_centered # The base class needs this for the score method self.store_precision = True def fit(self, X, y=None): """Fits the GraphLasso covariance model to X. Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate """ X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) emp_cov = empirical_covariance( X, assume_centered=self.assume_centered) cv = check_cv(self.cv, X, y, classifier=False) # List of (alpha, scores, covs) path = list() n_alphas = self.alphas inner_verbose = max(0, self.verbose - 1) if isinstance(n_alphas, collections.Sequence): alphas = self.alphas n_refinements = 1 else: n_refinements = self.n_refinements alpha_1 = alpha_max(emp_cov) alpha_0 = 1e-2 * alpha_1 alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1), n_alphas)[::-1] t0 = time.time() for i in range(n_refinements): with warnings.catch_warnings(): # No need to see the convergence warnings on this grid: # they will always be points that will not converge # during the cross-validation warnings.simplefilter('ignore', ConvergenceWarning) # Compute the cross-validated loss on the current grid # NOTE: Warm-restarting graph_lasso_path has been tried, and # this did not allow to gain anything (same execution time with # or without). this_path = Parallel( n_jobs=self.n_jobs, verbose=self.verbose )( delayed(graph_lasso_path)( X[train], alphas=alphas, X_test=X[test], mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=int(.1 * self.max_iter), verbose=inner_verbose) for train, test in cv) # Little danse to transform the list in what we need covs, _, scores = zip(*this_path) covs = zip(*covs) scores = zip(*scores) path.extend(zip(alphas, scores, covs)) path = sorted(path, key=operator.itemgetter(0), reverse=True) # Find the maximum (avoid using built in 'max' function to # have a fully-reproducible selection of the smallest alpha # in case of equality) best_score = -np.inf last_finite_idx = 0 for index, (alpha, scores, _) in enumerate(path): this_score = np.mean(scores) if this_score >= .1 / np.finfo(np.float64).eps: this_score = np.nan if np.isfinite(this_score): last_finite_idx = index if this_score >= best_score: best_score = this_score best_index = index # Refine the grid if best_index == 0: # We do not need to go back: we have chosen # the highest value of alpha for which there are # non-zero coefficients alpha_1 = path[0][0] alpha_0 = path[1][0] elif (best_index == last_finite_idx and not best_index == len(path) - 1): # We have non-converged models on the upper bound of the # grid, we need to refine the grid there alpha_1 = path[best_index][0] alpha_0 = path[best_index + 1][0] elif best_index == len(path) - 1: alpha_1 = path[best_index][0] alpha_0 = 0.01 * path[best_index][0] else: alpha_1 = path[best_index - 1][0] alpha_0 = path[best_index + 1][0] if not isinstance(n_alphas, collections.Sequence): alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0), n_alphas + 2) alphas = alphas[1:-1] if self.verbose and n_refinements > 1: print('[GraphLassoCV] Done refinement % 2i out of %i: % 3is' % (i + 1, n_refinements, time.time() - t0)) path = list(zip(*path)) grid_scores = list(path[1]) alphas = list(path[0]) # Finally, compute the score with alpha = 0 alphas.append(0) grid_scores.append(cross_val_score(EmpiricalCovariance(), X, cv=cv, n_jobs=self.n_jobs, verbose=inner_verbose)) self.grid_scores = np.array(grid_scores) best_alpha = alphas[best_index] self.alpha_ = best_alpha self.cv_alphas_ = alphas # Finally fit the model with the selected alpha self.covariance_, self.precision_, self.n_iter_ = graph_lasso( emp_cov, alpha=best_alpha, mode=self.mode, tol=self.tol, enet_tol=self.enet_tol, max_iter=self.max_iter, verbose=inner_verbose, return_n_iter=True) return self
bsd-3-clause
AveRapina/DeepLearningTutorials
code/mlp.py
39
14267
""" This tutorial introduces the multilayer perceptron using Theano. A multilayer perceptron is a logistic regressor where instead of feeding the input to the logistic regression you insert a intermediate layer, called the hidden layer, that has a nonlinear activation function (usually tanh or sigmoid) . One can use many such hidden layers making the architecture deep. The tutorial will also tackle the problem of MNIST digit classification. .. math:: f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), References: - textbooks: "Pattern Recognition and Machine Learning" - Christopher M. Bishop, section 5 """ __docformat__ = 'restructedtext en' import os import sys import timeit import numpy import theano import theano.tensor as T from logistic_sgd import LogisticRegression, load_data # start-snippet-1 class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). NOTE : The nonlinearity used here is tanh Hidden unit activation is given by: tanh(dot(input,W) + b) :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units :type activation: theano.Op or function :param activation: Non linearity to be applied in the hidden layer """ self.input = input # end-snippet-1 # `W` is initialized with `W_values` which is uniformely sampled # from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden)) # for tanh activation function # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU # Note : optimal initialization of weights is dependent on the # activation function used (among other things). # For example, results presented in [Xavier10] suggest that you # should use 4 times larger initial weights for sigmoid # compared to tanh # We have no info for other function, so we use the same as # tanh. if W is None: W_values = numpy.asarray( rng.uniform( low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out) ), dtype=theano.config.floatX ) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) if b is None: b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b lin_output = T.dot(input, self.W) + self.b self.output = ( lin_output if activation is None else activation(lin_output) ) # parameters of the model self.params = [self.W, self.b] # start-snippet-2 class MLP(object): """Multi-Layer Perceptron Class A multilayer perceptron is a feedforward artificial neural network model that has one layer or more of hidden units and nonlinear activations. Intermediate layers usually have as activation function tanh or the sigmoid function (defined here by a ``HiddenLayer`` class) while the top layer is a softmax layer (defined here by a ``LogisticRegression`` class). """ def __init__(self, rng, input, n_in, n_hidden, n_out): """Initialize the parameters for the multilayer perceptron :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.TensorType :param input: symbolic variable that describes the input of the architecture (one minibatch) :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_hidden: int :param n_hidden: number of hidden units :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie """ # Since we are dealing with a one hidden layer MLP, this will translate # into a HiddenLayer with a tanh activation function connected to the # LogisticRegression layer; the activation function can be replaced by # sigmoid or any other nonlinear function self.hiddenLayer = HiddenLayer( rng=rng, input=input, n_in=n_in, n_out=n_hidden, activation=T.tanh ) # The logistic regression layer gets as input the hidden units # of the hidden layer self.logRegressionLayer = LogisticRegression( input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out ) # end-snippet-2 start-snippet-3 # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = ( abs(self.hiddenLayer.W).sum() + abs(self.logRegressionLayer.W).sum() ) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = ( (self.hiddenLayer.W ** 2).sum() + (self.logRegressionLayer.W ** 2).sum() ) # negative log likelihood of the MLP is given by the negative # log likelihood of the output of the model, computed in the # logistic regression layer self.negative_log_likelihood = ( self.logRegressionLayer.negative_log_likelihood ) # same holds for the function computing the number of errors self.errors = self.logRegressionLayer.errors # the parameters of the model are the parameters of the two layer it is # made out of self.params = self.hiddenLayer.params + self.logRegressionLayer.params # end-snippet-3 # keep track of model input self.input = input def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000, dataset='mnist.pkl.gz', batch_size=20, n_hidden=500): """ Demonstrate stochastic gradient descent optimization for a multilayer perceptron This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient :type L1_reg: float :param L1_reg: L1-norm's weight when added to the cost (see regularization) :type L2_reg: float :param L2_reg: L2-norm's weight when added to the cost (see regularization) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: the path of the MNIST dataset file from http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz """ datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels rng = numpy.random.RandomState(1234) # construct the MLP class classifier = MLP( rng=rng, input=x, n_in=28 * 28, n_hidden=n_hidden, n_out=10 ) # start-snippet-4 # the cost we minimize during training is the negative log likelihood of # the model plus the regularization terms (L1 and L2); cost is expressed # here symbolically cost = ( classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr ) # end-snippet-4 # compiling a Theano function that computes the mistakes that are made # by the model on a minibatch test_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] } ) validate_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] } ) # start-snippet-5 # compute the gradient of cost with respect to theta (sotred in params) # the resulting gradients will be stored in a list gparams gparams = [T.grad(cost, param) for param in classifier.params] # specify how to update the parameters of the model as a list of # (variable, update expression) pairs # given two lists of the same length, A = [a1, a2, a3, a4] and # B = [b1, b2, b3, b4], zip generates a list C of same size, where each # element is a pair formed from the two lists : # C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)] updates = [ (param, param - learning_rate * gparam) for param, gparam in zip(classifier.params, gparams) ] # compiling a Theano function `train_model` that returns the cost, but # in the same time updates the parameter of the model based on the rules # defined in `updates` train_model = theano.function( inputs=[index], outputs=cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-5 ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_index) # iteration number iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print( 'epoch %i, minibatch %i/%i, validation error %f %%' % ( epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100. ) ) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if ( this_validation_loss < best_validation_loss * improvement_threshold ): patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(n_test_batches)] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print(('Optimization complete. Best validation score of %f %% ' 'obtained at iteration %i, with test performance %f %%') % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == '__main__': test_mlp()
bsd-3-clause
nightjean/Deep-Learning
tensorflow/examples/learn/resnet.py
35
5962
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example builds deep residual network for mnist data. Reference Paper: http://arxiv.org/pdf/1512.03385.pdf Note that this is still a work-in-progress. Feel free to submit a PR to make this better. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple from math import sqrt import os import tensorflow as tf batch_norm = tf.contrib.layers.batch_norm convolution2d = tf.contrib.layers.convolution2d def res_net(x, y, activation=tf.nn.relu): """Builds a residual network. Note that if the input tensor is 2D, it must be square in order to be converted to a 4D tensor. Borrowed structure from: github.com/pkmital/tensorflow_tutorials/blob/master/10_residual_network.py Args: x: Input of the network y: Output of the network activation: Activation function to apply after each convolution Returns: Predictions and loss tensors. """ # Configurations for each bottleneck group. BottleneckGroup = namedtuple('BottleneckGroup', ['num_blocks', 'num_filters', 'bottleneck_size']) groups = [ BottleneckGroup(3, 128, 32), BottleneckGroup(3, 256, 64), BottleneckGroup(3, 512, 128), BottleneckGroup(3, 1024, 256) ] input_shape = x.get_shape().as_list() # Reshape the input into the right shape if it's 2D tensor if len(input_shape) == 2: ndim = int(sqrt(input_shape[1])) x = tf.reshape(x, [-1, ndim, ndim, 1]) # First convolution expands to 64 channels with tf.variable_scope('conv_layer1'): net = convolution2d( x, 64, 7, normalizer_fn=batch_norm, activation_fn=activation) # Max pool net = tf.nn.max_pool(net, [1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') # First chain of resnets with tf.variable_scope('conv_layer2'): net = convolution2d(net, groups[0].num_filters, 1, padding='VALID') # Create the bottleneck groups, each of which contains `num_blocks` # bottleneck groups. for group_i, group in enumerate(groups): for block_i in range(group.num_blocks): name = 'group_%d/block_%d' % (group_i, block_i) # 1x1 convolution responsible for reducing dimension with tf.variable_scope(name + '/conv_in'): conv = convolution2d( net, group.bottleneck_size, 1, padding='VALID', activation_fn=activation, normalizer_fn=batch_norm) with tf.variable_scope(name + '/conv_bottleneck'): conv = convolution2d( conv, group.bottleneck_size, 3, padding='SAME', activation_fn=activation, normalizer_fn=batch_norm) # 1x1 convolution responsible for restoring dimension with tf.variable_scope(name + '/conv_out'): input_dim = net.get_shape()[-1].value conv = convolution2d( conv, input_dim, 1, padding='VALID', activation_fn=activation, normalizer_fn=batch_norm) # shortcut connections that turn the network into its counterpart # residual function (identity shortcut) net = conv + net try: # upscale to the next group size next_group = groups[group_i + 1] with tf.variable_scope('block_%d/conv_upscale' % group_i): net = convolution2d( net, next_group.num_filters, 1, activation_fn=None, biases_initializer=None, padding='SAME') except IndexError: pass net_shape = net.get_shape().as_list() net = tf.nn.avg_pool( net, ksize=[1, net_shape[1], net_shape[2], 1], strides=[1, 1, 1, 1], padding='VALID') net_shape = net.get_shape().as_list() net = tf.reshape(net, [-1, net_shape[1] * net_shape[2] * net_shape[3]]) target = tf.one_hot(y, depth=10, dtype=tf.float32) logits = tf.contrib.layers.fully_connected(net, 10, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) return tf.softmax(logits), loss def res_net_model(x, y): prediction, loss = res_net(x, y) predicted = tf.argmax(prediction, 1) accuracy = tf.equal(predicted, tf.cast(y, tf.int64)) predictions = {'prob': prediction, 'class': predicted, 'accuracy': accuracy} train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.001) return predictions, loss, train_op # Download and load MNIST data. mnist = tf.contrib.learn.datasets.load_dataset('mnist') # Create a new resnet classifier. classifier = tf.contrib.learn.Estimator(model_fn=res_net_model) tf.logging.set_verbosity(tf.logging.INFO) # Show training logs. (avoid silence) # Train model and save summaries into logdir. classifier.fit(mnist.train.images, mnist.train.labels, batch_size=100, steps=1000) # Calculate accuracy. result = classifier.evaluate( x=mnist.test.images, y=mnist.test.labels, metrics={ 'accuracy': tf.contrib.learn.MetricSpec( metric_fn=tf.contrib.metrics.streaming_accuracy, prediction_key='accuracy'), }) score = result['accuracy'] print('Accuracy: {0:f}'.format(score))
apache-2.0
4kula/EVA
docs/conf.py
1
8667
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- Hack for ReadTheDocs ------------------------------------------------------ # This hack is necessary since RTD does not issue `sphinx-apidoc` before running # `sphinx-build -b html . _build/html`. See Issue: # https://github.com/rtfd/readthedocs.org/issues/1139 # DON'T FORGET: Check the box "Install your project inside a virtualenv using # setup.py install" in the RTD Advanced Settings. import os on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if on_rtd: import inspect from sphinx import apidoc __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) output_dir = os.path.join(__location__, "../docs/api") module_dir = os.path.join(__location__, "../eva") cmd_line_template = "sphinx-apidoc -f -o {outputdir} {moduledir}" cmd_line = cmd_line_template.format(outputdir=output_dir, moduledir=module_dir) apidoc.main(cmd_line.split(" ")) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.ifconfig', 'sphinx.ext.pngmath', 'sphinx.ext.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'EVA' copyright = u'2017, akula' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # Is set by calling `setup.py docs` # The full version, including alpha/beta/rc tags. release = '' # Is set by calling `setup.py docs` # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". try: from eva import __version__ as version except ImportError: pass else: release = version # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'eva-doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'user_guide.tex', u'EVA Documentation', u'akula', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping ------------------------------------------------------------ python_version = '.'.join(map(str, sys.version_info[0:2])) intersphinx_mapping = { 'sphinx': ('http://sphinx.pocoo.org', None), 'python': ('http://docs.python.org/' + python_version, None), 'matplotlib': ('http://matplotlib.sourceforge.net', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), 'sklearn': ('http://scikit-learn.org/stable', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None), }
gpl-3.0
dimkal/mne-python
mne/io/tests/test_pick.py
2
6571
from nose.tools import assert_equal, assert_raises from numpy.testing import assert_array_equal import numpy as np import os.path as op from mne import (pick_channels_regexp, pick_types, Epochs, read_forward_solution, rename_channels, pick_info, pick_channels, __file__) from mne.io.meas_info import create_info from mne.io.array import RawArray from mne.io.pick import (channel_indices_by_type, channel_type, pick_types_forward, _picks_by_type) from mne.io.constants import FIFF from mne.io import Raw from mne.datasets import testing from mne.forward.tests import test_forward from mne.utils import run_tests_if_main def test_pick_channels_regexp(): """Test pick with regular expression """ ch_names = ['MEG 2331', 'MEG 2332', 'MEG 2333'] assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...1'), [0]) assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...[2-3]'), [1, 2]) assert_array_equal(pick_channels_regexp(ch_names, 'MEG *'), [0, 1, 2]) def test_pick_seeg(): """Test picking with SEEG """ names = 'A1 A2 Fz O OTp1 OTp2 OTp3'.split() types = 'mag mag eeg eeg seeg seeg seeg'.split() info = create_info(names, 1024., types) idx = channel_indices_by_type(info) assert_array_equal(idx['mag'], [0, 1]) assert_array_equal(idx['eeg'], [2, 3]) assert_array_equal(idx['seeg'], [4, 5, 6]) assert_array_equal(pick_types(info, meg=False, seeg=True), [4, 5, 6]) for i, t in enumerate(types): assert_equal(channel_type(info, i), types[i]) raw = RawArray(np.zeros((len(names), 10)), info) events = np.array([[1, 0, 0], [2, 0, 0]]) epochs = Epochs(raw, events, {'event': 0}, -1e-5, 1e-5) evoked = epochs.average(pick_types(epochs.info, meg=True, seeg=True)) e_seeg = evoked.pick_types(meg=False, seeg=True, copy=True) for l, r in zip(e_seeg.ch_names, names[4:]): assert_equal(l, r) def _check_fwd_n_chan_consistent(fwd, n_expected): n_ok = len(fwd['info']['ch_names']) n_sol = fwd['sol']['data'].shape[0] assert_equal(n_expected, n_sol) assert_equal(n_expected, n_ok) @testing.requires_testing_data def test_pick_forward_seeg(): """Test picking forward with SEEG """ fwd = read_forward_solution(test_forward.fname_meeg) counts = channel_indices_by_type(fwd['info']) for key in counts.keys(): counts[key] = len(counts[key]) counts['meg'] = counts['mag'] + counts['grad'] fwd_ = pick_types_forward(fwd, meg=True, eeg=False, seeg=False) _check_fwd_n_chan_consistent(fwd_, counts['meg']) fwd_ = pick_types_forward(fwd, meg=False, eeg=True, seeg=False) _check_fwd_n_chan_consistent(fwd_, counts['eeg']) # should raise exception related to emptiness assert_raises(ValueError, pick_types_forward, fwd, meg=False, eeg=False, seeg=True) # change last chan from EEG to sEEG seeg_name = 'OTp1' rename_channels(fwd['info'], {'EEG 060': seeg_name}) for ch in fwd['info']['chs']: if ch['ch_name'] == seeg_name: ch['kind'] = FIFF.FIFFV_SEEG_CH ch['coil_type'] = FIFF.FIFFV_COIL_EEG fwd['sol']['row_names'][-1] = fwd['info']['chs'][-1]['ch_name'] counts['eeg'] -= 1 counts['seeg'] += 1 # repick & check fwd_seeg = pick_types_forward(fwd, meg=False, eeg=False, seeg=True) assert_equal(fwd_seeg['sol']['row_names'], [seeg_name]) assert_equal(fwd_seeg['info']['ch_names'], [seeg_name]) # should work fine fwd_ = pick_types_forward(fwd, meg=True, eeg=False, seeg=False) _check_fwd_n_chan_consistent(fwd_, counts['meg']) fwd_ = pick_types_forward(fwd, meg=False, eeg=True, seeg=False) _check_fwd_n_chan_consistent(fwd_, counts['eeg']) fwd_ = pick_types_forward(fwd, meg=False, eeg=False, seeg=True) _check_fwd_n_chan_consistent(fwd_, counts['seeg']) def test_picks_by_channels(): """Test creating pick_lists""" rng = np.random.RandomState(909) test_data = rng.random_sample((4, 2000)) ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]] ch_types = ['grad', 'mag', 'mag', 'eeg'] sfreq = 250.0 info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) raw = RawArray(test_data, info) pick_list = _picks_by_type(raw.info) assert_equal(len(pick_list), 3) assert_equal(pick_list[0][0], 'mag') pick_list2 = _picks_by_type(raw.info, meg_combined=False) assert_equal(len(pick_list), len(pick_list2)) assert_equal(pick_list2[0][0], 'mag') pick_list2 = _picks_by_type(raw.info, meg_combined=True) assert_equal(len(pick_list), len(pick_list2) + 1) assert_equal(pick_list2[0][0], 'meg') test_data = rng.random_sample((4, 2000)) ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]] ch_types = ['mag', 'mag', 'mag', 'mag'] sfreq = 250.0 info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) raw = RawArray(test_data, info) # Make sure checks for list input work. assert_raises(ValueError, pick_channels, ch_names, 'MEG 001') assert_raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi') pick_list = _picks_by_type(raw.info) assert_equal(len(pick_list), 1) assert_equal(pick_list[0][0], 'mag') pick_list2 = _picks_by_type(raw.info, meg_combined=True) assert_equal(len(pick_list), len(pick_list2)) assert_equal(pick_list2[0][0], 'mag') def test_clean_info_bads(): """Test cleaning info['bads'] when bad_channels are excluded """ raw_file = op.join(op.dirname(__file__), 'io', 'tests', 'data', 'test_raw.fif') raw = Raw(raw_file) # select eeg channels picks_eeg = pick_types(raw.info, meg=False, eeg=True) # select 3 eeg channels as bads idx_eeg_bad_ch = picks_eeg[[1, 5, 14]] eeg_bad_ch = [raw.info['ch_names'][k] for k in idx_eeg_bad_ch] # select meg channels picks_meg = pick_types(raw.info, meg=True, eeg=False) # select randomly 3 meg channels as bads idx_meg_bad_ch = picks_meg[[0, 15, 34]] meg_bad_ch = [raw.info['ch_names'][k] for k in idx_meg_bad_ch] # simulate the bad channels raw.info['bads'] = eeg_bad_ch + meg_bad_ch # simulate the call to pick_info excluding the bad eeg channels info_eeg = pick_info(raw.info, picks_eeg) # simulate the call to pick_info excluding the bad meg channels info_meg = pick_info(raw.info, picks_meg) assert_equal(info_eeg['bads'], eeg_bad_ch) assert_equal(info_meg['bads'], meg_bad_ch) run_tests_if_main()
bsd-3-clause
nickgentoo/scikit-learn-graph
skgraph/kernel/WLOrthogonalizedGraphKernel.py
1
16012
# -*- coding: utf-8 -*- """ Created on Fri Jul 3 12:04:44 2015 Copyright 2015 Nicolo' Navarin This file is part of scikit-learn-graph. scikit-learn-graph is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. scikit-learn-graph is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with scikit-learn-graph. If not, see <http://www.gnu.org/licenses/>. The code is from the following source. Weisfeiler_Lehman graph kernel. Python implementation of Nino Shervashidze Matlab code at: http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels/ Author : Sandro Vega Pons License: """ import numpy as np import networkx as nx import copy import math from KernelTools import convert_to_sparse_matrix from graphKernel import GraphKernel from scipy.sparse import dok_matrix from sklearn.preprocessing import normalize class WLOrthogonalizedGraphKernel(GraphKernel): """ Weisfeiler_Lehman graph kernel. """ def __init__(self, r = 1, normalization = False): self.h=r self.normalization=normalization self.__startsymbol='!' #special symbols used in encoding self.__conjsymbol='#' self.__endsymbol='?' self.__fsfeatsymbol='*' self.__version=0 self.__contextsymbol='@' def kernelFunction(self, g_1, g_2): """Compute the kernel value (similarity) between two graphs. Parameters ---------- g1 : networkx.Graph First graph. g2 : networkx.Graph Second graph. h : interger Number of iterations. nl : boolean Whether to use original node labels. True for using node labels saved in the attribute 'node_label'. False for using the node degree of each node as node attribute. Returns ------- k : The similarity value between g1 and g2. """ gl = [g_1, g_2] return self.computeGram(gl)[0, 1] def transform(self, graph_list): """ TODO """ n = len(graph_list) #number of graphs phi = [{} for i in range(self.h+1)] #phi={} #dictionary representing the phi vector for each graph. phi[r][c]=v each row is a graph. each column is a feature NodeIdToLabelId = [0] * n # NodeIdToLabelId[i][j] is labelid of node j in graph i label_lookup = {} #map from features to corresponding id label_counter = 0 #incremental value for label ids for i in range(n): #for each graph NodeIdToLabelId[i] = {} for j in graph_list[i].nodes(): #for each node if not label_lookup.has_key(graph_list[i].node[j]['label']):#update label_lookup and label ids from first iteration that consider node's labels label_lookup[graph_list[i].node[j]['label']] = label_counter NodeIdToLabelId[i][j] = label_counter label_counter += 1 else: NodeIdToLabelId[i][j] = label_lookup[graph_list[i].node[j]['label']] feature=self.__fsfeatsymbol+str(label_lookup[graph_list[i].node[j]['label']]) if not phi[0].has_key((i,feature)): phi[0][(i,feature)]=0.0 phi[0][(i,feature)]+=1.0 ### MAIN LOOP #TOFO generate a vector for each it value it = 1 NewNodeIdToLabelId = copy.deepcopy(NodeIdToLabelId) #labels id of nex iteration while it <= self.h: #each iteration compute the next labellings (that are contexts of the previous) label_lookup = {} for i in range(n): #for each graph for j in graph_list[i].nodes(): #for each node, consider its neighbourhood neighbors=[] for u in graph_list[i].neighbors(j): neighbors.append(NodeIdToLabelId[i][u]) neighbors.sort() #sorting neighbours long_label_string=str(NodeIdToLabelId[i][j])+self.__startsymbol #compute new labels id for u in neighbors: long_label_string+=str(u)+self.__conjsymbol long_label_string=long_label_string[:-1]+self.__endsymbol if not label_lookup.has_key(long_label_string): label_lookup[long_label_string] = label_counter NewNodeIdToLabelId[i][j] = label_counter label_counter += 1 else: NewNodeIdToLabelId[i][j] = label_lookup[long_label_string] feature=self.__fsfeatsymbol+str(NewNodeIdToLabelId[i][j]) if not phi[it].has_key((i,feature)): phi[it][(i,feature)]=0.0 phi[it][(i,feature)]+=1.0 NodeIdToLabelId = copy.deepcopy(NewNodeIdToLabelId) #update current labels id it = it + 1 ve=map(convert_to_sparse_matrix,phi) #ve=convert_to_sparse_matrix(phi) if self.normalization: for i in range(len(ve)): ve[i] = normalize(ve[i], norm='l2', axis=1) #print type(ve) return ve # def transform(self, graph_list): # """ # TODO # """ # n = len(graph_list) #number of graphs # # phi={} #dictionary representing the phi vector for each graph. phi[r][c]=v each row is a graph. each column is a feature # # NodeIdToLabelId = [dict() for x in range(n)] # NodeIdToLabelId[i][j] is labelid of node j in graph i # label_lookup = {} #map from features to corresponding id # label_counter = long(1) #incremental value for label ids # # for i in range(n): #for each graph # #NodeIdToLabelId[i] = {} # #nx.draw(graph_list[i]) # # # for j in graph_list[i].nodes(): #for each node # if not label_lookup.has_key(graph_list[i].node[j]['label']):#update label_lookup and label ids from first iteration that consider node's labels # label_lookup[graph_list[i].node[j]['label']] = label_counter # NodeIdToLabelId[i][j] = label_counter # label_counter += 1 # else: # NodeIdToLabelId[i][j] = label_lookup[graph_list[i].node[j]['label']] # # feature=self.__fsfeatsymbol+str(label_lookup[graph_list[i].node[j]['label']]) # if not phi.has_key((i,feature)): # phi[(i,feature)]=0.0 # phi[(i,feature)]+=1.0 # # ### MAIN LOOP # it = 0 # NewNodeIdToLabelId = copy.deepcopy(NodeIdToLabelId) #labels id of nex iteration # # while it < self.h: #each iteration compute the next labellings (that are contexts of the previous) # label_lookup = {} # # for i in range(n): #for each graph # for j in graph_list[i].nodes(): #for each node, consider its neighbourhood # neighbors=[] # for u in graph_list[i].neighbors(j): # neighbors.append(NodeIdToLabelId[i][u]) # neighbors.sort() #sorting neighbours # # long_label_string=str(NodeIdToLabelId[i][j])+self.__startsymbol #compute new labels id # for u in neighbors: # long_label_string+=str(u)+self.__conjsymbol # long_label_string=long_label_string[:-1]+self.__endsymbol # # if not label_lookup.has_key(long_label_string): # label_lookup[long_label_string] = label_counter # NewNodeIdToLabelId[i][j] = label_counter # label_counter += 1 # else: # NewNodeIdToLabelId[i][j] = label_lookup[long_label_string] # # feature=self.__fsfeatsymbol+str(NewNodeIdToLabelId[i][j]) # if not phi.has_key((i,feature)): # phi[(i,feature)]=0.0 # phi[(i,feature)]+=1.0 # # # NodeIdToLabelId = copy.deepcopy(NewNodeIdToLabelId) #update current labels id # it = it + 1 # #print phi # return convert_to_sparse_matrix(phi) # def transform(self, graph_list): # """ # TODO # """ # n = len(graph_list) #number of graphs # # phi={} #dictionary representing the phi vector for each graph. phi[r][c]=v each row is a graph. each column is a feature # #phi=dok_matrix() # NodeIdToLabelId = [0] * n # NodeIdToLabelId[i][j] is labelid of node j in graph i # label_lookup = {} #map from features to corresponding id # label_counter = 0 #incremental value for label ids # # for i in xrange(n): #for each graph # NodeIdToLabelId[i] = {} # # for j in graph_list[i].nodes(): # enc=graph_list[i].node[j]['label'] #"0"+ # if enc not in label_lookup:#update label_lookup and label ids # label_lookup[enc] = label_counter # NodeIdToLabelId[i][j] = label_counter # label_counter += 1 # else: # NodeIdToLabelId[i][j] = label_lookup[enc] # #print enc, label_lookup[enc] # if (i,label_lookup[enc]) not in phi: # phi[i,label_lookup[enc]]=0 # phi[i,label_lookup[enc]]+=1 # # ### MAIN LOOP # it = 0 # NewNodeIdToLabelId = copy.deepcopy(NodeIdToLabelId) # #label_lookup = {} # # while it < self.h: # label_lookup = {} # # for i in xrange(n): #for each graph # for j in graph_list[i].nodes(): #for each node, consider its neighbourhood # neighbors=[] # for u in graph_list[i].neighbors(j): # #print u, # neighbors.append(NodeIdToLabelId[i][u]) # neighbors.sort() # #print # long_label_string=str(NodeIdToLabelId[i][j])#str(it+1)+self.__startsymbol+ # for u in neighbors: # long_label_string+=self.__conjsymbol+str(u) # #long_label_string=long_label_string[:-1]+self.__endsymbol # if long_label_string not in label_lookup: # label_lookup[long_label_string] = label_counter # NewNodeIdToLabelId[i][j] = label_counter # label_counter += 1 # else: # NewNodeIdToLabelId[i][j] = label_lookup[long_label_string] # print long_label_string, NewNodeIdToLabelId[i][j] # # if (i,NewNodeIdToLabelId[i][j]) not in phi: # phi[i,NewNodeIdToLabelId[i][j]]=0 # phi[i,NewNodeIdToLabelId[i][j]]+=1 # # NodeIdToLabelId = copy.deepcopy(NewNodeIdToLabelId) # it = it + 1 # #return dok_matrix(phi.todense()).tocsr() # return convert_to_sparse_matrix(phi) # def transform(self, graph_list): # """ # TODO # """ # n = len(graph_list) #number of graphs # # phi={} #dictionary representing the phi vector for each graph. phi[r][c]=v each row is a graph. each column is a feature # # NodeIdToLabelId = [0] * n # NodeIdToLabelId[i][j] is labelid of node j in graph i # label_lookup = {} #map from features to corresponding id # label_counter = 1 #incremental value for label ids # # for i in range(n): #for each graph # NodeIdToLabelId[i] = {} # # for j in graph_list[i].nodes(): # #print graph_list[i].node[j]['label'] # if not label_lookup.has_key("0|"+str(graph_list[i].node[j]['label'])):#update label_lookup and label ids # label_lookup["0|"+str(graph_list[i].node[j]['label'])] = label_counter # NodeIdToLabelId[i][j] = label_counter # label_counter += 1 # else: # NodeIdToLabelId[i][j] = label_lookup["0|"+str(graph_list[i].node[j]['label'])] # # if not phi.has_key((i,label_lookup["0|"+str(graph_list[i].node[j]['label'])])): # phi[(i,label_lookup["0|"+str(graph_list[i].node[j]['label'])])]=0 # phi[(i,label_lookup["0|"+str(graph_list[i].node[j]['label'])])]+=1 # # ### MAIN LOOP # it = 0 # NewNodeIdToLabelId = copy.deepcopy(NodeIdToLabelId) # #NewNodeIdToLabelId =[0] * n # while it < self.h: # label_lookup = {} # # for i in range(n): #for each graph # for j in graph_list[i].nodes(): #for each node, consider its neighbourhood # neighbors=[] # for u in graph_list[i].neighbors(j): # #print u # neighbors.append(NodeIdToLabelId[i][u]) # neighbors.sort() # if len(neighbors)==0: # print "Empty neighbors" # #MODIFICATO RISPETTO a TESSELLI str(it)+self.__startsymbol+ # long_label_string=str(it+1)+"|"+str(NodeIdToLabelId[i][j])+self.__startsymbol # for u in neighbors: # long_label_string+=str(u)+self.__conjsymbol # #long_label_string=long_label_string[:-1]+self.__endsymbol # long_label_string=long_label_string[:-1]+self.__endsymbol # # if len(neighbors)==0: # print long_label_string # # if not label_lookup.has_key(long_label_string): # label_lookup[long_label_string] = label_counter # NewNodeIdToLabelId[i][j] = label_counter # label_counter += 1 # else: # NewNodeIdToLabelId[i][j] = label_lookup[long_label_string] # # if not phi.has_key((i,NewNodeIdToLabelId[i][j])): # phi[(i,NewNodeIdToLabelId[i][j])]=0 # phi[(i,NewNodeIdToLabelId[i][j])]+=1 # # NodeIdToLabelId = copy.deepcopy(NewNodeIdToLabelId) # it = it + 1 # return convert_to_sparse_matrix(phi) # def __normalization(self, gram): # """ # TODO # """ # if self.normalization: # diagonal=np.diag(gram) # a=np.tile(diagonal,(gram.shape[0],1)) # b=diagonal.reshape((gram.shape[0],1)) # b=np.tile(b,(1,gram.shape[1])) # # return gram/np.sqrt(a*b) # else : # return gram def computeKernelMatrixTrain(self,Graphs): return self.computeGram(Graphs) def computeGram(self,g_it,precomputed=None): if precomputed is None: precomputed=self.transform(g_it) return precomputed.dot(precomputed.T).todense().tolist()
gpl-3.0
benoitsteiner/tensorflow-xsmm
tensorflow/contrib/learn/python/learn/datasets/synthetic.py
40
7451
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Synthetic dataset generators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.datasets.base import Dataset from tensorflow.python.util.deprecation import deprecated @deprecated(None, 'Consider using synthetic datasets from scikits.learn.') def circles(n_samples=100, noise=None, seed=None, factor=0.8, n_classes=2, *args, **kwargs): """Create circles separated by some value Args: n_samples: int, number of datapoints to generate noise: float or None, standard deviation of the Gaussian noise added seed: int or None, seed for the noise factor: float, size factor of the inner circles with respect to the outer ones n_classes: int, number of classes to generate Returns: Shuffled features and labels for 'circles' synthetic dataset of type `base.Dataset` Note: The multi-class support might not work as expected if `noise` is enabled TODO: - Generation of unbalanced data Credit goes to (under BSD 3 clause): B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, G. Louppe, J. Nothman """ if seed is not None: np.random.seed(seed) # Algo: 1) Generate initial circle, 2) For ever class generate a smaller radius circle linspace = np.linspace(0, 2 * np.pi, n_samples // n_classes) circ_x = np.empty(0, dtype=np.int32) circ_y = np.empty(0, dtype=np.int32) base_cos = np.cos(linspace) base_sin = np.sin(linspace) y = np.empty(0, dtype=np.int32) for label in range(n_classes): circ_x = np.append(circ_x, base_cos) circ_y = np.append(circ_y, base_sin) base_cos *= factor base_sin *= factor y = np.append(y, label * np.ones(n_samples // n_classes, dtype=np.int32)) # Add more points if n_samples is not divisible by n_classes (unbalanced!) extras = n_samples % n_classes circ_x = np.append(circ_x, np.cos(np.random.rand(extras) * 2 * np.pi)) circ_y = np.append(circ_y, np.sin(np.random.rand(extras) * 2 * np.pi)) y = np.append(y, np.zeros(extras, dtype=np.int32)) # Reshape the features/labels X = np.vstack((circ_x, circ_y)).T y = np.hstack(y) # Shuffle the data indices = np.random.permutation(range(n_samples)) if noise is not None: X += np.random.normal(scale=noise, size=X.shape) return Dataset(data=X[indices], target=y[indices]) @deprecated(None, 'Consider using synthetic datasets from scikits.learn.') def spirals(n_samples=100, noise=None, seed=None, mode='archimedes', n_loops=2, *args, **kwargs): """Create spirals Currently only binary classification is supported for spiral generation Args: n_samples: int, number of datapoints to generate noise: float or None, standard deviation of the Gaussian noise added seed: int or None, seed for the noise n_loops: int, number of spiral loops, doesn't play well with 'bernoulli' mode: str, how the spiral should be generated. Current implementations: 'archimedes': a spiral with equal distances between branches 'bernoulli': logarithmic spiral with branch distances increasing 'fermat': a spiral with branch distances decreasing (sqrt) Returns: Shuffled features and labels for 'spirals' synthetic dataset of type `base.Dataset` Raises: ValueError: If the generation `mode` is not valid TODO: - Generation of unbalanced data """ n_classes = 2 # I am not sure how to make it multiclass _modes = { 'archimedes': _archimedes_spiral, 'bernoulli': _bernoulli_spiral, 'fermat': _fermat_spiral } if mode is None or mode not in _modes: raise ValueError('Cannot generate spiral with mode %s' % mode) if seed is not None: np.random.seed(seed) linspace = np.linspace(0, 2 * n_loops * np.pi, n_samples // n_classes) spir_x = np.empty(0, dtype=np.int32) spir_y = np.empty(0, dtype=np.int32) y = np.empty(0, dtype=np.int32) for label in range(n_classes): base_cos, base_sin = _modes[mode](linspace, label * np.pi, *args, **kwargs) spir_x = np.append(spir_x, base_cos) spir_y = np.append(spir_y, base_sin) y = np.append(y, label * np.ones(n_samples // n_classes, dtype=np.int32)) # Add more points if n_samples is not divisible by n_classes (unbalanced!) extras = n_samples % n_classes if extras > 0: x_extra, y_extra = _modes[mode](np.random.rand(extras) * 2 * np.pi, *args, **kwargs) spir_x = np.append(spir_x, x_extra) spir_y = np.append(spir_y, y_extra) y = np.append(y, np.zeros(extras, dtype=np.int32)) # Reshape the features/labels X = np.vstack((spir_x, spir_y)).T y = np.hstack(y) # Shuffle the data indices = np.random.permutation(range(n_samples)) if noise is not None: X += np.random.normal(scale=noise, size=X.shape) return Dataset(data=X[indices], target=y[indices]) def _archimedes_spiral(theta, theta_offset=0., *args, **kwargs): """Return Archimedes spiral Args: theta: array-like, angles from polar coordinates to be converted theta_offset: float, angle offset in radians (2*pi = 0) """ x, y = theta * np.cos(theta + theta_offset), theta * np.sin( theta + theta_offset) x_norm = np.max(np.abs(x)) y_norm = np.max(np.abs(y)) x, y = x / x_norm, y / y_norm return x, y def _bernoulli_spiral(theta, theta_offset=0., *args, **kwargs): """Return Equiangular (Bernoulli's) spiral Args: theta: array-like, angles from polar coordinates to be converted theta_offset: float, angle offset in radians (2*pi = 0) Kwargs: exp_scale: growth rate of the exponential """ exp_scale = kwargs.pop('exp_scale', 0.1) x, y = np.exp(exp_scale * theta) * np.cos(theta + theta_offset), np.exp( exp_scale * theta) * np.sin(theta + theta_offset) x_norm = np.max(np.abs(x)) y_norm = np.max(np.abs(y)) x, y = x / x_norm, y / y_norm return x, y def _fermat_spiral(theta, theta_offset=0., *args, **kwargs): """Return Parabolic (Fermat's) spiral Args: theta: array-like, angles from polar coordinates to be converted theta_offset: float, angle offset in radians (2*pi = 0) """ x, y = np.sqrt(theta) * np.cos(theta + theta_offset), np.sqrt(theta) * np.sin( theta + theta_offset) x_norm = np.max(np.abs(x)) y_norm = np.max(np.abs(y)) x, y = x / x_norm, y / y_norm return x, y
apache-2.0
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pycparser/ply/ctokens.py
206
3177
# ---------------------------------------------------------------------- # ctokens.py # # Token specifications for symbols in ANSI C and C++. This file is # meant to be used as a library in other tokenizers. # ---------------------------------------------------------------------- # Reserved words tokens = [ # Literals (identifier, integer constant, float constant, string constant, char const) 'ID', 'TYPEID', 'INTEGER', 'FLOAT', 'STRING', 'CHARACTER', # Operators (+,-,*,/,%,|,&,~,^,<<,>>, ||, &&, !, <, <=, >, >=, ==, !=) 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'MODULO', 'OR', 'AND', 'NOT', 'XOR', 'LSHIFT', 'RSHIFT', 'LOR', 'LAND', 'LNOT', 'LT', 'LE', 'GT', 'GE', 'EQ', 'NE', # Assignment (=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=) 'EQUALS', 'TIMESEQUAL', 'DIVEQUAL', 'MODEQUAL', 'PLUSEQUAL', 'MINUSEQUAL', 'LSHIFTEQUAL','RSHIFTEQUAL', 'ANDEQUAL', 'XOREQUAL', 'OREQUAL', # Increment/decrement (++,--) 'INCREMENT', 'DECREMENT', # Structure dereference (->) 'ARROW', # Ternary operator (?) 'TERNARY', # Delimeters ( ) [ ] { } , . ; : 'LPAREN', 'RPAREN', 'LBRACKET', 'RBRACKET', 'LBRACE', 'RBRACE', 'COMMA', 'PERIOD', 'SEMI', 'COLON', # Ellipsis (...) 'ELLIPSIS', ] # Operators t_PLUS = r'\+' t_MINUS = r'-' t_TIMES = r'\*' t_DIVIDE = r'/' t_MODULO = r'%' t_OR = r'\|' t_AND = r'&' t_NOT = r'~' t_XOR = r'\^' t_LSHIFT = r'<<' t_RSHIFT = r'>>' t_LOR = r'\|\|' t_LAND = r'&&' t_LNOT = r'!' t_LT = r'<' t_GT = r'>' t_LE = r'<=' t_GE = r'>=' t_EQ = r'==' t_NE = r'!=' # Assignment operators t_EQUALS = r'=' t_TIMESEQUAL = r'\*=' t_DIVEQUAL = r'/=' t_MODEQUAL = r'%=' t_PLUSEQUAL = r'\+=' t_MINUSEQUAL = r'-=' t_LSHIFTEQUAL = r'<<=' t_RSHIFTEQUAL = r'>>=' t_ANDEQUAL = r'&=' t_OREQUAL = r'\|=' t_XOREQUAL = r'\^=' # Increment/decrement t_INCREMENT = r'\+\+' t_DECREMENT = r'--' # -> t_ARROW = r'->' # ? t_TERNARY = r'\?' # Delimeters t_LPAREN = r'\(' t_RPAREN = r'\)' t_LBRACKET = r'\[' t_RBRACKET = r'\]' t_LBRACE = r'\{' t_RBRACE = r'\}' t_COMMA = r',' t_PERIOD = r'\.' t_SEMI = r';' t_COLON = r':' t_ELLIPSIS = r'\.\.\.' # Identifiers t_ID = r'[A-Za-z_][A-Za-z0-9_]*' # Integer literal t_INTEGER = r'\d+([uU]|[lL]|[uU][lL]|[lL][uU])?' # Floating literal t_FLOAT = r'((\d+)(\.\d+)(e(\+|-)?(\d+))? | (\d+)e(\+|-)?(\d+))([lL]|[fF])?' # String literal t_STRING = r'\"([^\\\n]|(\\.))*?\"' # Character constant 'c' or L'c' t_CHARACTER = r'(L)?\'([^\\\n]|(\\.))*?\'' # Comment (C-Style) def t_COMMENT(t): r'/\*(.|\n)*?\*/' t.lexer.lineno += t.value.count('\n') return t # Comment (C++-Style) def t_CPPCOMMENT(t): r'//.*\n' t.lexer.lineno += 1 return t
mit
jamesrobertlloyd/automl-phase-2
sandpit.py
1
4567
__author__ = 'James Robert Lloyd' __description__ = 'Scraps of code before module structure becomes apparent' from util import callback_1d import pybo from pybo.functions.functions import _cleanup, GOModel import numpy as np from sklearn.datasets import load_iris from sklearn.datasets import make_hastie_10_2 from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import cross_val_score import os import sys sys.path.append(os.path.dirname(__file__)) from multiprocessing import Pool from sandpit_two import print_globals, import_and_print_globals import global_data @_cleanup class Sinusoidal(GOModel): """ Simple sinusoidal function bounded in [0, 2pi] given by cos(x)+sin(3x). """ bounds = [[0, 2*np.pi]] xmax = 3.61439678 @staticmethod def _f(x): return -np.ravel(np.cos(x) + np.sin(3*x)) @_cleanup class CV_RF(GOModel): """ Cross validated random forest """ bounds = [[1, 25]] xmax = 10 # FIXME - should this not be optional? @staticmethod def _f(x): # iris = load_iris() X, y = X, y = make_hastie_10_2(random_state=0) x = np.ravel(x) f = np.zeros(x.shape) for i in range(f.size): clf = RandomForestClassifier(n_estimators=1, min_samples_leaf=int(np.round(x[i])), random_state=0) # scores = cross_val_score(clf, iris.data, iris.target) scores = cross_val_score(clf, X, y, cv=5) f[i] = -scores.mean() return f.ravel() from multiprocessing import Process, Queue, Manager, Array from Queue import Empty as q_Empty import cPickle as pickle import time from agent import Agent, start_communication #, start_communication_debug # class DummyAgent(AgentWithData): # def __init__(self, name='Give me a name', cpu_budget=1, **kwargs): # super(DummyAgent, self).__init__(**kwargs) # self.name = name # self.cpu_budget = cpu_budget # self._value = 1 # # def serialize(self, filename): # del self.shared_array # del self.nparray # we don't need to delete it for pickle to work, but it will be incorrect on unpickling # with open(filename, 'wb') as pickle_file: # pickle.dump(self, pickle_file) # self.terminated = True # # def next_action(self): # while len(self.inbox) > 0: # message = self.inbox.pop(0) # print(self.nparray) # print('Received message : %s' % message) # if message['subject'] == 'serialize': # self.serialize(message['filename']) def separate_process(): print('I am a separate process') from learners import DummyLearner # def multi_pickle_experiment(): # q = Queue() # arr = Array('d', range(5)) # a = DummyLearner(shared_array=arr, inbox_q=q) # p = Process(target=start_communication_debug, kwargs=dict(agent=a)) # del a # p.start() # arr[0] = 99 # q.put(dict(subject='A message')) # time.sleep(2) # raw_input('Press return to continue') # arr[0] = 9 # q.put(dict(subject='Another message')) # time.sleep(2) # q.put(dict(subject='serialize', filename='temp/dill.pk')) # time.sleep(2) # raw_input('Press return to continue') # p.join() # print('Process has serialized itself') # raw_input('Press return to revive') # arr[0] = 999 # p = Process(target=start_communication_debug, kwargs=dict(pickle_filename='temp/dill.pk', shared_array=arr)) # p.start() # q.put(dict(subject='A second message')) # time.sleep(2) # raw_input('Press return to kill') # q.put(dict(subject='terminate')) # p.join() # print('Success') # def print_globals(_): # time.sleep(5) # print(globals()) # X = my_global # X = X + 1 # print(X) # time.sleep(5) def global_test(): raw_input('I begin') # global my_global global_data.my_global = np.full((2**17, 2 * 2**10), 42) raw_input('Globals created') processing_pool = Pool(10) processing_pool.map(import_and_print_globals, [None] * 10) processing_pool.close() processing_pool.join() raw_input('Multiprocessing complete') if __name__ == '__main__': # objective = CV_RF() # # info = pybo.solve_bayesopt( # objective, # objective.bounds, # niter=25, # noisefree=False, # rng=0, # init='uniform', # callback=callback_1d) # # print('Finished') # # raw_input('Press enter to finish') global_test()
mit
GoogleCloudPlatform/public-datasets-pipelines
datasets/bls/pipelines/c_cpi_u/c_cpi_u_dag.py
2
3848
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from airflow import DAG from airflow.providers.cncf.kubernetes.operators import kubernetes_pod from airflow.providers.google.cloud.transfers import gcs_to_bigquery default_args = { "owner": "Google", "depends_on_past": False, "start_date": "2021-03-01", } with DAG( dag_id="bls.c_cpi_u", default_args=default_args, max_active_runs=1, schedule_interval="@daily", catchup=False, default_view="graph", ) as dag: # Run CSV transform within kubernetes pod transform_csv = kubernetes_pod.KubernetesPodOperator( task_id="transform_csv", startup_timeout_seconds=600, name="c_cpi_u", namespace="composer", service_account_name="datasets", image_pull_policy="Always", image="{{ var.json.bls.container_registry.run_csv_transform_kub }}", env_vars={ "SOURCE_URLS": '["gs://pdp-feeds-staging/Bureau/inflat_listarea_area_join.csv","gs://pdp-feeds-staging/Bureau/cu.item.tsv"]', "SOURCE_FILES": '["files/data1.csv","files/data2.tsv"]', "TARGET_FILE": "files/data_output.csv", "TARGET_GCS_BUCKET": "{{ var.value.composer_bucket }}", "TARGET_GCS_PATH": "data/bls/c_cpi_u/data_output.csv", "PIPELINE_NAME": "c_cpi_u", "FILE_PATH": "files/", "JOINING_KEY": "item_code", "TRIM_SPACE": '["series_id","value","footnote_codes","item_code"]', "CSV_HEADERS": '["series_id","year","period","value","footnote_codes","survey_abbreviation","seasonal_code","periodicity_code","area_code","area_name","item_code","item_name","date"]', }, resources={ "request_memory": "2G", "request_cpu": "1", "request_ephemeral_storage": "10G", }, ) # Task to load CSV data to a BigQuery table load_to_bq = gcs_to_bigquery.GCSToBigQueryOperator( task_id="load_to_bq", bucket="{{ var.value.composer_bucket }}", source_objects=["data/bls/c_cpi_u/data_output.csv"], source_format="CSV", destination_project_dataset_table="bls.c_cpi_u", skip_leading_rows=1, allow_quoted_newlines=True, write_disposition="WRITE_TRUNCATE", schema_fields=[ {"name": "series_id", "type": "STRING", "mode": "required"}, {"name": "year", "type": "INTEGER", "mode": "NULLABLE"}, {"name": "period", "type": "STRING", "mode": "NULLABLE"}, {"name": "value", "type": "FLOAT", "mode": "NULLABLE"}, {"name": "footnote_codes", "type": "STRING", "mode": "NULLABLE"}, {"name": "survey_abbreviation", "type": "STRING", "mode": "NULLABLE"}, {"name": "seasonal_code", "type": "STRING", "mode": "NULLABLE"}, {"name": "periodicity_code", "type": "STRING", "mode": "NULLABLE"}, {"name": "area_code", "type": "STRING", "mode": "NULLABLE"}, {"name": "area_name", "type": "STRING", "mode": "NULLABLE"}, {"name": "item_code", "type": "STRING", "mode": "NULLABLE"}, {"name": "item_name", "type": "STRING", "mode": "NULLABLE"}, {"name": "date", "type": "DATE", "mode": "NULLABLE"}, ], ) transform_csv >> load_to_bq
apache-2.0
dimkal/mne-python
examples/decoding/plot_decoding_time_generalization.py
5
1947
""" ========================================================== Decoding sensor space data with Generalization Across Time ========================================================== This example runs the analysis computed in: Jean-Remi King, Alexandre Gramfort, Aaron Schurger, Lionel Naccache and Stanislas Dehaene, "Two distinct dynamic modes subtend the detection of unexpected sounds", PLOS ONE, 2013, http://www.ncbi.nlm.nih.gov/pubmed/24475052 The idea is to learn at one time instant and assess if the decoder can predict accurately over time. """ # Authors: Jean-Remi King <jeanremi.king@gmail.com> # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Denis Engemann <denis.engemann@gmail.com> # # License: BSD (3-clause) import mne from mne.datasets import spm_face from mne.decoding import GeneralizationAcrossTime print(__doc__) # Preprocess data data_path = spm_face.data_path() # Load and filter data, set up epochs raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D_raw.fif' raw = mne.io.Raw(raw_fname % 1, preload=True) # Take first run picks = mne.pick_types(raw.info, meg=True, exclude='bads') raw.filter(1, 45, method='iir') events = mne.find_events(raw, stim_channel='UPPT001') event_id = {"faces": 1, "scrambled": 2} tmin, tmax = -0.1, 0.5 decim = 4 # decimate to make the example faster to run epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True, reject=dict(mag=1.5e-12), decim=decim, verbose=False) # Define decoder. The decision_function is employed to use AUC for scoring gat = GeneralizationAcrossTime(predict_mode='cross-validation', n_jobs=2) # fit and score gat.fit(epochs) gat.score(epochs) gat.plot(vmin=0.1, vmax=0.9, title="Generalization Across Time (faces vs. scrambled)") gat.plot_diagonal() # plot decoding across time (correspond to GAT diagonal)
bsd-3-clause
DinoCow/airflow
tests/providers/google/cloud/hooks/test_automl.py
3
9839
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from unittest import mock from google.cloud.automl_v1beta1 import AutoMlClient, PredictionServiceClient from airflow.providers.google.cloud.hooks.automl import CloudAutoMLHook from tests.providers.google.cloud.utils.base_gcp_mock import mock_base_gcp_hook_no_default_project_id CREDENTIALS = "test-creds" CLIENT_INFO = "client-info" TASK_ID = "test-automl-hook" GCP_PROJECT_ID = "test-project" GCP_LOCATION = "test-location" MODEL_NAME = "test_model" MODEL_ID = "projects/198907790164/locations/us-central1/models/TBL9195602771183665152" DATASET_ID = "TBL123456789" MODEL = { "display_name": MODEL_NAME, "dataset_id": DATASET_ID, "tables_model_metadata": {"train_budget_milli_node_hours": 1000}, } LOCATION_PATH = AutoMlClient.location_path(GCP_PROJECT_ID, GCP_LOCATION) MODEL_PATH = PredictionServiceClient.model_path(GCP_PROJECT_ID, GCP_LOCATION, MODEL_ID) DATASET_PATH = AutoMlClient.dataset_path(GCP_PROJECT_ID, GCP_LOCATION, DATASET_ID) INPUT_CONFIG = {"input": "value"} OUTPUT_CONFIG = {"output": "value"} PAYLOAD = {"test": "payload"} DATASET = {"dataset_id": "data"} MASK = {"field": "mask"} class TestAuoMLHook(unittest.TestCase): def setUp(self) -> None: with mock.patch( "airflow.providers.google.cloud.hooks.automl.GoogleBaseHook.__init__", new=mock_base_gcp_hook_no_default_project_id, ): self.hook = CloudAutoMLHook() self.hook._get_credentials = mock.MagicMock(return_value=CREDENTIALS) # type: ignore @mock.patch( "airflow.providers.google.cloud.hooks.automl.GoogleBaseHook.client_info", new_callable=lambda: CLIENT_INFO, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient") def test_get_conn(self, mock_automl_client, mock_client_info): self.hook.get_conn() mock_automl_client.assert_called_once_with(credentials=CREDENTIALS, client_info=CLIENT_INFO) @mock.patch( "airflow.providers.google.cloud.hooks.automl.GoogleBaseHook.client_info", new_callable=lambda: CLIENT_INFO, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.PredictionServiceClient") def test_prediction_client(self, mock_prediction_client, mock_client_info): client = self.hook.prediction_client # pylint: disable=unused-variable # noqa mock_prediction_client.assert_called_once_with(credentials=CREDENTIALS, client_info=CLIENT_INFO) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.create_model") def test_create_model(self, mock_create_model): self.hook.create_model(model=MODEL, location=GCP_LOCATION, project_id=GCP_PROJECT_ID) mock_create_model.assert_called_once_with( parent=LOCATION_PATH, model=MODEL, retry=None, timeout=None, metadata=None ) @mock.patch("airflow.providers.google.cloud.hooks.automl.PredictionServiceClient.batch_predict") def test_batch_predict(self, mock_batch_predict): self.hook.batch_predict( model_id=MODEL_ID, location=GCP_LOCATION, project_id=GCP_PROJECT_ID, input_config=INPUT_CONFIG, output_config=OUTPUT_CONFIG, ) mock_batch_predict.assert_called_once_with( name=MODEL_PATH, input_config=INPUT_CONFIG, output_config=OUTPUT_CONFIG, params=None, retry=None, timeout=None, metadata=None, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.PredictionServiceClient.predict") def test_predict(self, mock_predict): self.hook.predict( model_id=MODEL_ID, location=GCP_LOCATION, project_id=GCP_PROJECT_ID, payload=PAYLOAD, ) mock_predict.assert_called_once_with( name=MODEL_PATH, payload=PAYLOAD, params=None, retry=None, timeout=None, metadata=None, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.create_dataset") def test_create_dataset(self, mock_create_dataset): self.hook.create_dataset(dataset=DATASET, location=GCP_LOCATION, project_id=GCP_PROJECT_ID) mock_create_dataset.assert_called_once_with( parent=LOCATION_PATH, dataset=DATASET, retry=None, timeout=None, metadata=None, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.import_data") def test_import_dataset(self, mock_import_data): self.hook.import_data( dataset_id=DATASET_ID, location=GCP_LOCATION, project_id=GCP_PROJECT_ID, input_config=INPUT_CONFIG, ) mock_import_data.assert_called_once_with( name=DATASET_PATH, input_config=INPUT_CONFIG, retry=None, timeout=None, metadata=None, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.list_column_specs") def test_list_column_specs(self, mock_list_column_specs): table_spec = "table_spec_id" filter_ = "filter" page_size = 42 self.hook.list_column_specs( dataset_id=DATASET_ID, table_spec_id=table_spec, location=GCP_LOCATION, project_id=GCP_PROJECT_ID, field_mask=MASK, filter_=filter_, page_size=page_size, ) parent = AutoMlClient.table_spec_path(GCP_PROJECT_ID, GCP_LOCATION, DATASET_ID, table_spec) mock_list_column_specs.assert_called_once_with( parent=parent, field_mask=MASK, filter_=filter_, page_size=page_size, retry=None, timeout=None, metadata=None, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.get_model") def test_get_model(self, mock_get_model): self.hook.get_model(model_id=MODEL_ID, location=GCP_LOCATION, project_id=GCP_PROJECT_ID) mock_get_model.assert_called_once_with(name=MODEL_PATH, retry=None, timeout=None, metadata=None) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.delete_model") def test_delete_model(self, mock_delete_model): self.hook.delete_model(model_id=MODEL_ID, location=GCP_LOCATION, project_id=GCP_PROJECT_ID) mock_delete_model.assert_called_once_with(name=MODEL_PATH, retry=None, timeout=None, metadata=None) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.update_dataset") def test_update_dataset(self, mock_update_dataset): self.hook.update_dataset( dataset=DATASET, update_mask=MASK, ) mock_update_dataset.assert_called_once_with( dataset=DATASET, update_mask=MASK, retry=None, timeout=None, metadata=None ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.deploy_model") def test_deploy_model(self, mock_deploy_model): image_detection_metadata = {} self.hook.deploy_model( model_id=MODEL_ID, image_detection_metadata=image_detection_metadata, location=GCP_LOCATION, project_id=GCP_PROJECT_ID, ) mock_deploy_model.assert_called_once_with( name=MODEL_PATH, retry=None, timeout=None, metadata=None, image_object_detection_model_deployment_metadata=image_detection_metadata, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.list_table_specs") def test_list_table_specs(self, mock_list_table_specs): filter_ = "filter" page_size = 42 self.hook.list_table_specs( dataset_id=DATASET_ID, location=GCP_LOCATION, project_id=GCP_PROJECT_ID, filter_=filter_, page_size=page_size, ) mock_list_table_specs.assert_called_once_with( parent=DATASET_PATH, filter_=filter_, page_size=page_size, retry=None, timeout=None, metadata=None, ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.list_datasets") def test_list_datasets(self, mock_list_datasets): self.hook.list_datasets(location=GCP_LOCATION, project_id=GCP_PROJECT_ID) mock_list_datasets.assert_called_once_with( parent=LOCATION_PATH, retry=None, timeout=None, metadata=None ) @mock.patch("airflow.providers.google.cloud.hooks.automl.AutoMlClient.delete_dataset") def test_delete_dataset(self, mock_delete_dataset): self.hook.delete_dataset(dataset_id=DATASET_ID, location=GCP_LOCATION, project_id=GCP_PROJECT_ID) mock_delete_dataset.assert_called_once_with( name=DATASET_PATH, retry=None, timeout=None, metadata=None )
apache-2.0
midnightradio/gensim
docs/src/auto_examples/tutorials/run_doc2vec_lee.py
8
16167
r""" Doc2Vec Model ============= Introduces Gensim's Doc2Vec model and demonstrates its use on the `Lee Corpus <https://hekyll.services.adelaide.edu.au/dspace/bitstream/2440/28910/1/hdl_28910.pdf>`__. """ import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) ############################################################################### # Doc2Vec is a :ref:`core_concepts_model` that represents each # :ref:`core_concepts_document` as a :ref:`core_concepts_vector`. This # tutorial introduces the model and demonstrates how to train and assess it. # # Here's a list of what we'll be doing: # # 0. Review the relevant models: bag-of-words, Word2Vec, Doc2Vec # 1. Load and preprocess the training and test corpora (see :ref:`core_concepts_corpus`) # 2. Train a Doc2Vec :ref:`core_concepts_model` model using the training corpus # 3. Demonstrate how the trained model can be used to infer a :ref:`core_concepts_vector` # 4. Assess the model # 5. Test the model on the test corpus # # Review: Bag-of-words # -------------------- # # .. Note:: Feel free to skip these review sections if you're already familiar with the models. # # You may be familiar with the `bag-of-words model # <https://en.wikipedia.org/wiki/Bag-of-words_model>`_ from the # :ref:`core_concepts_vector` section. # This model transforms each document to a fixed-length vector of integers. # For example, given the sentences: # # - ``John likes to watch movies. Mary likes movies too.`` # - ``John also likes to watch football games. Mary hates football.`` # # The model outputs the vectors: # # - ``[1, 2, 1, 1, 2, 1, 1, 0, 0, 0, 0]`` # - ``[1, 1, 1, 1, 0, 1, 0, 1, 2, 1, 1]`` # # Each vector has 10 elements, where each element counts the number of times a # particular word occurred in the document. # The order of elements is arbitrary. # In the example above, the order of the elements corresponds to the words: # ``["John", "likes", "to", "watch", "movies", "Mary", "too", "also", "football", "games", "hates"]``. # # Bag-of-words models are surprisingly effective, but have several weaknesses. # # First, they lose all information about word order: "John likes Mary" and # "Mary likes John" correspond to identical vectors. There is a solution: bag # of `n-grams <https://en.wikipedia.org/wiki/N-gram>`__ # models consider word phrases of length n to represent documents as # fixed-length vectors to capture local word order but suffer from data # sparsity and high dimensionality. # # Second, the model does not attempt to learn the meaning of the underlying # words, and as a consequence, the distance between vectors doesn't always # reflect the difference in meaning. The ``Word2Vec`` model addresses this # second problem. # # Review: ``Word2Vec`` Model # -------------------------- # # ``Word2Vec`` is a more recent model that embeds words in a lower-dimensional # vector space using a shallow neural network. The result is a set of # word-vectors where vectors close together in vector space have similar # meanings based on context, and word-vectors distant to each other have # differing meanings. For example, ``strong`` and ``powerful`` would be close # together and ``strong`` and ``Paris`` would be relatively far. # # Gensim's :py:class:`~gensim.models.word2vec.Word2Vec` class implements this model. # # With the ``Word2Vec`` model, we can calculate the vectors for each **word** in a document. # But what if we want to calculate a vector for the **entire document**\ ? # We could average the vectors for each word in the document - while this is quick and crude, it can often be useful. # However, there is a better way... # # Introducing: Paragraph Vector # ----------------------------- # # .. Important:: In Gensim, we refer to the Paragraph Vector model as ``Doc2Vec``. # # Le and Mikolov in 2014 introduced the `Doc2Vec algorithm <https://cs.stanford.edu/~quocle/paragraph_vector.pdf>`__, # which usually outperforms such simple-averaging of ``Word2Vec`` vectors. # # The basic idea is: act as if a document has another floating word-like # vector, which contributes to all training predictions, and is updated like # other word-vectors, but we will call it a doc-vector. Gensim's # :py:class:`~gensim.models.doc2vec.Doc2Vec` class implements this algorithm. # # There are two implementations: # # 1. Paragraph Vector - Distributed Memory (PV-DM) # 2. Paragraph Vector - Distributed Bag of Words (PV-DBOW) # # .. Important:: # Don't let the implementation details below scare you. # They're advanced material: if it's too much, then move on to the next section. # # PV-DM is analogous to Word2Vec CBOW. The doc-vectors are obtained by training # a neural network on the synthetic task of predicting a center word based an # average of both context word-vectors and the full document's doc-vector. # # PV-DBOW is analogous to Word2Vec SG. The doc-vectors are obtained by training # a neural network on the synthetic task of predicting a target word just from # the full document's doc-vector. (It is also common to combine this with # skip-gram testing, using both the doc-vector and nearby word-vectors to # predict a single target word, but only one at a time.) # # Prepare the Training and Test Data # ---------------------------------- # # For this tutorial, we'll be training our model using the `Lee Background # Corpus # <https://hekyll.services.adelaide.edu.au/dspace/bitstream/2440/28910/1/hdl_28910.pdf>`_ # included in gensim. This corpus contains 314 documents selected from the # Australian Broadcasting Corporation’s news mail service, which provides text # e-mails of headline stories and covers a number of broad topics. # # And we'll test our model by eye using the much shorter `Lee Corpus # <https://hekyll.services.adelaide.edu.au/dspace/bitstream/2440/28910/1/hdl_28910.pdf>`_ # which contains 50 documents. # import os import gensim # Set file names for train and test data test_data_dir = os.path.join(gensim.__path__[0], 'test', 'test_data') lee_train_file = os.path.join(test_data_dir, 'lee_background.cor') lee_test_file = os.path.join(test_data_dir, 'lee.cor') ############################################################################### # Define a Function to Read and Preprocess Text # --------------------------------------------- # # Below, we define a function to: # # - open the train/test file (with latin encoding) # - read the file line-by-line # - pre-process each line (tokenize text into individual words, remove punctuation, set to lowercase, etc) # # The file we're reading is a **corpus**. # Each line of the file is a **document**. # # .. Important:: # To train the model, we'll need to associate a tag/number with each document # of the training corpus. In our case, the tag is simply the zero-based line # number. # import smart_open def read_corpus(fname, tokens_only=False): with smart_open.open(fname, encoding="iso-8859-1") as f: for i, line in enumerate(f): tokens = gensim.utils.simple_preprocess(line) if tokens_only: yield tokens else: # For training data, add tags yield gensim.models.doc2vec.TaggedDocument(tokens, [i]) train_corpus = list(read_corpus(lee_train_file)) test_corpus = list(read_corpus(lee_test_file, tokens_only=True)) ############################################################################### # Let's take a look at the training corpus # print(train_corpus[:2]) ############################################################################### # And the testing corpus looks like this: # print(test_corpus[:2]) ############################################################################### # Notice that the testing corpus is just a list of lists and does not contain # any tags. # ############################################################################### # Training the Model # ------------------ # # Now, we'll instantiate a Doc2Vec model with a vector size with 50 dimensions and # iterating over the training corpus 40 times. We set the minimum word count to # 2 in order to discard words with very few occurrences. (Without a variety of # representative examples, retaining such infrequent words can often make a # model worse!) Typical iteration counts in the published `Paragraph Vector paper <https://cs.stanford.edu/~quocle/paragraph_vector.pdf>`__ # results, using 10s-of-thousands to millions of docs, are 10-20. More # iterations take more time and eventually reach a point of diminishing # returns. # # However, this is a very very small dataset (300 documents) with shortish # documents (a few hundred words). Adding training passes can sometimes help # with such small datasets. # model = gensim.models.doc2vec.Doc2Vec(vector_size=50, min_count=2, epochs=40) ############################################################################### # Build a vocabulary model.build_vocab(train_corpus) ############################################################################### # Essentially, the vocabulary is a list (accessible via # ``model.wv.index_to_key``) of all of the unique words extracted from the training corpus. # Additional attributes for each word are available using the ``model.wv.get_vecattr()`` method, # For example, to see how many times ``penalty`` appeared in the training corpus: # print(f"Word 'penalty' appeared {model.wv.get_vecattr('penalty', 'count')} times in the training corpus.") ############################################################################### # Next, train the model on the corpus. # If optimized Gensim (with BLAS library) is being used, this should take no more than 3 seconds. # If the BLAS library is not being used, this should take no more than 2 # minutes, so use optimized Gensim with BLAS if you value your time. # model.train(train_corpus, total_examples=model.corpus_count, epochs=model.epochs) ############################################################################### # Now, we can use the trained model to infer a vector for any piece of text # by passing a list of words to the ``model.infer_vector`` function. This # vector can then be compared with other vectors via cosine similarity. # vector = model.infer_vector(['only', 'you', 'can', 'prevent', 'forest', 'fires']) print(vector) ############################################################################### # Note that ``infer_vector()`` does *not* take a string, but rather a list of # string tokens, which should have already been tokenized the same way as the # ``words`` property of original training document objects. # # Also note that because the underlying training/inference algorithms are an # iterative approximation problem that makes use of internal randomization, # repeated inferences of the same text will return slightly different vectors. # ############################################################################### # Assessing the Model # ------------------- # # To assess our new model, we'll first infer new vectors for each document of # the training corpus, compare the inferred vectors with the training corpus, # and then returning the rank of the document based on self-similarity. # Basically, we're pretending as if the training corpus is some new unseen data # and then seeing how they compare with the trained model. The expectation is # that we've likely overfit our model (i.e., all of the ranks will be less than # 2) and so we should be able to find similar documents very easily. # Additionally, we'll keep track of the second ranks for a comparison of less # similar documents. # ranks = [] second_ranks = [] for doc_id in range(len(train_corpus)): inferred_vector = model.infer_vector(train_corpus[doc_id].words) sims = model.dv.most_similar([inferred_vector], topn=len(model.dv)) rank = [docid for docid, sim in sims].index(doc_id) ranks.append(rank) second_ranks.append(sims[1]) ############################################################################### # Let's count how each document ranks with respect to the training corpus # # NB. Results vary between runs due to random seeding and very small corpus import collections counter = collections.Counter(ranks) print(counter) ############################################################################### # Basically, greater than 95% of the inferred documents are found to be most # similar to itself and about 5% of the time it is mistakenly most similar to # another document. Checking the inferred-vector against a # training-vector is a sort of 'sanity check' as to whether the model is # behaving in a usefully consistent manner, though not a real 'accuracy' value. # # This is great and not entirely surprising. We can take a look at an example: # print('Document ({}): «{}»\n'.format(doc_id, ' '.join(train_corpus[doc_id].words))) print(u'SIMILAR/DISSIMILAR DOCS PER MODEL %s:\n' % model) for label, index in [('MOST', 0), ('SECOND-MOST', 1), ('MEDIAN', len(sims)//2), ('LEAST', len(sims) - 1)]: print(u'%s %s: «%s»\n' % (label, sims[index], ' '.join(train_corpus[sims[index][0]].words))) ############################################################################### # Notice above that the most similar document (usually the same text) is has a # similarity score approaching 1.0. However, the similarity score for the # second-ranked documents should be significantly lower (assuming the documents # are in fact different) and the reasoning becomes obvious when we examine the # text itself. # # We can run the next cell repeatedly to see a sampling other target-document # comparisons. # # Pick a random document from the corpus and infer a vector from the model import random doc_id = random.randint(0, len(train_corpus) - 1) # Compare and print the second-most-similar document print('Train Document ({}): «{}»\n'.format(doc_id, ' '.join(train_corpus[doc_id].words))) sim_id = second_ranks[doc_id] print('Similar Document {}: «{}»\n'.format(sim_id, ' '.join(train_corpus[sim_id[0]].words))) ############################################################################### # Testing the Model # ----------------- # # Using the same approach above, we'll infer the vector for a randomly chosen # test document, and compare the document to our model by eye. # # Pick a random document from the test corpus and infer a vector from the model doc_id = random.randint(0, len(test_corpus) - 1) inferred_vector = model.infer_vector(test_corpus[doc_id]) sims = model.dv.most_similar([inferred_vector], topn=len(model.dv)) # Compare and print the most/median/least similar documents from the train corpus print('Test Document ({}): «{}»\n'.format(doc_id, ' '.join(test_corpus[doc_id]))) print(u'SIMILAR/DISSIMILAR DOCS PER MODEL %s:\n' % model) for label, index in [('MOST', 0), ('MEDIAN', len(sims)//2), ('LEAST', len(sims) - 1)]: print(u'%s %s: «%s»\n' % (label, sims[index], ' '.join(train_corpus[sims[index][0]].words))) ############################################################################### # Conclusion # ---------- # # Let's review what we've seen in this tutorial: # # 0. Review the relevant models: bag-of-words, Word2Vec, Doc2Vec # 1. Load and preprocess the training and test corpora (see :ref:`core_concepts_corpus`) # 2. Train a Doc2Vec :ref:`core_concepts_model` model using the training corpus # 3. Demonstrate how the trained model can be used to infer a :ref:`core_concepts_vector` # 4. Assess the model # 5. Test the model on the test corpus # # That's it! Doc2Vec is a great way to explore relationships between documents. # # Additional Resources # -------------------- # # If you'd like to know more about the subject matter of this tutorial, check out the links below. # # * `Word2Vec Paper <https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf>`_ # * `Doc2Vec Paper <https://cs.stanford.edu/~quocle/paragraph_vector.pdf>`_ # * `Dr. Michael D. Lee's Website <http://faculty.sites.uci.edu/mdlee>`_ # * `Lee Corpus <http://faculty.sites.uci.edu/mdlee/similarity-data/>`__ # * `IMDB Doc2Vec Tutorial <doc2vec-IMDB.ipynb>`_ #
gpl-3.0
cajohnst/Optimized_FX_Portfolio
Pull_Data.py
1
12619
''' Pull all data to be used in Optimize_FX_Portfolio, RSI_sample, MACD_sample, and futures_vs_spot (eventually pull fred economic reports) ''' import settings as sv import pandas as pd import quandl as qdl import numpy as np from pandas import Series, DataFrame import datetime from datetime import timedelta, date import rollover_google_sheet import fxstreet_google_sheet import RSI_sample import fxstreet_scraper import sklearn as sklearn from sklearn import preprocessing from sklearn.linear_model import Ridge import StringIO import csv import import_spot_test def main(): currency_list = get_currency_list() currency_quandl_list = get_currency_quandl_list() fed_list = get_fed_list() # Calculate beginning date beg_date = sv.end_date - timedelta(sv.num_days_regression) ############################################################################################################################# # Import events data into pandas dataframe econ_calendar_full = pd.DataFrame(fxstreet_google_sheet.pull_data(sv.num_days_regression)) # If no consensus value exists, use the previous value to fill its place. econ_calendar_full.Consensus.fillna(econ_calendar_full.Previous, inplace = True) # Create column 'Deviation' as the actual value on the data release subtracting the market expectation econ_calendar_full['Deviation'] = econ_calendar_full['Actual'] - econ_calendar_full['Consensus'] # #Take today's Economic Events from FXstreet_scraper and format econ_calendar_today = fxstreet_scraper.main() econ_calendar_today = StringIO.StringIO(econ_calendar_today) econ_calendar_today = pd.read_csv(econ_calendar_today, header=0, index_col= False) econ_calendar_today['DateTime'] = pd.to_datetime(econ_calendar_today['DateTime']) econ_calendar_today = econ_calendar_today.set_index('DateTime') econ_calendar_today.index.names = ['DateTime'] econ_calendar_today.Consensus.fillna(econ_calendar_today.Previous, inplace = True) econ_calendar_today.dropna(thresh= 5, inplace = True) #Begin raw input of user predictions for data releases (fill 'Actual' column with predictions). for index, row in econ_calendar_today.iterrows(): prediction = raw_input("Prediction for {0} in {1} given the market consensus is {2}.\n Your Prediction:".format(row['Name'], row['Country'], row['Consensus'])) econ_calendar_today.set_value(index, 'Actual', prediction) # Append today's data to the full calendar of releases econ_calendar_full = econ_calendar_full.append(econ_calendar_today) ############################################################################################################################# #RSI_sample data # For stochastic data, import daily highs and lows into dataframe from quandl # Highs and Lows are unreliable before sv.stoch_date (and need to be continually monitored) list_high = [high.replace('1', '2') for high in currency_quandl_list] list_low = [low.replace('1', '3') for low in currency_quandl_list] # Maximum of the 'rolling' periods max_lag = max(sv.q, sv.nslow, sv.nfast, sv.nema, sv.ma_slow, sv.ma_fast, sv.n, sv.d) #Pull data from quandl currency_table = get_currency_data(currency_list, currency_quandl_list, sv.num_days_regression, sv.end_date , sv.auth_tok) live_rates = import_spot_test.main() currency_table = currency_table.append(live_rates) #Get daily lows from quandl for stochastic oscillator low_table = get_currency_data(currency_list, list_low, sv.num_days_regression, sv.end_date , sv.auth_tok) #Get daily highs from quandl for stochastic oscillator high_table = get_currency_data(currency_list, list_high, sv.num_days_regression, sv.end_date , sv.auth_tok) # #Calculate RSI for all currency pairs in currency_table RSI = RSI_sample.RSI_Calc(currency_table, sv.q) #Calculate exponentially weighted moving averages and MACD emaslow, emafast, macd = RSI_sample.get_MACD(currency_table, nslow= sv.nslow, nfast = sv.nfast) ema9 = RSI_sample.moving_average(macd, sv.nema, type = 'exponential') #Calculate stochastics fast_stochastic, slow_stochastic = RSI_sample.get_stochastic(currency_table, low_table, high_table, sv.n, sv.d) # #Calculate simple moving averages ma_f = RSI_sample.moving_average(currency_table, sv.ma_fast, type='simple') ma_s = RSI_sample.moving_average(currency_table, sv.ma_slow, type='simple') # Drop all NaNs, format data so indexes will match when joined RSI = RSI_sample.drop_rows(RSI, max_lag) ma_f = RSI_sample.drop_rows(ma_f, max_lag) ma_s = RSI_sample.drop_rows(ma_s, max_lag) emaslow= RSI_sample.drop_rows(emaslow, max_lag) emafast= RSI_sample.drop_rows(emafast, max_lag) macd = RSI_sample.drop_rows(macd, max_lag) ema9 = RSI_sample.drop_rows(ema9, max_lag) fast_stochastic = RSI_sample.drop_rows(fast_stochastic, max_lag) slow_stochastic = RSI_sample.drop_rows(slow_stochastic, max_lag) currency_table = RSI_sample.drop_rows(currency_table, max_lag) ################################################################################################################# #Create fundamentals, merge tables, perform ridge regression, output daily return predictions # Convert price data to returns and delete NaNs returns_table = currency_table.pct_change(periods= sv.shift).dropna() returns_table.drop(returns_table.index[:1], inplace=True) returns_table = 100 * sv.leverage * returns_table fed_table = get_fed_data(fed_list, sv.num_days_regression, sv.end_date , sv.auth_tok) # Specialize data for events! Pull all historical data from event calendar which matches name in econ data dictionary. economic_data_dict = get_economic_data_dict() all_fundamentals_table = query_past_economic_data(econ_calendar_today, econ_calendar_full, fed_table, economic_data_dict) #Merge the calendar data with the columns of technicals regression_table = merge_with_technicals(currency_list, returns_table, all_fundamentals_table, RSI, macd, fast_stochastic, beg_date, sv.stoch_date) return regression_table def query_past_economic_data(calendar_today, calendar_full, fed_table, economic_data_dict): # Get all historical data from the full calendar which matches today's data and is found in the econ data dictionary. for index, values in calendar_today.iterrows(): country = values['Country'] if country in economic_data_dict: event_name = values['Name'] if event_name in economic_data_dict[country]: pull_events = calendar_full[(calendar_full['Country'] == country) & (calendar_full['Name'] == event_name)] fed_table = fed_table.join(pull_events['Deviation'], how = 'left', rsuffix = ' of {0}'.format(event_name)) fed_table = fed_table.fillna(value = 0) else: print ' *** {0} not a listed event for {1} in the Economic Dictionary ***'.format(event_name, country) else: print ' *** {0} is not a country in the Economic Dictionary ***'.format(country) return fed_table def get_currency_quandl_list(): currency_quandl_list = ['CURRFX/MXNUSD.1', 'CURRFX/USDCAD.1', 'CURRFX/NZDUSD.1', 'CURRFX/USDHKD.1', 'CURRFX/USDJPY.1', 'CURRFX/USDSGD.1', 'CURRFX/GBPUSD.1', 'CURRFX/USDZAR.1', 'CURRFX/AUDUSD.1', 'CURRFX/EURUSD.1'] return currency_quandl_list def get_currency_list(): currency_list = ['USD/MXN', 'USD/CAD', 'NZD/USD', 'USD/HKD', 'USD/JPY', 'USD/SGD', 'GBP/USD', 'USD/ZAR', 'AUD/USD', 'EUR/USD'] return currency_list def get_economic_data_dict(): # Dictonary keys are the country name # Key values are tuples structured as ([list of eventnames from fxstreet], [list of eventnames from quandl]) economic_data_dict = { 'United States': ['Consumer Price Index (YoY)', 'Consumer Price Index Ex Food & Energy (YoY)', 'Nonfarm Payrolls', 'Reuters/Michigan Consumer Sentiment Index', 'Baker Hughes US Oil Rig Count', 'Durable Goods Orders', 'Durable Goods Orders ex Transportation', 'Retail Sales (MoM)', 'Initial Jobless Claims', 'ADP Employment Change', 'Gross Domestic Product Annualized', 'Unemployment Rate', 'M2', 'Housing Starts (MoM)', 'Building Permits (MoM)', '10-Year Note Auction', 'EIA Crude Oil Stocks change', 'S&P/Case-Shiller Home Price Indices (YoY)', 'Markit Services PMI', 'Markit PMI Composite', 'Consumer Confidence', 'Dallas Fed Manufacturing Business Index', 'ISM Prices Paid', 'ISM Manufacturing PMI', 'Markit Manufacturing PMI', 'Construction Spending (MoM)', 'Trade Balance', 'ISM Non-Manufacturing PMI', 'Factory Orders (MoM)'] , 'Japan': ['National Consumer Price Index (YoY)', 'Foreign investment in Japan stocks', 'Foreign bond investment', 'Unemployment Rate', 'Industrial Production (MoM)', 'Industrial Production (YoY)' ] , 'European Monetary Union': ['Unemployment Rate', 'Consumer Price Index (YoY)', 'Consumer Price Index - Core (YoY)', 'Markit Manufacturing PMI', 'Producer Price Index (MoM)', 'Producer Price Index (YoY)', 'Markit Services PMI'] , 'Germany': ['Markit Manufacturing PMI', '10-y Bond Auction'] , 'Australia': ['TD Securities Inflation (YoY)', 'TD Securities Inflation (MoM)', 'RBA Interest Rate Decision', 'Retail Sales s.a (MoM)'] , 'Canada': ['RBC Manufacturing PMI'] , 'New Zealand': [] , 'China': [] , 'United Kingdom': ['Markit Manufacturing PMI', 'PMI Construction'] , 'Italy': [] , 'Switzerland': ['Real Retail Sales (YoY)'] , 'France': [] } return economic_data_dict def get_fed_list(): fed_list = ['Federal_Funds_Futures', 'Effective_Funds_Rate'] return fed_list def get_currency_data(currency_list, currency_quandl_list, num_days_regression, end_date , api_key): # Calculate dates to begin and end start_date = end_date - timedelta(num_days_regression) # Initialize data table data_table = None # Run through currencies, first assignment is initialized # Anything past first currency is joined into table for currency in currency_quandl_list: current_column = qdl.get(currency, start_date= start_date, end_date = end_date , authtoken= api_key) current_column.columns = [currency] if data_table is None: data_table = current_column else: data_table = data_table.join(current_column, how= 'left', rsuffix= '') data_table.columns = currency_list if 'USD/MXN' in currency_list: data_table['USD/MXN'] = 1 / data_table['USD/MXN'] return data_table def get_fed_data(fed_reserve_list, num_days_regression, end_date , api_key): # Calculate dates start_date = end_date - timedelta(num_days_regression) # Get Federal Funds Futures data and Effective Funds Futures fed_fund_futures = qdl.get('CHRIS/CME_FF1.6', start_date= start_date, end_date = end_date , authtoken= api_key) effective_fund_futures = qdl.get('FRED/DFF', start_date = start_date, end_date = end_date , authtoken= api_key) fed_table = fed_fund_futures.join(effective_fund_futures, how= 'left', rsuffix= '') fed_table.columns = fed_reserve_list fed_table.fillna(method = 'ffill', inplace = True ) # Calculate the probability of a rate hike as the difference between rolling federal funds futures and the effective funds rate divided by the amount of the hike. # (Multiplied by 100 for percentage) fed_table['rate_hike_prob_25_basis'] = (((100 - fed_table['Federal_Funds_Futures']) - fed_table['Effective_Funds_Rate'])/ 0.25) * 100 fed_table = fed_table.drop('Federal_Funds_Futures', axis= 1) fed_table = fed_table.drop('Effective_Funds_Rate', axis= 1) return fed_table def get_benchmark(benchmark_list, benchmark_quandl_list, num_days_regression, end_date , api_key, shift): # Get returns of a benchmark asset start_date = end_date - timedelta(num_days_regression) benchmark_table = qdl.get(benchmark_quandl_list, start_date = start_date, end_date = end_date , authtoken= api_key) benchmark_table.columns = ['Benchmark'] benchmark_returns = benchmark_table.pct_change(periods= shift).dropna() * 100 benchmark_returns.drop(benchmark_returns.index[:1], inplace=True) return benchmark_returns def merge_with_technicals(currency_list, returns_table, fundamentals_table, RSI, MACD, Stochastics, beg_date, stoch_date): # Create empty list, will hold dataframes for all currencies dataframe_list = [] for currency in currency_list: buildup_dataframe = DataFrame(returns_table[currency]) buildup_dataframe = buildup_dataframe.join(fundamentals_table, how= 'left', rsuffix= '') buildup_dataframe = buildup_dataframe.join(RSI[currency], how= 'left', rsuffix= '_RSI') buildup_dataframe = buildup_dataframe.join(MACD[currency], how='left', rsuffix='_MACD') if beg_date > stoch_date: buildup_dataframe = buildup_dataframe.join(Stochastics[currency], how='left', rsuffix='_Stoch') dataframe_list.append(buildup_dataframe) return dataframe_list if __name__ == "__main__": main()
mit
yonglehou/scikit-learn
sklearn/feature_extraction/dict_vectorizer.py
232
12267
# Authors: Lars Buitinck # Dan Blanchard <dblanchard@ets.org> # License: BSD 3 clause from array import array from collections import Mapping from operator import itemgetter import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..utils import check_array, tosequence from ..utils.fixes import frombuffer_empty def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(BaseEstimator, TransformerMixin): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Read more in the :ref:`User Guide <dict_feature_extraction>`. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator: string, optional Separator string used when constructing new features for one-hot coding. sparse: boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort: boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report") dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = array("i", [0]) # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 if f in vocab: indices.append(vocab[f]) values.append(dtype(v)) else: if fitting: feature_names.append(f) vocab[f] = len(vocab) indices.append(vocab[f]) values.append(dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = frombuffer_empty(indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix((values, indices, indptr), shape=shape, dtype=dtype) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Sample matrix. dict_type : callable, optional Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects, length = n_samples Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=['csr', 'csc']) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in xrange(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X, y=None): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings, length = n_samples Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ if self.sparse: return self._transform(X, fitting=False) else: dtype = self.dtype vocab = self.vocabulary_ X = _tosequence(X) Xa = np.zeros((len(X), len(vocab)), dtype=dtype) for i, x in enumerate(X): for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 try: Xa[i, vocab[f]] = dtype(v) except KeyError: pass return Xa def get_feature_names(self): """Returns a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. """ return self.feature_names_ def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : boolean, optional Whether support is a list of indices. Returns ------- self Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names() ['bar', 'baz', 'foo'] >>> v.restrict(support.get_support()) # doctest: +ELLIPSIS DictVectorizer(dtype=..., separator='=', sort=True, sparse=True) >>> v.get_feature_names() ['bar', 'foo'] """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab), key=itemgetter(1))] return self
bsd-3-clause
mxjl620/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
228
2823
import numpy as np from scipy.sparse import csr_matrix from sklearn import datasets from sklearn.metrics.cluster.unsupervised import silhouette_score from sklearn.metrics import pairwise_distances from sklearn.utils.testing import assert_false, assert_almost_equal from sklearn.utils.testing import assert_raises_regexp def test_silhouette(): # Tests the Silhouette Coefficient. dataset = datasets.load_iris() X = dataset.data y = dataset.target D = pairwise_distances(X, metric='euclidean') # Given that the actual labels are used, we can assume that S would be # positive. silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) # Test without calculating D silhouette_metric = silhouette_score(X, y, metric='euclidean') assert_almost_equal(silhouette, silhouette_metric) # Test with sampling silhouette = silhouette_score(D, y, metric='precomputed', sample_size=int(X.shape[0] / 2), random_state=0) silhouette_metric = silhouette_score(X, y, metric='euclidean', sample_size=int(X.shape[0] / 2), random_state=0) assert(silhouette > 0) assert(silhouette_metric > 0) assert_almost_equal(silhouette_metric, silhouette) # Test with sparse X X_sparse = csr_matrix(X) D = pairwise_distances(X_sparse, metric='euclidean') silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) def test_no_nan(): # Assert Silhouette Coefficient != nan when there is 1 sample in a class. # This tests for the condition that caused issue 960. # Note that there is only one sample in cluster 0. This used to cause the # silhouette_score to return nan (see bug #960). labels = np.array([1, 0, 1, 1, 1]) # The distance matrix doesn't actually matter. D = np.random.RandomState(0).rand(len(labels), len(labels)) silhouette = silhouette_score(D, labels, metric='precomputed') assert_false(np.isnan(silhouette)) def test_correct_labelsize(): # Assert 1 < n_labels < n_samples dataset = datasets.load_iris() X = dataset.data # n_labels = n_samples y = np.arange(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) # n_labels = 1 y = np.zeros(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y)
bsd-3-clause
yonglehou/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
308
5431
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.cv_mse_path_, ':') plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
pkruskal/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
308
5431
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.cv_mse_path_, ':') plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
benoitsteiner/tensorflow-xsmm
tensorflow/python/training/distribute.py
4
49880
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class DistributionStrategy, TowerContext, and supporting APIs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops.losses import losses_impl from tensorflow.python.platform import tf_logging from tensorflow.python.training import device_util from tensorflow.python.util import nest # ------------------------------------------------------------------------------ # Internal API for setting the current thread mode as being either in a # tower or cross-tower context for a particular distribution strategy. class _ThreadMode(object): def __init__(self, dist, cross, tower): self.distribution_strategy = dist self.cross_tower_context = cross self.tower_context = tower class _CrossTowerThreadMode(_ThreadMode): def __init__(self, distribution_strategy): _ThreadMode.__init__( self, distribution_strategy, distribution_strategy, None) class _InTowerThreadMode(_ThreadMode): def __init__(self, tower_ctx): _ThreadMode.__init__( self, tower_ctx.distribution_strategy, None, tower_ctx) _per_thread_mode = threading.local() def _push_per_thread_mode(context): if not hasattr(_per_thread_mode, "stack"): _per_thread_mode.stack = [] _per_thread_mode.stack.append(context) def _pop_per_thread_mode(): _per_thread_mode.stack.pop(-1) class _DefaultTowerThreadMode(_ThreadMode): """Type of default value returned by `_get_per_thread_mode()`. Used when the thread-local stack is empty. """ def __init__(self): # _default_distribution_strategy and _default_tower_context are # defined at the bottom of this file. _ThreadMode.__init__( self, _default_distribution_strategy, None, _default_tower_context) def _get_per_thread_mode(): try: return _per_thread_mode.stack[-1] except (AttributeError, IndexError): # _default_tower_mode is defined at the bottom of this file. return _default_tower_mode # ------------------------------------------------------------------------------ # Context tracking whether in a distribution.update() or .update_non_slot() # call. _update_device = threading.local() def get_update_device(): """Get the current device if in a `DistributionStrategy.update()` call.""" try: return _update_device.current except AttributeError: return None class UpdateContext(object): """Context manager when you are in `update()` or `update_non_slot()`.""" def __init__(self, device): self._device = device self._old_device = None def __enter__(self): self._old_device = get_update_device() _update_device.current = self._device def __exit__(self, exception_type, exception_value, traceback): del exception_type, exception_value, traceback _update_device.current = self._old_device # ------------------------------------------------------------------------------ # Public API for accessing the current thread mode def get_tower_context(): """Returns the current TowerContext or None if in a cross-tower context. Note that execution: 1. starts in the default (single-tower) tower context (this function will return the default TowerContext object); 2. switches to cross-tower context (in which case this will return None) when entering a `with DistributionStrategy.scope():` block; 3. switches to a (non-default) tower context inside `call_for_each_tower(fn, ...)`; 4. if `fn` calls `get_tower_context()->merge_call(merge_fn, ...)`, then inside `merge_fn` you are back in the cross-tower context (and again this function will return None). Note that you can also go directly from step 1 to 4 to switch to a cross-tower context for the default `DistributionStrategy`. You may also switch from the cross-tower context of 4 to a tower context by calling `call_for_each_tower()`, jumping back to step 3. Most `DistributionStrategy` methods may only be executed in a cross-tower context, in a tower context you should use the `TowerContext` API instead. Returns: The current `TowerContext` object when in a tower context scope, else None. Exactly one of `get_tower_context()` and `get_cross_tower_context()` will return None in a particular block. """ return _get_per_thread_mode().tower_context def get_cross_tower_context(): """Returns the current DistributionStrategy if in a cross-tower context. Note that execution: 1. starts in the default (single-tower) tower context; 2. switches to cross-tower context when entering a `with DistributionStrategy.scope():` block; 3. switches to a (non-default) tower context inside `call_for_each_tower(fn, ...)`; 4. if `fn` calls `get_tower_context()->merge_call(merge_fn, ...)`, then inside `merge_fn` you are back in the cross-tower context. Note that you can also go directly from step 1 to 4 to switch to a cross-tower context for the default `DistributionStrategy`. You may also switch from the cross-tower context of 4 to a tower context by calling `call_for_each_tower()`, jumping back to step 3. Most `DistributionStrategy` methods may only be executed in a cross-tower context. Returns: Returns the current `DistributionStrategy` object in a cross-tower context, or None. Exactly one of `get_tower_context()` and `get_cross_tower_context()` will return None in a particular block. """ return _get_per_thread_mode().cross_tower_context def get_distribution_strategy(): """Returns the current `DistributionStrategy` object. Prefer to use `get_tower_context()` or `get_cross_tower_context()` instead when possible. Returns: A `DistributionStrategy` object. Inside a `with distribution_strategy.scope()` block, it returns `distribution_strategy`, otherwise it returns the default (single-tower) `DistributionStrategy` object. """ return _get_per_thread_mode().distribution_strategy def has_distribution_strategy(): """Return if there is a current non-default `DistributionStrategy`. Returns: True if inside a `with distribution_strategy.scope():`. """ return get_distribution_strategy() is not _default_distribution_strategy # ------------------------------------------------------------------------------ # Public utility functions. def get_loss_reduction(): """Reduce `method_string` corresponding to the last loss reduction.""" loss_reduction = ops.get_default_graph()._last_loss_reduction # pylint: disable=protected-access if loss_reduction == losses_impl.Reduction.SUM: return "sum" return "mean" # ------------------------------------------------------------------------------ # Internal API for validating the current thread mode def _require_cross_tower_context(distribution_strategy): """Verify in cross-tower context for `distribution_strategy`.""" context = _get_per_thread_mode() if context.cross_tower_context is distribution_strategy: return # We have an error to report, figure out the right message. if context.distribution_strategy is not distribution_strategy: if context.distribution_strategy is _default_distribution_strategy: raise RuntimeError( 'Need to be inside "with distribution_strategy.scope()" for %s' % (distribution_strategy,)) else: raise RuntimeError( "Mixing different DistributionStrategy objects: %s is not %s" % (context.distribution_strategy, distribution_strategy)) assert context.cross_tower_context is None raise RuntimeError("Method requires being in cross-tower context, use " "get_tower_context().merge_call()") def require_tower_context(tower_ctx): """Verify in `tower_ctx` tower context.""" context = _get_per_thread_mode() if context.tower_context is tower_ctx: return # We have an error to report, figure out the right message. if context.tower_context is None: raise RuntimeError("Need to be inside `call_for_each_tower()`") if context.distribution_strategy is tower_ctx.distribution_strategy: # Two different TowerContexts with the same DistributionStrategy. raise RuntimeError("Mismatching tower context.") raise RuntimeError( "Mismatching DistributionStrategy objects: %s is not %s." % (context.distribution_strategy, tower_ctx.distribution_strategy)) def _require_distribution_strategy_scope(distribution_strategy): """Verify in a `distribution_strategy.scope()` in this thread.""" context = _get_per_thread_mode() if context.distribution_strategy is distribution_strategy: return # We have an error to report, figure out the right message. if context.distribution_strategy is _default_distribution_strategy: raise RuntimeError( 'Need to be inside "with distribution_strategy.scope()" for %s' % (distribution_strategy,)) else: raise RuntimeError( "Mixing different DistributionStrategy objects: %s is not %s" % (context.distribution_strategy, distribution_strategy)) # ------------------------------------------------------------------------------ # Internal context managers used to implement the DistributionStrategy # base class class _CurrentDistributionContext(object): """Context manager for setting the `DistributionStrategy` and var creator.""" def __init__(self, distribution_strategy, var_creator_scope, var_scope=None, default_device=None): self._context = _CrossTowerThreadMode(distribution_strategy) self._var_creator_scope = var_creator_scope self._var_scope = var_scope if default_device: self._device_scope = ops.device(default_device) else: self._device_scope = None def __enter__(self): _push_per_thread_mode(self._context) if self._var_scope: self._var_scope.__enter__() self._var_creator_scope.__enter__() if self._device_scope: self._device_scope.__enter__() return self._context.distribution_strategy def __exit__(self, exception_type, exception_value, traceback): if self._device_scope: self._device_scope.__exit__(exception_type, exception_value, traceback) self._var_creator_scope.__exit__(exception_type, exception_value, traceback) if self._var_scope: self._var_scope.__exit__(exception_type, exception_value, traceback) _pop_per_thread_mode() class _SameScopeAgainContext(object): """Trivial context manager when you are already in `scope()`.""" def __init__(self, distribution_strategy): self._distribution_strategy = distribution_strategy def __enter__(self): return self._distribution_strategy def __exit__(self, exception_type, exception_value, traceback): del exception_type, exception_value, traceback # ------------------------------------------------------------------------------ # Base classes for all distribution strategies. class DistributionStrategy(object): """A list of devices with a state & compute distribution policy. The intent is that you can write an algorithm in a stylized way and it will be usable with a variety of different `DistributionStrategy` implementations. Each descendant will implement a different strategy for distributing the algorithm across multiple devices/machines. Furthermore, these changes can be hidden inside the specific layers and other library classes that need special treatment to run in a distributed setting, so that most users' model definition code can run unchanged. The `DistributionStrategy` API works the same way with eager and graph execution. First let's introduce a few high-level concepts: * _Data parallelism_ is where we run multiple copies of the model on different slices of the input data. This is in contrast to _model parallelism_ where we divide up a single copy of a model across multiple devices. Note: we only support data parallelism for now, but hope to add support for model parallelism in the future. * A _tower_ is one copy of the model, running on one slice of the input data. * _Synchronous_, or more commonly _sync_, training is where the updates from each tower are aggregated together before updating the model variables. This is in contrast to _asynchronous_, or _async_ training, where each tower updates the model variables independently. * Furthermore you might run your computation on multiple devices on one machine (or "host"), or on multiple machines/hosts. If you are running on multiple machines, you might have a single master host that drives computation across all of them, or you might have multiple clients driving the computation asynchronously. To distribute an algorithm, we might use some of these ingredients: * Parameter servers: These are hosts that hold a single copy of parameters/variables. All towers that want to operate on a variable retrieve it at the beginning of a step and send an update to be applied at the end of the step. Can support either sync or async training. * Mirrored variables: These are variables that are copied to multiple devices, where we keep the copies in sync by applying the same updates to every copy. Normally would only be used with sync training. * Reductions and Allreduce: A _reduction_ is some method of aggregating multiple values into one value, like "sum" or "mean". If doing sync training, we will perform a reduction on the gradients to a parameter from all towers before applying the update. Allreduce is an algorithm for performing a reduction on values from multiple devices and making the result available on all of those devices. * In the future we will have support for TensorFlow's partitioned variables, where a single variable is split across multiple devices. We have then a few approaches we want to support: * Code written (as if) with no knowledge of class `DistributionStrategy`. This code should work as before, even if some of the layers, etc. used by that code are written to be distribution-aware. This is done by having a default `DistributionStrategy` that gives ordinary behavior, and by default being in a single tower context. * Ordinary model code that you want to run using a specific `DistributionStrategy`. This can be as simple as: ``` with my_distribution.scope(): iterator = my_distribution.distribute_dataset( dataset).make_one_shot_iterator() tower_train_ops = my_distribution.call_for_each_tower( tower_fn, iterator.get_next()) train_op = tf.group(my_distribution.unwrap(tower_train_ops)) ``` This takes an ordinary `dataset` and `tower_fn` and runs it distributed using a particular `DistributionStrategy` in `my_distribution`. Any variables created in `tower_fn` are created using `my_distribution`'s policy, and library functions called by `tower_fn` can use the `get_tower_context()` API to get enhanced behavior in this case. You can also create an initializable iterator instead of a one-shot iterator. In that case, you will need to ensure that you initialize the iterator before calling get_next. ``` iterator = my_distribution.distribute_dataset( dataset).make_initializable_iterator()) session.run(iterator.initializer) ``` * If you want to write a distributed algorithm, you may use any of the `DistributionStrategy` APIs inside a `with my_distribution.scope():` block of code. Lower-level concepts: * Wrapped values: In order to represent values parallel across devices (either towers or the devices associated with a particular value), we wrap them in a "PerDevice" or "Mirrored" object that contains a map from device to values. "PerDevice" is used when the value may be different across devices, and "Mirrored" when the value are the same. * Unwrapping and merging: Consider calling a function `fn` on multiple devices, like `call_for_each_tower(fn, w)` with an argument `w` that is a wrapped value. This means `w` will have a map taking tower device `d0` to `w0`, tower device `d1` to `w1`, etc. `call_for_each_tower()` unwraps `w` before calling `fn`, so it calls `fn(w0)` on `d0`, `fn(w1)` on `d1`, etc. It then merges the return values from `fn()`, which can possibly result in wrapped values. For example, let's say `fn()` returns a tuple with three components: `(x, a, v0)` from tower 0, `(x, b, v1)` on tower 1, etc. If the first component is the same object `x` from every tower, then the first component of the merged result will also be `x`. If the second component is different (`a`, `b`, ...) from each tower, then the merged value will have a wrapped map from tower device to the different values. If the third component is the members of a mirrored variable (`v` maps `d0` to `v0`, `d1` to `v1`, etc.), then the merged result will be that mirrored variable (`v`). * Tower context vs. Cross-tower context: _tower context_ is when we are in some function that is being called once for each tower. Otherwise we are in cross-tower context, which is useful for calling `DistributionStrategy` methods which operate across the towers (like `reduce()`). By default you start in a tower context (the default "single tower context") and then some methods can switch you back and forth, as described below. * Worker devices vs. parameter devices: Most tower computations will happen on worker devices. Since we don't yet support model parallelism, there will be one worker device per tower. When using parameter servers (see above), the set of devices holding variables may be different, otherwise the parameter devices might match the worker devices. * Non-slot devices are some subset of the parameter devices where we put all the non-slot variables. We need to ensure that all non-slot variables are allocated on the same device, or mirrored across the same set of devices. If you have some variable you want to colocate all the non-slot variables with, you can use `colocate_vars_with()` to get the remaining non-slot variables on the same device. Otherwise you can use `non_slot_devices()` to pick a consistent set of devices to pass to both `colocate_vars_with()` and `update_non_slot()`. When using a `DistributionStrategy`, we have a new type dimension called _locality_ that says what values are compatible with which APIs: * T: different value for each tower (e.g. a PerDevice-wrapped value). * M: value is "mirrored" across towers, i.e. there are copies with the same value on each tower (e.g. a Mirrored-wrapped value). * V(`v`): value is "mirrored" across all the devices which have a copy of variable `v` (also a Mirrored-wrapped value, but over parameter devices instead of worker devices). * N: value is "mirrored" across all the "non-slot" devices Rules for methods with respect to locality and single-tower vs. cross-tower context: * `with d.scope()`: default single-tower context -> cross-tower context for `d` * `with d.colocate_vars_with(v)`: in tower/cross-tower context, variables will be created with locality V(`v`). That is, if we write `with d.colocate_vars_with(v1): v2 = tf.get_variable(...)`, then `v2` will have locality V(`v1`), i.e. locality V(`v2`) will equal V(`v1`). * `with d.colocate_vars_with(d.non_slot_devices(...))`: in tower/cross-tower context, variables will be created with locality N * `v = tf.get_variable(...)`: in tower/cross-tower context, creates a variable (which by definition will have locality V(`v`), though will match another locality if inside a `colocate_vars_with` scope). * `d.distribute_dataset(dataset).make_one_shot_iterator()`: in cross-tower context, produces an iterator with locality T * `d.broadcast(t)`: in cross-tower context, produces a value with locality M * `d.broadcast(t, v)`: in cross-tower context, produces a value with locality V(`v`) * `d.call_for_each_tower(fn, ...)`: in cross-tower context, runs `fn()` in a tower context (and so may call `get_tower_context()` and use its API, including `merge_call()` to get back to cross-tower context), once for each tower. May use values with locality T or M, and any variable. * `d.reduce(m, t)`: in cross-tower context, accepts t with locality T and produces a value with locality M. * `d.reduce(m, t, v)`: in cross-tower context, accepts t with locality T and produces a value with locality V(`v`). * `d.batch_reduce(m, [(t, v)]): see `d.reduce()` * `d.update(v, fn, ...)`: in cross-tower context, runs `fn()` once for each device `v` is copied to, all inputs should have locality V(`v`), output will have locality V(`v`) as well. * `d.update_non_slot(d.non_slot_devices(), fn)`: in cross-tower context, like `d.update()` except with locality N. * `d.read_var(v)`: Gets the (read-only) value of the variable `v` (on the device determined by the current device scope), aggregating across towers for tower-local variables. Frequently, this will be done automatically when using `v` in an expression or fetching it in a cross-tower context, but this function can be used to force that conversion happens at a particular point in time (for example, to add the result of the conversion to a graph collection). The standard pattern for updating variables is to: 1. Wrap your input dataset in `d.distribute_dataset()` and create an iterator. 2. Define each tower `d.call_for_each_tower()` up to the point of getting a list of gradient, variable pairs. 3. Call `d.reduce("sum", t, v)` or `d.batch_reduce()` to sum the gradients (with locality T) into values with locality V(`v`). 4. Call `d.update(v)` for each variable to update its value. Steps 3 and 4 are done automatically by class `Optimizer` if you call its `apply_gradients` method in a tower context. Otherwise you can manually call its `_distributed_apply` method in a cross-tower context. Another thing you might want to do in the middle of your tower function is an all-reduce of some intermediate value, using `d.reduce()` or `d.batch_reduce()` without supplying a variable as the destination. Layers should expect to be called in a tower context, and can use the `get_tower_context()` function to get a `TowerContext` object. The `TowerContext` object has a `merge_call()` method for entering cross-tower context where you can use `reduce()` (or `batch_reduce()`) and then optionally `update()` to update state. You may use this API whether or not a `DistributionStrategy` is being used, since there is a default implementation of `TowerContext` and `DistributionStrategy`. Or you can use the `get_tower_context().is_single_tower` property to run different code in the distributed vs. single tower cases. """ # TODO(josh11b): Raise an exception if variable partitioning requested before # we add support. # TODO(josh11b): Also `parameter_device_index` property? # TODO(josh11b): `map()` # TODO(josh11b): ClusterSpec/ClusterResolver # TODO(josh11b): Partitioned computations, state; sharding # TODO(josh11b): Model parallelism: "towers" with multiple devices; shuffling # TODO(josh11b): List of towers with their worker and parameter devices # (where the parameter devices may overlap in the ps case). def __init__(self): self._default_device = None def scope(self): """Returns a context manager selecting this DistributionStrategy as current. Inside a `with distribution_strategy.scope():` code block, this thread will use a variable creator set by `distribution_strategy`, and will enter its "cross-tower context". Returns: A context manager. """ if has_distribution_strategy(): _require_cross_tower_context(self) return _SameScopeAgainContext(self) def creator_with_resource_vars(*args, **kwargs): _require_distribution_strategy_scope(self) kwargs["use_resource"] = True return self._create_variable(*args, **kwargs) def disable_partitioned_variables(getter, *args, **kwargs): if kwargs.pop("partitioner", None) is not None: tf_logging.log_first_n( tf_logging.WARN, "Partitioned variables are disabled when using " "DistributionStrategy.", 1) return getter(*args, **kwargs) return _CurrentDistributionContext( self, variable_scope.variable_creator_scope(creator_with_resource_vars), variable_scope.variable_scope( variable_scope.get_variable_scope(), custom_getter=disable_partitioned_variables), self._default_device) def _create_variable(self, next_creator, *args, **kwargs): # Note: should support "colocate_with" argument. raise NotImplementedError("must be implemented in descendants") def tower_local_var_scope(self, reduce_method): """Inside this scope, new variables will not be mirrored. There will still be one component variable per tower, but there is no requirement that they stay in sync. Instead, when saving them or calling `read_var()`, we use the value that results when calling `reduce()` on all the towers' variables. Note: tower-local implies not trainable. Instead, it is expected that each tower will directly update (using `assign_add()` or whatever) its local variable instance but only the aggregated value (accessible using `read_var()`) will be exported from the model. When it is acceptable to only aggregate on export, we greatly reduce communication overhead by using tower-local variables. Note: All component variables will be initialized to the same value, using the initialization expression from the first tower. The values will match even if the initialization expression uses random numbers. Args: reduce_method: String used as a `method_string` to `reduce()` to get the value to save when checkpointing. Returns: A context manager. """ def create_tower_local_variable(next_creator, *args, **kwargs): _require_distribution_strategy_scope(self) kwargs["use_resource"] = True kwargs["tower_local_reduce_method"] = reduce_method return next_creator(*args, **kwargs) _require_distribution_strategy_scope(self) return variable_scope.variable_creator_scope(create_tower_local_variable) def read_var(self, v): """Reads the value of a variable. Returns the aggregate value of a tower-local variable, or the (read-only) value of any other variable. Args: v: A variable allocated within the scope of this `DistributionStrategy`. Returns: A tensor representing the value of `v`, aggregated across towers if necessary. """ raise NotImplementedError("must be implemented in descendants") def colocate_vars_with(self, colocate_with_variable): """Scope that controls which devices variables will be created on. No operations should be added to the graph inside this scope, it should only be used when creating variables (some implementations work by changing variable creation, others work by using a tf.colocate_with() scope). This may only be used inside `self.scope()`. Example usage: ``` with distribution_strategy.scope(): var1 = tf.get_variable(...) with distribution_strategy.colocate_vars_with(v1): # var2 and var3 will be created on the same device(s) as var1 var2 = tf.get_variable(...) var3 = tf.get_variable(...) def fn(v1, v2, v3): # operates on v1 from var1, v2 from var2, and v3 from var3 # `fn` runs on every device `v1` is on, `v2` and `v3` will be there too. distribution_strategy.update(v1, fn, v2, v3) ``` Args: colocate_with_variable: A created in `self.scope()`. Variables created while in the returned context manager will be on the same set of devices as `colocate_with_variable`. Returns: A context manager. """ def create_colocated_variable(next_creator, *args, **kwargs): _require_distribution_strategy_scope(self) kwargs["use_resource"] = True kwargs["colocate_with"] = colocate_with_variable return next_creator(*args, **kwargs) _require_distribution_strategy_scope(self) return variable_scope.variable_creator_scope(create_colocated_variable) def _call_dataset_fn(self, dataset_fn): result = dataset_fn() if not isinstance(result, dataset_ops.Dataset): raise ValueError( "dataset_fn() must return a tf.data.Dataset when using a " "DistributionStrategy.") return result # TODO(josh11b): `PerDeviceDataset` currently only implements a few methods of # Dataset API such as make_one_shot_iterator and make_initializable_iterator. # Extend to implement more functionality of datasets. def distribute_dataset(self, dataset_fn): """Return a `dataset` split across all towers. Suitable for providing input to for `call_for_each_tower()` by creating an iterator: ``` def dataset_fn(): return tf.data.Dataset.from_tensors([[1.]]).repeat() with distribution_strategy.scope(): distributed_dataset = distribution_strategy.distribute_dataset(dataset_fn) iterator = distributed_dataset.make_one_shot_iterator() tower_results = distribution_strategy.call_for_each_tower( tower_fn, iterator.get_next()) ``` Args: dataset_fn: A function that returns a `tf.data.Dataset`. Returns: A `PerDeviceDataset` that will produce data for each tower. """ raise NotImplementedError("must be implemented in descendants") def broadcast(self, tensor, destinations=None): """Mirror a tensor on one device to all worker devices. Args: tensor: A Tensor value to broadcast. destinations: An optional mirrored variable, device string, or list of device strings, specifying the destination devices to copy `tensor` to. Defaults to `self.worker_devices`. Returns: A value mirrored to `destinations` devices. """ # TODO(josh11b): More docstring _require_cross_tower_context(self) return self._broadcast(tensor, destinations) def _broadcast(self, tensor, destinations): raise NotImplementedError("must be implemented in descendants") def call_for_each_tower(self, fn, *args, **kwargs): """Run `fn` once per tower. `fn` may call `tf.get_tower_context()` to access methods such as `tower_id()` and `merge_call()`. `merge_call()` is used to communicate between the towers and re-enter the cross-tower context. All towers pause their execution having encountered a `merge_call()` call. After that the `merge_fn`-function is executed. Its results are then unwrapped and given back to each tower call. After that execution resumes until `fn` is complete or encounters another `merge_call()`. Example: ```python # Called once in "cross-tower" context. def merge_fn(distribution, three_plus_tower_id): # sum the values across towers return sum(distribution.unwrap(three_plus_tower_id)) # Called once per tower in `distribution`, in a "tower" context. def fn(three): tower_ctx = tf.get_tower_context() v = three + tower_ctx.tower_id # Computes the sum of the `v` values across all towers. s = tower_ctx.merge_call(merge_fn, v) return s + v with distribution.scope(): # in "cross-tower" context ... merged_results = distribution.call_for_each_tower(fn, 3) # merged_results has the values from every tower execution of `fn`. print(distribution.unwrap(merged_results)) # Prints a list ``` Args: fn: function to run (will be run once per tower). *args: positional arguments for `fn` **kwargs: keyword arguments for `fn`. `"run_concurrently"`: Boolean indicating whether executions of `fn` can be run concurrently (under eager execution only), defaults to `True`. Returns: Merged return value of `fn` across all towers. """ _require_cross_tower_context(self) return self._call_for_each_tower(fn, *args, **kwargs) def _call_for_each_tower(self, fn, *args, **kwargs): raise NotImplementedError("must be implemented in descendants") def reduce(self, method_string, value, destinations=None): """Combine (via e.g. sum or mean) values across towers. Args: method_string: A string indicating how to combine values, either "sum" or "mean". value: A per-device value with one value per tower. destinations: An optional mirrored variable, a device string, list of device strings. The return value will be copied to all destination devices (or all the devices where the mirrored variable resides). If `None` or unspecified, the destinations will match the devices `value` resides on. Returns: A value mirrored to `destinations`. """ # TODO(josh11b): More docstring # TODO(josh11b): Return an unwrapped value if colocate_with is a # single device. _require_cross_tower_context(self) assert method_string in ("sum", "mean") return self._reduce(method_string, value, destinations) def _reduce(self, method_string, value, destinations): raise NotImplementedError("must be implemented in descendants") def batch_reduce(self, method_string, value_destination_pairs): """Combine multiple `reduce` calls into one for faster execution. Args: method_string: A string indicating how to combine values, either "sum" or "mean". value_destination_pairs: A sequence of (value, destinations) pairs. See `reduce()` for a description. Returns: A list of mirrored values, one per pair in `value_destination_pairs`. """ # TODO(josh11b): More docstring _require_cross_tower_context(self) assert method_string in ("sum", "mean") return self._batch_reduce(method_string, value_destination_pairs) def _batch_reduce(self, method_string, value_destination_pairs): return [self.reduce(method_string, t, destinations=v) for t, v in value_destination_pairs] def update(self, var, fn, *args, **kwargs): """Run `fn` to update `var` using inputs mirrored to the same devices. If `var` is mirrored across multiple devices, then this implements logic like: ``` results = {} for device, v in var: with tf.device(device): # *args and **kwargs will be unwrapped if they are mirrored. results[device] = fn(v, *args, **kwargs) return merged(results) ``` Otherwise this returns `fn(var, *args, **kwargs)` colocated with `var`.' Neither *args nor **kwargs may contain per-device values. If they contain mirrored values, they will be unwrapped before calling `fn`. Args: var: Variable, possibly mirrored to multiple devices, to operate on. fn: Function to call. Should take the variable as the first argument. *args: Additional positional arguments to pass to `fn()`. **kwargs: Keyword arguments to pass to `fn()`. Returns: Merged return value of `fn` across all towers. """ _require_cross_tower_context(self) return self._update(var, fn, *args, **kwargs) def _update(self, var, fn, *args, **kwargs): raise NotImplementedError("must be implemented in descendants") def update_non_slot(self, colocate_with, fn, *args, **kwargs): """Runs `fn(*args, **kwargs)` on `colocate_with` devices. Args: colocate_with: The return value of `non_slot_devices()`. fn: Function to execute. *args: Positional arguments to pass to `fn()`. **kwargs: Keyword arguments to pass to `fn()`. Returns: Return value of `fn`, possibly merged across devices. """ _require_cross_tower_context(self) return self._update_non_slot(colocate_with, fn, *args, **kwargs) def _update_non_slot(self, colocate_with, fn, *args, **kwargs): raise NotImplementedError("must be implemented in descendants") def unwrap(self, value): """Returns the list of all per-device values contained in `value`. Args: value: A value returned by `call_for_each_tower()` or a variable created in `scope()`. Returns: A list of values contained in `value`. If `value` represents a single value, this returns `[value].` """ _require_cross_tower_context(self) return self._unwrap(value) def _unwrap(self, distributed_value): raise NotImplementedError("must be implemented in descendants") def group(self, value, name=None): """Shortcut for `tf.group(distribution.unwrap(value))`.""" value = nest.flatten(self.unwrap(value)) if len(value) != 1 or name is not None: return control_flow_ops.group(value, name=name) # Special handling for the common case of one op. v, = value if hasattr(v, "op"): v = v.op return v @property def is_single_tower(self): """Returns whether there is a single tower or multiple. Returns: A boolean. If `True`, `call_for_each_tower(fn)` will only call `fn` once. If `False`, `call_for_each_tower(fn)` may call `fn` multiple times. """ raise NotImplementedError("must be implemented in descendants") @property def num_towers(self): """Returns number of towers, for purposes of averaging across towers.""" raise NotImplementedError("must be implemented in descendants") @property def worker_devices(self): """Returns the list of devices used to run `call_for_each_tower()` calls.""" # TODO(josh11b): More docstring raise NotImplementedError("must be implemented in descendants") @property def parameter_devices(self): """Returns the list of devices used for variable and `update` placement.""" # TODO(josh11b): More docstring raise NotImplementedError("must be implemented in descendants") def non_slot_devices(self, var_list): """Device(s) for non-slot variables. Create variables on these devices in a `with colocate_vars_with(non_slot_devices(...)):` block. Update those using `update_non_slot()`. Args: var_list: The list of variables being optimized, needed with the default `DistributionStrategy`. """ raise NotImplementedError("must be implemented in descendants") @property def worker_device_index(self): """An object mapping worker device to an id. This might be passed as an argument to `call_for_each_tower()`, as in: ``` with distribution_strategy.scope(): def fn(device_id): # device_id is an integer. `fn` is being executed on device: # distribution_strategy.worker_devices[device_id]. distribution_strategy.call_for_each_tower( fn, distribution_strategy.worker_device_index) ``` Returns: An index object, or the integer 0 if there is only a single tower. """ _require_cross_tower_context(self) return self._worker_device_index() def _worker_device_index(self): raise NotImplementedError("must be implemented in descendants") def configure(self, session_config=None): """Find the best configuration given a tensorflow session config.""" del session_config # A note about the difference between the context managers # `TowerContext` (defined here) and `_CurrentDistributionContext` # (defined above) used by `DistributionStrategy.scope()`: # # * a TowerContext is only present during a `call_for_each_tower()` # call (except during a `merge_run` call) and in such a scope it # will be returned by calls to `get_tower_context()`. Implementers of new # DistributionStrategy descendants will frequently also need to # define a descendant of TowerContext, and are responsible for # entering and exiting this context. # # * DistributionStrategy.scope() sets up a variable_creator scope that # changes variable creation calls (e.g. to make mirrored # variables). This is intended as an outer scope that users enter once # around their model creation and graph definition. There is no # anticipated need to define descendants of _CurrentDistributionContext. # It sets the current DistributionStrategy for purposes of # `get_distribution_strategy()` and `has_distribution_strategy()` # and switches the thread mode to a "cross-tower context". class TowerContext(object): """DistributionStrategy API inside a `call_for_each_tower()` call.""" def __init__(self, distribution_strategy, tower_id): self._distribution_strategy = distribution_strategy self._thread_context = _InTowerThreadMode(self) self._tower_id = tower_id def __enter__(self): _push_per_thread_mode(self._thread_context) def __exit__(self, exception_type, exception_value, traceback): _pop_per_thread_mode() def merge_call(self, merge_fn, *args, **kwargs): """Merge args across towers and run `merge_fn` in a cross-tower context. This allows communication and coordination when there are multiple calls to a model function triggered by a call to `distribution.call_for_each_tower(model_fn, ...)`. See `MirroredDistribution.call_for_each_tower()` for an explanation. Otherwise, this is equivalent to: ``` distribution = get_distribution_strategy() with cross-tower-context(distribution): return merge_fn(distribution, *args, **kwargs) ``` Args: merge_fn: function that joins arguments from threads that are given as PerDevice. It accepts `DistributionStrategy` object as the first argument. *args: positional per-thread arguments for `merge_fn` **kwargs: keyword per-thread arguments for `merge_fn`. Returns: The return value of `merge_fn`, except for `PerDevice` values which are unpacked. """ require_tower_context(self) return self._merge_call(merge_fn, *args, **kwargs) def _merge_call(self, merge_fn, *args, **kwargs): """Default implementation for single tower.""" _push_per_thread_mode( # thread-local, so not needed with multiple threads _CrossTowerThreadMode(self._distribution_strategy)) try: return merge_fn(self._distribution_strategy, *args, **kwargs) finally: _pop_per_thread_mode() def tower_local_var_scope(self, reduce_method): """Alias for distribution_strategy.tower_local_var_scope().""" return self._distribution_strategy.tower_local_var_scope(reduce_method) @property def is_single_tower(self): """Returns whether there is a single tower or multiple.""" require_tower_context(self) return self._distribution_strategy.is_single_tower @property def num_towers(self): """Returns number of towers, for purposes of averaging across towers.""" return self._distribution_strategy.num_towers @property def tower_id(self): """Which tower is being defined, a number from 0 to `num_towers - 1`.""" require_tower_context(self) return self._tower_id @property def distribution_strategy(self): """The current `DistributionStrategy` object.""" return self._distribution_strategy @property def device(self): """The device this tower is to be executed on, as a string.""" require_tower_context(self) return device_util.current() # TODO(josh11b): Implement `start_all_reduce(method, t)` that returns # a function returning the result of reducing `t` across all # towers. Most likely can be implemented in terms of `merge_call()` # and `batch_reduce()`. # ------------------------------------------------------------------------------ class _DefaultDistributionStrategy(DistributionStrategy): """Default `DistributionStrategy` if none is explicitly selected.""" def scope(self): """Context manager setting a variable creator and `self` as current.""" if has_distribution_strategy(): raise RuntimeError("Must not nest DistributionStrategy scopes.") def creator(next_creator, *args, **kwargs): _require_distribution_strategy_scope(self) kwargs.pop("tower_local_reduce_method", None) return next_creator(*args, **kwargs) return _CurrentDistributionContext( self, variable_scope.variable_creator_scope(creator)) def tower_local_var_scope(self, reduce_method): """Does not set to resource variables.""" def create_tower_local_variable(next_creator, *args, **kwargs): _require_distribution_strategy_scope(self) kwargs["trainable"] = False return next_creator(*args, **kwargs) _require_distribution_strategy_scope(self) return variable_scope.variable_creator_scope(create_tower_local_variable) def colocate_vars_with(self, colocate_with_variable): """Does not require `self.scope`.""" _require_distribution_strategy_scope(self) return ops.colocate_with(colocate_with_variable) def distribute_dataset(self, dataset_fn): return self._call_dataset_fn(dataset_fn) def _broadcast(self, tensor, destinations): if destinations is None: return tensor else: raise NotImplementedError("TODO") def _call_for_each_tower(self, fn, *args, **kwargs): # We don't run `fn` in multiple threads in _DefaultDistributionStrategy. kwargs.pop("run_concurrently", None) with TowerContext(self, tower_id=0): return fn(*args, **kwargs) def _reduce(self, method_string, value, destinations): # TODO(josh11b): Use destinations? del method_string, destinations return value def _update(self, var, fn, *args, **kwargs): # TODO(josh11b): Figure out what we should be passing to UpdateContext() # once that value is used for something. with ops.colocate_with(var), UpdateContext(var): return fn(var, *args, **kwargs) def _update_non_slot(self, colocate_with, fn, *args, **kwargs): # TODO(josh11b): Figure out what we should be passing to UpdateContext() # once that value is used for something. with ops.colocate_with(colocate_with), UpdateContext(colocate_with): return fn(*args, **kwargs) def read_var(self, tower_local_var): return array_ops.identity(tower_local_var) def _unwrap(self, distributed_value): return [distributed_value] @property def is_single_tower(self): return True @property def num_towers(self): return 1 @property def worker_devices(self): raise RuntimeError( "worker_devices() method unsupported by _DefaultDistributionStrategy.") @property def parameter_devices(self): raise RuntimeError("parameter_devices() method unsupported by " "_DefaultDistributionStrategy.") def non_slot_devices(self, var_list): return min(var_list, key=lambda x: x.name) def _worker_device_index(self): raise RuntimeError("worker_device_index() method unsupported by " "_DefaultDistributionStrategy.") # ------------------------------------------------------------------------------ # Common operations def increment_var(v, amount=1): """`v += amount`, distributed-aware version.""" def update(vu): if isinstance(vu, resource_variable_ops.ResourceVariable): return vu.assign_add(amount, read_value=False) else: return state_ops.assign_add(vu, amount) def merge_fn(dist, vm): return dist.group(dist.update(vm, update)) tower_context = get_tower_context() return tower_context.merge_call(merge_fn, v) # ------------------------------------------------------------------------------ # Singletons _default_distribution_strategy = _DefaultDistributionStrategy() _default_tower_context = TowerContext( _default_distribution_strategy, tower_id=0) _default_tower_mode = _DefaultTowerThreadMode() # ------------------------------------------------------------------------------ # We haven't yet implemented deserialization for DistributedVariables. # So here we catch any attempts to deserialize variables # when using distribution strategies. # pylint: disable=protected-access _original_from_proto = resource_variable_ops._from_proto_fn def _from_proto_fn(v, import_scope=None): if has_distribution_strategy(): raise NotImplementedError( "Deserialization of variables is not yet supported when using" "distributed strategies.") else: return _original_from_proto(v, import_scope=import_scope) resource_variable_ops._from_proto_fn = _from_proto_fn # pylint: enable=protected-access
apache-2.0
mxjl620/scikit-learn
examples/linear_model/plot_sgd_iris.py
284
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
CI-WATER/tethys
tethys_services/migrations/0001_initial_20.py
1
6102
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-17 14:04 from django.conf import settings from django.db import migrations, models import tethys_services.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='DatasetService', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, unique=True)), ('engine', models.CharField(choices=[('tethys_dataset_services.engines.CkanDatasetEngine', 'CKAN'), ('tethys_dataset_services.engines.HydroShareDatasetEngine', 'HydroShare')], default='tethys_dataset_services.engines.CkanDatasetEngine', max_length=200)), ('endpoint', models.CharField(max_length=1024)), ('apikey', models.CharField(blank=True, max_length=100)), ('username', models.CharField(blank=True, max_length=100)), ('password', models.CharField(blank=True, max_length=100)), ], options={ 'verbose_name': 'Dataset Service', 'verbose_name_plural': 'Dataset Services', }, ), migrations.CreateModel( name='SpatialDatasetService', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, unique=True)), ('engine', models.CharField(choices=[('tethys_dataset_services.engines.GeoServerSpatialDatasetEngine', 'GeoServer')], default='tethys_dataset_services.engines.GeoServerSpatialDatasetEngine', max_length=200)), ('endpoint', models.CharField(max_length=1024)), ('apikey', models.CharField(blank=True, max_length=100)), ('username', models.CharField(blank=True, max_length=100)), ('password', models.CharField(blank=True, max_length=100)), ], options={ 'verbose_name': 'Spatial Dataset Service', 'verbose_name_plural': 'Spatial Dataset Services', }, ), migrations.CreateModel( name='WebProcessingService', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, unique=True)), ('endpoint', models.CharField(max_length=1024)), ('username', models.CharField(blank=True, max_length=100)), ('password', models.CharField(blank=True, max_length=100)), ], options={ 'verbose_name': 'Web Processing Service', 'verbose_name_plural': 'Web Processing Services', }, ), migrations.AlterField( model_name='datasetservice', name='endpoint', field=models.CharField(max_length=1024, validators=[tethys_services.models.validate_dataset_service_endpoint]), ), migrations.AlterField( model_name='spatialdatasetservice', name='endpoint', field=models.CharField(max_length=1024, validators=[tethys_services.models.validate_spatial_dataset_service_endpoint]), ), migrations.AlterField( model_name='webprocessingservice', name='endpoint', field=models.CharField(max_length=1024, validators=[tethys_services.models.validate_wps_service_endpoint]), ), migrations.AddField( model_name='spatialdatasetservice', name='public_endpoint', field=models.CharField(blank=True, max_length=1024, validators=[tethys_services.models.validate_spatial_dataset_service_endpoint]), ), migrations.AddField( model_name='datasetservice', name='public_endpoint', field=models.CharField(blank=True, max_length=1024, validators=[tethys_services.models.validate_dataset_service_endpoint]), ), migrations.AddField( model_name='webprocessingservice', name='public_endpoint', field=models.CharField(blank=True, max_length=1024, validators=[tethys_services.models.validate_wps_service_endpoint]), ), migrations.CreateModel( name='PersistentStoreService', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, unique=True)), ('host', models.CharField(default='localhost', max_length=255)), ('port', models.IntegerField(default=5435, validators=[tethys_services.models.validate_persistent_store_port])), ('username', models.CharField(blank=True, max_length=100)), ('password', models.CharField(blank=True, max_length=100)), ('engine', models.CharField(choices=[('postgresql', 'PostgreSQL')], default='postgresql', max_length=50)), ], options={ 'verbose_name': 'Persistent Store Service', 'verbose_name_plural': 'Persistent Store Services', }, ), ]
bsd-2-clause
lihuanghai/neon
neon/datasets/mnist.py
7
6530
# ---------------------------------------------------------------------------- # Copyright 2014 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- """ MNIST is a handwritten digit image dataset. More info at: http://yann.lecun.com/exdb/mnist/ """ import gzip import logging import numpy as np import os import struct from neon.datasets.dataset import Dataset from neon.util.compat import PY3, range if PY3: from urllib.parse import urljoin as basejoin else: from urllib import basejoin logger = logging.getLogger(__name__) class MNIST(Dataset): """ Sets up an MNIST dataset. Attributes: raw_base_url (str): where to find the source data raw_train_input_gz (str): URL of the full path to raw train inputs raw_train_target_gz (str): URL of the full path to raw train targets raw_test_input_gz (str): URL of the full path to raw test inputs raw_test_target_gz (str): URL of the full path to raw test targets backend (neon.backends.Backend): backend used for this data inputs (dict): structure housing the loaded train/test/validation input data targets (dict): structure housing the loaded train/test/validation target data Keyword Args: repo_path (str, optional): where to locally host this dataset on disk """ raw_base_url = 'http://yann.lecun.com/exdb/mnist/' raw_train_input_gz = basejoin(raw_base_url, 'train-images-idx3-ubyte.gz') raw_train_target_gz = basejoin(raw_base_url, 'train-labels-idx1-ubyte.gz') raw_test_input_gz = basejoin(raw_base_url, 't10k-images-idx3-ubyte.gz') raw_test_target_gz = basejoin(raw_base_url, 't10k-labels-idx1-ubyte.gz') def __init__(self, **kwargs): self.num_test_sample = 10000 self.macro_batched = False self.__dict__.update(kwargs) def initialize(self): pass def read_image_file(self, fname, dtype=None): """ Carries out the actual reading of MNIST image files. """ with open(fname, 'rb') as f: magic, num_images, rows, cols = struct.unpack('>iiii', f.read(16)) if magic != 2051: raise ValueError('invalid MNIST image file: ' + fname) full_image = np.fromfile(f, dtype='uint8').reshape((num_images, rows * cols)) if dtype is not None: dtype = np.dtype(dtype) full_image = full_image.astype(dtype) full_image /= 255. return full_image def read_label_file(self, fname): """ Carries out the actual reading of MNIST label files. """ with open(fname, 'rb') as f: magic, num_labels = struct.unpack('>ii', f.read(8)) if magic != 2049: raise ValueError('invalid MNIST label file:' + fname) array = np.fromfile(f, dtype='uint8') return array def load(self, backend=None, experiment=None): if self.inputs['train'] is not None: return if 'repo_path' in self.__dict__: self.repo_path = os.path.expandvars(os.path.expanduser( self.repo_path)) save_dir = os.path.join(self.repo_path, self.__class__.__name__) if not os.path.exists(save_dir): os.makedirs(save_dir) for url in (self.raw_train_input_gz, self.raw_train_target_gz, self.raw_test_input_gz, self.raw_test_target_gz): name = os.path.basename(url).rstrip('.gz') repo_gz_file = os.path.join(save_dir, name + '.gz') repo_file = repo_gz_file.rstrip('.gz') if not os.path.exists(repo_file): self.download_to_repo(url, save_dir) with gzip.open(repo_gz_file, 'rb') as infile: with open(repo_file, 'w') as outfile: for line in infile: outfile.write(line) logger.info('loading: %s', name) if 'images' in repo_file and 'train' in repo_file: indat = self.read_image_file(repo_file, 'float32') # flatten to 1D images self.inputs['train'] = indat elif 'images' in repo_file and 't10k' in repo_file: indat = self.read_image_file(repo_file, 'float32') self.inputs['test'] = indat[0:self.num_test_sample] elif 'labels' in repo_file and 'train' in repo_file: indat = self.read_label_file(repo_file) # Prep a 1-hot label encoding tmp = np.zeros((indat.shape[0], 10), dtype=np.float32) for col in range(10): tmp[:, col] = indat == col self.targets['train'] = tmp elif 'labels' in repo_file and 't10k' in repo_file: indat = self.read_label_file( repo_file)[0:self.num_test_sample] tmp = np.zeros((self.num_test_sample, 10), dtype=np.float32) for col in range(10): tmp[:, col] = indat == col self.targets['test'] = tmp else: logger.error('problems loading: %s', name) if 'sample_pct' in self.__dict__: self.sample_training_data() if hasattr(self, 'validation_pct'): self.split_set( self.validation_pct, from_set='train', to_set='validation') self.format() else: raise AttributeError('repo_path not specified in config') # TODO: try and download and read in directly?
apache-2.0
slrbl/Intrusion-and-anomaly-detection-with-machine-learning
train.py
1
2043
# About: Use supervised learning logistic regression classifier to predict intrusion/suspicious activities in http logs # Author: walid.daboubi@gmail.com # Version: 2.0 - 2022/08/14 import argparse import sys from sklearn import linear_model, tree from helpers import * def get_args(): parser = argparse.ArgumentParser() parser.add_argument('-t', '--training_data', help = 'Training data', required = True) parser.add_argument('-v', '--testing_data', help = 'Testing data', required = True) parser.add_argument('-a', '--training_algorithm', help = '"lr" for logistic regression or "dr" for decision tree', required = True) return vars(parser.parse_args()) args = get_args() training_data = args['training_data'] testing_data = args['testing_data'] training_algorithm = args['training_algorithm'] # Get training features and labels training_features, training_labels = load_encoded_data(training_data) # Get testing features and labels testing_features, testing_labels = load_encoded_data(testing_data) # Logistic regression model if training_algorithm == 'lr': print("\n\n=-=-=-=-=-=-=- Logistic Regression Classifier -=-=-=-=-=-\n") attack_classifier = linear_model.LogisticRegression() # Decision tree model elif training_algorithm == 'dt': print("\n\n=-=-=-=-=-=-=- Decision Tree Classifier -=-=-=-=-=-=-=-\n") attack_classifier = tree.DecisionTreeClassifier() else: print('{} is not recognized as a training algorithm'.format(training_algorithm)) try: # Train the model attack_classifier.fit(training_features, training_labels) # Predict predictions = attack_classifier.predict(testing_features) print("The precision of the detection model is: " + str(get_accuracy(testing_labels,predictions, 1)) + " %") # Save the trained classifier model_location = save_model(attack_classifier,'lr') print("You model has been saved at {}".format(model_location)) except Exception as e: print('Something went wrong training the model.\nExiting.', e) sys.exit(1)
mit
GoogleCloudPlatform/ml-on-gcp
example_zoo/tensorflow/models/keras_imagenet_main/official/resnet/resnet_run_loop.py
2
27886
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains utility and supporting functions for ResNet. This module contains ResNet code which does not directly build layers. This includes dataset management, hyperparameter and optimizer code, and argument parsing. Code for defining the ResNet layers can be found in resnet_model.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import math import multiprocessing import os # pylint: disable=g-bad-import-order from absl import flags import tensorflow as tf from tensorflow.contrib.data.python.ops import threadpool from official.resnet import resnet_model from official.utils.flags import core as flags_core from official.utils.export import export from official.utils.logs import hooks_helper from official.utils.logs import logger from official.resnet import imagenet_preprocessing from official.utils.misc import distribution_utils from official.utils.misc import model_helpers ################################################################################ # Functions for input processing. ################################################################################ def process_record_dataset(dataset, is_training, batch_size, shuffle_buffer, parse_record_fn, num_epochs=1, dtype=tf.float32, datasets_num_private_threads=None, num_parallel_batches=1): """Given a Dataset with raw records, return an iterator over the records. Args: dataset: A Dataset representing raw records is_training: A boolean denoting whether the input is for training. batch_size: The number of samples per batch. shuffle_buffer: The buffer size to use when shuffling records. A larger value results in better randomness, but smaller values reduce startup time and use less memory. parse_record_fn: A function that takes a raw record and returns the corresponding (image, label) pair. num_epochs: The number of epochs to repeat the dataset. dtype: Data type to use for images/features. datasets_num_private_threads: Number of threads for a private threadpool created for all datasets computation. num_parallel_batches: Number of parallel batches for tf.data. Returns: Dataset of (image, label) pairs ready for iteration. """ # Prefetches a batch at a time to smooth out the time taken to load input # files for shuffling and processing. dataset = dataset.prefetch(buffer_size=batch_size) if is_training: # Shuffles records before repeating to respect epoch boundaries. dataset = dataset.shuffle(buffer_size=shuffle_buffer) # Repeats the dataset for the number of epochs to train. dataset = dataset.repeat(num_epochs) # Parses the raw records into images and labels. dataset = dataset.apply( tf.contrib.data.map_and_batch( lambda value: parse_record_fn(value, is_training, dtype), batch_size=batch_size, num_parallel_batches=num_parallel_batches, drop_remainder=False)) # Operations between the final prefetch and the get_next call to the iterator # will happen synchronously during run time. We prefetch here again to # background all of the above processing work and keep it out of the # critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE # allows DistributionStrategies to adjust how many batches to fetch based # on how many devices are present. dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE) # Defines a specific size thread pool for tf.data operations. if datasets_num_private_threads: tf.logging.info('datasets_num_private_threads: %s', datasets_num_private_threads) dataset = threadpool.override_threadpool( dataset, threadpool.PrivateThreadPool( datasets_num_private_threads, display_name='input_pipeline_thread_pool')) return dataset def get_synth_input_fn(height, width, num_channels, num_classes, dtype=tf.float32): """Returns an input function that returns a dataset with random data. This input_fn returns a data set that iterates over a set of random data and bypasses all preprocessing, e.g. jpeg decode and copy. The host to device copy is still included. This used to find the upper throughput bound when tunning the full input pipeline. Args: height: Integer height that will be used to create a fake image tensor. width: Integer width that will be used to create a fake image tensor. num_channels: Integer depth that will be used to create a fake image tensor. num_classes: Number of classes that should be represented in the fake labels tensor dtype: Data type for features/images. Returns: An input_fn that can be used in place of a real one to return a dataset that can be used for iteration. """ # pylint: disable=unused-argument def input_fn(is_training, data_dir, batch_size, *args, **kwargs): """Returns dataset filled with random data.""" # Synthetic input should be within [0, 255]. inputs = tf.truncated_normal( [batch_size] + [height, width, num_channels], dtype=dtype, mean=127, stddev=60, name='synthetic_inputs') labels = tf.random_uniform( [batch_size], minval=0, maxval=num_classes - 1, dtype=tf.int32, name='synthetic_labels') data = tf.data.Dataset.from_tensors((inputs, labels)).repeat() data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE) return data return input_fn def image_bytes_serving_input_fn(image_shape, dtype=tf.float32): """Serving input fn for raw jpeg images.""" def _preprocess_image(image_bytes): """Preprocess a single raw image.""" # Bounding box around the whole image. bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=dtype, shape=[1, 1, 4]) height, width, num_channels = image_shape image = imagenet_preprocessing.preprocess_image( image_bytes, bbox, height, width, num_channels, is_training=False) return image image_bytes_list = tf.placeholder( shape=[None], dtype=tf.string, name='input_tensor') images = tf.map_fn( _preprocess_image, image_bytes_list, back_prop=False, dtype=dtype) return tf.estimator.export.TensorServingInputReceiver( images, {'image_bytes': image_bytes_list}) def override_flags_and_set_envars_for_gpu_thread_pool(flags_obj): """Override flags and set env_vars for performance. These settings exist to test the difference between using stock settings and manual tuning. It also shows some of the ENV_VARS that can be tweaked to squeeze a few extra examples per second. These settings are defaulted to the current platform of interest, which changes over time. On systems with small numbers of cpu cores, e.g. under 8 logical cores, setting up a gpu thread pool with `tf_gpu_thread_mode=gpu_private` may perform poorly. Args: flags_obj: Current flags, which will be adjusted possibly overriding what has been set by the user on the command-line. """ cpu_count = multiprocessing.cpu_count() tf.logging.info('Logical CPU cores: %s', cpu_count) # Sets up thread pool for each GPU for op scheduling. per_gpu_thread_count = 1 total_gpu_thread_count = per_gpu_thread_count * flags_obj.num_gpus os.environ['TF_GPU_THREAD_MODE'] = flags_obj.tf_gpu_thread_mode os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count) tf.logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT']) tf.logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE']) # Reduces general thread pool by number of threads used for GPU pool. main_thread_count = cpu_count - total_gpu_thread_count flags_obj.inter_op_parallelism_threads = main_thread_count # Sets thread count for tf.data. Logical cores minus threads assign to the # private GPU pool along with 2 thread per GPU for event monitoring and # sending / receiving tensors. num_monitoring_threads = 2 * flags_obj.num_gpus flags_obj.datasets_num_private_threads = (cpu_count - total_gpu_thread_count - num_monitoring_threads) ################################################################################ # Functions for running training/eval/validation loops for the model. ################################################################################ def learning_rate_with_decay( batch_size, batch_denom, num_images, boundary_epochs, decay_rates, base_lr=0.1, warmup=False): """Get a learning rate that decays step-wise as training progresses. Args: batch_size: the number of examples processed in each training batch. batch_denom: this value will be used to scale the base learning rate. `0.1 * batch size` is divided by this number, such that when batch_denom == batch_size, the initial learning rate will be 0.1. num_images: total number of images that will be used for training. boundary_epochs: list of ints representing the epochs at which we decay the learning rate. decay_rates: list of floats representing the decay rates to be used for scaling the learning rate. It should have one more element than `boundary_epochs`, and all elements should have the same type. base_lr: Initial learning rate scaled based on batch_denom. warmup: Run a 5 epoch warmup to the initial lr. Returns: Returns a function that takes a single argument - the number of batches trained so far (global_step)- and returns the learning rate to be used for training the next batch. """ initial_learning_rate = base_lr * batch_size / batch_denom batches_per_epoch = num_images / batch_size # Reduce the learning rate at certain epochs. # CIFAR-10: divide by 10 at epoch 100, 150, and 200 # ImageNet: divide by 10 at epoch 30, 60, 80, and 90 boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs] vals = [initial_learning_rate * decay for decay in decay_rates] def learning_rate_fn(global_step): """Builds scaled learning rate function with 5 epoch warm up.""" lr = tf.train.piecewise_constant(global_step, boundaries, vals) if warmup: warmup_steps = int(batches_per_epoch * 5) warmup_lr = ( initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast( warmup_steps, tf.float32)) return tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr) return lr return learning_rate_fn def resnet_model_fn(features, labels, mode, model_class, resnet_size, weight_decay, learning_rate_fn, momentum, data_format, resnet_version, loss_scale, loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE, fine_tune=False): """Shared functionality for different resnet model_fns. Initializes the ResnetModel representing the model layers and uses that model to build the necessary EstimatorSpecs for the `mode` in question. For training, this means building losses, the optimizer, and the train op that get passed into the EstimatorSpec. For evaluation and prediction, the EstimatorSpec is returned without a train op, but with the necessary parameters for the given mode. Args: features: tensor representing input images labels: tensor representing class labels for all input images mode: current estimator mode; should be one of `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT` model_class: a class representing a TensorFlow model that has a __call__ function. We assume here that this is a subclass of ResnetModel. resnet_size: A single integer for the size of the ResNet model. weight_decay: weight decay loss rate used to regularize learned variables. learning_rate_fn: function that returns the current learning rate given the current global_step momentum: momentum term used for optimization data_format: Input format ('channels_last', 'channels_first', or None). If set to None, the format is dependent on whether a GPU is available. resnet_version: Integer representing which version of the ResNet network to use. See README for details. Valid values: [1, 2] loss_scale: The factor to scale the loss for numerical stability. A detailed summary is present in the arg parser help text. loss_filter_fn: function that takes a string variable name and returns True if the var should be included in loss calculation, and False otherwise. If None, batch_normalization variables will be excluded from the loss. dtype: the TensorFlow dtype to use for calculations. fine_tune: If True only train the dense layers(final layers). Returns: EstimatorSpec parameterized according to the input params and the current mode. """ # Generate a summary node for the images tf.summary.image('images', features, max_outputs=6) # Checks that features/images have same data type being used for calculations. assert features.dtype == dtype model = model_class(resnet_size, data_format, resnet_version=resnet_version, dtype=dtype) logits = model(features, mode == tf.estimator.ModeKeys.TRAIN) # This acts as a no-op if the logits are already in fp32 (provided logits are # not a SparseTensor). If dtype is is low precision, logits must be cast to # fp32 for numerical stability. logits = tf.cast(logits, tf.float32) predictions = { 'classes': tf.argmax(logits, axis=1), 'probabilities': tf.nn.softmax(logits, name='softmax_tensor') } if mode == tf.estimator.ModeKeys.PREDICT: # Return the predictions and the specification for serving a SavedModel return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, export_outputs={ 'predict': tf.estimator.export.PredictOutput(predictions) }) # Calculate loss, which includes softmax cross entropy and L2 regularization. cross_entropy = tf.losses.sparse_softmax_cross_entropy( logits=logits, labels=labels) # Create a tensor named cross_entropy for logging purposes. tf.identity(cross_entropy, name='cross_entropy') tf.summary.scalar('cross_entropy', cross_entropy) # If no loss_filter_fn is passed, assume we want the default behavior, # which is that batch_normalization variables are excluded from loss. def exclude_batch_norm(name): return 'batch_normalization' not in name loss_filter_fn = loss_filter_fn or exclude_batch_norm # Add weight decay to the loss. l2_loss = weight_decay * tf.add_n( # loss is computed using fp32 for numerical stability. [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables() if loss_filter_fn(v.name)]) tf.summary.scalar('l2_loss', l2_loss) loss = cross_entropy + l2_loss if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() learning_rate = learning_rate_fn(global_step) # Create a tensor named learning_rate for logging purposes tf.identity(learning_rate, name='learning_rate') tf.summary.scalar('learning_rate', learning_rate) optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=momentum ) def _dense_grad_filter(gvs): """Only apply gradient updates to the final layer. This function is used for fine tuning. Args: gvs: list of tuples with gradients and variable info Returns: filtered gradients so that only the dense layer remains """ return [(g, v) for g, v in gvs if 'dense' in v.name] if loss_scale != 1: # When computing fp16 gradients, often intermediate tensor values are # so small, they underflow to 0. To avoid this, we multiply the loss by # loss_scale to make these tensor values loss_scale times bigger. scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale) if fine_tune: scaled_grad_vars = _dense_grad_filter(scaled_grad_vars) # Once the gradient computation is complete we can scale the gradients # back to the correct scale before passing them to the optimizer. unscaled_grad_vars = [(grad / loss_scale, var) for grad, var in scaled_grad_vars] minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step) else: grad_vars = optimizer.compute_gradients(loss) if fine_tune: grad_vars = _dense_grad_filter(grad_vars) minimize_op = optimizer.apply_gradients(grad_vars, global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = tf.group(minimize_op, update_ops) else: train_op = None accuracy = tf.metrics.accuracy(labels, predictions['classes']) accuracy_top_5 = tf.metrics.mean(tf.nn.in_top_k(predictions=logits, targets=labels, k=5, name='top_5_op')) metrics = {'accuracy': accuracy, 'accuracy_top_5': accuracy_top_5} # Create a tensor named train_accuracy for logging purposes tf.identity(accuracy[1], name='train_accuracy') tf.identity(accuracy_top_5[1], name='train_accuracy_top_5') tf.summary.scalar('train_accuracy', accuracy[1]) tf.summary.scalar('train_accuracy_top_5', accuracy_top_5[1]) return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=metrics) def resnet_main( flags_obj, model_function, input_function, dataset_name, shape=None): """Shared main loop for ResNet Models. Args: flags_obj: An object containing parsed flags. See define_resnet_flags() for details. model_function: the function that instantiates the Model and builds the ops for train/eval. This will be passed directly into the estimator. input_function: the function that processes the dataset and returns a dataset that the estimator can train on. This will be wrapped with all the relevant flags for running and passed to estimator. dataset_name: the name of the dataset for training and evaluation. This is used for logging purpose. shape: list of ints representing the shape of the images used for training. This is only used if flags_obj.export_dir is passed. Returns: Dict of results of the run. """ model_helpers.apply_clean(flags.FLAGS) # Ensures flag override logic is only executed if explicitly triggered. if flags_obj.tf_gpu_thread_mode: override_flags_and_set_envars_for_gpu_thread_pool(flags_obj) # Creates session config. allow_soft_placement = True, is required for # multi-GPU and is not harmful for other modes. session_config = tf.ConfigProto( inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads, intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads, allow_soft_placement=True) distribution_strategy = distribution_utils.get_distribution_strategy( flags_core.get_num_gpus(flags_obj), flags_obj.all_reduce_alg) # Creates a `RunConfig` that checkpoints every 24 hours which essentially # results in checkpoints determined only by `epochs_between_evals`. run_config = tf.estimator.RunConfig( train_distribute=distribution_strategy, session_config=session_config, save_checkpoints_secs=60*60*24) # Initializes model with all but the dense layer from pretrained ResNet. if flags_obj.pretrained_model_checkpoint_path is not None: warm_start_settings = tf.estimator.WarmStartSettings( flags_obj.pretrained_model_checkpoint_path, vars_to_warm_start='^(?!.*dense)') else: warm_start_settings = None classifier = tf.estimator.Estimator( model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config, warm_start_from=warm_start_settings, params={ 'resnet_size': int(flags_obj.resnet_size), 'data_format': flags_obj.data_format, 'batch_size': flags_obj.batch_size, 'resnet_version': int(flags_obj.resnet_version), 'loss_scale': flags_core.get_loss_scale(flags_obj), 'dtype': flags_core.get_tf_dtype(flags_obj), 'fine_tune': flags_obj.fine_tune }) run_params = { 'batch_size': flags_obj.batch_size, 'dtype': flags_core.get_tf_dtype(flags_obj), 'resnet_size': flags_obj.resnet_size, 'resnet_version': flags_obj.resnet_version, 'synthetic_data': flags_obj.use_synthetic_data, 'train_epochs': flags_obj.train_epochs, } if flags_obj.use_synthetic_data: dataset_name = dataset_name + '-synthetic' benchmark_logger = logger.get_benchmark_logger() benchmark_logger.log_run_info('resnet', dataset_name, run_params, test_id=flags_obj.benchmark_test_id) train_hooks = hooks_helper.get_train_hooks( flags_obj.hooks, model_dir=flags_obj.model_dir, batch_size=flags_obj.batch_size) def input_fn_train(num_epochs): return input_function( is_training=True, data_dir=flags_obj.data_dir, batch_size=distribution_utils.per_device_batch_size( flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)), num_epochs=num_epochs, dtype=flags_core.get_tf_dtype(flags_obj), datasets_num_private_threads=flags_obj.datasets_num_private_threads, num_parallel_batches=flags_obj.datasets_num_parallel_batches) def input_fn_eval(): return input_function( is_training=False, data_dir=flags_obj.data_dir, batch_size=distribution_utils.per_device_batch_size( flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)), num_epochs=1, dtype=flags_core.get_tf_dtype(flags_obj)) if flags_obj.eval_only or not flags_obj.train_epochs: # If --eval_only is set, perform a single loop with zero train epochs. schedule, n_loops = [0], 1 else: # Compute the number of times to loop while training. All but the last # pass will train for `epochs_between_evals` epochs, while the last will # train for the number needed to reach `training_epochs`. For instance if # train_epochs = 25 and epochs_between_evals = 10 # schedule will be set to [10, 10, 5]. That is to say, the loop will: # Train for 10 epochs and then evaluate. # Train for another 10 epochs and then evaluate. # Train for a final 5 epochs (to reach 25 epochs) and then evaluate. n_loops = math.ceil(flags_obj.train_epochs / flags_obj.epochs_between_evals) schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))] schedule[-1] = flags_obj.train_epochs - sum(schedule[:-1]) # over counting. for cycle_index, num_train_epochs in enumerate(schedule): tf.logging.info('Starting cycle: %d/%d', cycle_index, int(n_loops)) if num_train_epochs: classifier.train(input_fn=lambda: input_fn_train(num_train_epochs), hooks=train_hooks, max_steps=flags_obj.max_train_steps) tf.logging.info('Starting to evaluate.') # flags_obj.max_train_steps is generally associated with testing and # profiling. As a result it is frequently called with synthetic data, which # will iterate forever. Passing steps=flags_obj.max_train_steps allows the # eval (which is generally unimportant in those circumstances) to terminate. # Note that eval will run for max_train_steps each loop, regardless of the # global_step count. eval_results = classifier.evaluate(input_fn=input_fn_eval, steps=flags_obj.max_train_steps) benchmark_logger.log_evaluation_result(eval_results) if model_helpers.past_stop_threshold( flags_obj.stop_threshold, eval_results['accuracy']): break if flags_obj.export_dir is not None: # Exports a saved model for the given classifier. export_dtype = flags_core.get_tf_dtype(flags_obj) if flags_obj.image_bytes_as_serving_input: input_receiver_fn = functools.partial( image_bytes_serving_input_fn, shape, dtype=export_dtype) else: input_receiver_fn = export.build_tensor_serving_input_receiver_fn( shape, batch_size=flags_obj.batch_size, dtype=export_dtype) classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn, strip_default_attrs=True) return eval_results def define_resnet_flags(resnet_size_choices=None): """Add flags and validators for ResNet.""" flags_core.define_base() flags_core.define_performance(num_parallel_calls=False, tf_gpu_thread_mode=True, datasets_num_private_threads=True, datasets_num_parallel_batches=True) flags_core.define_image() flags_core.define_benchmark() flags.adopt_module_key_flags(flags_core) flags.DEFINE_enum( name='resnet_version', short_name='rv', default='1', enum_values=['1', '2'], help=flags_core.help_wrap( 'Version of ResNet. (1 or 2) See README.md for details.')) flags.DEFINE_bool( name='fine_tune', short_name='ft', default=False, help=flags_core.help_wrap( 'If True do not train any parameters except for the final layer.')) flags.DEFINE_string( name='pretrained_model_checkpoint_path', short_name='pmcp', default=None, help=flags_core.help_wrap( 'If not None initialize all the network except the final layer with ' 'these values')) flags.DEFINE_boolean( name='eval_only', default=False, help=flags_core.help_wrap('Skip training and only perform evaluation on ' 'the latest checkpoint.')) flags.DEFINE_boolean( name='image_bytes_as_serving_input', default=False, help=flags_core.help_wrap( 'If True exports savedmodel with serving signature that accepts ' 'JPEG image bytes instead of a fixed size [HxWxC] tensor that ' 'represents the image. The former is easier to use for serving at ' 'the expense of image resize/cropping being done as part of model ' 'inference. Note, this flag only applies to ImageNet and cannot ' 'be used for CIFAR.')) flags.DEFINE_boolean( name='turn_off_distribution_strategy', default=False, help=flags_core.help_wrap('Set to True to not use distribution ' 'strategies.')) choice_kwargs = dict( name='resnet_size', short_name='rs', default='50', help=flags_core.help_wrap('The size of the ResNet model to use.')) if resnet_size_choices is None: flags.DEFINE_string(**choice_kwargs) else: flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)
apache-2.0
pkruskal/scikit-learn
examples/cluster/plot_cluster_iris.py
347
2593
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show()
bsd-3-clause
mxjl620/scikit-learn
examples/cluster/plot_cluster_iris.py
347
2593
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show()
bsd-3-clause
jmouriz/sanaviron
sanaviron/src/3rd/pycha/tests/chart.py
3
9618
# Copyright(c) 2007-2009 by Lorenzo Gil Sanchez <lorenzo.gil.sanchez@gmail.com> # # This file is part of PyCha. # # PyCha is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyCha is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with PyCha. If not, see <http://www.gnu.org/licenses/>. import unittest import cairo import pycha.chart class FunctionsTests(unittest.TestCase): def test_uniqueIndices(self): arr = (range(10), range(5), range(20), range(30)) self.assertEqual(pycha.chart.uniqueIndices(arr), range(30)) arr = (range(30), range(20), range(5), range(10)) self.assertEqual(pycha.chart.uniqueIndices(arr), range(30)) arr = (range(4), ) self.assertEqual(pycha.chart.uniqueIndices(arr), range(4)) arr = (range(0), ) self.assertEqual(pycha.chart.uniqueIndices(arr), []) class AreaTests(unittest.TestCase): def test_area(self): area = pycha.chart.Area(10, 20, 100, 300) self.assertEqual(area.x, 10) self.assertEqual(area.y, 20) self.assertEqual(area.w, 100) self.assertEqual(area.h, 300) self.assertEqual(area.origin, 0.0) msg = "<pycha.chart.Area@(10.00, 20.00) 100.00 x 300.00 Origin: 0.00>" self.assertEqual(str(area), msg) class OptionTests(unittest.TestCase): def test_options(self): opt = pycha.chart.Option(a=1, b=2, c=3) self.assertEqual(opt.a, opt['a']) self.assertEqual(opt.b, 2) self.assertEqual(opt['c'], 3) opt = pycha.chart.Option({'a': 1, 'b': 2, 'c': 3}) self.assertEqual(opt.a, opt['a']) self.assertEqual(opt.b, 2) self.assertEqual(opt['c'], 3) def test_merge(self): opt = pycha.chart.Option(a=1, b=2, c=pycha.chart.Option(d=4, e=5)) self.assertEqual(opt.c.d, 4) opt.merge(dict(c=pycha.chart.Option(d=7, e=8, f=9))) self.assertEqual(opt.c.d, 7) # new attributes not present in original option are not merged self.assertRaises(AttributeError, getattr, opt.c, 'f') opt.merge(pycha.chart.Option(a=10, b=20)) self.assertEqual(opt.a, 10) self.assertEqual(opt.b, 20) class ChartTests(unittest.TestCase): def test_init(self): ch = pycha.chart.Chart(None) self.assertEqual(ch.resetFlag, False) self.assertEqual(ch.datasets, []) self.assertEqual(ch.area, None) self.assertEqual(ch.minxval, None) self.assertEqual(ch.maxxval, None) self.assertEqual(ch.minyval, None) self.assertEqual(ch.maxyval, None) self.assertEqual(ch.xscale, 1.0) self.assertEqual(ch.yscale, 1.0) self.assertEqual(ch.xrange, None) self.assertEqual(ch.yrange, None) self.assertEqual(ch.xticks, []) self.assertEqual(ch.yticks, []) self.assertEqual(ch.options, pycha.chart.DEFAULT_OPTIONS) def test_datasets(self): ch = pycha.chart.Chart(None) d1 = ('dataset1', ([0, 0], [1, 2], [2, 1.5])) d2 = ('dataset2', ([0, 1], [1, 2], [2, 2.4])) d3 = ('dataset3', ([0, 4], [1, 3], [2, 0.5])) ch.addDataset((d1, d2, d3)) self.assertEqual(ch._getDatasetsKeys(), ['dataset1', 'dataset2', 'dataset3']) self.assertEqual(ch._getDatasetsValues(), [d1[1], d2[1], d3[1]]) def test_options(self): ch = pycha.chart.Chart(None) opt = pycha.chart.Option(shouldFill=False) ch.setOptions(opt) self.assertEqual(ch.options.shouldFill, False) opt = {'pieRadius': 0.8} ch.setOptions(opt) self.assertEqual(ch.options.pieRadius, 0.8) def test_reset(self): ch = pycha.chart.Chart(None, options={'shouldFill': False}) self.assertEqual(ch.resetFlag, False) self.assertEqual(ch.options.shouldFill, False) dataset = (('dataset1', ([0, 1], [1, 1])), ) ch.addDataset(dataset) self.assertEqual(ch._getDatasetsKeys(), ['dataset1']) ch.reset() defaultFill = pycha.chart.DEFAULT_OPTIONS.shouldFill self.assertEqual(ch.options.shouldFill, defaultFill) self.assertEqual(ch.datasets, []) self.assertEqual(ch.resetFlag, True) def test_colorscheme(self): options = {'colorScheme': {'name': 'gradient', 'args': {'initialColor': '#000000'}}} ch = pycha.chart.Chart(None, options) dataset = (('dataset1', ([0, 1], [1, 1])), ) ch.addDataset(dataset) ch._setColorscheme() self.assert_(isinstance(ch.colorScheme, dict)) self.assertEqual(ch.colorScheme, {'dataset1': (0.0, 0.0, 0.0)}) options = {'colorScheme': {'name': 'foo'}} ch = pycha.chart.Chart(None, options) ch.addDataset(dataset) self.assertRaises(ValueError, ch._setColorscheme) def test_updateXY(self): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 500, 500) opt = {'padding': dict(left=10, right=10, top=10, bottom=10)} dataset = ( ('dataset1', ([0, 1], [1, 1], [2, 3])), ('dataset2', ([0, 2], [1, 0], [3, 4])), ) ch = pycha.chart.Chart(surface, opt) ch.addDataset(dataset) ch._updateXY() self.assertEqual((ch.area.x, ch.area.y, ch.area.w, ch.area.h), (10, 10, 480, 480)) self.assertEqual(ch.minxval, 0.0) self.assertEqual(ch.maxxval, 3) self.assertEqual(ch.xrange, 3) self.assertEqual(ch.xscale, 1 / 3.0) self.assertEqual(ch.minyval, 0) self.assertEqual(ch.maxyval, 4) self.assertEqual(ch.yrange, 4) self.assertEqual(ch.yscale, 1 / 4.0) # TODO: test with different options (axis.range, ...) def test_updateTicks(self): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 500, 500) opt = {'padding': dict(left=10, right=10, top=10, bottom=10)} dataset = ( ('dataset1', ([0, 1], [1, 1], [2, 3])), ('dataset2', ([0, 2], [1, 0], [3, 4])), ) ch = pycha.chart.Chart(surface, opt) ch.addDataset(dataset) ch._updateXY() ch._updateTicks() xticks = [(0.0, 0), (1 / 3.0, 1), (2 / 3.0, 2)] for i in range(len(xticks)): self.assertAlmostEqual(ch.xticks[i][0], xticks[i][0], 4) self.assertAlmostEqual(ch.xticks[i][1], xticks[i][1], 4) yticks = [(1 - 0.1 * i, 0.4 * i) for i in range(ch.options.axis.y.tickCount + 1)] self.assertEqual(len(ch.yticks), len(yticks)) for i in range(len(yticks)): self.assertAlmostEqual(ch.yticks[i][0], yticks[i][0], 4) self.assertAlmostEqual(ch.yticks[i][1], yticks[i][1], 4) def _test_updateExplicitTicks(self): """Test for bug #7""" surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 500, 500) yticks = [dict(v=i, label=str(i)) for i in range(0, 3)] opt = {'axis': {'y': {'ticks': yticks}}} dataset = ( ('dataset1', ([0, 1], [1, 1], [2, 3])), ) ch = pycha.chart.Chart(surface, opt) ch.addDataset(dataset) ch._updateXY() ch._updateTicks() self.assertAlmostEqual(ch.yticks[0][0], 1.0, 4) self.assertAlmostEqual(ch.yticks[1][0], 2 / 3.0, 4) self.assertAlmostEqual(ch.yticks[2][0], 1 / 3.0, 4) def test_abstractChart(self): ch = pycha.chart.Chart(None) self.assertRaises(NotImplementedError, ch._updateChart) self.assertRaises(NotImplementedError, ch._renderChart, None) def test_range(self): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 500, 500) opt = {'axis': {'x': {'range': (1, 10)}, 'y': {'range': (1.0, 10.0)}}} ch = pycha.chart.Chart(surface, opt) dataset = ( ('dataset1', ([0, 1], [1, 1], [2, 3])), ) ch.addDataset(dataset) ch._updateXY() self.assertAlmostEqual(ch.xrange, 9, 4) self.assertAlmostEqual(ch.yrange, 9, 4) self.assertAlmostEqual(ch.xscale, 0.1111, 4) self.assertAlmostEqual(ch.yscale, 0.1111, 4) def test_interval(self): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 500, 500) opt = {'axis': {'y': {'interval': 2.5}}} ch = pycha.chart.Chart(surface, opt) dataset = ( ('dataset1', ([0, 1], [1, 4], [2, 10])), ) ch.addDataset(dataset) ch._updateXY() ch._updateTicks() yticks = ((0.75, 2.5), (0.5, 5.0), (0.25, 7.5), (0.0, 10.0)) self.assertEqual(len(yticks), len(ch.yticks)) for i, (pos, label) in enumerate(yticks): tick = ch.yticks[i] self.assertAlmostEqual(tick[0], pos, 2) self.assertAlmostEqual(tick[1], label, 2) def test_suite(): return unittest.TestSuite(( unittest.makeSuite(FunctionsTests), unittest.makeSuite(AreaTests), unittest.makeSuite(OptionTests), unittest.makeSuite(ChartTests), )) if __name__ == '__main__': unittest.main(defaultTest='test_suite')
apache-2.0
mxjl620/scikit-learn
sklearn/__check_build/__init__.py
342
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
mxjl620/scikit-learn
sklearn/metrics/cluster/unsupervised.py
228
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <robertlayton@gmail.com> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
andrewcmyers/tensorflow
tensorflow/examples/learn/mnist.py
28
4770
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This showcases how simple it is to build image classification networks. It follows description from this TensorFlow tutorial: https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf N_DIGITS = 10 # Number of digits. X_FEATURE = 'x' # Name of the input feature. def conv_model(features, labels, mode): """2-layer convolution model.""" # Reshape feature to 4d tensor with 2nd and 3rd dimensions being # image width and height final dimension being the number of color channels. feature = tf.reshape(features[X_FEATURE], [-1, 28, 28, 1]) # First conv layer will compute 32 features for each 5x5 patch with tf.variable_scope('conv_layer1'): h_conv1 = tf.layers.conv2d( feature, filters=32, kernel_size=[5, 5], padding='same', activation=tf.nn.relu) h_pool1 = tf.layers.max_pooling2d( h_conv1, pool_size=2, strides=2, padding='same') # Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope('conv_layer2'): h_conv2 = tf.layers.conv2d( h_pool1, filters=64, kernel_size=[5, 5], padding='same', activation=tf.nn.relu) h_pool2 = tf.layers.max_pooling2d( h_conv2, pool_size=2, strides=2, padding='same') # reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # Densely connected layer with 1024 neurons. h_fc1 = tf.layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu) if mode == tf.estimator.ModeKeys.TRAIN: h_fc1 = tf.layers.dropout(h_fc1, rate=0.5) # Compute logits (1 per class) and compute loss. logits = tf.layers.dense(h_fc1, N_DIGITS, activation=None) # Compute predictions. predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'class': predicted_classes, 'prob': tf.nn.softmax(logits) } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Compute loss. onehot_labels = tf.one_hot(tf.cast(labels, tf.int32), N_DIGITS, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) # Create training op. if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) # Compute evaluation metrics. eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_args): ### Download and load MNIST dataset. mnist = tf.contrib.learn.datasets.DATASETS['mnist']('/tmp/mnist') train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: mnist.train.images}, y=mnist.train.labels.astype(np.int32), batch_size=100, num_epochs=None, shuffle=True) test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: mnist.train.images}, y=mnist.train.labels.astype(np.int32), num_epochs=1, shuffle=False) ### Linear classifier. feature_columns = [ tf.feature_column.numeric_column( X_FEATURE, shape=mnist.train.images.shape[1:])] classifier = tf.estimator.LinearClassifier( feature_columns=feature_columns, n_classes=N_DIGITS) classifier.train(input_fn=train_input_fn, steps=200) scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (LinearClassifier): {0:f}'.format(scores['accuracy'])) ### Convolutional network classifier = tf.estimator.Estimator(model_fn=conv_model) classifier.train(input_fn=train_input_fn, steps=200) scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (conv_model): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
yonglehou/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
228
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
mxjl620/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
255
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
FakeNewsChallenge/fnc-1-baseline
feature_engineering.py
4
6253
import os import re import nltk import numpy as np from sklearn import feature_extraction from tqdm import tqdm _wnl = nltk.WordNetLemmatizer() def normalize_word(w): return _wnl.lemmatize(w).lower() def get_tokenized_lemmas(s): return [normalize_word(t) for t in nltk.word_tokenize(s)] def clean(s): # Cleans a string: Lowercasing, trimming, removing non-alphanumeric return " ".join(re.findall(r'\w+', s, flags=re.UNICODE)).lower() def remove_stopwords(l): # Removes stopwords from a list of tokens return [w for w in l if w not in feature_extraction.text.ENGLISH_STOP_WORDS] def gen_or_load_feats(feat_fn, headlines, bodies, feature_file): if not os.path.isfile(feature_file): feats = feat_fn(headlines, bodies) np.save(feature_file, feats) return np.load(feature_file) def word_overlap_features(headlines, bodies): X = [] for i, (headline, body) in tqdm(enumerate(zip(headlines, bodies))): clean_headline = clean(headline) clean_body = clean(body) clean_headline = get_tokenized_lemmas(clean_headline) clean_body = get_tokenized_lemmas(clean_body) features = [ len(set(clean_headline).intersection(clean_body)) / float(len(set(clean_headline).union(clean_body)))] X.append(features) return X def refuting_features(headlines, bodies): _refuting_words = [ 'fake', 'fraud', 'hoax', 'false', 'deny', 'denies', # 'refute', 'not', 'despite', 'nope', 'doubt', 'doubts', 'bogus', 'debunk', 'pranks', 'retract' ] X = [] for i, (headline, body) in tqdm(enumerate(zip(headlines, bodies))): clean_headline = clean(headline) clean_headline = get_tokenized_lemmas(clean_headline) features = [1 if word in clean_headline else 0 for word in _refuting_words] X.append(features) return X def polarity_features(headlines, bodies): _refuting_words = [ 'fake', 'fraud', 'hoax', 'false', 'deny', 'denies', 'not', 'despite', 'nope', 'doubt', 'doubts', 'bogus', 'debunk', 'pranks', 'retract' ] def calculate_polarity(text): tokens = get_tokenized_lemmas(text) return sum([t in _refuting_words for t in tokens]) % 2 X = [] for i, (headline, body) in tqdm(enumerate(zip(headlines, bodies))): clean_headline = clean(headline) clean_body = clean(body) features = [] features.append(calculate_polarity(clean_headline)) features.append(calculate_polarity(clean_body)) X.append(features) return np.array(X) def ngrams(input, n): input = input.split(' ') output = [] for i in range(len(input) - n + 1): output.append(input[i:i + n]) return output def chargrams(input, n): output = [] for i in range(len(input) - n + 1): output.append(input[i:i + n]) return output def append_chargrams(features, text_headline, text_body, size): grams = [' '.join(x) for x in chargrams(" ".join(remove_stopwords(text_headline.split())), size)] grams_hits = 0 grams_early_hits = 0 grams_first_hits = 0 for gram in grams: if gram in text_body: grams_hits += 1 if gram in text_body[:255]: grams_early_hits += 1 if gram in text_body[:100]: grams_first_hits += 1 features.append(grams_hits) features.append(grams_early_hits) features.append(grams_first_hits) return features def append_ngrams(features, text_headline, text_body, size): grams = [' '.join(x) for x in ngrams(text_headline, size)] grams_hits = 0 grams_early_hits = 0 for gram in grams: if gram in text_body: grams_hits += 1 if gram in text_body[:255]: grams_early_hits += 1 features.append(grams_hits) features.append(grams_early_hits) return features def hand_features(headlines, bodies): def binary_co_occurence(headline, body): # Count how many times a token in the title # appears in the body text. bin_count = 0 bin_count_early = 0 for headline_token in clean(headline).split(" "): if headline_token in clean(body): bin_count += 1 if headline_token in clean(body)[:255]: bin_count_early += 1 return [bin_count, bin_count_early] def binary_co_occurence_stops(headline, body): # Count how many times a token in the title # appears in the body text. Stopwords in the title # are ignored. bin_count = 0 bin_count_early = 0 for headline_token in remove_stopwords(clean(headline).split(" ")): if headline_token in clean(body): bin_count += 1 bin_count_early += 1 return [bin_count, bin_count_early] def count_grams(headline, body): # Count how many times an n-gram of the title # appears in the entire body, and intro paragraph clean_body = clean(body) clean_headline = clean(headline) features = [] features = append_chargrams(features, clean_headline, clean_body, 2) features = append_chargrams(features, clean_headline, clean_body, 8) features = append_chargrams(features, clean_headline, clean_body, 4) features = append_chargrams(features, clean_headline, clean_body, 16) features = append_ngrams(features, clean_headline, clean_body, 2) features = append_ngrams(features, clean_headline, clean_body, 3) features = append_ngrams(features, clean_headline, clean_body, 4) features = append_ngrams(features, clean_headline, clean_body, 5) features = append_ngrams(features, clean_headline, clean_body, 6) return features X = [] for i, (headline, body) in tqdm(enumerate(zip(headlines, bodies))): X.append(binary_co_occurence(headline, body) + binary_co_occurence_stops(headline, body) + count_grams(headline, body)) return X
apache-2.0
yonglehou/scikit-learn
examples/svm/plot_svm_scale_c.py
222
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # Jaques Grobler <jaques.grobler@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
pkruskal/scikit-learn
examples/svm/plot_svm_scale_c.py
222
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # Jaques Grobler <jaques.grobler@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
GoogleCloudPlatform/public-datasets-pipelines
datasets/new_york_trees/pipelines/tree_census_2005/tree_census_2005_dag.py
1
15071
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from airflow import DAG from airflow.providers.cncf.kubernetes.operators import kubernetes_pod from airflow.providers.google.cloud.transfers import gcs_to_bigquery default_args = { "owner": "Google", "depends_on_past": False, "start_date": "2021-03-01", } with DAG( dag_id="new_york_trees.tree_census_2005", default_args=default_args, max_active_runs=1, schedule_interval="@daily", catchup=False, default_view="graph", ) as dag: # Run CSV transform within kubernetes pod tree_census_2005_transform_csv = kubernetes_pod.KubernetesPodOperator( task_id="tree_census_2005_transform_csv", startup_timeout_seconds=600, name="tree_census_2005", namespace="composer", service_account_name="datasets", image_pull_policy="Always", image="{{ var.json.new_york_trees.container_registry.run_csv_transform_kub }}", env_vars={ "SOURCE_URL": "https://data.cityofnewyork.us/api/views/29bw-z7pj/rows.csv", "SOURCE_FILE": "files/data.csv", "TARGET_FILE": "files/data_output.csv", "TARGET_GCS_BUCKET": "{{ var.value.composer_bucket }}", "TARGET_GCS_PATH": "data/new_york_trees/tree_census_2005/data_output.csv", "PIPELINE_NAME": "tree_census_2005", "CSV_HEADERS": '["objectid","cen_year","tree_dbh","tree_loc","pit_type","soil_lvl","status","spc_latin", "spc_common","vert_other","vert_pgrd","vert_tgrd","vert_wall","horz_blck","horz_grate", "horz_plant","horz_other","sidw_crack","sidw_raise","wire_htap","wire_prime", "wire_2nd","wire_other","inf_canopy","inf_guard","inf_wires","inf_paving","inf_outlet", "inf_shoes","inf_lights","inf_other","trunk_dmg","zipcode","zip_city","cb_num","borocode", "boroname","cncldist","st_assem","st_senate","nta","nta_name","boro_ct","x_sp","y_sp", "objectid_1","location_1","state","latitude","longitude","census_tract","bin","bbl","address"]', "RENAME_MAPPINGS": '{"OBJECTID":"objectid","Location 1":"location_1","census tract":"census_tract"}', "INTEGER_STRING_COL": '["cb_num", "borocode", "cncldist", "st_assem", "st_senate", "boro_ct","x_sp","y_sp", "objectid_1","census_tract","bin","bbl"]', }, resources={ "request_memory": "3G", "request_cpu": "1", "request_ephemeral_storage": "5G", }, ) # Task to load CSV data to a BigQuery table load_tree_census_2005_to_bq = gcs_to_bigquery.GCSToBigQueryOperator( task_id="load_tree_census_2005_to_bq", bucket="{{ var.value.composer_bucket }}", source_objects=["data/new_york_trees/tree_census_2005/data_output.csv"], source_format="CSV", destination_project_dataset_table="new_york_trees.tree_census_2005", skip_leading_rows=1, allow_quoted_newlines=True, write_disposition="WRITE_TRUNCATE", schema_fields=[ { "name": "objectid", "type": "integer", "description": "", "mode": "required", }, { "name": "cen_year", "type": "integer", "description": "This is the year the tree was inventoried in. Data collection for the 2005 census spanned multiple seasons. Data is in YYYY format.", "mode": "nullable", }, { "name": "tree_dbh", "type": "integer", "description": "The diameter of the tree in whole inches, measured at breast height. (4.5 feet from the ground.)", "mode": "nullable", }, { "name": "tree_loc", "type": "string", "description": "Establishes the location of the tree in relation to the address provided", "mode": "nullable", }, { "name": "pit_type", "type": "string", "description": "", "mode": "nullable", }, { "name": "soil_lvl", "type": "string", "description": "", "mode": "nullable", }, { "name": "status", "type": "string", "description": "Excellent: full, well balanced crown and limb structure; leaves normal size color; no dead or broken branches; trunk solid; bark intact. Good: crown uneven or misshapen; some mechanical damage to bark or trunk; some signs of insects or disease; leaves somewhat below normal size and quantity; some dead or broken branches (less than half of the tree). Poor: large dead limbs with over one- half of the tree already dead or removed; large cavities; drastic deformities; leaves significantly below normal size and quantity; severe insect or disease damage. Dead: dead tree; leaves absent; twigs brittle. Shaft: all branches removed; trunk left standing; sprouts may or may not be evident. Stump: stump shorter than breast height; leaves entirely absent or present only on stump sprouts Empty pit: Pit contains exposed soil and no tree", "mode": "nullable", }, { "name": "spc_latin", "type": "string", "description": "The scientific name of the species.", "mode": "nullable", }, { "name": "spc_common", "type": "string", "description": "The common name of the species.", "mode": "nullable", }, { "name": "vert_other", "type": "boolean", "description": "Other Vertical Treatment Present", "mode": "nullable", }, { "name": "vert_pgrd", "type": "boolean", "description": "Perimeter guard present", "mode": "nullable", }, { "name": "vert_tgrd", "type": "boolean", "description": "Tall guard present", "mode": "nullable", }, { "name": "vert_wall", "type": "boolean", "description": "Walled tree well present", "mode": "nullable", }, { "name": "horz_blck", "type": "boolean", "description": "Block pavers present", "mode": "nullable", }, { "name": "horz_grate", "type": "boolean", "description": "Tree grates present", "mode": "nullable", }, { "name": "horz_plant", "type": "boolean", "description": "Plantings present", "mode": "nullable", }, { "name": "horz_other", "type": "boolean", "description": "Other horizontal treatment present", "mode": "nullable", }, { "name": "sidw_crack", "type": "boolean", "description": "Cracked sidewalk present", "mode": "nullable", }, { "name": "sidw_raise", "type": "boolean", "description": "Raised sidewalk present", "mode": "nullable", }, { "name": "wire_htap", "type": "boolean", "description": "Indicates the presence of house tap wires", "mode": "nullable", }, { "name": "wire_prime", "type": "boolean", "description": "Indicates the presence of primary wires", "mode": "nullable", }, { "name": "wire_2nd", "type": "boolean", "description": "Indicates the presence of secondary wires", "mode": "nullable", }, { "name": "wire_other", "type": "boolean", "description": "Indicates the presence of other wires", "mode": "nullable", }, { "name": "inf_canopy", "type": "boolean", "description": "Canopy debris present", "mode": "nullable", }, { "name": "inf_guard", "type": "boolean", "description": "Choking guard or grate present", "mode": "nullable", }, { "name": "inf_wires", "type": "boolean", "description": "Choking wires present", "mode": "nullable", }, { "name": "inf_paving", "type": "boolean", "description": "Close paving present", "mode": "nullable", }, { "name": "inf_outlet", "type": "boolean", "description": "Electrical outlet present", "mode": "nullable", }, { "name": "inf_shoes", "type": "boolean", "description": "Sneakers present", "mode": "nullable", }, { "name": "inf_lights", "type": "boolean", "description": "Tree lights present", "mode": "nullable", }, { "name": "inf_other", "type": "boolean", "description": "Other infrastructure conflicts present", "mode": "nullable", }, { "name": "trunk_dmg", "type": "string", "description": "Describes specific damage or wounds found on the trunk", "mode": "nullable", }, { "name": "zipcode", "type": "string", "description": "2005 zipcode that the tree falls in.", "mode": "nullable", }, { "name": "zip_city", "type": "string", "description": "City, as derived from the zipcode", "mode": "nullable", }, { "name": "cb_num", "type": "integer", "description": "Community Board that the tree falls in.", "mode": "nullable", }, { "name": "borocode", "type": "integer", "description": "Borough tree is in, using a one-digit borough code: 1 – Manhattan, 2 – Bronx, 3 – Brooklyn, 4 – Queens, 5 – Staten Island", "mode": "nullable", }, { "name": "boroname", "type": "string", "description": "Borough tree is in, full text", "mode": "nullable", }, { "name": "cncldist", "type": "integer", "description": "New York City Council District tree point is in.", "mode": "nullable", }, { "name": "st_assem", "type": "integer", "description": "State Assembly District tree point is in.", "mode": "nullable", }, { "name": "st_senate", "type": "integer", "description": "State Senate District tree point is in.", "mode": "nullable", }, { "name": "nta", "type": "string", "description": "nta code for the neighborhood tabulation area the tree point is in, from the 2010 census", "mode": "nullable", }, { "name": "nta_name", "type": "string", "description": "Nta name for the neighborhood tabulation area the tree point is in", "mode": "nullable", }, { "name": "boro_ct", "type": "integer", "description": "This is the boro_ct identifier for the census tract that the tree point falls into.", "mode": "nullable", }, { "name": "x_sp", "type": "integer", "description": "X field", "mode": "nullable", }, { "name": "y_sp", "type": "integer", "description": "y field", "mode": "nullable", }, { "name": "objectid_1", "type": "integer", "description": "", "mode": "nullable", }, { "name": "location_1", "type": "string", "description": "", "mode": "nullable", }, {"name": "state", "type": "string", "description": "", "mode": "nullable"}, { "name": "latitude", "type": "float", "description": "", "mode": "nullable", }, { "name": "longitude", "type": "float", "description": "", "mode": "nullable", }, { "name": "census_tract", "type": "integer", "description": "", "mode": "nullable", }, {"name": "bin", "type": "integer", "description": "", "mode": "nullable"}, {"name": "bbl", "type": "integer", "description": "", "mode": "nullable"}, { "name": "address", "type": "string", "description": "", "mode": "nullable", }, ], ) tree_census_2005_transform_csv >> load_tree_census_2005_to_bq
apache-2.0
dimkal/mne-python
examples/visualization/plot_evoked_topomap.py
18
1498
""" ======================================== Plotting topographic maps of evoked data ======================================== Load evoked data and plot topomaps for selected time points. """ # Authors: Christian Brodbeck <christianbrodbeck@nyu.edu> # Tal Linzen <linzen@nyu.edu> # Denis A. Engeman <denis.engemann@gmail.com> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mne.datasets import sample from mne import read_evokeds print(__doc__) path = sample.data_path() fname = path + '/MEG/sample/sample_audvis-ave.fif' # load evoked and subtract baseline condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0)) # set time instants in seconds (from 50 to 150ms in a step of 10ms) times = np.arange(0.05, 0.15, 0.01) # If times is set to None only 10 regularly spaced topographies will be shown # plot magnetometer data as topomaps evoked.plot_topomap(times, ch_type='mag') # compute a 50 ms bin to stabilize topographies evoked.plot_topomap(times, ch_type='mag', average=0.05) # plot gradiometer data (plots the RMS for each pair of gradiometers) evoked.plot_topomap(times, ch_type='grad') # plot magnetometer data as topomap at 1 time point : 100 ms # and add channel labels and title evoked.plot_topomap(0.1, ch_type='mag', show_names=True, colorbar=False, size=6, res=128, title='Auditory response') plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.88)
bsd-3-clause
tbullmann/heuhaufen
tools/evaluate.py
1
7259
from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import Counter import os import argparse import glob from sklearn.metrics.cluster import adjusted_rand_score, adjusted_mutual_info_score import pandas as pd import numpy as np from skimage.io import imread from skimage.measure import label as regions from scipy.sparse import csr_matrix from matplotlib import pyplot as plt def segmentation_metrics(true_label, pred_label): """ Implements pixel wise classic (adjusted for chance) RAND and MI score. """ RAND_label = adjusted_rand_score(true_label.ravel(), pred_label.ravel()) MI_label = adjusted_mutual_info_score(true_label.ravel(), pred_label.ravel()) return RAND_label, MI_label def SNEMI3D_metrics(true_segm, pred_segm): """ Implements segmentation wise scores from the SNEMI3D challenge. """ n = true_segm.size overlap = Counter(zip(true_segm.ravel(), pred_segm.ravel())) data = overlap.values() row_ind, col_ind = zip(*overlap.keys()) p_ij = csr_matrix((data, (row_ind, col_ind))) a_i = np.array(p_ij[1:, :].sum(axis=1)) b_j = np.array(p_ij[1:, 1:].sum(axis=0)) p_i0 = p_ij[1:, 0] p_ij = p_ij[1:, 1:] sumA = (a_i * a_i).sum() sumB = (b_j * b_j).sum() + p_i0.sum()/n sumAB = p_ij.multiply(p_ij).sum() + p_i0.sum()/n RAND_index = 1 - (sumA + sumB - 2*sumAB) / (n ** 2) precision = sumAB / sumB recall = sumAB / sumA F_score = 2.0 * precision * recall / (precision + recall) adapted_RAND_error = 1.0 - F_score return RAND_index, precision, recall, F_score, adapted_RAND_error def test(): inp_path = '../temp/Example_2D_3Labels/test/images/02-inputs.png' pred_path = '../temp/Example_2D_3Labels/test/images/02-outputs.png' true_path = '../temp/Example_2D_3Labels/test/images/02-targets.png' print ('Evaluate prediction %s vs truth %s' % (pred_path, true_path)) channel = 0 threshold = 0.5 segment_by = 0 true_label = imread(true_path)[:, :, channel] > threshold pred_label = imread(pred_path)[:, :, channel] > threshold # scores on labels RAND_label, MI_label = segmentation_metrics(true_label, pred_label) print("RAND_label = %1.3f, MI_label =%1.3f\n" % (RAND_label, MI_label)) # scores on segmentation into regions true_segm = regions(true_label, background=segment_by) pred_segm = regions(pred_label, background=segment_by) RAND, precision, recall, F_score, adapted_RAND_error = SNEMI3D_metrics(true_segm, pred_segm) print("RAND = %1.3f, precision = %1.3f, recall = %1.3f, F_score = %1.3f, adapted_RAND_error = %1.3f" % (RAND, precision, recall, F_score, adapted_RAND_error)) plt.figure(figsize=(8,5.5)) plt.subplot(231) plt.imshow(imread(inp_path, as_grey=True), cmap='gray') plt.title("input") plt.axis('off') plt.subplot(232) plt.imshow(pred_label, cmap='gray') plt.title("predicted label") plt.axis('off') plt.subplot(233) plt.imshow(true_label, cmap='gray') plt.title("true label") plt.axis('off') plt.subplot(235) plt.imshow(pred_segm) plt.title("predicted segmentation") plt.axis('off') plt.subplot(236) plt.imshow(true_segm) plt.title("true segmentation") plt.axis('off') plt.subplots_adjust(left=0.01, right=0.99, top=0.95, bottom=0.01) plt.show() def main(): parser = argparse.ArgumentParser() parser.add_argument("--input", default=None, help="path/files for raw images (for plot)") parser.add_argument("--predicted", required=True, help="path/files for predicted labels") parser.add_argument("--true", required=True, help="path/files for true labels") parser.add_argument("--output", required=True, help="output path/files") parser.add_argument("--threshold", type=int, default=127, help="threshold for the predicted label") parser.add_argument("--channel", type=int, default=0, help="channel to be evaluated") parser.add_argument("--segment_by", type=int, default=0, help="border value for segmentation into regions") parser.add_argument("--plot", default="nothing", choices=["nothing", "show", "save"]) a = parser.parse_args() dst = [] output_path = a.output def relpath(image_path): return os.path.relpath(image_path, os.path.split(output_path)[0]) inp_paths = sorted(glob.glob(a.input)) if a.input else [] pred_paths = sorted(glob.glob(a.predicted)) true_paths = sorted(glob.glob(a.true)) for index, (inp_path, pred_path, true_path) in enumerate(map(None, inp_paths, pred_paths, true_paths)): print ('Evaluate prediction %s vs truth %s' % (pred_path, true_path)) # load iamges, e.g. 0 = black = membrane, 1 = white = non-membrane # threshold with default 0.5, so that 1 = membrane/border and 0 is non-membrane/region true_label = imread(true_path)[:, :, a.channel] > a.threshold pred_label = imread(pred_path)[:, :, a.channel] > a.threshold # scores on labels RAND_label, MI_label = segmentation_metrics(true_label, pred_label) print("RAND_label = %1.3f, MI_label =%1.3f\n" % (RAND_label, MI_label)) #scores on segmentation into regions true_segm = regions(true_label, background=a.segment_by) pred_segm = regions(pred_label, background=a.segment_by) RAND, precision, recall, F_score, adapted_RAND_error = SNEMI3D_metrics(true_segm, pred_segm) print("RAND = %1.3f, precision = %1.3f, recall = %1.3f, F_score = %1.3f, adapted_RAND_error = %1.3f" % (RAND, precision, recall, F_score, adapted_RAND_error)) dst.append([relpath(pred_path), relpath(true_path), RAND_label, MI_label, RAND, precision, recall, F_score, adapted_RAND_error]) # plotting if not a.plot == "nothing": plt.figure(figsize=(8, 5.5)) if inp_path: plt.subplot(231) plt.imshow(imread(inp_path, as_grey=True), cmap='gray') plt.title("input") plt.axis('off') plt.subplot(232) plt.imshow(pred_label, cmap='gray') plt.title("predicted label") plt.axis('off') plt.subplot(233) plt.imshow(true_label, cmap='gray') plt.title("true label") plt.axis('off') plt.subplot(235) plt.imshow(pred_segm) plt.title("predicted segmentation") plt.axis('off') plt.subplot(236) plt.imshow(true_segm) plt.title("true segmentation") plt.axis('off') plt.subplots_adjust(left=0.01, right=0.99, top=0.95, bottom=0.01) if a.plot == "save": plt.savefig(output_path+"-sample%d.jpg" % index) elif a.plot == "show": plt.show() dst = pd.DataFrame(dst, columns=['pred_path', 'true_path', 'RAND_label', 'MI_label', 'RAND', 'precision', 'recall', 'F_score', 'adapted_RAND_error']) dst['sample'] = dst.index dst.to_csv(output_path, index=False) print ("Saved to %s" % output_path) # test() main()
mit
davidam/python-examples
scikit/plot_cluster_comparison.py
45
6620
""" ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example shows characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. With the exception of the last dataset, the parameters of each of these dataset-algorithm pairs has been tuned to produce good clustering results. Some algorithms are more sensitive to parameter values than others. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. For this example, the null dataset uses the same parameters as the dataset in the row above it, which represents a mismatch in the parameter values and the data structure. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. """ print(__doc__) import time import warnings import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets, mixture from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler from itertools import cycle, islice np.random.seed(0) # ============ # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times # ============ n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None # Anisotropicly distributed data random_state = 170 X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state) transformation = [[0.6, -0.6], [-0.4, 0.8]] X_aniso = np.dot(X, transformation) aniso = (X_aniso, y) # blobs with varied variances varied = datasets.make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) # ============ # Set up cluster parameters # ============ plt.figure(figsize=(9 * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 default_base = {'quantile': .3, 'eps': .3, 'damping': .9, 'preference': -200, 'n_neighbors': 10, 'n_clusters': 3} datasets = [ (noisy_circles, {'damping': .77, 'preference': -240, 'quantile': .2, 'n_clusters': 2}), (noisy_moons, {'damping': .75, 'preference': -220, 'n_clusters': 2}), (varied, {'eps': .18, 'n_neighbors': 2}), (aniso, {'eps': .15, 'n_neighbors': 2}), (blobs, {}), (no_structure, {})] for i_dataset, (dataset, algo_params) in enumerate(datasets): # update parameters with dataset-specific values params = default_base.copy() params.update(algo_params) X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=params['quantile']) # connectivity matrix for structured Ward connectivity = kneighbors_graph( X, n_neighbors=params['n_neighbors'], include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # ============ # Create cluster objects # ============ ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=params['n_clusters']) ward = cluster.AgglomerativeClustering( n_clusters=params['n_clusters'], linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering( n_clusters=params['n_clusters'], eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=params['eps']) affinity_propagation = cluster.AffinityPropagation( damping=params['damping'], preference=params['preference']) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=params['n_clusters'], connectivity=connectivity) birch = cluster.Birch(n_clusters=params['n_clusters']) gmm = mixture.GaussianMixture( n_components=params['n_clusters'], covariance_type='full') clustering_algorithms = ( ('MiniBatchKMeans', two_means), ('AffinityPropagation', affinity_propagation), ('MeanShift', ms), ('SpectralClustering', spectral), ('Ward', ward), ('AgglomerativeClustering', average_linkage), ('DBSCAN', dbscan), ('Birch', birch), ('GaussianMixture', gmm) ) for name, algorithm in clustering_algorithms: t0 = time.time() # catch warnings related to kneighbors_graph with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="the number of connected components of the " + "connectivity matrix is [0-9]{1,2}" + " > 1. Completing it to avoid stopping the tree early.", category=UserWarning) warnings.filterwarnings( "ignore", message="Graph is not fully connected, spectral embedding" + " may not work as expected.", category=UserWarning) algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) plt.subplot(len(datasets), len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00']), int(max(y_pred) + 1)))) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred]) plt.xlim(-2.5, 2.5) plt.ylim(-2.5, 2.5) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
gpl-3.0
GoogleCloudPlatform/public-datasets-pipelines
datasets/idc/pipelines/_images/generate_bq_views/script.py
1
4037
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import typing import google.api_core import google.auth import google.auth.impersonated_credentials from google.cloud import bigquery BQ_OAUTH_SCOPE = "https://www.googleapis.com/auth/bigquery" def main( source_project: str, target_project: str, bq_datasets: typing.List[str], service_account: str, ): default_creds, pid = google.auth.default() print(f"Obtained default credentials for the project {pid}") credentials = google.auth.impersonated_credentials.Credentials( source_credentials=default_creds, target_principal=service_account, target_scopes=[BQ_OAUTH_SCOPE], ) client = bigquery.Client(credentials=credentials) for dataset in bq_datasets: logging.info(f"Generating views for {dataset}..") tables = client.list_tables(f"{source_project}.{dataset}") source_views = [] for table in tables: if table.table_type == "TABLE": continue source_view = client.get_table( f"{source_project}.{dataset}.{table.table_id}" ) create_or_update_view(client, source_view, source_project, target_project) source_views.append(table.table_id) sync_views(client, dataset, source_views, target_project) def create_or_update_view( client: bigquery.Client, source_view: bigquery.Table, source_project: str, target_project: str, ) -> None: try: target_view = client.get_table( f"{target_project}.{source_view.dataset_id}.{source_view.table_id}" ) except google.api_core.exceptions.NotFound: target_view = None _view = bigquery.Table( f"{target_project}.{source_view.dataset_id}.{source_view.table_id}" ) _view.description = source_view.description _view.view_query = source_view.view_query.replace(source_project, target_project) # Create the view if it doesn't exist. Otherwise, update it. if not target_view: view = client.create_table(_view) logging.info(f"View {view.full_table_id} successfully created.") else: view = client.update_table(_view, ["view_query", "description"]) logging.info(f"View {view.full_table_id} successfully updated.") def sync_views( client: bigquery.Client, dataset: str, source_views: typing.List[str], target_project: str, ) -> None: """Syncs views between source and target BQ datasets. If a view exists in the target dataset but not in the source dataset, that view must be deleted from the target dataset. """ target_tables = client.list_tables(f"{target_project}.{dataset}") for target_table in target_tables: if not target_table.table_type == "VIEW": continue if target_table.table_id not in source_views: logging.info( f"Extra view {target_project}.{dataset}.{target_table.table_id} will be deleted." ) client.delete_table( f"{target_project}.{dataset}.{target_table.table_id}", not_found_ok=True ) if __name__ == "__main__": logging.getLogger().setLevel(logging.INFO) main( source_project=os.environ["SOURCE_PROJECT_ID"], target_project=os.environ["TARGET_PROJECT_ID"], bq_datasets=json.loads(os.environ["BQ_DATASETS"]), service_account=os.environ["SERVICE_ACCOUNT"], )
apache-2.0
laserson/eggo
eggo/cli/datasets.py
3
2199
# Licensed to Big Data Genomics (BDG) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The BDG licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from click import group, option, File from eggo import operations @group(context_settings={'help_option_names': ['-h', '--help']}) def main(): """eggo-data -- operations on common genomics datasets""" pass @main.command() @option('--input', help='Path to datapackage.json file for dataset') @option('--output', help='Fully-qualified HDFS destination path') def dnload_raw(input, output): """Parallel download raw dataset from datapackage.json using Hadoop""" with open(input) as ip: datapackage = json.load(ip) operations.download_dataset_with_hadoop(datapackage, output) @main.command() @option('--cm-host', help='Hostname for Cloudera Manager') @option('--cm-port', default=7180, show_default=True, help='Port for Cloudera Manager') @option('--username', default='admin', show_default=True, help='CM username') @option('--password', default='admin', show_default=True, help='CM password') @option('--output', type=File(mode='w'), default='-', show_default=True, help='Output destination ("-" for stdout)') def gen_env_vars(cm_host, cm_port, username, password, output): """Generate env vars required for eggo scripts to run""" env_vars = operations.generate_eggo_env_vars(cm_host, cm_port, username, password) for (k, v) in env_vars.iteritems(): output.write("export {0}={1}\n".format(k, v))
apache-2.0
Hellybean/SaberMod_ROM_Toolchain
libstdc++-v3/scripts/make_graph.py
172
9251
#!/usr/bin/python import string import sys import re from Numeric import * from pychart import * from xml.dom import minidom class exception: pass class res: """ A 'structure' representing the results of a test. """ def __init__(self, x_label, y_label, cntnr_list, cntnr_descs, res_sets): self.x_label = x_label self.y_label = y_label self.cntnr_list = cntnr_list self.cntnr_descs = cntnr_descs self.res_sets = res_sets class res_getter: """ This class returns a res object for some test. """ class __sorter: def __accum(self, results): total = 0 for result in results: total = total + result[1] return total def sort(self, cntnr_list, res_sets): cntnrs_and_totals = [] for cntnr in cntnr_list: results = res_sets[cntnr] total = self.__accum(results) cntnrs_and_totals.append((cntnr, total)) by_total = lambda x,y: x[1] > y[1] and -1 or 1 cntnrs_and_totals.sort(by_total) ret = [] for cntnr_and_total in cntnrs_and_totals: cntnr = cntnr_and_total[0] ret.append(cntnr) return ret def __init__(self, test_infos_f_name): self.__test_to_container_res_sets = {} self.__test_to_f_names = {} tests_dat = minidom.parse(test_infos_f_name) for test in tests_dat.getElementsByTagName('test'): test_name = test.attributes['name'].value self.__test_to_f_names[test_name] = test.getElementsByTagName('file')[0].attributes['name'].value cntnr_list = [] for cntnr in test.getElementsByTagName('cntnr'): cntnr_list.append(cntnr.attributes['name'].value) self.__test_to_container_res_sets[test_name] = cntnr_list def __get_label(self, tst_dat, label_name): label = tst_dat.getElementsByTagName(label_name)[0].firstChild.data label = string.strip(label, '\n') label = string.strip(label) return label def __parse_result_sets(self, f_name, cntnr_list): tst_dat = minidom.parse(f_name) x_label = self.__get_label(tst_dat, 'x_name') y_label = self.__get_label(tst_dat, 'y_name') parsed_container_list = tst_dat.getElementsByTagName('cntnr') res_sets = {} cntnr_descs = {} for cntnr in parsed_container_list: cntnr_name = cntnr.attributes["name"].value res_sets[cntnr_name] = [] for cntnr in parsed_container_list: cntnr_name = cntnr.attributes["name"].value cntnr_desc = cntnr.getElementsByTagName('desc') if res_sets.has_key(cntnr_name): res_set = [] result_list = cntnr.getElementsByTagName('result') for result in result_list: x = string.atol(result.attributes["x"].value) y = string.atof(result.attributes["y"].value) res_set.append((x, y)) res_sets[cntnr_name] = res_set cntnr_descs[cntnr_name] = cntnr_desc[0] return (x_label, y_label, cntnr_descs, res_sets) def get(self, res_dir, test_name): cntnr_list = self.__test_to_container_res_sets[test_name] f_name = res_dir + '/' + self.__test_to_f_names[test_name] parsed = self.__parse_result_sets(f_name, cntnr_list) x_label = parsed[0] y_label = parsed[1] cntnr_descs = parsed[2] res_sets = parsed[3] cntnr_list = self.__sorter().sort(cntnr_list, res_sets) return res(x_label, y_label, cntnr_list, cntnr_descs, res_sets) class image_maker: """ This class creates a svg file from a result set. """ class __style_chooser: def __init__(self): self.native_re = re.compile(r'n_(?:.*?)') self.native_tick_mark_0 = tick_mark.blackdtri self.native_tick_mark_1 = tick_mark.blackdia self.native_line_style_0 = line_style.gray50_dash1 self.native_line_style_1 = line_style.gray50_dash2 self.mask_re = re.compile(r'mask(?:.*?)') self.mod_re = re.compile(r'mod(?:.*?)') self.rb_tree_mmap_rb_tree_set_re = re.compile(r'rb_tree_mmap_rb_tree_set(?:.*?)') self.rb_tree_mmap_lu_mtf_set_re = re.compile(r'rb_tree_mmap_lu_mtf_set(?:.*?)') self.splay_re = re.compile(r'splay(?:.*?)') self.rb_tree_re = re.compile(r'rb_tree(?:.*?)') self.ov_tree_re = re.compile(r'ov_tree(?:.*?)') self.splay_tree_re = re.compile(r'splay_tree(?:.*?)') self.pat_trie_re = re.compile(r'pat_trie(?:.*?)') self.lc_1div8_1div2_re = re.compile(r'lc_1div8_1div2(?:.*?)') self.lc_1div8_1div1_re = re.compile(r'lc_1div8_1div1(?:.*?)') self.mcolc_1div2_re = re.compile(r'mcolc_1div2(?:.*?)') def choose(self, cntnr): if self.native_re.search(cntnr): if cntnr == 'n_pq_vector': return (self.native_tick_mark_1, self.native_line_style_1) return (self.native_tick_mark_0, self.native_line_style_0) # tick_mark predefined # square, circle3, dia, tri, dtri, star, plus5, x5, gray70dia, blackdtri, blackdia if self.mask_re.search(cntnr): clr = color.navy elif self.mod_re.search(cntnr): clr = color.green4 elif self.rb_tree_mmap_rb_tree_set_re.search(cntnr): clr = color.mediumblue tm = tick_mark.square elif self.rb_tree_mmap_lu_mtf_set_re.search(cntnr) or cntnr == 'rc_binomial_heap': clr = color.gray50 tm = tick_mark.dia elif self.splay_tree_re.search(cntnr) or cntnr == 'binomial_heap': clr = color.gray58 tm = tick_mark.tri elif self.rb_tree_re.search(cntnr) or cntnr == 'binary_heap': clr = color.red3 tm = tick_mark.dtri elif self.ov_tree_re.search(cntnr) or cntnr == 'thin_heap': clr = color.orangered1 tm = tick_mark.star elif self.pat_trie_re.search(cntnr) or cntnr == 'pairing_heap': clr = color.blueviolet tm = tick_mark.plus5 else: sys.stderr.write(cntnr + '\n') raise exception # mask / mod if cntnr.find('lc_1div8_1div') <> -1: if cntnr.find('mask') <> -1: # mask if self.lc_1div8_1div2_re.search(cntnr): if cntnr.find('nsth') <> -1: tm = tick_mark.x5 else: tm = tick_mark.gray70dia if self.lc_1div8_1div1_re.search(cntnr): if cntnr.find('nsth') <> -1: tm = tick_mark.dia else: tm = tick_mark.circle3 else: # mod if self.lc_1div8_1div2_re.search(cntnr): if cntnr.find('nsth') <> -1: tm = tick_mark.tri else: tm = tick_mark.square if self.lc_1div8_1div1_re.search(cntnr): if cntnr.find('nsth') <> -1: tm = tick_mark.dtri else: tm = tick_mark.star if self.mcolc_1div2_re.search(cntnr): tm = tick_mark.circle3 return (tm, line_style.T(color = clr, width = 2)) def __init__(self): self.__sc = self.__style_chooser() self.__mmap_re = re.compile('mmap_') def __container_label_name(self, cntnr): return self.__mmap_re.sub('\nmmap_\n', cntnr) def make(self, res, of_name): print of_name # theme settings theme.debug_level = 3 theme.output_format = 'svg' theme.scale_factor = 2 theme.default_line_width = 0.5 theme.default_font_size = 8 theme.use_color = 1 theme.reinitialize() # canvas settings f = file(of_name, "w") can = canvas.init(f, "svg") # axes y_tick_interval = self.__get_y_tics(res) xaxis = axis.X(format = "/6/i/a-90{}%d", tic_interval = 200, label = res.x_label, label_offset = (0, -20)) yaxis = axis.Y(format = "/6/i/a0{}%.2e", tic_interval = y_tick_interval, tic_label_offset = (-25, 0), label = res.y_label, label_offset = (-15, 0)) # legend legend_lines = len(res.cntnr_list) legend_vloc = 80 + (legend_lines * 10) legend_hloc = -0 lg = legend.T(loc=(legend_hloc,-legend_vloc), frame_line_style = None, inter_row_sep = 2) # plot datasets ar = area.T(x_axis = xaxis, y_axis = yaxis, legend = lg, size = (240,110), x_range = (0, 2200)) plot_list = [] for cntnr in res.cntnr_list: style = self.__sc.choose(cntnr) pl = line_plot.T(label = self.__container_label_name(cntnr), data = res.res_sets[cntnr], tick_mark = style[0], line_style = style[1]) plot_list.append(pl) for plot in plot_list: ar.add_plot(plot) # render image ar.draw(can) can.close() def __get_y_max_min(self, res): mx = 0 nx = 0 for cntnr in res.cntnr_list: m = max(d[1] for d in res.res_sets[cntnr]) mx = max(m, mx) n = min(d[1] for d in res.res_sets[cntnr]) nx = min(n, nx) return (mx, nx) def __get_x_max_min(self, res): mx = 0 nx = 0 for cntnr in res.cntnr_list: m = max(d[0] for d in res.res_sets[cntnr]) mx = max(m, mx) n = min(d[0] for d in res.res_sets[cntnr]) nx = min(n, nx) return (mx, nx) def __get_y_tics(self, res): mx = 0 for cntnr in res.cntnr_list: m = max(d[1] for d in res.res_sets[cntnr]) mx = max(m, mx) return mx / 5 def main(test_infos_f_name, res_dir, doc_dir): xmls_dat = minidom.parse(test_infos_f_name) for test in xmls_dat.getElementsByTagName('test'): # parse results test_name = test.attributes['name'].value res_gtr = res_getter(test_infos_f_name) res = res_gtr.get(res_dir, test_name) # generate image image_mkr = image_maker() svg_of_name = doc_dir + '/pbds_' + test_name + '.svg' image_mkr.make(res, svg_of_name) if __name__ == "__main__": """ This module takes 3 parameters from the command line: Tests info XML file name Test results directory Image output directory """ usg = "make_graph.py <test_info_file> <res_dir> <image_dir>\n" if len(sys.argv) != 4: sys.stderr.write(usg) raise exception main(sys.argv[1], sys.argv[2], sys.argv[3])
gpl-2.0
yonglehou/scikit-learn
sklearn/utils/metaestimators.py
281
2353
"""Utilities for meta-estimators""" # Author: Joel Nothman # Andreas Mueller # Licence: BSD from operator import attrgetter from functools import update_wrapper __all__ = ['if_delegate_has_method'] class _IffHasAttrDescriptor(object): """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if the ``attribute_name`` is not present on the base object. This allows ducktyping of the decorated method based on ``attribute_name``. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, attribute_name): self.fn = fn self.get_attribute = attrgetter(attribute_name) # update the docstring of the descriptor update_wrapper(self, fn) def __get__(self, obj, type=None): # raise an AttributeError if the attribute is not present on the object if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self.get_attribute(obj) # lambda, but not partial, allows help() to work with update_wrapper out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # update the docstring of the returned function update_wrapper(out, self.fn) return out def if_delegate_has_method(delegate): """Create a decorator for methods that are delegated to a sub-estimator This enables ducktyping by hasattr returning True according to the sub-estimator. >>> from sklearn.utils.metaestimators import if_delegate_has_method >>> >>> >>> class MetaEst(object): ... def __init__(self, sub_est): ... self.sub_est = sub_est ... ... @if_delegate_has_method(delegate='sub_est') ... def predict(self, X): ... return self.sub_est.predict(X) ... >>> class HasPredict(object): ... def predict(self, X): ... return X.sum(axis=1) ... >>> class HasNoPredict(object): ... pass ... >>> hasattr(MetaEst(HasPredict()), 'predict') True >>> hasattr(MetaEst(HasNoPredict()), 'predict') False """ return lambda fn: _IffHasAttrDescriptor(fn, '%s.%s' % (delegate, fn.__name__))
bsd-3-clause
dzimmerer/pytorchcodehelpers
pytorchcodehelpers/pytcodetool.py
1
1291
import sys import linecache from pytorchcodehelpers.pytorchsize import InspectNet if __name__ == '__main__': rel_path = sys.argv[1] file_path = sys.argv[2] line_start = int(sys.argv[3]) line_end = int(sys.argv[4]) file_name = rel_path.replace("/" , ".")[:-3] import_str = "from " + file_name + " import *" lines = [] for i in range(line_start, line_end + 1): lines.append(linecache.getline(file_path, i)) lines = "".join(lines) inpt_size = input("Give the input size (default: 1 3 128 128) : ") inpt_size = inpt_size if inpt_size else "1 3 128 128" inpt_size = tuple(map(int, inpt_size.split(" "))) net_inspect = InspectNet(input_size=(inpt_size), pre_exec_str=import_str) net_inspect.inspect_net(lines) get_class_anwser = input("Get automatic generated class ? (default: N) : ") get_class_anwser = get_class_anwser if get_class_anwser else "N" if get_class_anwser.lower() == "y" or get_class_anwser.lower() == "yes": m_class_name = input("Class name ? (default: NewModule) : ") m_class_name = m_class_name if m_class_name else "NewModule" net_inspect.name = m_class_name print("\n") print(net_inspect.get_class_str()) # print(lines) print("\nDone.")
apache-2.0
ageron/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/io_test.py
133
5063
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tf.learn IO operation tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random # pylint: disable=wildcard-import from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.python.platform import test # pylint: enable=wildcard-import class IOTest(test.TestCase): # pylint: disable=undefined-variable """tf.learn IO operation tests.""" def test_pandas_dataframe(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.DataFrame(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels[0], list(classifier.predict_classes(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) else: print("No pandas installed. pandas-related tests are skipped.") def test_pandas_series(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.Series(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels, list(classifier.predict_classes(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) def test_string_data_formats(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top with self.assertRaises(ValueError): learn.io.extract_pandas_data(pd.DataFrame({"Test": ["A", "B"]})) with self.assertRaises(ValueError): learn.io.extract_pandas_labels(pd.DataFrame({"Test": ["A", "B"]})) def test_dask_io(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top # test dask.dataframe df = pd.DataFrame( dict( a=list("aabbcc"), b=list(range(6))), index=pd.date_range( start="20100101", periods=6)) ddf = dd.from_pandas(df, npartitions=3) extracted_ddf = extract_dask_data(ddf) self.assertEqual( extracted_ddf.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_ddf.divisions)) self.assertEqual( extracted_ddf.columns.tolist(), ["a", "b"], "Failed with columns = {0}".format(extracted_ddf.columns)) # test dask.series labels = ddf["a"] extracted_labels = extract_dask_labels(labels) self.assertEqual( extracted_labels.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_labels.divisions)) # labels should only have one column with self.assertRaises(ValueError): extract_dask_labels(ddf) else: print("No dask installed. dask-related tests are skipped.") def test_dask_iris_classification(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) data = dd.from_pandas(data, npartitions=2) labels = pd.DataFrame(iris.target) labels = dd.from_pandas(labels, npartitions=2) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) predictions = data.map_partitions(classifier.predict).compute() score = accuracy_score(labels.compute(), predictions) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
apache-2.0
yonglehou/scikit-learn
examples/ensemble/plot_ensemble_oob.py
257
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <hui.kian.ho@gmail.com> # Gilles Louppe <g.louppe@gmail.com> # Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
mxjl620/scikit-learn
examples/ensemble/plot_ensemble_oob.py
257
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <hui.kian.ho@gmail.com> # Gilles Louppe <g.louppe@gmail.com> # Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
benoitsteiner/tensorflow-xsmm
tensorflow/python/data/kernel_tests/map_dataset_op_test.py
5
27469
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the experimental input pipeline ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import threading import time import warnings import numpy as np from tensorflow.python.client import session from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import script_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import variable_scope from tensorflow.python.platform import test class MapDatasetTest(test.TestCase): def _buildMapDataset(self, components, count): def _map_fn(x, y, z): return math_ops.square(x), math_ops.square(y), math_ops.square(z) return (dataset_ops.Dataset.from_tensor_slices(components).map(_map_fn) .repeat(count)) def testMapDataset(self): """Test an dataset that maps a TF function across its input elements.""" # The pipeline is TensorSliceDataset -> MapDataset(square_3) -> # RepeatDataset(count). components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) count = array_ops.placeholder(dtypes.int64, shape=[]) dataset = self._buildMapDataset(components, count) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([c.shape[1:] for c in components], [t.shape for t in get_next]) with self.test_session() as sess: # Test single-threaded access to the iterator. sess.run(init_op, feed_dict={count: 14}) for _ in range(14): for i in range(7): result = sess.run(get_next) for component, result_component in zip(components, result): self.assertAllEqual(component[i]**2, result_component) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test multi-threaded access to the same iterator. sess.run(init_op, feed_dict={count: 18}) results = [] def iterator_thread(): while True: try: results.append(sess.run(get_next)) except errors.OutOfRangeError: return threads = [self.checkedThread(target=iterator_thread) for _ in range(8)] for t in threads: t.start() for t in threads: t.join() # `results` will contain the same elements components**2 # repeated 18 times, but in a non-deterministic order. Sort the # results, and assert that each element of components**2 is # produced 18 times. results.sort(key=lambda x: x[0]) for i in range(7): for j in range(18): for component, result_component in zip(components, results[i * 18 + j]): self.assertAllEqual(component[i]**2, result_component) def _buildParallelMapDataset(self, components, count, num_parallel_calls, output_buffer_size): def _map_fn(x, y, z): return math_ops.square(x), math_ops.square(y), math_ops.square(z) return (dataset_ops.Dataset.from_tensor_slices(components) .map(_map_fn, num_parallel_calls=num_parallel_calls) .prefetch(output_buffer_size) .repeat(count)) def testParallelMapDataset(self): """Test an dataset that maps a TF function across its input elements.""" # The pipeline is TensorSliceDataset -> ParallelMapDataset(square_3) -> # RepeatDataset(count). components = (np.arange(7), np.array([[1, 2, 3]]) * np.arange(7)[:, np.newaxis], np.array(37.0) * np.arange(7)) count = array_ops.placeholder(dtypes.int64, shape=[]) num_parallel_calls = array_ops.placeholder(dtypes.int32, shape=[]) output_buffer_size = array_ops.placeholder(dtypes.int64, shape=[]) dataset = self._buildParallelMapDataset( components, count, num_parallel_calls, output_buffer_size) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() self.assertEqual([c.shape[1:] for c in components], [t.shape for t in get_next]) with self.test_session() as sess: def do_test(num_parallel_calls_val, output_buffer_size_val): # Test single-threaded access to the iterator. sess.run(init_op, feed_dict={ count: 14, num_parallel_calls: num_parallel_calls_val, output_buffer_size: output_buffer_size_val}) for _ in range(14): for i in range(7): result = sess.run(get_next) for component, result_component in zip(components, result): self.assertAllEqual(component[i]**2, result_component) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # Test multi-threaded access to the same iterator. sess.run(init_op, feed_dict={ count: 18, num_parallel_calls: num_parallel_calls_val, output_buffer_size: output_buffer_size_val}) results = [] def iterator_thread(): while True: try: results.append(sess.run(get_next)) except errors.OutOfRangeError: return threads = [self.checkedThread(target=iterator_thread) for _ in range(64)] for t in threads: t.start() for t in threads: t.join() # `results` will contain the same elements components**2 # repeated 18 times, but in a non-deterministic order. Sort the # results, and assert that each element of components**2 is # produced 18 times. results.sort(key=lambda x: x[0]) for i in range(7): for j in range(18): for component, result_component in zip(components, results[i * 18 + j]): self.assertAllEqual(component[i]**2, result_component) for num_parallel_calls_val, output_buffer_size_val in [ (1, 1), (1, 2), (2, 2), (2, 4), (8, 8), (8, 16)]: do_test(num_parallel_calls_val, output_buffer_size_val) def testImplicitDisposeParallelMapDataset(self): # Tests whether a parallel map dataset will be cleaned up correctly when # the pipeline does not run it until exhaustion. # The pipeline is TensorSliceDataset -> MapDataset(square_3) -> # RepeatDataset(1000). components = (np.arange(1000), np.array([[1, 2, 3]]) * np.arange(1000)[:, np.newaxis], np.array(37.0) * np.arange(1000)) dataset = self._buildParallelMapDataset(components, 1000, 100, 100) # NOTE(mrry): Also test that the prefetching thread is cancelled correctly. dataset = dataset.prefetch(100) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) def testParallelMapUnspecifiedOutputSize(self): components = np.array([1., 2., 3., np.nan, 5.]).astype(np.float32) dataset = (dataset_ops.Dataset.from_tensor_slices(components) .map(lambda x: array_ops.check_numerics(x, "message"), num_parallel_calls=2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) def testParallelMapError(self): components = np.array([1., 2., 3., np.nan, 5.]).astype(np.float32) dataset = (dataset_ops.Dataset.from_tensor_slices(components) .map(lambda x: array_ops.check_numerics(x, "message"), num_parallel_calls=2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) # The 4th element is NaN, so `array_ops.check_numerics()` should fail. with self.assertRaises(errors.InvalidArgumentError): sess.run(get_next) sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testPrefetchError(self): components = np.array([1., 2., 3., np.nan, 5.]).astype(np.float32) dataset = (dataset_ops.Dataset.from_tensor_slices(components) .map(lambda x: array_ops.check_numerics(x, "message")) .prefetch(2)) iterator = dataset.make_initializable_iterator() init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for _ in range(3): sess.run(get_next) # The 4th element is NaN, so `array_ops.check_numerics()` should fail. with self.assertRaises(errors.InvalidArgumentError): sess.run(get_next) sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureHashTable(self): # NOTE(mrry): We must use the V2 variants of `HashTable` # etc. because these produce a `tf.resource`-typed output that is # compatible with the in-graph function implementation. default_val = -1 keys = constant_op.constant(["brain", "salad", "surgery"]) values = constant_op.constant([0, 1, 2], dtypes.int64) table = lookup_ops.HashTable( lookup_ops.KeyValueTensorInitializer(keys, values), default_val) input_sentences = dataset_ops.Dataset.from_tensor_slices( ["brain brain tank salad surgery", "surgery brain"]) iterator = (input_sentences .map(lambda x: string_ops.string_split([x]).values) .map(table.lookup) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(table.init) sess.run(init_op) sess.run(get_next) sess.run(get_next) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureQueue(self): elements = np.random.randint(100, size=[200]) queue = data_flow_ops.FIFOQueue(200, dtypes.int64, shapes=[]) enqueue_op = queue.enqueue_many(elements) close_op = queue.close() iterator = (dataset_ops.Dataset.from_tensors(0).repeat(-1) .map(lambda _: queue.dequeue()).make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(enqueue_op) sess.run(close_op) sess.run(init_op) for element in elements: self.assertEqual(element, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureSameResourceMultipleTimes(self): elements = np.random.randint(100, size=[200]) queue = data_flow_ops.FIFOQueue( 200, dtypes.int64, shapes=[], shared_name="shared_queue") queue_2 = data_flow_ops.FIFOQueue( 200, dtypes.int64, shapes=[], shared_name="shared_queue") enqueue_op = queue.enqueue_many(elements) close_op = queue.close() iterator = (dataset_ops.Dataset.from_tensors(0).repeat(-1) .map(lambda _: (queue.dequeue(), queue_2.dequeue())) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(enqueue_op) sess.run(close_op) sess.run(init_op) for i in range(100): self.assertEqual(sorted([elements[i * 2], elements[i * 2 + 1]]), sorted(sess.run(get_next))) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testCaptureVariable(self): counter_var = variable_scope.get_variable( "counter", (), dtypes.int32, use_resource=True) iterator = (dataset_ops.Dataset.from_tensors(0).repeat(10) .map(lambda _: counter_var.assign_add(1)) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(counter_var.initializer) sess.run(init_op) for i in range(10): self.assertEqual(i, sess.run(counter_var)) self.assertEqual(i + 1, sess.run(get_next)) self.assertEqual(10, sess.run(counter_var)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) self.assertEqual(10, sess.run(counter_var)) def testCaptureUninitializedVariableError(self): counter_var = variable_scope.get_variable( "counter", (), dtypes.int32, use_resource=True) iterator = (dataset_ops.Dataset.from_tensors(0).repeat(10) .map(lambda _: counter_var.assign_add(1)) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) with self.assertRaises(errors.NotFoundError): sess.run(get_next) def testSeededStatefulOperatorIsProperlyStateful(self): iterator = (dataset_ops.Dataset.from_tensors(0).repeat(10) .map(lambda _: random_ops.random_uniform((), seed=11)).batch(2) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) random_values = [] with self.assertRaises(errors.OutOfRangeError): while True: random_values.extend(sess.run(get_next)) self.assertEqual(10, len(random_values)) self.assertGreater(np.abs(np.diff(random_values)).max(), 1e-6) sess.run(init_op) random_values_2 = [] with self.assertRaises(errors.OutOfRangeError): while True: random_values_2.extend(sess.run(get_next)) # Randomness is repeatable given same seed self.assertAllClose(random_values, random_values_2) def testMapDict(self): iterator = (dataset_ops.Dataset.range(10) .map(lambda x: {"foo": x * 2, "bar": x ** 2}) .map(lambda d: d["foo"] + d["bar"]) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): self.assertEqual(i * 2 + i ** 2, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testMapNamedtuple(self, count=10): # construct dataset of tuples labels = dataset_ops.Dataset.range(count) images = labels.map(lambda l: -l) dataset_tuple = dataset_ops.Dataset.zip((labels, images)) # convert dataset of tuples to dataset of namedtuples example = namedtuple("Example", ["label", "image"]) dataset_namedtuple = dataset_tuple.map(example) def preprocess_tuple(label, image): image = 2 * image return label, image def preprocess_namedtuple(example): return example._replace(image=2 * example.image) # preprocess both datasets dataset_tuple = dataset_tuple.map(preprocess_tuple) dataset_namedtuple = dataset_namedtuple.map(preprocess_namedtuple) next_tuple = dataset_tuple.make_one_shot_iterator().get_next() next_namedtuple = dataset_namedtuple.make_one_shot_iterator().get_next() # make sure both datasets contain the same data with self.test_session() as sess: for i in range(count): tuple_, namedtuple_ = sess.run([next_tuple, next_namedtuple]) self.assertEqual(tuple_, namedtuple_) self.assertEqual(tuple_, (i, -2 * i)) with self.assertRaises(errors.OutOfRangeError): sess.run(next_namedtuple) def testUseStepContainerInMap(self): row = np.arange(6) iterator = ( dataset_ops.Dataset.from_tensors(row) .map(lambda elems: functional_ops.map_fn(lambda x: x * x, elems)) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) self.assertAllEqual(row ** 2, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testPrefetch(self): # We will use this event to test that `_map_py_func()` has been # invoked a certain number of times (6 times, to be exact) after # consuming fewer elements from the iterator. ev = threading.Event() set_event_during_invocation = 5 def _map_py_func(x): if x == set_event_during_invocation: ev.set() return x * x def _map_fn(x): return script_ops.py_func(_map_py_func, [x], x.dtype) buffer_size_placeholder = array_ops.placeholder(dtypes.int64, shape=[]) iterator = ( dataset_ops.Dataset.range(100) .map(_map_fn) .prefetch(buffer_size_placeholder) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: # Simple test that prefetch yields the expected values in the # expected order. for buffer_size in [1, 10, 100, 1000]: sess.run(init_op, feed_dict={buffer_size_placeholder: buffer_size}) for i in range(100): self.assertEqual(i * i, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) # We can indirectly observe that varying the buffer size has the # intended effect by observing when `ev` is set (on the 6th # invocation of `_map_py_func()`). # NOTE(mrry): We do not test with `buffer_size == # set_event_during_invocation`, because we must consume at least # one element to start the prefetching. for buffer_size in range(1, set_event_during_invocation): event_will_be_set_after_consuming = ( set_event_during_invocation - buffer_size + 1) ev.clear() sess.run(init_op, feed_dict={buffer_size_placeholder: buffer_size}) for i in range(event_will_be_set_after_consuming): self.assertFalse(ev.is_set()) self.assertEqual(i * i, sess.run(get_next)) ev.wait() for i in range(event_will_be_set_after_consuming, 100): self.assertEqual(i * i, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testReturnList(self): iterator = (dataset_ops.Dataset.range(10) .map(lambda x: [x, constant_op.constant(37.0)]) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): self.assertEqual((i, 37.0), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testMultiOutputPyFunc(self): # The `tf.py_func()` op returns a list of tensors for its outputs. def _map_fn(x_tensor): def _map_py_func(x): return x, np.array(37.0, dtype=np.float64) return script_ops.py_func( _map_py_func, [x_tensor], [dtypes.int64, dtypes.float64]) iterator = (dataset_ops.Dataset.range(10) .map(_map_fn) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): self.assertEqual((i, 37.0), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def assertSparseValuesEqual(self, a, b): self.assertAllEqual(a.indices, b.indices) self.assertAllEqual(a.values, b.values) self.assertAllEqual(a.dense_shape, b.dense_shape) def testSparse(self): def _sparse(i): return sparse_tensor.SparseTensorValue( indices=np.array([[0, 0]]), values=(i * np.array([1])), dense_shape=np.array([1, 1])) iterator = (dataset_ops.Dataset.range(10) .map(_sparse) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): actual = sess.run(get_next) self.assertTrue(isinstance(actual, sparse_tensor.SparseTensorValue)) self.assertSparseValuesEqual(actual, _sparse(i)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testSparseChain(self): def _sparse(i): return sparse_tensor.SparseTensorValue( indices=np.array([[0, 0]]), values=(i * np.array([1])), dense_shape=np.array([1, 1])) def _check(i): self.assertTrue(sparse_tensor.is_sparse(i)) return sparse_ops.sparse_concat(0, [i, i]) iterator = ( dataset_ops.Dataset.range(10).map(_sparse).map(_check) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): actual = sess.run(get_next) self.assertTrue(isinstance(actual, sparse_tensor.SparseTensorValue)) self.assertSparseValuesEqual(actual, _check(_sparse(i)).eval()) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testParallelMapOutOfRangeError(self): def raising_py_func(i): if i == 100: raise StopIteration() else: return i iterator = ( dataset_ops.Dataset.range(105) .map(lambda x: script_ops.py_func(raising_py_func, [x], dtypes.int64), num_parallel_calls=2) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(100): self.assertEqual(i, sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testConstantOutput(self): iterator = ( dataset_ops.Dataset.range(10).map(lambda x: [x, "hello", 10]) .make_initializable_iterator()) init_op = iterator.initializer get_next = iterator.get_next() with self.test_session() as sess: sess.run(init_op) for i in range(10): self.assertEqual((i, b"hello", 10), sess.run(get_next)) with self.assertRaises(errors.OutOfRangeError): sess.run(get_next) def testWarnOnLookupTable(self): def collecting_function(x): _ = lookup_ops.HashTable( lookup_ops.KeyValueTensorInitializer([], []), 0.0, name="t1") return x warnings.simplefilter("always") with warnings.catch_warnings(record=True) as w: _ = dataset_ops.Dataset.range(10).map(collecting_function) # NOTE(mrry): Python 3 prints other warnings in addition to the one we are # testing, so we search for the expected warning. self.assertGreaterEqual(len(w), 1) found_warning = False for warning in w: if ("Creating lookup tables inside a function passed to Dataset.map() is " "not supported." in str(warning)): found_warning = True break self.assertTrue(found_warning) def testNestedDatasetError(self): dataset = dataset_ops.Dataset.from_tensors([1.0, 2.0, 3.0]) with self.assertRaisesRegexp( NotImplementedError, r"The Dataset.map\(\) transformation does not " "currently support nested datasets as outputs."): _ = dataset.map(dataset_ops.Dataset.from_tensor_slices) class MapDatasetBenchmark(test.Benchmark): def benchmarkChainOfMaps(self): chain_lengths = [0, 1, 2, 5, 10, 20, 50] for chain_length in chain_lengths: with ops.Graph().as_default(): dataset = dataset_ops.Dataset.from_tensors(0).repeat(None) for _ in range(chain_length): dataset = dataset.map(lambda x: x) iterator = dataset.make_one_shot_iterator() next_element = iterator.get_next() with session.Session() as sess: for _ in range(5): sess.run(next_element.op) deltas = [] for _ in range(100): start = time.time() for _ in range(100): sess.run(next_element.op) end = time.time() deltas.append(end - start) median_wall_time = np.median(deltas) / 100 print("Map dataset chain length: %d Median wall time: %f" % (chain_length, median_wall_time)) self.report_benchmark( iters=1000, wall_time=median_wall_time, name="benchmark_map_dataset_chain_latency_%d" % chain_length) def benchmarkMapFanOut(self): fan_outs = [1, 2, 5, 10, 20, 50, 100] for fan_out in fan_outs: with ops.Graph().as_default(): dataset = dataset_ops.Dataset.from_tensors( tuple(0 for _ in range(fan_out))).repeat(None).map(lambda *xs: xs) iterator = dataset.make_one_shot_iterator() next_element = iterator.get_next() with session.Session() as sess: for _ in range(5): sess.run(next_element[0].op) deltas = [] for _ in range(100): start = time.time() for _ in range(100): sess.run(next_element[0].op) end = time.time() deltas.append(end - start) median_wall_time = np.median(deltas) / 100 print("Map dataset fan out: %d Median wall time: %f" % (fan_out, median_wall_time)) self.report_benchmark( iters=1000, wall_time=median_wall_time, name="benchmark_map_dataset_fan_out_%d" % fan_out) if __name__ == "__main__": test.main()
apache-2.0
dimkal/mne-python
mne/viz/tests/test_decoding.py
10
3823
# Authors: Denis Engemann <denis.engemann@gmail.com> # Jean-Remi King <jeanremi.king@gmail.com> # # License: Simplified BSD import os.path as op import warnings from nose.tools import assert_raises, assert_equals import numpy as np from mne.epochs import equalize_epoch_counts, concatenate_epochs from mne.decoding import GeneralizationAcrossTime from mne import io, Epochs, read_events, pick_types from mne.utils import requires_sklearn, run_tests_if_main import matplotlib matplotlib.use('Agg') # for testing don't use X server data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') warnings.simplefilter('always') # enable b/c these tests throw warnings def _get_data(tmin=-0.2, tmax=0.5, event_id=dict(aud_l=1, vis_l=3), event_id_gen=dict(aud_l=2, vis_l=4), test_times=None): """Aux function for testing GAT viz""" gat = GeneralizationAcrossTime() raw = io.Raw(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg='mag', stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] decim = 30 # Test on time generalization within one condition with warnings.catch_warnings(record=True): epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, decim=decim) epochs_list = [epochs[k] for k in event_id] equalize_epoch_counts(epochs_list) epochs = concatenate_epochs(epochs_list) # Test default running gat = GeneralizationAcrossTime(test_times=test_times) gat.fit(epochs) gat.score(epochs) return gat @requires_sklearn def test_gat_plot_matrix(): """Test GAT matrix plot""" gat = _get_data() gat.plot() del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_diagonal(): """Test GAT diagonal plot""" gat = _get_data() gat.plot_diagonal() del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_times(): """Test GAT times plot""" gat = _get_data() # test one line gat.plot_times(gat.train_times_['times'][0]) # test multiple lines gat.plot_times(gat.train_times_['times']) # test multiple colors n_times = len(gat.train_times_['times']) colors = np.tile(['r', 'g', 'b'], int(np.ceil(n_times / 3)))[:n_times] gat.plot_times(gat.train_times_['times'], color=colors) # test invalid time point assert_raises(ValueError, gat.plot_times, -1.) # test float type assert_raises(ValueError, gat.plot_times, 1) assert_raises(ValueError, gat.plot_times, 'diagonal') del gat.scores_ assert_raises(RuntimeError, gat.plot) def chance(ax): return ax.get_children()[1].get_lines()[0].get_ydata()[0] @requires_sklearn def test_gat_chance_level(): """Test GAT plot_times chance level""" gat = _get_data() ax = gat.plot_diagonal(chance=False) ax = gat.plot_diagonal() assert_equals(chance(ax), .5) gat = _get_data(event_id=dict(aud_l=1, vis_l=3, aud_r=2, vis_r=4)) ax = gat.plot_diagonal() assert_equals(chance(ax), .25) ax = gat.plot_diagonal(chance=1.234) assert_equals(chance(ax), 1.234) assert_raises(ValueError, gat.plot_diagonal, chance='foo') del gat.scores_ assert_raises(RuntimeError, gat.plot) @requires_sklearn def test_gat_plot_nonsquared(): """Test GAT diagonal plot""" gat = _get_data(test_times=dict(start=0.)) gat.plot() ax = gat.plot_diagonal() scores = ax.get_children()[1].get_lines()[2].get_ydata() assert_equals(len(scores), len(gat.estimators_)) run_tests_if_main()
bsd-3-clause