repo_name
stringlengths
6
103
path
stringlengths
4
209
copies
stringlengths
1
4
size
stringlengths
4
7
content
stringlengths
838
1.04M
license
stringclasses
15 values
msultan/msmbuilder
msmbuilder/utils/io.py
9
2305
from __future__ import print_function, division, absolute_import import contextlib import pickle import warnings import numpy as np from sklearn.externals.joblib import load as jl_load __all__ = ['printoptions', 'verbosedump', 'verboseload', 'dump', 'load'] warnings.warn("This module might be deprecated in favor of msmbuilder.io", PendingDeprecationWarning) @contextlib.contextmanager def printoptions(*args, **kwargs): original = np.get_printoptions() np.set_printoptions(*args, **kwargs) yield np.set_printoptions(**original) def dump(value, filename, compress=None, cache_size=None): """Save an arbitrary python object using pickle. Parameters ----------- value : any Python object The object to store to disk using pickle. filename : string The name of the file in which it is to be stored compress : None No longer used cache_size : positive number, optional No longer used See Also -------- load : corresponding loader """ if compress is not None or cache_size is not None: warnings.warn("compress and cache_size are no longer valid options") with open(filename, 'wb') as f: pickle.dump(value, f) def load(filename): """Load an object that has been saved with dump. We try to open it using the pickle protocol. As a fallback, we use joblib.load. Joblib was the default prior to msmbuilder v3.2 Parameters ---------- filename : string The name of the file to load. """ try: with open(filename, 'rb') as f: return pickle.load(f) except Exception as e1: try: return jl_load(filename) except Exception as e2: raise IOError( "Unable to load {} using the pickle or joblib protocol.\n" "Pickle: {}\n" "Joblib: {}".format(filename, e1, e2) ) def verbosedump(value, fn, compress=None): """Verbose wrapper around dump""" print('Saving "%s"... (%s)' % (fn, type(value))) dump(value, fn, compress=compress) def verboseload(fn): """Verbose wrapper around load. Try to use pickle. If that fails, try to use joblib. """ print('loading "%s"...' % fn) return load(fn)
lgpl-2.1
uber/pyro
tests/distributions/test_zero_inflated.py
1
4929
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import math import pytest import torch from pyro.distributions import ( Delta, NegativeBinomial, Normal, Poisson, ZeroInflatedDistribution, ZeroInflatedNegativeBinomial, ZeroInflatedPoisson, ) from pyro.distributions.util import broadcast_shape from tests.common import assert_close @pytest.mark.parametrize("gate_shape", [(), (2,), (3, 1), (3, 2)]) @pytest.mark.parametrize("base_shape", [(), (2,), (3, 1), (3, 2)]) def test_zid_shape(gate_shape, base_shape): gate = torch.rand(gate_shape) base_dist = Normal(torch.randn(base_shape), torch.randn(base_shape).exp()) d = ZeroInflatedDistribution(base_dist, gate=gate) assert d.batch_shape == broadcast_shape(gate_shape, base_shape) assert d.support == base_dist.support d2 = d.expand([4, 3, 2]) assert d2.batch_shape == (4, 3, 2) @pytest.mark.parametrize("rate", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0]) def test_zip_0_gate(rate): # if gate is 0 ZIP is Poisson zip1 = ZeroInflatedPoisson(torch.tensor(rate), gate=torch.zeros(1)) zip2 = ZeroInflatedPoisson(torch.tensor(rate), gate_logits=torch.tensor(-99.9)) pois = Poisson(torch.tensor(rate)) s = pois.sample((20,)) zip1_prob = zip1.log_prob(s) zip2_prob = zip2.log_prob(s) pois_prob = pois.log_prob(s) assert_close(zip1_prob, pois_prob) assert_close(zip2_prob, pois_prob) @pytest.mark.parametrize("rate", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0]) def test_zip_1_gate(rate): # if gate is 1 ZIP is Delta(0) zip1 = ZeroInflatedPoisson(torch.tensor(rate), gate=torch.ones(1)) zip2 = ZeroInflatedPoisson(torch.tensor(rate), gate_logits=torch.tensor(math.inf)) delta = Delta(torch.zeros(1)) s = torch.tensor([0.0, 1.0]) zip1_prob = zip1.log_prob(s) zip2_prob = zip2.log_prob(s) delta_prob = delta.log_prob(s) assert_close(zip1_prob, delta_prob) assert_close(zip2_prob, delta_prob) @pytest.mark.parametrize("gate", [0.0, 0.25, 0.5, 0.75, 1.0]) @pytest.mark.parametrize("rate", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0]) def test_zip_mean_variance(gate, rate): num_samples = 1000000 zip_ = ZeroInflatedPoisson(torch.tensor(rate), gate=torch.tensor(gate)) s = zip_.sample((num_samples,)) expected_mean = zip_.mean estimated_mean = s.mean() expected_std = zip_.stddev estimated_std = s.std() assert_close(expected_mean, estimated_mean, atol=1e-02) assert_close(expected_std, estimated_std, atol=1e-02) @pytest.mark.parametrize("total_count", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0]) @pytest.mark.parametrize("probs", [0.1, 0.5, 0.9]) def test_zinb_0_gate(total_count, probs): # if gate is 0 ZINB is NegativeBinomial zinb1 = ZeroInflatedNegativeBinomial( total_count=torch.tensor(total_count), gate=torch.zeros(1), probs=torch.tensor(probs), ) zinb2 = ZeroInflatedNegativeBinomial( total_count=torch.tensor(total_count), gate_logits=torch.tensor(-99.9), probs=torch.tensor(probs), ) neg_bin = NegativeBinomial(torch.tensor(total_count), probs=torch.tensor(probs)) s = neg_bin.sample((20,)) zinb1_prob = zinb1.log_prob(s) zinb2_prob = zinb2.log_prob(s) neg_bin_prob = neg_bin.log_prob(s) assert_close(zinb1_prob, neg_bin_prob) assert_close(zinb2_prob, neg_bin_prob) @pytest.mark.parametrize("total_count", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0]) @pytest.mark.parametrize("probs", [0.1, 0.5, 0.9]) def test_zinb_1_gate(total_count, probs): # if gate is 1 ZINB is Delta(0) zinb1 = ZeroInflatedNegativeBinomial( total_count=torch.tensor(total_count), gate=torch.ones(1), probs=torch.tensor(probs), ) zinb2 = ZeroInflatedNegativeBinomial( total_count=torch.tensor(total_count), gate_logits=torch.tensor(math.inf), probs=torch.tensor(probs), ) delta = Delta(torch.zeros(1)) s = torch.tensor([0.0, 1.0]) zinb1_prob = zinb1.log_prob(s) zinb2_prob = zinb2.log_prob(s) delta_prob = delta.log_prob(s) assert_close(zinb1_prob, delta_prob) assert_close(zinb2_prob, delta_prob) @pytest.mark.parametrize("gate", [0.0, 0.25, 0.5, 0.75, 1.0]) @pytest.mark.parametrize("total_count", [0.1, 0.5, 0.9, 1.0, 1.1, 2.0, 10.0]) @pytest.mark.parametrize("logits", [-0.5, 0.5, -0.9, 1.9]) def test_zinb_mean_variance(gate, total_count, logits): num_samples = 1000000 zinb_ = ZeroInflatedNegativeBinomial( total_count=torch.tensor(total_count), gate=torch.tensor(gate), logits=torch.tensor(logits), ) s = zinb_.sample((num_samples,)) expected_mean = zinb_.mean estimated_mean = s.mean() expected_std = zinb_.stddev estimated_std = s.std() assert_close(expected_mean, estimated_mean, atol=1e-01) assert_close(expected_std, estimated_std, atol=1e-1)
apache-2.0
vitaly-krugl/nupic
src/nupic/datafiles/extra/firstOrder/raw/makeDataset.py
15
3462
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Generate artificial datasets """ import numpy from nupic.data.file import File def createFirstOrderModel(numCategories=5, alpha=0.5): categoryList = ['cat%02d' % i for i in range(numCategories)] initProbability = numpy.ones(numCategories)/numCategories transitionTable = numpy.random.dirichlet(alpha=[alpha]*numCategories, size=numCategories) return categoryList, initProbability, transitionTable def generateFirstOrderData(model, numIterations=10000, seqLength=5, resets=True, suffix='train'): print "Creating %d iteration file with seqLength %d" % (numIterations, seqLength) print "Filename", categoryList, initProbability, transitionTable = model initProbability = initProbability.cumsum() transitionTable = transitionTable.cumsum(axis=1) outputFile = 'fo_%d_%d_%s.csv' % (numIterations, seqLength, suffix) print "Filename", outputFile fields = [('reset', 'int', 'R'), ('name', 'string', '')] o = File(outputFile, fields) seqIdx = 0 rand = numpy.random.rand() catIdx = numpy.searchsorted(initProbability, rand) for i in xrange(numIterations): rand = numpy.random.rand() if seqIdx == 0 and resets: catIdx = numpy.searchsorted(initProbability, rand) reset = 1 else: catIdx = numpy.searchsorted(transitionTable[catIdx], rand) reset = 0 o.write([reset,categoryList[catIdx]]) seqIdx = (seqIdx+1)%seqLength o.close() if __name__=='__main__': numpy.random.seed(1956) model = createFirstOrderModel() categoryList = model[0] categoryFile = open("categories.txt", 'w') for category in categoryList: categoryFile.write(category+'\n') categoryFile.close() #import pylab #pylab.imshow(model[2], interpolation='nearest') #pylab.show() for resets in [True, False]: for seqLength in [2, 10]: for numIterations in [1000, 10000, 100000]: generateFirstOrderData(model, numIterations=numIterations, seqLength=seqLength, resets=resets, suffix='train_%s' % ('resets' if resets else 'noresets',)) generateFirstOrderData(model, numIterations=10000, seqLength=seqLength, resets=resets, suffix='test_%s' % ('resets' if resets else 'noresets',))
agpl-3.0
Cysu/dlearn
docs/conf.py
1
8603
# -*- coding: utf-8 -*- # # dlearn documentation build configuration file, created by # sphinx-quickstart on Thu Apr 3 15:41:15 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import mock # Mock some third-party modules mock_modules = ['numpy', 'theano', 'theano.tensor', 'matplotlib', 'matplotlib.pyplot', 'mpl_toolkits.axes_grid1', 'skimage', 'skimage.transform', 'skimage.color', 'sklearn', 'sklearn.preprocessing'] for m in mock_modules: sys.modules[m] = mock.Mock() # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinxcontrib.napoleon' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'dlearn' copyright = u'2014, Tong Xiao' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = 'dev' # The full version, including alpha/beta/rc tags. release = 'dev' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'dlearndoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'dlearn.tex', u'dlearn Documentation', u'Tong Xiao', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'dlearn', u'dlearn Documentation', [u'Tong Xiao'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'dlearn', u'dlearn Documentation', u'Tong Xiao', 'dlearn', 'One line description of project.', 'Miscellaneous') ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
mit
cc-archive/libvalidator
libvalidator/__init__.py
1
13505
# -*- coding: utf-8 -*- """The core of the library. Copyright (C) 2008, 2009, 2010 Robert Gust‐Bardon and Creative Commons. Originally contributed by Robert Gust‐Bardon. This file is a part of the License Validation Library. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ __author__ = "Robert Gust‐Bardon and Creative Commons" __copyright__ = ("Copyright 2008, 2009, 2010 " "Robert Gust‐Bardon and Creative Commons") __credits__ = ["Robert Gust‐Bardon", "Asheesh Laroia"] __license__ = ("GNU Lesser General Public License Version 3 " "or any later version") __version__ = "0.1.0" __maintainer__ = "Robert Gust‐Bardon" __status__ = "Beta" import re, os, urlparse, urllib from xml.dom import minidom import html5lib from html5lib import treebuilders from pyRdfa import _process_DOM, Options from pyRdfa.transform.DublinCore import DC_transform import rdflib import cc.license class URLOpener(urllib.FancyURLopener): """Prevent the validation of Web pages that serve as an HTTP 404 message.""" def http_error_404(*args, **kwargs): raise IOError class libvalidator(object): """Extract license information.""" def __init__(self, *args, **kargs): """The constructor.""" # Namespaces that will be used in the SPARQL queries self.namespaces = { 'old': rdflib.Namespace('http://web.resource.org/cc/'), 'cc': rdflib.Namespace('http://creativecommons.org/ns#'), 'dc': rdflib.Namespace('http://purl.org/dc/elements/1.1/'), 'xhv': rdflib.Namespace('http://www.w3.org/1999/xhtml/vocab#') } # The base IRI of the document that is being parsed self.base = '' # The headers that were sent along with the document that is # being parsed self.headers = None # The location of the document that is being parsed self.location = None # The outcome of parsing self.result = { 'licensedObjects': {}, # FIXME misleading name (subject) 'licenses': {}, 'deprecated': False } def findBaseDocument(self): """Establish the IRI that will be used when the translation of a relative IRI into an absolute IRI will occur.""" # FIXME There is no support for CURIEs. # FIXME There is no support for ``xml:base``. for e in self.dom.getElementsByTagName('base'): if e.hasAttribute('href'): self.base = e.getAttribute('href') return if self.headers is not None: header = self.headers.get('Content-Location') if header is not None: self.base = unicode(header) return self.base = self.location def formDocument(self, code): """Parse the source code written in RDF/XML, HTML, or XHTML in order to obtain a DOM tree.""" # Translate CDATA blocks into PCDATA blocks. reCDATA = re.compile(r'<!\[CDATA\[((?:[^\]]+|\](?!\]>))*)\]\]>') for m in re.finditer(reCDATA, code): code = code.replace(m.group(0), m.group(1).replace('&', '&amp;') \ .replace('<', '&lt;') \ .replace('>', '&gt;')) # Try to construct a DOM tree using xml.dom.minidom and, if # that fails, fall back to using html5lib.HTMLParser to # accomplish the goal. dom = None try: dom = minidom.parseString(code) except: parser = html5lib.HTMLParser( tree=treebuilders.getTreeBuilder('dom') ) dom = parser.parse(code) return (dom, dom.toxml()) def extractLicensedObjects(self, code, base): """Extract licensed object from documents written in RDF/XML.""" # FIXME When it comes to RDF, the name of method is misleading, # because subjects are licensed, not objects (cf. the RDF # triple). # FIXME The base IRI is not used at all in this method. # Obtain a DOM tree and a well-formed document given a # document written in RDF/XML. (dom, code) = self.formDocument(code) # Obtain a graph from the DOM tree. graph = rdflib.ConjunctiveGraph() graph.parse(rdflib.StringInputSource(code.encode('utf-8'))) # Perform a SPARQL query looking for relations which state that # a subject is licensed. # FIXME Should dc:license be supported? for row in graph.query( 'SELECT ?a ?b WHERE {' '{ ?a old:license ?b }' ' UNION ' '{ ?a cc:license ?b }' ' UNION ' '{ ?a xhv:license ?b }' ' UNION ' '{ ?a dc:rights ?b }' ' UNION ' '{ ?a dc:rights.license ?b }' '}', initNs = dict( old = self.namespaces['old'], cc = self.namespaces['cc'], dc = self.namespaces['dc'], xhv = self.namespaces['xhv']) ): # Each row (the result) contains a pair consisting of a # subject and an object. # Create an empty list for the licensing information on a # given subject, should no information already exist. if not self.result['licensedObjects'].has_key(str(row[0])): self.result['licensedObjects'][str(row[0])] = [] # Case 1: the object is a blank node. if isinstance(row[1], rdflib.BNode): # FIXME Fish for interesting data (e.g. cc:Agent). """ triples = [] for r in graph.query('SELECT ?a ?b WHERE { '+ row[1].n3()+' ?a ?b }'): triples.append((str(r[0]), str(r[1]))) self.result['licensedObjects'][str(row[0])].append(triples) """ pass # Case 2: the object is an RDF URI reference. elif isinstance(row[1], rdflib.URIRef): # Check if the information has not already appeared. if str(row[1]) not in \ self.result['licensedObjects'][str(row[0])]: self.result['licensedObjects'][str(row[0])].\ append(str(row[1])) # Retrieve information about the license stated # using the object, if this license has not # appeared earlier. if not self.result['licenses'].has_key(str(row[1])): license = self.parseLicense(str(row[1])) # Check if any information about the license # stated by the object has been retrieved if license != str(row[1]): # Store the information about the retrieved # license self.result['licenses'][str(row[1])] = \ self.parseLicense(str(row[1])) # Case 3: the object is a literal. else: self.result['licensedObjects'][str(row[0])].\ append(str(row[1])) def parse(self, code, location = None, headers = None, openLocalFiles = False): """Parse the source code in order to retrieve statements referring to licensed subjects.""" # Use the default location, if none is given. if location is not None: self.location = location # Use the default headers, if none are given. if headers is not None: self.headers = headers # Parse the source code and obtains a DOM tree and well-formed # source code without any CDATA blocks. (self.dom, self.code) = self.formDocument(code) # Establish the base IRI for the document. self.findBaseDocument() # The following list stores all the documents written in # RDF/XML that are meant to be processed in order to retrieve # license information. sources = [] # Find parts of the document (be it elements or comments) that # contain RDF/XML. reRDF = re.compile( # <rdf:RDF '<([^\s<>]+)' # xmlns:dc="http://purl.org/dc/elements/1.1/" '\s+(?:[^>]+\s+)?' # xmlns 'xmlns' # :rdf '(?::[^=]+)?' # = '\s*=\s*' # "http://www\.w3\.org/1999/02/22-rdf-syntax-ns#" '(?:' '("http://www\.w3\.org/1999/02/22-rdf-syntax-ns#")' '|' '(\'http://www\.w3\.org/1999/02/22\-rdf\-syntax\-ns#\')' ')' # ><Work rdf:about="http://foo.bar/">...</Work> '.*?' # </rdf:RDF> '</\\1\s*>' , re.DOTALL) for m in re.finditer(reRDF, code): sources.append([self.base, m.group(0)]) # FIXME The element should only be classified as # deprecated in case it actually contains license # information. # Note: this bug was discovered in February 2009 thanks to # Mr. Hans Loepfe. self.result['deprecated'] = True # Obtain the RDF triples (written in RDF/XML) from the original # document. dump = _process_DOM(self.dom, self.location, 'xml', Options(warnings = False, transformers = [DC_transform])) # Obtain a graph from the document written using the RDF/XML # notation. graph = rdflib.ConjunctiveGraph() graph.parse(rdflib.StringInputSource(dump), format='xml') # Append the document written in RDF/XML to the list of # documents to be processed. sources.append([self.base, graph.serialize(format='xml')]) # Iterate over the objects that provide metadata about the # document that is being analysed. for row in graph.query('SELECT ?b WHERE { ?a xhv:meta ?b . }', initNs = dict(xhv = self.namespaces['xhv'])): # Try to retrieve the resource. try: reHyperlink = re.compile( '^(?:data:|((ftp|gopher|https?)://))\S+$', re.IGNORECASE ) if openLocalFiles == True or \ reHyperlink.search(row[0]) is not None: f = URLOpener().open(row[0]) # FIXME No Internet media type detection is # performed (it is assumed that the document # is written using the RDF/XML notation). if not unicode(row[0]).startswith('data:'): # FIXME The Content-Location HTTP header is # ignored. sources.append([str(row[0]), f.read()]) else: sources.append([self.base, f.read()]) except IOError: pass # Extract the license information from all the collected # documents written in RDF/XML. for (base, source) in sources: self.extractLicensedObjects(source, base) return self.result def parseLicense(self, iri): """Employ cc.license in order to obtain additional information about a license that is stated using an IRI.""" try: license = cc.license.selectors.choose('standard').by_uri(iri) except cc.license.CCLicenseError, err: # Return the original IRI, should no data on the license # be available through cc.license. return iri # Note: ``requires``, ``permits``, and ``prohibits`` were # originally not used due to a bug in cc.license. return {'title' : license.title(), 'description' : license.description(), 'jurisdiction' : license.jurisdiction, 'current_version' : license.current_version, 'version' : license.version, 'superseded' : license.superseded, 'deprecated' : license.deprecated, 'requires' : license.requires, 'permits' : license.permits, 'prohibits' : license.prohibits, 'libre' : license.libre, 'license_class' : license.license_class, 'license_code' : license.license_code, 'uri' : license.uri}
lgpl-3.0
tensorflow/privacy
research/neuracrypt_attack_2021/attack.py
1
21670
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # This program solves the NeuraCrypt challenge to 100% accuracy. # Given a set of encoded images and original versions of those, # it shows how to match the original to the encoded. import collections import hashlib import time import multiprocessing as mp import torch import numpy as np import torch.nn as nn import scipy.stats import matplotlib.pyplot as plt from PIL import Image import jax import jax.numpy as jn import objax import scipy.optimize import numpy as np import multiprocessing as mp # Objax neural network that's going to embed patches to a # low dimensional space to guess if two patches correspond # to the same orginal image. class Model(objax.Module): def __init__(self): IN = 15 H = 64 self.encoder =objax.nn.Sequential([ objax.nn.Linear(IN, H), objax.functional.leaky_relu, objax.nn.Linear(H, H), objax.functional.leaky_relu, objax.nn.Linear(H, 8)]) self.decoder =objax.nn.Sequential([ objax.nn.Linear(IN, H), objax.functional.leaky_relu, objax.nn.Linear(H, H), objax.functional.leaky_relu, objax.nn.Linear(H, 8)]) self.scale = objax.nn.Linear(1, 1, use_bias=False) def encode(self, x): # Encode turns original images into feature space a = self.encoder(x) a = a/jn.sum(a**2,axis=-1,keepdims=True)**.5 return a def decode(self, x): # And decode turns encoded images into feature space a = self.decoder(x) a = a/jn.sum(a**2,axis=-1,keepdims=True)**.5 return a # Proxy dataset for analysis class ImageNet: num_chan = 3 private_kernel_size = 16 hidden_dim = 2048 img_size = (256, 256) private_depth = 7 def __init__(self, remove): self.remove_pixel_shuffle = remove # Original dataset as used in the NeuraCrypt paper class Xray: num_chan = 1 private_kernel_size = 16 hidden_dim = 2048 img_size = (256, 256) private_depth = 4 def __init__(self, remove): self.remove_pixel_shuffle = remove ## The following class is taken directly from the NeuraCrypt codebase. ## https://github.com/yala/NeuraCrypt ## which is originally licensed under the MIT License class PrivateEncoder(nn.Module): def __init__(self, args, width_factor=1): super(PrivateEncoder, self).__init__() self.args = args input_dim = args.num_chan patch_size = args.private_kernel_size output_dim = args.hidden_dim num_patches = (args.img_size[0] // patch_size) **2 self.noise_size = 1 args.input_dim = args.hidden_dim layers = [ nn.Conv2d(input_dim, output_dim * width_factor, kernel_size=patch_size, dilation=1 ,stride=patch_size), nn.ReLU() ] for _ in range(self.args.private_depth): layers.extend( [ nn.Conv2d(output_dim * width_factor, output_dim * width_factor , kernel_size=1, dilation=1, stride=1), nn.BatchNorm2d(output_dim * width_factor, track_running_stats=False), nn.ReLU() ]) self.image_encoder = nn.Sequential(*layers) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, output_dim * width_factor)) self.mixer = nn.Sequential( *[ nn.ReLU(), nn.Linear(output_dim * width_factor, output_dim) ]) def forward(self, x): encoded = self.image_encoder(x) B, C, H,W = encoded.size() encoded = encoded.view([B, -1, H*W]).transpose(1,2) encoded += self.pos_embedding encoded = self.mixer(encoded) ## Shuffle indicies if not self.args.remove_pixel_shuffle: shuffled = torch.zeros_like(encoded) for i in range(B): idx = torch.randperm(H*W, device=encoded.device) for j, k in enumerate(idx): shuffled[i,j] = encoded[i,k] encoded = shuffled return encoded ## End copied code def setup(ds): """ Load the datasets to use. Nothing interesting to see. """ global x_train, y_train if ds == 'imagenet': import torchvision transform = torchvision.transforms.Compose([ torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(256), torchvision.transforms.ToTensor()]) imagenet_data = torchvision.datasets.ImageNet('/mnt/data/datasets/unpacked_imagenet_pytorch/', split='val', transform=transform) data_loader = torch.utils.data.DataLoader(imagenet_data, batch_size=100, shuffle=True, num_workers=8) r = [] for x,_ in data_loader: if len(r) > 1000: break print(x.shape) r.extend(x.numpy()) x_train = np.array(r) print(x_train.shape) elif ds == 'xray': import torchvision transform = torchvision.transforms.Compose([ torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(256), torchvision.transforms.ToTensor()]) imagenet_data = torchvision.datasets.ImageFolder('CheXpert-v1.0/train', transform=transform) data_loader = torch.utils.data.DataLoader(imagenet_data, batch_size=100, shuffle=True, num_workers=8) r = [] for x,_ in data_loader: if len(r) > 1000: break print(x.shape) r.extend(x.numpy()) x_train = np.array(r) print(x_train.shape) elif ds == 'challenge': x_train = np.load("orig-7.npy") print(np.min(x_train), np.max(x_train), x_train.shape) else: raise def gen_train_data(): """ Generate aligned training data to train a patch similarity function. Given some original images, generate lots of encoded versions. """ global encoded_train, original_train encoded_train = [] original_train = [] args = Xray(True) C = 100 for i in range(30): print(i) torch.manual_seed(int(time.time())) e = PrivateEncoder(args).cuda() batch = np.random.randint(0, len(x_train), size=C) xin = x_train[batch] r = [] for i in range(0,C,32): r.extend(e(torch.tensor(xin[i:i+32]).cuda()).detach().cpu().numpy()) r = np.array(r) encoded_train.append(r) original_train.append(xin) def features_(x, moments=15, encoded=False): """ Compute higher-order moments for patches in an image to use as features for the neural network. """ x = np.array(x, dtype=np.float32) dim = 2 arr = np.array([np.mean(x, dim)] + [abs(scipy.stats.moment(x, moment=i, axis=dim))**(1/i) for i in range(1,moments)]) return arr.transpose((1,2,0)) def features(x, encoded): """ Given the original images or the encoded images, generate the features to use for the patch similarity function. """ print('start shape',x.shape) if len(x.shape) == 3: x = x - np.mean(x,axis=0,keepdims=True) else: # count x 100 x 256 x 768 print(x[0].shape) x = x - np.mean(x,axis=1,keepdims=True) # remove per-neural-network dimension x = x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:]) p = mp.Pool(96) B = len(x) // 96 print(1) bs = [x[i:i+B] for i in range(0,len(x),B)] print(2) r = p.map(features_, bs) #r = features_(bs[0][:100]) print(3) p.close() #r = np.array(r) #print('finish',r.shape) return np.concatenate(r, axis=0) def get_train_features(): """ Create features for the entire datasets. """ global xs_train, ys_train print(x_train.shape) original_train_ = np.array(original_train) encoded_train_ = np.array(encoded_train) print("Computing features") ys_train = features(encoded_train_, True) patch_size = 16 ss = original_train_.shape[3] // patch_size # Okay so this is an ugly transpose block. # We are going from [outer_batch, batch_size, channels, width, height # to [outer_batch, batch_size, channels, width/patch_size, patch_size, height/patch_size, patch_size] # Then we reshape this and flatten so that we end up with # [other_batch, batch_size, width/patch_size, height_patch_size, patch_size**2*channels] # So that now we can run features on the last dimension original_train_ = original_train_.reshape((original_train_.shape[0], original_train_.shape[1], original_train_.shape[2], ss,patch_size,ss,patch_size)).transpose((0,1,3,5,2,4,6)).reshape((original_train_.shape[0], original_train_.shape[1], ss**2, patch_size**2)) xs_train = features(original_train_, False) print(xs_train.shape, ys_train.shape) def train_model(): """ Train the patch similarity function """ global ema, model model = Model() def loss(x, y): """ K-way contrastive loss as in SimCLR et al. The idea is that we should embed x and y so that they are similar to each other, and dis-similar from others. To do this we have a softmx loss over one dimension to make the values large on the diagonal and small off-diagonal. """ a = model.encode(x) b = model.decode(y) mat = a@b.T return objax.functional.loss.cross_entropy_logits_sparse( logits=jn.exp(jn.clip(model.scale.w.value, -2, 4)) * mat, labels=np.arange(a.shape[0])).mean() ema = objax.optimizer.ExponentialMovingAverage(model.vars(), momentum=0.999) gv = objax.GradValues(loss, model.vars()) encode_ema = ema.replace_vars(lambda x: model.encode(x)) decode_ema = ema.replace_vars(lambda y: model.decode(y)) def train_op(x, y): """ No one was ever fired for using Adam with 1e-4. """ g, v = gv(x, y) opt(1e-4, g) ema() return v opt = objax.optimizer.Adam(model.vars()) train_op = objax.Jit(train_op, gv.vars() + opt.vars() + ema.vars()) ys_ = ys_train print(ys_.shape) xs_ = xs_train.reshape((-1, xs_train.shape[-1])) ys_ = ys_.reshape((-1, ys_train.shape[-1])) # The model scale trick here is taken from CLIP. # Let the model decide how confident to make its own predictions. model.scale.w.assign(jn.zeros((1,1))) valid_size = 1000 print(xs_train.shape) # SimCLR likes big batches B = 4096 for it in range(80): print() ms = [] for i in range(1000): # First batch is smaller, to make training more stable bs = [B // 64, B][it>0] batch = np.random.randint(0, len(xs_)-valid_size, size=bs) r = train_op(xs_[batch], ys_[batch]) # This shouldn't happen, but if it does, better to bort early if np.isnan(r): print("Die on nan") print(ms[-100:]) return ms.append(r) print('mean',np.mean(ms), 'scale', model.scale.w.value) print('loss',loss(xs_[-100:], ys_[-100:])) a = encode_ema(xs_[-valid_size:]) b = decode_ema(ys_[-valid_size:]) br = b[np.random.permutation(len(b))] print('score',np.mean(np.sum(a*b,axis=(1)) - np.sum(a*br,axis=(1))), np.mean(np.sum(a*b,axis=(1)) > np.sum(a*br,axis=(1)))) ckpt = objax.io.Checkpoint("saved", keep_ckpts=0) ema.replace_vars(lambda: ckpt.save(model.vars(), 0))() def load_challenge(): """ Load the challenge datast for attacking """ global xs, ys, encoded, original, ooriginal print("SETUP: Loading matrixes") # The encoded images encoded = np.load("challenge-7.npy") # And the original images ooriginal = original = np.load("orig-7.npy") print("Sizes", encoded.shape, ooriginal.shape) # Again do that ugly resize thing to make the features be on the last dimension # Look up above to see what's going on. patch_size = 16 ss = original.shape[2] // patch_size original = ooriginal.reshape((original.shape[0],1,ss,patch_size,ss,patch_size)) original = original.transpose((0,2,4,1,3,5)) original = original.reshape((original.shape[0], ss**2, patch_size**2)) def match_sub(args): """ Find the best way to undo the permutation between two images. """ vec1, vec2 = args value = np.sum((vec1[None,:,:] - vec2[:,None,:])**2,axis=2) row, col = scipy.optimize.linear_sum_assignment(value) return col def recover_local_permutation(): """ Given a set of encoded images, return a new encoding without permutations """ global encoded, ys p = mp.Pool(96) print('recover local') local_perm = p.map(match_sub, [(encoded[0], e) for e in encoded]) local_perm = np.array(local_perm) encoded_perm = [] for i in range(len(encoded)): encoded_perm.append(encoded[i][np.argsort(local_perm[i])]) encoded_perm = np.array(encoded_perm) encoded = np.array(encoded_perm) p.close() def recover_better_local_permutation(): """ Given a set of encoded images, return a new encoding, but better! """ global encoded, ys # Now instead of pairing all images to image 0, we compute the mean l2 vector # and then pair all images onto the mean vector. Slightly more noise resistant. p = mp.Pool(96) target = encoded.mean(0) local_perm = p.map(match_sub, [(target, e) for e in encoded]) local_perm = np.array(local_perm) # Probably we didn't change by much, generally <0.1% print('improved changed by', np.mean(local_perm != np.arange(local_perm.shape[1]))) encoded_perm = [] for i in range(len(encoded)): encoded_perm.append(encoded[i][np.argsort(local_perm[i])]) encoded = np.array(encoded_perm) p.close() def compute_patch_similarity(): """ Compute the feature vectors for each patch using the trained neural network. """ global xs, ys, xs_image, ys_image print("Computing features") ys = features(encoded, encoded=True) xs = features(original, encoded=False) model = Model() ckpt = objax.io.Checkpoint("saved", keep_ckpts=0) ckpt.restore(model.vars()) xs_image = model.encode(xs) ys_image = model.decode(ys) assert xs.shape[0] == xs_image.shape[0] print("Done") def match(args, ret_col=False): """ Compute the similarity between image features and encoded features. """ vec1, vec2s = args r = [] open("/tmp/start%d.%d"%(np.random.randint(10000),time.time()),"w").write("hi") for vec2 in vec2s: value = np.sum(vec1[None,:,:] * vec2[:,None,:],axis=2) row, col = scipy.optimize.linear_sum_assignment(-value) r.append(value[row,col].mean()) return r def recover_global_matching_first(): """ Recover the global matching of original to encoded images by doing an all-pairs matching problem """ global global_matching, ys_image, encoded matrix = [] p = mp.Pool(96) xs_image_ = np.array(xs_image) ys_image_ = np.array(ys_image) matrix = p.map(match, [(x, ys_image_) for x in xs_image_]) matrix = np.array(matrix).reshape((xs_image.shape[0], xs_image.shape[0])) row, col = scipy.optimize.linear_sum_assignment(-np.array(matrix)) global_matching = np.argsort(col) print('glob',list(global_matching)) p.close() def recover_global_permutation(): """ Find the way that the encoded images are permuted off of the original images """ global global_permutation print("Glob match", global_matching) overall = [] for i,j in enumerate(global_matching): overall.append(np.sum(xs_image[j][None,:,:] * ys_image[i][:,None,:],axis=2)) overall = np.mean(overall, 0) row, col = scipy.optimize.linear_sum_assignment(-overall) try: print("Changed frac:", np.mean(global_permutation!=np.argsort(col))) except: pass global_permutation = np.argsort(col) def recover_global_matching_second(): """ Match each encoded image with its original encoded image, but better by relying on the global permutation. """ global global_matching_second, global_matching ys_fix = [] for i in range(ys_image.shape[0]): ys_fix.append(ys_image[i][global_permutation]) ys_fix = np.array(ys_fix) print(xs_image.shape) sims = [] for i in range(0,len(xs_image),10): tmp = np.mean(xs_image[None,:,:,:] * ys_fix[i:i+10][:,None,:,:],axis=(2,3)) sims.extend(tmp) sims = np.array(sims) print(sims.shape) row, col = scipy.optimize.linear_sum_assignment(-sims) print('arg',sims.argmax(1)) print("Same matching frac", np.mean(col == global_matching) ) print(col) global_matching = col def extract_by_training(resume): """ Final recovery process by extracting the neural network """ global inverse device = torch.device('cuda:1') if not resume: inverse = PrivateEncoder(Xray(True)).cuda(device) # More adam to train. optimizer = torch.optim.Adam(inverse.parameters(), lr=0.0001) this_xs = ooriginal[global_matching] this_ys = encoded[:,global_permutation,:] for i in range(2000): idx = np.random.random_integers(0, len(this_xs)-1, 32) xbatch = torch.tensor(this_xs[idx]).cuda(device) ybatch = torch.tensor(this_ys[idx]).cuda(device) optimizer.zero_grad() guess_output = inverse(xbatch) # L1 loss because we don't want to be sensitive to outliers error = torch.mean(torch.abs(guess_output-ybatch)) error.backward() optimizer.step() print(error) def test_extract(): """ Now we can recover the matching much better by computing the estimated encodings for each original image. """ global err, global_matching, guessed_encoded, smatrix device = torch.device('cuda:1') print(ooriginal.shape, encoded.shape) out = [] for i in range(0,len(ooriginal),32): print(i) out.extend(inverse(torch.tensor(ooriginal[i:i+32]).cuda(device)).cpu().detach().numpy()) guessed_encoded = np.array(out) # Now we have to compare each encoded image with every other original image. # Do this fast with some matrix multiplies. out = guessed_encoded.reshape((len(encoded), -1)) real = encoded[:,global_permutation,:].reshape((len(encoded), -1)) @jax.jit def foo(x, y): return jn.square(x[:,None] - y[None,:]).sum(2) smatrix = np.zeros((len(out), len(out))) B = 500 for i in range(0,len(out),B): print(i) for j in range(0,len(out),B): smatrix[i:i+B, j:j+B] = foo(out[i:i+B], real[j:j+B]) # And the final time you'l have to look at a min weight matching, I promise. row, col = scipy.optimize.linear_sum_assignment(np.array(smatrix)) r = np.array(smatrix) print(list(row)[::100]) print("Differences", np.mean(np.argsort(col) != global_matching)) global_matching = np.argsort(col) def perf(steps=[]): if len(steps) == 0: steps.append(time.time()) else: print("Last Time Elapsed:", time.time()-steps[-1], ' Total Time Elapsed:', time.time()-steps[0]) steps.append(time.time()) time.sleep(1) if __name__ == "__main__": if True: perf() setup('challenge') perf() gen_train_data() perf() get_train_features() perf() train_model() perf() if True: load_challenge() perf() recover_local_permutation() perf() recover_better_local_permutation() perf() compute_patch_similarity() perf() recover_global_matching_first() perf() for _ in range(3): recover_global_permutation() perf() recover_global_matching_second() perf() for i in range(3): recover_global_permutation() perf() extract_by_training(i > 0) perf() test_extract() perf() print(perf())
apache-2.0
abakan/napi
napi/transformers.py
1
16938
"""This module defines abstract syntax three transformers (ASTs) that handles array operations delicately. .. ipython:: python :suppress: from numpy import * import napi napi.register_magic() %napi napi ASTs has the following options: .. glossary:: squeezing when shapes of arrays in a logical operation do not match, squeezing removes single-dimensional entries from the shape and tries to compare the arrays again: .. ipython:: In [1]: %napi squeeze In [2]: ones(4, bool) or zeros((1,4,1), bool) short-circuiting *napi* ASTs perform short-circuit evaluation in the same way Python boolean operators does. This is performed when the number of elements in arrays is larger or equal to the user set threshold: .. ipython:: In [2]: z = zeros(10000000, bool) In [3]: %time z and z and z In [4]: %napi shortcircuit 1000 In [5]: %time z and z and z In this extreme example where all elements of the first array is false, the operation is more than 10 times faster. .. ipython:: In [1]: randbools = lambda *n: random.randn(*n) < 0 In [1]: a, b, c, d, e, f, g = (randbools(10000) for i in range(7)) In [1]: %time with_sc = a or b or c or d or e or f or g In [1]: %napi shortcircuit In [1]: %time wout_sc = a or b or c or d or e or f or g In [1]: all(with_sc == wout_sc) In this example too, short-circuiting performs considerably faster. .. note:: For really small arrays (~100 elements), short-circuiting may perform worse, but since the cost of operation is negligible such performance loss will usually be acceptable. .. _truth: http://docs.python.org/library/stdtypes.html#truth-value-testing """ import ast import operator from ast import fix_missing_locations as fml from ast import copy_location, parse from _ast import Name, Expression, Num, Str, keyword from _ast import And, Or, Not, Eq, NotEq, Lt, LtE, Gt, GtE from _ast import BoolOp, Compare, Subscript, Load, Index, Call, List from _ast import Dict from numbers import Number import numpy from numpy import ndarray _setdefault = {}.setdefault ZERO = lambda dtype: _setdefault(dtype, numpy.zeros(1, dtype)[0]) __all__ = ['NapiTransformer', 'LazyTransformer', 'napi_compare', 'napi_and', 'napi_or'] def ast_name(id, ctx=Load()): name = Name(id, ctx) name._fields = ('id', 'ctx') return name def ast_smart(val): """Return a suitable subclass of :class:`ast.AST` for storing numbers or strings. For other type of objects, return a node class that will indicate that the variable is contained in one of global or local namespaces.""" if isinstance(val, Number): return Num(n=val) elif isinstance(val, basestring): return Str(s=val) else: return ast_name(str(val)) COMPARE = { Eq: operator.eq, NotEq: operator.ne, Lt: operator.lt, LtE: operator.le, Gt: operator.gt, GtE: operator.ge, 'Eq': operator.eq, 'NotEq': operator.ne, 'Lt': operator.lt, 'LtE': operator.le, 'Gt': operator.gt, 'GtE': operator.ge, } ATTRMAP = { Num: 'n', Str: 's', } EVALSET = {List: '', Dict: '' } RESERVED = {'True': True, 'False': False, 'None': None} def napi_compare(left, ops, comparators, **kwargs): """Make pairwise comparisons of comparators.""" values = [] for op, right in zip(ops, comparators): value = COMPARE[op](left, right) values.append(value) left = right result = napi_and(values, **kwargs) if isinstance(result, ndarray): return result else: return bool(result) def napi_and(values, **kwargs): """Perform element-wise logical *and* operation on arrays. If *values* contains a non-array object with truth_ value **False**, the outcome will be an array of **False**\s with suitable shape without arrays being evaluated. Non-array objects with truth value **True** are omitted. If array shapes do not match (after squeezing when enabled by user), :exc:`ValueError` is raised. This function uses :obj:`numpy.logical_and` or :obj:`numpy.all`.""" arrays = [] result = None shapes = set() for value in values: if isinstance(value, ndarray) and value.shape: arrays.append(value) shapes.add(value.shape) elif not value: result = value if len(shapes) > 1 and kwargs.get('sq', kwargs.get('squeeze', False)): shapes.clear() for i, a in enumerate(arrays): a = arrays[i] = a.squeeze() shapes.add(a.shape) if len(shapes) > 1: raise ValueError('array shape mismatch, even after squeezing') if len(shapes) > 1: raise ValueError('array shape mismatch') shape = shapes.pop() if shapes else None if result is not None: if shape: return numpy.zeros(shape, bool) else: return result elif arrays: sc = kwargs.get('sc', kwargs.get('shortcircuit', 0)) if sc and numpy.prod(shape) >= sc: return short_circuit_and(arrays, shape) elif len(arrays) == 2: return numpy.logical_and(*arrays) else: return numpy.all(arrays, 0) else: return value def short_circuit_and(arrays, shape): a = arrays.pop(0) nz = (a if a.dtype == bool else a.astype(bool)).nonzero() if len(nz) > 1: while arrays: a = arrays.pop()[nz] which = a if a.dtype == bool else a.astype(bool) nz = tuple(i[which] for i in nz) else: nz = nz[0] while arrays: a = arrays.pop()[nz] nz = nz[a if a.dtype == bool else a.astype(bool)] result = numpy.zeros(shape, bool) result[nz] = True return result def napi_or(values, **kwargs): """Perform element-wise logical *or* operation on arrays. If *values* contains a non-array object with truth_ value **True**, the outcome will be an array of **True**\s with suitable shape without arrays being evaluated. Non-array objects with truth value **False** are omitted. If array shapes do not match (after squeezing when enabled by user), :exc:`ValueError` is raised. This function uses :obj:`numpy.logical_or` or :obj:`numpy.any`.""" arrays = [] result = None shapes = set() for value in values: if isinstance(value, ndarray) and value.shape: arrays.append(value) shapes.add(value.shape) elif value: result = value if len(shapes) > 1 and kwargs.get('squeeze', kwargs.get('sq', False)): shapes.clear() for i, a in enumerate(arrays): a = arrays[i] = a.squeeze() shapes.add(a.shape) if len(shapes) > 1: raise ValueError('array shape mismatch, even after squeezing') if len(shapes) > 1: raise ValueError('array shape mismatch') shape = shapes.pop() if shapes else None if result is not None: if shape: return numpy.ones(shape, bool) else: return result elif arrays: sc = kwargs.get('sc', kwargs.get('shortcircuit', 0)) if sc and numpy.prod(shape) >= sc: return short_circuit_or(arrays, shape) elif len(arrays) == 2: return numpy.logical_or(*arrays) else: return numpy.any(arrays, 0) else: return value def short_circuit_or(arrays, shape): a = arrays.pop(0) z = ZERO(a.dtype) nz = (a == z).nonzero() if len(nz) > 1: while arrays: a = arrays.pop() which = a[nz] == ZERO(a.dtype) nz = tuple(i[which] for i in nz) else: nz = nz[0] while arrays: a = arrays.pop()[nz] nz = nz[a == ZERO(a.dtype)] result = numpy.ones(shape, bool) result[nz] = False return result class LazyTransformer(ast.NodeTransformer): """An :mod:`ast` transformer that replaces chained comparison and logical operation expressions with function calls.""" def __init__(self, **kwargs): self._prefix = kwargs.pop('prefix', '') self._kwargs = [keyword(arg=key, value=ast_smart(value)) for key, value in kwargs.items()] def visit_Compare(self, node): """Replace chained comparisons with calls to :func:`.napi_compare`.""" if len(node.ops) > 1: func = Name(id=self._prefix + 'napi_compare', ctx=Load()) args = [node.left, List(elts=[Str(op.__class__.__name__) for op in node.ops], ctx=Load()), List(elts=node.comparators, ctx=Load())] node = Call(func=func, args=args, keywords=self._kwargs) fml(node) self.generic_visit(node) return node def visit_BoolOp(self, node): """Replace logical operations with calls to :func:`.napi_and` or :func:`.napi_or`.""" if isinstance(node.op, And): func = Name(id=self._prefix + 'napi_and', ctx=Load()) else: func = Name(id=self._prefix + 'napi_or', ctx=Load()) args = [List(elts=node.values, ctx=Load())] node = Call(func=func, args=args, keywords=self._kwargs) fml(node) self.generic_visit(node) return node class NapiTransformer(ast.NodeTransformer): """An :mod:`ast` transformer that evaluates chained comparison and logical operation expressions of arrays while transforming the AST.""" def __init__(self, **kwargs): self._g, self._l = kwargs.pop('globals', {}), kwargs.pop('locals', {}) self._ti = 0 self._kwargs = kwargs self._indent = 0 if not kwargs.get('debug', False): self._debug = lambda *args, **kwargs: None self._sc = kwargs.get('sc', 10000) #self._which = None self._evaluate = kwargs.get('evaluate', False) self._subscript = kwargs.get('subscript') def __getitem__(self, node): if isinstance(node, Name): name = node.id try: return self._l[name] except KeyError: try: return self._g[name] except KeyError: try: return RESERVED[name] except KeyError: raise NameError('name {} is not defined :)' .format(repr(name))) try: return getattr(node, ATTRMAP[node.__class__]) except KeyError: self._debug('_get', node) expr = Expression(fml(NapiTransformer(globals=self._g, locals=self._l, **self._kwargs).visit(node))) try: return eval(compile(expr, '<string>', 'eval'), self._g, self._l) except Exception as err: raise err if node.__class__ in EVALSET: return eval(node) else: return getattr(node, ATTRMAP[node.__class__]) def __setitem__(self, name, value): self._debug('self[{}] = {}'.format(name ,value)) if self._subscript: self._l[self._subscript][name] = value else: self._l[name] = value def _tn(self): """Return a temporary variable name.""" self._ti += 1 return '__temp__' + str(self._ti) def _incr(self): self._indent += 1 def _decr(self): self._indent -= 1 def _debug(self, *args, **kwargs): print((self._indent + kwargs.get('incr', 0)) * ' ' + ' '.join(['{}'] * len(args)).format(*args)) def visit_UnaryOp(self, node): """Interfere with ``not`` operation to :func:`numpy.logical_not`.""" if isinstance(node.op, Not): self._debug('UnaryOp', node.op, incr=1) operand = self[node.operand] self._debug('|-', operand, incr=2) tn = self._tn() result = numpy.logical_not(operand) self._debug('|_', result, incr=2) self[tn] = result return ast_name(tn) else: return self.generic_visit(node) def visit_Compare(self, node): self._debug('Compare', node.ops, incr=1) if len(node.ops) > 1: values = [] left = self[node.left] for op, right in zip(node.ops, node.comparators): right = self[right] tn = self._tn() value = COMPARE[op.__class__](left, right) self[tn] = value values.append(ast_name(tn, value)) left = right val = BoolOp(And(), values) return self.visit_BoolOp(val) self.generic_visit(node) return node def visit_BoolOp(self, node): """Interfere with boolean operations and use :func:`numpy.all` and :func:`numpy.any` functions for ``and`` and ``or`` operations. *axis* argument to these functions is ``0``.""" self._incr() self._debug('BoolOp', node.op) if isinstance(node.op, And): result = self._and(node) else: result = self._or(node) self._debug('|_', result, incr=1) self._decr() return self._return(result, node) def _and(self, node): arrays = [] result = None shapes = set() for item in node.values: value = self[item] self._debug('|-', value, incr=1) if isinstance(value, ndarray) and value.shape: arrays.append(value) shapes.add(value.shape) elif not value: result = value if len(shapes) > 1: shapes.clear() for i, a in enumerate(arrays): a = arrays[i] = a.squeeze() shapes.add(a.shape) if len(shapes) > 1: raise ValueError('array shape mismatch, even after squeezing') shape = shapes.pop() if shapes else None if result is not None: if shape: return numpy.zeros(shape, bool) else: return result elif arrays: self._debug('|~ Arrays:', arrays, incr=1) if self._sc and numpy.prod(shape) >= self._sc: return short_circuit_and(arrays, shape) elif len(arrays) == 2: return numpy.logical_and(*arrays) else: return numpy.all(arrays, 0) else: return value def _or(self, node): arrays = [] result = None shapes = set() for item in node.values: value = self[item] self._debug('|-', value, incr=1) if isinstance(value, ndarray) and value.shape: arrays.append(value) shapes.add(value.shape) elif value: result = value if len(shapes) > 1: shapes.clear() for i, a in enumerate(arrays): a = arrays[i] = a.squeeze() shapes.add(a.shape) if len(shapes) > 1: raise ValueError('array shape mismatch, even after squeezing') shape = shapes.pop() if shapes else None if result is not None: if shape: return numpy.ones(shape, bool) else: return result elif arrays: self._debug('|~ Arrays:', arrays, incr=1) if self._sc and numpy.prod(shape) >= self._sc: return short_circuit_or(arrays, shape) elif len(arrays) == 2: return numpy.logical_or(*arrays) else: return numpy.any(arrays, 0) else: return value def _return(self, val, node): tn = self._tn() if self._subscript: self._l['_napi_temp_ns'][tn] = val return Subscript( value=Name(id=self._subscript, ctx=Load()), slice=Index(value=Str(s=tn)), ctx=getattr(node, 'ctx', Load())) else: self[tn] = val return ast_name(tn) def _default(self, node): self._debug('default', node) expr = Expression(fml(Transformer(self._g, self._l, **self._kwargs) .visit(node))) result = eval(compile(expr, '<string>', 'eval'), self._g, self._l) tn = self._tn() self[tn] = result return ast_name(tn)
mit
mtausig/RIOT
tests/pkg_tensorflow-lite/mnist/generate_digit.py
22
1164
#!/usr/bin/env python3 """Generate a binary file from a sample image of the MNIST dataset. Pixel of the sample are stored as float32, images have size 28x28. """ import os import argparse import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.datasets import mnist SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) def main(args): _, (mnist_test, _) = mnist.load_data() data = mnist_test[args.index] data = data.astype('uint8') output_path = os.path.join(SCRIPT_DIR, args.output) np.ndarray.tofile(data, output_path) if args.no_plot is False: plt.gray() plt.imshow(data.reshape(28, 28)) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", "--index", type=int, default=0, help="Image index in MNIST test dataset") parser.add_argument("-o", "--output", type=str, default='digit', help="Output filename") parser.add_argument("--no-plot", default=False, action='store_true', help="Disable image display in matplotlib") main(parser.parse_args())
lgpl-2.1
sstober/deepthought
deepthought/datasets/eeg/MultiChannelEEGDataset.py
1
18423
''' Created on Apr 2, 2014 @author: sstober ''' import os import logging log = logging.getLogger(__name__) import collections import numpy as np from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix from pylearn2.utils.timing import log_timing from pylearn2.utils import serial from pylearn2.format.target_format import OneHotFormatter import librosa from deepthought.util.fs_util import load from deepthought.util.timeseries_util import frame from deepthought.datasets.eeg.channel_filter import NoChannelFilter def load_datafiles_metadata(path): def tree(): return collections.defaultdict(tree) def multi_dimensions(n, dtype): """ Creates an n-dimension dictionary where the n-th dimension is of type 'type' """ if n == 0: return dtype() return collections.defaultdict(lambda:multi_dimensions(n-1, dtype)) datafiles = multi_dimensions(4, list) # datafiles = collections.defaultdict(lambda:collections.defaultdict(lambda:collections.defaultdict(list))) metadb = load(os.path.join(path, 'metadata_db.pklz')) for datafile, metadata in metadb.items(): subject = metadata['subject'] trial_type = metadata['trial_type'] trial_number = metadata['trial_no'] condition = metadata['condition'] # datafiles[subject][trial_type][trial_number][condition].append(os.path.join(path, datafile)); datafiles[subject][trial_type][trial_number][condition].append(datafile) log.debug('{} {} {} {} : {}'.format(subject,trial_type,trial_number,condition,datafile)) return datafiles, metadb class MultiChannelEEGDataset(DenseDesignMatrix): """ this class is deprecated use EEGEpochsDataset for more flexibility """ class Like(object): """ Helper class for lazy people to load an MultiChannelEEGDataset with similar parameters Note: This is quite a hack as __new__ should return instances of Like. Instead, it returns the loaded MultiChannelEEGDataset """ def __new__(Like, base, # reference to copy initialize values from **override ): params = base.params.copy() log.debug("base params: {}".format(params)) log.debug("override params: {}".format(override)) for key, value in override.iteritems(): params[key] = value log.debug("merged params: {}".format(params)) return MultiChannelEEGDataset(**params) def __init__(self, path, name = '', # optional name # selectors subjects='all', # optional selector (list) or 'all' trial_types='all', # optional selector (list) or 'all' trial_numbers='all', # optional selector (list) or 'all' conditions='all', # optional selector (list) or 'all' partitioner = None, channel_filter = NoChannelFilter(), # optional channel filter, default: keep all channel_names = None, # optional channel names (for metadata) label_map = None, # optional conversion of labels remove_dc_offset = False, # optional subtraction of channel mean, usually done already earlier resample = None, # optional down-sampling # optional sub-sequences selection start_sample = 0, stop_sample = None, # optional for selection of sub-sequences # optional signal filter to by applied before spitting the signal signal_filter = None, # windowing parameters frame_size = -1, hop_size = -1, # values > 0 will lead to windowing hop_fraction = None, # alternative to specifying absolute hop_size # optional spectrum parameters, n_fft = 0 keeps raw data n_fft = 0, n_freq_bins = None, spectrum_log_amplitude = False, spectrum_normalization_mode = None, include_phase = False, flatten_channels=False, layout='tf', # (0,1)-axes layout tf=time x features or ft=features x time save_matrix_path = None, keep_metadata = False, ): ''' Constructor ''' # save params self.params = locals().copy() del self.params['self'] # print self.params # TODO: get the whole filtering into an extra class datafiles_metadata, metadb = load_datafiles_metadata(path) # print datafiles_metadata def apply_filters(filters, node): if isinstance(node, dict): filtered = [] keepkeys = filters[0] for key, value in node.items(): if keepkeys == 'all' or key in keepkeys: filtered.extend(apply_filters(filters[1:], value)) return filtered else: return node # [node] # keep only files that match the metadata filters self.datafiles = apply_filters([subjects,trial_types,trial_numbers,conditions], datafiles_metadata) # copy metadata for retained files self.metadb = {} for datafile in self.datafiles: self.metadb[datafile] = metadb[datafile] # print self.datafiles # print self.metadb self.name = name if partitioner is not None: self.datafiles = partitioner.get_partition(self.name, self.metadb) self.include_phase = include_phase self.spectrum_normalization_mode = spectrum_normalization_mode self.spectrum_log_amplitude = spectrum_log_amplitude self.sequence_partitions = [] # used to keep track of original sequences # metadata: [subject, trial_no, stimulus, channel, start, ] self.metadata = [] sequences = [] labels = [] n_sequences = 0 if frame_size > 0 and hop_size == -1 and hop_fraction is not None: hop_size = np.ceil(frame_size / hop_fraction) for i in xrange(len(self.datafiles)): with log_timing(log, 'loading data from {}'.format(self.datafiles[i])): # save start of next sequence self.sequence_partitions.append(n_sequences) data, metadata = load(os.path.join(path, self.datafiles[i])) label = metadata['label'] if label_map is not None: label = label_map[label] multi_channel_frames = [] # process 1 channel at a time for channel in xrange(data.shape[1]): # filter channels if not channel_filter.keep_channel(channel): continue samples = data[:, channel] # subtract channel mean if remove_dc_offset: samples -= samples.mean() # down-sample if requested if resample is not None and resample[0] != resample[1]: samples = librosa.resample(samples, resample[0], resample[1]) # apply optional signal filter after down-sampling -> requires lower order if signal_filter is not None: samples = signal_filter.process(samples) # get sub-sequence in resampled space # log.info('using samples {}..{} of {}'.format(start_sample,stop_sample, samples.shape)) samples = samples[start_sample:stop_sample] if n_fft is not None and n_fft > 0: # Optionally: ### frequency spectrum branch ### # transform to spectogram hop_length = n_fft / 4; ''' from http://theremin.ucsd.edu/~bmcfee/librosadoc/librosa.html >>> # Get a power spectrogram from a waveform y >>> S = np.abs(librosa.stft(y)) ** 2 >>> log_S = librosa.logamplitude(S) ''' S = librosa.core.stft(samples, n_fft=n_fft, hop_length=hop_length) # mag = np.abs(S) # magnitude spectrum mag = np.abs(S)**2 # power spectrum # include phase information if requested if self.include_phase: # phase = np.unwrap(np.angle(S)) phase = np.angle(S) # Optionally: cut off high bands if n_freq_bins is not None: mag = mag[0:n_freq_bins, :] if self.include_phase: phase = phase[0:n_freq_bins, :] if self.spectrum_log_amplitude: mag = librosa.logamplitude(mag) s = mag # for normalization ''' NOTE on normalization: It depends on the structure of a neural network and (even more) on the properties of data. There is no best normalization algorithm because if there would be one, it would be used everywhere by default... In theory, there is no requirement for the data to be normalized at all. This is a purely practical thing because in practice convergence could take forever if your input is spread out too much. The simplest would be to just normalize it by scaling your data to (-1,1) (or (0,1) depending on activation function), and in most cases it does work. If your algorithm converges well, then this is your answer. If not, there are too many possible problems and methods to outline here without knowing the actual data. ''' ## normalize to mean 0, std 1 if self.spectrum_normalization_mode == 'mean0_std1': # s = preprocessing.scale(s, axis=0); mean = np.mean(s) std = np.std(s) s = (s - mean) / std ## normalize by linear transform to [0,1] elif self.spectrum_normalization_mode == 'linear_0_1': s = s / np.max(s) ## normalize by linear transform to [-1,1] elif self.spectrum_normalization_mode == 'linear_-1_1': s = -1 + 2 * (s - np.min(s)) / (np.max(s) - np.min(s)) elif self.spectrum_normalization_mode is not None: raise ValueError( 'unsupported spectrum normalization mode {}'.format( self.spectrum_normalization_mode) ) #print s.mean(axis=0) #print s.std(axis=0) # include phase information if requested if self.include_phase: # normalize phase to [-1.1] phase = phase / np.pi s = np.vstack([s, phase]) # transpose to fit pylearn2 layout s = np.transpose(s) # print s.shape ### end of frequency spectrum branch ### else: ### raw waveform branch ### # normalize to max amplitude 1 s = librosa.util.normalize(samples) # add 2nd data dimension s = s.reshape(s.shape[0], 1) # print s.shape ### end of raw waveform branch ### s = np.asfarray(s, dtype='float32') if frame_size > 0 and hop_size > 0: s = s.copy() # FIXME: THIS IS NECESSARY IN MultiChannelEEGSequencesDataset - OTHERWISE, THE FOLLOWING OP DOES NOT WORK!!!! frames = frame(s, frame_length=frame_size, hop_length=hop_size) else: frames = s del s # print frames.shape if flatten_channels: # add artificial channel dimension frames = frames.reshape((frames.shape[0], frames.shape[1], frames.shape[2], 1)) # print frames.shape sequences.append(frames) # increment counter by new number of frames n_sequences += frames.shape[0] if keep_metadata: # determine channel name channel_name = None if channel_names is not None: channel_name = channel_names[channel] elif 'channels' in metadata: channel_name = metadata['channels'][channel] self.metadata.append({ 'subject' : metadata['subject'], # subject 'trial_type': metadata['trial_type'], # trial_type 'trial_no' : metadata['trial_no'], # trial_no 'condition' : metadata['condition'], # condition 'channel' : channel, # channel 'channel_name' : channel_name, 'start' : self.sequence_partitions[-1], # start 'stop' : n_sequences # stop }) for _ in xrange(frames.shape[0]): labels.append(label) else: multi_channel_frames.append(frames) ### end of channel iteration ### if not flatten_channels: # turn list into array multi_channel_frames = np.asfarray(multi_channel_frames, dtype='float32') # [channels x frames x time x freq] -> cb01 # [channels x frames x time x 1] -> cb0. # move channel dimension to end multi_channel_frames = np.rollaxis(multi_channel_frames, 0, 4) # print multi_channel_frames.shape # log.debug(multi_channel_frames.shape) sequences.append(multi_channel_frames) # increment counter by new number of frames n_sequences += multi_channel_frames.shape[0] if keep_metadata: self.metadata.append({ 'subject' : metadata['subject'], # subject 'trial_type': metadata['trial_type'], # trial_type 'trial_no' : metadata['trial_no'], # trial_no 'condition' : metadata['condition'], # condition 'channel' : 'all', # channel 'start' : self.sequence_partitions[-1], # start 'stop' : n_sequences # stop }) for _ in xrange(multi_channel_frames.shape[0]): labels.append(label) ### end of datafile iteration ### # turn into numpy arrays sequences = np.vstack(sequences) # print sequences.shape; labels = np.hstack(labels) # one_hot_y = one_hot(labels) one_hot_formatter = OneHotFormatter(labels.max() + 1) # FIXME! one_hot_y = one_hot_formatter.format(labels) self.labels = labels if layout == 'ft': # swap axes to (batch, feature, time, channels) sequences = sequences.swapaxes(1, 2) log.debug('final dataset shape: {} (b,0,1,c)'.format(sequences.shape)) super(MultiChannelEEGDataset, self).__init__(topo_view=sequences, y=one_hot_y, axes=['b', 0, 1, 'c']) log.info('generated dataset "{}" with shape X={}={} y={} labels={} '. format(self.name, self.X.shape, sequences.shape, self.y.shape, self.labels.shape)) if save_matrix_path is not None: matrix = DenseDesignMatrix(topo_view=sequences, y=one_hot_y, axes=['b', 0, 1, 'c']) with log_timing(log, 'saving DenseDesignMatrix to {}'.format(save_matrix_path)): serial.save(save_matrix_path, matrix)
bsd-3-clause
hershaw/data-science-101
course/codefiles/datagen.py
1
1955
import numpy as np import pandas as pd from sklearn import datasets def random_xy(num_points=100): return pd.DataFrame({ 'x': np.random.normal(size=num_points), 'y': np.random.normal(size=num_points) }) def x_plus_noise(num_points=100, slope=1, randomness=0.1): if not (0 <= randomness <= 1): raise ValueError('randomness must be between 0 and 1 (inclusive).') x = np.random.normal(size=num_points) return pd.DataFrame({ 'x': x, 'y': slope * x + np.random.normal(scale=randomness, size=num_points) }) def data_3d(num_points=100, randomness=0.1, theta_x=30, theta_z=60): data = pd.DataFrame({ 'x': np.random.normal(scale=10, size=num_points), 'y': np.random.normal(scale=2, size=num_points), 'z': np.random.normal(scale=randomness, size=num_points) }) return pd.DataFrame( (np.dot(_rot_mat_x(theta=np.radians(theta_x)), np.dot(_rot_mat_z(theta=np.radians(theta_z)), data.values.transpose()))).transpose(), columns=['x', 'y', 'z'] ) def label_data(df, p=0.1): """ Labels data as +1 or -1, with probability p of incorrect labeling. """ return ((df['x'] > 0).astype(int) * 2 - 1) * np.power( -1, np.random.binomial(1, p, df.shape[0]) ) def get_iris(): iris = datasets.load_iris() return pd.DataFrame({ 'sepal_length': iris.data[:, 0], 'sepal_width': iris.data[:, 1], 'petal_length': iris.data[:, 2], 'petal_width': iris.data[:, 3], 'target': iris.target, }) def _rot_mat_x(theta=np.radians(30)): return np.array([ [1, 0, 0], [0, np.cos(theta), -np.sin(theta)], [0, np.sin(theta), np.cos(theta)] ]) def _rot_mat_z(theta=np.radians(60)): return np.array([ [np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1] ])
mit
jhseu/tensorflow
tensorflow/python/eager/benchmarks/resnet50/resnet50_test.py
1
15301
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests and benchmarks for the ResNet50 model, executed eagerly.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import os import tempfile import time from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.python.client import device_lib from tensorflow.python.eager import context from tensorflow.python.eager import tape from tensorflow.python.eager.benchmarks.resnet50 import resnet50 from tensorflow.python.eager.benchmarks.resnet50 import resnet50_test_util def compute_gradients(model, images, labels, num_replicas=1): with tf.GradientTape() as grad_tape: logits = model(images, training=True) loss = tf.compat.v1.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) tf.compat.v2.summary.write('loss', loss) if num_replicas != 1: loss /= num_replicas # TODO(b/110991947): We can mistakenly trace the gradient call in # multi-threaded environment. Explicitly disable recording until # this is fixed. with tape.stop_recording(): grads = grad_tape.gradient(loss, model.variables) return grads def apply_gradients(model, optimizer, gradients): optimizer.apply_gradients(zip(gradients, model.variables)) def _events_from_file(filepath): """Returns all events in a single event file. Args: filepath: Path to the event file. Returns: A list of all tf.compat.v1.Event protos in the event file. """ records = list(tf.python_io.tf_record_iterator(filepath)) result = [] for r in records: event = tf.Event() event.ParseFromString(r) result.append(event) return result def events_from_logdir(logdir): """Returns all events in the single eventfile in logdir. Args: logdir: The directory in which the single event file is sought. Returns: A list of all tf.compat.v1.Event protos from the single event file. Raises: AssertionError: If logdir does not contain exactly one file. """ assert tf.io.gfile.exists(logdir) files = tf.io.gfile.listdir(logdir) assert len(files) == 1, 'Found not exactly one file in logdir: %s' % files return _events_from_file(os.path.join(logdir, files[0])) class ResNet50Test(tf.test.TestCase): def _apply(self, defun=False, execution_mode=None): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50(data_format) if defun: model.call = tf.function(model.call) with tf.device(device), context.execution_mode(execution_mode): images, _ = resnet50_test_util.random_batch(2, data_format) output = model(images, training=False) context.async_wait() self.assertEqual((2, 1000), output.shape) def test_apply(self): self._apply(defun=False) def test_apply_async(self): self._apply(defun=False, execution_mode=context.ASYNC) def test_apply_with_defun(self): self._apply(defun=True) def test_apply_with_defun_async(self): self._apply(defun=True, execution_mode=context.ASYNC) def test_apply_no_top(self): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50(data_format, include_top=False) with tf.device(device): images, _ = resnet50_test_util.random_batch(2, data_format) output = model(images, training=False) output_shape = ((2, 2048, 1, 1) if data_format == 'channels_first' else (2, 1, 1, 2048)) self.assertEqual(output_shape, output.shape) def test_apply_with_pooling(self): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50(data_format, include_top=False, pooling='avg') with tf.device(device): images, _ = resnet50_test_util.random_batch(2, data_format) output = model(images, training=False) self.assertEqual((2, 2048), output.shape) def test_apply_no_average_pooling(self): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50( data_format, average_pooling=False, include_top=False) with tf.device(device): images, _ = resnet50_test_util.random_batch(2, data_format) output = model(images, training=False) output_shape = ((2, 2048, 7, 7) if data_format == 'channels_first' else (2, 7, 7, 2048)) self.assertEqual(output_shape, output.shape) def test_apply_block3_strides(self): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50( data_format, block3_strides=True, include_top=False) with tf.device(device): images, _ = resnet50_test_util.random_batch(2, data_format) output = model(images, training=False) output_shape = ((2, 2048, 1, 1) if data_format == 'channels_first' else (2, 1, 1, 2048)) self.assertEqual(output_shape, output.shape) def test_apply_retrieve_intermediates(self): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50( data_format, block3_strides=True, include_top=False) intermediates_dict = {} with tf.device(device): images, _ = resnet50_test_util.random_batch(2, data_format) output = model(images, training=False, intermediates_dict=intermediates_dict) output_shape = ((2, 2048, 1, 1) if data_format == 'channels_first' else (2, 1, 1, 2048)) self.assertEqual(output_shape, output.shape) if data_format == 'channels_first': block_shapes = { 'block0': (2, 64, 112, 112), 'block0mp': (2, 64, 55, 55), 'block1': (2, 256, 55, 55), 'block2': (2, 512, 28, 28), 'block3': (2, 1024, 7, 7), 'block4': (2, 2048, 1, 1), } else: block_shapes = { 'block0': (2, 112, 112, 64), 'block0mp': (2, 55, 55, 64), 'block1': (2, 55, 55, 256), 'block2': (2, 28, 28, 512), 'block3': (2, 7, 7, 1024), 'block4': (2, 1, 1, 2048), } for (block_name, block) in intermediates_dict.items(): self.assertEqual(block_shapes[block_name], block.shape) def _test_train(self, execution_mode=None): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50(data_format) tf.compat.v2.summary.experimental.set_step( tf.train.get_or_create_global_step()) logdir = tempfile.mkdtemp() with tf.compat.v2.summary.create_file_writer( logdir, max_queue=0, name='t0').as_default(), tf.compat.v2.summary.record_if(True): with tf.device(device), context.execution_mode(execution_mode): optimizer = tf.train.GradientDescentOptimizer(0.1) images, labels = resnet50_test_util.random_batch(2, data_format) apply_gradients(model, optimizer, compute_gradients(model, images, labels)) self.assertEqual(320, len(model.variables)) context.async_wait() events = events_from_logdir(logdir) self.assertEqual(len(events), 2) self.assertEqual(events[1].summary.value[0].tag, 'loss') def test_train(self): self._test_train() def test_train_async(self): self._test_train(execution_mode=context.ASYNC) def test_no_garbage(self): device, data_format = resnet50_test_util.device_and_data_format() model = resnet50.ResNet50(data_format) optimizer = tf.train.GradientDescentOptimizer(0.1) with tf.device(device): images, labels = resnet50_test_util.random_batch(2, data_format) gc.disable() # Warm up. Note that this first run does create significant amounts of # garbage to be collected. The hope is that this is a build-only effect, # and a subsequent training loop will create nothing which needs to be # collected. apply_gradients(model, optimizer, compute_gradients(model, images, labels)) gc.collect() previous_gc_debug_flags = gc.get_debug() gc.set_debug(gc.DEBUG_SAVEALL) for _ in range(2): # Run twice to ensure that garbage that is created on the first # iteration is no longer accessible. apply_gradients(model, optimizer, compute_gradients(model, images, labels)) gc.collect() # There should be no garbage requiring collection. self.assertEqual(0, len(gc.garbage)) gc.set_debug(previous_gc_debug_flags) gc.enable() class MockIterator(object): def __init__(self, tensors): self._tensors = [tf.identity(x) for x in tensors] def next(self): return self._tensors class ResNet50Benchmarks(tf.test.Benchmark): def _report(self, label, start, num_iters, device, batch_size, data_format, num_replicas=1): resnet50_test_util.report(self, label, start, num_iters, device, batch_size, data_format, num_replicas=1) def _train_batch_sizes(self): """Choose batch sizes based on GPU capability.""" for device in device_lib.list_local_devices(): # TODO(b/141475121): We need some way to check which batch sizes would # work using a public API. if tf.DeviceSpec.from_string(device.name).device_type == 'GPU': # Avoid OOM errors with larger batch sizes, which seem to cause errors # later on even if caught. # # TODO(allenl): Base this on device memory; memory limit information # during the test seems to exclude the amount TensorFlow has allocated, # which isn't useful. if 'K20' in device.physical_device_desc: return (16,) if 'P100' in device.physical_device_desc: return (16, 32, 64) if tf.DeviceSpec.from_string(device.name).device_type == 'TPU': return (32,) return (16, 32) def _force_device_sync(self): # If this function is called in the context of a non-CPU device # (e.g., inside a 'with tf.device("/gpu:0")' block) # then this will force a copy from CPU->NON_CPU_DEVICE->CPU, # which forces a sync. This is a roundabout way, yes. tf.constant(1.).cpu() def _benchmark_eager_apply(self, label, device_and_format, defun=False, execution_mode=None): with context.execution_mode(execution_mode): device, data_format = device_and_format model = resnet50.ResNet50(data_format) if defun: model.call = tf.function(model.call) batch_size = 64 num_burn = 5 num_iters = 30 with tf.device(device): images, _ = resnet50_test_util.random_batch(batch_size, data_format) for _ in xrange(num_burn): model(images, training=False).cpu() if execution_mode: context.async_wait() gc.collect() start = time.time() for _ in xrange(num_iters): model(images, training=False).cpu() if execution_mode: context.async_wait() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_apply_sync(self): self._benchmark_eager_apply( 'eager_apply', resnet50_test_util.device_and_data_format(), defun=False) def benchmark_eager_apply_async(self): self._benchmark_eager_apply( 'eager_apply_async', resnet50_test_util.device_and_data_format(), defun=False, execution_mode=context.ASYNC) def benchmark_eager_apply_with_defun(self): self._benchmark_eager_apply( 'eager_apply_with_defun', resnet50_test_util.device_and_data_format(), defun=True) def _benchmark_eager_train(self, label, make_iterator, device_and_format, defun=False, execution_mode=None): with context.execution_mode(execution_mode): device, data_format = device_and_format for batch_size in self._train_batch_sizes(): (images, labels) = resnet50_test_util.random_batch( batch_size, data_format) model = resnet50.ResNet50(data_format) optimizer = tf.train.GradientDescentOptimizer(0.1) apply_grads = apply_gradients if defun: model.call = tf.function(model.call) apply_grads = tf.function(apply_gradients) num_burn = 3 num_iters = 10 with tf.device(device): iterator = make_iterator((images, labels)) for _ in xrange(num_burn): (images, labels) = iterator.next() apply_grads(model, optimizer, compute_gradients(model, images, labels)) if execution_mode: context.async_wait() self._force_device_sync() gc.collect() start = time.time() for _ in xrange(num_iters): (images, labels) = iterator.next() apply_grads(model, optimizer, compute_gradients(model, images, labels)) if execution_mode: context.async_wait() self._force_device_sync() self._report(label, start, num_iters, device, batch_size, data_format) def benchmark_eager_train_sync(self): self._benchmark_eager_train( 'eager_train', MockIterator, resnet50_test_util.device_and_data_format(), defun=False) def benchmark_eager_train_async(self): self._benchmark_eager_train( 'eager_train_async', MockIterator, resnet50_test_util.device_and_data_format(), defun=False, execution_mode=context.ASYNC) def benchmark_eager_train_with_defun(self): self._benchmark_eager_train( 'eager_train_with_defun', MockIterator, resnet50_test_util.device_and_data_format(), defun=True) def benchmark_eager_train_datasets(self): def make_iterator(tensors): with tf.device('/device:CPU:0'): ds = tf.data.Dataset.from_tensors(tensors).repeat() return iter(ds) self._benchmark_eager_train( 'eager_train_dataset', make_iterator, resnet50_test_util.device_and_data_format(), defun=False) def benchmark_eager_train_datasets_with_defun(self): def make_iterator(tensors): with tf.device('/device:CPU:0'): ds = tf.data.Dataset.from_tensors(tensors).repeat() return iter(ds) self._benchmark_eager_train( 'eager_train_dataset_with_defun', make_iterator, resnet50_test_util.device_and_data_format(), defun=True) if __name__ == '__main__': tf.enable_eager_execution() tf.test.main()
apache-2.0
rahuldhote/scikit-learn
sklearn/linear_model/least_angle.py
56
49338
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ from __future__ import print_function # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel from ..base import RegressorMixin from ..utils import arrayfuncs, as_float_array, check_X_y from ..cross_validation import check_cv from ..utils import ConvergenceWarning from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} def lars_path(X, y, Xy=None, Gram=None, max_iter=500, alpha_min=0, method='lar', copy_X=True, eps=np.finfo(np.float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ----------- X : array, shape: (n_samples, n_features) Input data. y : array, shape: (n_samples) Input targets. max_iter : integer, optional (default=500) Maximum number of iterations to perform, set to infinity for no limit. Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. alpha_min : float, optional (default=0) Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, optional (default='lar') Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. eps : float, optional (default=``np.finfo(np.float).eps``) The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : bool, optional (default=True) If ``False``, ``X`` is overwritten. copy_Gram : bool, optional (default=True) If ``False``, ``Gram`` is overwritten. verbose : int (default=0) Controls output verbosity. return_path : bool, optional (default=True) If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, optional (default=False) Whether to return the number of iterations. Returns -------- alphas : array, shape: [n_alphas + 1] Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array, shape [n_alphas] Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Effron et al. http://www-stat.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <http://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <http://en.wikipedia.org/wiki/Lasso_(statistics)#Lasso_method>`_ """ n_features = X.shape[1] n_samples = y.size max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. # We are initializing this to "zeros" and not empty, because # it is passed to scipy linalg functions and thus if it has NaNs, # even if they are in the upper part that it not used, we # get errors raised. # Once we support only scipy > 0.12 we can use check_finite=False and # go back to "empty" L = np.zeros((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) solve_cholesky, = get_lapack_funcs(('potrs',), (X,)) if Gram is None: if copy_X: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') elif Gram == 'auto': Gram = None if X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) elif copy_Gram: Gram = Gram.copy() if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny = np.finfo(np.float).tiny # to avoid division by 0 warning tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps while True: if Cov.size: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by the # test suite. The `equality_tolerance` margin added in 0.16.0 to # get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, info = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, info = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny)) g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) alphas = np.resize(alphas, n_iter + add_features) coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] alpha = alphas[n_iter, np.newaxis] prev_alpha = alphas[n_iter - 1, np.newaxis] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 [arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) for ii in idx] n_active -= 1 m, n = idx, n_active # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated residual = y - np.dot(X, coef) temp = np.dot(X.T[drop_idx], residual) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(LinearModel, RegressorMixin): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- n_nonzero_coefs : int, optional Target number of non-zero coefficients. Use ``np.inf`` for no limit. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``n_nonzero_coefs`` or ``n_features``, \ whichever is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) \ | list of n_targets such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lars(n_nonzero_coefs=1) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True, n_nonzero_coefs=1, normalize=True, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] See also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ def __init__(self, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.method = 'lar' self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.eps = eps self.copy_X = copy_X self.fit_path = fit_path def _get_gram(self): # precompute if n_samples > n_features precompute = self.precompute if hasattr(precompute, '__array__'): Gram = precompute elif precompute == 'auto': Gram = 'auto' else: Gram = None return Gram def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like, shape (n_samples,) or (n_samples, n_targets), \ optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, multi_output=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter precompute = self.precompute if not hasattr(precompute, '__array__') and ( precompute is True or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): Gram = np.dot(X.T, X) else: Gram = self._get_gram() self.alphas_ = [] self.n_iter_ = [] if self.fit_path: self.coef_ = [] self.active_ = [] self.coef_path_ = [] for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_.append(coef_path[:, -1]) if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: self.coef_ = np.empty((n_targets, n_features)) for k in xrange(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_mean, y_mean, X_std) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. fit_path : boolean If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. Attributes ---------- alphas_ : array, shape (n_alphas + 1,) | list of n_targets such arrays Maximum of covariances (in absolute value) at each iteration. \ ``n_alphas`` is either ``max_iter``, ``n_features``, or the number of \ nodes in the path with correlation greater than ``alpha``, whichever \ is smaller. active_ : list, length = n_alphas | list of n_targets such lists Indices of active variables at the end of the path. coef_path_ : array, shape (n_features, n_alphas + 1) or list If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float | array, shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int. The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLars(alpha=0.01) >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True, fit_path=True, max_iter=500, normalize=True, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -0.963257...] See also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ def __init__(self, alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True, fit_path=True): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.method = 'lasso' self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(np.float).eps): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on Gram : None, 'auto', array, shape: (n_features, n_features), optional Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : 'lar' | 'lasso' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : integer, optional Sets the amount of verbosity fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum number of iterations to perform. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array, shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array, shape (n_features, n_alphas) Coefficients along the path residues : array, shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter: integer, optional Maximum number of iterations to perform. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. See also -------- lars_path, LassoLars, LassoLarsCV """ method = 'lar' def __init__(self, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=np.finfo(np.float).eps, copy_X=True): self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.copy_X = copy_X self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=False) Gram = 'auto' if self.precompute else None cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps) for train, test in cv) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, active, coefs, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.cv_mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' Lars.fit(self, X, y) return self @property def alpha(self): # impedance matching for the above Lars.fit (should not be documented) return self.alpha_ class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. cv : cross-validation generator, optional see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy max_n_alphas : integer, optional The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array, shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array, shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array, shape (n_cv_alphas,) all the values of alpha along the path for the different folds cv_mse_path_ : array, shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : 'bic' | 'aic' The type of criterion to use. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform. Can be used for early stopping. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Attributes ---------- coef_ : array, shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array, shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criteria is chosen. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.LassoLarsIC(criterion='bic') >>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True, max_iter=500, normalize=True, precompute='auto', verbose=False) >>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. http://en.wikipedia.org/wiki/Akaike_information_criterion http://en.wikipedia.org/wiki/Bayesian_information_criterion See also -------- lars_path, LassoLars, LassoLarsCV """ def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, copy_X=True): self.criterion = criterion self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps def fit(self, X, y, copy_X=True): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) training data. y : array-like, shape (n_samples,) target values. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ self.fit_path = True X, y = check_X_y(X, y, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) max_iter = self.max_iter Gram = self._get_gram() alphas_, active_, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=max_iter, eps=self.eps, return_n_iter=True) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) df = np.zeros(coef_path_.shape[1], dtype=np.int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ with np.errstate(divide='ignore'): self.criterion_ = n_samples * np.log(mean_squared_error) + K * df n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
elvandy/nltools
nltools/data/adjacency.py
1
34227
from __future__ import division ''' This data class is for working with similarity/dissimilarity matrices ''' __author__ = ["Luke Chang"] __license__ = "MIT" import os import pandas as pd import numpy as np import six from copy import deepcopy from sklearn.metrics.pairwise import pairwise_distances from sklearn.manifold import MDS from sklearn.utils import check_random_state from scipy.spatial.distance import squareform from scipy.stats import ttest_1samp import seaborn as sns import matplotlib.pyplot as plt from nltools.stats import (correlation_permutation, one_sample_permutation, two_sample_permutation, summarize_bootstrap, matrix_permutation) from nltools.stats import regress as regression from nltools.plotting import (plot_stacked_adjacency, plot_silhouette) from nltools.utils import (all_same, attempt_to_import, concatenate, _bootstrap_apply_func) from .design_matrix import Design_Matrix from joblib import Parallel, delayed # Optional dependencies nx = attempt_to_import('networkx', 'nx') MAX_INT = np.iinfo(np.int32).max class Adjacency(object): ''' Adjacency is a class to represent Adjacency matrices as a vector rather than a 2-dimensional matrix. This makes it easier to perform data manipulation and analyses. Args: data: pandas data instance or list of files matrix_type: (str) type of matrix. Possible values include: ['distance','similarity','directed','distance_flat', 'similarity_flat','directed_flat'] Y: Pandas DataFrame of training labels **kwargs: Additional keyword arguments ''' def __init__(self, data=None, Y=None, matrix_type=None, labels=None, **kwargs): if matrix_type is not None: if matrix_type.lower() not in ['distance','similarity','directed', 'distance_flat','similarity_flat', 'directed_flat']: raise ValueError("matrix_type must be [None,'distance', " "'similarity','directed','distance_flat', " "'similarity_flat','directed_flat']") if data is None: self.data = np.array([]) self.matrix_type = 'empty' self.is_single_matrix = np.nan self.issymmetric = np.nan elif isinstance(data, list): if isinstance(data[0], Adjacency): tmp = concatenate(data) for item in ['data', 'matrix_type', 'Y','issymmetric']: setattr(self, item, getattr(tmp,item)) else: d_all = []; symmetric_all = []; matrix_type_all = [] for d in data: data_tmp, issymmetric_tmp, matrix_type_tmp, _ = self._import_single_data(d, matrix_type=matrix_type) d_all.append(data_tmp) symmetric_all.append(issymmetric_tmp) matrix_type_all.append(matrix_type_tmp) if not all_same(symmetric_all): raise ValueError('Not all matrices are of the same ' 'symmetric type.') if not all_same(matrix_type_all): raise ValueError('Not all matrices are of the same matrix ' 'type.') self.data = np.array(d_all) self.issymmetric = symmetric_all[0] self.matrix_type = matrix_type_all[0] self.is_single_matrix = False else: self.data, self.issymmetric, self.matrix_type, self.is_single_matrix = self._import_single_data(data, matrix_type=matrix_type) if Y is not None: if isinstance(Y, six.string_types): if os.path.isfile(Y): Y = pd.read_csv(Y, header=None, index_col=None) if isinstance(Y, pd.DataFrame): if self.data.shape[0] != len(Y): raise ValueError("Y does not match the correct size of " "data") self.Y = Y else: raise ValueError("Make sure Y is a pandas data frame.") else: self.Y = pd.DataFrame() if labels is not None: if not isinstance(labels, (list, np.ndarray)): raise ValueError( "Make sure labels is a list or numpy array.") if self.is_single_matrix: if len(labels) != self.square_shape()[0]: raise ValueError('Make sure the length of labels matches the shape of data.') self.labels = deepcopy(labels) else: if len(labels) != len(self): if len(labels) != self.square_shape()[0]: raise ValueError('Make sure length of labels either ' 'matches the number of Adjacency ' 'matrices or the size of a single ' 'matrix.') else: self.labels = list(labels) * len(self) else: if np.all(np.array([len(x) for x in labels]) !=self.square_shape()[0]): raise ValueError("All lists of labels must be same length as shape of data.") self.labels = deepcopy(labels) else: self.labels = None def __repr__(self): return ("%s.%s(shape=%s, square_shape=%s, Y=%s, is_symmetric=%s," "matrix_type=%s)") % ( self.__class__.__module__, self.__class__.__name__, self.shape(), self.square_shape(), len(self.Y), self.issymmetric, self.matrix_type) def __getitem__(self,index): new = self.copy() if isinstance(index, int): new.data = np.array(self.data[index, :]).flatten() new.is_single_matrix = True else: new.data = np.array(self.data[index, :]) if not self.Y.empty: new.Y = self.Y.iloc[index] return new def __len__(self): if self.is_single_matrix: return 1 else: return self.data.shape[0] def __iter__(self): for x in range(len(self)): yield self[x] def __add__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data + y if isinstance(y, Adjacency): if self.shape() != y.shape(): raise ValueError('Both Adjacency() instances need to be the ' 'same shape.') new.data = new.data + y.data return new def __sub__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data - y if isinstance(y, Adjacency): if self.shape() != y.shape(): raise ValueError('Both Adjacency() instances need to be the ' 'same shape.') new.data = new.data - y.data return new def __mul__(self, y): new = deepcopy(self) if isinstance(y, (int, float)): new.data = new.data * y if isinstance(y, Adjacency): if self.shape() != y.shape(): raise ValueError('Both Adjacency() instances need to be the ' 'same shape.') new.data = np.multiply(new.data, y.data) return new def _import_single_data(self, data, matrix_type=None): ''' Helper function to import single data matrix.''' if isinstance(data, six.string_types): if os.path.isfile(data): data = pd.read_csv(data) else: raise ValueError('Make sure you have specified a valid file ' 'path.') def test_is_single_matrix(data): if len(data.shape) == 1: return True else: return False if matrix_type is not None: if matrix_type.lower() == 'distance_flat': matrix_type = 'distance' data = np.array(data) issymmetric = True is_single_matrix = test_is_single_matrix(data) elif matrix_type.lower() == 'similarity_flat': matrix_type = 'similarity' data = np.array(data) issymmetric = True is_single_matrix = test_is_single_matrix(data) elif matrix_type.lower() == 'directed_flat': matrix_type = 'directed' data = np.array(data).flatten() issymmetric = False is_single_matrix = test_is_single_matrix(data) elif matrix_type.lower() in ['distance', 'similarity', 'directed']: if data.shape[0] != data.shape[1]: raise ValueError('Data matrix must be square') data = np.array(data) matrix_type = matrix_type.lower() if matrix_type in ['distance', 'similarity']: issymmetric = True data = data[np.triu_indices(data.shape[0], k=1)] else: issymmetric = False if isinstance(data, pd.DataFrame): data = data.values.flatten() elif isinstance(data, np.ndarray): data = data.flatten() is_single_matrix = True else: if len(data.shape) == 1: # Single Vector try: data = squareform(data) except ValueError: print('Data is not flattened upper triangle from ' 'similarity/distance matrix or flattened directed ' 'matrix.') is_single_matrix = True elif data.shape[0] == data.shape[1]: # Square Matrix is_single_matrix = True else: # Rectangular Matrix data_all = deepcopy(data) try: data = squareform(data_all[0, :]) except ValueError: print('Data is not flattened upper triangle from multiple ' 'similarity/distance matrices or flattened directed ' 'matrices.') is_single_matrix = False # Test if matrix is symmetrical if np.all(data[np.triu_indices(data.shape[0], k=1)] == data.T[np.triu_indices(data.shape[0], k=1)]): issymmetric = True else: issymmetric = False # Determine matrix type if issymmetric: if np.sum(np.diag(data)) == 0: matrix_type = 'distance' elif np.sum(np.diag(data)) == data.shape[0]: matrix_type = 'similarity' data = data[np.triu_indices(data.shape[0], k=1)] else: matrix_type = 'directed' data = data.flatten() if not is_single_matrix: data = data_all return (data, issymmetric, matrix_type, is_single_matrix) def isempty(self): '''Check if Adjacency object is empty''' return bool(self.matrix_type is 'empty') def squareform(self): '''Convert adjacency back to squareform''' if self.issymmetric: if self.is_single_matrix: return squareform(self.data) else: return [squareform(x.data) for x in self] else: if self.is_single_matrix: return self.data.reshape(int(np.sqrt(self.data.shape[0])), int(np.sqrt(self.data.shape[0]))) else: return [x.data.reshape(int(np.sqrt(x.data.shape[0])), int(np.sqrt(x.data.shape[0]))) for x in self] def plot(self, limit=3, *args, **kwargs): ''' Create Heatmap of Adjacency Matrix''' if self.is_single_matrix: f, a = plt.subplots(nrows=1, figsize=(7, 5)) if self.labels is None: sns.heatmap(self.squareform(), square=True, ax=a, *args, **kwargs) else: sns.heatmap(self.squareform(), square=True, ax=a, xticklabels=self.labels, yticklabels=self.labels, *args, **kwargs) else: n_subs = np.minimum(len(self), limit) f, a = plt.subplots(nrows=n_subs, figsize=(7, len(self)*5)) if self.labels is None: for i in range(n_subs): sns.heatmap(self[i].squareform(), square=True, ax=a[i], *args, **kwargs) else: for i in range(n_subs): sns.heatmap(self[i].squareform(), square=True, xticklabels=self.labels[i], yticklabels=self.labels[i], ax=a[i], *args, **kwargs) return f def mean(self, axis=0): ''' Calculate mean of Adjacency Args: axis: calculate mean over features (0) or data (1). For data it will be on upper triangle. Returns: mean: float if single, adjacency if axis=0, np.array if axis=1 and multiple ''' if self.is_single_matrix: return np.mean(self.data) else: if axis == 0: return Adjacency(data=np.mean(self.data, axis=axis), matrix_type=self.matrix_type + '_flat') elif axis == 1: return np.mean(self.data, axis=axis) def std(self, axis=0): ''' Calculate standard deviation of Adjacency Args: axis: calculate std over features (0) or data (1). For data it will be on upper triangle. Returns: std: float if single, adjacency if axis=0, np.array if axis=1 and multiple ''' if self.is_single_matrix: return np.std(self.data) else: if axis == 0: return Adjacency(data=np.std(self.data, axis=axis), matrix_type=self.matrix_type + '_flat') elif axis == 1: return np.std(self.data, axis=axis) def shape(self): ''' Calculate shape of data. ''' return self.data.shape def square_shape(self): ''' Calculate shape of squareform data. ''' if self.matrix_type is 'empty': return np.array([]) else: if self.is_single_matrix: return self.squareform().shape else: return self[0].squareform().shape def copy(self): ''' Create a copy of Adjacency object.''' return deepcopy(self) def append(self, data): ''' Append data to Adjacency instance Args: data: Adjacency instance to append Returns: out: new appended Adjacency instance ''' if not isinstance(data, Adjacency): raise ValueError('Make sure data is a Adjacency instance.') if self.isempty(): out = data.copy() else: out = self.copy() if self.square_shape() != data.square_shape(): raise ValueError('Data is not the same shape as Adjacency ' 'instance.') out.data = np.vstack([self.data, data.data]) out.is_single_matrix = False if out.Y.size: out.Y = self.Y.append(data.Y) return out def write(self, file_name, method='long'): ''' Write out Adjacency object to csv file. Args: file_name (str): name of file name to write method (str): method to write out data ['long','square'] ''' if method not in ['long', 'square']: raise ValueError('Make sure method is ["long","square"].') if self.is_single_matrix: if method is 'long': out = pd.DataFrame(self.data).to_csv(file_name, index=None) elif method is 'square': out = pd.DataFrame(self.squareform()).to_csv(file_name, index=None) else: if method is 'long': out = pd.DataFrame(self.data).to_csv(file_name, index=None) elif method is 'square': raise NotImplementedError('Need to decide how we should write ' 'out multiple matrices. As separate ' 'files?') def similarity(self, data, plot=False, perm_type='2d', n_permute=5000, metric='spearman', **kwargs): ''' Calculate similarity between two Adjacency matrices. Default is to use spearman correlation and permutation test. Args: data: Adjacency data, or 1-d array same size as self.data perm_type: '1d','2d', or None metric: 'spearman','pearson','kendall' ''' if not isinstance(data, Adjacency): data2 = Adjacency(data) else: data2 = data.copy() if perm_type is None: n_permute=0 similarity_func = correlation_permutation elif perm_type == '1d': similarity_func = correlation_permutation elif perm_type == '2d': similarity_func = matrix_permutation if self.is_single_matrix: if plot: plot_stacked_adjacency(self, data) return similarity_func(self.data, data2.data, metric=metric, n_permute=n_permute, **kwargs) else: if plot: _, a = plt.subplots(len(self)) for i in a: plot_stacked_adjacency(self, data, ax=i) return [similarity_func(x.data, data2.data, metric=metric, n_permute=n_permute, **kwargs) for x in self] def distance(self, method='correlation', **kwargs): ''' Calculate distance between images within an Adjacency() instance. Args: method: type of distance metric (can use any scikit learn or sciypy metric) Returns: dist: Outputs a 2D distance matrix. ''' return Adjacency(pairwise_distances(self.data, metric=method, **kwargs), matrix_type='distance') def threshold(self, upper=None, lower=None, binarize=False): '''Threshold Adjacency instance. Provide upper and lower values or percentages to perform two-sided thresholding. Binarize will return a mask image respecting thresholds if provided, otherwise respecting every non-zero value. Args: upper: (float or str) Upper cutoff for thresholding. If string will interpret as percentile; can be None for one-sided thresholding. lower: (float or str) Lower cutoff for thresholding. If string will interpret as percentile; can be None for one-sided thresholding. binarize (bool): return binarized image respecting thresholds if provided, otherwise binarize on every non-zero value; default False Returns: Adjacency: thresholded Adjacency instance ''' b = self.copy() if isinstance(upper, six.string_types): if upper[-1] is '%': upper = np.percentile(b.data, float(upper[:-1])) if isinstance(lower, six.string_types): if lower[-1] is '%': lower = np.percentile(b.data, float(lower[:-1])) if upper and lower: b.data[(b.data < upper) & (b.data > lower)] = 0 elif upper and not lower: b.data[b.data < upper] = 0 elif lower and not upper: b.data[b.data > lower] = 0 if binarize: b.data[b.data != 0] = 1 return b def to_graph(self): ''' Convert Adjacency into networkx graph. only works on single_matrix for now.''' if self.is_single_matrix: if self.matrix_type == 'directed': G = nx.DiGraph(self.squareform()) else: G = nx.Graph(self.squareform()) if self.labels is not None: labels = {x:y for x,y in zip(G.nodes,self.labels)} nx.relabel_nodes(G, labels, copy=False) return G else: raise NotImplementedError('This function currently only works on ' 'single matrices.') def ttest(self, permutation=False, **kwargs): ''' Calculate ttest across samples. Args: permutation: (bool) Run ttest as permutation. Note this can be very slow. Returns: out: (dict) contains Adjacency instances of t values (or mean if running permutation) and Adjacency instance of p values. ''' if self.is_single_matrix: raise ValueError('t-test cannot be run on single matrices.') if permutation: t = []; p = [] for i in range(self.data.shape[1]): stats = one_sample_permutation(self.data[:, i], **kwargs) t.append(stats['mean']) p.append(stats['p']) t = Adjacency(np.array(t)) p = Adjacency(np.array(p)) else: t = self.mean().copy() p = deepcopy(t) t.data, p.data = ttest_1samp(self.data, 0, 0) return {'t': t, 'p':p} def plot_label_distance(self, labels=None, ax=None): ''' Create a violin plot indicating within and between label distance Args: labels (np.array): numpy array of labels to plot Returns: violin plot handles ''' if not self.is_single_matrix: raise ValueError('This function only works on single adjacency ' 'matrices.') distance = pd.DataFrame(self.squareform()) if labels is None: labels = np.array(deepcopy(self.labels)) else: if len(labels) != distance.shape[0]: raise ValueError('Labels must be same length as distance matrix') out = pd.DataFrame(columns=['Distance', 'Group', 'Type'], index=None) for i in np.unique(labels): tmp_w = pd.DataFrame(columns=out.columns, index=None) tmp_w['Distance'] = distance.loc[labels == i, labels == i].values[np.triu_indices(sum(labels == i), k=1)] tmp_w['Type'] = 'Within' tmp_w['Group'] = i tmp_b = pd.DataFrame(columns=out.columns, index=None) tmp_b['Distance'] = distance.loc[labels != i, labels != i].values[np.triu_indices(sum(labels == i), k=1)] tmp_b['Type'] = 'Between' tmp_b['Group'] = i out = out.append(tmp_w).append(tmp_b) f = sns.violinplot(x="Group", y="Distance", hue="Type", data=out, split=True, inner='quartile', palette={"Within": "lightskyblue", "Between": "red"}, ax=ax) f.set_ylabel('Average Distance') f.set_title('Average Group Distance') return f def stats_label_distance(self, labels=None, n_permute=5000, n_jobs=-1): ''' Calculate permutation tests on within and between label distance. Args: labels (np.array): numpy array of labels to plot n_permute (int): number of permutations to run (default=5000) Returns: dict: dictionary of within and between group differences and p-values ''' if not self.is_single_matrix: raise ValueError('This function only works on single adjacency ' 'matrices.') distance = pd.DataFrame(self.squareform()) if labels is not None: labels = deepcopy(self.labels) else: if len(labels) != distance.shape[0]: raise ValueError('Labels must be same length as distance matrix') out = pd.DataFrame(columns=['Distance', 'Group', 'Type'], index=None) for i in np.unique(labels): tmp_w = pd.DataFrame(columns=out.columns, index=None) tmp_w['Distance'] = distance.loc[labels == i, labels == i].values[np.triu_indices(sum(labels == i), k=1)] tmp_w['Type'] = 'Within' tmp_w['Group'] = i tmp_b = pd.DataFrame(columns=out.columns, index=None) tmp_b['Distance'] = distance.loc[labels == i, labels != i].values.flatten() tmp_b['Type'] = 'Between' tmp_b['Group'] = i out = out.append(tmp_w).append(tmp_b) stats = dict() for i in np.unique(labels): # Within group test tmp1 = out.loc[(out['Group'] == i) & (out['Type'] == 'Within'), 'Distance'] tmp2 = out.loc[(out['Group'] == i) & (out['Type'] == 'Between'), 'Distance'] stats[str(i)] = two_sample_permutation(tmp1, tmp2, n_permute=n_permute, n_jobs=n_jobs) return stats def plot_silhouette(self, labels=None, ax=None, permutation_test=True, n_permute=5000, **kwargs): '''Create a silhouette plot''' distance = pd.DataFrame(self.squareform()) if labels is None: labels = np.array(deepcopy(self.labels)) else: if len(labels) != distance.shape[0]: raise ValueError('Labels must be same length as distance matrix') (f, outAll) = plot_silhouette(distance, labels, ax=None, permutation_test=True, n_permute=5000, **kwargs) return (f,outAll) def bootstrap(self, function, n_samples=5000, save_weights=False, n_jobs=-1, random_state=None, *args, **kwargs): '''Bootstrap an Adjacency method. Example Useage: b = dat.bootstrap('mean', n_samples=5000) b = dat.bootstrap('predict', n_samples=5000, algorithm='ridge') b = dat.bootstrap('predict', n_samples=5000, save_weights=True) Args: function: (str) method to apply to data for each bootstrap n_samples: (int) number of samples to bootstrap with replacement save_weights: (bool) Save each bootstrap iteration (useful for aggregating many bootstraps on a cluster) n_jobs: (int) The number of CPUs to use to do the computation. -1 means all CPUs.Returns: output: summarized studentized bootstrap output ''' random_state = check_random_state(random_state) seeds = random_state.randint(MAX_INT, size=n_samples) bootstrapped = Parallel(n_jobs=n_jobs)( delayed(_bootstrap_apply_func)(self, function, random_state=seeds[i], *args, **kwargs) for i in range(n_samples)) bootstrapped = Adjacency(bootstrapped) return summarize_bootstrap(bootstrapped, save_weights=save_weights) def plot_mds(self, n_components=2, metric=True, labels_color=None, cmap=plt.cm.hot_r, n_jobs=-1, view=(30, 20), figsize = [12,8], ax = None, *args, **kwargs): ''' Plot Multidimensional Scaling Args: n_components: (int) Number of dimensions to project (can be 2 or 3) metric: (bool) Perform metric or non-metric dimensional scaling; default labels_color: (str) list of colors for labels, if len(1) then make all same color n_jobs: (int) Number of parallel jobs view: (tuple) view for 3-Dimensional plot; default (30,20) Returns: fig: returns matplotlib figure ''' if self.matrix_type != 'distance': raise ValueError("MDS only works on distance matrices.") if not self.is_single_matrix: raise ValueError("MDS only works on single matrices.") if n_components not in [2,3]: raise ValueError('Cannot plot {0}-d image'.format(n_components)) if labels_color is not None: if self.labels is None: raise ValueError("Make sure that Adjacency object has labels specified.") if len(self.labels) != len(labels_color): raise ValueError("Length of labels_color must match self.labels.") # Run MDS mds = MDS(n_components=n_components, metric=metric, n_jobs=n_jobs, dissimilarity="precomputed", *args, **kwargs) proj = mds.fit_transform(self.squareform()) # Create Plot if ax == None: # Create axis returnFig = True fig = plt.figure(figsize=figsize) if n_components == 3: ax = fig.add_subplot(111, projection='3d') ax.view_init(*view) elif n_components == 2: ax = fig.add_subplot(111) # Plot dots if n_components == 3: ax.scatter(proj[:, 0], proj[:, 1], proj[:, 2], s=1, c='k') elif n_components == 2: ax.scatter(proj[:, 0], proj[:, 1], s=1, c='k') # Plot labels if labels_color is None: labels_color = ['black'] * len(self.labels) if n_components == 3: for ((x, y, z), label, color) in zip(proj, self.labels, labels_color): ax.text(x, y, z, label, color='white', #color, bbox=dict(facecolor=color, alpha=1, boxstyle="round,pad=0.3")) else: for ((x, y), label, color) in zip(proj, self.labels, labels_color): ax.text(x, y, label, color='white', #color, bbox=dict(facecolor=color, alpha=1, boxstyle="round,pad=0.3")) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) if returnFig: return fig def distance_to_similarity(self, beta=1): '''Convert distance matrix to similarity matrix Args: beta: parameter to scale exponential function (default: 1) Returns: Adjacency object ''' if self.matrix_type == 'distance': return Adjacency(np.exp(-beta*self.squareform()/self.squareform().std()), labels=self.labels, matrix_type='similarity') else: raise ValueError('Matrix is not a distance matrix.') def similarity_to_distance(self): '''Convert similarity matrix to distance matrix''' if self.matrix_type == 'similarity': return Adjacency(1-self.squareform(), labels=self.labels, matrix_type='distance') else: raise ValueError('Matrix is not a similarity matrix.') def within_cluster_mean(self, clusters = None): ''' This function calculates mean within cluster labels Args: clusters: list of cluster labels Returns: dict: within cluster means ''' distance=pd.DataFrame(self.squareform()) clusters = np.array(clusters) if len(clusters) != distance.shape[0]: raise ValueError('Cluster labels must be same length as distance matrix') out = pd.DataFrame(columns=['Mean','Label'],index=None) out = {} for i in list(set(clusters)): out[i] = np.mean(distance.loc[clusters==i,clusters==i].values[np.triu_indices(sum(clusters==i),k=1)]) return out def regress(self, X, mode='ols', **kwargs): ''' Run a regression on an adjacency instance. You can decompose an adjacency instance with another adjacency instance. You can also decompose each pixel by passing a design_matrix instance. Args: X: Design matrix can be an Adjacency or Design_Matrix instance method: type of regression (default: ols) Returns: ''' stats = {} if isinstance(X, Adjacency): if X.square_shape()[0] != self.square_shape()[0]: raise ValueError('Adjacency instances must be the same size.') b,t,p,_,res = regression(X.data.T, self.data, mode=mode, **kwargs) stats['beta'],stats['t'],stats['p'],stats['residual'] = (b,t,p,res) elif isinstance(X, Design_Matrix): if X.shape[0] != len(self): raise ValueError('Design matrix must have same number of observations as Adjacency') b,t,p,df,res = regression(X, self.data, mode=mode, **kwargs) mode = 'ols' stats['beta'], stats['t'], stats['p'] = [x for x in self[:3]] stats['beta'].data, stats['t'].data, stats['p'].data = b.squeeze(), t.squeeze(), p.squeeze() stats['residual'] = self.copy() stats['residual'].data = res else: raise ValueError('X must be a Design_Matrix or Adjacency Instance.') return stats
mit
vitaly-krugl/nupic
examples/opf/experiments/opfrunexperiment_test/simpleOPF/hotgym_1hr_agg/description.py
10
15037
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '~/nupic/eng/lib/python2.6/site-packages/nupic/frameworks/opf/expGenerator/experiment_generator.py' """ from nupic.frameworks.opf.exp_description_api import ExperimentDescriptionAPI from nupic.frameworks.opf.exp_description_helpers import ( updateConfigFromSubConfig, applyValueGettersToContainer, DeferredDictLookup) from nupic.frameworks.opf.htm_prediction_model_callbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opf_utils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opf_task_driver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # # NOTE: Use of DEFERRED VALUE-GETTERs: dictionary fields and list elements # within the config dictionary may be assigned futures derived from the # ValueGetterBase class, such as DeferredDictLookup. # This facility is particularly handy for enabling substitution of values in # the config dictionary from other values in the config dictionary, which is # needed by permutation.py-based experiments. These values will be resolved # during the call to applyValueGettersToContainer(), # which we call after the base experiment's config dictionary is updated from # the sub-experiment. See ValueGetterBase and # DeferredDictLookup for more details about value-getters. # # For each custom encoder parameter to be exposed to the sub-experiment/ # permutation overrides, define a variable in this section, using key names # beginning with a single underscore character to avoid collisions with # pre-defined keys (e.g., _dsEncoderFieldName2_N). # # Example: # config = dict( # _dsEncoderFieldName2_N = 70, # _dsEncoderFieldName2_W = 5, # dsEncoderSchema = [ # base=dict( # fieldname='Name2', type='ScalarEncoder', # name='Name2', minval=0, maxval=270, clipInput=True, # n=DeferredDictLookup('_dsEncoderFieldName2_N'), # w=DeferredDictLookup('_dsEncoderFieldName2_W')), # ], # ) # updateConfigFromSubConfig(config) # applyValueGettersToContainer(config) config = { # Type of model that the rest of these parameters apply to. 'model': "HTMPrediction", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'fields': [ (u'timestamp', 'first'), (u'gym', 'first'), (u'consumption', 'sum')], 'days': 0, 'hours': 1, 'microseconds': 0, 'milliseconds': 0, 'minutes': 0, 'months': 0, 'seconds': 0, 'weeks': 0, 'years': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'TemporalMultiStep', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : 1, # Example: # dsEncoderSchema = [ # DeferredDictLookup('__field_name_encoder'), # ], # # (value generated from DS_ENCODER_SCHEMA) 'encoders': { u'timestamp_timeOfDay': { 'fieldname': u'timestamp', 'name': u'timestamp_timeOfDay', 'timeOfDay': (21, 1), 'type': 'DateEncoder'}, u'timestamp_dayOfWeek': { 'dayOfWeek': (21, 1), 'fieldname': u'timestamp', 'name': u'timestamp_dayOfWeek', 'type': 'DateEncoder'}, u'timestamp_weekend': { 'fieldname': u'timestamp', 'name': u'timestamp_weekend', 'type': 'DateEncoder', 'weekend': 21}, u'consumption': { 'clipInput': True, 'fieldname': u'consumption', 'n': 100, 'name': u'consumption', 'type': 'AdaptiveScalarEncoder', 'w': 21}, }, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : { u'days': 0, u'hours': 0}, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : 0, 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TM and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, }, # Controls whether TM is enabled or disabled; # TM is necessary for making temporal predictions, such as predicting # the next inputs. Without TM, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tmEnable' : True, 'tmParams': { # TM diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/backtracking_tm.py and backtracking_tm_cpp.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 20, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TM how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { # Classifier implementation selection. 'implementation': 'py', 'regionName' : 'SDRClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'verbosity' : 0, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.001, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '1,5', }, 'trainSPNetOnlyIfRequested': False, }, } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) control = { # The environment that the current model is being run in "environment": 'nupic', # Input stream specification per py/nupic/cluster/database/StreamDef.json. # 'dataset' : { 'aggregation': config['aggregationInfo'], u'info': u'test_hotgym', u'streams': [ { u'columns': [u'*'], u'info': u'hotGym.csv', u'last_record': 100, u'source': u'file://extra/hotgym/hotgym.csv'}], u'version': 1}, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : -1, # A dictionary containing all the supplementary parameters for inference "inferenceArgs":{u'predictedField': u'consumption', u'predictionSteps': [1, 5]}, # Metrics: A list of MetricSpecs that instantiate the metrics that are # computed for this experiment 'metrics':[ MetricSpec(field=u'consumption', metric='multiStep', inferenceElement='multiStepBestPredictions', params={'window': 1000, 'steps': [1, 5], 'errorMetric': 'aae'}), MetricSpec(field=u'consumption', metric='multiStep', inferenceElement='multiStepBestPredictions', params={'window': 1000, 'steps': [1, 5], 'errorMetric': 'altMAPE'}), ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': ['.*'], } descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0
vitaly-krugl/nupic
examples/opf/experiments/missing_record/make_datasets.py
15
4638
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Generate artificial datasets for the multi-step prediction experiments """ import os import random import datetime from optparse import OptionParser from nupic.data.file_record_stream import FileRecordStream def _generateSimple(filename="simple.csv", numSequences=1, elementsPerSeq=3, numRepeats=10): """ Generate a simple dataset. This contains a bunch of non-overlapping sequences. At the end of the dataset, we introduce missing records so that test code can insure that the model didn't get confused by them. Parameters: ---------------------------------------------------- filename: name of the file to produce, including extension. It will be created in a 'datasets' sub-directory within the directory containing this script. numSequences: how many sequences to generate elementsPerSeq: length of each sequence numRepeats: how many times to repeat each sequence in the output """ # Create the output file scriptDir = os.path.dirname(__file__) pathname = os.path.join(scriptDir, 'datasets', filename) print "Creating %s..." % (pathname) fields = [('timestamp', 'datetime', 'T'), ('field1', 'string', ''), ('field2', 'float', '')] outFile = FileRecordStream(pathname, write=True, fields=fields) # Create the sequences sequences = [] for i in range(numSequences): seq = [x for x in range(i*elementsPerSeq, (i+1)*elementsPerSeq)] sequences.append(seq) # Write out the sequences in random order seqIdxs = [] for i in range(numRepeats): seqIdxs += range(numSequences) random.shuffle(seqIdxs) # Put 1 hour between each record timestamp = datetime.datetime(year=2012, month=1, day=1, hour=0, minute=0, second=0) timeDelta = datetime.timedelta(hours=1) # Write out the sequences without missing records for seqIdx in seqIdxs: seq = sequences[seqIdx] for x in seq: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta # Now, write some out with missing records for seqIdx in seqIdxs: seq = sequences[seqIdx] for i,x in enumerate(seq): if i != 1: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta for seqIdx in seqIdxs: seq = sequences[seqIdx] for i,x in enumerate(seq): if i != 1: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta # Write out some more of the sequences *without* missing records for seqIdx in seqIdxs: seq = sequences[seqIdx] for x in seq: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta outFile.close() if __name__ == '__main__': helpString = \ """%prog [options] Generate artificial datasets for testing multi-step prediction """ # ============================================================================ # Process command line arguments parser = OptionParser(helpString) parser.add_option("--verbosity", default=0, type="int", help="Verbosity level, either 0, 1, 2, or 3 [default: %default].") (options, args) = parser.parse_args() if len(args) != 0: parser.error("No arguments accepted") # Set random seed random.seed(42) # Create the dataset directory if necessary datasetsDir = os.path.join(os.path.dirname(__file__), 'datasets') if not os.path.exists(datasetsDir): os.mkdir(datasetsDir) # Generate the sample datasets _generateSimple('simple_0.csv', numSequences=1, elementsPerSeq=3, numRepeats=10)
agpl-3.0
hfut721/RPN
tools/rpn_generate.py
12
2994
#!/usr/bin/env python # -------------------------------------------------------- # Fast/er/ R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Generate RPN proposals.""" import _init_paths import numpy as np from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from datasets.factory import get_imdb from rpn.generate import imdb_proposals import cPickle import caffe import argparse import pprint import time, os, sys def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Test a Fast R-CNN network') parser.add_argument('--gpu', dest='gpu_id', help='GPU id to use', default=0, type=int) parser.add_argument('--def', dest='prototxt', help='prototxt file defining the network', default=None, type=str) parser.add_argument('--net', dest='caffemodel', help='model to test', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--wait', dest='wait', help='wait until net file exists', default=True, type=bool) parser.add_argument('--imdb', dest='imdb_name', help='dataset to test', default='voc_2007_test', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) cfg.GPU_ID = args.gpu_id # RPN test settings cfg.TEST.RPN_PRE_NMS_TOP_N = -1 cfg.TEST.RPN_POST_NMS_TOP_N = 2000 print('Using config:') pprint.pprint(cfg) while not os.path.exists(args.caffemodel) and args.wait: print('Waiting for {} to exist...'.format(args.caffemodel)) time.sleep(10) caffe.set_mode_gpu() caffe.set_device(args.gpu_id) net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] imdb = get_imdb(args.imdb_name) imdb_boxes = imdb_proposals(net, imdb) output_dir = get_output_dir(imdb, net) rpn_file = os.path.join(output_dir, net.name + '_rpn_proposals.pkl') with open(rpn_file, 'wb') as f: cPickle.dump(imdb_boxes, f, cPickle.HIGHEST_PROTOCOL) print 'Wrote RPN proposals to {}'.format(rpn_file)
mit
franosincic/edx-platform
lms/djangoapps/course_api/blocks/transformers/__init__.py
37
1989
""" Course API Block Transformers """ from .student_view import StudentViewTransformer from .block_counts import BlockCountsTransformer from .navigation import BlockNavigationTransformer class SupportedFieldType(object): """ Metadata about fields supported by different transformers """ def __init__( self, block_field_name, transformer=None, requested_field_name=None, serializer_field_name=None, default_value=None ): self.transformer = transformer self.block_field_name = block_field_name self.requested_field_name = requested_field_name or block_field_name self.serializer_field_name = serializer_field_name or self.requested_field_name self.default_value = default_value # A list of metadata for additional requested fields to be used by the # BlockSerializer` class. Each entry provides information on how that field can # be requested (`requested_field_name`), can be found (`transformer` and # `block_field_name`), and should be serialized (`serializer_field_name` and # `default_value`). SUPPORTED_FIELDS = [ SupportedFieldType('category', requested_field_name='type'), SupportedFieldType('display_name', default_value=''), SupportedFieldType('graded'), SupportedFieldType('format'), # 'student_view_data' SupportedFieldType(StudentViewTransformer.STUDENT_VIEW_DATA, StudentViewTransformer), # 'student_view_multi_device' SupportedFieldType(StudentViewTransformer.STUDENT_VIEW_MULTI_DEVICE, StudentViewTransformer), # set the block_field_name to None so the entire data for the transformer is serialized SupportedFieldType(None, BlockCountsTransformer, BlockCountsTransformer.BLOCK_COUNTS), SupportedFieldType( BlockNavigationTransformer.BLOCK_NAVIGATION, BlockNavigationTransformer, requested_field_name='nav_depth', serializer_field_name='descendants', ) ]
agpl-3.0
ShridharSattur/WhereHows
wherehows-etl/src/main/resources/jython/DatasetTreeBuilder.py
6
3348
# # Copyright 2015 LinkedIn Corp. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # import calendar import json import shutil import sys from com.ziclix.python.sql import zxJDBC from wherehows.common import Constant from datetime import datetime from jython.ElasticSearchIndex import ElasticSearchIndex class DatasetTreeBuilder: def __init__(self, args): username = args[Constant.WH_DB_USERNAME_KEY] password = args[Constant.WH_DB_PASSWORD_KEY] jdbc_driver = args[Constant.WH_DB_DRIVER_KEY] jdbc_url = args[Constant.WH_DB_URL_KEY] conn_mysql = zxJDBC.connect(jdbc_url, username, password, jdbc_driver) cur = conn_mysql.cursor() try: query = "select distinct id, concat(SUBSTRING_INDEX(urn, ':///', 1), '/', SUBSTRING_INDEX(urn, ':///', -1)) p from dict_dataset order by 2" cur.execute(query) datasets = cur.fetchall() self.dataset_dict = dict() for dataset in datasets: current = self.dataset_dict path_arr = dataset[1].split('/') for name in path_arr: current = current.setdefault(name, {}) current["__ID_OF_DATASET__"] = dataset[0] self.file_name = args[Constant.DATASET_TREE_FILE_NAME_KEY] self.value = [] finally: cur.close() conn_mysql.close() def build_trie_helper(self, depth, path, current, current_dict): nodes = [] child_nodes = [] for child_key in sorted(current_dict.keys()): if child_key == "__ID_OF_DATASET__": # Find a leaf node nodes.append({'title': current, 'level': depth, 'path': path, 'id': current_dict["__ID_OF_DATASET__"], 'children': [], 'folder': 0}) else: delimiter = '/' if depth == 1: delimiter = ':///' child_nodes.extend(self.build_trie_helper(depth + 1, path + delimiter + child_key, child_key, current_dict[child_key])) if len(child_nodes) != 0: nodes.append({'title': current, 'level': depth, 'path': path, 'children': child_nodes, 'folder': 1}) return nodes def build_trie(self): for top_key in sorted(self.dataset_dict.keys()): self.value.extend(self.build_trie_helper(1, top_key, top_key, self.dataset_dict[top_key])) def write_to_file(self): tmp_file_name = self.file_name + ".tmp" f = open(tmp_file_name, "w") f.write(json.dumps({'children': self.value})) f.close() shutil.move(tmp_file_name, self.file_name) def run(self): self.build_trie() self.write_to_file() def saveTreeInElasticSearchIfApplicable(args): es_url = args.get(Constant.ELASTICSEARCH_URL_KEY, None) es_port = args.get(Constant.ELASTICSEARCH_PORT_KEY, None) if es_url and es_port: esi = ElasticSearchIndex(args) d = datetime.utcnow() unixtime = calendar.timegm(d.utctimetuple()) esi.update_dataset(unixtime) if __name__ == "__main__": d = DatasetTreeBuilder(sys.argv[1]) d.run() saveTreeInElasticSearchIfApplicable(sys.argv[1])
apache-2.0
classrank/ClassRank
classrank/filters/collabfilter.py
1
2539
import numpy as np from sklearn.decomposition import TruncatedSVD from scipy import sparse from classrank.filters.datawrapper import DataWrapper class CollaborativeFilter: #This takes in a matrix def __init__(self, data=dict(), numRecommendations=1, db=None, metric="rating", school="gatech"): self.dataset = DataWrapper(instances=data, db=db, school=school, metric=metric) self.updated = False self.sparsedata = None self.sparseifyData() try: self.svd = TruncatedSVD(n_components=numRecommendations) self.model = self.svd.inverse_transform(self.svd.fit_transform(self.sparsedata)) except ValueError: self.svd = None self.model = None raise ValueError("Not enough ratings for predictions") def getRecommendation(self, instances): if(self.updated): self.sparseifyData() self.model = self.svd.inverse_transform(self.svd.fit_transform(self.sparsedata)) self.updated = False ret = {} for instance in instances: values = {} for feature in instances[instance]: try: row = self.dataset.getRow(instance) column = self.dataset.getColumn(feature) values[feature] = self.model[row][column] except KeyError: values[feature] = None ret[instance] = values return ret def updateValues(self, instances): self.dataset.addData(instances) self.updated = True def forceModelUpdate(self): self.updated = False self.sparseifyData() self.model = self.svd.inverse_transform(self.svd.fit_transform(self.sparsedata)) def sparseifyData(self): data = self.dataset.getData() sparsematrix = sparse.dok_matrix((len(data), len(data[0]))) for i in range(len(data)): for j in range(len(data[i])): if data[i][j] is not None: sparsematrix[i, j] = data[i][j] self.sparsedata = sparsematrix def getSparseData(self): return self.sparsedata def getModel(self): return self.model def getData(self, *args): if len(args) == 2: return self.dataset.getData(args[0], args[1]) else: return self.dataset.getData() def getUpdated(self): return self.updated def getDataDict(self): return self.dataset.getDataDict()
gpl-2.0
msultan/msmbuilder
msmbuilder/cluster/__init__.py
8
3364
# Author: Robert McGibbon <rmcgibbo@gmail.com> # Contributors: Matthew Harrigan <matthew.harrigan@outlook.com>, Brooke Husic <brookehusic@gmail.com> # Copyright (c) 2016, Stanford University # All rights reserved. from __future__ import absolute_import, print_function, division import warnings from sklearn import cluster try: # sklearn >= 0.18 from sklearn.mixture import GaussianMixture as sklearn_GMM except ImportError: from sklearn.mixture import GMM as sklearn_GMM from ..base import BaseEstimator from .base import MultiSequenceClusterMixin from .kcenters import KCenters from .ndgrid import NDGrid from .agglomerative import LandmarkAgglomerative from .regularspatial import RegularSpatial from .kmedoids import KMedoids from .minibatchkmedoids import MiniBatchKMedoids from .apm import APM warnings.filterwarnings("once", '', DeprecationWarning, r'^sklearn\.') __all__ = ['KMeans', 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'GMM', 'SpectralClustering', 'KCenters', 'NDGrid', 'LandmarkAgglomerative', 'RegularSpatial', 'KMedoids', 'MiniBatchKMedoids', 'MultiSequenceClusterMixin', 'APM', 'AgglomerativeClustering'] def _replace_labels(doc): """Really hacky find-and-replace method that modifies one of the sklearn docstrings to change the semantics of labels_ for the subclasses""" lines = doc.splitlines() labelstart, labelend = None, None foundattributes = False for i, line in enumerate(lines): stripped = line.strip() if stripped == 'Attributes': foundattributes = True if foundattributes and not labelstart and stripped.startswith('labels_'): labelstart = len('\n'.join(lines[:i])) + 1 if labelstart and not labelend and stripped == '': labelend = len('\n'.join(lines[:i + 1])) if labelstart is None or labelend is None: return doc replace = '\n'.join([ ' labels_ : list of arrays, each of shape [sequence_length, ]', ' The label of each point is an integer in [0, n_clusters).', '', ]) return doc[:labelstart] + replace + doc[labelend:] class KMeans(MultiSequenceClusterMixin, cluster.KMeans, BaseEstimator): __doc__ = _replace_labels(cluster.KMeans.__doc__) class MiniBatchKMeans(MultiSequenceClusterMixin, cluster.MiniBatchKMeans, BaseEstimator): __doc__ = _replace_labels(cluster.MiniBatchKMeans.__doc__) class AffinityPropagation(MultiSequenceClusterMixin, cluster.AffinityPropagation, BaseEstimator): __doc__ = _replace_labels(cluster.AffinityPropagation.__doc__) class MeanShift(MultiSequenceClusterMixin, cluster.MeanShift, BaseEstimator): __doc__ = _replace_labels(cluster.MeanShift.__doc__) class SpectralClustering(MultiSequenceClusterMixin, cluster.SpectralClustering, BaseEstimator): __doc__ = _replace_labels(cluster.SpectralClustering.__doc__) class AgglomerativeClustering(MultiSequenceClusterMixin, cluster.AgglomerativeClustering, BaseEstimator): __doc__ = _replace_labels(cluster.AgglomerativeClustering.__doc__) class GMM(MultiSequenceClusterMixin, sklearn_GMM, BaseEstimator): __doc__ = _replace_labels(sklearn_GMM.__doc__)
lgpl-2.1
uber/pyro
examples/inclined_plane.py
1
5455
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import argparse import numpy as np import torch import pyro from pyro.distributions import Normal, Uniform from pyro.infer import EmpiricalMarginal, Importance """ Samantha really likes physics---but she likes Pyro even more. Instead of using calculus to do her physics lab homework (which she could easily do), she's going to use bayesian inference. The problem setup is as follows. In lab she observed a little box slide down an inclined plane (length of 2 meters and with an incline of 30 degrees) 20 times. Each time she measured and recorded the descent time. The timing device she used has a known measurement error of 20 milliseconds. Using the observed data, she wants to infer the coefficient of friction mu between the box and the inclined plane. She already has (deterministic) python code that can simulate the amount of time that it takes the little box to slide down the inclined plane as a function of mu. Using Pyro, she can reverse the simulator and infer mu from the observed descent times. """ little_g = 9.8 # m/s/s mu0 = 0.12 # actual coefficient of friction in the experiment time_measurement_sigma = 0.02 # observation noise in seconds (known quantity) # the forward simulator, which does numerical integration of the equations of motion # in steps of size dt, and optionally includes measurement noise def simulate(mu, length=2.0, phi=np.pi / 6.0, dt=0.005, noise_sigma=None): T = torch.zeros(()) velocity = torch.zeros(()) displacement = torch.zeros(()) acceleration = ( torch.tensor(little_g * np.sin(phi)) - torch.tensor(little_g * np.cos(phi)) * mu ) if ( acceleration.numpy() <= 0.0 ): # the box doesn't slide if the friction is too large return torch.tensor(1.0e5) # return a very large time instead of infinity while ( displacement.numpy() < length ): # otherwise slide to the end of the inclined plane displacement += velocity * dt velocity += acceleration * dt T += dt if noise_sigma is None: return T else: return T + noise_sigma * torch.randn(()) # analytic formula that the simulator above is computing via # numerical integration (no measurement noise) def analytic_T(mu, length=2.0, phi=np.pi / 6.0): numerator = 2.0 * length denominator = little_g * (np.sin(phi) - mu * np.cos(phi)) return np.sqrt(numerator / denominator) # generate N_obs observations using simulator and the true coefficient of friction mu0 print("generating simulated data using the true coefficient of friction %.3f" % mu0) N_obs = 20 torch.manual_seed(2) observed_data = torch.tensor( [ simulate(torch.tensor(mu0), noise_sigma=time_measurement_sigma) for _ in range(N_obs) ] ) observed_mean = np.mean([T.item() for T in observed_data]) # define model with uniform prior on mu and gaussian noise on the descent time def model(observed_data): mu_prior = Uniform(0.0, 1.0) mu = pyro.sample("mu", mu_prior) def observe_T(T_obs, obs_name): T_simulated = simulate(mu) T_obs_dist = Normal(T_simulated, torch.tensor(time_measurement_sigma)) pyro.sample(obs_name, T_obs_dist, obs=T_obs) for i, T_obs in enumerate(observed_data): observe_T(T_obs, "obs_%d" % i) return mu def main(args): # create an importance sampler (the prior is used as the proposal distribution) importance = Importance(model, guide=None, num_samples=args.num_samples) # get posterior samples of mu (which is the return value of model) # from the raw execution traces provided by the importance sampler. print("doing importance sampling...") emp_marginal = EmpiricalMarginal(importance.run(observed_data)) # calculate statistics over posterior samples posterior_mean = emp_marginal.mean posterior_std_dev = emp_marginal.variance.sqrt() # report results inferred_mu = posterior_mean.item() inferred_mu_uncertainty = posterior_std_dev.item() print( "the coefficient of friction inferred by pyro is %.3f +- %.3f" % (inferred_mu, inferred_mu_uncertainty) ) # note that, given the finite step size in the simulator, the simulated descent times will # not precisely match the numbers from the analytic result. # in particular the first two numbers reported below should match each other pretty closely # but will be systematically off from the third number print( "the mean observed descent time in the dataset is: %.4f seconds" % observed_mean ) print( "the (forward) simulated descent time for the inferred (mean) mu is: %.4f seconds" % simulate(posterior_mean).item() ) print( ( "disregarding measurement noise, elementary calculus gives the descent time\n" + "for the inferred (mean) mu as: %.4f seconds" ) % analytic_T(posterior_mean.item()) ) """ ################## EXERCISE ################### # vectorize the computations in this example! # ############################################### """ if __name__ == "__main__": assert pyro.__version__.startswith("1.7.0") parser = argparse.ArgumentParser(description="parse args") parser.add_argument("-n", "--num-samples", default=500, type=int) args = parser.parse_args() main(args)
apache-2.0
matthew-tucker/mne-python
examples/connectivity/plot_mne_inverse_psi_visual.py
18
4555
""" ===================================================================== Compute Phase Slope Index (PSI) in source space for a visual stimulus ===================================================================== This example demonstrates how the Phase Slope Index (PSI) [1] can be computed in source space based on single trial dSPM source estimates. In addition, the example shows advanced usage of the connectivity estimation routines by first extracting a label time course for each epoch and then combining the label time course with the single trial source estimates to compute the connectivity. The result clearly shows how the activity in the visual label precedes more widespread activity (a postivive PSI means the label time course is leading). References ---------- [1] Nolte et al. "Robustly Estimating the Flow Direction of Information in Complex Physical Systems", Physical Review Letters, vol. 100, no. 23, pp. 1-4, Jun. 2008. """ # Author: Martin Luessi <mluessi@nmr.mgh.harvard.edu> # # License: BSD (3-clause) import numpy as np import mne from mne.datasets import sample from mne.io import Raw from mne.minimum_norm import read_inverse_operator, apply_inverse_epochs from mne.connectivity import seed_target_indices, phase_slope_index print(__doc__) data_path = sample.data_path() subjects_dir = data_path + '/subjects' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_raw = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' fname_event = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' fname_label = data_path + '/MEG/sample/labels/Vis-lh.label' event_id, tmin, tmax = 4, -0.2, 0.3 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) # Load data inverse_operator = read_inverse_operator(fname_inv) raw = Raw(fname_raw) events = mne.read_events(fname_event) # pick MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(mag=4e-12, grad=4000e-13, eog=150e-6)) # Compute inverse solution and for each epoch. Note that since we are passing # the output to both extract_label_time_course and the phase_slope_index # functions, we have to use "return_generator=False", since it is only possible # to iterate over generators once. snr = 1.0 # use lower SNR for single epochs lambda2 = 1.0 / snr ** 2 stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, method, pick_ori="normal", return_generator=False) # Now, we generate seed time series by averaging the activity in the left # visual corex label = mne.read_label(fname_label) src = inverse_operator['src'] # the source space used seed_ts = mne.extract_label_time_course(stcs, label, src, mode='mean_flip') # Combine the seed time course with the source estimates. There will be a total # of 7500 signals: # index 0: time course extracted from label # index 1..7499: dSPM source space time courses comb_ts = zip(seed_ts, stcs) # Construct indices to estimate connectivity between the label time course # and all source space time courses vertices = [src[i]['vertno'] for i in range(2)] n_signals_tot = 1 + len(vertices[0]) + len(vertices[1]) indices = seed_target_indices([0], np.arange(1, n_signals_tot)) # Compute the PSI in the frequency range 8Hz..30Hz. We exclude the baseline # period from the connectivity estimation fmin = 8. fmax = 30. tmin_con = 0. sfreq = raw.info['sfreq'] # the sampling frequency psi, freqs, times, n_epochs, _ = phase_slope_index( comb_ts, mode='multitaper', indices=indices, sfreq=sfreq, fmin=fmin, fmax=fmax, tmin=tmin_con) # Generate a SourceEstimate with the PSI. This is simple since we used a single # seed (inspect the indices variable to see how the PSI scores are arranged in # the output) psi_stc = mne.SourceEstimate(psi, vertices=vertices, tmin=0, tstep=1, subject='sample') # Now we can visualize the PSI using the plot method. We use a custom colormap # to show signed values v_max = np.max(np.abs(psi)) brain = psi_stc.plot(surface='inflated', hemi='lh', time_label='Phase Slope Index (PSI)', subjects_dir=subjects_dir, clim=dict(kind='percent', pos_lims=(95, 97.5, 100))) brain.show_view('medial') brain.add_label(fname_label, color='green', alpha=0.7)
bsd-3-clause
uber/pyro
pyro/infer/trace_mean_field_elbo.py
1
8173
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import warnings import weakref import torch from torch.distributions import kl_divergence import pyro.ops.jit from pyro.distributions.util import scale_and_mask from pyro.infer.trace_elbo import Trace_ELBO from pyro.infer.util import ( check_fully_reparametrized, is_validation_enabled, torch_item, ) from pyro.util import warn_if_nan def _check_mean_field_requirement(model_trace, guide_trace): """ Checks that the guide and model sample sites are ordered identically. This is sufficient but not necessary for correctness. """ model_sites = [ name for name, site in model_trace.nodes.items() if site["type"] == "sample" and name in guide_trace.nodes ] guide_sites = [ name for name, site in guide_trace.nodes.items() if site["type"] == "sample" and name in model_trace.nodes ] assert set(model_sites) == set(guide_sites) if model_sites != guide_sites: warnings.warn( "Failed to verify mean field restriction on the guide. " "To eliminate this warning, ensure model and guide sites " "occur in the same order.\n" + "Model sites:\n " + "\n ".join(model_sites) + "Guide sites:\n " + "\n ".join(guide_sites) ) class TraceMeanField_ELBO(Trace_ELBO): """ A trace implementation of ELBO-based SVI. This is currently the only ELBO estimator in Pyro that uses analytic KL divergences when those are available. In contrast to, e.g., :class:`~pyro.infer.tracegraph_elbo.TraceGraph_ELBO` and :class:`~pyro.infer.tracegraph_elbo.Trace_ELBO` this estimator places restrictions on the dependency structure of the model and guide. In particular it assumes that the guide has a mean-field structure, i.e. that it factorizes across the different latent variables present in the guide. It also assumes that all of the latent variables in the guide are reparameterized. This latter condition is satisfied for, e.g., the Normal distribution but is not satisfied for, e.g., the Categorical distribution. .. warning:: This estimator may give incorrect results if the mean-field condition is not satisfied. Note for advanced users: The mean field condition is a sufficient but not necessary condition for this estimator to be correct. The precise condition is that for every latent variable `z` in the guide, its parents in the model must not include any latent variables that are descendants of `z` in the guide. Here 'parents in the model' and 'descendants in the guide' is with respect to the corresponding (statistical) dependency structure. For example, this condition is always satisfied if the model and guide have identical dependency structures. """ def _get_trace(self, model, guide, args, kwargs): model_trace, guide_trace = super()._get_trace(model, guide, args, kwargs) if is_validation_enabled(): _check_mean_field_requirement(model_trace, guide_trace) return model_trace, guide_trace def loss(self, model, guide, *args, **kwargs): """ :returns: returns an estimate of the ELBO :rtype: float Evaluates the ELBO with an estimator that uses num_particles many samples/particles. """ loss = 0.0 for model_trace, guide_trace in self._get_traces(model, guide, args, kwargs): loss_particle, _ = self._differentiable_loss_particle( model_trace, guide_trace ) loss = loss + loss_particle / self.num_particles warn_if_nan(loss, "loss") return loss def _differentiable_loss_particle(self, model_trace, guide_trace): elbo_particle = 0 for name, model_site in model_trace.nodes.items(): if model_site["type"] == "sample": if model_site["is_observed"]: elbo_particle = elbo_particle + model_site["log_prob_sum"] else: guide_site = guide_trace.nodes[name] if is_validation_enabled(): check_fully_reparametrized(guide_site) # use kl divergence if available, else fall back on sampling try: kl_qp = kl_divergence(guide_site["fn"], model_site["fn"]) kl_qp = scale_and_mask( kl_qp, scale=guide_site["scale"], mask=guide_site["mask"] ) if torch.is_tensor(kl_qp): assert kl_qp.shape == guide_site["fn"].batch_shape kl_qp_sum = kl_qp.sum() else: kl_qp_sum = ( kl_qp * torch.Size(guide_site["fn"].batch_shape).numel() ) elbo_particle = elbo_particle - kl_qp_sum except NotImplementedError: entropy_term = guide_site["score_parts"].entropy_term elbo_particle = ( elbo_particle + model_site["log_prob_sum"] - entropy_term.sum() ) # handle auxiliary sites in the guide for name, guide_site in guide_trace.nodes.items(): if guide_site["type"] == "sample" and name not in model_trace.nodes: assert guide_site["infer"].get("is_auxiliary") if is_validation_enabled(): check_fully_reparametrized(guide_site) entropy_term = guide_site["score_parts"].entropy_term elbo_particle = elbo_particle - entropy_term.sum() loss = -( elbo_particle.detach() if torch._C._get_tracing_state() else torch_item(elbo_particle) ) surrogate_loss = -elbo_particle return loss, surrogate_loss class JitTraceMeanField_ELBO(TraceMeanField_ELBO): """ Like :class:`TraceMeanField_ELBO` but uses :func:`pyro.ops.jit.trace` to compile :meth:`loss_and_grads`. This works only for a limited set of models: - Models must have static structure. - Models must not depend on any global data (except the param store). - All model inputs that are tensors must be passed in via ``*args``. - All model inputs that are *not* tensors must be passed in via ``**kwargs``, and compilation will be triggered once per unique ``**kwargs``. """ def differentiable_loss(self, model, guide, *args, **kwargs): kwargs["_pyro_model_id"] = id(model) kwargs["_pyro_guide_id"] = id(guide) if getattr(self, "_loss_and_surrogate_loss", None) is None: # build a closure for loss_and_surrogate_loss weakself = weakref.ref(self) @pyro.ops.jit.trace( ignore_warnings=self.ignore_jit_warnings, jit_options=self.jit_options ) def differentiable_loss(*args, **kwargs): kwargs.pop("_pyro_model_id") kwargs.pop("_pyro_guide_id") self = weakself() loss = 0.0 for model_trace, guide_trace in self._get_traces( model, guide, args, kwargs ): _, loss_particle = self._differentiable_loss_particle( model_trace, guide_trace ) loss = loss + loss_particle / self.num_particles return loss self._differentiable_loss = differentiable_loss return self._differentiable_loss(*args, **kwargs) def loss_and_grads(self, model, guide, *args, **kwargs): loss = self.differentiable_loss(model, guide, *args, **kwargs) loss.backward() loss = torch_item(loss) warn_if_nan(loss, "loss") return loss
apache-2.0
sinkpoint/dipy
doc/examples/reconst_dti.py
5
9303
""" ============================================================ Reconstruction of the diffusion signal with the Tensor model ============================================================ The diffusion tensor model is a model that describes the diffusion within a voxel. First proposed by Basser and colleagues [Basser1994]_, it has been very influential in demonstrating the utility of diffusion MRI in characterizing the micro-structure of white matter tissue and of the biophysical properties of tissue, inferred from local diffusion properties and it is still very commonly used. The diffusion tensor models the diffusion signal as: .. math:: \frac{S(\mathbf{g}, b)}{S_0} = e^{-b\mathbf{g}^T \mathbf{D} \mathbf{g}} Where $\mathbf{g}$ is a unit vector in 3 space indicating the direction of measurement and b are the parameters of measurement, such as the strength and duration of diffusion-weighting gradient. $S(\mathbf{g}, b)$ is the diffusion-weighted signal measured and $S_0$ is the signal conducted in a measurement with no diffusion weighting. $\mathbf{D}$ is a positive-definite quadratic form, which contains six free parameters to be fit. These six parameters are: .. math:: \mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \\ \end{pmatrix} This matrix is a variance/covariance matrix of the diffusivity along the three spatial dimensions. Note that we can assume that diffusivity has antipodal symmetry, so elements across the diagonal are equal. For example: $D_{xy} = D_{yx}$. This is why there are only 6 free parameters to estimate here. In the following example we show how to reconstruct your diffusion datasets using a single tensor model. First import the necessary modules: ``numpy`` is for numerical computation """ import numpy as np """ ``nibabel`` is for loading imaging datasets """ import nibabel as nib """ ``dipy.reconst`` is for the reconstruction algorithms which we use to create voxel models from the raw data. """ import dipy.reconst.dti as dti """ ``dipy.data`` is used for small datasets that we use in tests and examples. """ from dipy.data import fetch_stanford_hardi """ Fetch will download the raw dMRI dataset of a single subject. The size of the dataset is 87 MBytes. You only need to fetch once. """ fetch_stanford_hardi() """ Next, we read the saved dataset """ from dipy.data import read_stanford_hardi img, gtab = read_stanford_hardi() """ img contains a nibabel Nifti1Image object (with the data) and gtab contains a GradientTable object (information about the gradients e.g. b-values and b-vectors). """ data = img.get_data() print('data.shape (%d, %d, %d, %d)' % data.shape) """ data.shape ``(81, 106, 76, 160)`` First of all, we mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image. This is done using dipy's mask module. """ from dipy.segment.mask import median_otsu maskdata, mask = median_otsu(data, 3, 1, True, vol_idx=range(10, 50), dilate=2) print('maskdata.shape (%d, %d, %d, %d)' % maskdata.shape) """ maskdata.shape ``(72, 87, 59, 160)`` Now that we have prepared the datasets we can go forward with the voxel reconstruction. First, we instantiate the Tensor model in the following way. """ tenmodel = dti.TensorModel(gtab) """ Fitting the data is very simple. We just need to call the fit method of the TensorModel in the following way: """ tenfit = tenmodel.fit(maskdata) """ The fit method creates a TensorFit object which contains the fitting parameters and other attributes of the model. For example we can generate fractional anisotropy (FA) from the eigen-values of the tensor. FA is used to characterize the degree to which the distribution of diffusion in a voxel is directional. That is, whether there is relatively unrestricted diffusion in one particular direction. Mathematically, FA is defined as the normalized variance of the eigen-values of the tensor: .. math:: FA = \sqrt{\frac{1}{2}\frac{(\lambda_1-\lambda_2)^2+(\lambda_1- \lambda_3)^2+(\lambda_2-\lambda_3)^2}{\lambda_1^2+ \lambda_2^2+\lambda_3^2}} Note that FA should be interpreted carefully. It may be an indication of the density of packing of fibers in a voxel, and the amount of myelin wrapping these axons, but it is not always a measure of "tissue integrity". For example, FA may decrease in locations in which there is fanning of white matter fibers, or where more than one population of white matter fibers crosses. """ print('Computing anisotropy measures (FA, MD, RGB)') from dipy.reconst.dti import fractional_anisotropy, color_fa, lower_triangular FA = fractional_anisotropy(tenfit.evals) """ In the background of the image the fitting will not be accurate there is no signal and possibly we will find FA values with nans (not a number). We can easily remove these in the following way. """ FA[np.isnan(FA)] = 0 """ Saving the FA images is very easy using nibabel. We need the FA volume and the affine matrix which transform the image's coordinates to the world coordinates. Here, we choose to save the FA in float32. """ fa_img = nib.Nifti1Image(FA.astype(np.float32), img.get_affine()) nib.save(fa_img, 'tensor_fa.nii.gz') """ You can now see the result with any nifti viewer or check it slice by slice using matplotlib_'s imshow. In the same way you can save the eigen values, the eigen vectors or any other properties of the Tensor. """ evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), img.get_affine()) nib.save(evecs_img, 'tensor_evecs.nii.gz') """ Other tensor statistics can be calculated from the `tenfit` object. For example, a commonly calculated statistic is the mean diffusivity (MD). This is simply the mean of the eigenvalues of the tensor. Since FA is a normalized measure of variance and MD is the mean, they are often used as complimentary measures. In `dipy`, there are two equivalent ways to calculate the mean diffusivity. One is by calling the `mean_diffusivity` module function on the eigen-values of the TensorFit class instance: """ MD1 = dti.mean_diffusivity(tenfit.evals) nib.save(nib.Nifti1Image(MD1.astype(np.float32), img.get_affine()), 'tensors_md.nii.gz') """ The other is to call the TensorFit class method: """ MD2 = tenfit.md """ Obviously, the quantities are identical. We can also compute the colored FA or RGB-map [Pajevic1999]_. First, we make sure that the FA is scaled between 0 and 1, we compute the RGB map and save it. """ FA = np.clip(FA, 0, 1) RGB = color_fa(FA, tenfit.evecs) nib.save(nib.Nifti1Image(np.array(255 * RGB, 'uint8'), img.get_affine()), 'tensor_rgb.nii.gz') """ Let's try to visualize the tensor ellipsoids of a small rectangular area in an axial slice of the splenium of the corpus callosum (CC). """ print('Computing tensor ellipsoids in a part of the splenium of the CC') from dipy.data import get_sphere sphere = get_sphere('symmetric724') from dipy.viz import fvtk ren = fvtk.ren() evals = tenfit.evals[13:43, 44:74, 28:29] evecs = tenfit.evecs[13:43, 44:74, 28:29] """ We can color the ellipsoids using the ``color_fa`` values that we calculated above. In this example we additionally normalize the values to increase the contrast. """ cfa = RGB[13:43, 44:74, 28:29] cfa /= cfa.max() fvtk.add(ren, fvtk.tensor(evals, evecs, cfa, sphere)) print('Saving illustration as tensor_ellipsoids.png') fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png', size=(600, 600)) """ .. figure:: tensor_ellipsoids.png :align: center **Tensor Ellipsoids**. """ fvtk.clear(ren) """ Finally, we can visualize the tensor orientation distribution functions for the same area as we did with the ellipsoids. """ tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere) fvtk.add(ren, fvtk.sphere_funcs(tensor_odfs, sphere, colormap=None)) #fvtk.show(r) print('Saving illustration as tensor_odfs.png') fvtk.record(ren, n_frames=1, out_path='tensor_odfs.png', size=(600, 600)) """ .. figure:: tensor_odfs.png :align: center **Tensor ODFs**. Note that while the tensor model is an accurate and reliable model of the diffusion signal in the white matter, it has the drawback that it only has one principal diffusion direction. Therefore, in locations in the brain that contain multiple fiber populations crossing each other, the tensor model may indicate that the principal diffusion direction is intermediate to these directions. Therefore, using the principal diffusion direction for tracking in these locations may be misleading and may lead to errors in defining the tracks. Fortunately, other reconstruction methods can be used to represent the diffusion and fiber orientations in those locations. These are presented in other examples. .. [Basser1994] Basser PJ, Mattielo J, LeBihan (1994). MR diffusion tensor spectroscopy and imaging. .. [Pajevic1999] Pajevic S, Pierpaoli (1999). Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. .. include:: ../links_names.inc """
bsd-3-clause
matthew-tucker/mne-python
examples/inverse/plot_make_inverse_operator.py
21
3232
""" =============================================================== Assemble inverse operator and compute MNE-dSPM inverse solution =============================================================== Assemble M/EEG, MEG, and EEG inverse operators and compute dSPM inverse solution on MNE evoked dataset and stores the solution in stc files for visualisation. """ # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.minimum_norm import (make_inverse_operator, apply_inverse, write_inverse_operator) print(__doc__) data_path = sample.data_path() fname_fwd_meeg = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' fname_fwd_eeg = data_path + '/MEG/sample/sample_audvis-eeg-oct-6-fwd.fif' fname_cov = data_path + '/MEG/sample/sample_audvis-shrunk-cov.fif' fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' snr = 3.0 lambda2 = 1.0 / snr ** 2 # Load data evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) forward_meeg = mne.read_forward_solution(fname_fwd_meeg, surf_ori=True) noise_cov = mne.read_cov(fname_cov) # Restrict forward solution as necessary for MEG forward_meg = mne.pick_types_forward(forward_meeg, meg=True, eeg=False) # Alternatively, you can just load a forward solution that is restricted forward_eeg = mne.read_forward_solution(fname_fwd_eeg, surf_ori=True) # make an M/EEG, MEG-only, and EEG-only inverse operators info = evoked.info inverse_operator_meeg = make_inverse_operator(info, forward_meeg, noise_cov, loose=0.2, depth=0.8) inverse_operator_meg = make_inverse_operator(info, forward_meg, noise_cov, loose=0.2, depth=0.8) inverse_operator_eeg = make_inverse_operator(info, forward_eeg, noise_cov, loose=0.2, depth=0.8) write_inverse_operator('sample_audvis-meeg-oct-6-inv.fif', inverse_operator_meeg) write_inverse_operator('sample_audvis-meg-oct-6-inv.fif', inverse_operator_meg) write_inverse_operator('sample_audvis-eeg-oct-6-inv.fif', inverse_operator_eeg) # Compute inverse solution stcs = dict() stcs['meeg'] = apply_inverse(evoked, inverse_operator_meeg, lambda2, "dSPM", pick_ori=None) stcs['meg'] = apply_inverse(evoked, inverse_operator_meg, lambda2, "dSPM", pick_ori=None) stcs['eeg'] = apply_inverse(evoked, inverse_operator_eeg, lambda2, "dSPM", pick_ori=None) # Save result in stc files names = ['meeg', 'meg', 'eeg'] for name in names: stcs[name].save('mne_dSPM_inverse-%s' % name) ############################################################################### # View activation time-series plt.close('all') plt.figure(figsize=(8, 6)) for ii in range(len(stcs)): name = names[ii] stc = stcs[name] plt.subplot(len(stcs), 1, ii + 1) plt.plot(1e3 * stc.times, stc.data[::150, :].T) plt.ylabel('%s\ndSPM value' % str.upper(name)) plt.xlabel('time (ms)') plt.show()
bsd-3-clause
uber/pyro
pyro/ops/streaming.py
1
8903
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import copy from abc import ABC, abstractmethod from collections import defaultdict from typing import Any, Callable, Dict, Hashable, Union import torch from pyro.ops.welford import WelfordCovariance class StreamingStats(ABC): """ Abstract base class for streamable statistics of trees of tensors. Derived classes must implelement :meth:`update`, :meth:`merge`, and :meth:`get`. """ @abstractmethod def update(self, sample) -> None: """ Update state from a single sample. This mutates ``self`` and returns nothing. Updates should be independent of order, i.e. samples should be exchangeable. :param sample: A sample value which is a nested dictionary of :class:`torch.Tensor` leaves. This can have arbitrary nesting and shape shape, but assumes shape is constant across calls to ``.update()``. """ raise NotImplementedError @abstractmethod def merge(self, other) -> "StreamingStats": """ Select two aggregate statistics, e.g. from different MCMC chains. This is a pure function: it returns a new :class:`StreamingStats` object and does not modify either ``self`` or ``other``. :param other: Another streaming stats instance of the same type. """ assert isinstance(other, type(self)) raise NotImplementedError @abstractmethod def get(self) -> Any: """ Return the aggregate statistic. """ raise NotImplementedError class CountStats(StreamingStats): """ Statistic tracking only the number of samples. For example:: >>> stats = CountStats() >>> stats.update(torch.randn(3, 3)) >>> stats.get() {'count': 1} """ def __init__(self): self.count = 0 super().__init__() def update(self, sample) -> None: self.count += 1 def merge(self, other: "CountStats") -> "CountStats": assert isinstance(other, type(self)) result = CountStats() result.count = self.count + other.count return result def get(self) -> Dict[str, int]: """ :returns: A dictionary with keys ``count: int``. :rtype: dict """ return {"count": self.count} class StatsOfDict(StreamingStats): """ Statistics of samples that are dictionaries with constant set of keys. For example the following are equivalent:: # Version 1. Hand encode statistics. >>> a_stats = CountStats() >>> b_stats = CountMeanStats() >>> a_stats.update(torch.tensor(0.)) >>> b_stats.update(torch.tensor([1., 2.])) >>> summary = {"a": a_stats.get(), "b": b_stats.get()} # Version 2. Collect samples into dictionaries. >>> stats = StatsOfDict({"a": CountStats, "b": CountMeanStats}) >>> stats.update({"a": torch.tensor(0.), "b": torch.tensor([1., 2.])}) >>> summary = stats.get() >>> summary {'a': {'count': 1}, 'b': {'count': 1, 'mean': tensor([1., 2.])}} :param default: Default type of statistics of values of the dictionary. Defaults to the inexpensive :class:`CountStats`. :param dict types: Dictionary mapping key to type of statistic that should be recorded for values corresponding to that key. """ def __init__( self, types: Dict[Hashable, Callable[[], StreamingStats]] = {}, default: Callable[[], StreamingStats] = CountStats, ): self.stats: Dict[Hashable, StreamingStats] = defaultdict(default) self.stats.update({k: v() for k, v in types.items()}) super().__init__() def update(self, sample: Dict[Hashable, Any]) -> None: for k, v in sample.items(): self.stats[k].update(v) def merge(self, other: "StatsOfDict") -> "StatsOfDict": assert isinstance(other, type(self)) result = copy.deepcopy(self) for k in set(self.stats).union(other.stats): if k not in self.stats: result.stats[k] = copy.deepcopy(other.stats[k]) elif k in other.stats: result.stats[k] = self.stats[k].merge(other.stats[k]) return result def get(self) -> Dict[Hashable, Any]: """ :returns: A dictionary of statistics. The keys of this dictionary are the same as the keys of the samples from which this object is updated. :rtype: dict """ return {k: v.get() for k, v in self.stats.items()} class StackStats(StreamingStats): """ Statistic collecting a stream of tensors into a single stacked tensor. """ def __init__(self): self.samples = [] def update(self, sample: torch.Tensor) -> None: assert isinstance(sample, torch.Tensor) self.samples.append(sample) def merge(self, other: "StackStats") -> "StackStats": assert isinstance(other, type(self)) result = StackStats() result.samples = self.samples + other.samples return result def get(self) -> Dict[str, Union[int, torch.Tensor]]: """ :returns: A dictionary with keys ``count: int`` and (if any samples have been collected) ``samples: torch.Tensor``. :rtype: dict """ if not self.samples: return {"count": 0} return {"count": len(self.samples), "samples": torch.stack(self.samples)} class CountMeanStats(StreamingStats): """ Statistic tracking the count and mean of a single :class:`torch.Tensor`. """ def __init__(self): self.count = 0 self.mean = 0 super().__init__() def update(self, sample: torch.Tensor) -> None: assert isinstance(sample, torch.Tensor) self.count += 1 self.mean += (sample.detach() - self.mean) / self.count def merge(self, other: "CountMeanStats") -> "CountMeanStats": assert isinstance(other, type(self)) result = CountMeanStats() result.count = self.count + other.count p = self.count / max(result.count, 1) q = other.count / max(result.count, 1) result.mean = p * self.mean + q * other.mean return result def get(self) -> Dict[str, Union[int, torch.Tensor]]: """ :returns: A dictionary with keys ``count: int`` and (if any samples have been collected) ``mean: torch.Tensor``. :rtype: dict """ if self.count == 0: return {"count": 0} return {"count": self.count, "mean": self.mean} class CountMeanVarianceStats(StreamingStats): """ Statistic tracking the count, mean, and (diagonal) variance of a single :class:`torch.Tensor`. """ def __init__(self): self.shape = None self.welford = WelfordCovariance(diagonal=True) super().__init__() def update(self, sample: torch.Tensor) -> None: assert isinstance(sample, torch.Tensor) if self.shape is None: self.shape = sample.shape assert sample.shape == self.shape self.welford.update(sample.detach().reshape(-1)) def merge(self, other: "CountMeanVarianceStats") -> "CountMeanVarianceStats": assert isinstance(other, type(self)) if self.shape is None: return copy.deepcopy(other) if other.shape is None: return copy.deepcopy(self) result = copy.deepcopy(self) res = result.welford lhs = self.welford rhs = other.welford res.n_samples = lhs.n_samples + rhs.n_samples lhs_weight = lhs.n_samples / res.n_samples rhs_weight = rhs.n_samples / res.n_samples res._mean = lhs_weight * lhs._mean + rhs_weight * rhs._mean res._m2 = ( lhs._m2 + rhs._m2 + (lhs.n_samples * rhs.n_samples / res.n_samples) * (lhs._mean - rhs._mean) ** 2 ) return result def get(self) -> Dict[str, Union[int, torch.Tensor]]: """ :returns: A dictionary with keys ``count: int`` and (if any samples have been collected) ``mean: torch.Tensor`` and ``variance: torch.Tensor``. :rtype: dict """ if self.shape is None: return {"count": 0} count = self.welford.n_samples mean = self.welford._mean.reshape(self.shape) variance = self.welford.get_covariance(regularize=False).reshape(self.shape) return {"count": count, "mean": mean, "variance": variance} # Note this is ordered logically for sphinx rather than alphabetically. __all__ = [ "StreamingStats", "StatsOfDict", "StackStats", "CountStats", "CountMeanStats", "CountMeanVarianceStats", ]
apache-2.0
matthew-tucker/mne-python
mne/datasets/megsim/megsim.py
15
6566
# Author: Eric Larson <larson.eric.d@gmail.com> # License: BSD Style. import os from os import path as op import zipfile from sys import stdout from ...utils import _fetch_file, _url_to_local_path, verbose from ..utils import _get_path, _do_path_update from .urls import (url_match, valid_data_types, valid_data_formats, valid_conditions) @verbose def data_path(url, path=None, force_update=False, update_path=None, verbose=None): """Get path to local copy of MEGSIM dataset URL This is a low-level function useful for getting a local copy of a remote MEGSIM dataet. Parameters ---------- url : str The dataset to use. path : None | str Location of where to look for the MEGSIM data storing location. If None, the environment variable or config parameter MNE_DATASETS_MEGSIM_PATH is used. If it doesn't exist, the "mne-python/examples" directory is used. If the MEGSIM dataset is not found under the given path (e.g., as "mne-python/examples/MEGSIM"), the data will be automatically downloaded to the specified folder. force_update : bool Force update of the dataset even if a local copy exists. update_path : bool | None If True, set the MNE_DATASETS_MEGSIM_PATH in mne-python config to the given path. If None, the user is prompted. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- path : list of str Local paths to the given data files. If URL was a .fif file, this will be a list of length 1. If it was a .zip file, it may potentially be many files. Notes ----- For example, one could do: >>> from mne.datasets import megsim >>> url = 'http://cobre.mrn.org/megsim/simdata/neuromag/visual/M87174545_vis_sim1A_4mm_30na_neuro_rn.fif' >>> megsim.data_path(url, os.getenv('HOME') + '/datasets') # doctest:+SKIP And this would download the given MEGSIM data file to the 'datasets' folder, and prompt the user to save the 'datasets' path to the mne-python config, if it isn't there already. The MEGSIM dataset is documented in the following publication: Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montano R, Bryant JE, Scott A, Stephen JM (2012) MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data. Neuroinform 10:141-158 """ # noqa key = 'MNE_DATASETS_MEGSIM_PATH' name = 'MEGSIM' path = _get_path(path, key, name) destination = _url_to_local_path(url, op.join(path, 'MEGSIM')) destinations = [destination] split = op.splitext(destination) is_zip = True if split[1].lower() == '.zip' else False # Fetch the file do_unzip = False if not op.isfile(destination) or force_update: if op.isfile(destination): os.remove(destination) if not op.isdir(op.dirname(destination)): os.makedirs(op.dirname(destination)) _fetch_file(url, destination, print_destination=False) do_unzip = True if is_zip: z = zipfile.ZipFile(destination) decomp_dir, name = op.split(destination) files = z.namelist() # decompress if necessary (if download was re-done) if do_unzip: stdout.write('Decompressing %g files from\n' '"%s" ...' % (len(files), name)) z.extractall(decomp_dir) stdout.write(' [done]\n') z.close() destinations = [op.join(decomp_dir, f) for f in files] path = _do_path_update(path, update_path, key, name) return destinations @verbose def load_data(condition='visual', data_format='raw', data_type='experimental', path=None, force_update=False, update_path=None, verbose=None): """Get path to local copy of MEGSIM dataset type Parameters ---------- condition : str The condition to use. Either 'visual', 'auditory', or 'somatosensory'. data_format : str The data format. Either 'raw', 'evoked', or 'single-trial'. data_type : str The type of data. Either 'experimental' or 'simulation'. path : None | str Location of where to look for the MEGSIM data storing location. If None, the environment variable or config parameter MNE_DATASETS_MEGSIM_PATH is used. If it doesn't exist, the "mne-python/examples" directory is used. If the MEGSIM dataset is not found under the given path (e.g., as "mne-python/examples/MEGSIM"), the data will be automatically downloaded to the specified folder. force_update : bool Force update of the dataset even if a local copy exists. update_path : bool | None If True, set the MNE_DATASETS_MEGSIM_PATH in mne-python config to the given path. If None, the user is prompted. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- paths : list List of local data paths of the given type. Notes ----- For example, one could do: >>> from mne.datasets import megsim >>> megsim.load_data('visual', 'raw', 'experimental', os.getenv('HOME') + '/datasets') # doctest:+SKIP And this would download the raw visual experimental MEGSIM dataset to the 'datasets' folder, and prompt the user to save the 'datasets' path to the mne-python config, if it isn't there already. The MEGSIM dataset is documented in the following publication: Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montano R, Bryant JE, Scott A, Stephen JM (2012) MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data. Neuroinform 10:141-158 """ # noqa if not condition.lower() in valid_conditions: raise ValueError('Unknown condition "%s"' % condition) if data_format not in valid_data_formats: raise ValueError('Unknown data_format "%s"' % data_format) if data_type not in valid_data_types: raise ValueError('Unknown data_type "%s"' % data_type) urls = url_match(condition, data_format, data_type) data_paths = list() for url in urls: data_paths.extend(data_path(url, path, force_update, update_path)) return data_paths
bsd-3-clause
jhseu/tensorflow
tensorflow/python/autograph/operators/control_flow.py
1
36743
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Control flow statements: loops, conditionals, etc. Note: most of these operators accept pairs of get_state/set_state functions, to capture mutations that the corresponding code blocks might make. These mutations only need to be captured when staging the control flow, and they just work when reverting to Python behavior. __Examples__ ``` while cond: self.x += i ``` When the functionalized version is executed as a Python loop, it just works: ``` def loop_body(): self.x += i # works as expected for Python loops ``` But it won't work for TF loops: ``` def loop_body(): self.x += i # self.x has the wrong value! ``` get_state/set_state allow piping the mutations through the loop variables as well, in effect changing the loop body: ``` def loop_body(self_x): self.x = self_x # self.x now has the proper value self.x += i # the original block self_x = self.x # write self.x back into the loop vars return self_x self_x = tf.while_loop(...) self.x = self_x # the result is not properly captured ``` """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import traceback import numpy as np from tensorflow.python.autograph.operators import py_builtins from tensorflow.python.autograph.operators import special_values from tensorflow.python.autograph.utils import ag_logging from tensorflow.python.autograph.utils import compat_util from tensorflow.python.autograph.utils import misc from tensorflow.python.autograph.utils import tensors from tensorflow.python.data.experimental.ops import scan_ops from tensorflow.python.data.experimental.ops import take_while_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import func_graph from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.util import lazy_loader from tensorflow.python.util import nest # TODO(b/145618471): Remove this dependency. # Lazy import to work around circular dependencies input_lib = lazy_loader.LazyLoader( 'input_lib', globals(), 'tensorflow.python.distribute.input_lib') PYTHON_MAX_ITERATIONS = 100000000 # Fails in about one minute for empty loops. WARN_INEFFICIENT_UNROLL = True INEFFICIENT_UNROLL_MIN_ITERATIONS = 3000 INEFFICIENT_UNROLL_MIN_OPS = 1 # TODO(mdan): Use the custom operator pattern instead of type dispatch. # An example of this pattern is found in the implementation of distributed # datasets. Before it can be used though, we need to standardize the interface. # TODO(mdan): Use existing symbol names rather than carrying them separately. def _disallow_undefs_into_loop(*values): """Ensures that all values in the state are defined when entering a loop.""" undefined = tuple(filter(special_values.is_undefined, values)) if undefined: raise ValueError( '{} must be defined before the loop.'.format( ','.join(s.symbol_name for s in undefined))) for value in values: if special_values.is_undefined_return(value): # Assumption: the loop will only capture the variable which tracks the # return value if the loop contained a return statement. # TODO(mdan): This should be checked at the place where return occurs. raise ValueError( 'return statements are not supported within a TensorFlow loop.') def _is_subshape(left, right): """Returns True if left shape is at least as specific as right shape.""" # TODO(mdan): This code should be in TensorShape. # Note: this is not the same as TensorShape.is_compatible_with, which is # symmetric. # This code also duplicates _ShapeLessThanOrEqual from control_flow_ops.py. if right.dims is None: return True if left.ndims != right.ndims: return False for ldim, rdim in zip(left.dims, right.dims): if rdim.value is not None and ldim.value != rdim.value: return False return True # TODO(mdan): Remove these verifications once TF ops can properly report names. def _verify_single_loop_var( name, check_shape, init, entry, exit_, shape_invariant): """Verifies whether the initial, entry and exit values are consistent.""" if isinstance(init, (bool, int, float, str, np.ndarray)): init = ops.convert_to_tensor_v2(init) if isinstance(entry, (bool, int, float, str, np.ndarray)): entry = ops.convert_to_tensor_v2(entry) if isinstance(exit_, (bool, int, float, str)): exit_ = ops.convert_to_tensor_v2(exit_) if (not tensor_util.is_tensor(entry) or not tensor_util.is_tensor(exit_)): return # TODO(mdan): Properly account for CompositeTensors. if (not hasattr(entry, 'dtype') or not hasattr(exit_, 'dtype')): return if (not hasattr(entry, 'shape') or not hasattr(exit_, 'shape')): return if entry.dtype != exit_.dtype: raise TypeError( '"{}" has dtype {} before the loop, but dtype {} after one' ' iteration. TensorFlow control flow requires it stays the' ' same.'.format( name, entry.dtype.name, exit_.dtype.name, )) if check_shape: exit_shape = exit_.shape if shape_invariant is None: entry_shape = entry.shape if not _is_subshape(exit_shape, entry_shape): raise ValueError( '"{}" has shape {} before the loop, but shape {} after one' ' iteration. Use tf.autograph.experimental.set_loop_options to set' ' shape invariants.'.format(name, entry_shape, exit_shape)) else: init_shape = init.shape if not _is_subshape(init_shape, shape_invariant): raise ValueError( '"{}" has shape {} before the loop, which does not conform with' ' the shape invariant {}.'.format(name, init_shape, shape_invariant)) if not _is_subshape(exit_shape, shape_invariant): raise ValueError( '"{}" has shape {} after one iteration, which does not conform with' ' the shape invariant {}.'.format( name, exit_shape, shape_invariant)) def _verify_tf_loop_vars(init_vars, iter_entry_vars, iter_exit_vars, symbol_names, opts, check_shapes=True): """Verifies loop variables for consistency.""" if check_shapes and 'shape_invariants' in opts: shape_invariants = opts['shape_invariants'] else: shape_invariants = nest.map_structure(lambda _: None, iter_entry_vars) assert len(symbol_names) == len(shape_invariants) assert len(symbol_names) == len(init_vars) assert len(symbol_names) == len(iter_entry_vars) assert len(symbol_names) == len(iter_exit_vars) for i in range(len(symbol_names)): name = symbol_names[i] init = init_vars[i] entry = iter_entry_vars[i] exit_ = iter_exit_vars[i] invariant = shape_invariants[i] try: nest.assert_same_structure(init, entry, expand_composites=True) nest.assert_same_structure(entry, exit_, expand_composites=True) except (ValueError, TypeError) as e: raise TypeError('"{}" does not have the same nested structure after one' ' iteration.\n\n{}'.format(name, e)) if invariant is not None: try: nest.assert_same_structure(init, invariant, expand_composites=False) except (ValueError, TypeError) as e: raise TypeError('"{}" does not have the same nested structure as its' ' corresponding shape invariant.\n\n{}'.format(name, e)) nest.map_structure( functools.partial(_verify_single_loop_var, name, check_shapes), init, entry, exit_, invariant) def _verify_single_cond_var(name, body_var, orelse_var): """Verifies whether body_var and orelse_var are consistent.""" if isinstance(body_var, (bool, int, float, str)): body_var = ops.convert_to_tensor_v2(body_var) if isinstance(orelse_var, (bool, int, float, str)): orelse_var = ops.convert_to_tensor_v2(orelse_var) if (not tensor_util.is_tensor(body_var) or not tensor_util.is_tensor(orelse_var)): return # TODO(mdan): Properly account for CompositeTensors. if (not hasattr(body_var, 'dtype') or not hasattr(orelse_var, 'dtype')): return if body_var.dtype != orelse_var.dtype: raise TypeError( '"{}" has dtype {} in the TRUE branch, but dtype={} in the FALSE' ' branch. TensorFlow control flow requires that they are the' ' same.'.format(name, body_var.dtype.name, orelse_var.dtype.name)) def _verify_tf_cond_vars(body_vars, orelse_vars, symbol_names): """Verifies variables manipulated by a conditional for consistency.""" basic_body_vars, composite_body_vars = body_vars basic_orelse_vars, composite_orelse_vars = orelse_vars assert isinstance(composite_body_vars, tuple) assert isinstance(composite_orelse_vars, tuple) # TODO(kkimlabs): Make this more consistent. # The basic outputs should always be a tuple. if not isinstance(basic_body_vars, tuple): basic_body_vars = (basic_body_vars,) if not isinstance(basic_orelse_vars, tuple): basic_orelse_vars = (basic_orelse_vars,) body_vars = basic_body_vars + composite_body_vars orelse_vars = basic_orelse_vars + composite_orelse_vars named_vars = zip(symbol_names, body_vars, orelse_vars) for name, body_var, orelse_var in named_vars: try: nest.assert_same_structure( body_var, orelse_var, expand_composites=True) except (ValueError, TypeError) as e: raise TypeError( '"{}" does not have the same nested structure in the TRUE and FALSE' ' branches.\n\n{}'.format(name, str(e))) nest.map_structure( functools.partial(_verify_single_cond_var, name), body_var, orelse_var) def for_stmt(iter_, extra_test, body, get_state, set_state, symbol_names, opts): """Functional form of a for statement. The loop operates on a state, which includes all symbols that are variant across loop iterations, excluding the variables local to the loop. For example, given the loop below that calculates the geometric and arithmetic means or some numbers: ``` geo_mean = 1 arith_mean = 0 for i in range(n): a = numbers[i] geo_mean *= a arith_mean += a ``` The state is represented by the variables geo_mean and arith_mean. The `extra_test`, `body`, `get_state` and `set_state` functions must bind to the original `geo_mean` and `arith_mean` symbols, using `nonlocal`. Args: iter_: The entity being iterated over. extra_test: Callable with the state as arguments, and boolean return type. An additional loop condition. body: Callable with the iterate and the state as arguments, and state as return type. The actual loop body. get_state: Additional callable which can capture additional state (such as the values of composite symbols). This is only useful when staging the loop. set_state: Additional callable which save values captured by get_state back into the Python environment. This is only useful when staging the loop. symbol_names: Tuple containing names of the loop variables returned by get_state. opts: Optional dict of extra loop parameters. Returns: Tuple containing the final state. """ if tensor_util.is_tensor(iter_): if tensors.is_range_tensor(iter_): _tf_range_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts) else: _known_len_tf_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts) elif isinstance(iter_, dataset_ops.DatasetV2): _tf_dataset_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts) elif isinstance(iter_, iterator_ops.OwnedIterator): _tf_iterator_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts) elif isinstance(iter_, ragged_tensor.RaggedTensor): _tf_ragged_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts) elif isinstance(iter_, input_lib.DistributedIterator): raise NotImplementedError( 'distributed iterators not supported yet, use the distributed dataset' ' directly') # TODO(mdan): Resolve the private access issue. elif isinstance(iter_, input_lib._IterableInput): # pylint:disable=protected-access _tf_distributed_iterable_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts) else: _py_for_stmt(iter_, extra_test, body, None, None) def _py_for_stmt(iter_, extra_test, body, get_state, set_state): """Overload of for_stmt that executes a Python for loop.""" del get_state, set_state if __debug__: checker = _PythonLoopChecker() before_iteration = checker.before_iteration after_iteration = checker.after_iteration before_iteration() original_body = body def protected_body(protected_iter): original_body(protected_iter) after_iteration() before_iteration() body = protected_body if extra_test is not None: if extra_test(): for target in iter_: body(target) if not extra_test(): break else: for target in iter_: body(target) def _known_len_tf_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts): """Overload of for_stmt that iterates over TF entities that admit a length.""" n = py_builtins.len_(iter_) # TODO(b/117628877): Revisit performance once XLA has the necessary support. # Note: using a TensorArray creates an extra copy, but can calculate # gradients more efficiently than StridedSlice. ta = tensor_array_ops.TensorArray(iter_.dtype, size=n) iter_ = ta.unstack(iter_) iterate_index = compat_util.BasicRef(0) def aug_get_state(): return (iterate_index.value,) + get_state() def aug_set_state(aug_loop_vars): # TOOD(mdan): Use starred assignment once we can switch to Py3-only syntax. iterate_index.value, loop_vars = aug_loop_vars[0], aug_loop_vars[1:] # The iteration index is not "output" by the for loop. If the iterate # is used outside the loop, it will appear in the loop vars separately. set_state(loop_vars) def aug_body(): body(iter_.read(iterate_index.value)) iterate_index.value += 1 def aug_test(): main_test = iterate_index.value < n if extra_test is not None: return control_flow_ops.cond(main_test, extra_test, lambda: False) return main_test opts['maximum_iterations'] = n _tf_while_stmt( aug_test, aug_body, aug_get_state, aug_set_state, ('<internal iterate>',) + symbol_names, opts, ) def _tf_ragged_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts): """Overload of for_stmt that iterates over TF ragged tensors.""" init_vars = get_state() _disallow_undefs_into_loop(*init_vars) # TODO(mdan): Move this into len()? Requires eager support. if iter_.shape and iter_.shape[0] is not None: n = iter_.shape[0] else: n = iter_.row_lengths()[0] iterate_index = compat_util.BasicRef(0) def aug_get_state(): return (iterate_index.value,) + get_state() def aug_set_state(aug_loop_vars): # TOOD(mdan): Use starred assignment once we can switch to Py3-only syntax. iterate_index.value, loop_vars = aug_loop_vars[0], aug_loop_vars[1:] # The iteration index is not "output" by the for loop. If the iterate # is used outside the loop, it will appear in the loop vars separately. set_state(loop_vars) def aug_body(): body(iter_[iterate_index.value]) iterate_index.value += 1 def aug_test(): main_test = iterate_index.value < n if extra_test is not None: return control_flow_ops.cond(main_test, extra_test, lambda: False) return main_test opts['maximum_iterations'] = n _tf_while_stmt( aug_test, aug_body, aug_get_state, aug_set_state, ('<internal iterate>',) + symbol_names, opts) def _tf_range_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts): """Overload of for_stmt that iterates over a TF range (and elides it).""" start, limit, delta = iter_.op.inputs iterate = compat_util.BasicRef(start) def aug_get_state(): return (iterate.value,) + get_state() def aug_set_state(aug_loop_vars): # TOOD(mdan): Use starred assignment once we can switch to Py3-only syntax. iterate.value, loop_vars = aug_loop_vars[0], aug_loop_vars[1:] # The iteration index is not "output" by the for loop. If the iterate # is used outside the loop, it will appear in the loop vars separately. set_state(loop_vars) def aug_body(): body(iterate.value) iterate.value += delta def aug_test(): main_test = math_ops.logical_or( math_ops.logical_and(delta >= 0, iterate.value < limit), math_ops.logical_and(delta < 0, iterate.value > limit)) if extra_test is not None: return control_flow_ops.cond(main_test, extra_test, lambda: False) return main_test opts['maximum_iterations'] = math_ops.cast( misc.get_range_len(start, limit, delta), dtypes.int32) _tf_while_stmt( aug_test, aug_body, aug_get_state, aug_set_state, ('<internal iterate>',) + symbol_names, opts) def _tf_iterator_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts): """Overload of for_stmt that iterates over TF Iterators. See for_loop.""" symbol_names = ('<internal has_next>',) + symbol_names has_next = compat_util.BasicRef(True) def aug_get_state(): return (has_next.value,) + get_state() def aug_set_state(aug_loop_vars): # TOOD(mdan): Use starred assignment once we can switch to Py3-only syntax. has_next.value, loop_vars = aug_loop_vars[0], aug_loop_vars[1:] set_state(loop_vars) init_vars = aug_get_state() _disallow_undefs_into_loop(*init_vars) def aug_body(): """Main body passed to _tf_while_stmt.""" opt_iterate = iterator_ops.get_next_as_optional(iter_) has_next.value = opt_iterate.has_value() loop_vars = aug_get_state() # updated by set_state() in _tf_while_loop. def main_path(): body(opt_iterate.get_value()) new_loop_vars = aug_get_state() # Note: this verification duplicates the one performed in tf_while_stmt, # but needs to be done earlier to prevent the tf.cond from blowing up # first. _verify_tf_loop_vars( init_vars, loop_vars, new_loop_vars, symbol_names, opts) return new_loop_vars def noop_path(): return loop_vars # TODO(mdan): If tf.while_loop supported Optional, this could be avoided. # Calling set_state so that get_state() _tf_while_loop sees the conditional # tensors. aug_set_state( control_flow_ops.cond(has_next.value, main_path, noop_path)) def aug_test(): # This value takes a complicated path to get here: # prev_iteration_body -> get_state -> tf.while_loop (as loop var) # -> current_iteration_body -> set_state -> has_next.value main_test = has_next.value if extra_test is not None: return control_flow_ops.cond(main_test, extra_test, lambda: False) return main_test _tf_while_stmt( aug_test, aug_body, aug_get_state, aug_set_state, symbol_names, opts) def _general_purpose_scan(ds, init_state, body): """Variant of Dataset.scan with semantics of general-purpose computation.""" # Datasets are typically intended for data preprocessing. However, in # autograph loops they usually appear as general-purpose computations (for # example, a custom training loop). These two use cases require significantly # different optimization policies, the most important of which is the device # placement. The flag override for use_default_device below instructs the # runtime to treat the computation as general-purpose, rather than data # preprocessing. # TODO(mdan): s/use_default_device/specialize_for_input_pipeline. # TODO(mdan): Don't use private symbols. return scan_ops._ScanDataset(ds, init_state, body, use_default_device=False) # pylint:disable=protected-access def _tf_dataset_for_stmt( ds, extra_test, body, get_state, set_state, symbol_names, opts): """Overload of _dataset_for_stmt with early stopping. See for_stmt.""" # Note: This is easier to follow with the insight that the computations in # a dataset pipeline are transposed (aka fused). # For example, given a pipeline input -> scan -> take_while -> reduce, # and a dataset with input [1, 2, 3], the computations occur in the following # order: # reduce(take_while(scan(1))) # reduce(take_while(scan(2))) # reduce(take_while(scan(3))) init_vars = get_state() _disallow_undefs_into_loop(*init_vars) # Workaround for Dataset.reduce not allowing empty state tensors - create # a dummy state variable that remains unused. # TODO(mdan): reduce should allow and match empty structures. if not init_vars: init_vars = (constant_op.constant(0),) symbol_names = ('<internal dummy>',) def dummy_set_state(unused_dummy): pass def dummy_get_state(): return (constant_op.constant(0),) get_state, set_state = dummy_get_state, dummy_set_state def scan_body(scan_state, scan_inputs): """Main body of the Dataset.scan.""" loop_vars, iterate = scan_state, scan_inputs set_state(loop_vars) def main_path(): body(iterate) new_loop_vars = get_state() _verify_tf_loop_vars( init_vars, loop_vars, new_loop_vars, symbol_names, opts, check_shapes=False) return new_loop_vars if extra_test is not None: extra_cond = extra_test() new_loop_vars = control_flow_ops.cond( extra_cond, main_path, lambda: loop_vars) else: # TODO(mdan): the optimizer should be able to remove an invariant cond? extra_cond = (constant_op.constant(True),) # dummy value, unused new_loop_vars = main_path() scan_outputs = new_loop_vars, extra_cond new_scan_state = new_loop_vars return new_scan_state, scan_outputs def take_while_predicate(unused_loop_vars, extra_cond): return extra_cond def reduce_body(unused_reduce_state, scan_outputs): output_loop_vars, unused_extra_cond = scan_outputs new_reduce_state = output_loop_vars return new_reduce_state ds = _general_purpose_scan(ds, init_vars, scan_body) if extra_test is not None: ds = ds.apply(take_while_ops.take_while(take_while_predicate)) final_loop_vars = ds.reduce(init_vars, reduce_body) set_state(final_loop_vars) def _tf_distributed_iterable_for_stmt( iter_, extra_test, body, get_state, set_state, symbol_names, opts): """Overload of for_stmt that iterates over TF distributed datasets.""" if extra_test is not None: raise NotImplementedError( 'break and return statements are not yet supported in ' 'for ... in distributed input loops.') init_vars = get_state() _disallow_undefs_into_loop(init_vars) if 'shape_invariants' in opts: opts['shape_invariants'] = _shape_invariants_mapping_to_positional_list( opts['shape_invariants'], init_vars) def reduce_body(loop_vars, iterate): set_state(loop_vars) body(iterate) new_loop_vars = get_state() _verify_tf_loop_vars( init_vars, loop_vars, new_loop_vars, symbol_names, opts) return new_loop_vars set_state(iter_.reduce(init_vars, reduce_body)) def while_stmt(test, body, get_state, set_state, symbol_names, opts): """Functional form of a while statement. The loop operates on a so-called state, which includes all symbols that are variant across loop iterations. In what follows we refer to state as either a tuple of entities that represent an actual state, or a list of arguments of the corresponding types. Args: test: Callable with the state as arguments, and boolean return type. The loop condition. body: Callable with the state as arguments, and state as return type. The actual loop body. get_state: Additional callable which can capture additional state (such as the values of composite symbols). This is only useful when staging the loop. set_state: Additional callable which save values captured by get_state back into the Python environment. This is only useful when staging the loop. symbol_names: Tuple containing the names of all loop variables. opts: Optional dict of extra loop parameters. Returns: Tuple containing the final state. """ # Evaluate the initial test once in order to do the dispatch. The evaluation # is isolated to minimize unwanted side effects. # TODO(mdan): Do a full iteration - some state types might lower to Tensor. with func_graph.FuncGraph('tmp').as_default(): init_test = test() # TensorFlow: Multiple evaluations are acceptable in this case, so we're fine # with the re-evaluation of `test` that `_tf_while_stmt` will make. if tensors.is_dense_tensor(init_test): _tf_while_stmt(test, body, get_state, set_state, symbol_names, opts) return # Normal Python: We already consumed one evaluation of `test`; consistently, # unroll one iteration before dispatching to a normal loop. # TODO(mdan): Push the "init_test" value via opts into _py_while_stmt? if not init_test: return body() _py_while_stmt(test, body, get_state, set_state, opts) class _PythonLoopChecker(object): """Verifies Python loops for TF-specific limits.""" __slots__ = ( 'iterations', 'check_inefficient_unroll', 'check_op_count_after_iteration', 'ops_before_iteration', ) def __init__(self): self.iterations = 1 self.check_inefficient_unroll = WARN_INEFFICIENT_UNROLL # Triggered when we decided to test the op counts. self.check_op_count_after_iteration = False def _get_ops(self): return ops.get_default_graph().get_operations() def _check_unroll_limits(self): if self.iterations > PYTHON_MAX_ITERATIONS: raise ValueError('iteration limit exceeded') def _stop_checking_inefficient_unroll(self): self.check_inefficient_unroll = False self.check_op_count_after_iteration = False self.ops_before_iteration = None def _verify_ineffcient_unroll(self): """Checks for possibly-inefficient creation of ops in a Python loop.""" assert self.ops_before_iteration is not None ops_after_iteration = self._get_ops() new_ops = tuple( op for op in ops_after_iteration if op not in self.ops_before_iteration) if len(new_ops) < INEFFICIENT_UNROLL_MIN_OPS: return False ag_logging.warn( 'Large unrolled loop detected. Did you mean to use a TF loop?' ' The following ops were created after iteration %s: %s' '\nSee' ' https://github.com/tensorflow/tensorflow/blob/master/' 'tensorflow/python/autograph/g3doc/reference/common_errors.md' '#warning-large-unrolled-loop-detected' '\n' 'Location:' '\n%s' '', self.iterations, new_ops, '\n'.join(traceback.format_stack())) return True def before_iteration(self): """Called before each iteration in a Python loop.""" if (self.check_inefficient_unroll and self.iterations > INEFFICIENT_UNROLL_MIN_ITERATIONS): self.ops_before_iteration = self._get_ops() self.check_op_count_after_iteration = True def after_iteration(self): """Called after each iteration in a Python loop.""" self.iterations += 1 self._check_unroll_limits() if self.check_op_count_after_iteration: did_warn = self._verify_ineffcient_unroll() if did_warn: self._stop_checking_inefficient_unroll() # Only warn once. elif self.iterations > INEFFICIENT_UNROLL_MIN_ITERATIONS + 3: # Once deciding to check the op counts, only do it for a few iterations. self._stop_checking_inefficient_unroll() def _py_while_stmt(test, body, get_state, set_state, opts): """Overload of while_stmt that executes a Python while loop.""" del opts, get_state, set_state if __debug__: checker = _PythonLoopChecker() before_iteration = checker.before_iteration after_iteration = checker.after_iteration before_iteration() original_body = body def protected_body(): original_body() after_iteration() before_iteration() body = protected_body while test(): body() def _shape_invariants_mapping_to_positional_list(mapping, keys): # The keys are not expected to be hashable. mapping = {id(k): (k, v) for k, v in mapping} result = [] for k in keys: map_key, map_val = mapping.get(id(k), (None, None)) result.append(map_val if map_key is k else None) return tuple(result) def _tf_while_stmt(test, body, get_state, set_state, symbol_names, opts): """Overload of while_stmt that stages a TF while_stmt.""" init_vars = get_state() _disallow_undefs_into_loop(*init_vars) def aug_test(*loop_vars): set_state(loop_vars) return test() def aug_body(*loop_vars): set_state(loop_vars) body() new_loop_vars = get_state() _verify_tf_loop_vars( init_vars, loop_vars, new_loop_vars, symbol_names, opts) return new_loop_vars # Non-v2 while_loop unpacks the results when there is only one return value. # This enforces consistency across versions. opts['return_same_structure'] = True if 'shape_invariants' in opts: opts['shape_invariants'] = _shape_invariants_mapping_to_positional_list( opts['shape_invariants'], init_vars) final_loop_vars = control_flow_ops.while_loop( aug_test, aug_body, init_vars, **opts) set_state(final_loop_vars) def if_stmt(cond, body, orelse, get_state, set_state, basic_symbol_names, composite_symbol_names): """Functional form of an if statement. Args: cond: Boolean. body: Callable with no arguments, and outputs of the positive (if) branch as return type. orelse: Callable with no arguments, and outputs of the negative (else) branch as return type. get_state: Function that returns a tuple containing the values of all composite symbols modified within the conditional. This allows access to state that branches may mutate through side effects. This function is not needed and should not be called when dispatching to code matching Python's default semantics. This is useful for checkpointing to avoid unintended side-effects when staging requires evaluating all code-paths. set_state: Function to set the values of all composite symbols modified within the conditional. This is the complement to get_state, used to restore checkpointed values. The single argument a tuple containing values for each composite symbol that may be modified in a branch of the conditional. The is usually the result of a call to get_state. basic_symbol_names: Tuple containing basic loop var names. composite_symbol_names: Tuple containing composite loop var names. Returns: Tuple containing the statement outputs. """ # Note: tf.cond doesn't support SparseTensor. if tensors.is_dense_tensor(cond): return tf_if_stmt(cond, body, orelse, get_state, set_state, basic_symbol_names, composite_symbol_names) else: return _py_if_stmt(cond, body, orelse) def tf_if_stmt(cond, body, orelse, get_state, set_state, basic_symbol_names, composite_symbol_names): """Overload of if_stmt that stages a TF cond.""" body = _wrap_disallow_undefs_from_cond(body, branch_name='if') orelse = _wrap_disallow_undefs_from_cond(orelse, branch_name='else') body = _isolate_state(body, get_state, set_state) orelse = _isolate_state(orelse, get_state, set_state) # `state` currently includes the values of any composite symbols (e.g. `a.b`) # composites modified by the loop. `final_vars` includes the values of basic # symbols (e.g. `a`) which cannot be passed by reference and must be returned. # See _isolate_state. # TODO(mdan): We should minimize calls to get/set_state. body_branch = 0 orelse_branch = 1 result = [None, None] def error_checking_body(): result[body_branch] = body() if result[orelse_branch] is not None: _verify_tf_cond_vars(result[body_branch], result[orelse_branch], basic_symbol_names + composite_symbol_names) return result[body_branch] def error_checking_orelse(): result[orelse_branch] = orelse() if result[body_branch] is not None: _verify_tf_cond_vars(result[body_branch], result[orelse_branch], basic_symbol_names + composite_symbol_names) return result[orelse_branch] final_vars, final_state = control_flow_ops.cond(cond, error_checking_body, error_checking_orelse) set_state(final_state) return final_vars def _isolate_state(func, get_state, set_state): """Wraps func to (best-effort) isolate state mutations that func may do. The simplest example of state mutation is mutation of variables (via e.g. attributes), or modification of globals. This allows us to more safely execute this function without worrying about side effects when the function wasn't normally expected to execute. For example, staging requires that the function is executed ahead of time, and we need to ensure its effects are not observed during normal execution. Args: func: () -> Any get_state: () -> Any, returns the current state set_state: (Any) -> None, resets the state to the specified values. Typically the result of an earlier call to `get_state`. Returns: Tuple[Any, Any], where the first element is the return value of `func`, and the second is the final state values. """ def wrapper(): init_state = get_state() new_vars = func() # TODO(mdan): These should be copies, lest set_state might affect them. new_state = get_state() set_state(init_state) return new_vars, new_state return wrapper def _wrap_disallow_undefs_from_cond(func, branch_name): """Wraps conditional branch to disallow returning undefined symbols.""" def wrapper(): """Calls function and raises an error if undefined symbols are returned.""" results = func() if isinstance(results, tuple): results_tuple = results else: results_tuple = results, undefined = tuple(filter(special_values.is_undefined, results_tuple)) if undefined: raise ValueError( 'The following symbols must also be initialized in the {} branch: {}.' ' Alternatively, you may initialize them before the if' ' statement.'.format(branch_name, tuple(s.symbol_name for s in undefined))) for result in results_tuple: if special_values.is_undefined_return(result): raise ValueError( 'A value must also be returned from the {} branch. If a value is ' 'returned from one branch of a conditional a value must be ' 'returned from all branches.'.format(branch_name)) return results return wrapper def _py_if_stmt(cond, body, orelse): """Overload of if_stmt that executes a Python if statement.""" return body() if cond else orelse() compat_util.deprecated_py2_support(__name__)
apache-2.0
uber/pyro
pyro/distributions/conjugate.py
1
10824
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import numbers import torch from torch.distributions.utils import broadcast_all from pyro.ops.special import log_beta, log_binomial from . import constraints from .torch import Beta, Binomial, Dirichlet, Gamma, Multinomial, Poisson from .torch_distribution import TorchDistribution from .util import broadcast_shape def _log_beta_1(alpha, value, is_sparse): if is_sparse: mask = value != 0 value, alpha, mask = torch.broadcast_tensors(value, alpha, mask) result = torch.zeros_like(value) value = value[mask] alpha = alpha[mask] result[mask] = ( torch.lgamma(1 + value) + torch.lgamma(alpha) - torch.lgamma(value + alpha) ) return result else: return ( torch.lgamma(1 + value) + torch.lgamma(alpha) - torch.lgamma(value + alpha) ) class BetaBinomial(TorchDistribution): r""" Compound distribution comprising of a beta-binomial pair. The probability of success (``probs`` for the :class:`~pyro.distributions.Binomial` distribution) is unknown and randomly drawn from a :class:`~pyro.distributions.Beta` distribution prior to a certain number of Bernoulli trials given by ``total_count``. :param concentration1: 1st concentration parameter (alpha) for the Beta distribution. :type concentration1: float or torch.Tensor :param concentration0: 2nd concentration parameter (beta) for the Beta distribution. :type concentration0: float or torch.Tensor :param total_count: Number of Bernoulli trials. :type total_count: float or torch.Tensor """ arg_constraints = { "concentration1": constraints.positive, "concentration0": constraints.positive, "total_count": constraints.nonnegative_integer, } has_enumerate_support = True support = Binomial.support # EXPERIMENTAL If set to a positive value, the .log_prob() method will use # a shifted Sterling's approximation to the Beta function, reducing # computational cost from 9 lgamma() evaluations to 12 log() evaluations # plus arithmetic. Recommended values are between 0.1 and 0.01. approx_log_prob_tol = 0.0 def __init__( self, concentration1, concentration0, total_count=1, validate_args=None ): concentration1, concentration0, total_count = broadcast_all( concentration1, concentration0, total_count ) self._beta = Beta(concentration1, concentration0) self.total_count = total_count super().__init__(self._beta._batch_shape, validate_args=validate_args) @property def concentration1(self): return self._beta.concentration1 @property def concentration0(self): return self._beta.concentration0 def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(BetaBinomial, _instance) batch_shape = torch.Size(batch_shape) new._beta = self._beta.expand(batch_shape) new.total_count = self.total_count.expand_as(new._beta.concentration0) super(BetaBinomial, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new def sample(self, sample_shape=()): probs = self._beta.sample(sample_shape) return Binomial(self.total_count, probs, validate_args=False).sample() def log_prob(self, value): if self._validate_args: self._validate_sample(value) n = self.total_count k = value a = self.concentration1 b = self.concentration0 tol = self.approx_log_prob_tol return ( log_binomial(n, k, tol) + log_beta(k + a, n - k + b, tol) - log_beta(a, b, tol) ) @property def mean(self): return self._beta.mean * self.total_count @property def variance(self): return ( self._beta.variance * self.total_count * (self.concentration0 + self.concentration1 + self.total_count) ) def enumerate_support(self, expand=True): total_count = int(self.total_count.max()) if not self.total_count.min() == total_count: raise NotImplementedError( "Inhomogeneous total count not supported by `enumerate_support`." ) values = torch.arange( 1 + total_count, dtype=self.concentration1.dtype, device=self.concentration1.device, ) values = values.view((-1,) + (1,) * len(self._batch_shape)) if expand: values = values.expand((-1,) + self._batch_shape) return values class DirichletMultinomial(TorchDistribution): r""" Compound distribution comprising of a dirichlet-multinomial pair. The probability of classes (``probs`` for the :class:`~pyro.distributions.Multinomial` distribution) is unknown and randomly drawn from a :class:`~pyro.distributions.Dirichlet` distribution prior to a certain number of Categorical trials given by ``total_count``. :param float or torch.Tensor concentration: concentration parameter (alpha) for the Dirichlet distribution. :param int or torch.Tensor total_count: number of Categorical trials. :param bool is_sparse: Whether to assume value is mostly zero when computing :meth:`log_prob`, which can speed up computation when data is sparse. """ arg_constraints = { "concentration": constraints.independent(constraints.positive, 1), "total_count": constraints.nonnegative_integer, } support = Multinomial.support def __init__( self, concentration, total_count=1, is_sparse=False, validate_args=None ): batch_shape = concentration.shape[:-1] event_shape = concentration.shape[-1:] if isinstance(total_count, numbers.Number): total_count = concentration.new_tensor(total_count) else: batch_shape = broadcast_shape(batch_shape, total_count.shape) concentration = concentration.expand(batch_shape + (-1,)) total_count = total_count.expand(batch_shape) self._dirichlet = Dirichlet(concentration) self.total_count = total_count self.is_sparse = is_sparse super().__init__(batch_shape, event_shape, validate_args=validate_args) @property def concentration(self): return self._dirichlet.concentration @staticmethod def infer_shapes(concentration, total_count=()): batch_shape = broadcast_shape(concentration[:-1], total_count) event_shape = concentration[-1:] return batch_shape, event_shape def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(DirichletMultinomial, _instance) batch_shape = torch.Size(batch_shape) new._dirichlet = self._dirichlet.expand(batch_shape) new.total_count = self.total_count.expand(batch_shape) new.is_sparse = self.is_sparse super(DirichletMultinomial, new).__init__( new._dirichlet.batch_shape, new._dirichlet.event_shape, validate_args=False ) new._validate_args = self._validate_args return new def sample(self, sample_shape=()): probs = self._dirichlet.sample(sample_shape) total_count = int(self.total_count.max()) if not self.total_count.min() == total_count: raise NotImplementedError( "Inhomogeneous total count not supported by `sample`." ) return Multinomial(total_count, probs).sample() def log_prob(self, value): if self._validate_args: self._validate_sample(value) alpha = self.concentration return _log_beta_1(alpha.sum(-1), value.sum(-1), self.is_sparse) - _log_beta_1( alpha, value, self.is_sparse ).sum(-1) @property def mean(self): return self._dirichlet.mean * self.total_count.unsqueeze(-1) @property def variance(self): n = self.total_count.unsqueeze(-1) alpha = self.concentration alpha_sum = self.concentration.sum(-1, keepdim=True) alpha_ratio = alpha / alpha_sum return n * alpha_ratio * (1 - alpha_ratio) * (n + alpha_sum) / (1 + alpha_sum) class GammaPoisson(TorchDistribution): r""" Compound distribution comprising of a gamma-poisson pair, also referred to as a gamma-poisson mixture. The ``rate`` parameter for the :class:`~pyro.distributions.Poisson` distribution is unknown and randomly drawn from a :class:`~pyro.distributions.Gamma` distribution. .. note:: This can be treated as an alternate parametrization of the :class:`~pyro.distributions.NegativeBinomial` (``total_count``, ``probs``) distribution, with `concentration = total_count` and `rate = (1 - probs) / probs`. :param float or torch.Tensor concentration: shape parameter (alpha) of the Gamma distribution. :param float or torch.Tensor rate: rate parameter (beta) for the Gamma distribution. """ arg_constraints = { "concentration": constraints.positive, "rate": constraints.positive, } support = Poisson.support def __init__(self, concentration, rate, validate_args=None): concentration, rate = broadcast_all(concentration, rate) self._gamma = Gamma(concentration, rate) super().__init__(self._gamma._batch_shape, validate_args=validate_args) @property def concentration(self): return self._gamma.concentration @property def rate(self): return self._gamma.rate def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(GammaPoisson, _instance) batch_shape = torch.Size(batch_shape) new._gamma = self._gamma.expand(batch_shape) super(GammaPoisson, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new def sample(self, sample_shape=()): rate = self._gamma.sample(sample_shape) return Poisson(rate).sample() def log_prob(self, value): if self._validate_args: self._validate_sample(value) post_value = self.concentration + value return ( -log_beta(self.concentration, value + 1) - post_value.log() + self.concentration * self.rate.log() - post_value * (1 + self.rate).log() ) @property def mean(self): return self.concentration / self.rate @property def variance(self): return self.concentration / self.rate.pow(2) * (1 + self.rate)
apache-2.0
matthew-tucker/mne-python
mne/tests/test_source_estimate.py
12
28321
from __future__ import print_function import os.path as op from nose.tools import assert_true, assert_raises import warnings from copy import deepcopy import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose, assert_equal) from scipy.fftpack import fft from mne.datasets import testing from mne import (stats, SourceEstimate, VolSourceEstimate, Label, read_source_spaces, MixedSourceEstimate) from mne import read_source_estimate, morph_data, extract_label_time_course from mne.source_estimate import (spatio_temporal_tris_connectivity, spatio_temporal_src_connectivity, compute_morph_matrix, grade_to_vertices, grade_to_tris) from mne.minimum_norm import read_inverse_operator from mne.label import read_labels_from_annot, label_sign_flip from mne.utils import (_TempDir, requires_pandas, requires_sklearn, requires_h5py, run_tests_if_main, slow_test) warnings.simplefilter('always') # enable b/c these tests throw warnings data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') fname_inv = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif') fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz') fname_src = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif') fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg') fname_smorph = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg') fname_fmorph = op.join(data_path, 'MEG', 'sample', 'fsaverage_audvis_trunc-meg') fname_vol = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w') fname_vsrc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-vol-7-fwd.fif') @slow_test @testing.requires_testing_data def test_volume_stc(): """Test volume STCs """ tempdir = _TempDir() N = 100 data = np.arange(N)[:, np.newaxis] datas = [data, data, np.arange(2)[:, np.newaxis]] vertno = np.arange(N) vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis]] vertno_reads = [vertno, vertno, np.arange(2)] for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads): stc = VolSourceEstimate(data, vertno, 0, 1) fname_temp = op.join(tempdir, 'temp-vl.stc') stc_new = stc for _ in range(2): stc_new.save(fname_temp) stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(vertno_read, stc_new.vertices) assert_array_almost_equal(stc.data, stc_new.data) # now let's actually read a MNE-C processed file stc = read_source_estimate(fname_vol, 'sample') assert_true(isinstance(stc, VolSourceEstimate)) assert_true('sample' in repr(stc)) stc_new = stc assert_raises(ValueError, stc.save, fname_vol, ftype='whatever') for _ in range(2): fname_temp = op.join(tempdir, 'temp-vol.w') stc_new.save(fname_temp, ftype='w') stc_new = read_source_estimate(fname_temp) assert_true(isinstance(stc_new, VolSourceEstimate)) assert_array_equal(stc.vertices, stc_new.vertices) assert_array_almost_equal(stc.data, stc_new.data) # save the stc as a nifti file and export try: import nibabel as nib with warnings.catch_warnings(record=True): warnings.simplefilter('always') src = read_source_spaces(fname_vsrc) vol_fname = op.join(tempdir, 'stc.nii.gz') stc.save_as_volume(vol_fname, src, dest='surf', mri_resolution=False) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == src[0]['shape'] + (len(stc.times),)) with warnings.catch_warnings(record=True): # nib<->numpy t1_img = nib.load(fname_t1) stc.save_as_volume(op.join(tempdir, 'stc.nii.gz'), src, dest='mri', mri_resolution=True) with warnings.catch_warnings(record=True): # nib<->numpy img = nib.load(vol_fname) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.get_affine(), t1_img.get_affine(), decimal=5) # export without saving img = stc.as_volume(src, dest='mri', mri_resolution=True) assert_true(img.shape == t1_img.shape + (len(stc.times),)) assert_array_almost_equal(img.get_affine(), t1_img.get_affine(), decimal=5) except ImportError: print('Save as nifti test skipped, needs NiBabel') @testing.requires_testing_data def test_expand(): """Test stc expansion """ stc = read_source_estimate(fname_stc, 'sample') assert_true('sample' in repr(stc)) labels_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir) new_label = labels_lh[0] + labels_lh[1] stc_limited = stc.in_label(new_label) stc_new = stc_limited.copy() stc_new.data.fill(0) for label in labels_lh[:2]: stc_new += stc.in_label(label).expand(stc_limited.vertices) assert_raises(TypeError, stc_new.expand, stc_limited.vertices[0]) assert_raises(ValueError, stc_new.expand, [stc_limited.vertices[0]]) # make sure we can't add unless vertno agree assert_raises(ValueError, stc.__add__, stc.in_label(labels_lh[0])) def _fake_stc(n_time=10): verts = [np.arange(10), np.arange(90)] return SourceEstimate(np.random.rand(100, n_time), verts, 0, 1e-1, 'foo') def test_io_stc(): """Test IO for STC files """ tempdir = _TempDir() stc = _fake_stc() stc.save(op.join(tempdir, "tmp.stc")) stc2 = read_source_estimate(op.join(tempdir, "tmp.stc")) assert_array_almost_equal(stc.data, stc2.data) assert_array_almost_equal(stc.tmin, stc2.tmin) assert_equal(len(stc.vertices), len(stc2.vertices)) for v1, v2 in zip(stc.vertices, stc2.vertices): assert_array_almost_equal(v1, v2) assert_array_almost_equal(stc.tstep, stc2.tstep) @requires_h5py def test_io_stc_h5(): """Test IO for STC files using HDF5 """ tempdir = _TempDir() stc = _fake_stc() assert_raises(ValueError, stc.save, op.join(tempdir, 'tmp'), ftype='foo') out_name = op.join(tempdir, 'tmp') stc.save(out_name, ftype='h5') stc3 = read_source_estimate(out_name) stc4 = read_source_estimate(out_name + '-stc.h5') assert_raises(RuntimeError, read_source_estimate, out_name, subject='bar') for stc_new in stc3, stc4: assert_equal(stc_new.subject, stc.subject) assert_array_equal(stc_new.data, stc.data) assert_array_equal(stc_new.tmin, stc.tmin) assert_array_equal(stc_new.tstep, stc.tstep) assert_equal(len(stc_new.vertices), len(stc.vertices)) for v1, v2 in zip(stc_new.vertices, stc.vertices): assert_array_equal(v1, v2) def test_io_w(): """Test IO for w files """ tempdir = _TempDir() stc = _fake_stc(n_time=1) w_fname = op.join(tempdir, 'fake') stc.save(w_fname, ftype='w') src = read_source_estimate(w_fname) src.save(op.join(tempdir, 'tmp'), ftype='w') src2 = read_source_estimate(op.join(tempdir, 'tmp-lh.w')) assert_array_almost_equal(src.data, src2.data) assert_array_almost_equal(src.lh_vertno, src2.lh_vertno) assert_array_almost_equal(src.rh_vertno, src2.rh_vertno) def test_stc_arithmetic(): """Test arithmetic for STC files """ stc = _fake_stc() data = stc.data.copy() out = list() for a in [data, stc]: a = a + a * 3 + 3 * a - a ** 2 / 2 a += a a -= a with warnings.catch_warnings(record=True): warnings.simplefilter('always') a /= 2 * a a *= -a a += 2 a -= 1 a *= -1 a /= 2 b = 2 + a b = 2 - a b = +a assert_array_equal(b.data, a.data) with warnings.catch_warnings(record=True): warnings.simplefilter('always') a **= 3 out.append(a) assert_array_equal(out[0], out[1].data) assert_array_equal(stc.sqrt().data, np.sqrt(stc.data)) stc_mean = stc.mean() assert_array_equal(stc_mean.data, np.mean(stc.data, 1)[:, None]) @slow_test @testing.requires_testing_data def test_stc_methods(): """Test stc methods lh_data, rh_data, bin(), center_of_mass(), resample() """ stc = read_source_estimate(fname_stc) # lh_data / rh_data assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)]) assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):]) # bin bin = stc.bin(.12) a = np.array((1,), dtype=stc.data.dtype) a[0] = np.mean(stc.data[0, stc.times < .12]) assert a[0] == bin.data[0, 0] assert_raises(ValueError, stc.center_of_mass, 'sample') stc.lh_data[:] = 0 vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir) assert_true(hemi == 1) # XXX Should design a fool-proof test case, but here were the results: assert_equal(vertex, 124791) assert_equal(np.round(t, 2), 0.12) stc = read_source_estimate(fname_stc) stc.subject = 'sample' label_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir)[0] label_rh = read_labels_from_annot('sample', 'aparc', 'rh', subjects_dir=subjects_dir)[0] label_both = label_lh + label_rh for label in (label_lh, label_rh, label_both): assert_true(isinstance(stc.shape, tuple) and len(stc.shape) == 2) stc_label = stc.in_label(label) if label.hemi != 'both': if label.hemi == 'lh': verts = stc_label.vertices[0] else: # label.hemi == 'rh': verts = stc_label.vertices[1] n_vertices_used = len(label.get_vertices_used(verts)) assert_equal(len(stc_label.data), n_vertices_used) stc_lh = stc.in_label(label_lh) assert_raises(ValueError, stc_lh.in_label, label_rh) label_lh.subject = 'foo' assert_raises(RuntimeError, stc.in_label, label_lh) stc_new = deepcopy(stc) o_sfreq = 1.0 / stc.tstep # note that using no padding for this STC reduces edge ringing... stc_new.resample(2 * o_sfreq, npad=0, n_jobs=2) assert_true(stc_new.data.shape[1] == 2 * stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep / 2) stc_new.resample(o_sfreq, npad=0) assert_true(stc_new.data.shape[1] == stc.data.shape[1]) assert_true(stc_new.tstep == stc.tstep) assert_array_almost_equal(stc_new.data, stc.data, 5) @testing.requires_testing_data def test_extract_label_time_course(): """Test extraction of label time courses from stc """ n_stcs = 3 n_times = 50 src = read_inverse_operator(fname_inv)['src'] vertices = [src[0]['vertno'], src[1]['vertno']] n_verts = len(vertices[0]) + len(vertices[1]) # get some labels labels_lh = read_labels_from_annot('sample', hemi='lh', subjects_dir=subjects_dir) labels_rh = read_labels_from_annot('sample', hemi='rh', subjects_dir=subjects_dir) labels = list() labels.extend(labels_lh[:5]) labels.extend(labels_rh[:4]) n_labels = len(labels) label_means = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) label_maxs = np.arange(n_labels)[:, None] * np.ones((n_labels, n_times)) # compute the mean with sign flip label_means_flipped = np.zeros_like(label_means) for i, label in enumerate(labels): label_means_flipped[i] = i * np.mean(label_sign_flip(label, src)) # generate some stc's with known data stcs = list() for i in range(n_stcs): data = np.zeros((n_verts, n_times)) # set the value of the stc within each label for j, label in enumerate(labels): if label.hemi == 'lh': idx = np.intersect1d(vertices[0], label.vertices) idx = np.searchsorted(vertices[0], idx) elif label.hemi == 'rh': idx = np.intersect1d(vertices[1], label.vertices) idx = len(vertices[0]) + np.searchsorted(vertices[1], idx) data[idx] = label_means[j] this_stc = SourceEstimate(data, vertices, 0, 1) stcs.append(this_stc) # test some invalid inputs assert_raises(ValueError, extract_label_time_course, stcs, labels, src, mode='notamode') # have an empty label empty_label = labels[0].copy() empty_label.vertices += 1000000 assert_raises(ValueError, extract_label_time_course, stcs, empty_label, src, mode='mean') # but this works: tc = extract_label_time_course(stcs, empty_label, src, mode='mean', allow_empty=True) for arr in tc: assert_true(arr.shape == (1, n_times)) assert_array_equal(arr, np.zeros((1, n_times))) # test the different modes modes = ['mean', 'mean_flip', 'pca_flip', 'max'] for mode in modes: label_tc = extract_label_time_course(stcs, labels, src, mode=mode) label_tc_method = [stc.extract_label_time_course(labels, src, mode=mode) for stc in stcs] assert_true(len(label_tc) == n_stcs) assert_true(len(label_tc_method) == n_stcs) for tc1, tc2 in zip(label_tc, label_tc_method): assert_true(tc1.shape == (n_labels, n_times)) assert_true(tc2.shape == (n_labels, n_times)) assert_true(np.allclose(tc1, tc2, rtol=1e-8, atol=1e-16)) if mode == 'mean': assert_array_almost_equal(tc1, label_means) if mode == 'mean_flip': assert_array_almost_equal(tc1, label_means_flipped) if mode == 'max': assert_array_almost_equal(tc1, label_maxs) # test label with very few vertices (check SVD conditionals) label = Label(vertices=src[0]['vertno'][:2], hemi='lh') x = label_sign_flip(label, src) assert_true(len(x) == 2) label = Label(vertices=[], hemi='lh') x = label_sign_flip(label, src) assert_true(x.size == 0) @slow_test @testing.requires_testing_data def test_morph_data(): """Test morphing of data """ tempdir = _TempDir() subject_from = 'sample' subject_to = 'fsaverage' stc_from = read_source_estimate(fname_smorph, subject='sample') stc_to = read_source_estimate(fname_fmorph) # make sure we can specify grade stc_from.crop(0.09, 0.1) # for faster computation stc_to.crop(0.09, 0.1) # for faster computation assert_raises(ValueError, stc_from.morph, subject_to, grade=3, smooth=-1, subjects_dir=subjects_dir) stc_to1 = stc_from.morph(subject_to, grade=3, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) stc_to1.save(op.join(tempdir, '%s_audvis-meg' % subject_to)) # make sure we can specify vertices vertices_to = grade_to_vertices(subject_to, grade=3, subjects_dir=subjects_dir) stc_to2 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=1000, subjects_dir=subjects_dir) # make sure we can use different buffer_size stc_to3 = morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=12, buffer_size=3, subjects_dir=subjects_dir) # make sure we get a warning about # of steps with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') morph_data(subject_from, subject_to, stc_from, grade=vertices_to, smooth=1, buffer_size=3, subjects_dir=subjects_dir) assert_equal(len(w), 2) assert_array_almost_equal(stc_to.data, stc_to1.data, 5) assert_array_almost_equal(stc_to1.data, stc_to2.data) assert_array_almost_equal(stc_to1.data, stc_to3.data) # make sure precomputed morph matrices work morph_mat = compute_morph_matrix(subject_from, subject_to, stc_from.vertices, vertices_to, smooth=12, subjects_dir=subjects_dir) stc_to3 = stc_from.morph_precomputed(subject_to, vertices_to, morph_mat) assert_array_almost_equal(stc_to1.data, stc_to3.data) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, vertices_to, 'foo') assert_raises(ValueError, stc_from.morph_precomputed, subject_to, [vertices_to[0]], morph_mat) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, [vertices_to[0][:-1], vertices_to[1]], morph_mat) assert_raises(ValueError, stc_from.morph_precomputed, subject_to, vertices_to, morph_mat, subject_from='foo') # steps warning with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') compute_morph_matrix(subject_from, subject_to, stc_from.vertices, vertices_to, smooth=1, subjects_dir=subjects_dir) assert_equal(len(w), 2) mean_from = stc_from.data.mean(axis=0) mean_to = stc_to1.data.mean(axis=0) assert_true(np.corrcoef(mean_to, mean_from).min() > 0.999) # make sure we can fill by morphing stc_to5 = morph_data(subject_from, subject_to, stc_from, grade=None, smooth=12, buffer_size=3, subjects_dir=subjects_dir) assert_true(stc_to5.data.shape[0] == 163842 + 163842) # Morph sparse data # Make a sparse stc stc_from.vertices[0] = stc_from.vertices[0][[100, 500]] stc_from.vertices[1] = stc_from.vertices[1][[200]] stc_from._data = stc_from._data[:3] assert_raises(RuntimeError, stc_from.morph, subject_to, sparse=True, grade=5, subjects_dir=subjects_dir) stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) stc_from.vertices[0] = np.array([], dtype=np.int64) stc_from._data = stc_from._data[:1] stc_to_sparse = stc_from.morph(subject_to, grade=None, sparse=True, subjects_dir=subjects_dir) assert_array_almost_equal(np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))) assert_equal(len(stc_from.rh_vertno), len(stc_to_sparse.rh_vertno)) assert_equal(len(stc_from.lh_vertno), len(stc_to_sparse.lh_vertno)) assert_equal(stc_to_sparse.subject, subject_to) assert_equal(stc_from.tmin, stc_from.tmin) assert_equal(stc_from.tstep, stc_from.tstep) def _my_trans(data): """FFT that adds an additional dimension by repeating result""" data_t = fft(data) data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2) return data_t, None def test_transform_data(): """Test applying linear (time) transform to data""" # make up some data n_sensors, n_vertices, n_times = 10, 20, 4 kernel = np.random.randn(n_vertices, n_sensors) sens_data = np.random.randn(n_sensors, n_times) vertices = np.arange(n_vertices) data = np.dot(kernel, sens_data) for idx, tmin_idx, tmax_idx in\ zip([None, np.arange(n_vertices // 2, n_vertices)], [None, 1], [None, 3]): if idx is None: idx_use = slice(None, None) else: idx_use = idx data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx]) for stc_data in (data, (kernel, sens_data)): stc = VolSourceEstimate(stc_data, vertices=vertices, tmin=0., tstep=1.) stc_data_t = stc.transform_data(_my_trans, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) assert_allclose(data_f, stc_data_t) def test_transform(): """Test applying linear (time) transform to data""" # make up some data n_verts_lh, n_verts_rh, n_times = 10, 10, 10 vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)] data = np.random.randn(n_verts_lh + n_verts_rh, n_times) stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1) # data_t.ndim > 2 & copy is True stcs_t = stc.transform(_my_trans, copy=True) assert_true(isinstance(stcs_t, list)) assert_array_equal(stc.times, stcs_t[0].times) assert_equal(stc.vertices, stcs_t[0].vertices) data = np.concatenate((stcs_t[0].data[:, :, None], stcs_t[1].data[:, :, None]), axis=2) data_t = stc.transform_data(_my_trans) assert_array_equal(data, data_t) # check against stc.transform_data() # data_t.ndim > 2 & copy is False assert_raises(ValueError, stc.transform, _my_trans, copy=False) # data_t.ndim = 2 & copy is True tmp = deepcopy(stc) stc_t = stc.transform(np.abs, copy=True) assert_true(isinstance(stc_t, SourceEstimate)) assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original? # data_t.ndim = 2 & copy is False times = np.round(1000 * stc.times) verts = np.arange(len(stc.lh_vertno), len(stc.lh_vertno) + len(stc.rh_vertno), 1) verts_rh = stc.rh_vertno t_idx = [np.where(times >= -50)[0][0], np.where(times <= 500)[0][-1]] data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=t_idx[0], tmax_idx=t_idx[-1]) stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False) assert_true(isinstance(stc, SourceEstimate)) assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.5)) assert_true(len(stc.vertices[0]) == 0) assert_equal(stc.vertices[1], verts_rh) assert_array_equal(stc.data, data_t) times = np.round(1000 * stc.times) t_idx = [np.where(times >= 0)[0][0], np.where(times <= 250)[0][-1]] data_t = stc.transform_data(np.abs, tmin_idx=t_idx[0], tmax_idx=t_idx[-1]) stc.transform(np.abs, tmin=0, tmax=250, copy=False) assert_true((stc.tmin == 0.) & (stc.times[-1] == 0.2)) assert_array_equal(stc.data, data_t) @requires_sklearn def test_spatio_temporal_tris_connectivity(): """Test spatio-temporal connectivity from triangles""" tris = np.array([[0, 1, 2], [3, 4, 5]]) connectivity = spatio_temporal_tris_connectivity(tris, 2) x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] components = stats.cluster_level._get_components(np.array(x), connectivity) # _get_components works differently now... old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1] new_fmt = np.array(old_fmt) new_fmt = [np.nonzero(new_fmt == v)[0] for v in np.unique(new_fmt[new_fmt >= 0])] assert_true(len(new_fmt), len(components)) for c, n in zip(components, new_fmt): assert_array_equal(c, n) @testing.requires_testing_data def test_spatio_temporal_src_connectivity(): """Test spatio-temporal connectivity from source spaces""" tris = np.array([[0, 1, 2], [3, 4, 5]]) src = [dict(), dict()] connectivity = spatio_temporal_tris_connectivity(tris, 2) src[0]['use_tris'] = np.array([[0, 1, 2]]) src[1]['use_tris'] = np.array([[0, 1, 2]]) src[0]['vertno'] = np.array([0, 1, 2]) src[1]['vertno'] = np.array([0, 1, 2]) connectivity2 = spatio_temporal_src_connectivity(src, 2) assert_array_equal(connectivity.todense(), connectivity2.todense()) # add test for dist connectivity src[0]['dist'] = np.ones((3, 3)) - np.eye(3) src[1]['dist'] = np.ones((3, 3)) - np.eye(3) src[0]['vertno'] = [0, 1, 2] src[1]['vertno'] = [0, 1, 2] connectivity3 = spatio_temporal_src_connectivity(src, 2, dist=2) assert_array_equal(connectivity.todense(), connectivity3.todense()) # add test for source space connectivity with omitted vertices inverse_operator = read_inverse_operator(fname_inv) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') src_ = inverse_operator['src'] connectivity = spatio_temporal_src_connectivity(src_, n_times=2) assert len(w) == 1 a = connectivity.shape[0] / 2 b = sum([s['nuse'] for s in inverse_operator['src']]) assert_true(a == b) assert_equal(grade_to_tris(5).shape, [40960, 3]) @requires_pandas def test_to_data_frame(): """Test stc Pandas exporter""" n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = np.random.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for stc in [stc_surf, stc_vol]: assert_raises(ValueError, stc.to_data_frame, index=['foo', 'bar']) for ncat, ind in zip([1, 0], ['time', ['subject', 'time']]): df = stc.to_data_frame(index=ind) assert_true(df.index.names == ind if isinstance(ind, list) else [ind]) assert_array_equal(df.values.T[ncat:], stc.data) # test that non-indexed data were present as categorial variables assert_true(all([c in ['time', 'subject'] for c in df.reset_index().columns][:2])) def test_get_peak(): """Test peak getter """ n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int), np.empty(0, dtype=np.int)] data = np.random.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[0], tmin=0, tstep=1, subject='sample') for ii, stc in enumerate([stc_surf, stc_vol]): assert_raises(ValueError, stc.get_peak, tmin=-100) assert_raises(ValueError, stc.get_peak, tmax=90) assert_raises(ValueError, stc.get_peak, tmin=0.002, tmax=0.001) vert_idx, time_idx = stc.get_peak() vertno = np.concatenate(stc.vertices) if ii == 0 else stc.vertices assert_true(vert_idx in vertno) assert_true(time_idx in stc.times) ch_idx, time_idx = stc.get_peak(vert_as_index=True, time_as_index=True) assert_true(vert_idx < stc.data.shape[0]) assert_true(time_idx < len(stc.times)) @testing.requires_testing_data def test_mixed_stc(): """Test source estimate from mixed source space """ N = 90 # number of sources T = 2 # number of time points S = 3 # number of source spaces data = np.random.randn(N, T) vertno = S * [np.arange(N // S)] # make sure error is raised if vertices are not a list of length >= 2 assert_raises(ValueError, MixedSourceEstimate, data=data, vertices=[np.arange(N)]) stc = MixedSourceEstimate(data, vertno, 0, 1) vol = read_source_spaces(fname_vsrc) # make sure error is raised for plotting surface with volume source assert_raises(ValueError, stc.plot_surface, src=vol) run_tests_if_main()
bsd-3-clause
uber/pyro
tests/infer/reparam/test_split.py
1
3082
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import pytest import torch from torch.autograd import grad import pyro import pyro.distributions as dist from pyro import poutine from pyro.infer.reparam import SplitReparam from tests.common import assert_close from .util import check_init_reparam @pytest.mark.parametrize( "event_shape,splits,dim", [ ((6,), [2, 1, 3], -1), ( ( 2, 5, ), [2, 3], -1, ), ((4, 2), [1, 3], -2), ((2, 3, 1), [1, 2], -2), ], ids=str, ) @pytest.mark.parametrize("batch_shape", [(), (4,), (3, 2)], ids=str) def test_normal(batch_shape, event_shape, splits, dim): shape = batch_shape + event_shape loc = torch.empty(shape).uniform_(-1.0, 1.0).requires_grad_() scale = torch.empty(shape).uniform_(0.5, 1.5).requires_grad_() def model(): with pyro.plate_stack("plates", batch_shape): pyro.sample("x", dist.Normal(loc, scale).to_event(len(event_shape))) # Run without reparam. trace = poutine.trace(model).get_trace() expected_value = trace.nodes["x"]["value"] expected_log_prob = trace.log_prob_sum() expected_grads = grad(expected_log_prob, [loc, scale], create_graph=True) # Run with reparam. split_values = { "x_split_{}".format(i): xi for i, xi in enumerate(expected_value.split(splits, dim)) } rep = SplitReparam(splits, dim) reparam_model = poutine.reparam(model, {"x": rep}) reparam_model = poutine.condition(reparam_model, split_values) trace = poutine.trace(reparam_model).get_trace() assert all(name in trace.nodes for name in split_values) assert isinstance(trace.nodes["x"]["fn"], dist.Delta) assert trace.nodes["x"]["fn"].batch_shape == batch_shape assert trace.nodes["x"]["fn"].event_shape == event_shape # Check values. actual_value = trace.nodes["x"]["value"] assert_close(actual_value, expected_value, atol=0.1) # Check log prob. actual_log_prob = trace.log_prob_sum() assert_close(actual_log_prob, expected_log_prob) actual_grads = grad(actual_log_prob, [loc, scale], create_graph=True) assert_close(actual_grads, expected_grads) @pytest.mark.parametrize( "event_shape,splits,dim", [ ((6,), [2, 1, 3], -1), ( ( 2, 5, ), [2, 3], -1, ), ((4, 2), [1, 3], -2), ((2, 3, 1), [1, 2], -2), ], ids=str, ) @pytest.mark.parametrize("batch_shape", [(), (4,), (3, 2)], ids=str) def test_init(batch_shape, event_shape, splits, dim): shape = batch_shape + event_shape loc = torch.empty(shape).uniform_(-1.0, 1.0) scale = torch.empty(shape).uniform_(0.5, 1.5) def model(): with pyro.plate_stack("plates", batch_shape): return pyro.sample("x", dist.Normal(loc, scale).to_event(len(event_shape))) check_init_reparam(model, SplitReparam(splits, dim))
apache-2.0
vitaly-krugl/nupic
examples/opf/experiments/anomaly/spatial/2field_many_balanced/description.py
50
15806
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '~/nupic/eng/lib/python2.6/site-packages/nupic/frameworks/opf/expGenerator/experiment_generator.py' """ from nupic.frameworks.opf.exp_description_api import ExperimentDescriptionAPI from nupic.frameworks.opf.exp_description_helpers import ( updateConfigFromSubConfig, applyValueGettersToContainer, DeferredDictLookup) from nupic.frameworks.opf.htm_prediction_model_callbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opf_utils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opf_task_driver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # # NOTE: Use of DEFERRED VALUE-GETTERs: dictionary fields and list elements # within the config dictionary may be assigned futures derived from the # ValueGetterBase class, such as DeferredDictLookup. # This facility is particularly handy for enabling substitution of values in # the config dictionary from other values in the config dictionary, which is # needed by permutation.py-based experiments. These values will be resolved # during the call to applyValueGettersToContainer(), # which we call after the base experiment's config dictionary is updated from # the sub-experiment. See ValueGetterBase and # DeferredDictLookup for more details about value-getters. # # For each custom encoder parameter to be exposed to the sub-experiment/ # permutation overrides, define a variable in this section, using key names # beginning with a single underscore character to avoid collisions with # pre-defined keys (e.g., _dsEncoderFieldName2_N). # # Example: # config = dict( # _dsEncoderFieldName2_N = 70, # _dsEncoderFieldName2_W = 5, # dsEncoderSchema = [ # base=dict( # fieldname='Name2', type='ScalarEncoder', # name='Name2', minval=0, maxval=270, clipInput=True, # n=DeferredDictLookup('_dsEncoderFieldName2_N'), # w=DeferredDictLookup('_dsEncoderFieldName2_W')), # ], # ) # updateConfigFromSubConfig(config) # applyValueGettersToContainer(config) config = { # Type of model that the rest of these parameters apply to. 'model': "HTMPrediction", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'fields': [ ('numericFieldNameA', 'mean'), ('numericFieldNameB', 'sum'), ('categoryFieldNameC', 'first')], 'hours': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'NontemporalAnomaly', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : 0, # Example: # dsEncoderSchema = [ # DeferredDictLookup('__field_name_encoder'), # ], # # (value generated from DS_ENCODER_SCHEMA) 'encoders': { 'f0': dict(fieldname='f0', n=100, name='f0', type='SDRCategoryEncoder', w=21), 'f1': dict(fieldname='f1', n=100, name='f1', type='SDRCategoryEncoder', w=21), }, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : None, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : 0, 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TM and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, }, # Controls whether TM is enabled or disabled; # TM is necessary for making temporal predictions, such as predicting # the next inputs. Without TM, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tmEnable' : True, 'tmParams': { # TM diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/backtracking_tm.py and backtracking_tm_cpp.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 20, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TM how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { # Classifier implementation selection. 'implementation': 'py', 'regionName' : 'SDRClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'verbosity' : 0, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.001, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '1', }, 'trainSPNetOnlyIfRequested': False, }, } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) # [optional] A sequence of one or more tasks that describe what to do with the # model. Each task consists of a task label, an input spec., iteration count, # and a task-control spec per opfTaskSchema.json # # NOTE: The tasks are intended for OPF clients that make use of OPFTaskDriver. # Clients that interact with OPFExperiment directly do not make use of # the tasks specification. # control = dict( environment='opfExperiment', tasks = [ { # Task label; this label string may be used for diagnostic logging and for # constructing filenames or directory pathnames for task-specific files, etc. 'taskLabel' : "Anomaly", # Input stream specification per py/nupic/cluster/database/StreamDef.json. # 'dataset' : { 'info': 'test_NoProviders', 'version': 1, 'streams': [ { 'columns': ['*'], 'info': 'my simple dataset', 'source': 'file://'+os.path.join(os.path.dirname(__file__), 'data.csv'), } ], # TODO: Aggregation is not supported yet by run_opf_experiment.py #'aggregation' : config['aggregationInfo'] }, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : -1, # Task Control parameters for OPFTaskDriver (per opfTaskControlSchema.json) 'taskControl' : { # Iteration cycle list consisting of opf_task_driver.IterationPhaseSpecXXXXX # instances. 'iterationCycle' : [ #IterationPhaseSpecLearnOnly(1000), IterationPhaseSpecLearnAndInfer(1000, inferenceArgs=None), #IterationPhaseSpecInferOnly(10, inferenceArgs=None), ], 'metrics' : [ ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': ['.*nupicScore.*'], # Callbacks for experimentation/research (optional) 'callbacks' : { # Callbacks to be called at the beginning of a task, before model iterations. # Signature: callback(<reference to OPFExperiment>); returns nothing # 'setup' : [htmPredictionModelControlEnableSPLearningCb, htmPredictionModelControlEnableTPLearningCb], # 'setup' : [htmPredictionModelControlDisableTPLearningCb], 'setup' : [], # Callbacks to be called after every learning/inference iteration # Signature: callback(<reference to OPFExperiment>); returns nothing 'postIter' : [], # Callbacks to be called when the experiment task is finished # Signature: callback(<reference to OPFExperiment>); returns nothing 'finish' : [] } } # End of taskControl }, # End of task ] ) descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0
vitaly-krugl/nupic
examples/opf/experiments/anomaly/spatial/2field_few_6040/description.py
50
15806
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '~/nupic/eng/lib/python2.6/site-packages/nupic/frameworks/opf/expGenerator/experiment_generator.py' """ from nupic.frameworks.opf.exp_description_api import ExperimentDescriptionAPI from nupic.frameworks.opf.exp_description_helpers import ( updateConfigFromSubConfig, applyValueGettersToContainer, DeferredDictLookup) from nupic.frameworks.opf.htm_prediction_model_callbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opf_utils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opf_task_driver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # # NOTE: Use of DEFERRED VALUE-GETTERs: dictionary fields and list elements # within the config dictionary may be assigned futures derived from the # ValueGetterBase class, such as DeferredDictLookup. # This facility is particularly handy for enabling substitution of values in # the config dictionary from other values in the config dictionary, which is # needed by permutation.py-based experiments. These values will be resolved # during the call to applyValueGettersToContainer(), # which we call after the base experiment's config dictionary is updated from # the sub-experiment. See ValueGetterBase and # DeferredDictLookup for more details about value-getters. # # For each custom encoder parameter to be exposed to the sub-experiment/ # permutation overrides, define a variable in this section, using key names # beginning with a single underscore character to avoid collisions with # pre-defined keys (e.g., _dsEncoderFieldName2_N). # # Example: # config = dict( # _dsEncoderFieldName2_N = 70, # _dsEncoderFieldName2_W = 5, # dsEncoderSchema = [ # base=dict( # fieldname='Name2', type='ScalarEncoder', # name='Name2', minval=0, maxval=270, clipInput=True, # n=DeferredDictLookup('_dsEncoderFieldName2_N'), # w=DeferredDictLookup('_dsEncoderFieldName2_W')), # ], # ) # updateConfigFromSubConfig(config) # applyValueGettersToContainer(config) config = { # Type of model that the rest of these parameters apply to. 'model': "HTMPrediction", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'fields': [ ('numericFieldNameA', 'mean'), ('numericFieldNameB', 'sum'), ('categoryFieldNameC', 'first')], 'hours': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'NontemporalAnomaly', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : 0, # Example: # dsEncoderSchema = [ # DeferredDictLookup('__field_name_encoder'), # ], # # (value generated from DS_ENCODER_SCHEMA) 'encoders': { 'f0': dict(fieldname='f0', n=100, name='f0', type='SDRCategoryEncoder', w=21), 'f1': dict(fieldname='f1', n=100, name='f1', type='SDRCategoryEncoder', w=21), }, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : None, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : 0, 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TM and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, }, # Controls whether TM is enabled or disabled; # TM is necessary for making temporal predictions, such as predicting # the next inputs. Without TM, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tmEnable' : True, 'tmParams': { # TM diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/backtracking_tm.py and backtracking_tm_cpp.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 20, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TM how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { # Classifier implementation selection. 'implementation': 'py', 'regionName' : 'SDRClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'verbosity' : 0, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.001, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '1', }, 'trainSPNetOnlyIfRequested': False, }, } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) # [optional] A sequence of one or more tasks that describe what to do with the # model. Each task consists of a task label, an input spec., iteration count, # and a task-control spec per opfTaskSchema.json # # NOTE: The tasks are intended for OPF clients that make use of OPFTaskDriver. # Clients that interact with OPFExperiment directly do not make use of # the tasks specification. # control = dict( environment='opfExperiment', tasks = [ { # Task label; this label string may be used for diagnostic logging and for # constructing filenames or directory pathnames for task-specific files, etc. 'taskLabel' : "Anomaly", # Input stream specification per py/nupic/cluster/database/StreamDef.json. # 'dataset' : { 'info': 'test_NoProviders', 'version': 1, 'streams': [ { 'columns': ['*'], 'info': 'my simple dataset', 'source': 'file://'+os.path.join(os.path.dirname(__file__), 'data.csv'), } ], # TODO: Aggregation is not supported yet by run_opf_experiment.py #'aggregation' : config['aggregationInfo'] }, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : -1, # Task Control parameters for OPFTaskDriver (per opfTaskControlSchema.json) 'taskControl' : { # Iteration cycle list consisting of opf_task_driver.IterationPhaseSpecXXXXX # instances. 'iterationCycle' : [ #IterationPhaseSpecLearnOnly(1000), IterationPhaseSpecLearnAndInfer(1000, inferenceArgs=None), #IterationPhaseSpecInferOnly(10, inferenceArgs=None), ], 'metrics' : [ ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': ['.*nupicScore.*'], # Callbacks for experimentation/research (optional) 'callbacks' : { # Callbacks to be called at the beginning of a task, before model iterations. # Signature: callback(<reference to OPFExperiment>); returns nothing # 'setup' : [htmPredictionModelControlEnableSPLearningCb, htmPredictionModelControlEnableTPLearningCb], # 'setup' : [htmPredictionModelControlDisableTPLearningCb], 'setup' : [], # Callbacks to be called after every learning/inference iteration # Signature: callback(<reference to OPFExperiment>); returns nothing 'postIter' : [], # Callbacks to be called when the experiment task is finished # Signature: callback(<reference to OPFExperiment>); returns nothing 'finish' : [] } } # End of taskControl }, # End of task ] ) descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0
vitaly-krugl/nupic
examples/opf/experiments/anomaly/spatial/2fields_many_skewed/description.py
50
15806
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '~/nupic/eng/lib/python2.6/site-packages/nupic/frameworks/opf/expGenerator/experiment_generator.py' """ from nupic.frameworks.opf.exp_description_api import ExperimentDescriptionAPI from nupic.frameworks.opf.exp_description_helpers import ( updateConfigFromSubConfig, applyValueGettersToContainer, DeferredDictLookup) from nupic.frameworks.opf.htm_prediction_model_callbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opf_utils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opf_task_driver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # # NOTE: Use of DEFERRED VALUE-GETTERs: dictionary fields and list elements # within the config dictionary may be assigned futures derived from the # ValueGetterBase class, such as DeferredDictLookup. # This facility is particularly handy for enabling substitution of values in # the config dictionary from other values in the config dictionary, which is # needed by permutation.py-based experiments. These values will be resolved # during the call to applyValueGettersToContainer(), # which we call after the base experiment's config dictionary is updated from # the sub-experiment. See ValueGetterBase and # DeferredDictLookup for more details about value-getters. # # For each custom encoder parameter to be exposed to the sub-experiment/ # permutation overrides, define a variable in this section, using key names # beginning with a single underscore character to avoid collisions with # pre-defined keys (e.g., _dsEncoderFieldName2_N). # # Example: # config = dict( # _dsEncoderFieldName2_N = 70, # _dsEncoderFieldName2_W = 5, # dsEncoderSchema = [ # base=dict( # fieldname='Name2', type='ScalarEncoder', # name='Name2', minval=0, maxval=270, clipInput=True, # n=DeferredDictLookup('_dsEncoderFieldName2_N'), # w=DeferredDictLookup('_dsEncoderFieldName2_W')), # ], # ) # updateConfigFromSubConfig(config) # applyValueGettersToContainer(config) config = { # Type of model that the rest of these parameters apply to. 'model': "HTMPrediction", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'fields': [ ('numericFieldNameA', 'mean'), ('numericFieldNameB', 'sum'), ('categoryFieldNameC', 'first')], 'hours': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'NontemporalAnomaly', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : 0, # Example: # dsEncoderSchema = [ # DeferredDictLookup('__field_name_encoder'), # ], # # (value generated from DS_ENCODER_SCHEMA) 'encoders': { 'f0': dict(fieldname='f0', n=100, name='f0', type='SDRCategoryEncoder', w=21), 'f1': dict(fieldname='f1', n=100, name='f1', type='SDRCategoryEncoder', w=21), }, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : None, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : 0, 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TM and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, }, # Controls whether TM is enabled or disabled; # TM is necessary for making temporal predictions, such as predicting # the next inputs. Without TM, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tmEnable' : True, 'tmParams': { # TM diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/backtracking_tm.py and backtracking_tm_cpp.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TM) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 20, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TM # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TM how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { # Classifier implementation selection. 'implementation': 'py', 'regionName' : 'SDRClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'verbosity' : 0, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.001, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '1', }, 'trainSPNetOnlyIfRequested': False, }, } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) # [optional] A sequence of one or more tasks that describe what to do with the # model. Each task consists of a task label, an input spec., iteration count, # and a task-control spec per opfTaskSchema.json # # NOTE: The tasks are intended for OPF clients that make use of OPFTaskDriver. # Clients that interact with OPFExperiment directly do not make use of # the tasks specification. # control = dict( environment='opfExperiment', tasks = [ { # Task label; this label string may be used for diagnostic logging and for # constructing filenames or directory pathnames for task-specific files, etc. 'taskLabel' : "Anomaly", # Input stream specification per py/nupic/cluster/database/StreamDef.json. # 'dataset' : { 'info': 'test_NoProviders', 'version': 1, 'streams': [ { 'columns': ['*'], 'info': 'my simple dataset', 'source': 'file://'+os.path.join(os.path.dirname(__file__), 'data.csv'), } ], # TODO: Aggregation is not supported yet by run_opf_experiment.py #'aggregation' : config['aggregationInfo'] }, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : -1, # Task Control parameters for OPFTaskDriver (per opfTaskControlSchema.json) 'taskControl' : { # Iteration cycle list consisting of opf_task_driver.IterationPhaseSpecXXXXX # instances. 'iterationCycle' : [ #IterationPhaseSpecLearnOnly(1000), IterationPhaseSpecLearnAndInfer(1000, inferenceArgs=None), #IterationPhaseSpecInferOnly(10, inferenceArgs=None), ], 'metrics' : [ ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': ['.*nupicScore.*'], # Callbacks for experimentation/research (optional) 'callbacks' : { # Callbacks to be called at the beginning of a task, before model iterations. # Signature: callback(<reference to OPFExperiment>); returns nothing # 'setup' : [htmPredictionModelControlEnableSPLearningCb, htmPredictionModelControlEnableTPLearningCb], # 'setup' : [htmPredictionModelControlDisableTPLearningCb], 'setup' : [], # Callbacks to be called after every learning/inference iteration # Signature: callback(<reference to OPFExperiment>); returns nothing 'postIter' : [], # Callbacks to be called when the experiment task is finished # Signature: callback(<reference to OPFExperiment>); returns nothing 'finish' : [] } } # End of taskControl }, # End of task ] ) descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0
AlphaSmartDog/DeepLearningNotes
Torch-1 DDPG/Torch-2 DDPG GPU/agent/forward.py
1
1703
""" @author: Young @license: (C) Copyright 2013-2017 @contact: aidabloc@163.com @file: forward.py @time: 2018/1/17 21:53 """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as nf def fan_in_init(size, fan_in=None): if not isinstance(size, torch.Size): raise ValueError("size should be torch.Size") fan_in = fan_in or size[0] value = 1. / np.sqrt(fan_in) return torch.FloatTensor(size).uniform_(-value, value) class ActorNet(nn.Module): def __init__(self, state_size, action_size, init_w=3e-3): super().__init__() self.fc1 = nn.Linear(state_size, 400) self.fc1.weight.data = fan_in_init(self.fc1.weight.data.size()) self.fc2 = nn.Linear(400, 300) self.fc2.weight.data = fan_in_init(self.fc2.weight.data.size()) self.fc3 = nn.Linear(300, action_size) self.fc3.weight.data.uniform_(-init_w, init_w) def forward(self, state): net = nf.relu(self.fc1(state)) net = nf.relu(self.fc2(net)) return nf.tanh(self.fc3(net)) class CriticNet(nn.Module): def __init__(self, state_size, action_size, init_w=3e-3): super().__init__() self.fc1 = nn.Linear(state_size, 400) self.fc1.weight.data = fan_in_init(self.fc1.weight.data.size()) self.fc2 = nn.Linear(400+action_size, 300) self.fc2.weight.data = fan_in_init(self.fc2.weight.data.size()) self.fc3 = nn.Linear(300, 1) self.fc3.weight.data.uniform_(-init_w, init_w) def forward(self, state, action): net = nf.relu(self.fc1(state)) net = torch.cat((net, action), -1) net = nf.relu(self.fc2(net)) return self.fc3(net)
mit
uber/pyro
examples/contrib/autoname/mixture.py
1
2572
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import argparse import torch from torch.distributions import constraints import pyro import pyro.distributions as dist from pyro.contrib.autoname import named from pyro.infer import SVI, JitTrace_ELBO, Trace_ELBO from pyro.optim import Adam # This is a simple gaussian mixture model. # # The example demonstrates how to pass named.Objects() from a global model to # a local model implemented as a helper function. def model(data, k): latent = named.Object("latent") # Create parameters for a Gaussian mixture model. latent.probs.param_(torch.ones(k) / k, constraint=constraints.simplex) latent.locs.param_(torch.zeros(k)) latent.scales.param_(torch.ones(k), constraint=constraints.positive) # Observe all the data. We pass a local latent in to the local_model. latent.local = named.List() for x in data: local_model(latent.local.add(), latent.probs, latent.locs, latent.scales, obs=x) def local_model(latent, ps, locs, scales, obs=None): i = latent.id.sample_(dist.Categorical(ps)) return latent.x.sample_(dist.Normal(locs[i], scales[i]), obs=obs) def guide(data, k): latent = named.Object("latent") latent.local = named.List() for x in data: # We pass a local latent in to the local_guide. local_guide(latent.local.add(), k) def local_guide(latent, k): # The local guide simply guesses category assignments. latent.probs.param_(torch.ones(k) / k, constraint=constraints.positive) latent.id.sample_(dist.Categorical(latent.probs)) def main(args): pyro.set_rng_seed(0) optim = Adam({"lr": 0.1}) elbo = JitTrace_ELBO() if args.jit else Trace_ELBO() inference = SVI(model, guide, optim, loss=elbo) data = torch.tensor([0.0, 1.0, 2.0, 20.0, 30.0, 40.0]) k = 2 print("Step\tLoss") loss = 0.0 for step in range(args.num_epochs): if step and step % 10 == 0: print("{}\t{:0.5g}".format(step, loss)) loss = 0.0 loss += inference.step(data, k=k) print("Parameters:") for name, value in sorted(pyro.get_param_store().items()): print("{} = {}".format(name, value.detach().cpu().numpy())) if __name__ == "__main__": assert pyro.__version__.startswith("1.7.0") parser = argparse.ArgumentParser(description="parse args") parser.add_argument("-n", "--num-epochs", default=200, type=int) parser.add_argument("--jit", action="store_true") args = parser.parse_args() main(args)
apache-2.0
ellangoj/dynamic_sgd
validation.py
1
1886
import numpy import random import matplotlib.pyplot as plt import datasets import models if __name__ == "__main__": train_set, test_set, m, n = datasets.movielens1m() #train_set, test_set, d = datasets.realsim() split = int(0.5*len(train_set)) train_set, val_set = train_set[:split], train_set[split:] r = 10 L = numpy.random.rand(m, r) R = numpy.random.rand(r, n) #w = numpy.random.rand(d) steps = 1*len(train_set) step_size = 1e-2 mu = 1e-1 train_loss = [] validation_loss = [] #for mu in [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 0]: for step_size in [5e-2, 2e-2, 1e-2, 5e-3, 1e-3]: model = models.MatrixFactorization(L, R, models.Opt.SAGA) #model = models.LogisticRegression(w, models.Opt.SGD) m = 0 for s in xrange(steps): #if (s % (steps/50) == 0): #train_loss.append(model.reg_loss(train_set, mu)) #validation_loss.append(model.loss(val_set)) if model.opt == models.Opt.SGD: training_point = random.choice(train_set) elif model.opt == models.Opt.SAGA: if (s % 2 == 0 and m < len(train_set)): j = m m += 1 else: j = random.randrange(m) training_point = train_set[j] model.update_step(training_point, step_size, mu) print step_size, mu, model.loss(val_set) #plt.figure(1) #plt.plot(train_loss, 'k.-') #plt.xlabel('Time') #plt.ylabel('Loss') #plt.title('Average train loss') #plt.figure(2) #plt.plot(validation_loss, 'k.-') #plt.xlabel('Time') #plt.ylabel('Loss') #plt.title('Average validation loss') #plt.show()
mit
kod3r/keras
examples/lstm_text_generation.py
74
3257
from __future__ import print_function from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout from keras.layers.recurrent import LSTM from keras.datasets.data_utils import get_file import numpy as np import random, sys ''' Example script to generate text from Nietzsche's writings. At least 20 epochs are required before the generated text starts sounding coherent. It is recommended to run this script on GPU, as recurrent networks are quite computationally intensive. If you try this script on new data, make sure your corpus has at least ~100k characters. ~1M is better. ''' path = get_file('nietzsche.txt', origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt") text = open(path).read().lower() print('corpus length:', len(text)) chars = set(text) print('total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) # cut the text in semi-redundant sequences of maxlen characters maxlen = 20 step = 3 sentences = [] next_chars = [] for i in range(0, len(text) - maxlen, step): sentences.append(text[i : i + maxlen]) next_chars.append(text[i + maxlen]) print('nb sequences:', len(sentences)) print('Vectorization...') X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sentences), len(chars)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): X[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1 # build the model: 2 stacked LSTM print('Build model...') model = Sequential() model.add(LSTM(len(chars), 512, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(512, 512, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(512, len(chars))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # helper function to sample an index from a probability array def sample(a, temperature=1.0): a = np.log(a)/temperature a = np.exp(a)/np.sum(np.exp(a)) return np.argmax(np.random.multinomial(1,a,1)) # train the model, output generated text after each iteration for iteration in range(1, 60): print() print('-' * 50) print('Iteration', iteration) model.fit(X, y, batch_size=128, nb_epoch=1) start_index = random.randint(0, len(text) - maxlen - 1) for diversity in [0.2, 0.5, 1.0, 1.2]: print() print('----- diversity:', diversity) generated = '' sentence = text[start_index : start_index + maxlen] generated += sentence print('----- Generating with seed: "' + sentence + '"') sys.stdout.write(generated) for iteration in range(400): x = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(sentence): x[0, t, char_indices[char]] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] generated += next_char sentence = sentence[1:] + next_char sys.stdout.write(next_char) sys.stdout.flush() print()
mit
windyuuy/opera
chromium/src/third_party/webpagereplay/third_party/dns/rdataset.py
215
11527
# Copyright (C) 2001-2007, 2009, 2010 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """DNS rdatasets (an rdataset is a set of rdatas of a given type and class)""" import random import StringIO import struct import dns.exception import dns.rdatatype import dns.rdataclass import dns.rdata import dns.set # define SimpleSet here for backwards compatibility SimpleSet = dns.set.Set class DifferingCovers(dns.exception.DNSException): """Raised if an attempt is made to add a SIG/RRSIG whose covered type is not the same as that of the other rdatas in the rdataset.""" pass class IncompatibleTypes(dns.exception.DNSException): """Raised if an attempt is made to add rdata of an incompatible type.""" pass class Rdataset(dns.set.Set): """A DNS rdataset. @ivar rdclass: The class of the rdataset @type rdclass: int @ivar rdtype: The type of the rdataset @type rdtype: int @ivar covers: The covered type. Usually this value is dns.rdatatype.NONE, but if the rdtype is dns.rdatatype.SIG or dns.rdatatype.RRSIG, then the covers value will be the rdata type the SIG/RRSIG covers. The library treats the SIG and RRSIG types as if they were a family of types, e.g. RRSIG(A), RRSIG(NS), RRSIG(SOA). This makes RRSIGs much easier to work with than if RRSIGs covering different rdata types were aggregated into a single RRSIG rdataset. @type covers: int @ivar ttl: The DNS TTL (Time To Live) value @type ttl: int """ __slots__ = ['rdclass', 'rdtype', 'covers', 'ttl'] def __init__(self, rdclass, rdtype, covers=dns.rdatatype.NONE): """Create a new rdataset of the specified class and type. @see: the description of the class instance variables for the meaning of I{rdclass} and I{rdtype}""" super(Rdataset, self).__init__() self.rdclass = rdclass self.rdtype = rdtype self.covers = covers self.ttl = 0 def _clone(self): obj = super(Rdataset, self)._clone() obj.rdclass = self.rdclass obj.rdtype = self.rdtype obj.covers = self.covers obj.ttl = self.ttl return obj def update_ttl(self, ttl): """Set the TTL of the rdataset to be the lesser of the set's current TTL or the specified TTL. If the set contains no rdatas, set the TTL to the specified TTL. @param ttl: The TTL @type ttl: int""" if len(self) == 0: self.ttl = ttl elif ttl < self.ttl: self.ttl = ttl def add(self, rd, ttl=None): """Add the specified rdata to the rdataset. If the optional I{ttl} parameter is supplied, then self.update_ttl(ttl) will be called prior to adding the rdata. @param rd: The rdata @type rd: dns.rdata.Rdata object @param ttl: The TTL @type ttl: int""" # # If we're adding a signature, do some special handling to # check that the signature covers the same type as the # other rdatas in this rdataset. If this is the first rdata # in the set, initialize the covers field. # if self.rdclass != rd.rdclass or self.rdtype != rd.rdtype: raise IncompatibleTypes if not ttl is None: self.update_ttl(ttl) if self.rdtype == dns.rdatatype.RRSIG or \ self.rdtype == dns.rdatatype.SIG: covers = rd.covers() if len(self) == 0 and self.covers == dns.rdatatype.NONE: self.covers = covers elif self.covers != covers: raise DifferingCovers if dns.rdatatype.is_singleton(rd.rdtype) and len(self) > 0: self.clear() super(Rdataset, self).add(rd) def union_update(self, other): self.update_ttl(other.ttl) super(Rdataset, self).union_update(other) def intersection_update(self, other): self.update_ttl(other.ttl) super(Rdataset, self).intersection_update(other) def update(self, other): """Add all rdatas in other to self. @param other: The rdataset from which to update @type other: dns.rdataset.Rdataset object""" self.update_ttl(other.ttl) super(Rdataset, self).update(other) def __repr__(self): if self.covers == 0: ctext = '' else: ctext = '(' + dns.rdatatype.to_text(self.covers) + ')' return '<DNS ' + dns.rdataclass.to_text(self.rdclass) + ' ' + \ dns.rdatatype.to_text(self.rdtype) + ctext + ' rdataset>' def __str__(self): return self.to_text() def __eq__(self, other): """Two rdatasets are equal if they have the same class, type, and covers, and contain the same rdata. @rtype: bool""" if not isinstance(other, Rdataset): return False if self.rdclass != other.rdclass or \ self.rdtype != other.rdtype or \ self.covers != other.covers: return False return super(Rdataset, self).__eq__(other) def __ne__(self, other): return not self.__eq__(other) def to_text(self, name=None, origin=None, relativize=True, override_rdclass=None, **kw): """Convert the rdataset into DNS master file format. @see: L{dns.name.Name.choose_relativity} for more information on how I{origin} and I{relativize} determine the way names are emitted. Any additional keyword arguments are passed on to the rdata to_text() method. @param name: If name is not None, emit a RRs with I{name} as the owner name. @type name: dns.name.Name object @param origin: The origin for relative names, or None. @type origin: dns.name.Name object @param relativize: True if names should names be relativized @type relativize: bool""" if not name is None: name = name.choose_relativity(origin, relativize) ntext = str(name) pad = ' ' else: ntext = '' pad = '' s = StringIO.StringIO() if not override_rdclass is None: rdclass = override_rdclass else: rdclass = self.rdclass if len(self) == 0: # # Empty rdatasets are used for the question section, and in # some dynamic updates, so we don't need to print out the TTL # (which is meaningless anyway). # print >> s, '%s%s%s %s' % (ntext, pad, dns.rdataclass.to_text(rdclass), dns.rdatatype.to_text(self.rdtype)) else: for rd in self: print >> s, '%s%s%d %s %s %s' % \ (ntext, pad, self.ttl, dns.rdataclass.to_text(rdclass), dns.rdatatype.to_text(self.rdtype), rd.to_text(origin=origin, relativize=relativize, **kw)) # # We strip off the final \n for the caller's convenience in printing # return s.getvalue()[:-1] def to_wire(self, name, file, compress=None, origin=None, override_rdclass=None, want_shuffle=True): """Convert the rdataset to wire format. @param name: The owner name of the RRset that will be emitted @type name: dns.name.Name object @param file: The file to which the wire format data will be appended @type file: file @param compress: The compression table to use; the default is None. @type compress: dict @param origin: The origin to be appended to any relative names when they are emitted. The default is None. @returns: the number of records emitted @rtype: int """ if not override_rdclass is None: rdclass = override_rdclass want_shuffle = False else: rdclass = self.rdclass file.seek(0, 2) if len(self) == 0: name.to_wire(file, compress, origin) stuff = struct.pack("!HHIH", self.rdtype, rdclass, 0, 0) file.write(stuff) return 1 else: if want_shuffle: l = list(self) random.shuffle(l) else: l = self for rd in l: name.to_wire(file, compress, origin) stuff = struct.pack("!HHIH", self.rdtype, rdclass, self.ttl, 0) file.write(stuff) start = file.tell() rd.to_wire(file, compress, origin) end = file.tell() assert end - start < 65536 file.seek(start - 2) stuff = struct.pack("!H", end - start) file.write(stuff) file.seek(0, 2) return len(self) def match(self, rdclass, rdtype, covers): """Returns True if this rdataset matches the specified class, type, and covers""" if self.rdclass == rdclass and \ self.rdtype == rdtype and \ self.covers == covers: return True return False def from_text_list(rdclass, rdtype, ttl, text_rdatas): """Create an rdataset with the specified class, type, and TTL, and with the specified list of rdatas in text format. @rtype: dns.rdataset.Rdataset object """ if isinstance(rdclass, str): rdclass = dns.rdataclass.from_text(rdclass) if isinstance(rdtype, str): rdtype = dns.rdatatype.from_text(rdtype) r = Rdataset(rdclass, rdtype) r.update_ttl(ttl) for t in text_rdatas: rd = dns.rdata.from_text(r.rdclass, r.rdtype, t) r.add(rd) return r def from_text(rdclass, rdtype, ttl, *text_rdatas): """Create an rdataset with the specified class, type, and TTL, and with the specified rdatas in text format. @rtype: dns.rdataset.Rdataset object """ return from_text_list(rdclass, rdtype, ttl, text_rdatas) def from_rdata_list(ttl, rdatas): """Create an rdataset with the specified TTL, and with the specified list of rdata objects. @rtype: dns.rdataset.Rdataset object """ if len(rdatas) == 0: raise ValueError("rdata list must not be empty") r = None for rd in rdatas: if r is None: r = Rdataset(rd.rdclass, rd.rdtype) r.update_ttl(ttl) first_time = False r.add(rd) return r def from_rdata(ttl, *rdatas): """Create an rdataset with the specified TTL, and with the specified rdata objects. @rtype: dns.rdataset.Rdataset object """ return from_rdata_list(ttl, rdatas)
bsd-3-clause
rahuldhote/scikit-learn
setup.py
142
7364
#! /usr/bin/env python # # Copyright (C) 2007-2009 Cournapeau David <cournape@gmail.com> # 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr> # License: 3-clause BSD descr = """A set of python modules for machine learning and data mining""" import sys import os import shutil from distutils.command.clean import clean as Clean if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # sklearn __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-learn to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKLEARN_SETUP__ = True DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' with open('README.rst') as f: LONG_DESCRIPTION = f.read() MAINTAINER = 'Andreas Mueller' MAINTAINER_EMAIL = 'amueller@ais.uni-bonn.de' URL = 'http://scikit-learn.org' LICENSE = 'new BSD' DOWNLOAD_URL = 'http://sourceforge.net/projects/scikit-learn/files/' # We can actually import a restricted version of sklearn that # does not need the compiled code import sklearn VERSION = sklearn.__version__ # Optional setuptools features # We need to import setuptools early, if we want setuptools features, # as it monkey-patches the 'setup' function # For some commands, use setuptools SETUPTOOLS_COMMANDS = set([ 'develop', 'release', 'bdist_egg', 'bdist_rpm', 'bdist_wininst', 'install_egg_info', 'build_sphinx', 'egg_info', 'easy_install', 'upload', 'bdist_wheel', '--single-version-externally-managed', ]) if SETUPTOOLS_COMMANDS.intersection(sys.argv): import setuptools extra_setuptools_args = dict( zip_safe=False, # the package can run out of an .egg file include_package_data=True, ) else: extra_setuptools_args = dict() # Custom clean command to remove build artifacts class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def run(self): Clean.run(self) if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk('sklearn'): for filename in filenames: if (filename.endswith('.so') or filename.endswith('.pyd') or filename.endswith('.dll') or filename.endswith('.pyc')): os.unlink(os.path.join(dirpath, filename)) for dirname in dirnames: if dirname == '__pycache__': shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} # Optional wheelhouse-uploader features # To automate release of binary packages for scikit-learn we need a tool # to download the packages generated by travis and appveyor workers (with # version number matching the current release) and upload them all at once # to PyPI at release time. # The URL of the artifact repositories are configured in the setup.cfg file. WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all']) if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv): import wheelhouse_uploader.cmd cmdclass.update(vars(wheelhouse_uploader.cmd)) def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('sklearn') return config def is_scipy_installed(): try: import scipy except ImportError: return False return True def is_numpy_installed(): try: import numpy except ImportError: return False return True def setup_package(): metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: C', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], cmdclass=cmdclass, **extra_setuptools_args) if (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install Scikit-learn when Numpy is not yet present in # the system. try: from setuptools import setup except ImportError: from distutils.core import setup metadata['version'] = VERSION else: if is_numpy_installed() is False: raise ImportError("Numerical Python (NumPy) is not installed.\n" "scikit-learn requires NumPy.\n" "Installation instructions are available on scikit-learn website: " "http://scikit-learn.org/stable/install.html\n") if is_scipy_installed() is False: raise ImportError("Scientific Python (SciPy) is not installed.\n" "scikit-learn requires SciPy.\n" "Installation instructions are available on scikit-learn website: " "http://scikit-learn.org/stable/install.html\n") from numpy.distutils.core import setup metadata['configuration'] = configuration setup(**metadata) if __name__ == "__main__": setup_package()
bsd-3-clause
rahuldhote/scikit-learn
sklearn/utils/class_weight.py
139
7206
# Authors: Andreas Mueller # Manoj Kumar # License: BSD 3 clause import warnings import numpy as np from ..externals import six from ..utils.fixes import in1d from .fixes import bincount def compute_class_weight(class_weight, classes, y): """Estimate class weights for unbalanced datasets. Parameters ---------- class_weight : dict, 'balanced' or None If 'balanced', class weights will be given by ``n_samples / (n_classes * np.bincount(y))``. If a dictionary is given, keys are classes and values are corresponding class weights. If None is given, the class weights will be uniform. classes : ndarray Array of the classes occurring in the data, as given by ``np.unique(y_org)`` with ``y_org`` the original class labels. y : array-like, shape (n_samples,) Array of original class labels per sample; Returns ------- class_weight_vect : ndarray, shape (n_classes,) Array with class_weight_vect[i] the weight for i-th class References ---------- The "balanced" heuristic is inspired by Logistic Regression in Rare Events Data, King, Zen, 2001. """ # Import error caused by circular imports. from ..preprocessing import LabelEncoder if class_weight is None or len(class_weight) == 0: # uniform class weights weight = np.ones(classes.shape[0], dtype=np.float64, order='C') elif class_weight in ['auto', 'balanced']: # Find the weight of each class as present in y. le = LabelEncoder() y_ind = le.fit_transform(y) if not all(np.in1d(classes, le.classes_)): raise ValueError("classes should have valid labels that are in y") # inversely proportional to the number of samples in the class if class_weight == 'auto': recip_freq = 1. / bincount(y_ind) weight = recip_freq[le.transform(classes)] / np.mean(recip_freq) warnings.warn("The class_weight='auto' heuristic is deprecated in" " favor of a new heuristic class_weight='balanced'." " 'auto' will be removed in 0.18", DeprecationWarning) else: recip_freq = len(y) / (len(le.classes_) * bincount(y_ind).astype(np.float64)) weight = recip_freq[le.transform(classes)] else: # user-defined dictionary weight = np.ones(classes.shape[0], dtype=np.float64, order='C') if not isinstance(class_weight, dict): raise ValueError("class_weight must be dict, 'auto', or None," " got: %r" % class_weight) for c in class_weight: i = np.searchsorted(classes, c) if classes[i] != c: raise ValueError("Class label %d not present." % c) else: weight[i] = class_weight[c] return weight def compute_sample_weight(class_weight, y, indices=None): """Estimate sample weights by class for unbalanced datasets. Parameters ---------- class_weight : dict, list of dicts, "balanced", or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data: ``n_samples / (n_classes * np.bincount(y))``. For multi-output, the weights of each column of y will be multiplied. y : array-like, shape = [n_samples] or [n_samples, n_outputs] Array of original class labels per sample. indices : array-like, shape (n_subsample,), or None Array of indices to be used in a subsample. Can be of length less than n_samples in the case of a subsample, or equal to n_samples in the case of a bootstrap subsample with repeated indices. If None, the sample weight will be calculated over the full sample. Only "auto" is supported for class_weight if this is provided. Returns ------- sample_weight_vect : ndarray, shape (n_samples,) Array with sample weights as applied to the original y """ y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] if isinstance(class_weight, six.string_types): if class_weight not in ['balanced', 'auto']: raise ValueError('The only valid preset for class_weight is ' '"balanced". Given "%s".' % class_weight) elif (indices is not None and not isinstance(class_weight, six.string_types)): raise ValueError('The only valid class_weight for subsampling is ' '"balanced". Given "%s".' % class_weight) elif n_outputs > 1: if (not hasattr(class_weight, "__iter__") or isinstance(class_weight, dict)): raise ValueError("For multi-output, class_weight should be a " "list of dicts, or a valid string.") if len(class_weight) != n_outputs: raise ValueError("For multi-output, number of elements in " "class_weight should match number of outputs.") expanded_class_weight = [] for k in range(n_outputs): y_full = y[:, k] classes_full = np.unique(y_full) classes_missing = None if class_weight in ['balanced', 'auto'] or n_outputs == 1: class_weight_k = class_weight else: class_weight_k = class_weight[k] if indices is not None: # Get class weights for the subsample, covering all classes in # case some labels that were present in the original data are # missing from the sample. y_subsample = y[indices, k] classes_subsample = np.unique(y_subsample) weight_k = np.choose(np.searchsorted(classes_subsample, classes_full), compute_class_weight(class_weight_k, classes_subsample, y_subsample), mode='clip') classes_missing = set(classes_full) - set(classes_subsample) else: weight_k = compute_class_weight(class_weight_k, classes_full, y_full) weight_k = weight_k[np.searchsorted(classes_full, y_full)] if classes_missing: # Make missing classes' weight zero weight_k[in1d(y_full, list(classes_missing))] = 0. expanded_class_weight.append(weight_k) expanded_class_weight = np.prod(expanded_class_weight, axis=0, dtype=np.float64) return expanded_class_weight
bsd-3-clause
jhseu/tensorflow
tensorflow/python/autograph/core/converter.py
1
13320
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converter construction support. This module contains a base class for all converters, as well as supporting structures. These structures are referred to as contexts. The class hierarchy is as follows: <your converter> [extends] converter.Base [extends] transformer.Base [extends] gast.nodeTransformer [uses] transfomer.SourceInfo [uses] converter.EntityContext [uses] converter.ProgramContext [uses] transfomer.SourceInfo converter.Base is a specialization of transformer.Base for AutoGraph. It's a very lightweight subclass that adds a `ctx` attribute holding the corresponding EntityContext object (see below). Note that converters are not reusable, and `visit` will raise an error if called more than once. converter.EntityContext contains mutable state associated with an entity that the converter processes. converter.ProgramContext contains mutable state across related entities. For example, when converting several functions that call one another, the ProgramContext should be shared across these entities. Below is the overall flow at conversion: program_ctx = ProgramContext(<entities to convert>, <global settings>, ...) while <program_ctx has more entities to convert>: entity, source_info = <get next entity from program_ctx> entity_ctx = EntityContext(program_ctx, source_info) for <each ConverterClass>: converter = ConverterClass(entity_ctx) # May update entity_ctx and program_ctx entity = converter.visit(entity) <add entity's dependencies to program_ctx> Note that pyct contains a small number of transformers used for static analysis. These implement transformer.Base, rather than converter.Base, to avoid a dependency on AutoGraph. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import enum from tensorflow.python.autograph.pyct import anno from tensorflow.python.autograph.pyct import ast_util from tensorflow.python.autograph.pyct import cfg from tensorflow.python.autograph.pyct import parser from tensorflow.python.autograph.pyct import qual_names from tensorflow.python.autograph.pyct import templates from tensorflow.python.autograph.pyct import transformer from tensorflow.python.autograph.pyct.static_analysis import activity from tensorflow.python.autograph.pyct.static_analysis import liveness from tensorflow.python.autograph.pyct.static_analysis import reaching_definitions from tensorflow.python.util.tf_export import tf_export # TODO(mdan): These contexts can be refactored into first class objects. # For example, we could define Program and Entity abstractions that hold on # to the actual entity and have conversion methods. # TODO(mdan): Add a test specific to this converter. @tf_export('autograph.experimental.Feature') class Feature(enum.Enum): """This enumeration represents optional conversion options. These conversion options are experimental. They are subject to change without notice and offer no guarantees. _Example Usage_ ```python optionals= tf.autograph.experimental.Feature.EQUALITY_OPERATORS @tf.function(experimental_autograph_options=optionals) def f(i): if i == 0: # EQUALITY_OPERATORS allows the use of == here. tf.print('i is zero') ``` Attributes: ALL: Enable all features. AUTO_CONTROL_DEPS: Insert of control dependencies in the generated code. ASSERT_STATEMENTS: Convert Tensor-dependent assert statements to tf.Assert. BUILTIN_FUNCTIONS: Convert builtin functions applied to Tensors to their TF counterparts. EQUALITY_OPERATORS: Whether to convert the comparison operators, like equality. This is soon to be deprecated as support is being added to the Tensor class. LISTS: Convert list idioms, like initializers, slices, append, etc. NAME_SCOPES: Insert name scopes that name ops according to context, like the function they were defined in. """ ALL = 'ALL' AUTO_CONTROL_DEPS = 'AUTO_CONTROL_DEPS' ASSERT_STATEMENTS = 'ASSERT_STATEMENTS' BUILTIN_FUNCTIONS = 'BUILTIN_FUNCTIONS' EQUALITY_OPERATORS = 'EQUALITY_OPERATORS' LISTS = 'LISTS' NAME_SCOPES = 'NAME_SCOPES' @classmethod def all(cls): """Returns a tuple that enables all options.""" return tuple(cls.__members__.values()) @classmethod def all_but(cls, exclude): """Returns a tuple that enables all but the excluded options.""" if not isinstance(exclude, (list, tuple, set)): exclude = (exclude,) return tuple(set(cls.all()) - set(exclude) - {cls.ALL}) STANDARD_OPTIONS = None # Forward definition. class ConversionOptions(object): """Immutable container for global conversion flags. Attributes: recursive: bool, whether to recursively convert any user functions or classes that the converted function may use. user_requested: bool, whether the conversion was explicitly requested by the user, as opposed to being performed as a result of other logic. This value always auto-resets resets to False in child conversions. optional_features: Union[Feature, Set[Feature]], controls the use of optional features in the conversion process. See Feature for available options. """ def __init__(self, recursive=False, user_requested=False, internal_convert_user_code=True, optional_features=Feature.ALL): self.recursive = recursive self.user_requested = user_requested # TODO(mdan): Rename to conversion_recursion_depth? self.internal_convert_user_code = internal_convert_user_code if optional_features is None: optional_features = () elif isinstance(optional_features, Feature): optional_features = (optional_features,) optional_features = frozenset(optional_features) self.optional_features = optional_features def as_tuple(self): return (self.recursive, self.user_requested, self.internal_convert_user_code, self.optional_features) def __hash__(self): return hash(self.as_tuple()) def __eq__(self, other): assert isinstance(other, ConversionOptions) return self.as_tuple() == other.as_tuple() def __str__(self): return 'ConversionOptions[{}]' def uses(self, feature): return (Feature.ALL in self.optional_features or feature in self.optional_features) def call_options(self): """Returns the corresponding options to be used for recursive conversion.""" return ConversionOptions( recursive=self.recursive, user_requested=False, internal_convert_user_code=self.recursive, optional_features=self.optional_features) def to_ast(self): """Returns a representation of this object as an AST node. The AST node encodes a constructor that would create an object with the same contents. Returns: ast.Node """ if self == STANDARD_OPTIONS: return parser.parse_expression('ag__.STD') template = """ ag__.ConversionOptions( recursive=recursive_val, user_requested=user_requested_val, optional_features=optional_features_val, internal_convert_user_code=internal_convert_user_code_val) """ def list_of_features(values): return parser.parse_expression('({})'.format(', '.join( 'ag__.{}'.format(str(v)) for v in values))) expr_ast = templates.replace( template, recursive_val=parser.parse_expression(str(self.recursive)), user_requested_val=parser.parse_expression(str(self.user_requested)), internal_convert_user_code_val=parser.parse_expression( str(self.internal_convert_user_code)), optional_features_val=list_of_features(self.optional_features)) return expr_ast[0].value STANDARD_OPTIONS = ConversionOptions( recursive=True, user_requested=False, internal_convert_user_code=True, optional_features=None) class ProgramContext( collections.namedtuple('ProgramContext', ('options', 'autograph_module'))): """ProgramContext keeps track of converting function hierarchies. This object is mutable, and is updated during conversion. Not thread safe. Attributes: options: ConversionOptions autograph_module: Module, a reference to the autograph module. This needs to be specified by the caller to avoid circular dependencies. """ pass class EntityContext(transformer.Context): """Tracks the conversion of a single entity. This object is mutable, and is updated during conversion. Not thread safe. Attributes: namer: Namer info: transformer.EntityInfo program: ProgramContext, targe_name: Text """ def __init__(self, namer, entity_info, program_ctx, target_name=None): super(EntityContext, self).__init__(entity_info) self.namer = namer self.program = program_ctx self.target_name = target_name class Base(transformer.Base): """All converters should inherit from this class. Attributes: ctx: EntityContext """ def __init__(self, ctx): super(Base, self).__init__(ctx) self._used = False self._ast_depth = 0 def get_definition_directive(self, node, directive, arg, default): """Returns the unique directive argument for a symbol. See lang/directives.py for details on directives. Example: # Given a directive in the code: ag.foo_directive(bar, baz=1) # One can write for an AST node Name(id='bar'): get_definition_directive(node, ag.foo_directive, 'baz') Args: node: ast.AST, the node representing the symbol for which the directive argument is needed. directive: Callable[..., Any], the directive to search. arg: str, the directive argument to return. default: Any Raises: ValueError: if conflicting annotations have been found """ defs = anno.getanno(node, anno.Static.ORIG_DEFINITIONS, ()) if not defs: return default arg_values_found = [] for def_ in defs: if (directive in def_.directives and arg in def_.directives[directive]): arg_values_found.append(def_.directives[directive][arg]) if not arg_values_found: return default if len(arg_values_found) == 1: return arg_values_found[0] # If multiple annotations reach the symbol, they must all match. If they do, # return any of them. first_value = arg_values_found[0] for other_value in arg_values_found[1:]: if not ast_util.matches(first_value, other_value): qn = anno.getanno(node, anno.Basic.QN) raise ValueError( '%s has ambiguous annotations for %s(%s): %s, %s' % (qn, directive.__name__, arg, parser.unparse(other_value).strip(), parser.unparse(first_value).strip())) return first_value def visit(self, node): if not self._ast_depth: if self._used: raise ValueError('converter objects cannot be reused') self._used = True self._ast_depth += 1 try: return super(Base, self).visit(node) finally: self._ast_depth -= 1 class AnnotatedDef(reaching_definitions.Definition): def __init__(self): super(AnnotatedDef, self).__init__() self.directives = {} def standard_analysis(node, context, is_initial=False): """Performs a complete static analysis of the given code. Args: node: ast.AST context: converter.EntityContext is_initial: bool, whether this is the initial analysis done on the input source code Returns: ast.AST, same as node, with the static analysis annotations added """ # TODO(mdan): Clear static analysis here. # TODO(mdan): Consider not running all analyses every time. # TODO(mdan): Don't return a node because it's modified by reference. graphs = cfg.build(node) node = qual_names.resolve(node) node = activity.resolve(node, context, None) node = reaching_definitions.resolve(node, context, graphs, AnnotatedDef) node = liveness.resolve(node, context, graphs) if is_initial: anno.dup( node, { anno.Static.DEFINITIONS: anno.Static.ORIG_DEFINITIONS, }, ) return node def apply_(node, context, converter_module): """Applies a converter to an AST. Args: node: ast.AST context: converter.EntityContext converter_module: converter.Base Returns: ast.AST, the result of applying converter to node """ node = standard_analysis(node, context) node = converter_module.transform(node, context) return node
apache-2.0
rahuldhote/scikit-learn
sklearn/qda.py
139
7682
""" Quadratic Discriminant Analysis """ # Author: Matthieu Perrot <matthieu.perrot@gmail.com> # # License: BSD 3 clause import warnings import numpy as np from .base import BaseEstimator, ClassifierMixin from .externals.six.moves import xrange from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount __all__ = ['QDA'] class QDA(BaseEstimator, ClassifierMixin): """ Quadratic Discriminant Analysis (QDA) A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. Read more in the :ref:`User Guide <lda_qda>`. Parameters ---------- priors : array, optional, shape = [n_classes] Priors on classes reg_param : float, optional Regularizes the covariance estimate as ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)`` Attributes ---------- covariances_ : list of array-like, shape = [n_features, n_features] Covariance matrices of each class. means_ : array-like, shape = [n_classes, n_features] Class means. priors_ : array-like, shape = [n_classes] Class priors (sum to 1). rotations_ : list of arrays For each class k an array of shape [n_features, n_k], with ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. scalings_ : list of arrays For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. Examples -------- >>> from sklearn.qda import QDA >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QDA() >>> clf.fit(X, y) QDA(priors=None, reg_param=0.0) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.lda.LDA: Linear discriminant analysis """ def __init__(self, priors=None, reg_param=0.): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param def fit(self, X, y, store_covariances=False, tol=1.0e-4): """ Fit the QDA model according to the given training data and parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) store_covariances : boolean If True the covariance matrices are computed and stored in the `self.covariances_` attribute. tol : float, optional, default 1.0e-4 Threshold used for rank estimation. """ X, y = check_X_y(X, y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('y has less than 2 classes') if self.priors is None: self.priors_ = bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None if store_covariances: cov = [] means = [] scalings = [] rotations = [] for ind in xrange(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T U, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if store_covariances: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if store_covariances: self.covariances_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): check_is_fitted(self, 'classes_') X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, 1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples (test vectors). Returns ------- C : array, shape = [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
bsd-3-clause
cmeessen/fatiando
setup.py
5
3618
""" Build extension modules, package and install Fatiando. """ from __future__ import absolute_import import sys import os from setuptools import setup, Extension, find_packages import numpy import versioneer # VERSIONEER SETUP # ############################################################################# versioneer.VCS = 'git' versioneer.versionfile_source = 'fatiando/_version.py' versioneer.versionfile_build = 'fatiando/_version.py' versioneer.tag_prefix = 'v' versioneer.parentdir_prefix = '.' # PACKAGE METADATA # ############################################################################# NAME = 'fatiando' FULLNAME = 'Fatiando a Terra' DESCRIPTION = "Modeling and inversion for geophysics" AUTHOR = "Leonardo Uieda" AUTHOR_EMAIL = 'leouieda@gmail.com' MAINTAINER = AUTHOR MAINTAINER_EMAIL = AUTHOR_EMAIL VERSION = versioneer.get_version() CMDCLASS = versioneer.get_cmdclass() with open("README.rst") as f: LONG_DESCRIPTION = ''.join(f.readlines()) PACKAGES = find_packages(exclude=['doc', 'ci', 'cookbook', 'gallery']) PACKAGE_DATA = { 'fatiando.datasets': ['data/*'], 'fatiando.datasets.tests': ['data/*'], 'fatiando.gravmag.tests': ['data/*'], } LICENSE = "BSD License" URL = "http://www.fatiando.org" PLATFORMS = "Any" SCRIPTS = [] CLASSIFIERS = [ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Intended Audience :: Education", "Topic :: Scientific/Engineering", "Topic :: Software Development :: Libraries", "Programming Language :: Python :: 2.7", "License :: OSI Approved :: {}".format(LICENSE), ] KEYWORDS = 'geophysics modeling inversion gravimetry seismic magnetometry' # DEPENDENCIES # ############################################################################# INSTALL_REQUIRES = [ 'numpy', 'scipy', 'numba', 'future', 'matplotlib', 'pillow', 'jupyter', ] # C EXTENSIONS # ############################################################################# # The running setup.py with --cython, then set things up to generate the Cython # .c files. If not, then compile the pre-converted C files. use_cython = True if '--cython' in sys.argv else False # Build the module name and the path name for the extension modules ext = '.pyx' if use_cython else '.c' ext_parts = [ ['fatiando', 'seismic', '_ttime2d'], ['fatiando', 'seismic', '_wavefd'], ['fatiando', 'gravmag', '_prism'], ] extensions = [('.'.join(parts), os.path.join(*parts) + ext) for parts in ext_parts] libs = [] if os.name == 'posix': libs.append('m') ext_args = dict(libraries=libs, include_dirs=[numpy.get_include()]) EXT_MODULES = [Extension(name, [path], **ext_args) for name, path in extensions] # Cythonize the .pyx modules if --cython is used if use_cython: sys.argv.remove('--cython') from Cython.Build import cythonize EXT_MODULES = cythonize(EXT_MODULES) if __name__ == '__main__': setup(name=NAME, fullname=FULLNAME, description=DESCRIPTION, long_description=LONG_DESCRIPTION, version=VERSION, author=AUTHOR, author_email=AUTHOR_EMAIL, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, license=LICENSE, url=URL, platforms=PLATFORMS, scripts=SCRIPTS, packages=PACKAGES, ext_modules=EXT_MODULES, package_data=PACKAGE_DATA, classifiers=CLASSIFIERS, keywords=KEYWORDS, cmdclass=CMDCLASS, install_requires=INSTALL_REQUIRES)
bsd-3-clause
matthew-tucker/mne-python
examples/inverse/plot_label_activation_from_stc.py
50
1949
""" ================================================== Extracting time course from source_estimate object ================================================== Load a SourceEstimate object from stc files and extract the time course of activation in individual labels, as well as in a complex label formed through merging two labels. """ # Author: Christian Brodbeck <christianbrodbeck@nyu.edu> # # License: BSD (3-clause) import os import mne from mne.datasets import sample import matplotlib.pyplot as plt print(__doc__) data_path = sample.data_path() os.environ['SUBJECTS_DIR'] = data_path + '/subjects' meg_path = data_path + '/MEG/sample' # load the stc stc = mne.read_source_estimate(meg_path + '/sample_audvis-meg') # load the labels aud_lh = mne.read_label(meg_path + '/labels/Aud-lh.label') aud_rh = mne.read_label(meg_path + '/labels/Aud-rh.label') # extract the time course for different labels from the stc stc_lh = stc.in_label(aud_lh) stc_rh = stc.in_label(aud_rh) stc_bh = stc.in_label(aud_lh + aud_rh) # calculate center of mass and transform to mni coordinates vtx, _, t_lh = stc_lh.center_of_mass('sample') mni_lh = mne.vertex_to_mni(vtx, 0, 'sample')[0] vtx, _, t_rh = stc_rh.center_of_mass('sample') mni_rh = mne.vertex_to_mni(vtx, 1, 'sample')[0] # plot the activation plt.figure() plt.axes([.1, .275, .85, .625]) hl = plt.plot(stc.times, stc_lh.data.mean(0), 'b')[0] hr = plt.plot(stc.times, stc_rh.data.mean(0), 'g')[0] hb = plt.plot(stc.times, stc_bh.data.mean(0), 'r')[0] plt.xlabel('Time (s)') plt.ylabel('Source amplitude (dSPM)') plt.xlim(stc.times[0], stc.times[-1]) # add a legend including center-of-mass mni coordinates to the plot labels = ['LH: center of mass = %s' % mni_lh.round(2), 'RH: center of mass = %s' % mni_rh.round(2), 'Combined LH & RH'] plt.figlegend([hl, hr, hb], labels, 'lower center') plt.suptitle('Average activation in auditory cortex labels', fontsize=20) plt.show()
bsd-3-clause
google-research/torchsde
tests/problems.py
1
13372
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Problems of different noise types. Each example is of a particular noise type. ExDiagonal, ExScalar, ExAdditive are examples 1-3 from Rackauckas, Christopher, and Qing Nie. "Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory." Discrete and continuous dynamical systems. Series B 22.7 (2017): 2731. Neural* all use simple neural networks. BasicSDE1-4 are problems where the drift and diffusion may not depend on trainable parameters. CustomNamesSDE and CustomNamesSDELogqp are used to test the argument `names`. """ import torch from torch import nn from torchsde import BaseSDE, SDEIto from torchsde.settings import NOISE_TYPES, SDE_TYPES class ExDiagonal(BaseSDE): noise_type = NOISE_TYPES.diagonal def __init__(self, d, sde_type=SDE_TYPES.ito, **kwargs): super(ExDiagonal, self).__init__(sde_type=sde_type, noise_type=ExDiagonal.noise_type) self._nfe = 0 # Use non-exploding initialization. sigma = torch.sigmoid(torch.randn(d)) mu = -sigma ** 2 - torch.sigmoid(torch.randn(d)) self.mu = nn.Parameter(mu, requires_grad=True) self.sigma = nn.Parameter(sigma, requires_grad=True) self.f = self.f_ito if sde_type == SDE_TYPES.ito else self.f_stratonovich def f_ito(self, t, y): self._nfe += 1 return self.mu * y def f_stratonovich(self, t, y): self._nfe += 1 return self.mu * y - .5 * (self.sigma ** 2) * y def g(self, t, y): self._nfe += 1 return self.sigma * y def h(self, t, y): self._nfe += 1 return torch.zeros_like(y) @property def nfe(self): return self._nfe class ExScalar(BaseSDE): noise_type = NOISE_TYPES.scalar def __init__(self, d, sde_type=SDE_TYPES.ito, **kwargs): super(ExScalar, self).__init__(sde_type=sde_type, noise_type=ExScalar.noise_type) self._nfe = 0 self.p = nn.Parameter(torch.sigmoid(torch.randn(d)), requires_grad=True) self.f = self.f_ito if sde_type == SDE_TYPES.ito else self.f_stratonovich def f_ito(self, t, y): self._nfe += 1 return -self.p ** 2. * torch.sin(y) * torch.cos(y) ** 3. def f_stratonovich(self, t, y): self._nfe += 1 return torch.zeros_like(y) def g(self, t, y): self._nfe += 1 return (self.p * torch.cos(y) ** 2).unsqueeze(dim=-1) def h(self, t, y): self._nfe += 1 return torch.zeros_like(y) @property def nfe(self): return self._nfe class ExAdditive(BaseSDE): noise_type = NOISE_TYPES.additive def __init__(self, d, m, sde_type=SDE_TYPES.ito, **kwargs): super(ExAdditive, self).__init__(sde_type=sde_type, noise_type=ExAdditive.noise_type) self._nfe = 0 self.m = m self.a = nn.Parameter(torch.sigmoid(torch.randn(d)), requires_grad=True) self.b = nn.Parameter(torch.sigmoid(torch.randn(d)), requires_grad=True) def f(self, t, y): self._nfe += 1 return self.b / torch.sqrt(1. + t) - y / (2. + 2. * t) def g(self, t, y): self._nfe += 1 fill_value = self.a * self.b / torch.sqrt(1. + t) return fill_value.unsqueeze(dim=0).unsqueeze(dim=-1).repeat(y.size(0), 1, self.m) def h(self, t, y): self._nfe += 1 return torch.zeros_like(y) @property def nfe(self): return self._nfe class NeuralDiagonal(BaseSDE): noise_type = NOISE_TYPES.diagonal def __init__(self, d, sde_type=SDE_TYPES.ito, **kwargs): super(NeuralDiagonal, self).__init__(sde_type=sde_type, noise_type=NeuralDiagonal.noise_type) self.f_net = nn.Sequential( nn.Linear(d + 1, 8), nn.Softplus(), nn.Linear(8, d) ) self.g_net = nn.Sequential( nn.Linear(d + 1, 8), nn.Softplus(), nn.Linear(8, d), nn.Sigmoid() ) def f(self, t, y): ty = torch.cat([t.expand(y.size(0), 1), y], dim=1) return self.f_net(ty) def g(self, t, y): ty = torch.cat([t.expand(y.size(0), 1), y], dim=1) return 0.1 * self.g_net(ty) # small noise makes passing adjoint tests easier/possible def h(self, t, y): return torch.zeros_like(y) class NeuralScalar(BaseSDE): noise_type = NOISE_TYPES.scalar def __init__(self, d, sde_type=SDE_TYPES.ito, **kwargs): super(NeuralScalar, self).__init__(sde_type=sde_type, noise_type=NeuralScalar.noise_type) self.f_net = nn.Sequential( nn.Linear(d + 1, 8), nn.Softplus(), nn.Linear(8, d) ) self.g_net = nn.Sequential( nn.Linear(d + 1, 8), nn.Softplus(), nn.Linear(8, d), nn.Sigmoid() ) def f(self, t, y): ty = torch.cat([t.expand(y.size(0), 1), y], dim=1) return self.f_net(ty) def g(self, t, y): ty = torch.cat([t.expand(y.size(0), 1), y], dim=1) return 0.1 * self.g_net(ty).unsqueeze(-1) # small noise makes passing adjoint tests easier/possible def h(self, t, y): return torch.zeros_like(y) class NeuralAdditive(BaseSDE): noise_type = NOISE_TYPES.additive def __init__(self, d, m, sde_type=SDE_TYPES.ito, **kwargs): super(NeuralAdditive, self).__init__(sde_type=sde_type, noise_type=NeuralAdditive.noise_type) self.d = d self.m = m self.f_net = nn.Sequential( nn.Linear(d + 1, 8), nn.Softplus(), nn.Linear(8, d) ) self.g_net = nn.Sequential( nn.Linear(1, 8), nn.Softplus(), nn.Linear(8, d * m), nn.Sigmoid() ) def f(self, t, y): ty = torch.cat([t.expand(y.size(0), 1), y], dim=1) return self.f_net(ty) def g(self, t, y): return self.g_net(t.expand(y.size(0), 1)).view(y.size(0), self.d, self.m) def h(self, t, y): return torch.zeros_like(y) class NeuralGeneral(BaseSDE): noise_type = NOISE_TYPES.general def __init__(self, d, m, sde_type=SDE_TYPES.ito, **kwargs): super(NeuralGeneral, self).__init__(sde_type=sde_type, noise_type=NeuralGeneral.noise_type) self.d = d self.m = m self.f_net = nn.Sequential( nn.Linear(d + 1, 8), nn.Softplus(), nn.Linear(8, d) ) self.g_net = nn.Sequential( nn.Linear(d + 1, 8), nn.Softplus(), nn.Linear(8, d * m), nn.Sigmoid() ) def f(self, t, y): ty = torch.cat([t.expand(y.size(0), 1), y], dim=1) return self.f_net(ty) def g(self, t, y): ty = torch.cat([t.expand(y.size(0), 1), y], dim=1) return self.g_net(ty).reshape(y.size(0), self.d, self.m) def h(self, t, y): return torch.zeros_like(y) class BasicSDE1(SDEIto): def __init__(self, d=10): super(BasicSDE1, self).__init__(noise_type="diagonal") self.shared_param = nn.Parameter(torch.randn(1, d), requires_grad=True) self.no_grad_param = nn.Parameter(torch.randn(1, d), requires_grad=False) self.unused_param1 = nn.Parameter(torch.randn(1, d), requires_grad=False) self.unused_param2 = nn.Parameter(torch.randn(1, d), requires_grad=True) def f(self, t, y): return self.shared_param * torch.sin(y) * 0.2 + torch.cos(y ** 2.) * 0.1 + torch.cos(t) + self.no_grad_param * y def g(self, t, y): return torch.sigmoid(self.shared_param * torch.cos(y) * .3 + torch.sin(t)) + torch.sigmoid( self.no_grad_param * y) + 0.1 def h(self, t, y): return torch.sigmoid(y) class BasicSDE2(SDEIto): def __init__(self, d=10): super(BasicSDE2, self).__init__(noise_type="diagonal") self.shared_param = nn.Parameter(torch.randn(1, d), requires_grad=True) self.no_grad_param = nn.Parameter(torch.randn(1, d), requires_grad=False) self.unused_param1 = nn.Parameter(torch.randn(1, d), requires_grad=False) self.unused_param2 = nn.Parameter(torch.randn(1, d), requires_grad=True) def f(self, t, y): return self.shared_param * 0.2 + self.no_grad_param + torch.zeros_like(y) def g(self, t, y): return torch.sigmoid(self.shared_param * .3) + torch.sigmoid(self.no_grad_param) + torch.zeros_like(y) + 0.1 def h(self, t, y): return torch.sigmoid(y) class BasicSDE3(SDEIto): def __init__(self, d=10): super(BasicSDE3, self).__init__(noise_type="diagonal") self.shared_param = nn.Parameter(torch.randn(1, d), requires_grad=False) self.no_grad_param = nn.Parameter(torch.randn(1, d), requires_grad=False) self.unused_param1 = nn.Parameter(torch.randn(1, d), requires_grad=True) self.unused_param2 = nn.Parameter(torch.randn(1, d), requires_grad=False) def f(self, t, y): return self.shared_param * 0.2 + self.no_grad_param + torch.zeros_like(y) def g(self, t, y): return torch.sigmoid(self.shared_param * .3) + torch.sigmoid(self.no_grad_param) + torch.zeros_like(y) + 0.1 def h(self, t, y): return torch.sigmoid(y) class BasicSDE4(SDEIto): def __init__(self, d=10): super(BasicSDE4, self).__init__(noise_type="diagonal") self.shared_param = nn.Parameter(torch.randn(1, d), requires_grad=True) self.no_grad_param = nn.Parameter(torch.randn(1, d), requires_grad=False) self.unused_param1 = nn.Parameter(torch.randn(1, d), requires_grad=False) self.unused_param2 = nn.Parameter(torch.randn(1, d), requires_grad=True) def f(self, t, y): return torch.zeros_like(y).fill_(0.1) def g(self, t, y): return torch.sigmoid(torch.zeros_like(y)) + 0.1 def h(self, t, y): return torch.sigmoid(y) class CustomNamesSDE(SDEIto): def __init__(self): super(CustomNamesSDE, self).__init__(noise_type="diagonal") def forward(self, t, y): return y * t def g(self, t, y): return torch.sigmoid(t * y) class CustomNamesSDELogqp(SDEIto): def __init__(self): super(CustomNamesSDELogqp, self).__init__(noise_type="diagonal") def forward(self, t, y): return y * t def g(self, t, y): return torch.sigmoid(t * y) def w(self, t, y): return y * t class FGSDE(torch.nn.Module): noise_type = 'general' def __init__(self, sde_type, vector): super(FGSDE, self).__init__() self.sde_type = sde_type self.register_buffer('vector', vector) def f(self, t, y): return -y def g(self, t, y): return y.unsqueeze(-1).sigmoid() * self.vector class FAndGSDE(torch.nn.Module): noise_type = 'general' def __init__(self, sde_type, vector): super(FAndGSDE, self).__init__() self.sde_type = sde_type self.register_buffer('vector', vector) def f_and_g(self, t, y): return -y, y.unsqueeze(-1).sigmoid() * self.vector class GProdSDE(torch.nn.Module): noise_type = 'general' def __init__(self, sde_type, vector): super(GProdSDE, self).__init__() self.sde_type = sde_type self.register_buffer('vector', vector) def f(self, t, y): return -y def g_prod(self, t, y, v): return (y.unsqueeze(-1).sigmoid() * self.vector).bmm(v.unsqueeze(-1)).squeeze(-1) class FAndGProdSDE(torch.nn.Module): noise_type = 'general' def __init__(self, sde_type, vector): super(FAndGProdSDE, self).__init__() self.sde_type = sde_type self.register_buffer('vector', vector) def f_and_g_prod(self, t, y, v): return -y, (y.unsqueeze(-1).sigmoid() * self.vector).bmm(v.unsqueeze(-1)).squeeze(-1) class FAndGGProdSDE1(torch.nn.Module): noise_type = 'general' def __init__(self, sde_type, vector): super(FAndGGProdSDE1, self).__init__() self.sde_type = sde_type self.register_buffer('vector', vector) def f_and_g(self, t, y): return -y, y.unsqueeze(-1).sigmoid() * self.vector def g_prod(self, t, y, v): return (y.unsqueeze(-1).sigmoid() * self.vector).bmm(v.unsqueeze(-1)).squeeze(-1) class FAndGGProdSDE2(torch.nn.Module): noise_type = 'general' def __init__(self, sde_type, vector): super(FAndGGProdSDE2, self).__init__() self.sde_type = sde_type self.register_buffer('vector', vector) def f(self, t, y): return -y def f_and_g(self, t, y): return -y, y.unsqueeze(-1).sigmoid() * self.vector def g_prod(self, t, y, v): return (y.unsqueeze(-1).sigmoid() * self.vector).bmm(v.unsqueeze(-1)).squeeze(-1)
apache-2.0
Maximilian-Reuter/SickRage
lib/guessit/test/test_main.py
32
2270
#!/usr/bin/env python # -*- coding: utf-8 -*- # # GuessIt - A library for guessing information from filenames # Copyright (c) 2014 Nicolas Wack <wackou@gmail.com> # # GuessIt is free software; you can redistribute it and/or modify it under # the terms of the Lesser GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # GuessIt is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Lesser GNU General Public License for more details. # # You should have received a copy of the Lesser GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from __future__ import absolute_import, division, print_function, unicode_literals from guessit.test.guessittest import * from guessit.fileutils import file_in_same_dir from guessit import PY2 from guessit import __main__ if PY2: from StringIO import StringIO else: from io import StringIO class TestMain(TestGuessit): def setUp(self): self._stdout = sys.stdout string_out = StringIO() sys.stdout = string_out def tearDown(self): sys.stdout = self._stdout def test_list_properties(self): __main__.main(["-p"], False) __main__.main(["-V"], False) def test_list_transformers(self): __main__.main(["--transformers"], False) __main__.main(["-V", "--transformers"], False) def test_demo(self): __main__.main(["-d"], False) def test_filename(self): __main__.main(["A.Movie.2014.avi"], False) __main__.main(["A.Movie.2014.avi", "A.2nd.Movie.2014.avi"], False) __main__.main(["-y", "A.Movie.2014.avi"], False) __main__.main(["-a", "A.Movie.2014.avi"], False) __main__.main(["-v", "A.Movie.2014.avi"], False) __main__.main(["-t", "movie", "A.Movie.2014.avi"], False) __main__.main(["-t", "episode", "A.Serie.S02E06.avi"], False) __main__.main(["-i", "hash_mpc", file_in_same_dir(__file__, "1MB")], False) __main__.main(["-i", "hash_md5", file_in_same_dir(__file__, "1MB")], False)
gpl-3.0
mila-udem/fuel
fuel/config_parser.py
1
7045
"""Module level configuration. Fuel allows module-wide configuration values to be set using a YAML_ configuration file and `environment variables`_. Environment variables override the configuration file which in its turn overrides the defaults. The configuration is read from ``~/.fuelrc`` if it exists. A custom configuration file can be used by setting the ``FUEL_CONFIG`` environment variable. A configuration file is of the form: .. code-block:: yaml data_path: /home/user/datasets Which could be overwritten by using environment variables: .. code-block:: bash $ FUEL_DATA_PATH=/home/users/other_datasets python This data path is a sequence of paths separated by an os-specific delimiter (':' for Linux and OSX, ';' for Windows). If a setting is not configured and does not provide a default, a :class:`~.ConfigurationError` is raised when it is accessed. Configuration values can be accessed as attributes of :const:`fuel.config`. >>> from fuel import config >>> print(config.data_path) # doctest: +SKIP '~/datasets' The following configurations are supported: .. option:: data_path The path where dataset files are stored. Can also be set using the environment variable ``FUEL_DATA_PATH``. Expected to be a sequence of paths separated by an os-specific delimiter (':' for Linux and OSX, ';' for Windows). .. todo:: Implement this. .. option:: floatX The default :class:`~numpy.dtype` to use for floating point numbers. The default value is ``float64``. A lower value can save memory. .. option:: local_data_path The local path where the dataset is going to be copied. This is a useful option for slow network file systems. The dataset is copied once to a local directory and reused later. Currently, caching is implemented for :class:`H5PYDataset` and therefore for the majority of builtin datasets. In order to use caching with your own dataset refer to the caching documentation: :func:`cache_file`. .. option:: extra_downloaders A list of package names which, like fuel.downloaders, define an `all_downloaders` attribute listing available downloaders. By default, an empty list. .. option:: extra_converters A list of package names which, like fuel.converters, define an `all_converters` attribute listing available converters. By default, an empty list. .. _YAML: http://yaml.org/ .. _environment variables: https://en.wikipedia.org/wiki/Environment_variable """ import logging import os import six import yaml from .exceptions import ConfigurationError logger = logging.getLogger(__name__) NOT_SET = object() def extra_downloader_converter(value): """Parses extra_{downloader,converter} arguments. Parameters ---------- value : iterable or str If the value is a string, it is split into a list using spaces as delimiters. Otherwise, it is returned as is. """ if isinstance(value, six.string_types): value = value.split(" ") return value def multiple_paths_parser(value): """Parses data_path argument. Parameters ---------- value : str a string of data paths separated by ":". Returns ------- value : list a list of strings indicating each data paths. """ if isinstance(value, six.string_types): value = value.split(os.path.pathsep) return value class Configuration(object): def __init__(self): self.config = {} def load_yaml(self): if 'FUEL_CONFIG' in os.environ: yaml_file = os.environ['FUEL_CONFIG'] else: yaml_file = os.path.expanduser('~/.fuelrc') if os.path.isfile(yaml_file): with open(yaml_file) as f: for key, value in yaml.safe_load(f).items(): if key not in self.config: raise ValueError("Unrecognized config in YAML: {}" .format(key)) self.config[key]['yaml'] = value def __getattr__(self, key): if key == 'config' or key not in self.config: raise AttributeError config_setting = self.config[key] if 'value' in config_setting: value = config_setting['value'] elif ('env_var' in config_setting and config_setting['env_var'] in os.environ): value = os.environ[config_setting['env_var']] elif 'yaml' in config_setting: value = config_setting['yaml'] elif 'default' in config_setting: value = config_setting['default'] else: raise ConfigurationError("Configuration not set and no default " "provided: {}.".format(key)) return config_setting['type'](value) def __setattr__(self, key, value): if key != 'config' and key in self.config: self.config[key]['value'] = value else: super(Configuration, self).__setattr__(key, value) def add_config(self, key, type_, default=NOT_SET, env_var=None): """Add a configuration setting. Parameters ---------- key : str The name of the configuration setting. This must be a valid Python attribute name i.e. alphanumeric with underscores. type : function A function such as ``float``, ``int`` or ``str`` which takes the configuration value and returns an object of the correct type. Note that the values retrieved from environment variables are always strings, while those retrieved from the YAML file might already be parsed. Hence, the function provided here must accept both types of input. default : object, optional The default configuration to return if not set. By default none is set and an error is raised instead. env_var : str, optional The environment variable name that holds this configuration value. If not given, this configuration can only be set in the YAML configuration file. """ self.config[key] = {'type': type_} if env_var is not None: self.config[key]['env_var'] = env_var if default is not NOT_SET: self.config[key]['default'] = default config = Configuration() # Define configuration options config.add_config('data_path', type_=multiple_paths_parser, env_var='FUEL_DATA_PATH') config.add_config('local_data_path', type_=str, env_var='FUEL_LOCAL_DATA_PATH', default="") config.add_config('default_seed', type_=int, default=1) config.add_config('extra_downloaders', type_=extra_downloader_converter, default=[], env_var='FUEL_EXTRA_DOWNLOADERS') config.add_config('extra_converters', type_=extra_downloader_converter, default=[], env_var='FUEL_EXTRA_CONVERTERS') config.add_config('floatX', type_=str, env_var='FUEL_FLOATX') config.load_yaml()
mit
matthew-tucker/mne-python
examples/stats/plot_cluster_stats_spatio_temporal_2samp.py
5
4284
""" ========================================================================= 2 samples permutation test on source data with spatio-temporal clustering ========================================================================= Tests if the source space data are significantly different between 2 groups of subjects (simulated here using one subject's data). The multiple comparisons problem is addressed with a cluster-level permutation test across space and time. """ # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Eric Larson <larson.eric.d@gmail.com> # License: BSD (3-clause) import os.path as op import numpy as np from scipy import stats as stats import mne from mne import spatial_tris_connectivity, grade_to_tris from mne.stats import spatio_temporal_cluster_test, summarize_clusters_stc from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() stc_fname = data_path + '/MEG/sample/sample_audvis-meg-lh.stc' subjects_dir = data_path + '/subjects' # Load stc to in common cortical space (fsaverage) stc = mne.read_source_estimate(stc_fname) stc.resample(50) stc = mne.morph_data('sample', 'fsaverage', stc, grade=5, smooth=20, subjects_dir=subjects_dir) n_vertices_fsave, n_times = stc.data.shape tstep = stc.tstep n_subjects1, n_subjects2 = 7, 9 print('Simulating data for %d and %d subjects.' % (n_subjects1, n_subjects2)) # Let's make sure our results replicate, so set the seed. np.random.seed(0) X1 = np.random.randn(n_vertices_fsave, n_times, n_subjects1) * 10 X2 = np.random.randn(n_vertices_fsave, n_times, n_subjects2) * 10 X1[:, :, :] += stc.data[:, :, np.newaxis] # make the activity bigger for the second set of subjects X2[:, :, :] += 3 * stc.data[:, :, np.newaxis] # We want to compare the overall activity levels for each subject X1 = np.abs(X1) # only magnitude X2 = np.abs(X2) # only magnitude ############################################################################### # Compute statistic # To use an algorithm optimized for spatio-temporal clustering, we # just pass the spatial connectivity matrix (instead of spatio-temporal) print('Computing connectivity.') connectivity = spatial_tris_connectivity(grade_to_tris(5)) # Note that X needs to be a list of multi-dimensional array of shape # samples (subjects_k) x time x space, so we permute dimensions X1 = np.transpose(X1, [2, 1, 0]) X2 = np.transpose(X2, [2, 1, 0]) X = [X1, X2] # Now let's actually do the clustering. This can take a long time... # Here we set the threshold quite high to reduce computation. p_threshold = 0.0001 f_threshold = stats.distributions.f.ppf(1. - p_threshold / 2., n_subjects1 - 1, n_subjects2 - 1) print('Clustering.') T_obs, clusters, cluster_p_values, H0 = clu =\ spatio_temporal_cluster_test(X, connectivity=connectivity, n_jobs=2, threshold=f_threshold) # Now select the clusters that are sig. at p < 0.05 (note that this value # is multiple-comparisons corrected). good_cluster_inds = np.where(cluster_p_values < 0.05)[0] ############################################################################### # Visualize the clusters print('Visualizing clusters.') # Now let's build a convenient representation of each cluster, where each # cluster becomes a "time point" in the SourceEstimate fsave_vertices = [np.arange(10242), np.arange(10242)] stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') # Let's actually plot the first "time point" in the SourceEstimate, which # shows all the clusters, weighted by duration subjects_dir = op.join(data_path, 'subjects') # blue blobs are for condition A != condition B brain = stc_all_cluster_vis.plot('fsaverage', hemi='both', colormap='mne', subjects_dir=subjects_dir, time_label='Duration significant (ms)') brain.set_data_time_index(0) brain.show_view('lateral') brain.save_image('clusters.png')
bsd-3-clause
uber/pyro
tests/contrib/bnn/test_hidden_layer.py
1
2100
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import pytest import torch import torch.nn.functional as F from torch.distributions import Normal from pyro.contrib.bnn import HiddenLayer from tests.common import assert_equal @pytest.mark.parametrize("non_linearity", [F.relu]) @pytest.mark.parametrize("include_hidden_bias", [False, True]) def test_hidden_layer_rsample( non_linearity, include_hidden_bias, B=2, D=3, H=4, N=900000 ): X = torch.randn(B, D) A_mean = torch.rand(D, H) A_scale = 0.3 * torch.exp(0.3 * torch.rand(D, H)) # test naive weight space sampling against sampling in pre-activation space dist1 = HiddenLayer( X=X, A_mean=A_mean, A_scale=A_scale, non_linearity=non_linearity, include_hidden_bias=include_hidden_bias, weight_space_sampling=True, ) dist2 = HiddenLayer( X=X, A_mean=A_mean, A_scale=A_scale, non_linearity=non_linearity, include_hidden_bias=include_hidden_bias, weight_space_sampling=False, ) out1 = dist1.rsample(sample_shape=(N,)) out1_mean, out1_var = out1.mean(0), out1.var(0) out2 = dist2.rsample(sample_shape=(N,)) out2_mean, out2_var = out2.mean(0), out2.var(0) assert_equal(out1_mean, out2_mean, prec=0.003) assert_equal(out1_var, out2_var, prec=0.003) return @pytest.mark.parametrize("non_linearity", [F.relu]) @pytest.mark.parametrize("include_hidden_bias", [True, False]) def test_hidden_layer_log_prob(non_linearity, include_hidden_bias, B=2, D=3, H=2): X = torch.randn(B, D) A_mean = torch.rand(D, H) A_scale = 0.3 * torch.exp(0.3 * torch.rand(D, H)) dist = HiddenLayer( X=X, A_mean=A_mean, A_scale=A_scale, non_linearity=non_linearity, include_hidden_bias=include_hidden_bias, ) A_dist = Normal(A_mean, A_scale) A_prior = Normal(torch.zeros(D, H), torch.ones(D, H)) kl = torch.distributions.kl.kl_divergence(A_dist, A_prior).sum() assert_equal(kl, dist.KL, prec=0.01)
apache-2.0
matthew-tucker/mne-python
mne/tests/test_transforms.py
10
7111
import os import os.path as op import numpy as np from nose.tools import assert_true, assert_raises from numpy.testing import (assert_array_equal, assert_equal, assert_allclose, assert_almost_equal, assert_array_almost_equal) import warnings from mne.io.constants import FIFF from mne.datasets import testing from mne import read_trans, write_trans from mne.utils import _TempDir, run_tests_if_main from mne.transforms import (invert_transform, _get_mri_head_t, rotation, rotation3d, rotation_angles, _find_trans, combine_transforms, transform_coordinates, collect_transforms, apply_trans, translation, get_ras_to_neuromag_trans, _sphere_to_cartesian, _polar_to_cartesian, _cartesian_to_sphere) warnings.simplefilter('always') # enable b/c these tests throw warnings data_path = testing.data_path(download=False) fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-trans.fif') fname_eve = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw-eve.fif') fname_trans = op.join(op.split(__file__)[0], '..', 'io', 'tests', 'data', 'sample-audvis-raw-trans.txt') @testing.requires_testing_data def test_get_mri_head_t(): """Test converting '-trans.txt' to '-trans.fif'""" trans = read_trans(fname) trans = invert_transform(trans) # starts out as head->MRI, so invert trans_2 = _get_mri_head_t(fname_trans)[0] assert_equal(trans['from'], trans_2['from']) assert_equal(trans['to'], trans_2['to']) assert_allclose(trans['trans'], trans_2['trans'], rtol=1e-5, atol=1e-5) @testing.requires_testing_data def test_io_trans(): """Test reading and writing of trans files """ tempdir = _TempDir() os.mkdir(op.join(tempdir, 'sample')) assert_raises(RuntimeError, _find_trans, 'sample', subjects_dir=tempdir) trans0 = read_trans(fname) fname1 = op.join(tempdir, 'sample', 'test-trans.fif') write_trans(fname1, trans0) assert_true(fname1 == _find_trans('sample', subjects_dir=tempdir)) trans1 = read_trans(fname1) # check all properties assert_true(trans0['from'] == trans1['from']) assert_true(trans0['to'] == trans1['to']) assert_array_equal(trans0['trans'], trans1['trans']) # check reading non -trans.fif files assert_raises(IOError, read_trans, fname_eve) # check warning on bad filenames with warnings.catch_warnings(record=True) as w: fname2 = op.join(tempdir, 'trans-test-bad-name.fif') write_trans(fname2, trans0) assert_true(len(w) >= 1) def test_get_ras_to_neuromag_trans(): """Test the coordinate transformation from ras to neuromag""" # create model points in neuromag-like space anterior = [0, 1, 0] left = [-1, 0, 0] right = [.8, 0, 0] up = [0, 0, 1] rand_pts = np.random.uniform(-1, 1, (3, 3)) pts = np.vstack((anterior, left, right, up, rand_pts)) # change coord system rx, ry, rz, tx, ty, tz = np.random.uniform(-2 * np.pi, 2 * np.pi, 6) trans = np.dot(translation(tx, ty, tz), rotation(rx, ry, rz)) pts_changed = apply_trans(trans, pts) # transform back into original space nas, lpa, rpa = pts_changed[:3] hsp_trans = get_ras_to_neuromag_trans(nas, lpa, rpa) pts_restored = apply_trans(hsp_trans, pts_changed) err = "Neuromag transformation failed" assert_array_almost_equal(pts_restored, pts, 6, err) def test_sphere_to_cartesian(): """Test helper transform function from sphere to cartesian""" phi, theta, r = (np.pi, np.pi, 1) # expected value is (1, 0, 0) z = r * np.sin(phi) rcos_phi = r * np.cos(phi) x = rcos_phi * np.cos(theta) y = rcos_phi * np.sin(theta) coord = _sphere_to_cartesian(phi, theta, r) # np.pi is an approx since pi is irrational assert_almost_equal(coord, (x, y, z), 10) assert_almost_equal(coord, (1, 0, 0), 10) def test_polar_to_cartesian(): """Test helper transform function from polar to cartesian""" r = 1 theta = np.pi # expected values are (-1, 0) x = r * np.cos(theta) y = r * np.sin(theta) coord = _polar_to_cartesian(theta, r) # np.pi is an approx since pi is irrational assert_almost_equal(coord, (x, y), 10) assert_almost_equal(coord, (-1, 0), 10) def test_cartesian_to_sphere(): """Test helper transform function from cartesian to sphere""" x, y, z = (1, 0, 0) # expected values are (0, 0, 1) hypotxy = np.hypot(x, y) r = np.hypot(hypotxy, z) elev = np.arctan2(z, hypotxy) az = np.arctan2(y, x) coord = _cartesian_to_sphere(x, y, z) assert_equal(coord, (az, elev, r)) assert_equal(coord, (0, 0, 1)) def test_rotation(): """Test conversion between rotation angles and transformation matrix """ tests = [(0, 0, 1), (.5, .5, .5), (np.pi, 0, -1.5)] for rot in tests: x, y, z = rot m = rotation3d(x, y, z) m4 = rotation(x, y, z) assert_array_equal(m, m4[:3, :3]) back = rotation_angles(m) assert_equal(back, rot) back4 = rotation_angles(m4) assert_equal(back4, rot) @testing.requires_testing_data def test_combine(): """Test combining transforms """ trans = read_trans(fname) inv = invert_transform(trans) combine_transforms(trans, inv, trans['from'], trans['from']) assert_raises(RuntimeError, combine_transforms, trans, inv, trans['to'], trans['from']) assert_raises(RuntimeError, combine_transforms, trans, inv, trans['from'], trans['to']) assert_raises(RuntimeError, combine_transforms, trans, trans, trans['from'], trans['to']) @testing.requires_testing_data def test_transform_coords(): """Test transforming coordinates """ # normal trans won't work assert_raises(ValueError, transform_coordinates, fname, np.eye(3), 'meg', 'fs_tal') # needs to have all entries pairs = [[FIFF.FIFFV_COORD_MRI, FIFF.FIFFV_COORD_HEAD], [FIFF.FIFFV_COORD_MRI, FIFF.FIFFV_MNE_COORD_RAS], [FIFF.FIFFV_MNE_COORD_RAS, FIFF.FIFFV_MNE_COORD_MNI_TAL], [FIFF.FIFFV_MNE_COORD_MNI_TAL, FIFF.FIFFV_MNE_COORD_FS_TAL_GTZ], [FIFF.FIFFV_MNE_COORD_MNI_TAL, FIFF.FIFFV_MNE_COORD_FS_TAL_LTZ], ] xforms = [] for fro, to in pairs: xforms.append({'to': to, 'from': fro, 'trans': np.eye(4)}) tempdir = _TempDir() all_fname = op.join(tempdir, 'all-trans.fif') collect_transforms(all_fname, xforms) for fro in ['meg', 'mri']: for to in ['meg', 'mri', 'fs_tal', 'mni_tal']: out = transform_coordinates(all_fname, np.eye(3), fro, to) assert_allclose(out, np.eye(3)) assert_raises(ValueError, transform_coordinates, all_fname, np.eye(4), 'meg', 'meg') assert_raises(ValueError, transform_coordinates, all_fname, np.eye(3), 'fs_tal', 'meg') run_tests_if_main()
bsd-3-clause
amikiri/postgeo
cellspacer.py
2
5295
#!/usr/bin/env python """ This script will take a lat-long pair (e.g., "-80.123, 45.678") in the final column, and determine if any other lines are at that exactly named pair. If so, it scatters them around in a circle. So if other points are adjacent or identical but differently named (-80.123 vs. -80.1230), this won't help much. It works for what it is, and it's not meant to do more. Scattering distance can be specified on the command-line using the -m flag). This may use a lot of memory on large datasets, so you might want it to work off a database. I didn't. """ from __future__ import print_function import argparse import csv import os import sys from geopy.distance import VincentyDistance masterdict = {} flagonsolo = 987654321 output_string = "Latlong: {:20} Area count: {} Index count: {:>9} Spaced: {:>} Bearing {}" processed_string = "Processed {} rows at {} locations." def set_spot(latlong): if latlong in masterdict.keys(): masterdict[latlong][0] += 1 else: masterdict[latlong] = [1, -1] # So if we have a value, we know this spot already and we should add to the count. # If we don't have a value, we need to create one, set to the 1. def get_spot(latlong): indexvalue = masterdict[latlong][1] if indexvalue == flagonsolo: pass else: masterdict[latlong][1] = indexvalue + 1 return (indexvalue) # Let's peel the latest index count off, and increment by 1, unless this is the only spot at the location. def main(spacing, verbose=0): inputfilename = args.filename outputfilename = inputfilename[:inputfilename.rfind(".")] + "-jitter" + inputfilename[inputfilename.rfind("."):] with open(inputfilename, 'r') as inputfilehandle: rows = csv.reader(inputfilehandle) headers = next(rows) for row in rows: latlong = row[-1] # We're only grabbing latlong from last field set_spot(latlong) # masterdict should now have all latlongs, and their counts # and inputfilehandle should now be closed. # Let's now set up our spot dictionary: for key in masterdict: if masterdict[key][0] == 1: masterdict[key][1] = flagonsolo else: masterdict[key][1] = 0 # We should be ready to start processing. Our masterdict holds a list keyed to each unique latlong in our # source CSV. [0] holds how many values are at that index. [1] holds an index to which one of those things # we're processing, so we know where to jigger it. # flagonsolo gives us a value that says, "Only one point at this latlong. Don't mess with it." if os.path.isfile(outputfilename): message = "File {} exists, proceeding will overwrite(y or n)? " proceed_prompt = get_input(message.format(outputfilename)) if proceed_prompt.lower() == 'y': pass else: print('Aborting . . .') exit() with open(outputfilename, 'w') as outputfile: put = csv.writer(outputfile, lineterminator='\n') with open(inputfilename, 'r') as inputfilehandle: rows = csv.reader(inputfilehandle) headers = next(rows) headers.append("RowsHere") headers.append("latlongspaced") put.writerow(headers) for row in rows: latlong = row[-1] indexvalue = get_spot(latlong) if indexvalue == flagonsolo: latlongspaced = latlong areacount = 1 bearing = -1 else: areacount = masterdict[latlong][0] bearing = (indexvalue * 360 / areacount) destination = VincentyDistance(meters=spacing).destination(latlong, bearing) latlongspaced = str(destination.latitude) + ", " + str(destination.longitude) if verbose == 1: print(output_string.format(latlong, areacount, indexvalue, latlongspaced, bearing)) row.append(str(areacount)) row.append(latlongspaced) put.writerow(row) if verbose == 1: linecount = 0 for key in masterdict: linecount = linecount + masterdict[key][0] print(processed_string.format(linecount, len(masterdict))) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Lat-longs to scatter") parser.add_argument('filename', metavar='filename', help='CSV file containing Lat-longs to scatter') parser.add_argument("-v", help="turn on verbose output", action="store_true") parser.add_argument("-m", help="set distance in meters for spacing", default=100, type=int) try: args = parser.parse_args() except: parser.print_help() sys.exit(1) get_input = input if sys.version_info[:2] <= (2, 7): get_input = raw_input if args.filename.lower().endswith('.csv'): if args.v: main(verbose=1, spacing=args.m) else: main(spacing=args.m) else: print("File must be of type CSV and end with .csv extension")
mit
Wikidata/StrepHit
strephit/corpus_analysis/rank_verbs.py
1
8831
#!/usr/bin/env python # -*- encoding: utf-8 -*- import json import logging from collections import defaultdict, OrderedDict from sys import exit from numpy import average import click from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel from strephit.commons.io import load_corpus, load_scraped_items from strephit.commons import parallel logger = logging.getLogger(__name__) VERBAL_PREFIXES = { 'en': 'V', 'it': 'VER', } def get_similarity_scores(verb_token, vectorizer, tf_idf_matrix): """ Compute the cosine similarity score of a given verb token against the input corpus TF/IDF matrix. :param str verb_token: Surface form of a verb, e.g., *born* :param sklearn.feature_extraction.text.TfidfVectorizer vectorizer: Vectorizer used to transform verbs into vectors :return: cosine similarity score :rtype: ndarray """ verb_token_vector = vectorizer.transform([verb_token]) # Here the linear kernel is the same as the cosine similarity, but faster # cf. http://scikit-learn.org/stable/modules/metrics.html#cosine-similarity scores = linear_kernel(verb_token_vector, tf_idf_matrix) logger.debug("Corpus-wide TF/IDF scores for '%s': %s" % (verb_token, scores)) logger.debug("Average TF/IDF score for '%s': %f" % (verb_token, average(scores))) return scores def produce_lemma_tokens(pos_tagged_path, pos_tag_key, language): """ Extracts a map from lemma to all its tokens :param str pos_tagged_path: path of the pos-tagged corpus :param str pos_tag_key: where the pos tag data is in each item :param language: language of the corpus :return: mapping from lemma to tokens :rtype: dict """ corpus = load_scraped_items(pos_tagged_path) lemma_tokens = defaultdict(set) for item in corpus: for token, pos, lemma in item.get(pos_tag_key, []): if pos.startswith(VERBAL_PREFIXES[language]): lemma_tokens[lemma.lower()].add(token.lower()) return lemma_tokens def compute_tf_idf_matrix(corpus_path, document_key): """ Computes the TF-IDF matrix of the corpus :param str corpus_path: path of the corpus :param str document_key: where the textual content is in the corpus :return: a vectorizer and the computed matrix :rtype: tuple """ corpus = load_corpus(corpus_path, document_key, text_only=True) vectorizer = TfidfVectorizer() return vectorizer, vectorizer.fit_transform(corpus) class TFIDFRanking: """ Computes TF-IDF based rankings. The first ranking is based on the average TF-IDF score of each lemma over all corpus The second ranking is based on the average standard deviation of TF-IDF scores of each lemma over all corpus """ def __init__(self, vectorizer, verbs, tfidf_matrix): self.vectorizer = vectorizer self.verbs = verbs self.tfidf_matrix = tfidf_matrix def score_lemma(self, lemma): """ Computess TF-IDF based score of a single lemma :param str lemma: The lemma to score :return: tuple with lemma, average tf-idf, average of tf-idf standard deviations :rtype: tuple of (str, float, float) """ tf_idfs, st_devs = [], [] for token in self.verbs[lemma]: scores = get_similarity_scores(token, self.vectorizer, self.tfidf_matrix) tf_idfs += filter(None, scores.flatten().tolist()) st_devs.append(scores.std()) return lemma, average(tf_idfs), average(st_devs) def find_ranking(self, processes=0): """ Ranks the verbs :param int processes: How many processes to use for parallel ranking :return: tuple with average tf-idf and average standard deviation ordered rankings :rtype: tuple of (OrderedDict, OrderedDict) """ tfidf_ranking = {} stdev_ranking = {} for lemma, tfidf, stdev in parallel.map(self.score_lemma, self.verbs, processes): tfidf_ranking[lemma] = tfidf stdev_ranking[lemma] = stdev return (OrderedDict(sorted(tfidf_ranking.items(), key=lambda x: x[1], reverse=True)), OrderedDict(sorted(stdev_ranking.items(), key=lambda x: x[1], reverse=True))) class PopularityRanking: """ Ranking based on the popularity of each verb. Simply counts the frequency of each lemma over all corpus """ def __init__(self, corpus_path, pos_tag_key): self.tags = self._flatten(item.get(pos_tag_key) for item in load_scraped_items(corpus_path)) @staticmethod def _flatten(iterable): for each in iterable: for x in each: yield x @staticmethod def _bulkenize(iterable, bulk_size): acc = [] for each in iterable: acc.append(each) if len(acc) % bulk_size == 0: yield acc acc = [] if acc: yield acc @staticmethod def score_from_tokens(tokens): scores = defaultdict(int) for token, pos, lemma in tokens: if pos.startswith('V'): scores[lemma.lower()] += 1 return scores def find_ranking(self, processes=0, bulk_size=10000, normalize=True): ranking = defaultdict(int) for score in parallel.map(self.score_from_tokens, self._bulkenize(self.tags, bulk_size), processes): for k, v in score.iteritems(): ranking[k] += v ranking = OrderedDict(sorted(ranking.items(), key=lambda x: x[1], reverse=True)) if normalize: max_score = float(ranking[next(iter(ranking))]) for lemma, score in ranking.iteritems(): ranking[lemma] = score / max_score return ranking def harmonic_ranking(*rankings): """ Combines individual rankings with an harmonic mean to obtain a final ranking :param rankings: dictionary of individual rankings :return: the new, combined ranking """ def product(x, y): return x * y def sum(x, y): return x + y def get(k): return (r[k] for r in rankings) lemmas = reduce(lambda x, y: x.union(y), (set(r) for r in rankings)) return OrderedDict(sorted( [(l, len(rankings) * reduce(product, get(l)) / (1 + reduce(sum, get(l)))) for l in lemmas], key=lambda (_, v): v, reverse=True )) @click.command() @click.argument('pos_tagged', type=click.Path(exists=True, dir_okay=False)) @click.argument('document_key') @click.argument('language') @click.option('--pos-tag-key', default='pos_tag') @click.option('--dump-verbs', type=click.File('w'), default='output/verbs.json') @click.option('--dump-tf-idf', type=click.File('w'), default='output/tf_idf_ranking.json') @click.option('--dump-stdev', type=click.File('w'), default='output/stdev_ranking.json') @click.option('--dump-popularity', type=click.File('w'), default='output/popularity_ranking.json') @click.option('--dump-final', type=click.File('w'), default='output/verb_ranking.json') @click.option('--processes', '-p', default=0) def main(pos_tagged, document_key, pos_tag_key, language, dump_verbs, dump_tf_idf, dump_stdev, dump_popularity, dump_final, processes): """ Computes the three verb rankings: average TF-IDF, average of TF-IDF standard deviation and popularity. """ logger.info('Computing lemma-to-token map and TF-IDF matrix ...') lemma_tokens, (vectorizer, tf_idf_matrix) = parallel.execute( 2, produce_lemma_tokens, (pos_tagged, pos_tag_key, language), compute_tf_idf_matrix, (pos_tagged, document_key) ) logger.info('Scoring verbs by popularity ...') pop_ranking = PopularityRanking(pos_tagged, pos_tag_key).find_ranking(processes) logger.info('Scoring verbs by TF-IDF based metrics (average and standard deviation) ...') tfidf_ranking, stdev_ranking = TFIDFRanking(vectorizer, lemma_tokens, tf_idf_matrix).find_ranking(processes) logger.info('Producing combined final ranking ...') final_ranking = harmonic_ranking(pop_ranking, tfidf_ranking, stdev_ranking) json.dump(tfidf_ranking, dump_tf_idf, indent=2) json.dump(stdev_ranking, dump_stdev, indent=2) json.dump(pop_ranking, dump_popularity, indent=2) json.dump(final_ranking, dump_final, indent=2) logger.info('Dumped all the rankings to %s' % [dump_tf_idf.name, dump_stdev.name, dump_popularity.name, dump_final.name]) json.dump(lemma_tokens, dump_verbs, default=lambda x: list(x), indent=2) logger.info("Dumped lemma-to-token map to '%s'" % dump_verbs.name)
gpl-3.0
justincassidy/scikit-learn
sklearn/datasets/mldata.py
306
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
pystruct/pystruct
pystruct/tests/test_learners/test_primal_dual.py
5
1151
#from crf import BinaryGridCRF #from structured_svm import NSlackSSVM, SubgradientSSVM #from structured_svm import objective_primal, PrimalDSStructuredSVM #from toy_datasets import binary #def test_primal_dual_binary(): #for C in [1, 100, 100000]: #for dataset in binary: #X, Y = dataset(n_samples=1) #crf = BinaryGridCRF() #clf = NSlackSSVM(model=crf, max_iter=200, C=C, #check_constraints=True) #clf.fit(X, Y) #clf2 = SubgradientSSVM(model=crf, max_iter=200, C=C) #clf2.fit(X, Y) #clf3 = PrimalDSStructuredSVM(model=crf, max_iter=200, C=C) #clf3.fit(X, Y) #obj = objective_primal(crf, clf.w, X, Y, C) ## the dual finds the optimum so it might be better #obj2 = objective_primal(crf, clf2.w, X, Y, C) #obj3 = objective_primal(crf, clf3.w, X, Y, C) #assert(obj <= obj2) #assert(obj <= obj3) #print("objective difference: %f\n" % (obj2 - obj)) #print("objective difference DS: %f\n" % (obj3 - obj)) #test_primal_dual_binary()
bsd-2-clause
rbharath/deepchem
deepchem/molnet/run_benchmark.py
1
10581
# -*- coding: utf-8 -*- """ Created on Mon Mar 06 14:25:40 2017 @author: Zhenqin Wu """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os import time import csv import numpy as np import tensorflow as tf import deepchem from deepchem.molnet.run_benchmark_models import benchmark_classification, benchmark_regression from deepchem.molnet.check_availability import CheckFeaturizer, CheckSplit def run_benchmark(datasets, model, split=None, metric=None, featurizer=None, n_features=0, out_path='.', hyper_parameters=None, test=False, reload=True, seed=123): """ Run benchmark test on designated datasets with deepchem(or user-defined) model Parameters ---------- datasets: list of string choice of which datasets to use, should be: bace_c, bace_r, bbbp, chembl, clearance, clintox, delaney, hiv, hopv, kaggle, lipo, muv, nci, pcba, pdbbind, ppb, qm7, qm7b, qm8, qm9, sampl, sider, tox21, toxcast model: string or user-defined model stucture choice of which model to use, deepchem provides implementation of logistic regression, random forest, multitask network, bypass multitask network, irv, graph convolution; for user define model, it should include function: fit, evaluate split: string, optional (default=None) choice of splitter function, None = using the default splitter metric: string, optional (default=None) choice of evaluation metrics, None = using the default metrics(AUC & R2) featurizer: string or dc.feat.Featurizer, optional (default=None) choice of featurization, None = using the default corresponding to model (string only applicable to deepchem models) n_features: int, optional(default=0) depending on featurizers, redefined when using deepchem featurizers, need to be specified for user-defined featurizers(if using deepchem models) out_path: string, optional(default='.') path of result file hyper_parameters: dict, optional (default=None) hyper parameters for designated model, None = use preset values test: boolean, optional(default=False) whether to evaluate on test set reload: boolean, optional(default=True) whether to save and reload featurized datasets """ for dataset in datasets: if dataset in [ 'bace_c', 'bbbp', 'clintox', 'hiv', 'muv', 'pcba', 'sider', 'tox21', 'toxcast' ]: mode = 'classification' if metric == None: metric = [ deepchem.metrics.Metric(deepchem.metrics.roc_auc_score, np.mean), deepchem.metrics.Metric(deepchem.metrics.prc_auc_score, np.mean) ] elif dataset in [ 'bace_r', 'chembl', 'clearance', 'delaney', 'hopv', 'kaggle', 'lipo', 'nci', 'pdbbind', 'ppb', 'qm7', 'qm7b', 'qm8', 'qm9', 'sampl' ]: mode = 'regression' if metric == None: metric = [ deepchem.metrics.Metric(deepchem.metrics.pearson_r2_score, np.mean) ] else: raise ValueError('Dataset not supported') if featurizer == None and isinstance(model, str): # Assigning featurizer if not user defined pair = (dataset, model) if pair in CheckFeaturizer: featurizer = CheckFeaturizer[pair][0] n_features = CheckFeaturizer[pair][1] else: continue if not split in [None] + CheckSplit[dataset]: continue loading_functions = { 'bace_c': deepchem.molnet.load_bace_classification, 'bace_r': deepchem.molnet.load_bace_regression, 'bbbp': deepchem.molnet.load_bbbp, 'chembl': deepchem.molnet.load_chembl, 'clearance': deepchem.molnet.load_clearance, 'clintox': deepchem.molnet.load_clintox, 'delaney': deepchem.molnet.load_delaney, 'hiv': deepchem.molnet.load_hiv, 'hopv': deepchem.molnet.load_hopv, 'kaggle': deepchem.molnet.load_kaggle, 'lipo': deepchem.molnet.load_lipo, 'muv': deepchem.molnet.load_muv, 'nci': deepchem.molnet.load_nci, 'pcba': deepchem.molnet.load_pcba, 'pdbbind': deepchem.molnet.load_pdbbind_grid, 'ppb': deepchem.molnet.load_ppb, 'qm7': deepchem.molnet.load_qm7_from_mat, 'qm7b': deepchem.molnet.load_qm7b_from_mat, 'qm8': deepchem.molnet.load_qm8, 'qm9': deepchem.molnet.load_qm9, 'sampl': deepchem.molnet.load_sampl, 'sider': deepchem.molnet.load_sider, 'tox21': deepchem.molnet.load_tox21, 'toxcast': deepchem.molnet.load_toxcast } print('-------------------------------------') print('Benchmark on dataset: %s' % dataset) print('-------------------------------------') # loading datasets if split is not None: print('Splitting function: %s' % split) tasks, all_dataset, transformers = loading_functions[dataset]( featurizer=featurizer, split=split, reload=reload) else: tasks, all_dataset, transformers = loading_functions[dataset]( featurizer=featurizer, reload=reload) train_dataset, valid_dataset, test_dataset = all_dataset time_start_fitting = time.time() train_score = {} valid_score = {} test_score = {} if isinstance(model, str): if mode == 'classification': train_score, valid_score, test_score = benchmark_classification( train_dataset, valid_dataset, test_dataset, tasks, transformers, n_features, metric, model, test=test, hyper_parameters=hyper_parameters, seed=seed) elif mode == 'regression': train_score, valid_score, test_score = benchmark_regression( train_dataset, valid_dataset, test_dataset, tasks, transformers, n_features, metric, model, test=test, hyper_parameters=hyper_parameters, seed=seed) else: model.fit(train_dataset) train_score['user_defined'] = model.evaluate(train_dataset, metric, transformers) valid_score['user_defined'] = model.evaluate(valid_dataset, metric, transformers) if test: test_score['user_defined'] = model.evaluate(test_dataset, metric, transformers) time_finish_fitting = time.time() with open(os.path.join(out_path, 'results.csv'), 'a') as f: writer = csv.writer(f) model_name = list(train_score.keys())[0] for i in train_score[model_name]: output_line = [ dataset, str(split), mode, model_name, i, 'train', train_score[model_name][i], 'valid', valid_score[model_name][i] ] if test: output_line.extend(['test', test_score[model_name][i]]) output_line.extend( ['time_for_running', time_finish_fitting - time_start_fitting]) writer.writerow(output_line) # # Note by @XericZephyr. Reason why I spun off this function: # 1. Some model needs dataset information. # 2. It offers us possibility to **cache** the dataset # if the featurizer runs very slow, e.g., GraphConv. # 2+. The cache can even happen at Travis CI to accelerate # CI testing. # def load_dataset(dataset, featurizer, split='random'): """ Load specific dataset for benchmark. Parameters ---------- dataset: string choice of which datasets to use, should be: tox21, muv, sider, toxcast, pcba, delaney, kaggle, nci, clintox, hiv, pdbbind, chembl, qm7, qm7b, qm9, sampl featurizer: string or dc.feat.Featurizer. choice of featurization. split: string, optional (default=None) choice of splitter function, None = using the default splitter """ dataset_loading_functions = { 'bace_c': deepchem.molnet.load_bace_classification, 'bace_r': deepchem.molnet.load_bace_regression, 'bbbp': deepchem.molnet.load_bbbp, 'chembl': deepchem.molnet.load_chembl, 'clearance': deepchem.molnet.load_clearance, 'clintox': deepchem.molnet.load_clintox, 'delaney': deepchem.molnet.load_delaney, 'hiv': deepchem.molnet.load_hiv, 'hopv': deepchem.molnet.load_hopv, 'kaggle': deepchem.molnet.load_kaggle, 'lipo': deepchem.molnet.load_lipo, 'muv': deepchem.molnet.load_muv, 'nci': deepchem.molnet.load_nci, 'pcba': deepchem.molnet.load_pcba, 'pdbbind': deepchem.molnet.load_pdbbind_grid, 'ppb': deepchem.molnet.load_ppb, 'qm7': deepchem.molnet.load_qm7_from_mat, 'qm7b': deepchem.molnet.load_qm7b_from_mat, 'qm8': deepchem.molnet.load_qm8, 'qm9': deepchem.molnet.load_qm9, 'sampl': deepchem.molnet.load_sampl, 'sider': deepchem.molnet.load_sider, 'tox21': deepchem.molnet.load_tox21, 'toxcast': deepchem.molnet.load_toxcast } print('-------------------------------------') print('Loading dataset: %s' % dataset) print('-------------------------------------') # loading datasets if split is not None: print('Splitting function: %s' % split) tasks, all_dataset, transformers = dataset_loading_functions[dataset]( featurizer=featurizer, split=split) return tasks, all_dataset, transformers def benchmark_model(model, all_dataset, transformers, metric, test=False): """ Benchmark custom model. model: user-defined model stucture For user define model, it should include function: fit, evaluate. all_dataset: (train, test, val) data tuple. Returned by `load_dataset` function. transformers metric: string choice of evaluation metrics. """ time_start_fitting = time.time() train_score = .0 valid_score = .0 test_score = .0 train_dataset, valid_dataset, test_dataset = all_dataset model.fit(train_dataset) train_score = model.evaluate(train_dataset, metric, transformers) valid_score = model.evaluate(valid_dataset, metric, transformers) if test: test_score = model.evaluate(test_dataset, metric, transformers) time_finish_fitting = time.time() time_for_running = time_finish_fitting - time_start_fitting return train_score, valid_score, test_score, time_for_running
mit
Lawrence-Liu/scikit-learn
benchmarks/bench_glmnet.py
295
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
aagnone3/audio_analysis
learn.py
1
5803
# -*- coding: utf-8 -*- """ Created on Wed Apr 06 16:55:34 2016 @author: aagnone3 """ from __future__ import print_function import csv import glob import logging import os from learning.classification import AudioClassifier, GMMAudioClassifier from common import environment import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn import mixture from sklearn.naive_bayes import GaussianNB # data directories and paths DATA_DIR = os.sep.join(['res', 'data', 'speaker_recognition']) TRAIN_DATA_DIR = os.sep.join([DATA_DIR, 'train']) TEST_DATA_DIR = os.sep.join([DATA_DIR, 'test']) # training file information TRAIN_FILES = glob.glob(os.sep.join((TRAIN_DATA_DIR, "*.wav"))) TRAIN_FILE_PREFIXES = [f[:f.find("_")] for f in TRAIN_FILES] TRAIN_FILE_COUNTS = [TRAIN_FILE_PREFIXES.count(p) for p in np.unique(TRAIN_FILE_PREFIXES)] # testing file information TEST_FILES = glob.glob(os.sep.join((TEST_DATA_DIR, "*.wav"))) TEST_FILE_PREFIXES = [f[:f.find("_")] for f in TEST_FILES] TEST_FILE_COUNTS = [TEST_FILE_PREFIXES.count(p) for p in np.unique(TEST_FILE_PREFIXES)] # keywords for naming KEYWORD = 'Test' ALGORITHM = "audio_classification" def evaluate_classifier(paths, learner, extract_features=True): """ Performs training and testing with the specified learner by extracting features from the files in the training and testing directories specified globally :param paths: paths to save learning results :param learner: learner to use :param extract_features: whether to extract features from the training and testing directories. If set to False, the classifier assumes that training and testing feature matrices exist at paths['train_data'] and paths['test_data'], respectively :return: None """ # instantiate the classifier with the passed learner classifier = AudioClassifier(learner) # train the classifier if extract_features: [y_train_predict, y_train_actual] = classifier.train_model(data_directory=TRAIN_DATA_DIR, save_model_to=paths['model_name'], save_features_to=paths['train_data']) else: [y_train_predict, y_train_actual] = classifier.train_model(data_directory=TRAIN_DATA_DIR, save_model_to=paths['model_name'], load_features_from=paths['train_data']) # test the classifier if extract_features: [y_test_predict, y_test_actual] = AudioClassifier.test_model( classifier=AudioClassifier.load_model(paths['model_name']), data_directory=TEST_DATA_DIR, save_features_to=paths['test_data']) else: [y_test_predict, y_test_actual] = AudioClassifier.test_model( classifier=AudioClassifier.load_model(paths['model_name']), load_features_from=paths['test_data']) process_results(y_train_predict, y_train_actual, paths['train_results']) process_results(y_test_predict, y_test_actual, paths['test_results']) def process_results(y_predict, y_actual, results_file_name): """ Prints a simple analysis of test results to the console :param y_predict: predicted class labels :param y_actual: actual class labels :param results_file_name: path to use for saving off results :return: None """ environment.print_lines(1) # compute simple statistics on the results columns = ['Overall Accuracy (%)'] metrics = { 'percents': [100.0 * np.mean(y_predict == y_actual)], 'partials': [np.sum(y_predict == y_actual)], 'wholes': [len(y_actual)] } for label in np.unique(y_actual): columns.append("%s Accuracy (%%)" % label) metrics['percents'].append(100.0 * np.mean(y_predict[y_actual == label] == y_actual[y_actual == label])) metrics['partials'].append(np.sum(y_predict[y_actual == label] == y_actual[y_actual == label])) metrics['wholes'].append(len(y_actual[y_actual == label])) # write the results to a file with open(results_file_name, 'w') as csv_file: writer = csv.writer(csv_file) for i in range(y_predict.shape[0]): writer.writerow([y_predict[i], y_actual[i]]) csv_file.close() # print the results to the command line for i, percent in enumerate(metrics['percents']): print("{:22}:\t\t{:6.2f} %\t\t{:2d}/{:2d}".format(columns[i], percent, metrics['partials'][i], metrics['wholes'][i])) return metrics, columns if __name__ == '__main__': logging.basicConfig(filename='application.log', level=logging.INFO, format='%(asctime)s\t\t%(message)s') logging.info('Hello logging world') print("Training file counts {}".format(TRAIN_FILE_COUNTS)) paths = { 'model_name': os.sep.join(['res', 'models', ALGORITHM]), 'train_results': os.sep.join(['res', 'results', ALGORITHM + '_train.csv']), 'test_results': os.sep.join(['res', 'results', ALGORITHM + '_test.csv']), 'train_data': os.sep.join(['res', 'features', '']) + 'TrainData_' + KEYWORD + '.pkl', 'test_data': os.sep.join(['res', 'features', '']) + 'TestData_' + KEYWORD + '.pkl' } environment.print_lines(5) print("Testing file counts {}".format(TEST_FILE_COUNTS)) # learner = mixture.GMM(n_components=len(TRAINING_DIRS)) # learner = GaussianNB() learner = SVC() evaluate_classifier(paths, learner)
apache-2.0
harshaneelhg/scikit-learn
examples/classification/plot_classification_probability.py
241
2624
""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'L2 logistic (Multinomial)': LogisticRegression( C=C, solver='lbfgs', multi_class='multinomial' )} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print("classif_rate for %s : %f " % (name, classif_rate)) # View probabilities= probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
bsd-3-clause
Wikidata/StrepHit
strephit/classification/train.py
1
6908
# -*- encoding: utf-8 -*- import json import logging from importlib import import_module from inspect import getargspec import click from sklearn.dummy import DummyClassifier from sklearn.externals import joblib from sklearn import metrics from sklearn.cross_validation import KFold import numpy as np from strephit.commons.classification import reverse_gazetteer from strephit.classification.model_selection import Scorer from strephit.classification.classifiers import FeatureSelectedClassifier from sklearn.preprocessing import MultiLabelBinarizer logger = logging.getLogger(__name__) def initialize(cls_name, args, call_init): path = cls_name.split('.') module = '.'.join(path[:-1]) cls = getattr(import_module(module), path[-1]) arg_names, _, _, arg_default = getargspec(cls.__init__) defaults = dict(zip(reversed(arg_names), reversed(arg_default))) init_args = {} for k, v in args: convert = type(defaults[k]) if isinstance(convert, type(None)): raise ValueError('cannot specify %s parameter', k) elif isinstance(convert, bool): convert = lambda s: s.lower() in {'t', 'y', 'true', 'yes'} init_args[k] = convert(v) return cls(**init_args) if call_init else (cls, init_args) def kfolds_evaluation(folds, model, scoring, skip_majority, x, y): kf = KFold(x.shape[0], folds, shuffle=True) scorer = Scorer(scoring, skip_majority) scores_dummy, scores_test, scores_train = [], [], [] for train_index, test_index in kf: x_train, y_train = x[train_index], y[train_index] x_test, y_test = x[test_index], y[test_index] model.fit(x_train, y_train) dummy = DummyClassifier() dummy.fit(x_train, y_train) scores_test.append(scorer(model, x_test, y_test)) scores_dummy.append(scorer(dummy, x_test, y_test)) scores_train.append(scorer(model, x_train, y_train)) logger.info('%d-folds cross evaluation results', folds) logger.info(' minimum test %f dummy %f training %f', min(scores_test), min(scores_dummy), min(scores_train)) logger.info(' maximum test %f dummy %f training %f', max(scores_test), max(scores_dummy), max(scores_train)) logger.info(' average test %f dummy %f training %f', np.average(scores_test), np.average(scores_dummy), np.average(scores_train)) logger.info(' median test %f dummy %f training %f', np.median(scores_test), np.median(scores_dummy), np.median(scores_train)) logger.debug('full test scores: %s', scores_test) logger.debug('full dummy scores: %s', scores_dummy) logger.debug('full train scores: %s', scores_train) def gold_evaluation(sentences, extractor, gazetteer, model_cls, model_args): logger.info('Evaluating on the gold sentences') for each in sentences: if not each.get('gold_fes'): extractor.process_sentence(each['sentence'], each['lu'], each['fes'], add_unknown=True, gazetteer=gazetteer) x_tr, y_tr = extractor.get_features(refit=True) extractor.start() tagged_gold = [] for each in sentences: if each.get('gold_fes'): tagged_gold.append((each['gold_fes'], extractor.process_sentence( each['sentence'], each['lu'], each['fes'], add_unknown=False, gazetteer=gazetteer ))) if not tagged_gold: logger.warn('asked to evaluate gold, but no gold sentences found') return x_gold, _ = extractor.get_features(refit=False) y_gold = [] for gold_fes, tagged in tagged_gold: for chunk, is_sample in tagged: if is_sample: y_gold.append([extractor.label_index[fe or 'O'] for fe in gold_fes.get(chunk, [])]) assert len(y_gold) == x_gold.shape[0] model = FeatureSelectedClassifier(model_cls, extractor.lu_column(), model_args) model.fit(x_tr, y_tr) y_pred = model.predict(x_gold) correct = len([1 for actual, predicted in zip(y_gold, y_pred) if predicted in actual]) logger.info('Gold accuracy: %f (%d / %d roles)', float(correct) / len(y_gold), correct, len(y_gold)) @click.command() @click.argument('training-set', type=click.File('r')) @click.argument('language') @click.option('-o', '--outfile', type=click.Path(dir_okay=False, writable=True), default='output/classifier_model.pkl', help='Where to save the model') @click.option('--model-class', default='sklearn.svm.SVC') @click.option('--model-param', '-p', type=(unicode, unicode), multiple=True, help='kwargs for the model. See scikit doc', default=[('kernel', 'linear'), ('C', '0.15')]) @click.option('--extractor-class', default='strephit.classification.feature_extractors.BagOfTermsFeatureExtractor') @click.option('--extractor-param', '-P', type=(unicode, unicode), multiple=True, help='extrator kwargs', default=[('window_width', '2'), ('collapse_fes', 'true')]) @click.option('--gazetteer', type=click.File('r')) @click.option('--folds', default=0, help='Perform k-fold evaluation before training on full data') @click.option('--scoring', default='macro') @click.option('--skip-majority', is_flag=True) @click.option('--evaluate-gold', is_flag=True) def main(training_set, language, outfile, model_class, model_param, extractor_class, extractor_param, gazetteer, folds, scoring, skip_majority, evaluate_gold): """ Trains the classifier """ gazetteer = reverse_gazetteer(json.load(gazetteer)) if gazetteer else {} model_cls, model_args = initialize(model_class, model_param, False) if evaluate_gold: gold_extractor = initialize( extractor_class, [('language', language)] + list(extractor_param), True ) gold_evaluation( map(json.loads, training_set), gold_extractor, gazetteer, model_cls, model_args ) training_set.seek(0) extractor = initialize(extractor_class, [('language', language)] + list(extractor_param), True) logger.info("Building training set from '%s' ..." % training_set.name) for row in training_set: data = json.loads(row) extractor.process_sentence(data['sentence'], data['lu'], data['fes'], add_unknown=True, gazetteer=gazetteer) x, y = extractor.get_features(refit=True) logger.info('Got %d samples with %d features each', *x.shape) model = FeatureSelectedClassifier(model_cls, extractor.lu_column(), model_args) if folds > 1: kfolds_evaluation(folds, model, scoring, skip_majority, x, y) logger.info('Fitting model ...') model.fit(x, y) joblib.dump((model, { 'extractor': extractor }), outfile) logger.info("Done, dumped model to '%s'", outfile)
gpl-3.0
osbd/osbd-2016
slides/crist/get_data.py
1
1419
import os import urllib from glob import glob import dask.bag as db import numpy as np import zarr from dask.diagnostics import ProgressBar from netCDF4 import Dataset def download(url): opener = urllib.URLopener() filename = os.path.basename(url) path = os.path.join('data', filename) opener.retrieve(url, path) def download_weather(): # Create data directory if not os.path.exists('data'): os.mkdir('data') template = ('http://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/' 'noaa.oisst.v2.highres/sst.day.mean.{year}.v2.nc') urls = [template.format(year=year) for year in range(1981, 2016)] b = db.from_sequence(urls, partition_size=1) print("Downloading Weather Data") print("------------------------") with ProgressBar(): b.map(download).compute(n_workers=8) def transform_weather(): if os.path.exists('sst.day.mean.v2.zarr'): return datasets = [Dataset(path)['sst'] for path in sorted(glob('data/*.nc'))] n = sum(d.shape[0] for d in datasets) shape = (n, 720, 1440) chunks = (72, 360, 360) f = zarr.open_array('sst.day.mean.v2.zarr', shape=shape, chunks=chunks, dtype='f4') i = 0 for d in datasets: m = d.shape[0] f[i:i + m] = d[:].filled(np.nan) i += m if __name__ == '__main__': download_weather() transform_weather()
mit
justincassidy/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
214
11427
import numpy as np from sklearn.utils.testing import (assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
hankcs/HanLP
hanlp/layers/feedforward.py
1
4141
""" A feed-forward neural network. """ from typing import List, Union import torch from hanlp.utils.torch_util import activation_from_name class FeedForward(torch.nn.Module): """ This `Module` is a feed-forward neural network, just a sequence of `Linear` layers with activation functions in between. # Parameters input_dim : `int`, required The dimensionality of the input. We assume the input has shape `(batch_size, input_dim)`. num_layers : `int`, required The number of `Linear` layers to apply to the input. hidden_dims : `Union[int, List[int]]`, required The output dimension of each of the `Linear` layers. If this is a single `int`, we use it for all `Linear` layers. If it is a `List[int]`, `len(hidden_dims)` must be `num_layers`. activations : `Union[Activation, List[Activation]]`, required The activation function to use after each `Linear` layer. If this is a single function, we use it after all `Linear` layers. If it is a `List[Activation]`, `len(activations)` must be `num_layers`. Activation must have torch.nn.Module type. dropout : `Union[float, List[float]]`, optional (default = `0.0`) If given, we will apply this amount of dropout after each layer. Semantics of `float` versus `List[float]` is the same as with other parameters. # Examples ```python FeedForward(124, 2, [64, 32], torch.nn.ReLU(), 0.2) #> FeedForward( #> (_activations): ModuleList( #> (0): ReLU() #> (1): ReLU() #> ) #> (_linear_layers): ModuleList( #> (0): Linear(in_features=124, out_features=64, bias=True) #> (1): Linear(in_features=64, out_features=32, bias=True) #> ) #> (_dropout): ModuleList( #> (0): Dropout(p=0.2, inplace=False) #> (1): Dropout(p=0.2, inplace=False) #> ) #> ) ``` """ def __init__( self, input_dim: int, num_layers: int, hidden_dims: Union[int, List[int]], activations: Union[str, List[str]], dropout: Union[float, List[float]] = 0.0, ) -> None: super().__init__() if not isinstance(hidden_dims, list): hidden_dims = [hidden_dims] * num_layers # type: ignore if not isinstance(activations, list): activations = [activations] * num_layers # type: ignore activations = [activation_from_name(a)() for a in activations] if not isinstance(dropout, list): dropout = [dropout] * num_layers # type: ignore if len(hidden_dims) != num_layers: raise ValueError( "len(hidden_dims) (%d) != num_layers (%d)" % (len(hidden_dims), num_layers) ) if len(activations) != num_layers: raise ValueError( "len(activations) (%d) != num_layers (%d)" % (len(activations), num_layers) ) if len(dropout) != num_layers: raise ValueError( "len(dropout) (%d) != num_layers (%d)" % (len(dropout), num_layers) ) self._activations = torch.nn.ModuleList(activations) input_dims = [input_dim] + hidden_dims[:-1] linear_layers = [] for layer_input_dim, layer_output_dim in zip(input_dims, hidden_dims): linear_layers.append(torch.nn.Linear(layer_input_dim, layer_output_dim)) self._linear_layers = torch.nn.ModuleList(linear_layers) dropout_layers = [torch.nn.Dropout(p=value) for value in dropout] self._dropout = torch.nn.ModuleList(dropout_layers) self._output_dim = hidden_dims[-1] self.input_dim = input_dim def get_output_dim(self): return self._output_dim def get_input_dim(self): return self.input_dim def forward(self, inputs: torch.Tensor) -> torch.Tensor: output = inputs for layer, activation, dropout in zip( self._linear_layers, self._activations, self._dropout ): output = dropout(activation(layer(output))) return output
apache-2.0
harshaneelhg/scikit-learn
examples/decomposition/plot_faces_decomposition.py
203
4452
""" ============================ Faces dataset decompositions ============================ This example applies to :ref:`olivetti_faces` different unsupervised matrix decomposition (dimension reduction) methods from the module :py:mod:`sklearn.decomposition` (see the documentation chapter :ref:`decompositions`) . """ print(__doc__) # Authors: Vlad Niculae, Alexandre Gramfort # License: BSD 3 clause import logging from time import time from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.cluster import MiniBatchKMeans from sklearn import decomposition # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) rng = RandomState(0) ############################################################################### # Load faces data dataset = fetch_olivetti_faces(shuffle=True, random_state=rng) faces = dataset.data n_samples, n_features = faces.shape # global centering faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) print("Dataset consists of %d faces" % n_samples) ############################################################################### def plot_gallery(title, images, n_col=n_col, n_row=n_row): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) ############################################################################### # List of the different estimators, whether to center and transpose the # problem, and whether the transformer uses the clustering API. estimators = [ ('Eigenfaces - RandomizedPCA', decomposition.RandomizedPCA(n_components=n_components, whiten=True), True), ('Non-negative components - NMF', decomposition.NMF(n_components=n_components, init='nndsvda', beta=5.0, tol=5e-3, sparseness='components'), False), ('Independent components - FastICA', decomposition.FastICA(n_components=n_components, whiten=True), True), ('Sparse comp. - MiniBatchSparsePCA', decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8, n_iter=100, batch_size=3, random_state=rng), True), ('MiniBatchDictionaryLearning', decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1, n_iter=50, batch_size=3, random_state=rng), True), ('Cluster centers - MiniBatchKMeans', MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20, max_iter=50, random_state=rng), True), ('Factor Analysis components - FA', decomposition.FactorAnalysis(n_components=n_components, max_iter=2), True), ] ############################################################################### # Plot a sample of the input data plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) ############################################################################### # Do the estimation and plot it for name, estimator, center in estimators: print("Extracting the top %d %s..." % (n_components, name)) t0 = time() data = faces if center: data = faces_centered estimator.fit(data) train_time = (time() - t0) print("done in %0.3fs" % train_time) if hasattr(estimator, 'cluster_centers_'): components_ = estimator.cluster_centers_ else: components_ = estimator.components_ if hasattr(estimator, 'noise_variance_'): plot_gallery("Pixelwise variance", estimator.noise_variance_.reshape(1, -1), n_col=1, n_row=1) plot_gallery('%s - Train time %.1fs' % (name, train_time), components_[:n_components]) plt.show()
bsd-3-clause
quheng/scikit-learn
sklearn/manifold/locally_linear.py
205
25061
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr> # Jake Vanderplas -- <vanderplas@astro.washington.edu> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.arpack import eigsh from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg: float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True) n_samples, n_neighbors = X.shape[0], Z.shape[1] B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) v0 = random_state.rand(M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) #build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] #find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) #choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] #find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] #calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) #find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = np.cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues #Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float) for i in range(N): s_i = s_range[i] #select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) #compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h #Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) #Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] #We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) #Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) #We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm) random_state = check_random_state(self.random_state) X = check_array(X) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/feature_selection/__init__.py
243
1088
""" The :mod:`sklearn.feature_selection` module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm. """ from .univariate_selection import chi2 from .univariate_selection import f_classif from .univariate_selection import f_oneway from .univariate_selection import f_regression from .univariate_selection import SelectPercentile from .univariate_selection import SelectKBest from .univariate_selection import SelectFpr from .univariate_selection import SelectFdr from .univariate_selection import SelectFwe from .univariate_selection import GenericUnivariateSelect from .variance_threshold import VarianceThreshold from .rfe import RFE from .rfe import RFECV __all__ = ['GenericUnivariateSelect', 'RFE', 'RFECV', 'SelectFdr', 'SelectFpr', 'SelectFwe', 'SelectKBest', 'SelectPercentile', 'VarianceThreshold', 'chi2', 'f_classif', 'f_oneway', 'f_regression']
bsd-3-clause
quheng/scikit-learn
sklearn/utils/tests/test_utils.py
214
8100
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.mocking import MockDataFrame def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): # Border case not worth mentioning in doctests assert_true(resample() is None) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/manifold/tests/test_mds.py
321
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
pystruct/pystruct
pystruct/utils/inference.py
1
5309
import itertools from sklearn.externals.joblib import Parallel, delayed import numpy as np def unwrap_pairwise(y): """given a y that may contain pairwise marginals, yield plain y.""" if isinstance(y, tuple): return y[0] return y def expand_sym(sym_compressed): """Expand compressed symmetric matrix to full square matrix. Similar to scipy.spatial.squareform, but also contains the diagonal. """ length = sym_compressed.size size = int(np.sqrt(2 * length + 0.25) - 1 / 2.) sym = np.zeros((size, size)) sym[np.tri(size, dtype=np.bool)] = sym_compressed return (sym + sym.T - np.diag(np.diag(sym))) def compress_sym(sym_expanded, make_symmetric=True): """Compress symmetric matrix to a vector. Similar to scipy.spatial.squareform, but also contains the diagonal. Parameters ---------- sym_expanded : nd-array, shape (size, size) Input matrix to compress. make_symmetric : bool (default=True) Whether to symmetrize the input matrix before compressing. It is made symmetric by using ``sym_expanded + sym_expanded.T - np.diag(np.diag(sym_expanded))`` This makes sense if only one of the two entries was non-zero before. """ size = sym_expanded.shape[0] if make_symmetric: sym_expanded = (sym_expanded + sym_expanded.T - np.diag(np.diag(sym_expanded))) return sym_expanded[np.tri(size, dtype=np.bool)] ## global functions for easy parallelization def find_constraint(model, x, y, w, y_hat=None, relaxed=True, compute_difference=True): """Find most violated constraint, or, given y_hat, find slack and djoint_feature for this constraing. As for finding the most violated constraint, it is enough to compute joint_feature(x, y_hat), not djoint_feature, we can optionally skip computing joint_feature(x, y) using compute_differences=False """ if y_hat is None: y_hat = model.loss_augmented_inference(x, y, w, relaxed=relaxed) joint_feature = model.joint_feature if getattr(model, 'rescale_C', False): delta_joint_feature = -joint_feature(x, y_hat, y) else: delta_joint_feature = -joint_feature(x, y_hat) if compute_difference: if getattr(model, 'rescale_C', False): delta_joint_feature += joint_feature(x, y, y) else: delta_joint_feature += joint_feature(x, y) if isinstance(y_hat, tuple): # continuous label loss = model.continuous_loss(y, y_hat[0]) else: loss = model.loss(y, y_hat) slack = max(loss - np.dot(w, delta_joint_feature), 0) return y_hat, delta_joint_feature, slack, loss def find_constraint_latent(model, x, y, w, relaxed=True): """Find most violated constraint. As for finding the most violated constraint, it is enough to compute joint_feature(x, y_hat), not djoint_feature, we can optionally skip computing joint_feature(x, y) using compute_differences=False """ h = model.latent(x, y, w) h_hat = model.loss_augmented_inference(x, h, w, relaxed=relaxed) joint_feature = model.joint_feature delta_joint_feature = joint_feature(x, h) - joint_feature(x, h_hat) loss = model.loss(y, h_hat) slack = max(loss - np.dot(w, delta_joint_feature), 0) return h_hat, delta_joint_feature, slack, loss def inference(model, x, w, constraints=None): if constraints: return model.inference(x, w, constraints=constraints) else: return model.inference(x, w) def loss_augmented_inference(model, x, y, w, relaxed=True): return model.loss_augmented_inference(x, y, w, relaxed=relaxed) # easy debugging def objective_primal(model, w, X, Y, C, variant='n_slack', n_jobs=1): objective = 0 constraints = Parallel( n_jobs=n_jobs)(delayed(find_constraint)( model, x, y, w) for x, y in zip(X, Y)) slacks = list(zip(*constraints))[2] if variant == 'n_slack': slacks = np.maximum(slacks, 0) objective = max(np.sum(slacks), 0) * C + np.sum(w ** 2) / 2. return objective def exhaustive_loss_augmented_inference(model, x, y, w): size = y.size best_y = None best_energy = np.inf for y_hat in itertools.product(range(model.n_states), repeat=size): y_hat = np.array(y_hat).reshape(y.shape) #print("trying %s" % repr(y_hat)) joint_feature = model.joint_feature(x, y_hat) energy = -model.loss(y, y_hat) - np.dot(w, joint_feature) if energy < best_energy: best_energy = energy best_y = y_hat return best_y def exhaustive_inference(model, x, w): # hack to get the grid shape of x if isinstance(x, np.ndarray): feats = x else: feats = model._get_features(x) size = np.prod(feats.shape[:-1]) best_y = None best_energy = np.inf for y_hat in itertools.product(range(model.n_states), repeat=size): y_hat = np.array(y_hat).reshape(feats.shape[:-1]) #print("trying %s" % repr(y_hat)) joint_feature = model.joint_feature(x, y_hat) energy = -np.dot(w, joint_feature) if energy < best_energy: best_energy = energy best_y = y_hat return best_y
bsd-2-clause
justincassidy/scikit-learn
examples/bicluster/bicluster_newsgroups.py
161
7103
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. Output:: Vectorizing... Coclustering... Done in 9.53s. V-measure: 0.4455 MiniBatchKMeans... Done in 12.00s. V-measure: 0.3309 Best biclusters: ---------------- bicluster 0 : 1951 documents, 4373 words categories : 23% talk.politics.guns, 19% talk.politics.misc, 14% sci.med words : gun, guns, geb, banks, firearms, drugs, gordon, clinton, cdt, amendment bicluster 1 : 1165 documents, 3304 words categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism words : god, jesus, christians, atheists, kent, sin, morality, belief, resurrection, marriage bicluster 2 : 2219 documents, 2830 words categories : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics words : voltage, dsp, board, receiver, circuit, shipping, packages, stereo, compression, package bicluster 3 : 1860 documents, 2745 words categories : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale words : bike, car, dod, engine, motorcycle, ride, honda, cars, bmw, bikes bicluster 4 : 12 documents, 155 words categories : 100% rec.sport.hockey words : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved """ from __future__ import print_function print(__doc__) from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] weight = X[rows[:, np.newaxis], cols].sum() cut = (X[row_complement[:, np.newaxis], cols].sum() + X[rows[:, np.newaxis], col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/decomposition/tests/test_fastica.py
269
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
justincassidy/scikit-learn
sklearn/decomposition/tests/test_fastica.py
269
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
fishcorn/pylearn2
pylearn2/scripts/gsn_example.py
44
8059
""" .. todo:: WRITEME """ from __future__ import print_function import cPickle as pickle import itertools import numpy as np from theano.compat.six.moves import xrange import theano.tensor as T from pylearn2.expr.activations import rescaled_softmax from pylearn2.costs.autoencoder import MeanBinaryCrossEntropy from pylearn2.costs.gsn import GSNCost from pylearn2.corruption import (BinomialSampler, GaussianCorruptor, MultinomialSampler, SaltPepperCorruptor, SmoothOneHotCorruptor) from pylearn2.datasets.mnist import MNIST from pylearn2.distributions.parzen import ParzenWindows from pylearn2.models.gsn import GSN, JointGSN from pylearn2.termination_criteria import EpochCounter from pylearn2.train import Train from pylearn2.training_algorithms.sgd import SGD, MonitorBasedLRAdjuster from pylearn2.utils import image, safe_zip # define some common parameters HIDDEN_SIZE = 1000 SALT_PEPPER_NOISE = 0.4 GAUSSIAN_NOISE = 0.5 WALKBACK = 0 LEARNING_RATE = 0.25 MOMENTUM = 0.75 MAX_EPOCHS = 100 BATCHES_PER_EPOCH = None # covers full training set BATCH_SIZE = 100 ds = MNIST(which_set='train') def test_train_ae(): """ .. todo:: WRITEME """ GC = GaussianCorruptor gsn = GSN.new( layer_sizes=[ds.X.shape[1], 1000], activation_funcs=["sigmoid", "tanh"], pre_corruptors=[None, GC(1.0)], post_corruptors=[SaltPepperCorruptor(0.5), GC(1.0)], layer_samplers=[BinomialSampler(), None], tied=False ) # average MBCE over example rather than sum it _mbce = MeanBinaryCrossEntropy() reconstruction_cost = lambda a, b: _mbce.cost(a, b) / ds.X.shape[1] c = GSNCost([(0, 1.0, reconstruction_cost)], walkback=WALKBACK) alg = SGD( LEARNING_RATE, init_momentum=MOMENTUM, cost=c, termination_criterion=EpochCounter(MAX_EPOCHS), batches_per_iter=BATCHES_PER_EPOCH, batch_size=BATCH_SIZE, monitoring_dataset=ds, monitoring_batches=10 ) trainer = Train(ds, gsn, algorithm=alg, save_path="gsn_ae_example.pkl", save_freq=5) trainer.main_loop() print("done training") def test_sample_ae(): """ Visualize some samples from the trained unsupervised GSN. """ with open("gsn_ae_example.pkl") as f: gsn = pickle.load(f) # random point to start at mb_data = MNIST(which_set='test').X[105:106, :] history = gsn.get_samples([(0, mb_data)], walkback=1000, symbolic=False, include_first=True) history = list(itertools.chain(*history)) history = np.vstack(history) tiled = image.tile_raster_images(history, img_shape=[28,28], tile_shape=[50,50], tile_spacing=(2,2)) image.save("gsn_ae_example.png", tiled) # code to get log likelihood from kernel density estimator # this crashed on GPU (out of memory), but works on CPU pw = ParzenWindows(MNIST(which_set='test').X, .20) print(pw.get_ll(history)) def test_train_supervised(): """ Train a supervised GSN. """ # initialize the GSN gsn = GSN.new( layer_sizes=[ds.X.shape[1], 1000, ds.y.shape[1]], activation_funcs=["sigmoid", "tanh", rescaled_softmax], pre_corruptors=[GaussianCorruptor(0.5)] * 3, post_corruptors=[SaltPepperCorruptor(.3), None, SmoothOneHotCorruptor(.5)], layer_samplers=[BinomialSampler(), None, MultinomialSampler()], tied=False ) # average over costs rather than summing _rcost = MeanBinaryCrossEntropy() reconstruction_cost = lambda a, b: _rcost.cost(a, b) / ds.X.shape[1] _ccost = MeanBinaryCrossEntropy() classification_cost = lambda a, b: _ccost.cost(a, b) / ds.y.shape[1] # combine costs into GSNCost object c = GSNCost( [ # reconstruction on layer 0 with weight 1.0 (0, 1.0, reconstruction_cost), # classification on layer 2 with weight 2.0 (2, 2.0, classification_cost) ], walkback=WALKBACK, mode="supervised" ) alg = SGD( LEARNING_RATE, init_momentum=MOMENTUM, cost=c, termination_criterion=EpochCounter(MAX_EPOCHS), batches_per_iter=BATCHES_PER_EPOCH, batch_size=BATCH_SIZE, monitoring_dataset=ds, monitoring_batches=10, ) trainer = Train(ds, gsn, algorithm=alg, save_path="gsn_sup_example.pkl", save_freq=10, extensions=[MonitorBasedLRAdjuster()]) trainer.main_loop() print("done training") def test_classify(): """ See how well a (supervised) GSN performs at classification. """ with open("gsn_sup_example.pkl") as f: gsn = pickle.load(f) gsn = JointGSN.convert(gsn) # turn off corruption gsn._corrupt_switch = False ds = MNIST(which_set='test') mb_data = ds.X y = ds.y for i in xrange(1, 10): y_hat = gsn.classify(mb_data, trials=i) errors = np.abs(y_hat - y).sum() / 2.0 # error indices #np.sum(np.abs(y_hat - y), axis=1) != 0 print(i, errors, errors / mb_data.shape[0]) def test_sample_supervised(idxs=None, noisy=True): """ Visualize samples and labels produced by GSN. """ with open("gsn_sup_example.pkl") as f: gsn = pickle.load(f) gsn._corrupt_switch = noisy ds = MNIST(which_set='test') if idxs is None: data = ds.X[100:150] else: data = ds.X[idxs] # change the walkback parameter to make the data fill up rows in image samples = gsn.get_samples([(0, data)], indices=[0, 2], walkback=21, symbolic=False, include_first=True) stacked = vis_samples(samples) tiled = image.tile_raster_images(stacked, img_shape=[28,28], tile_shape=[50,50], tile_spacing=(2,2)) image.save("gsn_sup_example.png", tiled) def vis_samples(samples): """ .. todo:: WRITEME """ from PIL import ImageDraw, ImageFont img = image.pil_from_ndarray(np.zeros((28, 28))) chains = [] num_rows = samples[0][0].shape[0] for row in xrange(num_rows): images = [] labels = [] for step in samples: assert len(step) == 2 images.append(step[0][row]) vec = step[1][row] sorted_idxs = np.argsort(vec) label1 = sorted_idxs[-1] label2 = sorted_idxs[-2] if vec[label1] == 0: ratio = 1 else: ratio = vec[label2] / vec[label1] c = img.copy() draw = ImageDraw.Draw(c) draw.text((8, 11), str(label1), 255) draw.text((14, 11), str(label2), int(255 * ratio)) nd = image.ndarray_from_pil(c)[:, :, 0] nd = nd.reshape((1, 784)) labels.append(nd) data = safe_zip(images, labels) data = list(itertools.chain(*data)) # white block to indicate end of chain data.extend([np.ones((1, 784))] * 2) chains.append(np.vstack(data)) return np.vstack(chains) # some utility methods for viewing MNIST characters without any GUI def print_char(A): """ .. todo:: WRITEME """ print(a_to_s(A.round().reshape((28, 28)))) def a_to_s(A): """Prints binary array""" strs = [] for row in A: x = [None] * len(row) for i, num in enumerate(row): if num != 0: x[i] = "@" else: x[i] = " " strs.append("".join(x)) return "\n".join(strs) if __name__ == '__main__': test_train_supervised() test_classify() test_sample_supervised()
bsd-3-clause
adammenges/statsmodels
statsmodels/robust/robust_linear_model.py
27
25571
""" Robust linear models with support for the M-estimators listed under :ref:`norms <norms>`. References ---------- PJ Huber. 'Robust Statistics' John Wiley and Sons, Inc., New York. 1981. PJ Huber. 1973, 'The 1972 Wald Memorial Lectures: Robust Regression: Asymptotics, Conjectures, and Monte Carlo.' The Annals of Statistics, 1.5, 799-821. R Venables, B Ripley. 'Modern Applied Statistics in S' Springer, New York, 2002. """ from statsmodels.compat.python import string_types import numpy as np import scipy.stats as stats from statsmodels.tools.decorators import (cache_readonly, resettable_cache) import statsmodels.regression.linear_model as lm import statsmodels.robust.norms as norms import statsmodels.robust.scale as scale import statsmodels.base.model as base import statsmodels.base.wrapper as wrap from statsmodels.compat.numpy import np_matrix_rank __all__ = ['RLM'] def _check_convergence(criterion, iteration, tol, maxiter): return not (np.any(np.fabs(criterion[iteration] - criterion[iteration-1]) > tol) and iteration < maxiter) class RLM(base.LikelihoodModel): __doc__ = """ Robust Linear Models Estimate a robust linear model via iteratively reweighted least squares given a robust criterion estimator. %(params)s M : statsmodels.robust.norms.RobustNorm, optional The robust criterion function for downweighting outliers. The current options are LeastSquares, HuberT, RamsayE, AndrewWave, TrimmedMean, Hampel, and TukeyBiweight. The default is HuberT(). See statsmodels.robust.norms for more information. %(extra_params)s Notes ----- **Attributes** df_model : float The degrees of freedom of the model. The number of regressors p less one for the intercept. Note that the reported model degrees of freedom does not count the intercept as a regressor, though the model is assumed to have an intercept. df_resid : float The residual degrees of freedom. The number of observations n less the number of regressors p. Note that here p does include the intercept as using a degree of freedom. endog : array See above. Note that endog is a reference to the data so that if data is already an array and it is changed, then `endog` changes as well. exog : array See above. Note that endog is a reference to the data so that if data is already an array and it is changed, then `endog` changes as well. M : statsmodels.robust.norms.RobustNorm See above. Robust estimator instance instantiated. nobs : float The number of observations n pinv_wexog : array The pseudoinverse of the design / exogenous data array. Note that RLM has no whiten method, so this is just the pseudo inverse of the design. normalized_cov_params : array The p x p normalized covariance of the design / exogenous data. This is approximately equal to (X.T X)^(-1) Examples --------- >>> import statsmodels.api as sm >>> data = sm.datasets.stackloss.load() >>> data.exog = sm.add_constant(data.exog) >>> rlm_model = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT()) >>> rlm_results = rlm_model.fit() >>> rlm_results.params array([ 0.82938433, 0.92606597, -0.12784672, -41.02649835]) >>> rlm_results.bse array([ 0.11100521, 0.30293016, 0.12864961, 9.79189854]) >>> rlm_results_HC2 = rlm_model.fit(cov="H2") >>> rlm_results_HC2.params array([ 0.82938433, 0.92606597, -0.12784672, -41.02649835]) >>> rlm_results_HC2.bse array([ 0.11945975, 0.32235497, 0.11796313, 9.08950419]) >>> >>> rlm_hamp_hub = sm.RLM(data.endog, data.exog, M=sm.robust.norms.Hampel()).fit( sm.robust.scale.HuberScale()) >>> rlm_hamp_hub.params array([ 0.73175452, 1.25082038, -0.14794399, -40.27122257]) """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc} def __init__(self, endog, exog, M=norms.HuberT(), missing='none', **kwargs): self.M = M super(base.LikelihoodModel, self).__init__(endog, exog, missing=missing, **kwargs) self._initialize() #things to remove_data self._data_attr.extend(['weights', 'pinv_wexog']) def _initialize(self): """ Initializes the model for the IRLS fit. Resets the history and number of iterations. """ self.pinv_wexog = np.linalg.pinv(self.exog) self.normalized_cov_params = np.dot(self.pinv_wexog, np.transpose(self.pinv_wexog)) self.df_resid = (np.float(self.exog.shape[0] - np_matrix_rank(self.exog))) self.df_model = np.float(np_matrix_rank(self.exog)-1) self.nobs = float(self.endog.shape[0]) def score(self, params): raise NotImplementedError def information(self, params): raise NotImplementedError def predict(self, params, exog=None): """ Return linear predicted values from a design matrix. Parameters ---------- params : array-like, optional after fit has been called Parameters of a linear model exog : array-like, optional. Design / exogenous data. Model exog is used if None. Returns ------- An array of fitted values Notes ----- If the model as not yet been fit, params is not optional. """ #copied from linear_model if exog is None: exog = self.exog return np.dot(exog, params) def loglike(self, params): raise NotImplementedError def deviance(self, tmp_results): """ Returns the (unnormalized) log-likelihood from the M estimator. """ return self.M((self.endog - tmp_results.fittedvalues) / tmp_results.scale).sum() def _update_history(self, tmp_results, history, conv): history['params'].append(tmp_results.params) history['scale'].append(tmp_results.scale) if conv == 'dev': history['deviance'].append(self.deviance(tmp_results)) elif conv == 'sresid': history['sresid'].append(tmp_results.resid/tmp_results.scale) elif conv == 'weights': history['weights'].append(tmp_results.model.weights) return history def _estimate_scale(self, resid): """ Estimates the scale based on the option provided to the fit method. """ if isinstance(self.scale_est, str): if self.scale_est.lower() == 'mad': return scale.mad(resid, center=0) if self.scale_est.lower() == 'stand_mad': return scale.mad(resid) else: raise ValueError("Option %s for scale_est not understood" % self.scale_est) elif isinstance(self.scale_est, scale.HuberScale): return self.scale_est(self.df_resid, self.nobs, resid) else: return scale.scale_est(self, resid)**2 def fit(self, maxiter=50, tol=1e-8, scale_est='mad', init=None, cov='H1', update_scale=True, conv='dev'): """ Fits the model using iteratively reweighted least squares. The IRLS routine runs until the specified objective converges to `tol` or `maxiter` has been reached. Parameters ---------- conv : string Indicates the convergence criteria. Available options are "coefs" (the coefficients), "weights" (the weights in the iteration), "sresid" (the standardized residuals), and "dev" (the un-normalized log-likelihood for the M estimator). The default is "dev". cov : string, optional 'H1', 'H2', or 'H3' Indicates how the covariance matrix is estimated. Default is 'H1'. See rlm.RLMResults for more information. init : string Specifies method for the initial estimates of the parameters. Default is None, which means that the least squares estimate is used. Currently it is the only available choice. maxiter : int The maximum number of iterations to try. Default is 50. scale_est : string or HuberScale() 'mad' or HuberScale() Indicates the estimate to use for scaling the weights in the IRLS. The default is 'mad' (median absolute deviation. Other options are 'HuberScale' for Huber's proposal 2. Huber's proposal 2 has optional keyword arguments d, tol, and maxiter for specifying the tuning constant, the convergence tolerance, and the maximum number of iterations. See statsmodels.robust.scale for more information. tol : float The convergence tolerance of the estimate. Default is 1e-8. update_scale : Bool If `update_scale` is False then the scale estimate for the weights is held constant over the iteration. Otherwise, it is updated for each fit in the iteration. Default is True. Returns ------- results : object statsmodels.rlm.RLMresults """ if not cov.upper() in ["H1","H2","H3"]: raise ValueError("Covariance matrix %s not understood" % cov) else: self.cov = cov.upper() conv = conv.lower() if not conv in ["weights","coefs","dev","sresid"]: raise ValueError("Convergence argument %s not understood" \ % conv) self.scale_est = scale_est if (isinstance(scale_est, string_types) and scale_est.lower() == "stand_mad"): from warnings import warn warn("stand_mad is deprecated and will be removed in 0.7.0", FutureWarning) wls_results = lm.WLS(self.endog, self.exog).fit() if not init: self.scale = self._estimate_scale(wls_results.resid) history = dict(params = [np.inf], scale = []) if conv == 'coefs': criterion = history['params'] elif conv == 'dev': history.update(dict(deviance = [np.inf])) criterion = history['deviance'] elif conv == 'sresid': history.update(dict(sresid = [np.inf])) criterion = history['sresid'] elif conv == 'weights': history.update(dict(weights = [np.inf])) criterion = history['weights'] # done one iteration so update history = self._update_history(wls_results, history, conv) iteration = 1 converged = 0 while not converged: self.weights = self.M.weights(wls_results.resid/self.scale) wls_results = lm.WLS(self.endog, self.exog, weights=self.weights).fit() if update_scale is True: self.scale = self._estimate_scale(wls_results.resid) history = self._update_history(wls_results, history, conv) iteration += 1 converged = _check_convergence(criterion, iteration, tol, maxiter) results = RLMResults(self, wls_results.params, self.normalized_cov_params, self.scale) history['iteration'] = iteration results.fit_history = history results.fit_options = dict(cov=cov.upper(), scale_est=scale_est, norm=self.M.__class__.__name__, conv=conv) #norm is not changed in fit, no old state #doing the next causes exception #self.cov = self.scale_est = None #reset for additional fits #iteration and history could contain wrong state with repeated fit return RLMResultsWrapper(results) class RLMResults(base.LikelihoodModelResults): """ Class to contain RLM results Returns ------- **Attributes** bcov_scaled : array p x p scaled covariance matrix specified in the model fit method. The default is H1. H1 is defined as ``k**2 * (1/df_resid*sum(M.psi(sresid)**2)*scale**2)/ ((1/nobs*sum(M.psi_deriv(sresid)))**2) * (X.T X)^(-1)`` where ``k = 1 + (df_model +1)/nobs * var_psiprime/m**2`` where ``m = mean(M.psi_deriv(sresid))`` and ``var_psiprime = var(M.psi_deriv(sresid))`` H2 is defined as ``k * (1/df_resid) * sum(M.psi(sresid)**2) *scale**2/ ((1/nobs)*sum(M.psi_deriv(sresid)))*W_inv`` H3 is defined as ``1/k * (1/df_resid * sum(M.psi(sresid)**2)*scale**2 * (W_inv X.T X W_inv))`` where `k` is defined as above and ``W_inv = (M.psi_deriv(sresid) exog.T exog)^(-1)`` See the technical documentation for cleaner formulae. bcov_unscaled : array The usual p x p covariance matrix with scale set equal to 1. It is then just equivalent to normalized_cov_params. bse : array An array of the standard errors of the parameters. The standard errors are taken from the robust covariance matrix specified in the argument to fit. chisq : array An array of the chi-squared values of the paramter estimates. df_model See RLM.df_model df_resid See RLM.df_resid fit_history : dict Contains information about the iterations. Its keys are `deviance`, `params`, `iteration` and the convergence criteria specified in `RLM.fit`, if different from `deviance` or `params`. fit_options : dict Contains the options given to fit. fittedvalues : array The linear predicted values. dot(exog, params) model : statsmodels.rlm.RLM A reference to the model instance nobs : float The number of observations n normalized_cov_params : array See RLM.normalized_cov_params params : array The coefficients of the fitted model pinv_wexog : array See RLM.pinv_wexog pvalues : array The p values associated with `tvalues`. Note that `tvalues` are assumed to be distributed standard normal rather than Student's t. resid : array The residuals of the fitted model. endog - fittedvalues scale : float The type of scale is determined in the arguments to the fit method in RLM. The reported scale is taken from the residuals of the weighted least squares in the last IRLS iteration if update_scale is True. If update_scale is False, then it is the scale given by the first OLS fit before the IRLS iterations. sresid : array The scaled residuals. tvalues : array The "t-statistics" of params. These are defined as params/bse where bse are taken from the robust covariance matrix specified in the argument to fit. weights : array The reported weights are determined by passing the scaled residuals from the last weighted least squares fit in the IRLS algortihm. See also -------- statsmodels.model.LikelihoodModelResults """ def __init__(self, model, params, normalized_cov_params, scale): super(RLMResults, self).__init__(model, params, normalized_cov_params, scale) self.model = model self.df_model = model.df_model self.df_resid = model.df_resid self.nobs = model.nobs self._cache = resettable_cache() #for remove_data self.data_in_cache = ['sresid'] self.cov_params_default = self.bcov_scaled #TODO: "pvals" should come from chisq on bse? @cache_readonly def fittedvalues(self): return np.dot(self.model.exog, self.params) @cache_readonly def resid(self): return self.model.endog - self.fittedvalues # before bcov @cache_readonly def sresid(self): return self.resid/self.scale @cache_readonly def bcov_unscaled(self): return self.normalized_cov_params @cache_readonly def weights(self): return self.model.weights @cache_readonly def bcov_scaled(self): model = self.model m = np.mean(model.M.psi_deriv(self.sresid)) var_psiprime = np.var(model.M.psi_deriv(self.sresid)) k = 1 + (self.df_model+1)/self.nobs * var_psiprime/m**2 if model.cov == "H1": return k**2 * (1/self.df_resid*\ np.sum(model.M.psi(self.sresid)**2)*self.scale**2)\ /((1/self.nobs*np.sum(model.M.psi_deriv(self.sresid)))**2)\ *model.normalized_cov_params else: W = np.dot(model.M.psi_deriv(self.sresid)*model.exog.T, model.exog) W_inv = np.linalg.inv(W) # [W_jk]^-1 = [SUM(psi_deriv(Sr_i)*x_ij*x_jk)]^-1 # where Sr are the standardized residuals if model.cov == "H2": # These are correct, based on Huber (1973) 8.13 return k*(1/self.df_resid)*np.sum(\ model.M.psi(self.sresid)**2)*self.scale**2\ /((1/self.nobs)*np.sum(\ model.M.psi_deriv(self.sresid)))*W_inv elif model.cov == "H3": return k**-1*1/self.df_resid*np.sum(\ model.M.psi(self.sresid)**2)*self.scale**2\ *np.dot(np.dot(W_inv, np.dot(model.exog.T,model.exog)),\ W_inv) @cache_readonly def pvalues(self): return stats.norm.sf(np.abs(self.tvalues))*2 @cache_readonly def bse(self): return np.sqrt(np.diag(self.bcov_scaled)) @cache_readonly def chisq(self): return (self.params/self.bse)**2 def remove_data(self): super(self.__class__, self).remove_data() #self.model.history['sresid'] = None #self.model.history['weights'] = None remove_data.__doc__ = base.LikelihoodModelResults.remove_data.__doc__ def summary(self, yname=None, xname=None, title=0, alpha=.05, return_fmt='text'): """ This is for testing the new summary setup """ from statsmodels.iolib.summary import (summary_top, summary_params, summary_return) ## left = [(i, None) for i in ( ## 'Dependent Variable:', ## 'Model type:', ## 'Method:', ## 'Date:', ## 'Time:', ## 'Number of Obs:', ## 'df resid', ## 'df model', ## )] top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['IRLS']), ('Norm:', [self.fit_options['norm']]), ('Scale Est.:', [self.fit_options['scale_est']]), ('Cov Type:', [self.fit_options['cov']]), ('Date:', None), ('Time:', None), ('No. Iterations:', ["%d" % self.fit_history['iteration']]) ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None) ] if not title is None: title = "Robust linear Model Regression Results" #boiler plate from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=self.use_t) #diagnostic table is not used yet # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") #add warnings/notes, added to text format only etext =[] wstr = \ '''If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore .''' etext.append(wstr) if etext: smry.add_extra_txt(etext) return smry def summary2(self, xname=None, yname=None, title=None, alpha=.05, float_format="%.4f"): """Experimental summary function for regression results Parameters ----------- xname : List of strings of length equal to the number of parameters Names of the independent variables (optional) yname : string Name of the dependent variable (optional) title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format: string print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ # Summary from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_base(results=self, alpha=alpha, float_format=float_format, xname=xname, yname=yname, title=title) return smry class RLMResultsWrapper(lm.RegressionResultsWrapper): pass wrap.populate_wrapper(RLMResultsWrapper, RLMResults) if __name__=="__main__": #NOTE: This is to be removed #Delivery Time Data is taken from Montgomery and Peck import statsmodels.api as sm #delivery time(minutes) endog = np.array([16.68, 11.50, 12.03, 14.88, 13.75, 18.11, 8.00, 17.83, 79.24, 21.50, 40.33, 21.00, 13.50, 19.75, 24.00, 29.00, 15.35, 19.00, 9.50, 35.10, 17.90, 52.32, 18.75, 19.83, 10.75]) #number of cases, distance (Feet) exog = np.array([[7, 3, 3, 4, 6, 7, 2, 7, 30, 5, 16, 10, 4, 6, 9, 10, 6, 7, 3, 17, 10, 26, 9, 8, 4], [560, 220, 340, 80, 150, 330, 110, 210, 1460, 605, 688, 215, 255, 462, 448, 776, 200, 132, 36, 770, 140, 810, 450, 635, 150]]) exog = exog.T exog = sm.add_constant(exog) # model_ols = models.regression.OLS(endog, exog) # results_ols = model_ols.fit() # model_ramsaysE = RLM(endog, exog, M=norms.RamsayE()) # results_ramsaysE = model_ramsaysE.fit(update_scale=False) # model_andrewWave = RLM(endog, exog, M=norms.AndrewWave()) # results_andrewWave = model_andrewWave.fit(update_scale=False) # model_hampel = RLM(endog, exog, M=norms.Hampel(a=1.7,b=3.4,c=8.5)) # convergence problems with scale changed, not with 2,4,8 though? # results_hampel = model_hampel.fit(update_scale=False) ####################### ### Stack Loss Data ### ####################### from statsmodels.datasets.stackloss import load data = load() data.exog = sm.add_constant(data.exog) ############# ### Huber ### ############# # m1_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber1 = m1_Huber.fit() # m2_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber2 = m2_Huber.fit(cov="H2") # m3_Huber = RLM(data.endog, data.exog, M=norms.HuberT()) # results_Huber3 = m3_Huber.fit(cov="H3") ############## ### Hampel ### ############## # m1_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel1 = m1_Hampel.fit() # m2_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel2 = m2_Hampel.fit(cov="H2") # m3_Hampel = RLM(data.endog, data.exog, M=norms.Hampel()) # results_Hampel3 = m3_Hampel.fit(cov="H3") ################ ### Bisquare ### ################ # m1_Bisquare = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results_Bisquare1 = m1_Bisquare.fit() # m2_Bisquare = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results_Bisquare2 = m2_Bisquare.fit(cov="H2") # m3_Bisquare = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results_Bisquare3 = m3_Bisquare.fit(cov="H3") ############################################## # Huber's Proposal 2 scaling # ############################################## ################ ### Huber'sT ### ################ m1_Huber_H = RLM(data.endog, data.exog, M=norms.HuberT()) results_Huber1_H = m1_Huber_H.fit(scale_est=scale.HuberScale()) # m2_Huber_H # m3_Huber_H # m4 = RLM(data.endog, data.exog, M=norms.HuberT()) # results4 = m1.fit(scale_est="Huber") # m5 = RLM(data.endog, data.exog, M=norms.Hampel()) # results5 = m2.fit(scale_est="Huber") # m6 = RLM(data.endog, data.exog, M=norms.TukeyBiweight()) # results6 = m3.fit(scale_est="Huber") # print """Least squares fit #%s #Huber Params, t = 2. #%s #Ramsay's E Params #%s #Andrew's Wave Params #%s #Hampel's 17A Function #%s #""" % (results_ols.params, results_huber.params, results_ramsaysE.params, # results_andrewWave.params, results_hampel.params)
bsd-3-clause
harshaneelhg/scikit-learn
examples/linear_model/plot_ols_3d.py
347
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
ridfrustum/lettuce
tests/integration/lib/Django-1.3/django/contrib/gis/tests/test_geoip.py
290
4204
import os, unittest from django.db import settings from django.contrib.gis.geos import GEOSGeometry from django.contrib.gis.utils import GeoIP, GeoIPException # Note: Requires use of both the GeoIP country and city datasets. # The GEOIP_DATA path should be the only setting set (the directory # should contain links or the actual database files 'GeoIP.dat' and # 'GeoLiteCity.dat'. class GeoIPTest(unittest.TestCase): def test01_init(self): "Testing GeoIP initialization." g1 = GeoIP() # Everything inferred from GeoIP path path = settings.GEOIP_PATH g2 = GeoIP(path, 0) # Passing in data path explicitly. g3 = GeoIP.open(path, 0) # MaxMind Python API syntax. for g in (g1, g2, g3): self.assertEqual(True, bool(g._country)) self.assertEqual(True, bool(g._city)) # Only passing in the location of one database. city = os.path.join(path, 'GeoLiteCity.dat') cntry = os.path.join(path, 'GeoIP.dat') g4 = GeoIP(city, country='') self.assertEqual(None, g4._country) g5 = GeoIP(cntry, city='') self.assertEqual(None, g5._city) # Improper parameters. bad_params = (23, 'foo', 15.23) for bad in bad_params: self.assertRaises(GeoIPException, GeoIP, cache=bad) if isinstance(bad, basestring): e = GeoIPException else: e = TypeError self.assertRaises(e, GeoIP, bad, 0) def test02_bad_query(self): "Testing GeoIP query parameter checking." cntry_g = GeoIP(city='<foo>') # No city database available, these calls should fail. self.assertRaises(GeoIPException, cntry_g.city, 'google.com') self.assertRaises(GeoIPException, cntry_g.coords, 'yahoo.com') # Non-string query should raise TypeError self.assertRaises(TypeError, cntry_g.country_code, 17) self.assertRaises(TypeError, cntry_g.country_name, GeoIP) def test03_country(self): "Testing GeoIP country querying methods." g = GeoIP(city='<foo>') fqdn = 'www.google.com' addr = '12.215.42.19' for query in (fqdn, addr): for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) def test04_city(self): "Testing GeoIP city querying methods." g = GeoIP(country='<foo>') addr = '130.80.29.3' fqdn = 'chron.com' for query in (fqdn, addr): # Country queries should still work. for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code' : 'US', 'country_name' : 'United States'}, g.country(query)) # City information dictionary. d = g.city(query) self.assertEqual('USA', d['country_code3']) self.assertEqual('Houston', d['city']) self.assertEqual('TX', d['region']) self.assertEqual(713, d['area_code']) geom = g.geos(query) self.failIf(not isinstance(geom, GEOSGeometry)) lon, lat = (-95.3670, 29.7523) lat_lon = g.lat_lon(query) lat_lon = (lat_lon[1], lat_lon[0]) for tup in (geom.tuple, g.coords(query), g.lon_lat(query), lat_lon): self.assertAlmostEqual(lon, tup[0], 4) self.assertAlmostEqual(lat, tup[1], 4) def suite(): s = unittest.TestSuite() s.addTest(unittest.makeSuite(GeoIPTest)) return s def run(verbosity=2): unittest.TextTestRunner(verbosity=verbosity).run(suite())
gpl-3.0
glencoesoftware/omero-user-scripts
util_scripts/Copy_Full_Res_Images.py
2
7420
# -*- coding: utf-8 -*- """ ----------------------------------------------------------------------------- Copyright (C) 2014 Glencoe Software, Inc. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ------------------------------------------------------------------------------ """ import omero from omero.gateway import BlitzGateway from omero.rtypes import rstring, rlong import omero.scripts as scripts import re class copyHighResImages: def __init__(self, conn, scriptParams): """ Class to copy high resolution svs and afi files to the new datasets. scriptParams have to include target "Project_ID" and a list of source dataset "IDS". @param conn: BlitzGateway connector @param scriptParams: scipt parameters. """ self.FILENAME_REGEX = re.compile(scriptParams["Regex_String"]) self.conn = conn self.target_project_id = scriptParams["Project_ID"] self.source_datasets_list = scriptParams["IDs"] self.image_dict = self.getImageList() self.target_dataset_names = self.getTargetDatasetNames() self.query_service = self.conn.getQueryService() self.update_service = self.conn.getUpdateService() self.dataset_query = \ "select d from Project as p" \ " left outer join p.datasetLinks as links" \ " left outer join links.child as d" \ " left outer join fetch d.imageLinks as i_link" \ " left outer join fetch i_link.child" \ " where p.id = :pid and d.name = :dname" def getImageList(self): """ Retrive images from the source datasets. """ image_dict = {} for datasetId in self.source_datasets_list: dataset = conn.getObject("Dataset", datasetId) for image in dataset.listChildren(): if "[" in image.getName(): continue file_name = self.FILENAME_REGEX.match(image.getName()) if file_name is None: continue image_dict[image.getId()] = file_name.group(1) return image_dict def printImageList(self): for image in self.image_dict: print image, self.image_dict[image] def getTargetDatasetNames(self): """ Convert image names to target dataset names and return as unique list. """ dataset_names = set() for image in self.image_dict: dataset_names.add(self.image_dict[image]) return dataset_names def getDatasetMap(self): """ Convert unique list of dataset names to a map (dataset_name, dataset_object). """ dataset_map = {} params = omero.sys.ParametersI() params.add("pid", rlong(self.target_project_id)) for name in self.target_dataset_names: params.add("dname", rstring(name)) dataset = self.query_service.findByQuery( self.dataset_query, params) if dataset is None: print "Creating new datset" dataset = omero.model.DatasetI() dataset.setName(rstring(name)) dataset = \ self.update_service.saveAndReturnObject(dataset) datasetId = dataset.getId().getValue() print "\tNew dataset ID:", datasetId link = omero.model.ProjectDatasetLinkI() print "\tLinking dataset to:", self.target_project_id link.parent = omero.model.ProjectI( self.target_project_id, False) link.child = omero.model.DatasetI(datasetId, False) self.update_service.saveObject(link) dataset = self.query_service.findByQuery( self.dataset_query, params) dataset_map[name] = dataset return dataset_map def saveImagesToServer(self, dataset_dict): """ Convert dataset hash map to list and save linked images to the server. @param dataset_dict: map(dataset_name, dataset_object) """ dataset_list = [] for dataset_name in dataset_dict: dataset_list.append(dataset_dict[dataset_name]) self.update_service.saveAndReturnArray(dataset_list) def copyImages(self): """ Link images to the target datasets. """ dataset_dict = self.getDatasetMap() for image_id in self.image_dict: dataset_target = dataset_dict[self.image_dict[image_id]] image_ids = [ v.id.val for v in dataset_target.linkedImageList()] if image_id in image_ids: continue print "Copying image:", image_id, self.image_dict[image_id] dataset_target.linkImage(omero.model.ImageI(image_id, False)) self.saveImagesToServer(dataset_dict) def run(self): """ Call this methods after class instantiate to copy the images. """ self.copyImages() return "Done" if __name__ == "__main__": global datasetId dataTypes = [rstring('Dataset')] client = scripts.client( 'copy_high_res_images.py', """ This script copies the full resolution images to the new dataset. """, scripts.String( "Data_Type", optional=False, grouping="1", description="Choose source of images (only Dataset supported)", values=dataTypes, default="Dataset"), scripts.List( "IDs", optional=False, grouping="2", description="Dataset to tag and copy images from.").ofType(long), scripts.Int( "Project_ID", optional=False, grouping="3", description="Project ID to create new Dataset in."), scripts.String( "Regex_String", optional=False, grouping="4", description="New dataset name will be based on the image name \ formated by regex", default="^(\w+-\w+)-.*"), version="0.1", authors=["Emil Rozbicki"], institutions=["Glencoe Software Inc."], contact="emil@glencoesoftware.com", ) try: # process the list of args above. scriptParams = {} for key in client.getInputKeys(): if client.getInput(key): scriptParams[key] = client.getInput(key, unwrap=True) # wrap client to use the Blitz Gateway conn = BlitzGateway(client_obj=client) processImages = copyHighResImages(conn, scriptParams) message = processImages.run() client.setOutput("Message", rstring(message)) finally: client.closeSession()
gpl-2.0
jjmiranda/edx-platform
openedx/core/lib/block_structure/transformers.py
21
6043
""" Module for a collection of BlockStructureTransformers. """ import functools from logging import getLogger from .exceptions import TransformerException from .transformer import FilteringTransformerMixin from .transformer_registry import TransformerRegistry logger = getLogger(__name__) # pylint: disable=C0103 class BlockStructureTransformers(object): """ The BlockStructureTransformers class encapsulates an ordered list of block structure transformers. It uses the Transformer Registry to verify the the registration status of added transformers and to collect their data. It provides aggregate functionality for collection and ordered transformation of the transformers. Clients are expected to access the list of transformers through the class' interface rather than directly. """ def __init__(self, transformers=None, usage_info=None): """ Arguments: transformers ([BlockStructureTransformer]) - List of transformers to add to the collection. usage_info (any negotiated type) - A usage-specific object that is passed to the block_structure and forwarded to all requested Transformers in order to apply a usage-specific transform. For example, an instance of usage_info would contain a user object for which the transform should be applied. Raises: TransformerException - if any transformer is not registered in the Transformer Registry. """ self.usage_info = usage_info self._transformers = {'supports_filter': [], 'no_filter': []} if transformers: self.__iadd__(transformers) def __iadd__(self, transformers): """ Adds the given transformers to the collection. Args: transformers ([BlockStructureTransformer]) - List of transformers to add to the collection. Raises: TransformerException - if any transformer is not registered in the Transformer Registry. """ unregistered_transformers = TransformerRegistry.find_unregistered(transformers) if unregistered_transformers: raise TransformerException( "The following requested transformers are not registered: {}".format(unregistered_transformers) ) for transformer in transformers: if isinstance(transformer, FilteringTransformerMixin): self._transformers['supports_filter'].append(transformer) else: self._transformers['no_filter'].append(transformer) return self @classmethod def collect(cls, block_structure): """ Collects data for each registered transformer. """ for transformer in TransformerRegistry.get_registered_transformers(): block_structure._add_transformer(transformer) # pylint: disable=protected-access transformer.collect(block_structure) # Collect all fields that were requested by the transformers. block_structure._collect_requested_xblock_fields() # pylint: disable=protected-access @classmethod def is_collected_outdated(cls, block_structure): """ Returns whether the collected data in the block structure is outdated. """ outdated_transformers = [] for transformer in TransformerRegistry.get_registered_transformers(): version_in_block_structure = block_structure._get_transformer_data_version(transformer) # pylint: disable=protected-access if transformer.VERSION != version_in_block_structure: outdated_transformers.append(transformer) if outdated_transformers: logger.info( "Collected Block Structure data for the following transformers is outdated: '%s'.", [(transformer.name(), transformer.VERSION) for transformer in outdated_transformers], ) return bool(outdated_transformers) def transform(self, block_structure): """ The given block structure is transformed by each transformer in the collection. Tranformers with filters are combined and run first in a single course tree traversal, then remaining transformers are run in the order that they were added. """ self._transform_with_filters(block_structure) self._transform_without_filters(block_structure) # Prune the block structure to remove any unreachable blocks. block_structure._prune_unreachable() # pylint: disable=protected-access def _transform_with_filters(self, block_structure): """ Transforms the given block_structure using the transform_block_filters method from the given transformers. """ if not self._transformers['supports_filter']: return filters = [] for transformer in self._transformers['supports_filter']: filters.extend(transformer.transform_block_filters(self.usage_info, block_structure)) combined_filters = functools.reduce( self._filter_chain, filters, block_structure.create_universal_filter() ) block_structure.filter_topological_traversal(combined_filters) def _filter_chain(self, accumulated, additional): """ Given two functions that take a block_key and return a boolean, yield a function that takes a block key, and 'ands' the functions together """ return lambda block_key: accumulated(block_key) and additional(block_key) def _transform_without_filters(self, block_structure): """ Transforms the given block_structure using the transform method from the given transformers. """ for transformer in self._transformers['no_filter']: transformer.transform(self.usage_info, block_structure)
agpl-3.0
google/learned_optimization
learned_optimization/research/scaling/scaling_transformer.py
1
8118
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A couple tasks exploring scaling of transformers.""" from typing import Sequence from absl import app from typing import Optional import haiku as hk import jax import jax.numpy as jnp import numpy as np import numpy as onp import jax import jax.numpy as jnp import haiku as hk import gin import chex from typing import Optional from learned_optimization.tasks.datasets import language from learned_optimization.tasks import base import functools class CausalSelfAttention(hk.Module): """Multi-headed attention mechanism. As described in the vanilla Transformer paper: "Attention is all you need" https://arxiv.org/abs/1706.03762 """ def __init__( self, num_heads: int, key_size: int, # TODO(romanring, tycai): migrate to a more generic `w_init` initializer. w_init: Optional[hk.initializers.Initializer] = None, value_size: Optional[int] = None, model_size: Optional[int] = None, name: Optional[str] = None, ): super().__init__(name=name) self.num_heads = num_heads self.key_size = key_size self.value_size = value_size or key_size self.model_size = model_size or key_size * num_heads if not w_init: w_init = hk.initializers.VarianceScaling(1.) self.w_init = w_init def __call__( self, query: jnp.ndarray, key: Optional[jnp.ndarray] = None, value: Optional[jnp.ndarray] = None, mask: Optional[jnp.ndarray] = None, ) -> jnp.ndarray: """Compute (optionally masked) MHA with queries, keys & values.""" key = key if key is not None else query value = value if value is not None else query if query.ndim != 3: raise ValueError("Expect queries of shape [B, T, D].") seq_len = query.shape[1] causal_mask = np.tril(np.ones((seq_len, seq_len))) mask = mask * causal_mask if mask is not None else causal_mask query_heads = self._linear_projection(query, self.key_size, "query") key_heads = self._linear_projection(key, self.key_size, "key") value_heads = self._linear_projection(value, self.value_size, "value") attn_logits = jnp.einsum("...thd,...Thd->...htT", query_heads, key_heads) sqrt_key_size = np.sqrt(self.key_size).astype(key.dtype) attn_logits = attn_logits / sqrt_key_size if mask is not None: if mask.ndim != attn_logits.ndim: raise ValueError(f"Mask dimensionality {mask.ndim} must match logits " f"{attn_logits.ndim}.") attn_logits = jnp.where(mask, attn_logits, -1e30) attn_weights = jax.nn.softmax(attn_logits) attn = jnp.einsum("...htT,...Thd->...thd", attn_weights, value_heads) # Concatenate attention matrix of all heads into a single vector. attn_vec = jnp.reshape(attn, (*query.shape[:-1], -1)) return hk.Linear(self.model_size, w_init=self.w_init)(attn_vec) @hk.transparent def _linear_projection(self, x: jnp.ndarray, head_size: int, name: Optional[str] = None) -> jnp.ndarray: y = hk.Linear(self.num_heads * head_size, w_init=self.w_init, name=name)(x) return y.reshape((*x.shape[:-1], self.num_heads, head_size)) class DenseBlock(hk.Module): """A 2-layer MLP which widens then narrows the input.""" def __init__(self, widening_factor: int = 4, w_init=None, name: Optional[str] = None): super().__init__(name=name) self._w_init = w_init self._widening_factor = widening_factor def __call__(self, x: jnp.ndarray) -> jnp.ndarray: hiddens = x.shape[-1] x = hk.Linear(self._widening_factor * hiddens, w_init=self._w_init)(x) x = jax.nn.gelu(x) return hk.Linear(hiddens, w_init=self._w_init)(x) class Transformer(hk.Module): """A transformer stack.""" def __init__(self, num_heads: int, num_layers: int, d_model: int, vocab_size: int, dropout_rate: float, name: Optional[str] = None): super().__init__(name=name) self._num_layers = num_layers self._num_heads = num_heads self._dropout_rate = dropout_rate self._d_model = d_model self._vocab_size = vocab_size def __call__(self, h: jnp.ndarray, mask: Optional[jnp.ndarray], is_training: bool) -> jnp.ndarray: """Connects the transformer. Args: h: Inputs, [B, T, D]. mask: Padding mask, [B, T]. is_training: Whether we're training or not. Returns: Array of shape [B, T, D]. """ h = hk.Embed(vocab_size=self._vocab_size, embed_dim=self._d_model)(h) init_scale = 2. / self._num_layers dropout_rate = self._dropout_rate if is_training else 0. if mask is not None: mask = mask[:, None, None, :] # Note: names chosen to approximately match those used in the GPT-2 code; # see https://github.com/openai/gpt-2/blob/master/src/model.py. for i in range(self._num_layers): h_norm = hk.LayerNorm( axis=-1, create_scale=True, create_offset=True, name=f"h{i}_ln_1")( h) # h_attn = CausalSelfAttentionV2( # num_heads=self._num_heads, # hiddens_per_head=h.shape[-1] // self._num_heads, # init_scale=init_scale, # relative_pos_emb=True, # name=f'h{i}_attn')(h_norm, mask=mask) h_attn = CausalSelfAttention( num_heads=self._num_heads, key_size=32, model_size=h.shape[-1], w_init=hk.initializers.VarianceScaling(init_scale), name=f"h{i}_attn")( h_norm, mask=mask) h_attn = hk.dropout(hk.next_rng_key(), dropout_rate, h_attn) h = h + h_attn h_norm = hk.LayerNorm( axis=-1, create_scale=True, create_offset=True, name=f"h{i}_ln_2")( h) w_init = hk.initializers.VarianceScaling(init_scale) h_dense = DenseBlock(name=f"h{i}_mlp", w_init=w_init)(h_norm) h_dense = hk.dropout(hk.next_rng_key(), dropout_rate, h_dense) h = h + h_dense h = hk.LayerNorm( axis=-1, create_scale=True, create_offset=True, name=f"h_f")( h) return hk.Linear(self._vocab_size)(h) def _make_task(hk_fn, datasets) -> base.Task: """Make a Task subclass for the haiku loss and datasets.""" init_net, apply_net = hk.transform(hk_fn) class _Task(base.Task): """Annonomous task object with corresponding loss and datasets.""" def __init__(self): self.datasets = datasets def init(self, key: chex.PRNGKey) -> base.Params: batch = next(datasets.train) return init_net(key, batch) def loss(self, params, key, data): return apply_net(params, key, data) return _Task() def ScalingTasks_Transformer(model_size, layers): ds = language.lm1b_32k_datasets(32, 128) vocab_size = ds.extra_info["vocab_size"] def forward(batch): x = batch["obs"] logits = Transformer( num_heads=8, num_layers=layers, d_model=model_size, vocab_size=vocab_size, dropout_rate=0.1)( x, mask=(x != 0), is_training=True) loss = base.softmax_cross_entropy( logits=logits, labels=jax.nn.one_hot(batch["target"], vocab_size)) return jnp.mean(loss) return _make_task(forward, ds) for size in [2**i for i in range(4, 15)]: name = "ScalingTasks_Transformer_5layer_%dsize" % size locals()[name] = gin.external_configurable( functools.partial(ScalingTasks_Transformer, size, 5), name) del name
apache-2.0
justincassidy/scikit-learn
sklearn/utils/testing.py
83
24860
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import tempfile import shutil import os.path as op import atexit # WindowsError only exist on Windows try: WindowsError except NameError: WindowsError = None import sklearn from sklearn.base import BaseEstimator from sklearn.externals import joblib # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regex except ImportError: # for Python 2 def assert_raises_regex(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except expected_exception as e: error_message = str(e) if not re.compile(expected_regexp).search(error_message): raise AssertionError("Error message should match pattern " "%r. %r does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("%s not raised by %s" % (expected_exception.__name__, callable_obj.__name__)) # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the bacward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message def assert_less_equal(a, b, msg=None): message = "%r is not lower than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a <= b, message def assert_greater_equal(a, b, msg=None): message = "%r is not greater than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a >= b, message def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = [issubclass(warning.category, warning_class) for warning in w] if not any(found): raise AssertionError("No warning raised for %s with class " "%s" % (func.__name__, warning_class)) message_found = False # Checks the message of all warnings belong to warning_class for index in [i for i, x in enumerate(found) if x]: # substring will match, the entire message with typo won't msg = w[index].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if check_in_message(msg): message_found = True break if not message_found: raise AssertionError("Did not receive the message you expected " "('%s') for <%s>, got: '%s'" % (message, func.__name__, msg)) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exceptions, message, function, *args, **kwargs): """Helper function to test error messages in exceptions Parameters ---------- exceptions : exception or tuple of exception Name of the estimator func : callable Calable object to raise error *args : the positional arguments to `func`. **kw : the keyword arguments to `func` """ try: function(*args, **kwargs) except exceptions as e: error_message = str(e) if message not in error_message: raise AssertionError("Error message does not include the expected" " string: %r. Observed error message: %r" % (message, error_message)) else: # concatenate exception names if isinstance(exceptions, tuple): names = " or ".join(e.__name__ for e in exceptions) else: names = exceptions.__name__ raise AssertionError("%s not raised by %s" % (names, function.__name__)) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict : dict, keys=str, values=ndarray Contains data as columns_dict[column_name] = array of data. dataname : string Name of data set. matfile : string or file object The file name string or the file-like object of the output file. ordering : list, default None List of column_names, determines the ordering in the data set. Notes ----- This function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'TfidfVectorizer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures', 'GaussianRandomProjectionHash', 'HashingVectorizer', 'CheckingClassifier', 'PatchExtractor', 'CountVectorizer', # GradientBoosting base estimators, maybe should # exclude them in another way 'ZeroEstimator', 'ScaledLogOddsEstimator', 'QuantileEstimator', 'MeanEstimator', 'LogOddsEstimator', 'PriorProbabilityEstimator', '_SigmoidCalibration', 'VotingClassifier'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility return sorted(set(estimators)) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified import matplotlib.pyplot as plt plt.figure() except ImportError: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warnings """ warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") def _delete_folder(folder_path, warn=False): """Utility function to cleanup a temporary folder if still existing. Copy from joblib.pool (for independance)""" try: if os.path.exists(folder_path): # This can fail under windows, # but will succeed when called by atexit shutil.rmtree(folder_path) except WindowsError: if warn: warnings.warn("Could not delete temporary folder %s" % folder_path) class TempMemmap(object): def __init__(self, data, mmap_mode='r'): self.temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_') self.mmap_mode = mmap_mode self.data = data def __enter__(self): fpath = op.join(self.temp_folder, 'data.pkl') joblib.dump(self.data, fpath) data_read_only = joblib.load(fpath, mmap_mode=self.mmap_mode) atexit.register(lambda: _delete_folder(self.temp_folder, warn=True)) return data_read_only def __exit__(self, exc_type, exc_val, exc_tb): _delete_folder(self.temp_folder) with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis)
bsd-3-clause
HazyResearch/metal
metal/end_model/end_model.py
1
8417
import torch import torch.nn as nn import torch.nn.functional as F from metal.classifier import Classifier from metal.end_model.em_defaults import em_default_config from metal.end_model.identity_module import IdentityModule from metal.end_model.loss import SoftCrossEntropyLoss from metal.utils import MetalDataset, pred_to_prob, recursive_merge_dicts class EndModel(Classifier): """A dynamically constructed discriminative classifier layer_out_dims: a list of integers corresponding to the output sizes of the layers of your network. The first element is the dimensionality of the input layer, the last element is the dimensionality of the head layer (equal to the cardinality of the task), and all other elements dictate the sizes of middle layers. The number of middle layers will be inferred from this list. input_module: (nn.Module) a module that converts the user-provided model inputs to torch.Tensors. Defaults to IdentityModule. middle_modules: (nn.Module) a list of modules to execute between the input_module and task head. Defaults to nn.Linear. head_module: (nn.Module) a module to execute right before the final softmax that outputs a prediction for the task. """ def __init__( self, layer_out_dims, input_module=None, middle_modules=None, head_module=None, **kwargs, ): if len(layer_out_dims) < 2 and not kwargs["skip_head"]: raise ValueError( "Arg layer_out_dims must have at least two " "elements corresponding to the output dim of the input module " "and the cardinality of the task. If the input module is the " "IdentityModule, then the output dim of the input module will " "be equal to the dimensionality of your input data points" ) # Add layer_out_dims to kwargs so it will be merged into the config dict kwargs["layer_out_dims"] = layer_out_dims config = recursive_merge_dicts(em_default_config, kwargs, misses="insert") super().__init__(k=layer_out_dims[-1], config=config) self._build(input_module, middle_modules, head_module) # Show network if self.config["verbose"]: print("\nNetwork architecture:") self._print() print() def _build(self, input_module, middle_modules, head_module): """ TBD """ input_layer = self._build_input_layer(input_module) middle_layers = self._build_middle_layers(middle_modules) # Construct list of layers layers = [input_layer] if middle_layers is not None: layers += middle_layers if not self.config["skip_head"]: head = self._build_task_head(head_module) layers.append(head) # Construct network if len(layers) > 1: self.network = nn.Sequential(*layers) else: self.network = layers[0] # Construct loss module loss_weights = self.config["train_config"]["loss_weights"] if loss_weights is not None and self.config["verbose"]: print(f"Using class weight vector {loss_weights}...") reduction = self.config["train_config"]["loss_fn_reduction"] self.criteria = SoftCrossEntropyLoss( weight=self._to_torch(loss_weights, dtype=torch.FloatTensor), reduction=reduction, ) def _build_input_layer(self, input_module): if input_module is None: input_module = IdentityModule() output_dim = self.config["layer_out_dims"][0] input_layer = self._make_layer( input_module, "input", self.config["input_layer_config"], output_dim=output_dim, ) return input_layer def _build_middle_layers(self, middle_modules): layer_out_dims = self.config["layer_out_dims"] num_mid_layers = len(layer_out_dims) - 2 if num_mid_layers == 0: return None middle_layers = nn.ModuleList() for i in range(num_mid_layers): if middle_modules is None: module = nn.Linear(*layer_out_dims[i : i + 2]) output_dim = layer_out_dims[i + 1] else: module = middle_modules[i] output_dim = None layer = self._make_layer( module, "middle", self.config["middle_layer_config"], output_dim=output_dim, ) middle_layers.add_module(f"layer{i+1}", layer) return middle_layers def _build_task_head(self, head_module): if head_module is None: head = nn.Linear(self.config["layer_out_dims"][-2], self.k) else: # Note that if head module is provided, it must have input dim of # the last middle module and output dim of self.k, the cardinality head = head_module return head def _make_layer(self, module, prefix, layer_config, output_dim=None): if isinstance(module, IdentityModule): return module layer = [module] if layer_config[f"{prefix}_relu"]: layer.append(nn.ReLU()) if layer_config[f"{prefix}_batchnorm"] and output_dim: layer.append(nn.BatchNorm1d(output_dim)) if layer_config[f"{prefix}_dropout"]: layer.append(nn.Dropout(layer_config[f"{prefix}_dropout"])) if len(layer) > 1: return nn.Sequential(*layer) else: return layer[0] def _print(self): print(self.network) def forward(self, x): """Returns a list of outputs for tasks 0,...t-1 Args: x: a [batch_size, ...] batch from X """ return self.network(x) @staticmethod def _reset_module(m): """A method for resetting the parameters of any module in the network First, handle special cases (unique initialization or none required) Next, use built in method if available Last, report that no initialization occured to avoid silent failure. This will be called on all children of m as well, so do not recurse manually. """ if callable(getattr(m, "reset_parameters", None)): m.reset_parameters() def update_config(self, update_dict): """Updates self.config with the values in a given update dictionary""" self.config = recursive_merge_dicts(self.config, update_dict) def _preprocess_Y(self, Y, k): """Convert Y to prob labels if necessary""" Y = Y.clone() # If preds, convert to probs if Y.dim() == 1 or Y.shape[1] == 1: Y = pred_to_prob(Y.long(), k=k) return Y def _create_dataset(self, *data): return MetalDataset(*data) def _get_loss_fn(self): criteria = self.criteria.to(self.config["device"]) # This self.preprocess_Y allows us to not handle preprocessing # in a custom dataloader, but decreases speed a bit loss_fn = lambda X, Y: criteria(self.forward(X), self._preprocess_Y(Y, self.k)) return loss_fn def train_model(self, train_data, valid_data=None, log_writer=None, **kwargs): self.config = recursive_merge_dicts(self.config, kwargs) # If train_data is provided as a tuple (X, Y), we can make sure Y is in # the correct format # NOTE: Better handling for if train_data is Dataset or DataLoader...? if isinstance(train_data, (tuple, list)): X, Y = train_data Y = self._preprocess_Y(self._to_torch(Y, dtype=torch.FloatTensor), self.k) train_data = (X, Y) # Convert input data to data loaders train_loader = self._create_data_loader(train_data, shuffle=True) # Create loss function loss_fn = self._get_loss_fn() # Execute training procedure self._train_model( train_loader, loss_fn, valid_data=valid_data, log_writer=log_writer ) def predict_proba(self, X): """Returns a [n, k] tensor of probs (probabilistic labels).""" return F.softmax(self.forward(X), dim=1).data.cpu().numpy()
apache-2.0
Lawrence-Liu/scikit-learn
examples/cluster/plot_dbscan.py
343
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
edhuckle/statsmodels
statsmodels/sandbox/descstats.py
27
6366
''' Glue for returning descriptive statistics. ''' import numpy as np from scipy import stats import os from statsmodels.stats.descriptivestats import sign_test ############################################# # #============================================ # Univariate Descriptive Statistics #============================================ # def descstats(data, cols=None, axis=0): ''' Prints descriptive statistics for one or multiple variables. Parameters ------------ data: numpy array `x` is the data v: list, optional A list of the column number or field names (for a recarray) of variables. Default is all columns. axis: 1 or 0 axis order of data. Default is 0 for column-ordered data. Examples -------- >>> descstats(data.exog,v=['x_1','x_2','x_3']) ''' x = np.array(data) # or rather, the data we're interested in if cols is None: # if isinstance(x, np.recarray): # cols = np.array(len(x.dtype.names)) if not isinstance(x, np.recarray) and x.ndim == 1: x = x[:,None] if x.shape[1] == 1: desc = ''' --------------------------------------------- Univariate Descriptive Statistics --------------------------------------------- Var. Name %(name)12s ---------- Obs. %(nobs)22i Range %(range)22s Sum of Wts. %(sum)22s Coeff. of Variation %(coeffvar)22.4g Mode %(mode)22.4g Skewness %(skewness)22.4g Repeats %(nmode)22i Kurtosis %(kurtosis)22.4g Mean %(mean)22.4g Uncorrected SS %(uss)22.4g Median %(median)22.4g Corrected SS %(ss)22.4g Variance %(variance)22.4g Sum Observations %(sobs)22.4g Std. Dev. %(stddev)22.4g ''' % {'name': cols, 'sum': 'N/A', 'nobs': len(x), 'mode': \ stats.mode(x)[0][0], 'nmode': stats.mode(x)[1][0], \ 'mean': x.mean(), 'median': np.median(x), 'range': \ '('+str(x.min())+', '+str(x.max())+')', 'variance': \ x.var(), 'stddev': x.std(), 'coeffvar': \ stats.variation(x), 'skewness': stats.skew(x), \ 'kurtosis': stats.kurtosis(x), 'uss': np.sum(x**2, axis=0),\ 'ss': np.sum((x-x.mean())**2, axis=0), 'sobs': np.sum(x)} desc+= ''' Percentiles ------------- 1 %% %12.4g 5 %% %12.4g 10 %% %12.4g 25 %% %12.4g 50 %% %12.4g 75 %% %12.4g 90 %% %12.4g 95 %% %12.4g 99 %% %12.4g ''' % tuple([stats.scoreatpercentile(x,per) for per in (1,5,10,25, 50,75,90,95,99)]) t,p_t=stats.ttest_1samp(x,0) M,p_M=sign_test(x) S,p_S=stats.wilcoxon(np.squeeze(x)) desc+= ''' Tests of Location (H0: Mu0=0) ----------------------------- Test Statistic Two-tailed probability -----------------+----------------------------------------- Student's t | t %7.5f Pr > |t| <%.4f Sign | M %8.2f Pr >= |M| <%.4f Signed Rank | S %8.2f Pr >= |S| <%.4f ''' % (t,p_t,M,p_M,S,p_S) # Should this be part of a 'descstats' # in any event these should be split up, so that they can be called # individually and only returned together if someone calls summary # or something of the sort elif x.shape[1] > 1: desc =''' Var. Name | Obs. Mean Std. Dev. Range ------------+--------------------------------------------------------'''+\ os.linesep # for recarrays with columns passed as names # if isinstance(cols[0],str): # for var in cols: # desc += "%(name)15s %(obs)9i %(mean)12.4g %(stddev)12.4g \ #%(range)20s" % {'name': var, 'obs': len(x[var]), 'mean': x[var].mean(), # 'stddev': x[var].std(), 'range': '('+str(x[var].min())+', '\ # +str(x[var].max())+')'+os.linesep} # else: for var in range(x.shape[1]): desc += "%(name)15s %(obs)9i %(mean)12.4g %(stddev)12.4g \ %(range)20s" % {'name': var, 'obs': len(x[:,var]), 'mean': x[:,var].mean(), 'stddev': x[:,var].std(), 'range': '('+str(x[:,var].min())+', '+\ str(x[:,var].max())+')'+os.linesep} else: raise ValueError("data not understood") return desc #if __name__=='__main__': # test descstats # import os # loc='http://eagle1.american.edu/~js2796a/data/handguns_data.csv' # relpath=(load_dataset(loc)) # dta=np.recfromcsv(relpath) # descstats(dta,['stpop']) # raw_input('Hit enter for multivariate test') # descstats(dta,['stpop','avginc','vio']) # with plain arrays # import string2dummy as s2d # dts=s2d.string2dummy(dta) # ndts=np.vstack(dts[col] for col in dts.dtype.names) # observations in columns and data in rows # is easier for the call to stats # what to make of # ndts=np.column_stack(dts[col] for col in dts.dtype.names) # ntda=ntds.swapaxis(1,0) # ntda is ntds returns false? # or now we just have detailed information about the different strings # would this approach ever be inappropriate for a string typed variable # other than dates? # descstats(ndts, [1]) # raw_input("Enter to try second part") # descstats(ndts, [1,20,3]) if __name__ == '__main__': import statsmodels.api as sm import os data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog, prepend=False) sum1 = descstats(data.exog) sum1a = descstats(data.exog[:,:1]) # loc='http://eagle1.american.edu/~js2796a/data/handguns_data.csv' # dta=np.recfromcsv(loc) # summary2 = descstats(dta,['stpop']) # summary3 = descstats(dta,['stpop','avginc','vio']) #TODO: needs a by argument # summary4 = descstats(dta) this fails # this is a bug # p = dta[['stpop']] # p.view(dtype = np.float, type = np.ndarray) # this works # p.view(dtype = np.int, type = np.ndarray) ### This is *really* slow ### if os.path.isfile('./Econ724_PS_I_Data.csv'): data2 = np.recfromcsv('./Econ724_PS_I_Data.csv') sum2 = descstats(data2.ahe) sum3 = descstats(np.column_stack((data2.ahe,data2.yrseduc))) sum4 = descstats(np.column_stack(([data2[_] for \ _ in data2.dtype.names])))
bsd-3-clause
behzadnouri/scipy
scipy/stats/mstats_basic.py
30
84684
""" An extension of scipy.stats.stats to support masked arrays """ # Original author (2007): Pierre GF Gerard-Marchant # TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ? # TODO : ttest_rel looks botched: what are x1,x2,v1,v2 for ? # TODO : reimplement ksonesamp from __future__ import division, print_function, absolute_import __all__ = ['argstoarray', 'betai', 'count_tied_groups', 'describe', 'f_oneway','f_value_wilks_lambda','find_repeats','friedmanchisquare', 'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis', 'ks_twosamp','ks_2samp','kurtosis','kurtosistest', 'linregress', 'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign', 'normaltest', 'obrientransform', 'pearsonr','plotting_positions','pointbiserialr', 'rankdata', 'scoreatpercentile','sem', 'sen_seasonal_slopes','signaltonoise','skew','skewtest','spearmanr', 'theilslopes','threshold','tmax','tmean','tmin','trim','trimboth', 'trimtail','trima','trimr','trimmed_mean','trimmed_std', 'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp', 'ttest_ind','ttest_rel','tvar', 'variation', 'winsorize', ] import numpy as np from numpy import ndarray import numpy.ma as ma from numpy.ma import masked, nomask from scipy._lib.six import iteritems import itertools import warnings from collections import namedtuple from . import distributions import scipy.special as special from ._stats_mstats_common import ( _find_repeats, linregress as stats_linregress, theilslopes as stats_theilslopes ) genmissingvaldoc = """ Notes ----- Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked. """ def _chk_asarray(a, axis): # Always returns a masked array, raveled for axis=None a = ma.asanyarray(a) if axis is None: a = ma.ravel(a) outaxis = 0 else: outaxis = axis return a, outaxis def _chk2_asarray(a, b, axis): a = ma.asanyarray(a) b = ma.asanyarray(b) if axis is None: a = ma.ravel(a) b = ma.ravel(b) outaxis = 0 else: outaxis = axis return a, b, outaxis def _chk_size(a,b): a = ma.asanyarray(a) b = ma.asanyarray(b) (na, nb) = (a.size, b.size) if na != nb: raise ValueError("The size of the input array should match!" " (%s <> %s)" % (na, nb)) return (a, b, na) def argstoarray(*args): """ Constructs a 2D array from a group of sequences. Sequences are filled with missing values to match the length of the longest sequence. Parameters ---------- args : sequences Group of sequences. Returns ------- argstoarray : MaskedArray A ( `m` x `n` ) masked array, where `m` is the number of arguments and `n` the length of the longest argument. Notes ----- `numpy.ma.row_stack` has identical behavior, but is called with a sequence of sequences. """ if len(args) == 1 and not isinstance(args[0], ndarray): output = ma.asarray(args[0]) if output.ndim != 2: raise ValueError("The input should be 2D") else: n = len(args) m = max([len(k) for k in args]) output = ma.array(np.empty((n,m), dtype=float), mask=True) for (k,v) in enumerate(args): output[k,:len(v)] = v output[np.logical_not(np.isfinite(output._data))] = masked return output def find_repeats(arr): """Find repeats in arr and return a tuple (repeats, repeat_count). The input is cast to float64. Masked values are discarded. Parameters ---------- arr : sequence Input array. The array is flattened if it is not 1D. Returns ------- repeats : ndarray Array of repeated values. counts : ndarray Array of counts. """ # Make sure we get a copy. ma.compressed promises a "new array", but can # actually return a reference. compr = np.asarray(ma.compressed(arr), dtype=np.float64) if compr is arr or compr.base is arr: compr = compr.copy() return _find_repeats(compr) def count_tied_groups(x, use_missing=False): """ Counts the number of tied values. Parameters ---------- x : sequence Sequence of data on which to counts the ties use_missing : bool, optional Whether to consider missing values as tied. Returns ------- count_tied_groups : dict Returns a dictionary (nb of ties: nb of groups). Examples -------- >>> from scipy.stats import mstats >>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6] >>> mstats.count_tied_groups(z) {2: 1, 3: 2} In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x). >>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6]) >>> mstats.count_tied_groups(z) {2: 2, 3: 1} >>> z[[1,-1]] = np.ma.masked >>> mstats.count_tied_groups(z, use_missing=True) {2: 2, 3: 1} """ nmasked = ma.getmask(x).sum() # We need the copy as find_repeats will overwrite the initial data data = ma.compressed(x).copy() (ties, counts) = find_repeats(data) nties = {} if len(ties): nties = dict(zip(np.unique(counts), itertools.repeat(1))) nties.update(dict(zip(*find_repeats(counts)))) if nmasked and use_missing: try: nties[nmasked] += 1 except KeyError: nties[nmasked] = 1 return nties def rankdata(data, axis=None, use_missing=False): """Returns the rank (also known as order statistics) of each data point along the given axis. If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is False, or set to the average rank of the unmasked values if use_missing is True. Parameters ---------- data : sequence Input data. The data is transformed to a masked array axis : {None,int}, optional Axis along which to perform the ranking. If None, the array is first flattened. An exception is raised if the axis is specified for arrays with a dimension larger than 2 use_missing : bool, optional Whether the masked values have a rank of 0 (False) or equal to the average rank of the unmasked values (True). """ def _rank1d(data, use_missing=False): n = data.count() rk = np.empty(data.size, dtype=float) idx = data.argsort() rk[idx[:n]] = np.arange(1,n+1) if use_missing: rk[idx[n:]] = (n+1)/2. else: rk[idx[n:]] = 0 repeats = find_repeats(data.copy()) for r in repeats[0]: condition = (data == r).filled(False) rk[condition] = rk[condition].mean() return rk data = ma.array(data, copy=False) if axis is None: if data.ndim > 1: return _rank1d(data.ravel(), use_missing).reshape(data.shape) else: return _rank1d(data, use_missing) else: return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray) ModeResult = namedtuple('ModeResult', ('mode', 'count')) def mode(a, axis=0): """ Returns an array of the modal (most common) value in the passed array. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. Returns ------- mode : ndarray Array of modal values. count : ndarray Array of counts for each mode. Notes ----- For more details, see `stats.mode`. """ a, axis = _chk_asarray(a, axis) def _mode1D(a): (rep,cnt) = find_repeats(a) if not cnt.ndim: return (0, 0) elif cnt.size: return (rep[cnt.argmax()], cnt.max()) else: not_masked_indices = ma.flatnotmasked_edges(a) first_not_masked_index = not_masked_indices[0] return (a[first_not_masked_index], 1) if axis is None: output = _mode1D(ma.ravel(a)) output = (ma.array(output[0]), ma.array(output[1])) else: output = ma.apply_along_axis(_mode1D, axis, a) newshape = list(a.shape) newshape[axis] = 1 slices = [slice(None)] * output.ndim slices[axis] = 0 modes = output[tuple(slices)].reshape(newshape) slices[axis] = 1 counts = output[tuple(slices)].reshape(newshape) output = (modes, counts) return ModeResult(*output) @np.deprecate(message="mstats.betai is deprecated in scipy 0.17.0; " "use special.betainc instead.") def betai(a, b, x): """ betai() is deprecated in scipy 0.17.0. For details about this function, see `stats.betai`. """ return _betai(a, b, x) def _betai(a, b, x): x = np.asanyarray(x) x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x) def msign(x): """Returns the sign of x, or 0 if x is masked.""" return ma.filled(np.sign(x), 0) def pearsonr(x,y): """ Calculates a Pearson correlation coefficient and the p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as `x` increases, so does `y`. Negative correlations imply that as `x` increases, `y` decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : 1-D array_like Input y : 1-D array_like Input Returns ------- pearsonr : float Pearson's correlation coefficient, 2-tailed p-value. References ---------- http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) # Get the common mask and the total nb of unmasked elements m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() df = n-2 if df < 0: return (masked, masked) (mx, my) = (x.mean(), y.mean()) (xm, ym) = (x-mx, y-my) r_num = ma.add.reduce(xm*ym) r_den = ma.sqrt(ma.dot(xm,xm) * ma.dot(ym,ym)) r = r_num / r_den # Presumably, if r > 1, then it is only some small artifact of floating # point arithmetic. r = min(r, 1.0) r = max(r, -1.0) df = n - 2 if r is masked or abs(r) == 1.0: prob = 0. else: t_squared = (df / ((1.0 - r) * (1.0 + r))) * r * r prob = _betai(0.5*df, 0.5, df/(df + t_squared)) return r, prob SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) def spearmanr(x, y, use_ties=True): """ Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as `x` increases, so does `y`. Negative correlations imply that as `x` increases, `y` decreases. Missing values are discarded pair-wise: if a value is missing in `x`, the corresponding value in `y` is masked. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : array_like The length of `x` must be > 2. y : array_like The length of `y` must be > 2. use_ties : bool, optional Whether the correction for ties should be computed. Returns ------- correlation : float Spearman correlation coefficient pvalue : float 2-tailed p-value. References ---------- [CRCProbStat2000] section 14.7 """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) df = n-2 if df < 0: raise ValueError("The input must have at least 3 entries!") # Gets the ranks and rank differences rankx = rankdata(x) ranky = rankdata(y) dsq = np.add.reduce((rankx-ranky)**2) # Tie correction if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum(v*k*(k**2-1) for (k,v) in iteritems(xties))/12. corr_y = np.sum(v*k*(k**2-1) for (k,v) in iteritems(yties))/12. else: corr_x = corr_y = 0 denom = n*(n**2 - 1)/6. if corr_x != 0 or corr_y != 0: rho = denom - dsq - corr_x - corr_y rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y)) else: rho = 1. - dsq/denom t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho if t is masked: prob = 0. else: prob = _betai(0.5*df, 0.5, df/(df + t * t)) return SpearmanrResult(rho, prob) KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue')) def kendalltau(x, y, use_ties=True, use_missing=False): """ Computes Kendall's rank correlation tau on two variables *x* and *y*. Parameters ---------- x : sequence First data list (for example, time). y : sequence Second data list. use_ties : {True, False}, optional Whether ties correction should be performed. use_missing : {False, True}, optional Whether missing data should be allocated a rank of 0 (False) or the average rank (True) Returns ------- correlation : float Kendall tau pvalue : float Approximate 2-side p-value. """ (x, y, n) = _chk_size(x, y) (x, y) = (x.flatten(), y.flatten()) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) n -= m.sum() if n < 2: return KendalltauResult(np.nan, np.nan) rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0) ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0) idx = rx.argsort() (rx, ry) = (rx[idx], ry[idx]) C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum([v*k*(k-1) for (k,v) in iteritems(xties)], dtype=float) corr_y = np.sum([v*k*(k-1) for (k,v) in iteritems(yties)], dtype=float) denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.) else: denom = n*(n-1)/2. tau = (C-D) / denom var_s = n*(n-1)*(2*n+5) if use_ties: var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(xties)) var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(yties)) v1 = np.sum([v*k*(k-1) for (k, v) in iteritems(xties)], dtype=float) *\ np.sum([v*k*(k-1) for (k, v) in iteritems(yties)], dtype=float) v1 /= 2.*n*(n-1) if n > 2: v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(xties)], dtype=float) * \ np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(yties)], dtype=float) v2 /= 9.*n*(n-1)*(n-2) else: v2 = 0 else: v1 = v2 = 0 var_s /= 18. var_s += (v1 + v2) z = (C-D)/np.sqrt(var_s) prob = special.erfc(abs(z)/np.sqrt(2)) return KendalltauResult(tau, prob) def kendalltau_seasonal(x): """ Computes a multivariate Kendall's rank correlation tau, for seasonal data. Parameters ---------- x : 2-D ndarray Array of seasonal data, with seasons in columns. """ x = ma.array(x, subok=True, copy=False, ndmin=2) (n,m) = x.shape n_p = x.count(0) S_szn = np.sum(msign(x[i:]-x[i]).sum(0) for i in range(n)) S_tot = S_szn.sum() n_tot = x.count() ties = count_tied_groups(x.compressed()) corr_ties = np.sum(v*k*(k-1) for (k,v) in iteritems(ties)) denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2. R = rankdata(x, axis=0, use_missing=True) K = ma.empty((m,m), dtype=int) covmat = ma.empty((m,m), dtype=float) denom_szn = ma.empty(m, dtype=float) for j in range(m): ties_j = count_tied_groups(x[:,j].compressed()) corr_j = np.sum(v*k*(k-1) for (k,v) in iteritems(ties_j)) cmb = n_p[j]*(n_p[j]-1) for k in range(j,m,1): K[j,k] = np.sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum() for i in range(n)) covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() - n*(n_p[j]+1)*(n_p[k]+1))/3. K[k,j] = K[j,k] covmat[k,j] = covmat[j,k] denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2. var_szn = covmat.diagonal() z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn) z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum()) z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum()) prob_szn = special.erfc(abs(z_szn)/np.sqrt(2)) prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2)) prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2)) chi2_tot = (z_szn*z_szn).sum() chi2_trd = m * z_szn.mean()**2 output = {'seasonal tau': S_szn/denom_szn, 'global tau': S_tot/denom_tot, 'global tau (alt)': S_tot/denom_szn.sum(), 'seasonal p-value': prob_szn, 'global p-value (indep)': prob_tot_ind, 'global p-value (dep)': prob_tot_dep, 'chi2 total': chi2_tot, 'chi2 trend': chi2_trd, } return output PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation', 'pvalue')) def pointbiserialr(x, y): """Calculates a point biserial correlation coefficient and its p-value. Parameters ---------- x : array_like of bools Input array. y : array_like Input array. Returns ------- correlation : float R value pvalue : float 2-tailed p-value Notes ----- Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked. For more details on `pointbiserialr`, see `stats.pointbiserialr`. """ x = ma.fix_invalid(x, copy=True).astype(bool) y = ma.fix_invalid(y, copy=True).astype(float) # Get rid of the missing data m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: unmask = np.logical_not(m) x = x[unmask] y = y[unmask] n = len(x) # phat is the fraction of x values that are True phat = x.sum() / float(n) y0 = y[~x] # y-values where x is False y1 = y[x] # y-values where x is True y0m = y0.mean() y1m = y1.mean() rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std() df = n-2 t = rpb*ma.sqrt(df/(1.0-rpb**2)) prob = _betai(0.5*df, 0.5, df/(df+t*t)) return PointbiserialrResult(rpb, prob) LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) def linregress(x, y=None): """ Linear regression calculation Note that the non-masked version is used, and that this docstring is replaced by the non-masked docstring + some info on missing data. """ if y is None: x = ma.array(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = ma.array(x) y = ma.array(y) x = x.flatten() y = y.flatten() m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False) if m is not nomask: x = ma.array(x, mask=m) y = ma.array(y, mask=m) if np.any(~m): slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m], y.data[~m]) else: # All data is masked return None, None, None, None, None else: slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data) return LinregressResult(slope, intercept, r, prob, sterrest) if stats_linregress.__doc__: linregress.__doc__ = stats_linregress.__doc__ + genmissingvaldoc def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- For more details on `theilslopes`, see `stats.theilslopes`. """ y = ma.asarray(y).flatten() if x is None: x = ma.arange(len(y), dtype=float) else: x = ma.asarray(x).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x))) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) y._mask = x._mask = m # Disregard any masked elements of x or y y = y.compressed() x = x.compressed().astype(float) # We now have unmasked arrays so can use `stats.theilslopes` return stats_theilslopes(y, x, alpha=alpha) def sen_seasonal_slopes(x): x = ma.array(x, subok=True, copy=False, ndmin=2) (n,_) = x.shape # Get list of slopes per season szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None] for i in range(n)]) szn_medslopes = ma.median(szn_slopes, axis=0) medslope = ma.median(szn_slopes, axis=None) return szn_medslopes, medslope Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue')) def ttest_1samp(a, popmean, axis=0): """ Calculates the T-test for the mean of ONE group of scores. Parameters ---------- a : array_like sample observation popmean : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension axis : int or None, optional Axis along which to compute test. If None, compute over the whole array `a`. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- For more details on `ttest_1samp`, see `stats.ttest_1samp`. """ a, axis = _chk_asarray(a, axis) if a.size == 0: return (np.nan, np.nan) x = a.mean(axis=axis) v = a.var(axis=axis, ddof=1) n = a.count(axis=axis) # force df to be an array for masked division not to throw a warning df = ma.asanyarray(n - 1.0) svar = ((n - 1.0) * v) / df with np.errstate(divide='ignore', invalid='ignore'): t = (x - popmean) / ma.sqrt(svar / n) prob = special.betainc(0.5*df, 0.5, df/(df + t*t)) return Ttest_1sampResult(t, prob) ttest_onesamp = ttest_1samp Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue')) def ttest_ind(a, b, axis=0, equal_var=True): """ Calculates the T-test for the means of TWO INDEPENDENT samples of scores. Parameters ---------- a, b : array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. equal_var : bool, optional If True, perform a standard independent 2 sample test that assumes equal population variances. If False, perform Welch's t-test, which does not assume equal population variance. .. versionadded:: 0.17.0 Returns ------- statistic : float or array The calculated t-statistic. pvalue : float or array The two-tailed p-value. Notes ----- For more details on `ttest_ind`, see `stats.ttest_ind`. """ a, b, axis = _chk2_asarray(a, b, axis) if a.size == 0 or b.size == 0: return Ttest_indResult(np.nan, np.nan) (x1, x2) = (a.mean(axis), b.mean(axis)) (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1)) (n1, n2) = (a.count(axis), b.count(axis)) if equal_var: # force df to be an array for masked division not to throw a warning df = ma.asanyarray(n1 + n2 - 2.0) svar = ((n1-1)*v1+(n2-1)*v2) / df denom = ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # n-D computation here! else: vn1 = v1/n1 vn2 = v2/n2 with np.errstate(divide='ignore', invalid='ignore'): df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)) # If df is undefined, variances are zero. # It doesn't matter what df is as long as it is not NaN. df = np.where(np.isnan(df), 1, df) denom = ma.sqrt(vn1 + vn2) with np.errstate(divide='ignore', invalid='ignore'): t = (x1-x2) / denom probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape) return Ttest_indResult(t, probs.squeeze()) Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue')) def ttest_rel(a, b, axis=0): """ Calculates the T-test on TWO RELATED samples of scores, a and b. Parameters ---------- a, b : array_like The arrays must have the same shape. axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- For more details on `ttest_rel`, see `stats.ttest_rel`. """ a, b, axis = _chk2_asarray(a, b, axis) if len(a) != len(b): raise ValueError('unequal length arrays') if a.size == 0 or b.size == 0: return Ttest_relResult(np.nan, np.nan) n = a.count(axis) df = ma.asanyarray(n-1.0) d = (a-b).astype('d') dm = d.mean(axis) v = d.var(axis=axis, ddof=1) denom = ma.sqrt(v / n) with np.errstate(divide='ignore', invalid='ignore'): t = dm / denom probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape).squeeze() return Ttest_relResult(t, probs) MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue')) def mannwhitneyu(x,y, use_continuity=True): """ Computes the Mann-Whitney statistic Missing values in `x` and/or `y` are discarded. Parameters ---------- x : sequence Input y : sequence Input use_continuity : {True, False}, optional Whether a continuity correction (1/2.) should be taken into account. Returns ------- statistic : float The Mann-Whitney statistics pvalue : float Approximate p-value assuming a normal distribution. """ x = ma.asarray(x).compressed().view(ndarray) y = ma.asarray(y).compressed().view(ndarray) ranks = rankdata(np.concatenate([x,y])) (nx, ny) = (len(x), len(y)) nt = nx + ny U = ranks[:nx].sum() - nx*(nx+1)/2. U = max(U, nx*ny - U) u = nx*ny - U mu = (nx*ny)/2. sigsq = (nt**3 - nt)/12. ties = count_tied_groups(ranks) sigsq -= np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/12. sigsq *= nx*ny/float(nt*(nt-1)) if use_continuity: z = (U - 1/2. - mu) / ma.sqrt(sigsq) else: z = (U - mu) / ma.sqrt(sigsq) prob = special.erfc(abs(z)/np.sqrt(2)) return MannwhitneyuResult(u, prob) KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue')) def kruskal(*args): """ Compute the Kruskal-Wallis H-test for independent samples Parameters ---------- sample1, sample2, ... : array_like Two or more arrays with the sample measurements can be given as arguments. Returns ------- statistic : float The Kruskal-Wallis H statistic, corrected for ties pvalue : float The p-value for the test using the assumption that H has a chi square distribution Notes ----- For more details on `kruskal`, see `stats.kruskal`. """ output = argstoarray(*args) ranks = ma.masked_equal(rankdata(output, use_missing=False), 0) sumrk = ranks.sum(-1) ngrp = ranks.count(-1) ntot = ranks.count() H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1) # Tie correction ties = count_tied_groups(ranks) T = 1. - np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/float(ntot**3-ntot) if T == 0: raise ValueError('All numbers are identical in kruskal') H /= T df = len(output) - 1 prob = distributions.chi2.sf(H, df) return KruskalResult(H, prob) kruskalwallis = kruskal def ks_twosamp(data1, data2, alternative="two-sided"): """ Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded. Parameters ---------- data1 : array_like First data set data2 : array_like Second data set alternative : {'two-sided', 'less', 'greater'}, optional Indicates the alternative hypothesis. Default is 'two-sided'. Returns ------- d : float Value of the Kolmogorov Smirnov test p : float Corresponding p-value. """ (data1, data2) = (ma.asarray(data1), ma.asarray(data2)) (n1, n2) = (data1.count(), data2.count()) n = (n1*n2/float(n1+n2)) mix = ma.concatenate((data1.compressed(), data2.compressed())) mixsort = mix.argsort(kind='mergesort') csum = np.where(mixsort < n1, 1./n1, -1./n2).cumsum() # Check for ties if len(np.unique(mix)) < (n1+n2): csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]] alternative = str(alternative).lower()[0] if alternative == 't': d = ma.abs(csum).max() prob = special.kolmogorov(np.sqrt(n)*d) elif alternative == 'l': d = -csum.min() prob = np.exp(-2*n*d**2) elif alternative == 'g': d = csum.max() prob = np.exp(-2*n*d**2) else: raise ValueError("Invalid value for the alternative hypothesis: " "should be in 'two-sided', 'less' or 'greater'") return (d, prob) ks_2samp = ks_twosamp @np.deprecate(message="mstats.threshold is deprecated in scipy 0.17.0") def threshold(a, threshmin=None, threshmax=None, newval=0): """ Clip array to a given value. Similar to numpy.clip(), except that values less than `threshmin` or greater than `threshmax` are replaced by `newval`, instead of by `threshmin` and `threshmax` respectively. Parameters ---------- a : ndarray Input data threshmin : {None, float}, optional Lower threshold. If None, set to the minimum value. threshmax : {None, float}, optional Upper threshold. If None, set to the maximum value. newval : {0, float}, optional Value outside the thresholds. Returns ------- threshold : ndarray Returns `a`, with values less then `threshmin` and values greater `threshmax` replaced with `newval`. """ a = ma.array(a, copy=True) mask = np.zeros(a.shape, dtype=bool) if threshmin is not None: mask |= (a < threshmin).filled(False) if threshmax is not None: mask |= (a > threshmax).filled(False) a[mask] = newval return a def trima(a, limits=None, inclusive=(True,True)): """ Trims an array by masking the data outside some given limits. Returns a masked version of the input array. Parameters ---------- a : array_like Input array. limits : {None, tuple}, optional Tuple of (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit will be masked. A limit is None indicates an open interval. inclusive : (bool, bool) tuple, optional Tuple of (lower flag, upper flag), indicating whether values exactly equal to the lower (upper) limit are allowed. """ a = ma.asarray(a) a.unshare_mask() if (limits is None) or (limits == (None, None)): return a (lower_lim, upper_lim) = limits (lower_in, upper_in) = inclusive condition = False if lower_lim is not None: if lower_in: condition |= (a < lower_lim) else: condition |= (a <= lower_lim) if upper_lim is not None: if upper_in: condition |= (a > upper_lim) else: condition |= (a >= upper_lim) a[condition.filled(True)] = masked return a def trimr(a, limits=None, inclusive=(True, True), axis=None): """ Trims an array by masking some proportion of the data on each end. Returns a masked version of the input array. Parameters ---------- a : sequence Input array. limits : {None, tuple}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)). The value of one limit can be set to None to indicate an open interval. inclusive : {(True,True) tuple}, optional Tuple of flags indicating whether the number of data being masked on the left (right) end should be truncated (True) or rounded (False) to integers. axis : {None,int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. """ def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive): n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n - np.round(n*up_limit) a[idx[upidx:]] = masked return a a = ma.asarray(a) a.unshare_mask() if limits is None: return a # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if axis is None: shp = a.shape return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp) else: return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc) trimdoc = """ Parameters ---------- a : sequence Input array limits : {None, tuple}, optional If `relative` is False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If `relative` is True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed inclusive : {(bool, bool) tuple}, optional If `relative` is False, tuple indicating whether values exactly equal to the absolute limits are allowed. If `relative` is True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). relative : bool, optional Whether to consider the limits as absolute values (False) or proportions to cut (True). axis : int, optional Axis along which to trim. """ def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None): """ Trims an array by masking the data outside some given limits. Returns a masked version of the input array. %s Examples -------- >>> from scipy.stats.mstats import trim >>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10] >>> print(trim(z,(3,8))) [-- -- 3 4 5 6 7 8 -- --] >>> print(trim(z,(0.1,0.2),relative=True)) [-- 2 3 4 5 6 7 8 -- --] """ if relative: return trimr(a, limits=limits, inclusive=inclusive, axis=axis) else: return trima(a, limits=limits, inclusive=inclusive) if trim.__doc__ is not None: trim.__doc__ = trim.__doc__ % trimdoc def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None): """ Trims the smallest and largest data values. Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and ``int(proportiontocut * n)`` largest values of data along the given axis, where n is the number of unmasked values before trimming. Parameters ---------- data : ndarray Data to trim. proportiontocut : float, optional Percentage of trimming (as a float between 0 and 1). If n is the number of unmasked values before trimming, the number of values after trimming is ``(1 - 2*proportiontocut) * n``. Default is 0.2. inclusive : {(bool, bool) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : int, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ return trimr(data, limits=(proportiontocut,proportiontocut), inclusive=inclusive, axis=axis) def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True), axis=None): """ Trims the data by masking values from one tail. Parameters ---------- data : array_like Data to trim. proportiontocut : float, optional Percentage of trimming. If n is the number of unmasked values before trimming, the number of values after trimming is ``(1 - proportiontocut) * n``. Default is 0.2. tail : {'left','right'}, optional If 'left' the `proportiontocut` lowest values will be masked. If 'right' the `proportiontocut` highest values will be masked. Default is 'left'. inclusive : {(bool, bool) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). Default is (True, True). axis : int, optional Axis along which to perform the trimming. If None, the input array is first flattened. Default is None. Returns ------- trimtail : ndarray Returned array of same shape as `data` with masked tail values. """ tail = str(tail).lower()[0] if tail == 'l': limits = (proportiontocut,None) elif tail == 'r': limits = (None, proportiontocut) else: raise TypeError("The tail argument should be in ('left','right')") return trimr(data, limits=limits, axis=axis, inclusive=inclusive) trim1 = trimtail def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None): """Returns the trimmed mean of the data along the given axis. %s """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis) else: return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis) def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed variance of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits, inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.var(axis=axis, ddof=ddof) def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed standard deviation of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits,inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.std(axis=axis,ddof=ddof) def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None): """ Returns the standard error of the trimmed mean along the given axis. Parameters ---------- a : sequence Input array limits : {(0.1,0.1), tuple of float}, optional tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. If n is the number of unmasked data before trimming, the values smaller than ``n * limits[0]`` and the values larger than ``n * `limits[1]`` are masked, and the total number of unmasked data after trimming is ``n * (1.-sum(limits))``. In each case, the value of one limit can be set to None to indicate an open interval. If `limits` is None, no trimming is performed. inclusive : {(bool, bool) tuple} optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : int, optional Axis along which to trim. Returns ------- trimmed_stde : scalar or ndarray """ def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive): "Returns the standard error of the trimmed mean for a 1D input data." n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n - np.round(n*up_limit) a[idx[upidx:]] = masked a[idx[:lowidx]] = a[idx[lowidx]] a[idx[upidx:]] = a[idx[upidx-1]] winstd = a.std(ddof=1) return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a))) a = ma.array(a, copy=True, subok=True) a.unshare_mask() if limits is None: return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis)) if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if (axis is None): return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc) else: if a.ndim > 2: raise ValueError("Array 'a' must be at most two dimensional, but got a.ndim = %d" % a.ndim) return ma.apply_along_axis(_trimmed_stde_1D, axis, a, lolim,uplim,loinc,upinc) def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am def tmean(a, limits=None, inclusive=(True, True), axis=None): """ Compute the trimmed mean. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. If None, compute over the whole array. Default is None. Returns ------- tmean : float Notes ----- For more details on `tmean`, see `stats.tmean`. """ return trima(a, limits=limits, inclusive=inclusive).mean(axis=axis) def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed variance This function computes the sample variance of an array of values, while ignoring values which are outside of given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. If None, compute over the whole array. Default is zero. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tvar : float Trimmed variance. Notes ----- For more details on `tvar`, see `stats.tvar`. """ a = a.astype(float).ravel() if limits is None: n = (~a.mask).sum() # todo: better way to do that? return np.ma.var(a) * n/(n-1.) am = _mask_to_limits(a, limits=limits, inclusive=inclusive) return np.ma.var(am, axis=axis, ddof=ddof) def tmin(a, lowerlimit=None, axis=0, inclusive=True): """ Compute the trimmed minimum Parameters ---------- a : array_like array of values lowerlimit : None or float, optional Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the lower limit are included. The default value is True. Returns ------- tmin : float, int or ndarray Notes ----- For more details on `tmin`, see `stats.tmin`. """ a, axis = _chk_asarray(a, axis) am = trima(a, (lowerlimit, None), (inclusive, False)) return ma.minimum.reduce(am, axis) def tmax(a, upperlimit=None, axis=0, inclusive=True): """ Compute the trimmed maximum This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit. Parameters ---------- a : array_like array of values upperlimit : None or float, optional Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the upper limit are included. The default value is True. Returns ------- tmax : float, int or ndarray Notes ----- For more details on `tmax`, see `stats.tmax`. """ a, axis = _chk_asarray(a, axis) am = trima(a, (None, upperlimit), (False, inclusive)) return ma.maximum.reduce(am, axis) def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed standard error of the mean. This function finds the standard error of the mean for given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. If None, compute over the whole array. Default is zero. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tsem : float Notes ----- For more details on `tsem`, see `stats.tsem`. """ a = ma.asarray(a).ravel() if limits is None: n = float(a.count()) return a.std(axis=axis, ddof=ddof)/ma.sqrt(n) am = trima(a.ravel(), limits, inclusive) sd = np.sqrt(am.var(axis=axis, ddof=ddof)) return sd / np.sqrt(am.count()) def winsorize(a, limits=None, inclusive=(True, True), inplace=False, axis=None): """Returns a Winsorized version of the input array. The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set to the (1 - limits[1])th percentile. Masked values are skipped. Parameters ---------- a : sequence Input array. limits : {None, tuple of float}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) The value of one limit can be set to None to indicate an open interval. inclusive : {(True, True) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). inplace : {False, True}, optional Whether to winsorize in place (True) or to use a copy (False) axis : {None, int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. Notes ----- This function is applied to reduce the effect of possibly spurious outliers by limiting the extreme values. """ def _winsorize1D(a, low_limit, up_limit, low_include, up_include): n = a.count() idx = a.argsort() if low_limit: if low_include: lowidx = int(low_limit * n) else: lowidx = np.round(low_limit * n) a[idx[:lowidx]] = a[idx[lowidx]] if up_limit is not None: if up_include: upidx = n - int(n * up_limit) else: upidx = n - np.round(n * up_limit) a[idx[upidx:]] = a[idx[upidx - 1]] return a # We are going to modify a: better make a copy a = ma.array(a, copy=np.logical_not(inplace)) if limits is None: return a if (not isinstance(limits, tuple)) and isinstance(limits, float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if axis is None: shp = a.shape return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc).reshape(shp) else: return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc, upinc) def moment(a, moment=1, axis=0): """ Calculates the nth moment about the mean for a sample. Parameters ---------- a : array_like data moment : int, optional order of central moment that is returned axis : int or None, optional Axis along which the central moment is computed. Default is 0. If None, compute over the whole array `a`. Returns ------- n-th central moment : ndarray or float The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done. Notes ----- For more details about `moment`, see `stats.moment`. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: # Exponentiation by squares: form exponent sequence n_list = [moment] current_n = moment while current_n > 2: if current_n % 2: current_n = (current_n-1)/2 else: current_n /= 2 n_list.append(current_n) # Starting point for exponentiation by squares a_zero_mean = a - ma.expand_dims(a.mean(axis), axis) if n_list[-1] == 1: s = a_zero_mean.copy() else: s = a_zero_mean**2 # Perform multiplications for n in n_list[-2::-1]: s = s**2 if n % 2: s *= a_zero_mean return s.mean(axis) def variation(a, axis=0): """ Computes the coefficient of variation, the ratio of the biased standard deviation to the mean. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array `a`. Returns ------- variation : ndarray The calculated variation along the requested axis. Notes ----- For more details about `variation`, see `stats.variation`. """ a, axis = _chk_asarray(a, axis) return a.std(axis)/a.mean(axis) def skew(a, axis=0, bias=True): """ Computes the skewness of a data set. Parameters ---------- a : ndarray data axis : int or None, optional Axis along which skewness is calculated. Default is 0. If None, compute over the whole array `a`. bias : bool, optional If False, then the calculations are corrected for statistical bias. Returns ------- skewness : ndarray The skewness of values along an axis, returning 0 where all values are equal. Notes ----- For more details about `skew`, see `stats.skew`. """ a, axis = _chk_asarray(a,axis) n = a.count(axis) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m3 / m2**1.5) finally: np.seterr(**olderr) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5 np.place(vals, can_correct, nval) return vals def kurtosis(a, axis=0, fisher=True, bias=True): """ Computes the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators Use `kurtosistest` to see if result is close enough to normal. Parameters ---------- a : array data for which the kurtosis is calculated axis : int or None, optional Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array `a`. fisher : bool, optional If True, Fisher's definition is used (normal ==> 0.0). If False, Pearson's definition is used (normal ==> 3.0). bias : bool, optional If False, then the calculations are corrected for statistical bias. Returns ------- kurtosis : array The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition. Notes ----- For more details about `kurtosis`, see `stats.kurtosis`. """ a, axis = _chk_asarray(a, axis) m2 = moment(a, 2, axis) m4 = moment(a, 4, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: n = a.count(axis) can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0) if can_correct.any(): n = np.extract(can_correct, n) m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0) np.place(vals, can_correct, nval+3.0) if fisher: return vals - 3 else: return vals DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis')) def describe(a, axis=0, ddof=0, bias=True): """ Computes several descriptive statistics of the passed array. Parameters ---------- a : array_like Data array axis : int or None, optional Axis along which to calculate statistics. Default 0. If None, compute over the whole array `a`. ddof : int, optional degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe bias : bool, optional If False, then the skewness and kurtosis calculations are corrected for statistical bias. Returns ------- nobs : int (size of the data (discarding missing values) minmax : (int, int) min, max mean : float arithmetic mean variance : float unbiased variance skewness : float biased skewness kurtosis : float biased kurtosis Examples -------- >>> from scipy.stats.mstats import describe >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) >>> describe(ma) DescribeResult(nobs=array(3), minmax=(masked_array(data = 0, mask = False, fill_value = 999999) , masked_array(data = 2, mask = False, fill_value = 999999) ), mean=1.0, variance=0.66666666666666663, skewness=masked_array(data = 0.0, mask = False, fill_value = 1e+20) , kurtosis=-1.5) """ a, axis = _chk_asarray(a, axis) n = a.count(axis) mm = (ma.minimum.reduce(a), ma.maximum.reduce(a)) m = a.mean(axis) v = a.var(axis, ddof=ddof) sk = skew(a, axis, bias=bias) kurt = kurtosis(a, axis, bias=bias) return DescribeResult(n, mm, m, v, sk, kurt) def stde_median(data, axis=None): """Returns the McKean-Schrader estimate of the standard error of the sample median along the given axis. masked values are discarded. Parameters ---------- data : ndarray Data to trim. axis : {None,int}, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ def _stdemed_1D(data): data = np.sort(data.compressed()) n = len(data) z = 2.5758293035489004 k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0)) return ((data[n-k] - data[k-1])/(2.*z)) data = ma.array(data, copy=False, subok=True) if (axis is None): return _stdemed_1D(data) else: if data.ndim > 2: raise ValueError("Array 'data' must be at most two dimensional, " "but got data.ndim = %d" % data.ndim) return ma.apply_along_axis(_stdemed_1D, axis, data) SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue')) def skewtest(a, axis=0): """ Tests whether the skew is different from the normal distribution. Parameters ---------- a : array The data to be tested axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float The computed z-score for this test. pvalue : float a 2-sided p-value for the hypothesis test Notes ----- For more details about `skewtest`, see `stats.skewtest`. """ a, axis = _chk_asarray(a, axis) if axis is None: a = a.ravel() axis = 0 b2 = skew(a,axis) n = a.count(axis) if np.min(n) < 8: raise ValueError( "skewtest is not valid with less than 8 samples; %i samples" " were given." % np.min(n)) y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2))) beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9)) W2 = -1 + ma.sqrt(2*(beta2-1)) delta = 1/ma.sqrt(0.5*ma.log(W2)) alpha = ma.sqrt(2.0/(W2-1)) y = ma.where(y == 0, 1, y) Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1)) return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue')) def kurtosistest(a, axis=0): """ Tests whether a dataset has normal kurtosis Parameters ---------- a : array array of the sample data axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float The computed z-score for this test. pvalue : float The 2-sided p-value for the hypothesis test Notes ----- For more details about `kurtosistest`, see `stats.kurtosistest`. """ a, axis = _chk_asarray(a, axis) n = a.count(axis=axis) if np.min(n) < 5: raise ValueError( "kurtosistest requires at least 5 observations; %i observations" " were given." % np.min(n)) if np.min(n) < 20: warnings.warn( "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % np.min(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) x = (b2-E)/ma.sqrt(varb2) sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2./(9.0*A) denom = 1 + x*ma.sqrt(2/(A-4.0)) if np.ma.isMaskedArray(denom): # For multi-dimensional array input denom[denom < 0] = masked elif denom < 0: denom = masked term2 = ma.power((1-2.0/A)/denom,1/3.0) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue')) def normaltest(a, axis=0): """ Tests whether a sample differs from a normal distribution. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. Notes ----- For more details about `normaltest`, see `stats.normaltest`. """ a, axis = _chk_asarray(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return NormaltestResult(k2, distributions.chi2.sf(k2, 2)) def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()): """ Computes empirical quantiles for a data array. Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``, where ``x[j]`` is the j-th order statistic, and gamma is a function of ``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and ``g = n*p + m - j``. Reinterpreting the above equations to compare to **R** lead to the equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)`` Typical values of (alphap,betap) are: - (0,1) : ``p(k) = k/n`` : linear interpolation of cdf (**R** type 4) - (.5,.5) : ``p(k) = (k - 1/2.)/n`` : piecewise linear function (**R** type 5) - (0,0) : ``p(k) = k/(n+1)`` : (**R** type 6) - (1,1) : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])]. (**R** type 7, **R** default) - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (**R** type 8) - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (**R** type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM Parameters ---------- a : array_like Input data, as a sequence or array of dimension at most 2. prob : array_like, optional List of quantiles to compute. alphap : float, optional Plotting positions parameter, default is 0.4. betap : float, optional Plotting positions parameter, default is 0.4. axis : int, optional Axis along which to perform the trimming. If None (default), the input array is first flattened. limit : tuple, optional Tuple of (lower, upper) values. Values of `a` outside this open interval are ignored. Returns ------- mquantiles : MaskedArray An array containing the calculated quantiles. Notes ----- This formulation is very similar to **R** except the calculation of ``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined with each type. References ---------- .. [1] *R* statistical software: http://www.r-project.org/ .. [2] *R* ``quantile`` function: http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html Examples -------- >>> from scipy.stats.mstats import mquantiles >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.]) >>> mquantiles(a) array([ 19.2, 40. , 42.8]) Using a 2D array, specifying axis and limit. >>> data = np.array([[ 6., 7., 1.], ... [ 47., 15., 2.], ... [ 49., 36., 3.], ... [ 15., 39., 4.], ... [ 42., 40., -999.], ... [ 41., 41., -999.], ... [ 7., -999., -999.], ... [ 39., -999., -999.], ... [ 43., -999., -999.], ... [ 40., -999., -999.], ... [ 36., -999., -999.]]) >>> print(mquantiles(data, axis=0, limit=(0, 50))) [[ 19.2 14.6 1.45] [ 40. 37.5 2.5 ] [ 42.8 40.05 3.55]] >>> data[:, 2] = -999. >>> print(mquantiles(data, axis=0, limit=(0, 50))) [[19.200000000000003 14.6 --] [40.0 37.5 --] [42.800000000000004 40.05 --]] """ def _quantiles1D(data,m,p): x = np.sort(data.compressed()) n = len(x) if n == 0: return ma.array(np.empty(len(p), dtype=float), mask=True) elif n == 1: return ma.array(np.resize(x, p.shape), mask=nomask) aleph = (n*p + m) k = np.floor(aleph.clip(1, n-1)).astype(int) gamma = (aleph-k).clip(0,1) return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()] data = ma.array(a, copy=False) if data.ndim > 2: raise TypeError("Array should be 2D at most !") if limit: condition = (limit[0] < data) & (data < limit[1]) data[~condition.filled(True)] = masked p = np.array(prob, copy=False, ndmin=1) m = alphap + p*(1.-alphap-betap) # Computes quantiles along axis (or globally) if (axis is None): return _quantiles1D(data, m, p) return ma.apply_along_axis(_quantiles1D, axis, data, m, p) def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4): """Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median. This function is a shortcut to mquantile """ if (per < 0) or (per > 100.): raise ValueError("The percentile should be between 0. and 100. !" " (got %s)" % per) return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap, limit=limit, axis=0).squeeze() def plotting_positions(data, alpha=0.4, beta=0.4): """ Returns plotting positions (or empirical percentile points) for the data. Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where: - i is the rank order statistics - n is the number of unmasked values along the given axis - `alpha` and `beta` are two parameters. Typical values for `alpha` and `beta` are: - (0,1) : ``p(k) = k/n``, linear interpolation of cdf (R, type 4) - (.5,.5) : ``p(k) = (k-1/2.)/n``, piecewise linear function (R, type 5) - (0,0) : ``p(k) = k/(n+1)``, Weibull (R type 6) - (1,1) : ``p(k) = (k-1)/(n-1)``, in this case, ``p(k) = mode[F(x[k])]``. That's R default (R type 7) - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then ``p(k) ~ median[F(x[k])]``. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8) - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM - (.3175, .3175): used in scipy.stats.probplot Parameters ---------- data : array_like Input data, as a sequence or array of dimension at most 2. alpha : float, optional Plotting positions parameter. Default is 0.4. beta : float, optional Plotting positions parameter. Default is 0.4. Returns ------- positions : MaskedArray The calculated plotting positions. """ data = ma.array(data, copy=False).reshape(1,-1) n = data.count() plpos = np.empty(data.size, dtype=float) plpos[n:] = 0 plpos[data.argsort()[:n]] = ((np.arange(1, n+1) - alpha) / (n + 1.0 - alpha - beta)) return ma.array(plpos, mask=data._mask) meppf = plotting_positions def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If an `f_oneway()` run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data @np.deprecate(message="mstats.signaltonoise is deprecated in scipy 0.16.0") def signaltonoise(data, axis=0): """Calculates the signal-to-noise ratio, as the ratio of the mean over standard deviation along the given axis. Parameters ---------- data : sequence Input data axis : {0, int}, optional Axis along which to compute. If None, the computation is performed on a flat version of the array. """ data = ma.array(data, copy=False) m = data.mean(axis) sd = data.std(axis, ddof=0) return m/sd def sem(a, axis=0, ddof=1): """ Calculates the standard error of the mean of the input array. Also sometimes called standard error of measurement. Parameters ---------- a : array_like An array containing the values for which the standard error is returned. axis : int or None, optional If axis is None, ravel `a` first. If axis is an integer, this will be the axis over which to operate. Defaults to 0. ddof : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1. Returns ------- s : ndarray or float The standard error of the mean in the sample(s), along the input axis. Notes ----- The default value for `ddof` changed in scipy 0.15.0 to be consistent with `stats.sem` as well as with the most common definition used (like in the R documentation). Examples -------- Find standard error along the first axis: >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> print(stats.mstats.sem(a)) [2.8284271247461903 2.8284271247461903 2.8284271247461903 2.8284271247461903] Find standard error across the whole array, using n degrees of freedom: >>> print(stats.mstats.sem(a, axis=None, ddof=0)) 1.2893796958227628 """ a, axis = _chk_asarray(a, axis) n = a.count(axis=axis) s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n) return s F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue')) def f_oneway(*args): """ Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7. Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays, one per treatment group. Returns ------- statistic : float The computed F-value of the test. pvalue : float The associated p-value from the F-distribution. """ # Construct a single array of arguments: each row is a group data = argstoarray(*args) ngroups = len(data) ntot = data.count() sstot = (data**2).sum() - (data.sum())**2/float(ntot) ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum() sswg = sstot-ssbg dfbg = ngroups-1 dfwg = ntot - ngroups msb = ssbg/float(dfbg) msw = sswg/float(dfwg) f = msb/msw prob = special.fdtrc(dfbg, dfwg, f) # equivalent to stats.f.sf return F_onewayResult(f, prob) @np.deprecate(message="mstats.f_value_wilks_lambda deprecated in scipy 0.17.0") def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b): """Calculation of Wilks lambda F-statistic for multivariate data, per Maxwell & Delaney p.657. """ ER = ma.array(ER, copy=False, ndmin=2) EF = ma.array(EF, copy=False, ndmin=2) if ma.getmask(ER).any() or ma.getmask(EF).any(): raise NotImplementedError("Not implemented when the inputs " "have missing data") lmbda = np.linalg.det(EF) / np.linalg.det(ER) q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5)) q = ma.filled(q, 1) n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1) d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1) return n_um / d_en FriedmanchisquareResult = namedtuple('FriedmanchisquareResult', ('statistic', 'pvalue')) def friedmanchisquare(*args): """Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value. Each input is considered a given group. Ideally, the number of treatments among each group should be equal. If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of the smallest group. If a group has some missing values, the corresponding treatments are masked in the other groups. The test statistic is corrected for ties. Masked values in one group are propagated to the other groups. Returns ------- statistic : float the test statistic. pvalue : float the associated p-value. """ data = argstoarray(*args).astype(float) k = len(data) if k < 3: raise ValueError("Less than 3 groups (%i): " % k + "the Friedman test is NOT appropriate.") ranked = ma.masked_values(rankdata(data, axis=0), 0) if ranked._mask is not nomask: ranked = ma.mask_cols(ranked) ranked = ranked.compressed().reshape(k,-1).view(ndarray) else: ranked = ranked._data (k,n) = ranked.shape # Ties correction repeats = np.array([find_repeats(_) for _ in ranked.T], dtype=object) ties = repeats[repeats.nonzero()].reshape(-1,2)[:,-1].astype(int) tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k)) ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2) chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k-1))
bsd-3-clause
wavelets/lifelines
tests/test_statistics.py
3
7796
from __future__ import print_function import numpy as np import pandas as pd import numpy.testing as npt import pytest from lifelines import statistics as stats from lifelines.datasets import load_waltons, load_g3 def test_sample_size_necessary_under_cph(): assert stats.sample_size_necessary_under_cph(0.8, 1, 0.8, 0.2, 0.139) == (14, 14) assert stats.sample_size_necessary_under_cph(0.8, 1, 0.5, 0.5, 1.2) == (950, 950) assert stats.sample_size_necessary_under_cph(0.8, 1.5, 0.5, 0.5, 1.2) == (1231, 821) assert stats.sample_size_necessary_under_cph(0.8, 1.5, 0.5, 0.5, 1.2, alpha=0.01) == (1832, 1221) def test_power_under_cph(): assert abs(stats.power_under_cph(12,12, 0.8, 0.2, 0.139) - 0.744937) < 10e-6 assert abs(stats.power_under_cph(12,20, 0.8, 0.2, 1.2) - 0.05178317) < 10e-6 def test_unequal_intensity_with_random_data(): data1 = np.random.exponential(5, size=(2000, 1)) data2 = np.random.exponential(1, size=(2000, 1)) test_result = stats.logrank_test(data1, data2) assert test_result.is_significant def test_logrank_test_output_against_R_1(): df = load_g3() ix = (df['group'] == 'RIT') d1, e1 = df.ix[ix]['time'], df.ix[ix]['event'] d2, e2 = df.ix[~ix]['time'], df.ix[~ix]['event'] expected = 0.0138 result = stats.logrank_test(d1, d2, event_observed_A=e1, event_observed_B=e2) assert abs(result.p_value - expected) < 0.0001 def test_logrank_test_output_against_R_2(): # from https://stat.ethz.ch/education/semesters/ss2011/seminar/contents/presentation_2.pdf control_T = [1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23] control_E = np.ones_like(control_T) treatment_T = [6, 6, 6, 7, 10, 13, 16, 22, 23, 6, 9, 10, 11, 17, 19, 20, 25, 32, 32, 34, 25] treatment_E = [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] result = stats.logrank_test(control_T, treatment_T, event_observed_A=control_E, event_observed_B=treatment_E) expected_p_value = 4.17e-05 assert abs(result.p_value - expected_p_value) < 0.0001 assert abs(result.test_statistic - 16.8) < 0.1 def test_rank_test_output_against_R_no_censorship(): """ > time <- c(10,20,30,10,20,50) > status <- c(1,1,1,1,1,1) > treatment <- c(1,1,1,0,0,0) > survdiff(Surv(time, status) ~ treatment) """ result = stats.multivariate_logrank_test([10, 20, 30, 10, 20, 50], [1, 1, 1, 0, 0, 0]) r_p_value = 0.614107 r_stat = 0.254237 assert abs(result.p_value - r_p_value) < 10e-6 assert abs(result.test_statistic - r_stat) < 10e-6 def test_rank_test_output_against_R_with_censorship(): """ > time <- c(10,20,30,10,20,50) > status <- c(1,0,1,1,0,1) > treatment <- c(1,1,1,0,0,0) > survdiff(Surv(time, status) ~ treatment) """ result = stats.multivariate_logrank_test([10, 20, 30, 10, 20, 50], [1, 1, 1, 0, 0, 0], [1, 0, 1, 1, 0, 1]) r_p_value = 0.535143 r_stat = 0.384615 assert abs(result.p_value - r_p_value) < 10e-6 assert abs(result.test_statistic - r_stat) < 10e-6 def test_unequal_intensity_event_observed(): data1 = np.random.exponential(5, size=(2000, 1)) data2 = np.random.exponential(1, size=(2000, 1)) eventA = np.random.binomial(1, 0.5, size=(2000, 1)) eventB = np.random.binomial(1, 0.5, size=(2000, 1)) result = stats.logrank_test(data1, data2, event_observed_A=eventA, event_observed_B=eventB) assert result.is_significant def test_integer_times_logrank_test(): data1 = np.random.exponential(5, size=(2000, 1)).astype(int) data2 = np.random.exponential(1, size=(2000, 1)).astype(int) result = stats.logrank_test(data1, data2) assert result.is_significant def test_equal_intensity_with_negative_data(): data1 = np.random.normal(0, size=(2000, 1)) data1 -= data1.mean() data1 /= data1.std() data2 = np.random.normal(0, size=(2000, 1)) data2 -= data2.mean() data2 /= data2.std() result = stats.logrank_test(data1, data2) assert not result.is_significant def test_unequal_intensity_with_negative_data(): data1 = np.random.normal(-5, size=(2000, 1)) data2 = np.random.normal(5, size=(2000, 1)) result = stats.logrank_test(data1, data2) assert result.is_significant def test_waltons_dataset(): df = load_waltons() ix = df['group'] == 'miR-137' waltonT1 = df.ix[ix]['T'] waltonT2 = df.ix[~ix]['T'] result = stats.logrank_test(waltonT1, waltonT2) assert result.is_significant def test_logrank_test_is_symmetric(): data1 = np.random.exponential(5, size=(2000, 1)).astype(int) data2 = np.random.exponential(1, size=(2000, 1)).astype(int) result1 = stats.logrank_test(data1, data2) result2 = stats.logrank_test(data2, data1) assert abs(result1.p_value - result2.p_value) < 10e-8 assert result2.is_significant == result1.is_significant def test_multivariate_unequal_intensities(): T = np.random.exponential(10, size=300) g = np.random.binomial(2, 0.5, size=300) T[g == 1] = np.random.exponential(1, size=(g == 1).sum()) result = stats.multivariate_logrank_test(T, g) assert result.is_significant def test_pairwise_waltons_dataset_is_significantly_different(): waltons_dataset = load_waltons() R = stats.pairwise_logrank_test(waltons_dataset['T'], waltons_dataset['group']) assert R.values[0, 1].is_significant def test_pairwise_logrank_test_with_identical_data_returns_inconclusive(): t = np.random.exponential(10, size=100) T = np.tile(t, 3) g = np.array([1, 2, 3]).repeat(100) R = stats.pairwise_logrank_test(T, g, alpha=0.99).applymap(lambda r: r.is_significant if r is not None else None) V = np.array([[None, False, False], [False, None, False], [False, False, None]]) npt.assert_array_equal(R.values, V) def test_pairwise_allows_dataframes(): N = 100 df = pd.DataFrame(np.empty((N, 3)), columns=["T", "C", "group"]) df["T"] = np.random.exponential(1, size=N) df["C"] = np.random.binomial(1, 0.6, size=N) df["group"] = np.random.binomial(2, 0.5, size=N) stats.pairwise_logrank_test(df['T'], df["group"], event_observed=df["C"]) def test_log_rank_returns_None_if_equal_arrays(): T = np.random.exponential(5, size=200) result = stats.logrank_test(T, T, alpha=0.95) assert not result.is_significant C = np.random.binomial(2, 0.8, size=200) result = stats.logrank_test(T, T, C, C, alpha=0.95) assert not result.is_significant def test_multivariate_log_rank_is_identital_to_log_rank_for_n_equals_2(): N = 200 T1 = np.random.exponential(5, size=N) T2 = np.random.exponential(5, size=N) C1 = np.random.binomial(2, 0.9, size=N) C2 = np.random.binomial(2, 0.9, size=N) result = stats.logrank_test(T1, T2, C1, C2, alpha=0.95) T = np.r_[T1, T2] C = np.r_[C1, C2] G = np.array([1] * 200 + [2] * 200) result_m = stats.multivariate_logrank_test(T, G, C, alpha=0.95) assert result.is_significant == result_m.is_significant assert result.p_value == result_m.p_value def test_StatisticalResult_class(): sr = stats.StatisticalResult(True, 0.04, 5.0) assert sr.is_significant assert sr.test_result == "Reject Null" sr = stats.StatisticalResult(None, 0.04, 5.0) assert not sr.is_significant assert sr.test_result == "Cannot Reject Null" sr = stats.StatisticalResult(True, 0.05, 5.0, kw='some_value') assert hasattr(sr, 'kw') assert getattr(sr, 'kw') == 'some_value' assert 'some_value' in sr.__unicode__() def test_valueerror_is_raised_if_alpha_out_of_bounds(): data1 = np.random.exponential(5, size=(20, 1)) data2 = np.random.exponential(1, size=(20, 1)) with pytest.raises(ValueError): stats.logrank_test(data1, data2, alpha=95)
mit
google/learned_optimization
learned_optimization/tasks/parametric/parametric_utils_test.py
1
2315
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for parametric_utils.""" from absl.testing import absltest import haiku as hk import jax import jax.numpy as jnp from learned_optimization.tasks.parametric import parametric_utils import numpy as onp from numpy import testing class ParametricUtilsTest(absltest.TestCase): def test_SampleImageDataset(self): key = jax.random.PRNGKey(0) cfg = parametric_utils.SampleImageDataset.sample(key) datasets = parametric_utils.SampleImageDataset.get_dataset(cfg, 8, (8, 8)) _ = datasets.train def test_SampleActivation(self): key = jax.random.PRNGKey(0) cfg = parametric_utils.SampleActivation.sample(key) act_fn = parametric_utils.SampleActivation.get_dynamic(cfg) value = jax.jit(act_fn)(12.) self.assertEqual(value.shape, ()) act_fn = parametric_utils.SampleActivation.get_static(cfg) value2 = act_fn(12.) self.assertEqual(value, value2) def test_SampleInitializer(self): key = jax.random.PRNGKey(0) cfg = parametric_utils.SampleInitializer.sample(key) def forward(cfg): init = parametric_utils.SampleInitializer.get_dynamic(cfg) param = hk.get_parameter('asdf', [2, 2], dtype=jnp.float32, init=init) return param init_fn, _ = hk.transform(forward) val = jax.jit(init_fn)(key, cfg) self.assertEqual(jax.tree_util.tree_leaves(val)[0].shape, (2, 2)) def test_orth_init(self): key = jax.random.PRNGKey(0) init = parametric_utils.orth_init([16, 16], jnp.float32, key) # Check that the initializer is orthogonal by checking if all the eval's evals, unused_evecs = onp.linalg.eig(init) testing.assert_allclose(onp.abs(evals), jnp.ones([16]), rtol=1e-6) if __name__ == '__main__': absltest.main()
apache-2.0
quheng/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
205
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
quheng/scikit-learn
sklearn/tree/tests/test_export.py
130
9950
""" Testing for export functions of decision trees (sklearn.tree.export). """ from re import finditer from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO from sklearn.utils.testing import assert_in # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 2], [-1, 3], [1, 1], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=1, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[1.5, 1.5, 1.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="X[1] <= -1.5\\nsamples = 3\\n' \ 'value = [[3, 0, 0]\\n[1, 1, 1]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="samples = 1\\nvalue = [[1, 0, 0]\\n' \ '[0, 0, 1]]", fillcolor="#e58139ff"] ;\n' \ '1 -> 2 ;\n' \ '3 [label="samples = 2\\nvalue = [[2, 0, 0]\\n' \ '[1, 1, 0]]", fillcolor="#e581398c"] ;\n' \ '1 -> 3 ;\n' \ '4 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n[0.5, 0.5, 0.5]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 4 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '5 [label="samples = 2\\nvalue = [[0.0, 1.0, 0.0]\\n' \ '[0.5, 0.5, 0.0]]", fillcolor="#e581398c"] ;\n' \ '4 -> 5 ;\n' \ '6 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '4 -> 6 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=1, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e581397f"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[]) def test_friedman_mse_in_graphviz(): clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0) clf.fit(X, y) dot_data = StringIO() export_graphviz(clf, out_file=dot_data) clf = GradientBoostingClassifier(n_estimators=2, random_state=0) clf.fit(X, y) for estimator in clf.estimators_: export_graphviz(estimator[0], out_file=dot_data) for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()): assert_in("friedman_mse", finding.group())
bsd-3-clause
harshaneelhg/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
267
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <mr.phil.roth@gmail.com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
justincassidy/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
267
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <mr.phil.roth@gmail.com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
rbharath/deepchem
examples/pdbbind/pdbbind_rf.py
3
1332
""" Script that trains Sklearn RF models on PDBbind dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "Bharath Ramsundar" __copyright__ = "Copyright 2016, Stanford University" __license__ = "GPL" import os import deepchem as dc import numpy as np from sklearn.ensemble import RandomForestRegressor from pdbbind_datasets import load_pdbbind_grid # For stable runs np.random.seed(123) split = "random" subset = "full" pdbbind_tasks, pdbbind_datasets, transformers = load_pdbbind_grid( split=split, subset=subset) train_dataset, valid_dataset, test_dataset = pdbbind_datasets metric = dc.metrics.Metric(dc.metrics.pearson_r2_score) current_dir = os.path.dirname(os.path.realpath(__file__)) model_dir = os.path.join(current_dir, "%s_%s_RF" % (split, subset)) sklearn_model = RandomForestRegressor(n_estimators=500) model = dc.models.SklearnModel(sklearn_model, model_dir=model_dir) # Fit trained model print("Fitting model on train dataset") model.fit(train_dataset) model.save() print("Evaluating model") train_scores = model.evaluate(train_dataset, [metric], transformers) valid_scores = model.evaluate(valid_dataset, [metric], transformers) print("Train scores") print(train_scores) print("Validation scores") print(valid_scores)
mit
Lawrence-Liu/scikit-learn
sklearn/utils/class_weight.py
139
7206
# Authors: Andreas Mueller # Manoj Kumar # License: BSD 3 clause import warnings import numpy as np from ..externals import six from ..utils.fixes import in1d from .fixes import bincount def compute_class_weight(class_weight, classes, y): """Estimate class weights for unbalanced datasets. Parameters ---------- class_weight : dict, 'balanced' or None If 'balanced', class weights will be given by ``n_samples / (n_classes * np.bincount(y))``. If a dictionary is given, keys are classes and values are corresponding class weights. If None is given, the class weights will be uniform. classes : ndarray Array of the classes occurring in the data, as given by ``np.unique(y_org)`` with ``y_org`` the original class labels. y : array-like, shape (n_samples,) Array of original class labels per sample; Returns ------- class_weight_vect : ndarray, shape (n_classes,) Array with class_weight_vect[i] the weight for i-th class References ---------- The "balanced" heuristic is inspired by Logistic Regression in Rare Events Data, King, Zen, 2001. """ # Import error caused by circular imports. from ..preprocessing import LabelEncoder if class_weight is None or len(class_weight) == 0: # uniform class weights weight = np.ones(classes.shape[0], dtype=np.float64, order='C') elif class_weight in ['auto', 'balanced']: # Find the weight of each class as present in y. le = LabelEncoder() y_ind = le.fit_transform(y) if not all(np.in1d(classes, le.classes_)): raise ValueError("classes should have valid labels that are in y") # inversely proportional to the number of samples in the class if class_weight == 'auto': recip_freq = 1. / bincount(y_ind) weight = recip_freq[le.transform(classes)] / np.mean(recip_freq) warnings.warn("The class_weight='auto' heuristic is deprecated in" " favor of a new heuristic class_weight='balanced'." " 'auto' will be removed in 0.18", DeprecationWarning) else: recip_freq = len(y) / (len(le.classes_) * bincount(y_ind).astype(np.float64)) weight = recip_freq[le.transform(classes)] else: # user-defined dictionary weight = np.ones(classes.shape[0], dtype=np.float64, order='C') if not isinstance(class_weight, dict): raise ValueError("class_weight must be dict, 'auto', or None," " got: %r" % class_weight) for c in class_weight: i = np.searchsorted(classes, c) if classes[i] != c: raise ValueError("Class label %d not present." % c) else: weight[i] = class_weight[c] return weight def compute_sample_weight(class_weight, y, indices=None): """Estimate sample weights by class for unbalanced datasets. Parameters ---------- class_weight : dict, list of dicts, "balanced", or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data: ``n_samples / (n_classes * np.bincount(y))``. For multi-output, the weights of each column of y will be multiplied. y : array-like, shape = [n_samples] or [n_samples, n_outputs] Array of original class labels per sample. indices : array-like, shape (n_subsample,), or None Array of indices to be used in a subsample. Can be of length less than n_samples in the case of a subsample, or equal to n_samples in the case of a bootstrap subsample with repeated indices. If None, the sample weight will be calculated over the full sample. Only "auto" is supported for class_weight if this is provided. Returns ------- sample_weight_vect : ndarray, shape (n_samples,) Array with sample weights as applied to the original y """ y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] if isinstance(class_weight, six.string_types): if class_weight not in ['balanced', 'auto']: raise ValueError('The only valid preset for class_weight is ' '"balanced". Given "%s".' % class_weight) elif (indices is not None and not isinstance(class_weight, six.string_types)): raise ValueError('The only valid class_weight for subsampling is ' '"balanced". Given "%s".' % class_weight) elif n_outputs > 1: if (not hasattr(class_weight, "__iter__") or isinstance(class_weight, dict)): raise ValueError("For multi-output, class_weight should be a " "list of dicts, or a valid string.") if len(class_weight) != n_outputs: raise ValueError("For multi-output, number of elements in " "class_weight should match number of outputs.") expanded_class_weight = [] for k in range(n_outputs): y_full = y[:, k] classes_full = np.unique(y_full) classes_missing = None if class_weight in ['balanced', 'auto'] or n_outputs == 1: class_weight_k = class_weight else: class_weight_k = class_weight[k] if indices is not None: # Get class weights for the subsample, covering all classes in # case some labels that were present in the original data are # missing from the sample. y_subsample = y[indices, k] classes_subsample = np.unique(y_subsample) weight_k = np.choose(np.searchsorted(classes_subsample, classes_full), compute_class_weight(class_weight_k, classes_subsample, y_subsample), mode='clip') classes_missing = set(classes_full) - set(classes_subsample) else: weight_k = compute_class_weight(class_weight_k, classes_full, y_full) weight_k = weight_k[np.searchsorted(classes_full, y_full)] if classes_missing: # Make missing classes' weight zero weight_k[in1d(y_full, list(classes_missing))] = 0. expanded_class_weight.append(weight_k) expanded_class_weight = np.prod(expanded_class_weight, axis=0, dtype=np.float64) return expanded_class_weight
bsd-3-clause
halfak/pyenchant
enchant/tokenize/__init__.py
2
19440
# pyenchant # # Copyright (C) 2004-2009, Ryan Kelly # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # # In addition, as a special exception, you are # given permission to link the code of this program with # non-LGPL Spelling Provider libraries (eg: a MSFT Office # spell checker backend) and distribute linked combinations including # the two. You must obey the GNU Lesser General Public License in all # respects for all of the code used other than said providers. If you modify # this file, you may extend this exception to your version of the # file, but you are not obligated to do so. If you do not wish to # do so, delete this exception statement from your version. # """ enchant.tokenize: String tokenization functions for PyEnchant ================================================================ An important task in spellchecking is breaking up large bodies of text into their constituent words, each of which is then checked for correctness. This package provides Python functions to split strings into words according to the rules of a particular language. Each tokenization function accepts a string as its only positional argument, and returns an iterator that yields tuples of the following form, one for each word found:: (<word>,<pos>) The meanings of these fields should be clear: <word> is the word that was found and <pos> is the position within the text at which the word began (zero indexed, of course). The function will work on any string-like object that supports array-slicing; in particular character-array objects from the 'array' module may be used. The iterator also provides the attribute 'offset' which gives the current position of the tokenizer inside the string being split, and the method 'set_offset' for manually adjusting this position. This can be used for example if the string's contents have changed during the tokenization process. To obtain an appropriate tokenization function for the language identified by <tag>, use the function 'get_tokenizer(tag)':: tknzr = get_tokenizer("en_US") for (word,pos) in tknzr("text to be tokenized goes here") do_something(word) This library is designed to be easily extendible by third-party authors. To register a tokenization function for the language <tag>, implement it as the function 'tokenize' within the module enchant.tokenize.<tag>. The 'get_tokenizer' function will automatically detect it. Note that the underscore must be used as the tag component separator in this case, in order to form a valid python module name. (e.g. "en_US" rather than "en-US") Currently, a tokenizer has only been implemented for the English language. Based on the author's limited experience, this should be at least partially suitable for other languages. This module also provides various implementations of "Chunkers" and "Filters". These classes are designed to make it easy to work with text in a vareity of common formats, by detecting and excluding parts of the text that don't need to be checked. A Chunker is a class designed to break a body of text into large chunks of checkable content; for example the HTMLChunker class extracts the text content from all HTML tags but excludes the tags themselves. A Filter is a class designed to skip individual words during the checking process; for example the URLFilter class skips over any words that have the format of a URL. For exmaple, to spellcheck an HTML document it is necessary to split the text into chunks based on HTML tags, and to filter out common word forms such as URLs and WikiWords. This would look something like the following:: tknzr = get_tokenizer("en_US",(HTMLChunker,),(URLFilter,WikiWordFilter))) text = "<html><body>the url is http://example.com</body></html>" for (word,pos) in tknzer(text): ...check each word and react accordingly... """ _DOC_ERRORS = ["pos","pos","tknzr","URLFilter","WikiWordFilter", "tkns","tknzr","pos","tkns"] import re import warnings import array import enchant from enchant.utils import next, xrange from enchant.errors import * # For backwards-compatability. This will eventually be removed, but how # does one mark a module-level constant as deprecated? Error = TokenizerNotFoundError class tokenize: """Base class for all tokenizer objects. Each tokenizer must be an iterator and provide the 'offset' attribute as described in the documentation for this module. While tokenizers are in fact classes, they should be treated like functions, and so are named using lower_case rather than the CamelCase more traditional of class names. """ _DOC_ERRORS = ["CamelCase"] def __init__(self,text): self._text = text self._offset = 0 def __next__(self): return self.next() def next(self): raise NotImplementedError() def __iter__(self): return self def set_offset(self,offset,replaced=False): self._offset = offset def _get_offset(self): return self._offset def _set_offset(self,offset): msg = "changing a tokenizers 'offset' attribute is deprecated;"\ " use the 'set_offset' method" warnings.warn(msg,category=DeprecationWarning,stacklevel=2) self.set_offset(offset) offset = property(_get_offset,_set_offset) def get_tokenizer(tag=None,chunkers=None,filters=None): """Locate an appropriate tokenizer by language tag. This requires importing the function 'tokenize' from an appropriate module. Modules tried are named after the language tag, tried in the following order: * the entire tag (e.g. "en_AU.py") * the base country code of the tag (e.g. "en.py") If the language tag is None, a default tokenizer (actually the English one) is returned. It's unicode aware and should work OK for most latin-derived languages. If a suitable function cannot be found, raises TokenizerNotFoundError. If given and not None, 'chunkers' and 'filters' must be lists of chunker classes and filter classes resectively. These will be applied to the tokenizer during creation. """ if tag is None: tag = "en" # "filters" used to be the second argument. Try to catch cases # where it is given positionally and issue a DeprecationWarning. if chunkers is not None and filters is None: chunkers = list(chunkers) if chunkers: try: chunkers_are_filters = issubclass(chunkers[0],Filter) except TypeError: pass else: if chunkers_are_filters: msg = "passing 'filters' as a non-keyword argument "\ "to get_tokenizer() is deprecated" warnings.warn(msg,category=DeprecationWarning,stacklevel=2) filters = chunkers chunkers = None # Ensure only '_' used as separator tag = tag.replace("-","_") # First try the whole tag tkFunc = _try_tokenizer(tag) if tkFunc is None: # Try just the base base = tag.split("_")[0] tkFunc = _try_tokenizer(base) if tkFunc is None: msg = "No tokenizer found for language '%s'" % (tag,) raise TokenizerNotFoundError(msg) # Given the language-specific tokenizer, we now build up the # end result as follows: # * chunk the text using any given chunkers in turn # * begin with basic whitespace tokenization # * apply each of the given filters in turn # * apply language-specific rules tokenizer = basic_tokenize if chunkers is not None: chunkers = list(chunkers) for i in xrange(len(chunkers)-1,-1,-1): tokenizer = wrap_tokenizer(chunkers[i],tokenizer) if filters is not None: for f in filters: tokenizer = f(tokenizer) tokenizer = wrap_tokenizer(tokenizer,tkFunc) return tokenizer get_tokenizer._DOC_ERRORS = ["py","py"] class empty_tokenize(tokenize): """Tokenizer class that yields no elements.""" _DOC_ERRORS = [] def __init__(self): tokenize.__init__(self,"") def next(self): raise StopIteration() class unit_tokenize(tokenize): """Tokenizer class that yields the text as a single token.""" _DOC_ERRORS = [] def __init__(self,text): tokenize.__init__(self,text) self._done = False def next(self): if self._done: raise StopIteration() self._done = True return (self._text,0) class basic_tokenize(tokenize): """Tokenizer class that performs very basic word-finding. This tokenizer does the most basic thing that could work - it splits text into words based on whitespace boundaries, and removes basic punctuation symbols from the start and end of each word. """ _DOC_ERRORS = [] # Chars to remove from start/end of words strip_from_start = '"' + "'`([" strip_from_end = '"' + "'`]).!,?;:" def next(self): text = self._text offset = self._offset while True: if offset >= len(text): break # Find start of next word while offset < len(text) and text[offset].isspace(): offset += 1 sPos = offset # Find end of word while offset < len(text) and not text[offset].isspace(): offset += 1 ePos = offset self._offset = offset # Strip chars from font/end of word while sPos < len(text) and text[sPos] in self.strip_from_start: sPos += 1 while 0 < ePos and text[ePos-1] in self.strip_from_end: ePos -= 1 # Return if word isnt empty if(sPos < ePos): return (text[sPos:ePos],sPos) raise StopIteration() def _try_tokenizer(modName): """Look for a tokenizer in the named module. Returns the function if found, None otherwise. """ modBase = "enchant.tokenize." funcName = "tokenize" modName = modBase + modName try: mod = __import__(modName,globals(),{},funcName) return getattr(mod,funcName) except ImportError: return None def wrap_tokenizer(tk1,tk2): """Wrap one tokenizer inside another. This function takes two tokenizer functions 'tk1' and 'tk2', and returns a new tokenizer function that passes the output of tk1 through tk2 before yielding it to the calling code. """ # This logic is already implemented in the Filter class. # We simply use tk2 as the _split() method for a filter # around tk1. tkW = Filter(tk1) tkW._split = tk2 return tkW wrap_tokenizer._DOC_ERRORS = ["tk","tk","tk","tk"] class Chunker(tokenize): """Base class for text chunking functions. A chunker is designed to chunk text into large blocks of tokens. It has the same interface as a tokenizer but is for a different purpose. """ pass class Filter(object): """Base class for token filtering functions. A filter is designed to wrap a tokenizer (or another filter) and do two things: * skip over tokens * split tokens into sub-tokens Subclasses have two basic options for customising their behaviour. The method _skip(word) may be overridden to return True for words that should be skipped, and false otherwise. The method _split(word) may be overridden as tokenization function that will be applied to further tokenize any words that aren't skipped. """ def __init__(self,tokenizer): """Filter class constructor.""" self._tokenizer = tokenizer def __call__(self,*args,**kwds): tkn = self._tokenizer(*args,**kwds) return self._TokenFilter(tkn,self._skip,self._split) def _skip(self,word): """Filter method for identifying skippable tokens. If this method returns true, the given word will be skipped by the filter. This should be overridden in subclasses to produce the desired functionality. The default behaviour is not to skip any words. """ return False def _split(self,word): """Filter method for sub-tokenization of tokens. This method must be a tokenization function that will split the given word into sub-tokens according to the needs of the filter. The default behaviour is not to split any words. """ return unit_tokenize(word) class _TokenFilter(object): """Private inner class implementing the tokenizer-wrapping logic. This might seem convoluted, but we're trying to create something akin to a meta-class - when Filter(tknzr) is called it must return a *callable* that can then be applied to a particular string to perform the tokenization. Since we need to manage a lot of state during tokenization, returning a class is the best option. """ _DOC_ERRORS = ["tknzr"] def __init__(self,tokenizer,skip,split): self._skip = skip self._split = split self._tokenizer = tokenizer # for managing state of sub-tokenization self._curtok = empty_tokenize() self._curword = "" self._curpos = 0 def __iter__(self): return self def __next__(self): return self.next() def next(self): # Try to get the next sub-token from word currently being split. # If unavailable, move on to the next word and try again. try: (word,pos) = next(self._curtok) return (word,pos + self._curpos) except StopIteration: (word,pos) = next(self._tokenizer) while self._skip(self._to_string(word)): (word,pos) = next(self._tokenizer) self._curword = word self._curpos = pos self._curtok = self._split(word) return self.next() def _to_string(self, word): if type(word) is array.array: if word.typecode == 'u': return word.tounicode() elif word.typecode == 'c': return word.tostring() return word # Pass on access to 'offset' to the underlying tokenizer. def _get_offset(self): return self._tokenizer.offset def _set_offset(self,offset): msg = "changing a tokenizers 'offset' attribute is deprecated;"\ " use the 'set_offset' method" warnings.warn(msg,category=DeprecationWarning,stacklevel=2) self.set_offset(offset) offset = property(_get_offset,_set_offset) def set_offset(self,val,replaced=False): old_offset = self._tokenizer.offset self._tokenizer.set_offset(val,replaced=replaced) # If we move forward within the current word, also set on _curtok. # Otherwise, throw away _curtok and set to empty iterator. keep_curtok = True curtok_offset = val - self._curpos if old_offset > val: keep_curtok = False if curtok_offset < 0: keep_curtok = False if curtok_offset >= len(self._curword): keep_curtok = False if keep_curtok and not replaced: self._curtok.set_offset(curtok_offset) else: self._curtok = empty_tokenize() self._curword = "" self._curpos = 0 # Pre-defined chunkers and filters start here class URLFilter(Filter): """Filter skipping over URLs. This filter skips any words matching the following regular expression: ^[a-zA-z]+:\/\/[^\s].* That is, any words that are URLs. """ _DOC_ERRORS = ["zA"] _pattern = re.compile(r"^[a-zA-z]+:\/\/[^\s].*") def _skip(self,word): if self._pattern.match(word): return True return False class WikiWordFilter(Filter): """Filter skipping over WikiWords. This filter skips any words matching the following regular expression: ^([A-Z]\w+[A-Z]+\w+) That is, any words that are WikiWords. """ _pattern = re.compile(r"^([A-Z]\w+[A-Z]+\w+)") def _skip(self,word): if self._pattern.match(word): return True return False class EmailFilter(Filter): """Filter skipping over email addresses. This filter skips any words matching the following regular expression: ^.+@[^\.].*\.[a-z]{2,}$ That is, any words that resemble email addresses. """ _pattern = re.compile(r"^.+@[^\.].*\.[a-z]{2,}$") def _skip(self,word): if self._pattern.match(word): return True return False class HTMLChunker(Chunker): """Chunker for breaking up HTML documents into chunks of checkable text. The operation of this chunker is very simple - anything between a "<" and a ">" will be ignored. Later versions may improve the algorithm slightly. """ def next(self): text = self._text offset = self.offset while True: if offset >= len(text): break # Skip to the end of the current tag, if any. if text[offset] == "<": maybeTag = offset if self._is_tag(text,offset): while text[offset] != ">": offset += 1 if offset == len(text): offset = maybeTag+1 break else: offset += 1 else: offset = maybeTag+1 sPos = offset # Find the start of the next tag. while offset < len(text) and text[offset] != "<": offset += 1 ePos = offset self._offset = offset # Return if chunk isnt empty if(sPos < offset): return (text[sPos:offset],sPos) raise StopIteration() def _is_tag(self,text,offset): if offset+1 < len(text): if text[offset+1].isalpha(): return True if text[offset+1] == "/": return True return False #TODO: LaTeXChunker
lgpl-2.1
ningchi/scikit-learn
examples/svm/plot_svm_anova.py
249
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
msimacek/samba
third_party/dnspython/dns/node.py
56
5869
# Copyright (C) 2001-2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """DNS nodes. A node is a set of rdatasets.""" import StringIO import dns.rdataset import dns.rdatatype import dns.renderer class Node(object): """A DNS node. A node is a set of rdatasets @ivar rdatasets: the node's rdatasets @type rdatasets: list of dns.rdataset.Rdataset objects""" __slots__ = ['rdatasets'] def __init__(self): """Initialize a DNS node. """ self.rdatasets = []; def to_text(self, name, **kw): """Convert a node to text format. Each rdataset at the node is printed. Any keyword arguments to this method are passed on to the rdataset's to_text() method. @param name: the owner name of the rdatasets @type name: dns.name.Name object @rtype: string """ s = StringIO.StringIO() for rds in self.rdatasets: print >> s, rds.to_text(name, **kw) return s.getvalue()[:-1] def __repr__(self): return '<DNS node ' + str(id(self)) + '>' def __eq__(self, other): """Two nodes are equal if they have the same rdatasets. @rtype: bool """ # # This is inefficient. Good thing we don't need to do it much. # for rd in self.rdatasets: if rd not in other.rdatasets: return False for rd in other.rdatasets: if rd not in self.rdatasets: return False return True def __ne__(self, other): return not self.__eq__(other) def __len__(self): return len(self.rdatasets) def __iter__(self): return iter(self.rdatasets) def find_rdataset(self, rdclass, rdtype, covers=dns.rdatatype.NONE, create=False): """Find an rdataset matching the specified properties in the current node. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. Usually this value is dns.rdatatype.NONE, but if the rdtype is dns.rdatatype.SIG or dns.rdatatype.RRSIG, then the covers value will be the rdata type the SIG/RRSIG covers. The library treats the SIG and RRSIG types as if they were a family of types, e.g. RRSIG(A), RRSIG(NS), RRSIG(SOA). This makes RRSIGs much easier to work with than if RRSIGs covering different rdata types were aggregated into a single RRSIG rdataset. @type covers: int @param create: If True, create the rdataset if it is not found. @type create: bool @raises KeyError: An rdataset of the desired type and class does not exist and I{create} is not True. @rtype: dns.rdataset.Rdataset object """ for rds in self.rdatasets: if rds.match(rdclass, rdtype, covers): return rds if not create: raise KeyError rds = dns.rdataset.Rdataset(rdclass, rdtype) self.rdatasets.append(rds) return rds def get_rdataset(self, rdclass, rdtype, covers=dns.rdatatype.NONE, create=False): """Get an rdataset matching the specified properties in the current node. None is returned if an rdataset of the specified type and class does not exist and I{create} is not True. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. @type covers: int @param create: If True, create the rdataset if it is not found. @type create: bool @rtype: dns.rdataset.Rdataset object or None """ try: rds = self.find_rdataset(rdclass, rdtype, covers, create) except KeyError: rds = None return rds def delete_rdataset(self, rdclass, rdtype, covers=dns.rdatatype.NONE): """Delete the rdataset matching the specified properties in the current node. If a matching rdataset does not exist, it is not an error. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. @type covers: int """ rds = self.get_rdataset(rdclass, rdtype, covers) if not rds is None: self.rdatasets.remove(rds) def replace_rdataset(self, replacement): """Replace an rdataset. It is not an error if there is no rdataset matching I{replacement}. Ownership of the I{replacement} object is transferred to the node; in other words, this method does not store a copy of I{replacement} at the node, it stores I{replacement} itself. """ self.delete_rdataset(replacement.rdclass, replacement.rdtype, replacement.covers) self.rdatasets.append(replacement)
gpl-3.0
RecipeML/Recipe
recipe/classifiers/sgd.py
1
2887
# -*- coding: utf-8 -*- """ Copyright 2016 Walter José and Alex de Sá This file is part of the RECIPE Algorithm. The RECIPE is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RECIPE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. See http://www.gnu.org/licenses/. """ from sklearn.linear_model import SGDClassifier def sgd(args): """Uses scikit-learn's SGDClassifier, this estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate) Parameters ---------- loss : str, ‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, ‘perceptron’, or a regression loss: ‘squared_loss’, ‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’ The loss function to be used. l1_ratio : float The Elastic Net mixing parameter, learning_rate : string The learning rate schedule: average : bool or int When set to True, computes the averaged SGD weights and stores the result in the coef_ attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. penalty : str, ‘none’, ‘l2’, ‘l1’, or ‘elasticnet’ The penalty (aka regularization term) to be used. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. n_iter : int The number of passes over the training data (aka epochs). shuffle : bool Whether or not the training data should be shuffled after each epoch. Defaults to True. eta0 : double The initial learning rate for the ‘constant’ or ‘invscaling’ schedules. """ loss_sgd = args[1] l1 = float(args[2]) lr_sgd = args[3] if(args[4].find("True")!=-1): av = True elif(args[4].find("False")!=-1): av = False else: av = int(args[4]) penal = args[5] fi = False if(args[6].find("True")!=-1): fi = True it = int(args[7]) sffle = False if(args[8].find("True")!=-1): sffle = True eta = float(args[9]) return SGDClassifier(loss=loss_sgd, penalty=penal, l1_ratio=l1, fit_intercept=fi, n_iter=it, shuffle=sffle, verbose=0, n_jobs=1, random_state=42, learning_rate=lr_sgd, eta0=eta, average=av)
gpl-3.0
Akshay0724/scikit-learn
benchmarks/bench_rcv1_logreg_convergence.py
56
7229
# Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org> # Olivier Grisel <olivier.grisel@ensta.org> # # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np import gc import time from sklearn.externals.joblib import Memory from sklearn.linear_model import (LogisticRegression, SGDClassifier) from sklearn.datasets import fetch_rcv1 from sklearn.linear_model.sag import get_auto_step_size try: import lightning.classification as lightning_clf except ImportError: lightning_clf = None m = Memory(cachedir='.', verbose=0) # compute logistic loss def get_loss(w, intercept, myX, myy, C): n_samples = myX.shape[0] w = w.ravel() p = np.mean(np.log(1. + np.exp(-myy * (myX.dot(w) + intercept)))) print("%f + %f" % (p, w.dot(w) / 2. / C / n_samples)) p += w.dot(w) / 2. / C / n_samples return p # We use joblib to cache individual fits. Note that we do not pass the dataset # as argument as the hashing would be too slow, so we assume that the dataset # never changes. @m.cache() def bench_one(name, clf_type, clf_params, n_iter): clf = clf_type(**clf_params) try: clf.set_params(max_iter=n_iter, random_state=42) except: clf.set_params(n_iter=n_iter, random_state=42) st = time.time() clf.fit(X, y) end = time.time() try: C = 1.0 / clf.alpha / n_samples except: C = clf.C try: intercept = clf.intercept_ except: intercept = 0. train_loss = get_loss(clf.coef_, intercept, X, y, C) train_score = clf.score(X, y) test_score = clf.score(X_test, y_test) duration = end - st return train_loss, train_score, test_score, duration def bench(clfs): for (name, clf, iter_range, train_losses, train_scores, test_scores, durations) in clfs: print("training %s" % name) clf_type = type(clf) clf_params = clf.get_params() for n_iter in iter_range: gc.collect() train_loss, train_score, test_score, duration = bench_one( name, clf_type, clf_params, n_iter) train_losses.append(train_loss) train_scores.append(train_score) test_scores.append(test_score) durations.append(duration) print("classifier: %s" % name) print("train_loss: %.8f" % train_loss) print("train_score: %.8f" % train_score) print("test_score: %.8f" % test_score) print("time for fit: %.8f seconds" % duration) print("") print("") return clfs def plot_train_losses(clfs): plt.figure() for (name, _, _, train_losses, _, _, durations) in clfs: plt.plot(durations, train_losses, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train loss") def plot_train_scores(clfs): plt.figure() for (name, _, _, _, train_scores, _, durations) in clfs: plt.plot(durations, train_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train score") plt.ylim((0.92, 0.96)) def plot_test_scores(clfs): plt.figure() for (name, _, _, _, _, test_scores, durations) in clfs: plt.plot(durations, test_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("test score") plt.ylim((0.92, 0.96)) def plot_dloss(clfs): plt.figure() pobj_final = [] for (name, _, _, train_losses, _, _, durations) in clfs: pobj_final.append(train_losses[-1]) indices = np.argsort(pobj_final) pobj_best = pobj_final[indices[0]] for (name, _, _, train_losses, _, _, durations) in clfs: log_pobj = np.log(abs(np.array(train_losses) - pobj_best)) / np.log(10) plt.plot(durations, log_pobj, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("log(best - train_loss)") def get_max_squared_sum(X): """Get the maximum row-wise sum of squares""" return np.sum(X ** 2, axis=1).max() rcv1 = fetch_rcv1() X = rcv1.data n_samples, n_features = X.shape # consider the binary classification problem 'CCAT' vs the rest ccat_idx = rcv1.target_names.tolist().index('CCAT') y = rcv1.target.tocsc()[:, ccat_idx].toarray().ravel().astype(np.float64) y[y == 0] = -1 # parameters C = 1. fit_intercept = True tol = 1.0e-14 # max_iter range sgd_iter_range = list(range(1, 121, 10)) newton_iter_range = list(range(1, 25, 3)) lbfgs_iter_range = list(range(1, 242, 12)) liblinear_iter_range = list(range(1, 37, 3)) liblinear_dual_iter_range = list(range(1, 85, 6)) sag_iter_range = list(range(1, 37, 3)) clfs = [ ("LR-liblinear", LogisticRegression(C=C, tol=tol, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_iter_range, [], [], [], []), ("LR-liblinear-dual", LogisticRegression(C=C, tol=tol, dual=True, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_dual_iter_range, [], [], [], []), ("LR-SAG", LogisticRegression(C=C, tol=tol, solver="sag", fit_intercept=fit_intercept), sag_iter_range, [], [], [], []), ("LR-newton-cg", LogisticRegression(C=C, tol=tol, solver="newton-cg", fit_intercept=fit_intercept), newton_iter_range, [], [], [], []), ("LR-lbfgs", LogisticRegression(C=C, tol=tol, solver="lbfgs", fit_intercept=fit_intercept), lbfgs_iter_range, [], [], [], []), ("SGD", SGDClassifier(alpha=1.0 / C / n_samples, penalty='l2', loss='log', fit_intercept=fit_intercept, verbose=0), sgd_iter_range, [], [], [], [])] if lightning_clf is not None and not fit_intercept: alpha = 1. / C / n_samples # compute the same step_size than in LR-sag max_squared_sum = get_max_squared_sum(X) step_size = get_auto_step_size(max_squared_sum, alpha, "log", fit_intercept) clfs.append( ("Lightning-SVRG", lightning_clf.SVRGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) clfs.append( ("Lightning-SAG", lightning_clf.SAGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) # We keep only 200 features, to have a dense dataset, # and compare to lightning SAG, which seems incorrect in the sparse case. X_csc = X.tocsc() nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1] X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]] X = X.toarray() print("dataset: %.3f MB" % (X.nbytes / 1e6)) # Split training and testing. Switch train and test subset compared to # LYRL2004 split, to have a larger training dataset. n = 23149 X_test = X[:n, :] y_test = y[:n] X = X[n:, :] y = y[n:] clfs = bench(clfs) plot_train_scores(clfs) plot_test_scores(clfs) plot_train_losses(clfs) plot_dloss(clfs) plt.show()
bsd-3-clause
Fireblend/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
295
1247
# Author: Mathieu Blondel <mathieu@mblondel.org> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
Akshay0724/scikit-learn
examples/manifold/plot_mds.py
85
2731
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # License: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0, label='True Position') plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS') plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS') plt.legend(scatterpoints=1, loc='best', shadow=False) similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
ningchi/scikit-learn
sklearn/neighbors/tests/test_kde.py
13
5622
import numpy as np from sklearn.utils.testing import (assert_allclose, assert_raises, assert_equal) from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors from sklearn.neighbors.ball_tree import kernel_norm from sklearn.pipeline import make_pipeline from sklearn.datasets import make_blobs from sklearn.grid_search import GridSearchCV from sklearn.preprocessing import StandardScaler def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0] if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kernel_density(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_features) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for bandwidth in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, bandwidth) def check_results(kernel, bandwidth, atol, rtol): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol) log_dens = kde.fit(X).score_samples(Y) assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1E-7, rtol)) assert_allclose(np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1E-7, rtol)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, bandwidth, atol, rtol) def test_kernel_density_sampling(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) bandwidth = 0.2 for kernel in ['gaussian', 'tophat']: # draw a tophat sample kde = KernelDensity(bandwidth, kernel=kernel).fit(X) samp = kde.sample(100) assert_equal(X.shape, samp.shape) # check that samples are in the right range nbrs = NearestNeighbors(n_neighbors=1).fit(X) dist, ind = nbrs.kneighbors(X, return_distance=True) if kernel == 'tophat': assert np.all(dist < bandwidth) elif kernel == 'gaussian': # 5 standard deviations is safe for 100 samples, but there's a # very small chance this test could fail. assert np.all(dist < 5 * bandwidth) # check unsupported kernels for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']: kde = KernelDensity(bandwidth, kernel=kernel).fit(X) assert_raises(NotImplementedError, kde.sample, 100) # non-regression test: used to return a scalar X = rng.randn(4, 1) kde = KernelDensity(kernel="gaussian").fit(X) assert_equal(kde.sample().shape, (1, 1)) def test_kde_algorithm_metric_choice(): # Smoke test for various metrics and algorithms rng = np.random.RandomState(0) X = rng.randn(10, 2) # 2 features required for haversine dist. Y = rng.randn(10, 2) for algorithm in ['auto', 'ball_tree', 'kd_tree']: for metric in ['euclidean', 'minkowski', 'manhattan', 'chebyshev', 'haversine']: if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics: assert_raises(ValueError, KernelDensity, algorithm=algorithm, metric=metric) else: kde = KernelDensity(algorithm=algorithm, metric=metric) kde.fit(X) y_dens = kde.score_samples(Y) assert_equal(y_dens.shape, Y.shape[:1]) def test_kde_score(n_samples=100, n_features=3): pass #FIXME #np.random.seed(0) #X = np.random.random((n_samples, n_features)) #Y = np.random.random((n_samples, n_features)) def test_kde_badargs(): assert_raises(ValueError, KernelDensity, algorithm='blah') assert_raises(ValueError, KernelDensity, bandwidth=0) assert_raises(ValueError, KernelDensity, kernel='blah') assert_raises(ValueError, KernelDensity, metric='blah') assert_raises(ValueError, KernelDensity, algorithm='kd_tree', metric='blah') def test_kde_pipeline_gridsearch(): # test that kde plays nice in pipelines and grid-searches X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False), KernelDensity(kernel="gaussian")) params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10]) search = GridSearchCV(pipe1, param_grid=params, cv=5) search.fit(X) assert_equal(search.best_params_['kerneldensity__bandwidth'], .1) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause