repo_name
stringlengths
6
103
path
stringlengths
4
209
copies
stringlengths
1
4
size
stringlengths
4
7
content
stringlengths
838
1.04M
license
stringclasses
15 values
CCI-Tools/cate-core
cate/ops/utility.py
1
12435
# The MIT License (MIT) # Copyright (c) 2016, 2017 by the ESA CCI Toolbox development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module provides general utility operations that wrap specific ``xarray`` functions. The intention is to make available the ``xarray`` API as a set of general, domain-independent utility functions. All operations in this module are tagged with the ``"utility"`` tag. """ import pandas as pd import xarray as xr from datetime import timezone from cate.core.ds import NetworkError, DataAccessError from cate.core.op import op, op_input, op_return from cate.core.types import DatasetLike, PointLike, TimeLike, DictLike, Arbitrary, Literal, ValidationError from cate.util.monitor import Monitor @op(tags=['utility']) @op_input('ds_1', data_type=DatasetLike) @op_input('ds_2', data_type=DatasetLike) @op_input('ds_3', data_type=DatasetLike) @op_input('ds_4', data_type=DatasetLike) @op_input('join', value_set=["outer", "inner", "left", "right", "exact"]) @op_input('compat', value_set=["identical", "equals", "broadcast_equals", "no_conflicts"]) def merge(ds_1: DatasetLike.TYPE, ds_2: DatasetLike.TYPE, ds_3: DatasetLike.TYPE = None, ds_4: DatasetLike.TYPE = None, join: str = 'outer', compat: str = 'no_conflicts') -> xr.Dataset: """ Merge up to four datasets to produce a new dataset with combined variables from each input dataset. This is a wrapper for the ``xarray.merge()`` function. For documentation refer to xarray documentation at http://xarray.pydata.org/en/stable/generated/xarray.Dataset.merge.html#xarray.Dataset.merge The *compat* argument indicates how to compare variables of the same name for potential conflicts: * "broadcast_equals": all values must be equal when variables are broadcast against each other to ensure common dimensions. * "equals": all values and dimensions must be the same. * "identical": all values, dimensions and attributes must be the same. * "no_conflicts": only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. :param ds_1: The first input dataset. :param ds_2: The second input dataset. :param ds_3: An optional 3rd input dataset. :param ds_4: An optional 4th input dataset. :param join: How to combine objects with different indexes. :param compat: How to compare variables of the same name for potential conflicts. :return: A new dataset with combined variables from each input dataset. """ ds_1 = DatasetLike.convert(ds_1) ds_2 = DatasetLike.convert(ds_2) ds_3 = DatasetLike.convert(ds_3) ds_4 = DatasetLike.convert(ds_4) datasets = [] for ds in (ds_1, ds_2, ds_3, ds_4): if ds is not None: included = False for ds2 in datasets: if ds is ds2: included = True if not included: datasets.append(ds) if len(datasets) == 0: raise ValidationError('At least two different datasets must be given') elif len(datasets) == 1: return datasets[0] else: return xr.merge(datasets, compat=compat, join=join) @op(tags=['utility']) @op_input('ds', data_type=DatasetLike) @op_input('point', data_type=PointLike, units='degree') @op_input('time', data_type=TimeLike) @op_input('indexers', data_type=DictLike) @op_input('method', value_set=['nearest', 'ffill', 'bfill']) def sel(ds: DatasetLike.TYPE, point: PointLike.TYPE = None, time: TimeLike.TYPE = None, indexers: DictLike.TYPE = None, method: str = 'nearest') -> xr.Dataset: """ Return a new dataset with each array indexed by tick labels along the specified dimension(s). This is a wrapper for the ``xarray.sel()`` function. For documentation refer to xarray documentation at http://xarray.pydata.org/en/stable/generated/xarray.Dataset.sel.html#xarray.Dataset.sel :param ds: The dataset from which to select. :param point: Optional geographic point given by longitude and latitude :param time: Optional time :param indexers: Keyword arguments with names matching dimensions and values given by scalars, slices or arrays of tick labels. For dimensions with multi-index, the indexer may also be a dict-like object with keys matching index level names. :param method: Method to use for inexact matches: * None: only exact matches * ``pad`` / ``ffill``: propagate last valid index value forward * ``backfill`` / ``bfill``: propagate next valid index value backward * ``nearest`` (default): use nearest valid index value :return: A new Dataset with the same contents as this dataset, except each variable and dimension is indexed by the appropriate indexers. In general, each variable's data will be a view of the variable's data in this dataset. """ ds = DatasetLike.convert(ds) point = PointLike.convert(point) time = TimeLike.convert(time) indexers = DictLike.convert(indexers) indexers = dict(indexers or {}) if point is not None: indexers.setdefault('lon', point.x) indexers.setdefault('lat', point.y) if time is not None: indexers.setdefault('time', time) # Filter out non-existent coordinates indexers = {name: value for name, value in indexers.items() if name in ds.coords} return ds.sel(method=method, **indexers) @op(tags=['utility']) def from_data_frame(df: pd.DataFrame) -> xr.Dataset: """ Convert the given dataframe to an xarray dataset. This is a wrapper for the ``xarray.from_dataframe()`` function. For documentation refer to xarray documentation at http://xarray.pydata.org/en/stable/generated/xarray.Dataset.from_dataframe.html#xarray.Dataset.from_dataframe :param df: Dataframe to convert :return: A dataset created from the given dataframe """ return xr.Dataset.from_dataframe(df) @op(tags=['utility']) @op_input('value', data_type=Arbitrary) @op_return(data_type=Arbitrary) def identity(value: Arbitrary.TYPE) -> Arbitrary.TYPE: """ Return the given value. This operation can be useful to create constant resources to be used as input for other operations. :param value: An arbitrary (Python) value. """ return value @op(tags=['utility']) @op_input('value', data_type=Literal) @op_return(data_type=Arbitrary) def literal(value: Literal.TYPE) -> Arbitrary.TYPE: """ Return the given value. This operation can be useful to create constant resources to be used as input for other operations. :param value: An arbitrary (Python) literal. """ return Literal.convert(value) @op(tags=['utility']) def dummy_ds(lon_dim: int = 360, lat_dim: int = 180, time_dim: int = 5) -> xr.Dataset: """ Create a dummy dataset. :param lon_dim: Number of grid cells in longitude direction :param lat_dim: Number of grid cells in latitude direction :param time_dim: Number of time steps :return: a dummy dataset """ import numpy as np temperature = 15 + 8 * np.random.randn(time_dim, lat_dim, lon_dim) precipitation = 10 * np.random.rand(time_dim, lat_dim, lon_dim) lon_delta = 360. / lon_dim lat_delta = 180. / lat_dim lon = np.arange(-180. + 0.5 * lon_delta, 180., lon_delta) lat = np.arange(-90. + 0.5 * lat_delta, 90., lat_delta) time = pd.date_range('2014-09-06', periods=time_dim) return xr.Dataset({'temperature': (['time', 'lat', 'lon'], temperature), 'precipitation': (['time', 'lat', 'lon'], precipitation)}, coords={'lon': lon, 'lat': lat, 'time': time, 'reference_time': pd.Timestamp('2014-09-05', tzinfo=timezone.utc)}) _ERROR_TYPES = { 'Value': ValueError, 'OS': OSError, 'Memory': MemoryError, 'Network': NetworkError, 'Data Access': DataAccessError, 'Validation': ValidationError, } @op(tags=['utility']) @op_input('step_duration', units='seconds') @op_input('error_type', value_set=['Value', 'OS', 'Memory', 'Network', 'Data Access', 'Validation']) def no_op(num_steps: int = 20, step_duration: float = 0.5, fail_before: bool = False, fail_after: bool = False, error_type: str = 'Value', monitor: Monitor = Monitor.NONE) -> bool: """ An operation that basically does nothing but spending configurable time. It may be useful for testing purposes. :param num_steps: Number of steps to iterate. :param step_duration: How much time to spend in each step in seconds. :param fail_before: If the operation should fail before spending time doing nothing (raise a ValidationError). :param fail_after: If the operation should fail after spending time doing nothing (raise a ValueError). :param error_type: The type of error to raise. :param monitor: A progress monitor. :return: Always True """ import time with monitor.starting('Computing nothing', num_steps): if fail_before: error_class = _ERROR_TYPES[error_type] raise error_class(f'This is a test: intentionally failed with a {error_type} error' f' before {num_steps} times doing anything.') for i in range(num_steps): time.sleep(step_duration) monitor.progress(1.0, 'Step %s of %s doing nothing' % (i + 1, num_steps)) if fail_after: error_class = _ERROR_TYPES[error_type] raise error_class(f'Intentionally failed failed with a {error_type} error' f' after {num_steps} times doing nothing.') return True @op(tags=['utility', 'internal']) @op_input('method', value_set=['backfill', 'bfill', 'pad', 'ffill']) def pandas_fillna(df: pd.DataFrame, value: float = None, method: str = None, limit: int = None, **kwargs) -> pd.DataFrame: """ Return a new dataframe with NaN values filled according to the given value or method. This is a wrapper for the ``pandas.fillna()`` function For additional keyword arguments and information refer to pandas documentation at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html :param df: The dataframe to fill :param value: Value to fill :param method: Method according to which to fill NaN. ffill/pad will propagate the last valid observation to the next valid observation. backfill/bfill will propagate the next valid observation back to the last valid observation. :param limit: Maximum number of NaN values to forward/backward fill. :return: A dataframe with nan values filled with the given value or according to the given method. """ # The following code is needed, because Pandas treats any kw given in kwargs as being set, even if just None. kwargs = dict(kwargs) if value: kwargs.update(value=value) if method: kwargs.update(method=method) if limit: kwargs.update(limit=limit) return df.fillna(**kwargs)
mit
marionleborgne/nupic.research
htmresearch/support/junit_testing.py
9
8727
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have purchased from # Numenta, Inc. a separate commercial license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- helpStr = """ Methods to run unit tests. """ import itertools import numpy import os import plotly.plotly as py from plotly.graph_objs import Box, Figure, Histogram, Layout from prettytable import PrettyTable from scipy.stats import skew from htmresearch.frameworks.nlp.classification_model import ClassificationModel from htmresearch.frameworks.nlp.model_factory import ( createModel, getNetworkConfig) from htmresearch.support.csv_helper import readDataAndReshuffle # There should be one "htm" model for each htm config entry. nlpModelTypes = [ "CioDocumentFingerprint", "CioWordFingerprint", "htm", "htm", "htm", "Keywords"] htmConfigs = { ("HTM_sensor_knn", "data/network_configs/sensor_knn.json"), ("HTM_sensor_simple_tp_knn", "data/network_configs/sensor_simple_tp_knn.json"), ("HTM_sensor_tm_knn", "data/network_configs/sensor_tm_knn.json"), } # Some values of k we know work well. kValues = { "Keywords": 21 } def setupExperiment(args): """ Create model according to args, train on training data, save model, restore model. @return newModel (ClassificationModel) The restored NLP model. @return dataSet (list) Each item is a list representing a data sample, with the text string, list of label indices, and the sample ID. """ dataSet, labelRefs, _, _ = readDataAndReshuffle(args) args.numLabels = len(labelRefs) # Create a model, train it, save it, reload it model = instantiateModel(args) model = trainModel(model, dataSet, labelRefs, args.verbosity) model.save(args.modelDir) newModel = ClassificationModel.load(args.modelDir) return newModel, dataSet def instantiateModel(args): """ Set some specific arguments and return an instance of the model we will use. """ args.networkConfig = getNetworkConfig(args.networkConfigPath) args.k = kValues.get(args.modelName, 1) return createModel(**vars(args)) def trainModel(model, trainingData, labelRefs, verbosity=0): """ Train the given model on trainingData. Return the trained model instance. """ modelName = repr(model).split()[0].split(".")[-1] print print "===================Training {} on sample text================".format( modelName) if verbosity > 0: printTemplate = PrettyTable(["ID", "Document", "Label"]) printTemplate.align = "l" printTemplate.header_style = "upper" for (document, labels, docId) in trainingData: if verbosity > 0: docStr = unicode(document, errors='ignore')[0:100] printTemplate.add_row([docId, docStr, labelRefs[labels[0]]]) model.trainDocument(document, labels, docId) if verbosity > 0: print printTemplate return model def testModel(model, testData, categorySize, verbosity=0): """ Test the given model on testData, print out and return results metrics. For each data sample in testData the model infers the similarity to each other sample; distances are number of bits apart. We then find the "ranks" of true positive (TP) documents -- those that are in the same category as the test document. Ideally these ranks will be low, and a perfect result would be ranks 0-categorySize. The stats we use to describe these ranks are mean and skewness -- about 0 for normally distributed data, and a skewness value > 0 means that there is more weight in the left tail of the distribution. For example, [10, 11, 12, 13, 14, 15] --> mean=12.5, skew=0.0 [0, 1, 2, 3, 4, 72] --> mean=13.7, skew=1.8 @param categorySize (int) Number of documents per category; these unit tests use datasets with an exact number of docs in each category. @return (numpy array) Rank positions of TPs for all test instances. @return avgRanks (numpy array) Average rank positions of TPs -- length is the categorySize. @return avgStats (numpy array) Average stats of the TP ranks -- length is the categorySize. """ modelName = repr(model).split()[0].split(".")[-1] print print "===================Testing {} on sample text==================".format( modelName) if verbosity > 0: print printTemplate = PrettyTable(["ID", "Document", "TP", "Ranks (Mean, Skew)"]) printTemplate.align = "l" printTemplate.header_style = "upper" allRanks = [] summedRanks = numpy.zeros(categorySize) totalTPs = 0 for (document, labels, docId) in testData: _, sortedIds, sortedDistances = model.inferDocument( document, returnDetailedResults=True, sortResults=True) # Compute TPs for this document expectedCategory = docId / 100 truePositives = 0 for i in xrange(categorySize): if (i < len(sortedIds)) and sortedIds[i]/100 == expectedCategory: truePositives += 1 totalTPs += truePositives if (verbosity >= 1) and (truePositives < categorySize): print "\nIncorrect inference result:" print "docId=",docId,"document=",document print "sortedIds=",sortedIds print "truePositives = ",truePositives # Compute the rank metrics for this document if len(sortedIds) > 0: ranks = numpy.array( [i for i, index in enumerate(sortedIds) if index/100 == expectedCategory]) allRanks.extend(ranks) summedRanks += ranks ranksMean = round(ranks.mean(), 2) ranksSkew = round(skew(ranks), 2) if verbosity > 0: docStr = unicode(document, errors='ignore')[0:100] printTemplate.add_row( [docId, docStr, truePositives, (ranksMean, ranksSkew)]) lengthOfTest = float(len(testData)) avgRanks = summedRanks/lengthOfTest avgStats = (round(avgRanks.mean(), 2), round(skew(avgRanks), 2)) if verbosity > 0: print printTemplate print print "Averages across all test documents:" print "TPs =", totalTPs/lengthOfTest print "Rank metrics (mean, skew) = ({}, {})".format(avgStats[0], avgStats[1]) return numpy.array(allRanks), avgRanks, avgStats def printRankResults(testName, avgRanks, avgStats): """ Print the ranking metric results.""" printTemplate = "{0:<32}|{1:<10}" print print print "Averaged rank metrics for {}:".format(testName) print printTemplate.format("Avg. ranks per doc", avgRanks) print printTemplate.format("Avg. mean and skew", avgStats) def plotResults(ranksArrays, ranks, maxRank, testName="JUnit Test"): """ Plot a histogram of the ranks. @param ranksArrays (dict) Keys: model names. Values: List of TP ranks. @param ranks (dict) Keys: model names. Values: Averaged TP ranks. @param maxRank (int) Highest rank of TP possible. @return (str) Plot URLs. """ py.sign_in(os.environ["PLOTLY_USERNAME"], os.environ["PLOTLY_API_KEY"]) colors = ["rgba(93, 164, 214, 0.5)", "rgba(255, 144, 14, 0.5)", "rgba(44, 160, 101, 0.5)", "rgba(255, 65, 54, 0.5)", "rgba(207, 114, 255, 0.5)", "rgba(193, 42, 72, 0.5)"] histogramTraces = [] for i, (modelName, allRanks) in enumerate(ranksArrays.iteritems()): # Display distribution stats in legend mean = round(allRanks.mean(), 2) sk = round(skew(allRanks), 2) # Setup histogram for this model histogramTraces.append(Histogram( y=allRanks, name="{}: ({}, {})".format(modelName, mean, sk), autobiny=False, ybins=dict( start=0.0, end=maxRank, size=1.0, ), marker=dict( color=colors[i], ), opacity=0.7, )) histogramLayout = Layout( title="{} - Where are the True Positives?".format(testName), xaxis=dict( title="Count", ), yaxis=dict( title="Rank of TPs", range=[maxRank, 0], ), barmode="overlay", showlegend=True, ) histogramFig = Figure(data=histogramTraces, layout=histogramLayout) histogramURL = py.plot(histogramFig) return histogramURL
agpl-3.0
lilleswing/deepchem
examples/uv/UV_datasets.py
8
4703
""" UV dataset loader. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os import shutil import time import numpy as np import deepchem as dc from uv_features import uv_descriptors def remove_missing_entries(dataset): """Remove missing entries. Some of the datasets have missing entries that sneak in as zero'd out feature vectors. Get rid of them. """ for i, (X, y, w, ids) in enumerate(dataset.itershards()): available_rows = X.any(axis=1) print("Shard %d has %d missing entries." % (i, np.count_nonzero(~available_rows))) X = X[available_rows] y = y[available_rows] w = w[available_rows] ids = ids[available_rows] dataset.set_shard(i, X, y, w, ids) def get_transformers(train_dataset): """Get transformers applied to datasets.""" transformers = [] #transformers = [ # dc.trans.LogTransformer(transform_X=True), # dc.trans.NormalizationTransformer(transform_y=True, # dataset=train_dataset)] return transformers def remove_UV_negative_entries(dataset): """Remove negative entries from UV dataset. Negative entries are malformed for UV dataset. Remove them. """ for i, (X, y, w, ids) in enumerate(dataset.itershards()): malformed = np.where(y <= 0) y[malformed] = 0 w[malformed] = 0 dataset.set_shard(i, X, y, w, ids) def gen_uv(UV_tasks, raw_train_dir, train_dir, valid_dir, test_dir, shard_size=10000): """Load UV datasets.""" train_files = ("UV_training_disguised_combined_full.csv.gz") valid_files = ("UV_test1_disguised_combined_full.csv.gz") test_files = ("UV_test2_disguised_combined_full.csv.gz") # Featurize UV dataset print("About to featurize UV dataset.") featurizer = dc.feat.UserDefinedFeaturizer(uv_descriptors) loader = dc.data.UserCSVLoader( tasks=UV_tasks, id_field="Molecule", featurizer=featurizer) train_datasets, valid_datasets, test_datasets = [], [], [] print("Featurizing train datasets") train_dataset = loader.featurize(train_files, shard_size=shard_size) print("Featurizing valid datasets") valid_dataset = loader.featurize(valid_files, shard_size=shard_size) print("Featurizing test datasets") test_dataset = loader.featurize(test_files, shard_size=shard_size) print("Remove missing entries from datasets.") remove_missing_entries(train_dataset) remove_missing_entries(valid_dataset) remove_missing_entries(test_dataset) print("Remove malformed datapoints from UV dataset.") remove_UV_negative_entries(train_dataset) remove_UV_negative_entries(valid_dataset) remove_UV_negative_entries(test_dataset) print("Transforming datasets with transformers.") transformers = get_transformers(train_dataset) raw_train_dataset = train_dataset for transformer in transformers: print("Performing transformations with %s" % transformer.__class__.__name__) print("Transforming dataset") train_dataset = transformer.transform(train_dataset) valid_dataset = transformer.transform(valid_dataset) test_dataset = transformer.transform(test_dataset) print("Shuffling order of train dataset.") train_dataset.sparse_shuffle() print("Moving directories") raw_train_dataset.move(raw_train_dir) train_dataset.move(train_dir) valid_dataset.move(valid_dir) test_dataset.move(test_dir) return (raw_train_dataset, train_dataset, valid_dataset, test_dataset) def load_uv(shard_size): """Loads uv datasets. Generates if not stored already.""" UV_tasks = (['logTIC'] + ['w__%d' % i for i in range(210, 401)]) current_dir = os.path.dirname(os.path.realpath(__file__)) raw_train_dir = os.path.join(current_dir, "raw_train_dir") train_dir = os.path.join(current_dir, "train_dir") valid_dir = os.path.join(current_dir, "valid_dir") test_dir = os.path.join(current_dir, "test_dir") if (os.path.exists(raw_train_dir) and os.path.exists(train_dir) and os.path.exists(valid_dir) and os.path.exists(test_dir)): print("Reloading existing datasets") raw_train_dataset = dc.data.DiskDataset(raw_train_dir) train_dataset = dc.data.DiskDataset(train_dir) valid_dataset = dc.data.DiskDataset(valid_dir) test_dataset = dc.data.DiskDataset(test_dir) else: print("Featurizing datasets") (raw_train_dataset, train_dataset, valid_dataset, test_dataset) = \ gen_uv(UV_tasks, raw_train_dir, train_dir, valid_dir, test_dir, shard_size=shard_size) transformers = get_transformers(raw_train_dataset) return UV_tasks, (train_dataset, valid_dataset, test_dataset), transformers
mit
Athemis/lot
lot.py
1
43683
#!/usr/bin/env python try: import libtcodpy as libtcod except ImportError: raise ImportError('----- libtcod.py could not be loaded. -----') import math import textwrap import shelve try: import numpy as np except ImportError: raise ImportError('----- NumPy must be installed. -----') # actual size of the window SCREEN_WIDTH = 80 SCREEN_HEIGHT = 50 # size of the map MAP_WIDTH = 80 MAP_HEIGHT = 43 LEVEL_SCREEN_WIDTH = 40 CHARACTER_SCREEN_WIDTH = 30 # Experience and level-ups LEVEL_UP_BASE = 200 LEVEL_UP_FACTOR = 150 # Size and number of rooms ROOM_MAX_SIZE = 10 ROOM_MIN_SIZE = 6 MAX_ROOMS = 30 INVENTORY_WIDTH = 50 HEAL_AMOUNT = 40 LIGHTNING_DAMAGE = 40 LIGHTNING_RANGE = 5 CONFUSE_NUM_TURNS = 10 CONFUSE_RANGE = 8 FIREBALL_DAMAGE = 25 FIREBALL_RADIUS = 3 FOV_ALGO = 0 # default FOV algorithm FOV_LIGHT_WALLS = True TORCH_RADIUS = 10 SQUARED_TORCH_RADIUS = TORCH_RADIUS * TORCH_RADIUS dx = 0.0 dy = 0.0 di = 0.0 fov_recompute = None fov_noise = None fov_torchx = 0.0 color_dark_wall = libtcod.Color(40, 40, 40) color_light_wall = libtcod.Color(60, 60, 60) color_dark_ground = libtcod.Color(25, 25, 25) color_light_ground = libtcod.Color(255, 230, 100) LIMIT_FPS = 20 # 20 frames-per-second limit # Number of frames to wait after moving/attacking PLAYER_SPEED = 2 DEFAULT_SPEED = 8 DEFAULT_ATTACK_SPEED = 20 # Sizes and coordinates relevant for the GUI BAR_WIDTH = 20 PANEL_HEIGHT = 7 PANEL_Y = SCREEN_HEIGHT - PANEL_HEIGHT MSG_X = BAR_WIDTH + 2 MSG_WIDTH = SCREEN_WIDTH - BAR_WIDTH - 2 MSG_HEIGHT = PANEL_HEIGHT - 1 class Rect: # A rectangle on the map def __init__(self, x, y, w, h): self.x1 = x self.y1 = y self.x2 = x + w self.y2 = y + h def center(self): center_x = int(round((self.x1 + self.x2) / 2)) center_y = int(round((self.y1 + self.y2) / 2)) return (center_x, center_y) def intersect(self, other): # Returns of this rectangle intersects with another one return (self.x1 <= other.x2 and self.x2 >= other.x1 and self.y1 <= other.y2 and self.y2 >= other.y1) class Tile: # A tile of the map and its properties def __init__(self, blocked, block_sight=None): self.blocked = blocked self.explored = False # By default, a blocked tile also blocks sight if block_sight is None: block_sight = blocked self.block_sight = block_sight class Object: # This is a generic object: player, monster, item, ... # It is always represented by a character on screen def __init__(self, x, y, char, name, color, blocks=False, always_visible=False, fighter=None, ai=None, item=None, speed=DEFAULT_SPEED): self.x = int(x) self.y = int(y) self.char = char self.name = name self.color = color self.blocks = blocks self.always_visible = always_visible self.fighter = fighter if self.fighter: self.fighter.owner = self self.ai = ai if self.ai: self.ai.owner = self self.item = item if self.item: self.item.owner = self self.speed = speed self.wait = 0 def distance_to(self, other): # Return the distance to another object dx = other.x - self.x dy = other.y - self.y return math.sqrt(dx ** 2 + dy ** 2) def distance(self, x, y): # Return the distance to some coordinates return math.sqrt((x - self.x) ** 2 + (y - self.y) ** 2) def move(self, dx, dy): # Move by given amount try: if not is_blocked(self.x + dx, self.y + dy): self.x += dx self.y += dy except: self.x = self.x self.y = self.y self.wait = self.speed def move_towards(self, target_x, target_y): # vector from this object to the target and distance dx = target_x - self.x dy = target_y - self.y distance = math.sqrt(dx ** 2 + dy ** 2) # Normalize it to length 1 (preserving direction), then round it and # convert to integer so movement is restricted to the map grid dx = int(round(dx / distance)) dy = int(round(dy / distance)) self.move(dx, dy) def draw(self): if (libtcod.map_is_in_fov(fov_map, self.x, self.y) or (self.always_visible and map[self.x, self.y].explored)): # Set the color and draw the character libtcod.console_put_char(con, self.x, self.y, self.char, libtcod.BKGND_NONE) libtcod.console_set_char_foreground(con, self.x, self.y, self.color) def send_to_back(self): # Make this object be drawn first, so all other objects appear above # if they are in the same tile. global objects objects.remove(self) objects.insert(0, self) def clear(self): # Erease the character that represents this object libtcod.console_put_char(con, self.x, self.y, ' ', libtcod.BKGND_NONE) class Item: # An item that can be picked up and used def __init__(self, use_function=None): self.use_function = use_function def pick_up(self): # Add to the player's inventory and remove from the map if len(inventory) >= 26: message('Your inventory is full, \ cannot pick up {}.'.format(self.owner.name), libtcod.red) else: inventory.append(self.owner) objects.remove(self.owner) message('You picked up {}!'.format(self.owner.name), libtcod.green) def use(self): # Just call the use_function if it is defined if self.use_function is None: message('The {} cannot be used.'.format(self.owner.name)) else: if self.use_function() != 'cancelled': inventory.remove(self.owner) # Destroy after use unless it was # cancelled for some reason def drop(self): # Add to the map and remove from the player's inventory objects.append(self.owner) inventory.remove(self.owner) self.owner.x = player.x self.owner.y = player.y message('You dropped a {}.'.format(self.owner.name), libtcod.yellow) class Fighter: # Combat reated properties and methods (monster, player, NPC) def __init__(self, hp, defense, power, xp, death_function=None, attack_speed=DEFAULT_ATTACK_SPEED): self.max_hp = hp self.hp = hp self.defense = defense self.power = power self.xp = xp self.death_function = death_function self.attack_speed = attack_speed def take_damage(self, damage): # Apply damage if possible if damage > 0: self.hp -= damage if self.hp <= 0: function = self.death_function if function is not None: function(self.owner) if self.owner != player: # Yield experience to the player player.fighter.xp += self.xp def heal(self, amount): # Heal by the given amount, without going over the maximum self.hp += amount if self.hp > self.max_hp: self.hp = self.max_hp def attack(self, target): # A simple formula for attack damage damage = self.power - target.fighter.defense if damage > 0: # Make the target take some damage message('{} attacks {} for {} \ hit points.'.format(self.owner.name.capitalize(), target.name, str(damage))) target.fighter.take_damage(damage) else: message('{} attacks {} but it \ has no effect!'.format(self.owner.name.capitalize(), target.name)) self.owner.wait = self.attack_speed class BasicMonster: # AI for a basic monster def take_turn(self): # A basic monster that takes its turn. # If you can see it, it can see you monster = self.owner if libtcod.map_is_in_fov(fov_map, monster.x, monster.y): # Move towards player if far away if monster.distance_to(player) >= 2: monster.move_towards(player.x, player.y) # Close enough. Attack if the player is alive elif player.fighter.hp > 0: monster.fighter.attack(player) class ConfusedMonster: # AI for a temporarily confused monster (reverts to # previous AI after a while). def __init__(self, old_ai, num_turns=CONFUSE_NUM_TURNS): self.old_ai = old_ai self.num_turns = num_turns def take_turn(self): if self.num_turns > 0: # Still confused # Move in a random direction self.owner.move(libtcod.random_get_int(0, -1, 1), libtcod.random_get_int(0, -1, 1)) else: # Restore the previous AI (this one will be deleted because # it's not referenced anymore) self.owner.ai = self.old_ai message('The {} is no longer confused!'.format(self.owner.name), libtcod.red) def player_death(player): # The game ended! global game_state message('You died!', libtcod.red) game_state = 'dead' # For added effect, transform the player into a corpse player.char = b'%' player.color = libtcod.dark_red def monster_death(monster): # Transform it into a nasty corpse. It does not block, cannot be attacked # and does not move message('The {} is dead! \ You gain {} experience.'.format(monster.name.capitalize(), str(monster.fighter.xp))) monster.char = b'%' monster.color = libtcod.dark_red monster.blocks = False monster.fighter = None monster.ai = None monster.name = 'remains of {}'.format(monster.name) monster.send_to_back() def closest_monster(max_range): # Find the closest enemy up to a maximum range and in the player's FOV closest_enemy = None closest_dist = max_range + 1 # Start with (slightly more than) max. range for object in objects: if ( object.fighter and not object == player and libtcod.map_is_in_fov(fov_map, object.x, object.y) ): # Calculate the distance between this object and the player dist = player.distance_to(object) if dist < closest_dist: # Its closer, so remember it closest_enemy = object closest_dist = dist return closest_enemy def cast_heal(): #heal the player if player.fighter.hp == player.fighter.max_hp: message('You are already at full health.', libtcod.red) return 'cancelled' message('Your wounds start to feel better!', libtcod.light_violet) player.fighter.heal(HEAL_AMOUNT) def cast_lightning(): # Find the closest enemy (inside a maximum range) and damage it monster = closest_monster(LIGHTNING_RANGE) if monster is None: # No enemy found within maximum range message('No enemy is close enough to strike.', libtcod.red) return 'cancelled' # Zap it! message('A lightning bolt strikes the {} with a loud thunder! \ The damage is {} hit points'.format(monster.name, str(LIGHTNING_DAMAGE)), libtcod.light_blue) monster.fighter.take_damage(LIGHTNING_DAMAGE) def cast_confuse(): # Ask the player for a target to confuse message('Left-click an enemy to confuse it, \ or right-click to cancel.', libtcod.light_cyan) monster = target_monster(CONFUSE_RANGE) if monster is None: return 'cancelled' # Replace the monster's AI with a "confused" one; # after some turns it will restore the old AI old_ai = monster.ai monster.ai = ConfusedMonster(old_ai) monster.ai.owner = monster # Tell the new component who owns it message('The eyes of the {} look vacant, \ as he starts to stumble around!'.format(monster.name), libtcod.light_green) def cast_fireball(): # Ask the player for a target tile to throw a fireball at message('Left-click a target tile for the fireball, \ or right-click to cancel.', libtcod.light_cyan) (x, y) = target_tile() if x is None: return 'cancelled' message('The fireball explodes, \ burning everything within {} tiles!'.format(FIREBALL_RADIUS), libtcod.orange) for obj in objects: # Damage every fighter in range, including the player if obj.distance(x, y) <= FIREBALL_RADIUS and obj.fighter: message('The {} gets \ burned for {} hit points.'.format(obj.name, FIREBALL_DAMAGE), libtcod.orange) obj.fighter.take_damage(FIREBALL_DAMAGE) def target_tile(max_range=None): # Return the position of a tile left-clicked in the player's FOV # (optionally in a range), or (None, None) if right-clicked global key global mouse while True: # Render the screen. This erases the inventory and shows the names of # objects under the mouse. render_all() libtcod.console_flush() # Get mouse position and click status libtcod.sys_check_for_event((libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE), key, mouse) (x, y) = (mouse.cx, mouse.cy) # print('{}:{}'.format(str(x), str(y))) # Accept the taret if the player clicked in FOV and in case a range is # specified, if it's in that range if (mouse.lbutton_pressed and libtcod.map_is_in_fov(fov_map, x, y) and (max_range is None or player.distance(x, y) <= max_range)): return (x, y) if mouse.rbutton_pressed or key.vk == libtcod.KEY_ESCAPE: return (None, None) # Cancel if right-clicked or Escape is pressed def target_monster(max_range=None): # Returns a clicked monster inside FOV up to a range, # or None if right-clicked while True: (x, y) = target_tile(max_range) if x is None: # Player cancelled return None # Return the first clicked monster, otherwise continue looping for obj in objects: if obj.x == x and obj.y == y and obj.fighter and obj != player: return obj def create_room(room): global map # Go through the tiles in the rectangle and make them passable for x in range(room.x1 + 1, room.x2): for y in range(room.y1 + 1, room.y2): map[x, y].blocked = False map[x, y].block_sight = False def create_h_tunnel(x1, x2, y): # Horizontal tunnel global map for x in range(min(x1, x2), max(x1, x2) + 1): map[x, y].blocked = False map[x, y].block_sight = False def create_v_tunnel(y1, y2, x): # Vertical tunnel global map for y in range(min(y1, y2), max(y1, y2) + 1): map[x, y].blocked = False map[x, y].block_sight = False def is_blocked(x, y): # First test the map tile if map[x, y].blocked: return true # Now check for any blocking object for object in objects: if object.blocks and object.x == x and object.y == y: return True return False def random_choice_index(chances): # Choose one option from list of chances, returning its index # The dice will land on some number between 1 and the sum of the chances dice = libtcod.random_get_int(0, 1, sum(chances)) # Go through all chances, keeping the sum so far running_sum = 0 choice = 0 for w in chances: running_sum += w # See if this dice landed in the part that corresponds to this choice if dice <= running_sum: return choice choice += 1 def random_choice(chances_dict): # Choose one option from dictionary of chances, returning its key chances = chances_dict.values() strings = chances_dict.keys() return list(strings)[random_choice_index(list(chances))] def from_dungeon_level(table): # Returns a value that depends on level. The table specifies which value # occurs after each level, default is 0 for (value, level) in reversed(table): if dungeon_level >= level: return value return 0 def place_objects(room): # This is where we decide the chance of each monster or item appearing # Maximum number of monsters per room max_monsters = from_dungeon_level([[2, 1], [3, 4], [5, 6]]) # Chance of each monster monster_chances = {} monster_chances['orc'] = 80 monster_chances['troll'] = from_dungeon_level([[15, 3], [30, 5], [60, 7]]) # Maximum number of items per room max_items = from_dungeon_level([[1, 1], [2, 4]]) # Chance of each item (by default they have a chance of 0 at level 1, # which then goes up) item_chances = {} item_chances['heal'] = 35 item_chances['lightning'] = from_dungeon_level([[25, 4]]) item_chances['fireball'] = from_dungeon_level([[25, 6]]) item_chances['confuse'] = from_dungeon_level([[10, 2]]) # Choose a random number of monsters num_monsters = libtcod.random_get_int(0, 0, max_monsters) for i in range(num_monsters): # Choose random spot for this monster x = libtcod.random_get_int(0, room.x1 + 1, room.x2 - 1) y = libtcod.random_get_int(0, room.y1 + 1, room.y2 - 1) # Only place it if the tile is unblocked if not is_blocked(x, y): choice = random_choice(monster_chances) if choice == 'orc': # create an orc fighter_component = Fighter(hp=20, defense=0, power=4, xp=35, death_function=monster_death) ai_component = BasicMonster() monster = Object(x, y, 'o', 'orc', libtcod.desaturated_green, blocks=True, fighter=fighter_component, ai=ai_component) elif choice == 'troll': # create a troll fighter_component = Fighter(hp=30, defense=2, power=8, xp=100, death_function=monster_death) ai_component = BasicMonster() monster = Object(x, y, 'T', 'troll', libtcod.darker_green, blocks=True, fighter=fighter_component, ai=ai_component) objects.append(monster) # Choose random number of items num_items = libtcod.random_get_int(0, 0, max_items) for i in range(num_items): # Choose random spot for this item x = libtcod.random_get_int(0, room.x1 + 1, room.x2 - 1) y = libtcod.random_get_int(0, room.y1 + 1, room.y2 - 1) # Only place it if the tile is not blocked if not is_blocked(x, y): choice = random_choice(item_chances) if choice == 'heal': # Create a healing potion (70% chance) item_component = Item(use_function=cast_heal) item = Object(x, y, '!', 'healing potion', libtcod.violet, item=item_component) elif choice == 'lightning': # Create a lightning bolt scroll (10% chance) item_component = Item(use_function=cast_lightning) item = Object(x, y, '#', 'scroll of lightning bolt', libtcod.yellow, item=item_component) elif choice == 'fireball': # Create a fireball scroll (10% chance) item_component = Item(use_function=cast_fireball) item = Object(x, y, '#', 'scroll of fireball', libtcod.light_orange, item=item_component) elif choice == 'confuse': # Create a confuse scroll (10% chance) item_component = Item(use_function=cast_confuse) item = Object(x, y, '#', 'scroll of confusion', libtcod.light_yellow, item=item_component) objects.append(item) item.send_to_back() item.always_visible = True def make_map(): global map, objects, stairs # The listof objects with just the player objects = [player] # Fill the map with unblocked tiles map = np.zeros((MAP_WIDTH, MAP_HEIGHT), object) for y in range(MAP_HEIGHT): for x in range(MAP_WIDTH): map[x, y] = Tile(True) rooms = [] num_rooms = 0 for r in range(MAX_ROOMS): # Random width and height w = libtcod.random_get_int(0, ROOM_MIN_SIZE, ROOM_MAX_SIZE) h = libtcod.random_get_int(0, ROOM_MIN_SIZE, ROOM_MAX_SIZE) # Random position without going of the map boundaries x = libtcod.random_get_int(0, 0, MAP_WIDTH - w - 1) y = libtcod.random_get_int(0, 0, MAP_HEIGHT - h - 1) new_room = Rect(x, y, w, h) failed = False for other_room in rooms: if new_room.intersect(other_room): failed = True break if not failed: create_room(new_room) # add some contents to this room, such as monsters place_objects(new_room) (new_x, new_y) = new_room.center() if num_rooms == 0: # if this is the first room, the player starts here player.x = new_x player.y = new_y else: # All rooms after the first # connect it to the previous room with a tunnel #center coordinated of previous room (prev_x, prev_y) = rooms[num_rooms - 1].center() # Draw a coin (random number that is either 0 or 1) if libtcod.random_get_int(0, 0, 1) == 1: # first move horizontally, then vertical create_h_tunnel(prev_x, new_x, prev_y) create_v_tunnel(prev_y, new_y, new_x) else: # first move vertically, then horizontally create_v_tunnel(prev_y, new_y, prev_x) create_h_tunnel(prev_x, new_x, new_y) # Finally, append the new room to the list rooms.append(new_room) num_rooms += 1 # Create stairs at the center of the last room stairs = Object(new_x, new_y, '<', 'stairs', libtcod.white, always_visible=True) objects.append(stairs) def next_level(): # Advance to the next level global dungeon_level message('You take a moment to rest and recover your strength.', libtcod.light_violet) # Heal the player by 50 % player.fighter.heal(int(round(player.fighter.max_hp / 2))) message('After a rare moment of peace, you descend \ deeper into the heart of the dungeon...', libtcod.red) dungeon_level += 1 make_map() initialize_fov() def render_all(): global fov_map, color_dark_wall, color_light_wall global color_dark_ground, color_light_ground global fov_recompute, fov_torchx if fov_recompute: #recompute FOV if needed (the player moved or something) fov_recompute = False libtcod.map_compute_fov(fov_map, player.x, player.y, TORCH_RADIUS, FOV_LIGHT_WALLS, FOV_ALGO) #torch flickers (using noise generator) fov_torchx += 0.2 tdx = [fov_torchx + 20.0] dx = libtcod.noise_get(fov_noise, tdx) * 1.5 tdx[0] += 30.0 dy = libtcod.noise_get(fov_noise, tdx) * 1.5 di = 0.2 * libtcod.noise_get(fov_noise, [fov_torchx]) # Iterate through rendering queue for y in range(MAP_HEIGHT): for x in range(MAP_WIDTH): visible = libtcod.map_is_in_fov(fov_map, x, y) wall = map[x, y].block_sight # check if tile is a wall if not visible: # if it's not visible right now, the player can only # see it if it's explored if map[x, y].explored: # It's out of the player's FOV if wall: libtcod.console_set_char_background(con, x, y, color_dark_wall, libtcod.BKGND_SET) else: libtcod.console_set_char_background(con, x, y, color_dark_ground, libtcod.BKGND_SET) else: # It's visible if wall: base = color_dark_wall light = color_light_wall else: base = color_dark_ground light = color_light_ground #Let the torch actually flicker r = float(x - player.x + dx) * (x - player.x + dx) + \ (y - player.y + dy) * (y - player.y + dy) if r < SQUARED_TORCH_RADIUS: l = (SQUARED_TORCH_RADIUS - r) / SQUARED_TORCH_RADIUS + di if l < 0.0: l = 0.0 elif l > 1.0: l = 1.0 # alter base colors to simulate flickering torch base = libtcod.color_lerp(base, light, l) # actually draw the visible tile libtcod.console_set_char_background(con, x, y, base, libtcod.BKGND_SET) #since it's visible, it's explored map[x, y].explored = True # Draw all objects in the list for object in objects: if object != player: object.draw() player.draw() # Blit the contents of con to the root console libtcod.console_blit(con, 0, 0, MAP_WIDTH, MAP_HEIGHT, 0, 0, 0) # Prepare to render the GUI panel libtcod.console_set_default_background(panel, libtcod.black) libtcod.console_clear(panel) # Print the game messages y = 1 for (line, color) in game_msgs: libtcod.console_set_default_foreground(panel, color) libtcod.console_set_alignment(panel, libtcod.LEFT) libtcod.console_print(panel, MSG_X, y, line) y += 1 # Show the player's stats render_bar(1, 1, BAR_WIDTH, 'HP', player.fighter.hp, player.fighter.max_hp, libtcod.light_red, libtcod.darker_red) libtcod.console_set_alignment(panel, libtcod.LEFT) libtcod.console_print(panel, 1, 3, 'Dungeon level {}'.format(str(dungeon_level))) # Display names of objects under the mouse libtcod.console_set_default_foreground(panel, libtcod.light_grey) libtcod.console_print(panel, 1, 0, get_names_under_mouse()) # Blit the contents of "panel" to the root console libtcod.console_blit(panel, 0, 0, SCREEN_WIDTH, PANEL_HEIGHT, 0, 0, PANEL_Y) def menu(header, options, width): global key global mouse if len(options) > 26: raise ValueError('Cannot have a menu with more than 26 options!') # Calculate total height for the header (after auto-wrap) # and one line per option header_height = libtcod.console_get_height_rect(con, 0, 0, width, SCREEN_HEIGHT, header) if header == '': header_height = 0 height = len(options) + header_height # Create an off-screen console that represents the menu's window window = libtcod.console_new(width, height) # Print the header, with auto-wrap libtcod.console_set_default_foreground(window, libtcod.white) libtcod.console_set_alignment(window, libtcod.LEFT) libtcod.console_set_default_background(window, libtcod.BKGND_NONE) libtcod.console_print_rect(window, 0, 0, width, height, header) # Print all the options y = header_height letter_index = ord('a') for option_text in options: text = '({}) {}'.format(chr(letter_index), option_text) libtcod.console_print(window, 0, y, text) y += 1 letter_index += 1 # Blit the contents of "window" to the root console x = int(round(SCREEN_WIDTH / 2 - width / 2)) y = int(round(SCREEN_HEIGHT / 2 - height / 2)) libtcod.console_blit(window, 0, 0, width, height, 0, x, y, 1.0, 0.7) # Present the root console to the player and wait for a key-press libtcod.console_flush() libtcod.sys_wait_for_event(libtcod.EVENT_KEY_PRESS, key, mouse, False) if key.vk == libtcod.KEY_ENTER and key.lalt: #(special case) Alt+Enter: toggle fullscreen libtcod.console_set_fullscreen(not libtcod.console_is_fullscreen()) # Convert the ASCII code to an index; if it corresponds to an # option, return it index = key.c - ord('a') if index >= 0 and index < len(options): return index return None def msgbox(text, width=50): menu(text, [], width) # Use menu() as a sort of "message box" def inventory_menu(header): # Show a menu with each item of the inventory as an option if len(inventory) == 0: options = ['Inventory is empty.'] else: options = [item.name for item in inventory] index = menu(header, options, INVENTORY_WIDTH) # If an item was chosen, return it if index is None or len(inventory) == 0: return None return inventory[index].item def render_bar(x, y, total_width, name, value, maximum, bar_color, back_color): # Render a bar (HP, experience, etc). First calculate the width of the bar bar_width = int(float(value) / maximum * total_width) # Render the background first libtcod.console_set_default_background(panel, back_color) libtcod.console_rect(panel, x, y, total_width, 1, False, libtcod.BKGND_SET) # Now render the bar on top libtcod.console_set_default_background(panel, bar_color) if bar_width > 0: libtcod.console_rect(panel, x, y, bar_width, 1, False, libtcod.BKGND_SET) # Add centered text with values libtcod.console_set_default_foreground(panel, libtcod.white) libtcod.console_set_alignment(panel, libtcod.CENTER) bar_text = '{}: {}/{}'. format(name, str(value), str(maximum)) libtcod.console_print(panel, int(x + total_width / 2), y, bar_text) def message(new_msg, color=libtcod.white): # Split the message if necesary, among multiple lines new_msg_lines = textwrap.wrap(new_msg, MSG_WIDTH) for line in new_msg_lines: # if the buffer is full, remove first line to make room for the new one if len(game_msgs) == MSG_HEIGHT: del game_msgs[0] # Add the new line as a tuple, with the text and coloe game_msgs.append((line, color)) def get_names_under_mouse(): # Return a string with the names of all objects under the mouse global key global mouse libtcod.sys_check_for_event(libtcod.EVENT_MOUSE, key, mouse) (x, y) = (mouse.cx, mouse.cy) # Create a list with the names of all objects at the mouse's # coordinates and in FOV names = [obj.name for obj in objects if (obj.x == x and obj.y == y and libtcod.map_is_in_fov(fov_map, obj.x, obj.y))] names = ', '.join(names) # join the names, separated by commas return names.capitalize() def handle_keys(): global fov_recompute global key global mouse libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS, key, mouse) if key.vk == libtcod.KEY_ENTER and key.lalt: # Alt+Enter: Fullscreen libtcod.console_set_fullscreen(not libtcod.console_is_fullscreen()) return elif key.vk == libtcod.KEY_ESCAPE: return 'exit' # exit game if game_state == 'playing': if player.wait > 0: # Don't take a turn yet if still waiting player.wait -= 1 return if libtcod.console_is_key_pressed(libtcod.KEY_UP): player_move_or_attack(0, -1) fov_recompute = True elif libtcod.console_is_key_pressed(libtcod.KEY_DOWN): player_move_or_attack(0, 1) fov_recompute = True elif libtcod.console_is_key_pressed(libtcod.KEY_LEFT): player_move_or_attack(-1, 0) fov_recompute = True elif libtcod.console_is_key_pressed(libtcod.KEY_RIGHT): player_move_or_attack(1, 0) fov_recompute = True # Diagonal movement using the numpad keys elif libtcod.console_is_key_pressed(libtcod.KEY_KP7): player_move_or_attack(-1, -1) fov_recompute = True elif libtcod.console_is_key_pressed(libtcod.KEY_KP9): player_move_or_attack(1, -1) fov_recompute = True elif libtcod.console_is_key_pressed(libtcod.KEY_KP1): player_move_or_attack(-1, 1) fov_recompute = True elif libtcod.console_is_key_pressed(libtcod.KEY_KP3): player_move_or_attack(1, 1) fov_recompute = True else: key_char = chr(key.c) if key_char == 'g': # Pick up an item for object in objects: # Look for an item in the player's tile if ( object.x == player.x and object.y == player.y and object.item ): object.item.pick_up() break if key_char == 'i': # Show the inventory chosen_item = inventory_menu('Press the key next to an \ item to use it, or any other \ to cancel.\n') if chosen_item is not None: chosen_item.use() if key_char == 'd': # Show the inventory; if an item is selected, drop it chosen_item = inventory_menu('Press the key next to an \ item to drop it, or any other \ to cancel.\n') if chosen_item is not None: chosen_item.drop() if key_char == '<': # Go down stairs, if the player is on them if stairs.x == player.x and stairs.y == player.y: next_level() if key_char == 'c': # Show character information level_up_xp = LEVEL_UP_BASE + player.level * LEVEL_UP_FACTOR msgbox('Character Information\n\nLevel: {}\n\ Experience: \{}\nExperience to level up: {}\n\n\ Maximum HP: {}\nAttack: {}\n\ Defense: {}'.format(str(player.level), str(player.fighter.xp), str(level_up_xp), str(player.fighter.max_hp), str(player.fighter.power), str(player.fighter.defense)), CHARACTER_SCREEN_WIDTH) return 'didnt-take-turn' def player_move_or_attack(dx, dy): global fov_recompute # The coordinated the player is moving to x = player.x + dx y = player.y + dy # Try to find an attackable object there target = None for object in objects: if object.fighter and object.x == x and object.y == y: target = object break # Attack if target found, move otherwise if target is not None: player.fighter.attack(target) else: player.move(dx, dy) fov_recompute = True def check_level_up(): # See if the player's experience is enough to level-up level_up_xp = LEVEL_UP_BASE + player.level * LEVEL_UP_FACTOR if player.fighter.xp >= level_up_xp: # It is! Level up player.level += 1 player.fighter.xp -= level_up_xp message('Your battle skills grow stronger! \ You reached level {}!'.format(str(player.level)), libtcod.yellow) choice = None while choice is None: # Keep asking until a choice is made choice = menu('Level up! Choose a stat to raise:\n', ['Constitution \ (+20 HP, from {})'.format(str(player.fighter.hp)), 'Strenght (+1 attack, \ from {})'.format(str(player.fighter.power)), 'Agility (+1 defense, \ from {})'.format(str(player.fighter.defense))], LEVEL_SCREEN_WIDTH) if choice == 0: player.fighter.max_hp += 20 player.fighter.hp += 20 elif choice == 1: player.fighter.power += 1 elif choice == 2: player.fighter.defense += 1 def initialize_fov(): global fov_recompute, fov_map, fov_noise fov_recompute = True libtcod.console_clear(con) # Unexplored areas start black (which # is the default background color) #create the FOV map, according to the generated map fov_noise = libtcod.noise_new(1, 1.0, 1.0) fov_map = libtcod.map_new(MAP_WIDTH, MAP_HEIGHT) for y in range(MAP_HEIGHT): for x in range(MAP_WIDTH): libtcod.map_set_properties(fov_map, x, y, not map[x, y].block_sight, not map[x, y].blocked) def new_game(): global player, inventory, game_msgs, game_state, key, mouse, dungeon_level # Create object representing the player fighter_component = Fighter(hp=100, defense=1, power=4, xp=0, death_function=player_death) player = Object(0, 0, b'@', 'player', libtcod.white, blocks=True, fighter=fighter_component, speed=PLAYER_SPEED) player.level = 1 # Generate map dungeon_level = 1 make_map() initialize_fov() game_state = 'playing' inventory = [] # Create the list of game messages and their colors, starts empty game_msgs = [] # a warm welcoming message! message('Welcome stranger! Prepare to perish in the \ Tombs of the Ancient Kings.', libtcod.red) def play_game(): player_action = None while not libtcod.console_is_window_closed(): # Render the screen render_all() libtcod.console_flush() check_level_up() # Erease all objects at their old locations, befor they move for object in objects: object.clear() # Handle keys and exit if needed player_action = handle_keys() if player_action == 'exit': save_game() # Save the current game before exit break # Let the monsters take their turn if game_state == 'playing': for object in objects: if object.ai: # Don't take a turn yet if still waiting if object.wait > 0: object.wait -= 1 else: object.ai.take_turn() def save_game(): # Open a new emtpy shelve (possibly overwriting an old one) # to write the game data file = shelve.open('savegame', 'n') file['map'] = map file['objects'] = objects # Index of player in objects list file['player_index'] = objects.index(player) file['inventory'] = inventory file['game_msgs'] = game_msgs file['game_state'] = game_state file['stairs_index'] = objects.index(stairs) file['dungeon_level'] = dungeon_level file.close() def load_game(): # Open the previously saved shelve and load the game data global map, objects, player, inventory, game_msgs global game_state, stairs, dungeon_level file = shelve.open('savegame', 'r') map = file['map'] objects = file['objects'] # Get the index of the player in objects list and access it player = objects[file['player_index']] inventory = file['inventory'] game_msgs = file['game_msgs'] game_state = file['game_state'] stairs = objects[file['stairs_index']] dungeon_level = file['dungeon_level'] file.close() initialize_fov() def main_menu(): img = libtcod.image_load(b'img/backgrounds/menu_background.png') while not libtcod.console_is_window_closed(): # Show the background image at twice the regular console resolution libtcod.image_blit_2x(img, 0, 0, 0) # Show the game's title libtcod.console_set_default_foreground(0, libtcod.light_yellow) libtcod.console_set_alignment(0, libtcod.CENTER) libtcod.console_print(0, int(round(SCREEN_WIDTH / 2)), int(round(SCREEN_HEIGHT / 2 - 4)), 'THE LEGEND OF THARSA') libtcod.console_print(0, int(round(SCREEN_WIDTH / 2)), int(round(SCREEN_HEIGHT - 2)), 'By Athemis') # Show the options and wait for the player's choice choice = menu('', ['Play a new game', 'Continue last game', 'Quit'], 24) if choice == 0: # New game new_game() play_game() elif choice == 1: # Load last game try: load_game() except: msgbox('\n No saved game to load. \n', 24) continue play_game() elif choice == 2: # Quit break ############################## # Initialization & Main Loop ############################## libtcod.console_set_custom_font(b'img/fonts/arial10x10.png', (libtcod.FONT_TYPE_GREYSCALE | libtcod.FONT_LAYOUT_TCOD)) libtcod.console_init_root(SCREEN_WIDTH, SCREEN_HEIGHT, b'LoT - The Legend of Tharsa', False) libtcod.sys_set_fps(LIMIT_FPS) con = libtcod.console_new(MAP_WIDTH, MAP_HEIGHT) panel = libtcod.console_new(SCREEN_WIDTH, PANEL_HEIGHT) key = libtcod.Key() mouse = libtcod.Mouse() main_menu()
mit
fx2003/tensorflow-study
TensorFlow实战/models/attention_ocr/python/data_provider_test.py
18
2448
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for data_provider.""" import numpy as np import tensorflow as tf from tensorflow.contrib.slim import queues import datasets import data_provider class DataProviderTest(tf.test.TestCase): def setUp(self): tf.test.TestCase.setUp(self) def test_preprocessed_image_values_are_in_range(self): image_shape = (5, 4, 3) fake_image = np.random.randint(low=0, high=255, size=image_shape) image_tf = data_provider.preprocess_image(fake_image) with self.test_session() as sess: image_np = sess.run(image_tf) self.assertEqual(image_np.shape, image_shape) min_value, max_value = np.min(image_np), np.max(image_np) self.assertTrue((-1.28 < min_value) and (min_value < 1.27)) self.assertTrue((-1.28 < max_value) and (max_value < 1.27)) def test_provided_data_has_correct_shape(self): batch_size = 4 data = data_provider.get_data( dataset=datasets.fsns_test.get_test_split(), batch_size=batch_size, augment=True, central_crop_size=None) with self.test_session() as sess, queues.QueueRunners(sess): images_np, labels_np = sess.run([data.images, data.labels_one_hot]) self.assertEqual(images_np.shape, (batch_size, 150, 600, 3)) self.assertEqual(labels_np.shape, (batch_size, 37, 134)) def test_optionally_applies_central_crop(self): batch_size = 4 data = data_provider.get_data( dataset=datasets.fsns_test.get_test_split(), batch_size=batch_size, augment=True, central_crop_size=(500, 100)) with self.test_session() as sess, queues.QueueRunners(sess): images_np = sess.run(data.images) self.assertEqual(images_np.shape, (batch_size, 100, 500, 3)) if __name__ == '__main__': tf.test.main()
mit
eadgarchen/tensorflow
tensorflow/python/keras/datasets/reuters/__init__.py
71
1061
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Reuters newswire topic classification dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.keras._impl.keras.datasets.reuters import get_word_index from tensorflow.python.keras._impl.keras.datasets.reuters import load_data del absolute_import del division del print_function
apache-2.0
TinghuiWang/pyActLearn
examples/CASAS_Single_Test/b1_sda_raw.py
1
8304
import os import pickle import logging import argparse import numpy as np import tensorflow as tf from datetime import datetime from pyActLearn.CASAS.data import CASASData from pyActLearn.CASAS.fuel import CASASFuel from pyActLearn.learning.nn.sda import SDA from pyActLearn.performance.record import LearningResult from pyActLearn.performance import get_confusion_matrix logger = logging.getLogger(__file__) def training_and_test(token, train_data, test_data, num_classes, result, model, log_dir): """Train and test Args: token (:obj:`str`): token representing this run train_data (:obj:`tuple` of :obj:`numpy.array`): Tuple of training feature and label test_data (:obj:`tuple` of :obj:`numpy.array`): Tuple of testing feature and label num_classes (:obj:`int`): Number of classes result (:obj:`pyActLearn.performance.record.LearningResult`): LearningResult object to hold learning result """ train_y = np.zeros((train_data[1].shape[0], num_classes)) test_y = np.zeros((test_data[1].shape[0], num_classes)) for i in range(train_data[1].shape[0]): train_y[i, train_data[1].flatten()[i]] = 1 for i in range(test_data[1].shape[0]): test_y[i, test_data[1].flatten()[i]] = 1 model.fit(train_data[0], train_y, pretrain_iter_num=8000, tuning_iter_num=8000, tuning_criterion='monitor_based', summaries_dir=log_dir, test_x=test_data[0], test_y=test_y, summary_interval=100) # Test predicted_y = model.predict(test_data[0]) predicted_proba = model.predict_proba(test_data[0]) # Evaluate the Test and Store Result confusion_matrix = get_confusion_matrix(num_classes=num_classes, label=test_data[1].flatten(), predicted=predicted_y) variable_file = os.path.join(log_dir, token + '_save.ckpt') saver.save(model.sess, variable_file) result.add_record(variable_file, key=token, confusion_matrix=confusion_matrix) return predicted_y, predicted_proba def load_and_test(token, test_data, num_classes, result, model): """Load and test Args: token (:obj:`str`): token representing this run test_data (:obj:`tuple` of :obj:`numpy.array`): Tuple of testing feature and label num_classes (:obj:`int`): Number of classes result (:obj:`pyActLearn.performance.record.LearningResult`): LearningResult object to hold learning result """ saver.restore(model.sess, result.get_record_by_key(token)['model']) # Test predicted_y = model.predict(test_data[0]) predicted_proba = model.predict_proba(test_data[0]) return predicted_y, predicted_proba if __name__ == '__main__': args_ok = False parser = argparse.ArgumentParser(description='Run Stacked Autoencoder on single resident CASAS datasets.') parser.add_argument('-d', '--dataset', help='Directory to original datasets') parser.add_argument('-o', '--output', help='Output folder') parser.add_argument('--week', type=int, metavar='N', help='Train on week N-1 and run on week N') parser.add_argument('--h5py', help='HDF5 dataset folder') args = parser.parse_args() # Default parameters log_filename = os.path.basename(__file__).split('.')[0] + \ '-%s.log' % datetime.now().strftime('%y%m%d_%H:%M:%S') # Setup output directory output_dir = args.output if output_dir is not None: output_dir = os.path.abspath(os.path.expanduser(output_dir)) if os.path.exists(output_dir): # Found output_dir, check if it is a directory if not os.path.isdir(output_dir): exit('Output directory %s is found, but not a directory. Abort.' % output_dir) else: # Create directory os.makedirs(output_dir) else: output_dir = '.' log_filename = os.path.join(output_dir, log_filename) # Setup Logging as early as possible logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s] %(name)s:%(levelname)s:%(message)s', handlers=[logging.FileHandler(log_filename), logging.StreamHandler()]) # If dataset is specified, update h5py casas_data_dir = args.dataset if casas_data_dir is not None: casas_data_dir = os.path.abspath(os.path.expanduser(casas_data_dir)) if not os.path.isdir(casas_data_dir): exit('CASAS dataset at %s does not exist. Abort.' % casas_data_dir) # Find h5py dataset first h5py_dir = args.h5py if h5py_dir is not None: h5py_dir = os.path.abspath(os.path.expanduser(h5py_dir)) else: # Default location h5py_dir = os.path.join(output_dir, 'h5py') if os.path.exists(h5py_dir): if not os.path.isdir(h5py_dir): exit('h5py dataset location %s is not a directory. Abort.' % h5py_dir) if not CASASFuel.files_exist(h5py_dir): # Finish check and creating all directory needed - now load datasets if casas_data_dir is not None: casas_data = CASASData(path=casas_data_dir) casas_data.summary() # SVM needs to use statistical feature with per-sensor and normalization casas_data.populate_feature(method='raw', normalized=True, per_sensor=True) casas_data.export_hdf5(h5py_dir) casas_fuel = CASASFuel(dir_name=h5py_dir) # Prepare learning result result_pkl_file = os.path.join(output_dir, 'result.pkl') result = None if os.path.isfile(result_pkl_file): f = open(result_pkl_file, 'rb') result = pickle.load(f) f.close() if result.data != h5py_dir: logger.error('Result pickle file found for different dataset %s' % result.data) exit('Cannot save learning result at %s' % result_pkl_file) else: result = LearningResult(name='DecisionTree', data=h5py_dir, mode='by_week') num_classes = casas_fuel.get_output_dims() # Open Fuel and get all splits split_list = casas_fuel.get_set_list() # If week is specified if args.week is not None: if 0 < args.week < len(split_list): split_list = [split_list[args.week - 1], split_list[args.week]] # Start training train_names = ('week 24', 'week 23', 'week 22', 'week 21') test_names = ('week 25', 'week 26', 'week 27', 'week 28') test_name = 'single_test' train_set = casas_fuel.get_dataset(train_names, load_in_memory=True) (train_set_data) = train_set.data_sources test_set = casas_fuel.get_dataset(test_names, load_in_memory=True) (test_set_data) = test_set.data_sources # Prepare Back Annotation fp_back_annotated = open(os.path.join(output_dir, 'back_annotated.txt'), 'w') fp_back_probability = open(os.path.join(output_dir, 'back_annotated_proba.txt'), 'w') output_log_dir = os.path.join(output_dir, 'log') if not os.path.isdir(output_log_dir): os.makedirs(output_log_dir) sda = SDA(casas_fuel.get_input_dims(), casas_fuel.get_output_dims(), [200, 200, 200]) saver = tf.train.Saver(max_to_keep=len(split_list)) session = tf.Session() sda.sess = session log_dir = output_log_dir if not os.path.isdir(log_dir): os.makedirs(log_dir) # run svm logger.info('Training on %s, Testing on %s' % (str(train_names), str(test_names))) if result.get_record_by_key(test_name) is None: prediction, prediction_proba = training_and_test(test_name, train_set_data, test_set_data, num_classes, result, model=sda, log_dir=log_dir) else: prediction, prediction_proba = load_and_test(test_name, test_set_data, num_classes, result, model=sda) casas_fuel.back_annotate(fp_back_annotated, prediction=prediction, split_name=test_names) casas_fuel.back_annotate_with_proba(fp_back_probability, prediction_proba, split_name=test_names) train_name = test_name train_set_data = test_set_data fp_back_annotated.close() fp_back_probability.close() f = open(result_pkl_file, 'wb') pickle.dump(obj=result, file=f, protocol=pickle.HIGHEST_PROTOCOL) f.close() result.export_to_xlsx(os.path.join(output_dir, 'result.xlsx'))
bsd-3-clause
jdanbrown/pydatalab
datalab/bigquery/_dataset.py
6
8970
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. """Implements Dataset, and related Dataset BigQuery APIs.""" from __future__ import absolute_import from __future__ import unicode_literals from builtins import object import datalab.context import datalab.utils from . import _api from . import _table from . import _utils from . import _view class Dataset(object): """Represents a list of BigQuery tables in a dataset.""" def __init__(self, name, context=None): """Initializes an instance of a Dataset. Args: name: the name of the dataset, as a string or (project_id, dataset_id) tuple. context: an optional Context object providing project_id and credentials. If a specific project id or credentials are unspecified, the default ones configured at the global level are used. Raises: Exception if the name is invalid. """ if context is None: context = datalab.context.Context.default() self._context = context self._api = _api.Api(context) self._name_parts = _utils.parse_dataset_name(name, self._api.project_id) self._full_name = '%s:%s' % self._name_parts self._info = None try: self._info = self._get_info() except datalab.utils.RequestException: pass @property def name(self): """The DatasetName named tuple (project_id, dataset_id) for the dataset.""" return self._name_parts @property def description(self): """The description of the dataset, if any. Raises: Exception if the dataset exists but the metadata for the dataset could not be retrieved. """ self._get_info() return self._info['description'] if self._info else None @property def friendly_name(self): """The friendly name of the dataset, if any. Raises: Exception if the dataset exists but the metadata for the dataset could not be retrieved. """ self._get_info() return self._info['friendlyName'] if self._info else None def _get_info(self): try: if self._info is None: self._info = self._api.datasets_get(self._name_parts) return self._info except datalab.utils.RequestException as e: if e.status == 404: return None raise e except Exception as e: raise e def exists(self): """ Checks if the dataset exists. Returns: True if the dataset exists; False otherwise. Raises: Exception if the dataset exists but the metadata for the dataset could not be retrieved. """ self._get_info() return self._info is not None def delete(self, delete_contents=False): """Issues a request to delete the dataset. Args: delete_contents: if True, any tables and views in the dataset will be deleted. If False and the dataset is non-empty an exception will be raised. Returns: None on success. Raises: Exception if the delete fails (including if table was nonexistent). """ if not self.exists(): raise Exception('Cannot delete non-existent dataset %s' % self._full_name) try: self._api.datasets_delete(self._name_parts, delete_contents=delete_contents) except Exception as e: raise e self._info = None return None def create(self, friendly_name=None, description=None): """Creates the Dataset with the specified friendly name and description. Args: friendly_name: (optional) the friendly name for the dataset if it is being created. description: (optional) a description for the dataset if it is being created. Returns: The Dataset. Raises: Exception if the Dataset could not be created. """ if not self.exists(): try: response = self._api.datasets_insert(self._name_parts, friendly_name=friendly_name, description=description) except Exception as e: raise e if 'selfLink' not in response: raise Exception("Could not create dataset %s" % self._full_name) return self def update(self, friendly_name=None, description=None): """ Selectively updates Dataset information. Args: friendly_name: if not None, the new friendly name. description: if not None, the new description. Returns: """ self._get_info() if self._info: if friendly_name: self._info['friendlyName'] = friendly_name if description: self._info['description'] = description try: self._api.datasets_update(self._name_parts, self._info) except Exception as e: raise e finally: self._info = None # need a refresh def _retrieve_items(self, page_token, item_type): try: list_info = self._api.tables_list(self._name_parts, page_token=page_token) except Exception as e: raise e tables = list_info.get('tables', []) contents = [] if len(tables): try: for info in tables: if info['type'] != item_type: continue if info['type'] == 'TABLE': item = _table.Table((info['tableReference']['projectId'], info['tableReference']['datasetId'], info['tableReference']['tableId']), self._context) else: item = _view.View((info['tableReference']['projectId'], info['tableReference']['datasetId'], info['tableReference']['tableId']), self._context) contents.append(item) except KeyError: raise Exception('Unexpected item list response') page_token = list_info.get('nextPageToken', None) return contents, page_token def _retrieve_tables(self, page_token, _): return self._retrieve_items(page_token=page_token, item_type='TABLE') def _retrieve_views(self, page_token, _): return self._retrieve_items(page_token=page_token, item_type='VIEW') def tables(self): """ Returns an iterator for iterating through the Tables in the dataset. """ return iter(datalab.utils.Iterator(self._retrieve_tables)) def views(self): """ Returns an iterator for iterating through the Views in the dataset. """ return iter(datalab.utils.Iterator(self._retrieve_views)) def __iter__(self): """ Returns an iterator for iterating through the Tables in the dataset. """ return self.tables() def __str__(self): """Returns a string representation of the dataset using its specified name. Returns: The string representation of this object. """ return self._full_name def __repr__(self): """Returns a representation for the dataset for showing in the notebook. """ return 'Dataset %s' % self._full_name class Datasets(object): """ Iterator class for enumerating the datasets in a project. """ def __init__(self, project_id=None, context=None): """ Initialize the Datasets object. Args: project_id: the ID of the project whose datasets you want to list. If None defaults to the project in the context. context: an optional Context object providing project_id and credentials. If a specific project id or credentials are unspecified, the default ones configured at the global level are used. """ if context is None: context = datalab.context.Context.default() self._context = context self._api = _api.Api(context) self._project_id = project_id if project_id else self._api.project_id def _retrieve_datasets(self, page_token, count): try: list_info = self._api.datasets_list(self._project_id, max_results=count, page_token=page_token) except Exception as e: raise e datasets = list_info.get('datasets', []) if len(datasets): try: datasets = [Dataset((info['datasetReference']['projectId'], info['datasetReference']['datasetId']), self._context) for info in datasets] except KeyError: raise Exception('Unexpected response from server.') page_token = list_info.get('nextPageToken', None) return datasets, page_token def __iter__(self): """ Returns an iterator for iterating through the Datasets in the project. """ return iter(datalab.utils.Iterator(self._retrieve_datasets))
apache-2.0
elkingtonmcb/h2o-2
py/testdir_hosts/test_parse_summary_zip_s3n_fvec.py
9
2393
import unittest, time, sys, random sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_glm, h2o_browse as h2b, h2o_import as h2i class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): h2o.init(1) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_parse_summary_zip_s3n_fvec(self): csvFilelist = [ ("test_set.zip", 300), # 110.9MB ("train_set.zip", 600), # 362.9MB ] (importResult, importPattern) = h2i.import_only(bucket='h2o-datasets', path="allstate", schema='s3n') print "\nTrying StoreView after the import hdfs" h2o_cmd.runStoreView(timeoutSecs=120) trial = 0 for (csvFilename, timeoutSecs) in csvFilelist: trialStart = time.time() csvPathname = csvFilename # PARSE**************************************** csvPathname = "allstate/" + csvFilename hex_key = csvFilename + "_" + str(trial) + ".hex" start = time.time() parseResult = h2i.import_parse(bucket='h2o-datasets', path=csvPathname, schema='s3n', hex_key=hex_key, timeoutSecs=timeoutSecs, retryDelaySecs=10, pollTimeoutSecs=120) elapsed = time.time() - start print "parse end on ", parseResult['destination_key'], 'took', elapsed, 'seconds',\ "%d pct. of timeout" % ((elapsed*100)/timeoutSecs) # INSPECT****************************************** # We should be able to see the parse result? start = time.time() inspect = h2o_cmd.runInspect(None, parseResult['destination_key'], timeoutSecs=360) print "Inspect:", parseResult['destination_key'], "took", time.time() - start, "seconds" h2o_cmd.infoFromInspect(inspect, csvPathname) summaryResult = h2o_cmd.runSummary(key=hex_key, timeoutSecs=360) h2o_cmd.infoFromSummary(summaryResult) # STOREVIEW*************************************** print "\nTrying StoreView after the parse" h2o_cmd.runStoreView(timeoutSecs=120) print "Trial #", trial, "completed in", time.time() - trialStart, "seconds." trial += 1 if __name__ == '__main__': h2o.unit_main()
apache-2.0
mlperf/training_results_v0.5
v0.5.0/google/research_v3.32/gnmt-tpuv3-32/code/gnmt/model/t2t/tensor2tensor/data_generators/translate_encs.py
3
3661
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data generators for translation data-sets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensor2tensor.data_generators import problem from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import text_problems from tensor2tensor.data_generators import translate from tensor2tensor.utils import registry import tensorflow as tf FLAGS = tf.flags.FLAGS # End-of-sentence marker. EOS = text_encoder.EOS_ID _ENCS_TRAIN_DATASETS = [ [("https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/" "11234/1-1458/data-plaintext-format.tar"), ("tsv", 3, 2, "data.plaintext-format/*train.gz")], [ "http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz", # pylint: disable=line-too-long ("training-parallel-nc-v13/news-commentary-v13.cs-en.en", "training-parallel-nc-v13/news-commentary-v13.cs-en.cs") ], [ "http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz", ("commoncrawl.cs-en.en", "commoncrawl.cs-en.cs") ], [ "http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz", ("training/europarl-v7.cs-en.en", "training/europarl-v7.cs-en.cs") ], ] _ENCS_TEST_DATASETS = [ [ "http://data.statmt.org/wmt17/translation-task/dev.tgz", ("dev/newstest2013.en", "dev/newstest2013.cs") ], ] @registry.register_problem class TranslateEncsWmt32k(translate.TranslateProblem): """Problem spec for WMT English-Czech translation.""" @property def approx_vocab_size(self): return 2**15 # 32768 def source_data_files(self, dataset_split): train = dataset_split == problem.DatasetSplit.TRAIN return _ENCS_TRAIN_DATASETS if train else _ENCS_TEST_DATASETS def vocab_data_files(self): datasets = self.source_data_files(problem.DatasetSplit.TRAIN) vocab_datasets = [] if datasets[0][0].endswith("data-plaintext-format.tar"): vocab_datasets.append([ datasets[0][0], [ "%s-compiled-train.lang1" % self.name, "%s-compiled-train.lang2" % self.name ] ]) datasets = datasets[1:] vocab_datasets += [[item[0], [item[1][0], item[1][1]]] for item in datasets] return vocab_datasets @registry.register_problem class TranslateEncsWmtCharacters(translate.TranslateProblem): """Problem spec for WMT En-Cs character-based translation.""" @property def vocab_type(self): return text_problems.VocabType.CHARACTER def generate_samples(self, data_dir, tmp_dir, dataset_split): train = dataset_split == problem.DatasetSplit.TRAIN datasets = _ENCS_TRAIN_DATASETS if train else _ENCS_TEST_DATASETS tag = "train" if train else "dev" data_path = translate.compile_data(tmp_dir, datasets, "wmt_encs_chr_%s" % tag) return text_problems.text2text_txt_iterator(data_path + ".lang1", data_path + ".lang2")
apache-2.0
fx2003/tensorflow-study
TensorFlow实战/models/inception/inception/image_processing.py
14
20499
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Read and preprocess image data. Image processing occurs on a single image at a time. Image are read and preprocessed in parallel across multiple threads. The resulting images are concatenated together to form a single batch for training or evaluation. -- Provide processed image data for a network: inputs: Construct batches of evaluation examples of images. distorted_inputs: Construct batches of training examples of images. batch_inputs: Construct batches of training or evaluation examples of images. -- Data processing: parse_example_proto: Parses an Example proto containing a training example of an image. -- Image decoding: decode_jpeg: Decode a JPEG encoded string into a 3-D float32 Tensor. -- Image preprocessing: image_preprocessing: Decode and preprocess one image for evaluation or training distort_image: Distort one image for training a network. eval_image: Prepare one image for evaluation. distort_color: Distort the color in one image for training. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('batch_size', 32, """Number of images to process in a batch.""") tf.app.flags.DEFINE_integer('image_size', 299, """Provide square images of this size.""") tf.app.flags.DEFINE_integer('num_preprocess_threads', 4, """Number of preprocessing threads per tower. """ """Please make this a multiple of 4.""") tf.app.flags.DEFINE_integer('num_readers', 4, """Number of parallel readers during train.""") # Images are preprocessed asynchronously using multiple threads specified by # --num_preprocss_threads and the resulting processed images are stored in a # random shuffling queue. The shuffling queue dequeues --batch_size images # for processing on a given Inception tower. A larger shuffling queue guarantees # better mixing across examples within a batch and results in slightly higher # predictive performance in a trained model. Empirically, # --input_queue_memory_factor=16 works well. A value of 16 implies a queue size # of 1024*16 images. Assuming RGB 299x299 images, this implies a queue size of # 16GB. If the machine is memory limited, then decrease this factor to # decrease the CPU memory footprint, accordingly. tf.app.flags.DEFINE_integer('input_queue_memory_factor', 16, """Size of the queue of preprocessed images. """ """Default is ideal but try smaller values, e.g. """ """4, 2 or 1, if host memory is constrained. See """ """comments in code for more details.""") def inputs(dataset, batch_size=None, num_preprocess_threads=None): """Generate batches of ImageNet images for evaluation. Use this function as the inputs for evaluating a network. Note that some (minimal) image preprocessing occurs during evaluation including central cropping and resizing of the image to fit the network. Args: dataset: instance of Dataset class specifying the dataset. batch_size: integer, number of examples in batch num_preprocess_threads: integer, total number of preprocessing threads but None defaults to FLAGS.num_preprocess_threads. Returns: images: Images. 4D tensor of size [batch_size, FLAGS.image_size, image_size, 3]. labels: 1-D integer Tensor of [FLAGS.batch_size]. """ if not batch_size: batch_size = FLAGS.batch_size # Force all input processing onto CPU in order to reserve the GPU for # the forward inference and back-propagation. with tf.device('/cpu:0'): images, labels = batch_inputs( dataset, batch_size, train=False, num_preprocess_threads=num_preprocess_threads, num_readers=1) return images, labels def distorted_inputs(dataset, batch_size=None, num_preprocess_threads=None): """Generate batches of distorted versions of ImageNet images. Use this function as the inputs for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Args: dataset: instance of Dataset class specifying the dataset. batch_size: integer, number of examples in batch num_preprocess_threads: integer, total number of preprocessing threads but None defaults to FLAGS.num_preprocess_threads. Returns: images: Images. 4D tensor of size [batch_size, FLAGS.image_size, FLAGS.image_size, 3]. labels: 1-D integer Tensor of [batch_size]. """ if not batch_size: batch_size = FLAGS.batch_size # Force all input processing onto CPU in order to reserve the GPU for # the forward inference and back-propagation. with tf.device('/cpu:0'): images, labels = batch_inputs( dataset, batch_size, train=True, num_preprocess_threads=num_preprocess_threads, num_readers=FLAGS.num_readers) return images, labels def decode_jpeg(image_buffer, scope=None): """Decode a JPEG string into one 3-D float image Tensor. Args: image_buffer: scalar string Tensor. scope: Optional scope for name_scope. Returns: 3-D float Tensor with values ranging from [0, 1). """ with tf.name_scope(values=[image_buffer], name=scope, default_name='decode_jpeg'): # Decode the string as an RGB JPEG. # Note that the resulting image contains an unknown height and width # that is set dynamically by decode_jpeg. In other words, the height # and width of image is unknown at compile-time. image = tf.image.decode_jpeg(image_buffer, channels=3) # After this point, all image pixels reside in [0,1) # until the very end, when they're rescaled to (-1, 1). The various # adjust_* ops all require this range for dtype float. image = tf.image.convert_image_dtype(image, dtype=tf.float32) return image def distort_color(image, thread_id=0, scope=None): """Distort the color of the image. Each color distortion is non-commutative and thus ordering of the color ops matters. Ideally we would randomly permute the ordering of the color ops. Rather then adding that level of complication, we select a distinct ordering of color ops for each preprocessing thread. Args: image: Tensor containing single image. thread_id: preprocessing thread ID. scope: Optional scope for name_scope. Returns: color-distorted image """ with tf.name_scope(values=[image], name=scope, default_name='distort_color'): color_ordering = thread_id % 2 if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) # The random_* ops do not necessarily clamp. image = tf.clip_by_value(image, 0.0, 1.0) return image def distort_image(image, height, width, bbox, thread_id=0, scope=None): """Distort one image for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Args: image: 3-D float Tensor of image height: integer width: integer bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. thread_id: integer indicating the preprocessing thread. scope: Optional scope for name_scope. Returns: 3-D float Tensor of distorted image used for training. """ with tf.name_scope(values=[image, height, width, bbox], name=scope, default_name='distort_image'): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # Display the bounding box in the first thread only. if not thread_id: image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox) tf.summary.image('image_with_bounding_boxes', image_with_box) # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an allowed # range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=0.1, aspect_ratio_range=[0.75, 1.33], area_range=[0.05, 1.0], max_attempts=100, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box if not thread_id: image_with_distorted_box = tf.image.draw_bounding_boxes( tf.expand_dims(image, 0), distort_bbox) tf.summary.image('images_with_distorted_bounding_box', image_with_distorted_box) # Crop the image to the specified bounding box. distorted_image = tf.slice(image, bbox_begin, bbox_size) # This resizing operation may distort the images because the aspect # ratio is not respected. We select a resize method in a round robin # fashion based on the thread number. # Note that ResizeMethod contains 4 enumerated resizing methods. resize_method = thread_id % 4 distorted_image = tf.image.resize_images(distorted_image, [height, width], method=resize_method) # Restore the shape since the dynamic slice based upon the bbox_size loses # the third dimension. distorted_image.set_shape([height, width, 3]) if not thread_id: tf.summary.image('cropped_resized_image', tf.expand_dims(distorted_image, 0)) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Randomly distort the colors. distorted_image = distort_color(distorted_image, thread_id) if not thread_id: tf.summary.image('final_distorted_image', tf.expand_dims(distorted_image, 0)) return distorted_image def eval_image(image, height, width, scope=None): """Prepare one image for evaluation. Args: image: 3-D float Tensor height: integer width: integer scope: Optional scope for name_scope. Returns: 3-D float Tensor of prepared image. """ with tf.name_scope(values=[image, height, width], name=scope, default_name='eval_image'): # Crop the central region of the image with an area containing 87.5% of # the original image. image = tf.image.central_crop(image, central_fraction=0.875) # Resize the image to the original height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) return image def image_preprocessing(image_buffer, bbox, train, thread_id=0): """Decode and preprocess one image for evaluation or training. Args: image_buffer: JPEG encoded string Tensor bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. train: boolean thread_id: integer indicating preprocessing thread Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box """ if bbox is None: raise ValueError('Please supply a bounding box.') image = decode_jpeg(image_buffer) height = FLAGS.image_size width = FLAGS.image_size if train: image = distort_image(image, height, width, bbox, thread_id) else: image = eval_image(image, height, width) # Finally, rescale to [-1,1] instead of [0, 1) image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image def parse_example_proto(example_serialized): """Parses an Example proto containing a training example of an image. The output of the build_image_data.py image preprocessing script is a dataset containing serialized Example protocol buffers. Each Example proto contains the following fields: image/height: 462 image/width: 581 image/colorspace: 'RGB' image/channels: 3 image/class/label: 615 image/class/synset: 'n03623198' image/class/text: 'knee pad' image/object/bbox/xmin: 0.1 image/object/bbox/xmax: 0.9 image/object/bbox/ymin: 0.2 image/object/bbox/ymax: 0.6 image/object/bbox/label: 615 image/format: 'JPEG' image/filename: 'ILSVRC2012_val_00041207.JPEG' image/encoded: <JPEG encoded string> Args: example_serialized: scalar Tensor tf.string containing a serialized Example protocol buffer. Returns: image_buffer: Tensor tf.string containing the contents of a JPEG file. label: Tensor tf.int32 containing the label. bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. text: Tensor tf.string containing the human-readable label. """ # Dense features in Example proto. feature_map = { 'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''), 'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64, default_value=-1), 'image/class/text': tf.FixedLenFeature([], dtype=tf.string, default_value=''), } sparse_float32 = tf.VarLenFeature(dtype=tf.float32) # Sparse features in Example proto. feature_map.update( {k: sparse_float32 for k in ['image/object/bbox/xmin', 'image/object/bbox/ymin', 'image/object/bbox/xmax', 'image/object/bbox/ymax']}) features = tf.parse_single_example(example_serialized, feature_map) label = tf.cast(features['image/class/label'], dtype=tf.int32) xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0) ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0) xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0) ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0) # Note that we impose an ordering of (y, x) just to make life difficult. bbox = tf.concat(axis=0, values=[ymin, xmin, ymax, xmax]) # Force the variable number of bounding boxes into the shape # [1, num_boxes, coords]. bbox = tf.expand_dims(bbox, 0) bbox = tf.transpose(bbox, [0, 2, 1]) return features['image/encoded'], label, bbox, features['image/class/text'] def batch_inputs(dataset, batch_size, train, num_preprocess_threads=None, num_readers=1): """Contruct batches of training or evaluation examples from the image dataset. Args: dataset: instance of Dataset class specifying the dataset. See dataset.py for details. batch_size: integer train: boolean num_preprocess_threads: integer, total number of preprocessing threads num_readers: integer, number of parallel readers Returns: images: 4-D float Tensor of a batch of images labels: 1-D integer Tensor of [batch_size]. Raises: ValueError: if data is not found """ with tf.name_scope('batch_processing'): data_files = dataset.data_files() if data_files is None: raise ValueError('No data files found for this dataset') # Create filename_queue if train: filename_queue = tf.train.string_input_producer(data_files, shuffle=True, capacity=16) else: filename_queue = tf.train.string_input_producer(data_files, shuffle=False, capacity=1) if num_preprocess_threads is None: num_preprocess_threads = FLAGS.num_preprocess_threads if num_preprocess_threads % 4: raise ValueError('Please make num_preprocess_threads a multiple ' 'of 4 (%d % 4 != 0).', num_preprocess_threads) if num_readers is None: num_readers = FLAGS.num_readers if num_readers < 1: raise ValueError('Please make num_readers at least 1') # Approximate number of examples per shard. examples_per_shard = 1024 # Size the random shuffle queue to balance between good global # mixing (more examples) and memory use (fewer examples). # 1 image uses 299*299*3*4 bytes = 1MB # The default input_queue_memory_factor is 16 implying a shuffling queue # size: examples_per_shard * 16 * 1MB = 17.6GB min_queue_examples = examples_per_shard * FLAGS.input_queue_memory_factor if train: examples_queue = tf.RandomShuffleQueue( capacity=min_queue_examples + 3 * batch_size, min_after_dequeue=min_queue_examples, dtypes=[tf.string]) else: examples_queue = tf.FIFOQueue( capacity=examples_per_shard + 3 * batch_size, dtypes=[tf.string]) # Create multiple readers to populate the queue of examples. if num_readers > 1: enqueue_ops = [] for _ in range(num_readers): reader = dataset.reader() _, value = reader.read(filename_queue) enqueue_ops.append(examples_queue.enqueue([value])) tf.train.queue_runner.add_queue_runner( tf.train.queue_runner.QueueRunner(examples_queue, enqueue_ops)) example_serialized = examples_queue.dequeue() else: reader = dataset.reader() _, example_serialized = reader.read(filename_queue) images_and_labels = [] for thread_id in range(num_preprocess_threads): # Parse a serialized Example proto to extract the image and metadata. image_buffer, label_index, bbox, _ = parse_example_proto( example_serialized) image = image_preprocessing(image_buffer, bbox, train, thread_id) images_and_labels.append([image, label_index]) images, label_index_batch = tf.train.batch_join( images_and_labels, batch_size=batch_size, capacity=2 * num_preprocess_threads * batch_size) # Reshape images into these desired dimensions. height = FLAGS.image_size width = FLAGS.image_size depth = 3 images = tf.cast(images, tf.float32) images = tf.reshape(images, shape=[batch_size, height, width, depth]) # Display the training images in the visualizer. tf.summary.image('images', images) return images, tf.reshape(label_index_batch, [batch_size])
mit
Lawrence-Liu/crab
scikits/crab/recommenders/knn/neighborhood_strategies.py
10
4860
""" Strategies for users selection to be a possible candidate to be member of a user neighborhood. Please check the base.BaseUserNeighborhoodStrategy before implement your own strategy. """ # Author: Marcel Caraciolo <marcel@muricoca.com> # # License: BSD Style. from base import BaseUserNeighborhoodStrategy import numpy as np from ...similarities.basic_similarities import UserSimilarity from ...metrics.pairwise import euclidean_distances class AllNeighborsStrategy(BaseUserNeighborhoodStrategy): ''' Returns -------- Returns all users in the model. This strategy is not recommended for large datasets and it is the dummiest one. ''' def user_neighborhood(self, user_id, data_model, similarity='user_similarity', distance=None, nhood_size=None, **params): ''' Computes a neighborhood consisting of the n users to a given user based on the strategy implemented in this method. Parameters ----------- user_id: int or string ID of user for which to find most similar other users data_model: DataModel instance The data model that will be the source for the possible candidates similarity: string The similarity to compute the neighborhood (default = 'user_similarity') |user_similarity'| distance: function Pairwise metric to compute the similarity between the users. nhood_size: int The neighborhood size (default = None all users) ''' user_ids = data_model.user_ids() return user_ids[user_ids != user_id] if user_ids.size else user_ids class NearestNeighborsStrategy(BaseUserNeighborhoodStrategy): ''' Returns -------- Returns the neighborhood consisting of the nearest n users to a given user. "Nearest" in this context is defined by the Similarity. Parameters ----------- user_id: int or string ID of user for which to find most similar other users data_model: DataModel instance The data model that will be the source for the possible candidates similarity: string The similarity to compute the neighborhood (default = 'user_similarity') |user_similarity'| distance: function Pairwise metric to compute the similarity between the users. nhood_size: int The neighborhood size (default = None all users) ''' def __init__(self): self.similarity = None def _sampling(self, data_model, sampling_rate): #TODO: Still to be implemented in a best way return data_model def _set_similarity(self, data_model, similarity, distance, nhood_size): if not isinstance(self.similarity, UserSimilarity) \ or not distance == self.similarity.distance: nhood_size = nhood_size if not nhood_size else nhood_size + 1 self.similarity = UserSimilarity(data_model, distance, nhood_size) def user_neighborhood(self, user_id, data_model, n_similarity='user_similarity', distance=None, nhood_size=None, **params): ''' Computes a neighborhood consisting of the n users to a given user based on the strategy implemented in this method. Parameters ----------- user_id: int or string ID of user for which to find most similar other users data_model: DataModel instance The data model that will be the source for the possible candidates n_similarity: string The similarity to compute the neighborhood (Default = 'user_similarity') nhood_size: int The neighborhood size (default = None all users) Optional Parameters -------------------- minimal_similarity: float minimal similarity required for neighbors (default = 0.0) sampling_rate: int percentage of users to consider when building neighborhood (default = 1) ''' minimal_similarity = params.get('minimal_similarity', 0.0) sampling_rate = params.get('sampling_rate', 1.0) data_model = self._sampling(data_model, sampling_rate) #set the nhood_size at Similarity , and use Similarity to get the top_users if distance is None: distance = euclidean_distances if n_similarity == 'user_similarity': self._set_similarity(data_model, n_similarity, distance, nhood_size) else: raise ValueError('similarity argument must be user_similarity') neighborhood = [to_user_id for to_user_id, score in self.similarity[user_id] \ if not np.isnan(score) and score >= minimal_similarity and user_id != to_user_id] return neighborhood
bsd-3-clause
marionleborgne/nupic.research
projects/imbu/engine/fluent_api.py
11
6161
# ---------------------------------------------------------------------- # Copyright (C) 2015, Numenta, Inc. Unless you have purchased from # Numenta, Inc. a separate commercial license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Implements Imbu's web API. """ import simplejson as json import logging import os import pkg_resources import web from htmresearch.frameworks.nlp.imbu import ImbuModels from htmresearch.frameworks.nlp.model_factory import ClassificationModelTypes g_log = logging.getLogger(__name__) # No training in Imbu web app, user must specify loadPath if "IMBU_LOAD_PATH_PREFIX" in os.environ: _IMBU_LOAD_PATH_PREFIX = os.environ["IMBU_LOAD_PATH_PREFIX"] else: raise KeyError("Required IMBU_LOAD_PATH_PREFIX missing from environment") g_imbus = {} # Global ImbuModels cache g_models = {} # Global NLP model cache for datasetName in os.listdir(_IMBU_LOAD_PATH_PREFIX): datasetPath = os.path.join(_IMBU_LOAD_PATH_PREFIX, datasetName) if os.path.isdir(datasetPath) and "egg" not in datasetPath: # Create an imbu instance for each dataset imbu = ImbuModels( cacheRoot=os.environ.get("MODEL_CACHE_DIR", os.getcwd()), modelSimilarityMetric=None, dataPath=os.path.join(datasetPath, "data.csv"), retina=os.environ["IMBU_RETINA_ID"], apiKey=os.environ["CORTICAL_API_KEY"] ) g_imbus.update(((datasetName, imbu),)) # Init the dict for this dataset's models g_models[datasetName] = {} def addStandardHeaders(contentType="application/json; charset=UTF-8"): """ Add Standard HTTP Headers ("Content-Type", "Server") to the response. Here is an example of the headers added by this method using the default values:: Content-Type: application/json; charset=UTF-8 Server: Imbu x.y.z :param content_type: The value for the "Content-Type" header. (default "application/json; charset=UTF-8") """ web.header("Server", "Imbu 1.0.0", True) web.header("Content-Type", contentType, True) def addCORSHeaders(): """ Add CORS (http://www.w3.org/TR/cors/) headers """ web.header("Access-Control-Allow-Origin", "*", True) web.header("Access-Control-Allow-Headers", "accept, access-control-allow-origin, content-type", True) web.header("Access-Control-Allow-Credentials", "true", True) web.header("Access-Control-Allow-Methods", "POST", True) class FluentWrapper(object): def query(self, dataset, model, text): """ Queries the model (which is specific to this dataset) and returns a dict of matching documents. :param str dataset: Dataset name, specifying the ImbuModels instance to use. Possible values correspond to data dirs in _IMBU_LOAD_PATH_PREFIX. :param str model: Name of the model to use. Possible values are mapped to classes in the NLP model factory. :param str text: The text to match. :returns: dict of results. :: { "0": {"text": "sampleText", "scores": [0.75, ...]}, ... } """ global g_imbus global g_models if model not in g_models[dataset]: loadPath = os.path.join(_IMBU_LOAD_PATH_PREFIX, dataset, model) g_models[dataset][model] = g_imbus[dataset].createModel( model, str(loadPath), None) if text: _, sortedIds, sortedDistances = g_imbus[dataset].query( g_models[dataset][model], text) return g_imbus[dataset].formatResults(model, text, sortedDistances, sortedIds) else: return {} class DefaultHandler(object): def GET(self, *args): # pylint: disable=R0201,C0103 addStandardHeaders("text/html; charset=UTF-8") return "<html><body><h1>Welcome to Nupic Fluent</h1></body></html>" class DatasetsHandler(object): """Handles Dataset requests""" def GET(self, *args): """Use '/fluent/datasets' to get list of available datasets""" addStandardHeaders() addCORSHeaders() return json.dumps(g_imbus.keys()) class FluentAPIHandler(object): """Handles API requests""" def OPTIONS(self, modelName=ImbuModels.defaultModelType): # pylint: disable=R0201,C0103 addStandardHeaders() addCORSHeaders() def GET(self, *args): """ GET global ready status. Returns "true" when all models have been created and are ready for queries. """ addStandardHeaders() addCORSHeaders() return json.dumps(True) def POST(self, modelName=ImbuModels.defaultModelType, dataset=ImbuModels.defaultDataset): # pylint: disable=R0201,C0103 addStandardHeaders() addCORSHeaders() response = {} data = web.data() if data: if isinstance(data, basestring): response = g_fluent.query(dataset, modelName, data) else: raise web.badrequest("Invalid Data. Query data must be a string") if len(response) == 0: # No data, just return all samples # See "ImbuModels.formatResults" for expected format for item in g_imbus[dataset].dataDict.items(): response[item[0]] = {"text": item[1][0], "scores": [0]} return json.dumps(response) urls = ( "", "DefaultHandler", "/", "DefaultHandler", "/fluent", "FluentAPIHandler", "/fluent/datasets", "DatasetsHandler", "/fluent/(.*)/(.*)", "FluentAPIHandler", "/fluent/(.*)", "FluentAPIHandler" ) app = web.application(urls, globals()) # Create Imbu model runner g_fluent = FluentWrapper() # Required by uWSGI per WSGI spec application = app.wsgifunc()
agpl-3.0
Diyago/Machine-Learning-scripts
DEEP LEARNING/segmentation/Kaggle TGS Salt Identification Challenge/v2/modules/functions.py
1
10930
import torch.autograd as autograd import torch.cuda.comm as comm from torch.autograd.function import once_differentiable from . import _ext # Activation names ACT_LEAKY_RELU = "leaky_relu" ACT_ELU = "elu" ACT_NONE = "none" def _check(fn, *args, **kwargs): success = fn(*args, **kwargs) if not success: raise RuntimeError("CUDA Error encountered in {}".format(fn)) def _broadcast_shape(x): out_size = [] for i, s in enumerate(x.size()): if i != 1: out_size.append(1) else: out_size.append(s) return out_size def _reduce(x): if len(x.size()) == 2: return x.sum(dim=0) else: n, c = x.size()[0:2] return x.contiguous().view((n, c, -1)).sum(2).sum(0) def _count_samples(x): count = 1 for i, s in enumerate(x.size()): if i != 1: count *= s return count def _act_forward(ctx, x): if ctx.activation == ACT_LEAKY_RELU: _check(_ext.leaky_relu_cuda, x, ctx.slope) elif ctx.activation == ACT_ELU: _check(_ext.elu_cuda, x) elif ctx.activation == ACT_NONE: pass def _act_backward(ctx, x, dx): if ctx.activation == ACT_LEAKY_RELU: _check(_ext.leaky_relu_backward_cuda, x, dx, ctx.slope) _check(_ext.leaky_relu_cuda, x, 1.0 / ctx.slope) elif ctx.activation == ACT_ELU: _check(_ext.elu_backward_cuda, x, dx) _check(_ext.elu_inv_cuda, x) elif ctx.activation == ACT_NONE: pass def _check_contiguous(*args): if not all([mod is None or mod.is_contiguous() for mod in args]): raise ValueError("Non-contiguous input") class InPlaceABN(autograd.Function): @staticmethod def forward( ctx, x, weight, bias, running_mean, running_var, training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01, ): # Save context ctx.training = training ctx.momentum = momentum ctx.eps = eps ctx.activation = activation ctx.slope = slope n = _count_samples(x) if ctx.training: mean = x.new().resize_as_(running_mean) var = x.new().resize_as_(running_var) _check_contiguous(x, mean, var) _check(_ext.bn_mean_var_cuda, x, mean, var) # Update running stats running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * n / (n - 1)) else: mean, var = running_mean, running_var _check_contiguous(x, mean, var, weight, bias) _check( _ext.bn_forward_cuda, x, mean, var, weight if weight is not None else x.new(), bias if bias is not None else x.new(), x, x, ctx.eps, ) # Activation _act_forward(ctx, x) # Output ctx.var = var ctx.save_for_backward(x, weight, bias, running_mean, running_var) ctx.mark_dirty(x) return x @staticmethod @once_differentiable def backward(ctx, dz): z, weight, bias, running_mean, running_var = ctx.saved_tensors dz = dz.contiguous() # Undo activation _act_backward(ctx, z, dz) if ctx.needs_input_grad[0]: dx = dz.new().resize_as_(dz) else: dx = None if ctx.needs_input_grad[1]: dweight = dz.new().resize_as_(running_mean).zero_() else: dweight = None if ctx.needs_input_grad[2]: dbias = dz.new().resize_as_(running_mean).zero_() else: dbias = None if ctx.training: edz = dz.new().resize_as_(running_mean) eydz = dz.new().resize_as_(running_mean) _check_contiguous(z, dz, weight, bias, edz, eydz) _check( _ext.bn_edz_eydz_cuda, z, dz, weight if weight is not None else dz.new(), bias if bias is not None else dz.new(), edz, eydz, ctx.eps, ) else: # TODO: implement CUDA backward for inference mode edz = dz.new().resize_as_(running_mean).zero_() eydz = dz.new().resize_as_(running_mean).zero_() _check_contiguous(dz, z, ctx.var, weight, bias, edz, eydz, dx, dweight, dbias) _check( _ext.bn_backard_cuda, dz, z, ctx.var, weight if weight is not None else dz.new(), bias if bias is not None else dz.new(), edz, eydz, dx if dx is not None else dz.new(), dweight if dweight is not None else dz.new(), dbias if dbias is not None else dz.new(), ctx.eps, ) del ctx.var return dx, dweight, dbias, None, None, None, None, None, None, None class InPlaceABNSync(autograd.Function): @classmethod def forward( cls, ctx, x, weight, bias, running_mean, running_var, extra, training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01, ): # Save context cls._parse_extra(ctx, extra) ctx.training = training ctx.momentum = momentum ctx.eps = eps ctx.activation = activation ctx.slope = slope n = _count_samples(x) * (ctx.master_queue.maxsize + 1) if ctx.training: mean = x.new().resize_(1, running_mean.size(0)) var = x.new().resize_(1, running_var.size(0)) _check_contiguous(x, mean, var) _check(_ext.bn_mean_var_cuda, x, mean, var) if ctx.is_master: means, vars = [mean], [var] for _ in range(ctx.master_queue.maxsize): mean_w, var_w = ctx.master_queue.get() ctx.master_queue.task_done() means.append(mean_w) vars.append(var_w) means = comm.gather(means) vars = comm.gather(vars) mean = means.mean(0) var = (vars + (mean - means) ** 2).mean(0) tensors = comm.broadcast_coalesced( (mean, var), [mean.get_device()] + ctx.worker_ids ) for ts, queue in zip(tensors[1:], ctx.worker_queues): queue.put(ts) else: ctx.master_queue.put((mean, var)) mean, var = ctx.worker_queue.get() ctx.worker_queue.task_done() # Update running stats running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * n / (n - 1)) else: mean, var = running_mean, running_var _check_contiguous(x, mean, var, weight, bias) _check( _ext.bn_forward_cuda, x, mean, var, weight if weight is not None else x.new(), bias if bias is not None else x.new(), x, x, ctx.eps, ) # Activation _act_forward(ctx, x) # Output ctx.var = var ctx.save_for_backward(x, weight, bias, running_mean, running_var) ctx.mark_dirty(x) return x @staticmethod @once_differentiable def backward(ctx, dz): z, weight, bias, running_mean, running_var = ctx.saved_tensors dz = dz.contiguous() # Undo activation _act_backward(ctx, z, dz) if ctx.needs_input_grad[0]: dx = dz.new().resize_as_(dz) else: dx = None if ctx.needs_input_grad[1]: dweight = dz.new().resize_as_(running_mean).zero_() else: dweight = None if ctx.needs_input_grad[2]: dbias = dz.new().resize_as_(running_mean).zero_() else: dbias = None if ctx.training: edz = dz.new().resize_as_(running_mean) eydz = dz.new().resize_as_(running_mean) _check_contiguous(z, dz, weight, bias, edz, eydz) _check( _ext.bn_edz_eydz_cuda, z, dz, weight if weight is not None else dz.new(), bias if bias is not None else dz.new(), edz, eydz, ctx.eps, ) if ctx.is_master: edzs, eydzs = [edz], [eydz] for _ in range(len(ctx.worker_queues)): edz_w, eydz_w = ctx.master_queue.get() ctx.master_queue.task_done() edzs.append(edz_w) eydzs.append(eydz_w) edz = comm.reduce_add(edzs) / (ctx.master_queue.maxsize + 1) eydz = comm.reduce_add(eydzs) / (ctx.master_queue.maxsize + 1) tensors = comm.broadcast_coalesced( (edz, eydz), [edz.get_device()] + ctx.worker_ids ) for ts, queue in zip(tensors[1:], ctx.worker_queues): queue.put(ts) else: ctx.master_queue.put((edz, eydz)) edz, eydz = ctx.worker_queue.get() ctx.worker_queue.task_done() else: edz = dz.new().resize_as_(running_mean).zero_() eydz = dz.new().resize_as_(running_mean).zero_() _check_contiguous(dz, z, ctx.var, weight, bias, edz, eydz, dx, dweight, dbias) _check( _ext.bn_backard_cuda, dz, z, ctx.var, weight if weight is not None else dz.new(), bias if bias is not None else dz.new(), edz, eydz, dx if dx is not None else dz.new(), dweight if dweight is not None else dz.new(), dbias if dbias is not None else dz.new(), ctx.eps, ) del ctx.var return dx, dweight, dbias, None, None, None, None, None, None, None, None @staticmethod def _parse_extra(ctx, extra): ctx.is_master = extra["is_master"] if ctx.is_master: ctx.master_queue = extra["master_queue"] ctx.worker_queues = extra["worker_queues"] ctx.worker_ids = extra["worker_ids"] else: ctx.master_queue = extra["master_queue"] ctx.worker_queue = extra["worker_queue"] inplace_abn = InPlaceABN.apply inplace_abn_sync = InPlaceABNSync.apply __all__ = ["inplace_abn", "inplace_abn_sync"]
apache-2.0
shijx12/DeepSim
deepSimGAN/util.py
1
8623
from lib.datasets.factory import get_imdb import numpy as np import tensorflow as tf import cv2 import random import cfg class DataFetcher: def __init__(self, imdb_name, resize=True): imdb = get_imdb(imdb_name) # Ignore the background class!!! So ['gt_classes'] must minus 1. self.classes = [ np.zeros(imdb.num_classes - 1) for i in range(imdb.num_images) ] for i, anno in enumerate(imdb.gt_roidb()): np.put(self.classes[i], map(lambda x: x-1, anno['gt_classes']), 1) # np.put(self.classes[i], random.choice(map(lambda x: x-1, anno['gt_classes'])), 1) self.images = [ imdb.image_path_at(i) for i in range(imdb.num_images) ] assert len(self.classes) == len(self.images) self._perm = np.random.permutation(np.arange(len(self.images))) self._cur = 0 self.resize = resize def nextbatch(self, batch_size=1): # if all images have been trained, permuate again. blobs = {'data':[], 'path':[], 'classes':[], 'keep_prob':[], 'im_info':[]} for batch in range(batch_size): if self._cur >= len(self.images): self._cur = 0 self._perm = np.random.permutation(np.arange(len(self.images))) i = self._perm[self._cur] self._cur += 1 im = cv2.imread(self.images[i]).astype(np.float32, copy=False) if self.resize: im = np.stack([cv2.resize(im[:,:,i], (cfg.RESIZED_SIZE, cfg.RESIZED_SIZE)) for i in range(im.shape[2])], axis=2) blobs['data'].append(im) blobs['path'].append(self.images[i]) blobs['classes'].append(self.classes[i]) blobs['keep_prob'].append(0.5) # im_info: a list of [image_height, image_width, scale_ratios] # im_scale=1, that is, we don't scale the original image size. blobs['im_info'].append([im.shape[0], im.shape[1], 1]) return blobs def crop(image, resized_size, cropped_size): # image is of arbitrary size. # return a Tensor representing image of size cropped_size x cropped_size image = tf.image.resize_images(image, [resized_size, resized_size], method=tf.image.ResizeMethod.AREA) offset = tf.cast(tf.floor(tf.random_uniform([2], 0, resized_size - cropped_size + 1)), dtype=tf.int32) image = tf.image.crop_to_bounding_box(image, offset[0], offset[1], cropped_size, cropped_size) return image def subtract_mean(image): # image is a Tensor. # return a Tensor. image = tf.cast(image, dtype=tf.float32) return image - tf.convert_to_tensor(cfg.PIXEL_MEANS, dtype=tf.float32) def prep(image): # change range from [0, 256) to [-1, 1] # image is a Tensor. # return a float32 Tensor. image = tf.cast(image, dtype=tf.float32) return (image / 255.0) * 2 - 1 def invprep(image): # change range from [-1, 1] to [0, 256) # image is a float32 Tensor. # return a uint8 Tensor. image = (image + 1) / 2.0 * 255.9 return image def bgr2rgb(image): image = tf.cast(image, dtype=tf.uint8) return image[:,:,:,::-1] def make_var(name, shape, initializer=None, trainable=True, regularizer=None): return tf.get_variable(name, shape, initializer=initializer, trainable=trainable, regularizer=regularizer) def l2_regularizer(weight_decay=0.0005, scope=None): def regularizer(tensor): with tf.name_scope(scope, default_name='l2_regularizer', values=[tensor]): l2_weight = tf.convert_to_tensor(weight_decay, dtype=tensor.dtype.base_dtype, name='weight_decay') return tf.multiply(l2_weight, tf.nn.l2_loss(tensor), name='value') return regularizer def batch_norm(input, scope='batchnorm'): with tf.variable_scope(scope): input = tf.identity(input) dims = input.get_shape() if len(dims) == 4: channels = dims[3] offset = tf.get_variable("offset", [channels], dtype=tf.float32, initializer=tf.zeros_initializer()) scale = tf.get_variable("scale", [channels], dtype=tf.float32, initializer=tf.random_normal_initializer(1.0, 0.02)) mean, variance = tf.nn.moments(input, axes=[0, 1, 2], keep_dims=False) elif len(dims) == 2: channels = dims[1] offset = tf.get_variable("offset", [channels], dtype=tf.float32, initializer=tf.zeros_initializer()) scale = tf.get_variable("scale", [channels], dtype=tf.float32, initializer=tf.random_normal_initializer(1.0, 0.02)) mean, variance = tf.nn.moments(input, axes=[0], keep_dims=False) variance_epsilon = 1e-5 normalized = tf.nn.batch_normalization(input, mean, variance, offset, scale, variance_epsilon=variance_epsilon) return normalized def leaky_relu(input, alpha=0.3, name='leaky_relu'): return tf.maximum(alpha*input, input, name) def conv(input, k_h, k_w, c_o, s_h, s_w, name, biased=True, activation='relu', bn=False, init='msra', pad='SAME', trainable=True): c_i = input.get_shape()[-1] # channel_input with tf.variable_scope(name) as scope: if init == 'msra': init_weights = tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False) else: raise Exception('Invalid init') kernel = make_var('weights', [k_h, k_w, c_i, c_o], init_weights, trainable, regularizer=l2_regularizer(cfg.WEIGHT_DECAY)) h = tf.nn.conv2d(input, kernel, [1, s_h, s_w, 1], padding=pad) if biased: init_bias = tf.constant_initializer(0.0) bias = make_var('biases', [c_o], init_bias, trainable) h = tf.nn.bias_add(h, bias) if bn: h = batch_norm(h) if activation == 'relu': h = tf.nn.relu(h) elif activation == 'leaky_relu': h = leaky_relu(h) return h def upconv(input, c_o, ksize, stride, name, biased=False, activation='relu', bn=False, init='msra', pad='SAME', trainable=True): c_i = input.get_shape()[-1] # channel_input in_shape = tf.shape(input) if pad == 'SAME': output_shape = [in_shape[0], in_shape[1]*stride, in_shape[2]*stride, c_o] else: raise Exception('Sorry not support padding VALID') kernel_shape = [ksize, ksize, c_o, c_i] with tf.variable_scope(name) as scope: if init == 'msra': init_weights = tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False) else: raise Exception('Invalid init') kernel = make_var('weights', kernel_shape, init_weights, trainable, regularizer=l2_regularizer(cfg.WEIGHT_DECAY)) h = tf.nn.conv2d_transpose(input, kernel, output_shape, [1, stride, stride, 1], padding=pad) h = tf.reshape(h, output_shape) # reshape is necessary if biased: init_bias = tf.constant_initializer(0.0) bias = make_var('biases', [c_o], init_bias, trainable) h = tf.nn.bias_add(h, bias) if bn: h = batch_norm(h) if activation == 'relu': h = tf.nn.relu(h) elif activation == 'leaky_relu': h = leaky_relu(h) return h def max_pool(input, k_h, k_w, s_h, s_w, name, pad='SAME'): return tf.nn.max_pool(input, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=pad, name=name) def avg_pool(input, k_h, k_w, s_h, s_w, name, pad='SAME'): return tf.nn.avg_pool(input, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=pad, name=name) def fc(input, c_o, name, biased=True, activation='relu', bn=False, init='msra', trainable=True): c_i = input.get_shape()[-1] with tf.variable_scope(name) as scope: if init == 'msra': init_weights = tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False) else: raise Exception('Invalid init') weights = make_var('weights', [c_i, c_o], init_weights, trainable, regularizer=l2_regularizer(cfg.WEIGHT_DECAY)) h = tf.matmul(input, weights) if biased: init_bias = tf.constant_initializer(0.0) bias = make_var('biases', [c_o], init_bias, trainable) h = tf.nn.bias_add(h, bias) if bn: h = batch_norm(h) if activation == 'relu': h = tf.nn.relu(h) elif activation == 'leaky_relu': h = leaky_relu(h) return h def sum_act(h, sparsity=False): tf.summary.histogram('activation/'+h.name, h) if sparsity: tf.summary.scalar('sparsity/'+h.name, tf.nn.zero_fraction(h))
mit
lilleswing/deepchem
contrib/one_shot_models/multitask_regressor.py
5
8197
""" Implements a multitask graph-convolutional regression. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "Han Altae-Tran and Bharath Ramsundar" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import warnings import os import sys import numpy as np import tensorflow as tf import sklearn.metrics import tempfile from deepchem.utils.save import log from deepchem.models import Model from deepchem.nn.copy import Input from deepchem.nn.copy import Dense from deepchem.data import pad_features from deepchem.nn import model_ops # TODO(rbharath): Find a way to get rid of this import? from deepchem.models.tf_new_models.graph_topology import merge_dicts from deepchem.models.tf_new_models.multitask_classifier import get_loss_fn class MultitaskGraphRegressor(Model): def __init__(self, model, n_tasks, n_feat, logdir=None, batch_size=50, final_loss='weighted_L2', learning_rate=.001, optimizer_type="adam", learning_rate_decay_time=1000, beta1=.9, beta2=.999, pad_batches=True, verbose=True): warnings.warn( "MultitaskGraphRegressor is deprecated. " "Will be removed in DeepChem 1.4.", DeprecationWarning) super(MultitaskGraphRegressor, self).__init__( model_dir=logdir, verbose=verbose) self.n_tasks = n_tasks self.final_loss = final_loss self.model = model self.sess = tf.Session(graph=self.model.graph) with self.model.graph.as_default(): # Extract model info self.batch_size = batch_size self.pad_batches = pad_batches # Get graph topology for x self.graph_topology = self.model.get_graph_topology() self.feat_dim = n_feat # Building outputs self.outputs = self.build() self.loss_op = self.add_training_loss(self.final_loss, self.outputs) self.learning_rate = learning_rate self.T = learning_rate_decay_time self.optimizer_type = optimizer_type self.optimizer_beta1 = beta1 self.optimizer_beta2 = beta2 # Set epsilon self.epsilon = 1e-7 self.add_optimizer() # Initialize self.init_fn = tf.global_variables_initializer() self.sess.run(self.init_fn) # Path to save checkpoint files, which matches the # replicated supervisor's default path. self._save_path = os.path.join(self.model_dir, 'model.ckpt') def build(self): # Create target inputs self.label_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="label_placeholder") self.weight_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="weight_placholder") feat = self.model.return_outputs() feat_size = feat.get_shape()[-1].value outputs = [] for task in range(self.n_tasks): outputs.append( tf.squeeze( model_ops.fully_connected_layer( tensor=feat, size=1, weight_init=tf.truncated_normal( shape=[feat_size, 1], stddev=0.01), bias_init=tf.constant(value=0., shape=[1])))) return outputs def add_optimizer(self): if self.optimizer_type == "adam": self.optimizer = tf.train.AdamOptimizer( self.learning_rate, beta1=self.optimizer_beta1, beta2=self.optimizer_beta2, epsilon=self.epsilon) else: raise ValueError("Optimizer type not recognized.") # Get train function self.train_op = self.optimizer.minimize(self.loss_op) def construct_feed_dict(self, X_b, y_b=None, w_b=None, training=True): """Get initial information about task normalization""" # TODO(rbharath): I believe this is total amount of data n_samples = len(X_b) if y_b is None: y_b = np.zeros((n_samples, self.n_tasks)) if w_b is None: w_b = np.zeros((n_samples, self.n_tasks)) targets_dict = {self.label_placeholder: y_b, self.weight_placeholder: w_b} # Get graph information atoms_dict = self.graph_topology.batch_to_feed_dict(X_b) # TODO (hraut->rhbarath): num_datapoints should be a vector, with ith element being # the number of labeled data points in target_i. This is to normalize each task # num_dat_dict = {self.num_datapoints_placeholder : self.} # Get other optimizer information # TODO(rbharath): Figure out how to handle phase appropriately feed_dict = merge_dicts([targets_dict, atoms_dict]) return feed_dict def add_training_loss(self, final_loss, outputs): """Computes loss using logits.""" loss_fn = get_loss_fn(final_loss) # Get loss function task_losses = [] # label_placeholder of shape (batch_size, n_tasks). Split into n_tasks # tensors of shape (batch_size,) task_labels = tf.split( axis=1, num_or_size_splits=self.n_tasks, value=self.label_placeholder) task_weights = tf.split( axis=1, num_or_size_splits=self.n_tasks, value=self.weight_placeholder) for task in range(self.n_tasks): task_label_vector = task_labels[task] task_weight_vector = task_weights[task] task_loss = loss_fn(outputs[task], tf.squeeze(task_label_vector), tf.squeeze(task_weight_vector)) task_losses.append(task_loss) # It's ok to divide by just the batch_size rather than the number of nonzero # examples (effect averages out) total_loss = tf.add_n(task_losses) total_loss = tf.math.divide(total_loss, self.batch_size) return total_loss def fit(self, dataset, nb_epoch=10, max_checkpoints_to_keep=5, log_every_N_batches=50, checkpoint_interval=10, **kwargs): # Perform the optimization log("Training for %d epochs" % nb_epoch, self.verbose) # TODO(rbharath): Disabling saving for now to try to debug. for epoch in range(nb_epoch): log("Starting epoch %d" % epoch, self.verbose) for batch_num, (X_b, y_b, w_b, ids_b) in enumerate( dataset.iterbatches(self.batch_size, pad_batches=self.pad_batches)): if batch_num % log_every_N_batches == 0: log("On batch %d" % batch_num, self.verbose) self.sess.run( self.train_op, feed_dict=self.construct_feed_dict(X_b, y_b, w_b)) def save(self): """ No-op since this model doesn't currently support saving... """ pass def predict(self, dataset, transformers=[], **kwargs): """Wraps predict to set batch_size/padding.""" return super(MultitaskGraphRegressor, self).predict( dataset, transformers, batch_size=self.batch_size) def predict_on_batch(self, X): """Return model output for the provided input. """ if self.pad_batches: X = pad_features(self.batch_size, X) # run eval data through the model n_tasks = self.n_tasks with self.sess.as_default(): feed_dict = self.construct_feed_dict(X) # Shape (n_samples, n_tasks) batch_outputs = self.sess.run(self.outputs, feed_dict=feed_dict) n_samples = len(X) outputs = np.zeros((n_samples, self.n_tasks)) for task, output in enumerate(batch_outputs): outputs[:, task] = output return outputs def get_num_tasks(self): """Needed to use Model.predict() from superclass.""" return self.n_tasks class DTNNMultitaskGraphRegressor(MultitaskGraphRegressor): def build(self): # Create target inputs warnings.warn( "DTNNMultitaskGraphRegressor is deprecated. " "Will be removed in DeepChem 1.4.", DeprecationWarning) self.label_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="label_placeholder") self.weight_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="weight_placholder") feat = self.model.return_outputs() outputs = [] for task in range(self.n_tasks): outputs.append(feat[:, task]) return outputs
mit
luo66/scikit-learn
sklearn/ensemble/tests/test_voting_classifier.py
140
6926
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.grid_search import GridSearchCV from sklearn import datasets from sklearn import cross_validation from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'voting': ['soft', 'hard'], 'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target)
bsd-3-clause
LohithBlaze/scikit-learn
sklearn/metrics/regression.py
174
16953
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Arnaud Joly <a.joly@ulg.ac.be> # Jochen Wersdorfer <jochen@wersdoerfer.de> # Lars Buitinck <L.J.Buitinck@uva.nl> # Joel Nothman <joel.nothman@gmail.com> # Noel Dawe <noel@dawe.me> # Manoj Kumar <manojkumarsivaraj334@gmail.com> # Michael Eickenberg <michael.eickenberg@gmail.com> # Konstantin Shmelkov <konstantin.shmelkov@polytechnique.edu> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', but will be changed to 'uniform_average' in next versions. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: # @FIXME change in 0.18 warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value, it will be changed " "to 'uniform_average' in 0.18.", DeprecationWarning) multioutput = 'variance_weighted' if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
luo66/scikit-learn
examples/manifold/plot_manifold_sphere.py
257
5101
#!/usr/bin/python # -*- coding: utf-8 -*- """ ============================================= Manifold Learning methods on a severed sphere ============================================= An application of the different :ref:`manifold` techniques on a spherical data-set. Here one can see the use of dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning techniques to 'spread it open' whilst projecting it onto two dimensions. For a similar example, where the methods are applied to the S-curve dataset, see :ref:`example_manifold_plot_compare_methods.py` Note that the purpose of the :ref:`MDS <multidimensional_scaling>` is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem matches fairly that of representing a flat map of the Earth, as with `map projection <http://en.wikipedia.org/wiki/Map_projection>`_ """ # Author: Jaques Grobler <jaques.grobler@inria.fr> # License: BSD 3 clause print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold from sklearn.utils import check_random_state # Next line to silence pyflakes. Axes3D # Variables for manifold learning. n_neighbors = 10 n_samples = 1000 # Create our sphere. random_state = check_random_state(0) p = random_state.rand(n_samples) * (2 * np.pi - 0.55) t = random_state.rand(n_samples) * np.pi # Sever the poles from the sphere. indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8)))) colors = p[indices] x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \ np.sin(t[indices]) * np.sin(p[indices]), \ np.cos(t[indices]) # Plot our dataset. fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) ax = fig.add_subplot(251, projection='3d') ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow) try: # compatibility matplotlib < 1.0 ax.view_init(40, -10) except: pass sphere_data = np.array([x, y, z]).T # Perform Locally Linear Embedding Manifold learning methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() trans_data = manifold\ .LocallyLinearEmbedding(n_neighbors, 2, method=method).fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Isomap Manifold learning. t0 = time() trans_data = manifold.Isomap(n_neighbors, n_components=2)\ .fit_transform(sphere_data).T t1 = time() print("%s: %.2g sec" % ('ISO', t1 - t0)) ax = fig.add_subplot(257) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Multi-dimensional scaling. t0 = time() mds = manifold.MDS(2, max_iter=100, n_init=1) trans_data = mds.fit_transform(sphere_data).T t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform Spectral Embedding. t0 = time() se = manifold.SpectralEmbedding(n_components=2, n_neighbors=n_neighbors) trans_data = se.fit_transform(sphere_data).T t1 = time() print("Spectral Embedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Perform t-distributed stochastic neighbor embedding. t0 = time() tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) trans_data = tsne.fit_transform(sphere_data).T t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
jzt5132/scikit-learn
examples/cluster/plot_lena_segmentation.py
269
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <gael.varoquaux@normalesup.org>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
mlperf/training_results_v0.5
v0.5.0/google/cloud_v3.8/gnmt-tpuv3-8/code/gnmt/model/t2t/tensor2tensor/bin/t2t_datagen.py
3
11111
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Produces the training and dev data for --problem into --data_dir. Produces sharded and shuffled TFRecord files of tensorflow.Example protocol buffers for a variety of registered datasets. All Problems are registered with @registry.register_problem or are in _SUPPORTED_PROBLEM_GENERATORS in this file. Each entry maps a string name (selectable on the command-line with --problem) to a function that takes 2 arguments - input_directory and mode (one of "train" or "dev") - and yields for each training example a dictionary mapping string feature names to lists of {string, int, float}. The generator will be run once for each mode. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing import os import random import tempfile import numpy as np from tensor2tensor import problems as problems_lib # pylint: disable=unused-import from tensor2tensor.data_generators import generator_utils from tensor2tensor.utils import registry from tensor2tensor.utils import usr_dir try: # pylint: disable=g-import-not-at-top from tensor2tensor.data_generators import algorithmic_math from tensor2tensor.data_generators import audio from tensor2tensor.data_generators import snli from tensor2tensor.data_generators import wsj_parsing # pylint: enable=g-import-not-at-top except ImportError: pass # Improrting here to prevent pylint from ungrouped-imports warning. import tensorflow as tf # pylint: disable=g-import-not-at-top flags = tf.flags FLAGS = flags.FLAGS flags.DEFINE_string("data_dir", "", "Data directory.") flags.DEFINE_string("tmp_dir", "/tmp/t2t_datagen", "Temporary storage directory.") flags.DEFINE_string("problem", "", "The name of the problem to generate data for.") flags.DEFINE_string("exclude_problems", "", "Comma-separates list of problems to exclude.") flags.DEFINE_integer("num_shards", 0, "How many shards to use. Ignored for " "registered Problems.") flags.DEFINE_integer("max_cases", 0, "Maximum number of cases to generate (unbounded if 0).") flags.DEFINE_bool("only_list", False, "If true, we only list the problems that will be generated.") flags.DEFINE_integer("random_seed", 429459, "Random seed to use.") flags.DEFINE_integer("task_id", -1, "For distributed data generation.") flags.DEFINE_integer("task_id_start", -1, "For distributed data generation.") flags.DEFINE_integer("task_id_end", -1, "For distributed data generation.") flags.DEFINE_integer( "num_concurrent_processes", None, "Applies only to problems for which multiprocess_generate=True.") flags.DEFINE_string("t2t_usr_dir", "", "Path to a Python module that will be imported. The " "__init__.py file should include the necessary imports. " "The imported files should contain registrations, " "e.g. @registry.register_problem calls, that will then be " "available to t2t-datagen.") # Mapping from problems that we can generate data for to their generators. # pylint: disable=g-long-lambda _SUPPORTED_PROBLEM_GENERATORS = { "algorithmic_algebra_inverse": ( lambda: algorithmic_math.algebra_inverse(26, 0, 2, 100000), lambda: algorithmic_math.algebra_inverse(26, 3, 3, 10000), lambda: None), # test set "parsing_english_ptb8k": ( lambda: wsj_parsing.parsing_token_generator( FLAGS.data_dir, FLAGS.tmp_dir, True, 2**13, 2**9), lambda: wsj_parsing.parsing_token_generator( FLAGS.data_dir, FLAGS.tmp_dir, False, 2**13, 2**9), lambda: None), # test set "parsing_english_ptb16k": ( lambda: wsj_parsing.parsing_token_generator( FLAGS.data_dir, FLAGS.tmp_dir, True, 2**14, 2**9), lambda: wsj_parsing.parsing_token_generator( FLAGS.data_dir, FLAGS.tmp_dir, False, 2**14, 2**9), lambda: None), # test set "inference_snli32k": ( lambda: snli.snli_token_generator(FLAGS.tmp_dir, True, 2**15), lambda: snli.snli_token_generator(FLAGS.tmp_dir, False, 2**15), lambda: None), # test set "audio_timit_characters_test": ( lambda: audio.timit_generator( FLAGS.data_dir, FLAGS.tmp_dir, True, 1718), lambda: audio.timit_generator( FLAGS.data_dir, FLAGS.tmp_dir, False, 626), lambda: None), # test set "audio_timit_tokens_8k_test": ( lambda: audio.timit_generator( FLAGS.data_dir, FLAGS.tmp_dir, True, 1718, vocab_filename="vocab.endefr.%d" % 2**13, vocab_size=2**13), lambda: audio.timit_generator( FLAGS.data_dir, FLAGS.tmp_dir, False, 626, vocab_filename="vocab.endefr.%d" % 2**13, vocab_size=2**13), lambda: None), # test set "audio_timit_tokens_32k_test": ( lambda: audio.timit_generator( FLAGS.data_dir, FLAGS.tmp_dir, True, 1718, vocab_filename="vocab.endefr.%d" % 2**15, vocab_size=2**15), lambda: audio.timit_generator( FLAGS.data_dir, FLAGS.tmp_dir, False, 626, vocab_filename="vocab.endefr.%d" % 2**15, vocab_size=2**15), lambda: None), # test set } # pylint: enable=g-long-lambda def set_random_seed(): """Set the random seed from flag everywhere.""" tf.set_random_seed(FLAGS.random_seed) random.seed(FLAGS.random_seed) np.random.seed(FLAGS.random_seed) def main(_): usr_dir.import_usr_dir(FLAGS.t2t_usr_dir) # Calculate the list of problems to generate. problems = sorted( list(_SUPPORTED_PROBLEM_GENERATORS) + registry.list_problems()) for exclude in FLAGS.exclude_problems.split(","): if exclude: problems = [p for p in problems if exclude not in p] if FLAGS.problem and FLAGS.problem[-1] == "*": problems = [p for p in problems if p.startswith(FLAGS.problem[:-1])] elif FLAGS.problem and "," in FLAGS.problem: problems = [p for p in problems if p in FLAGS.problem.split(",")] elif FLAGS.problem: problems = [p for p in problems if p == FLAGS.problem] else: problems = [] # Remove TIMIT if paths are not given. if getattr(FLAGS, "timit_paths", None): problems = [p for p in problems if "timit" not in p] # Remove parsing if paths are not given. if getattr(FLAGS, "parsing_path", None): problems = [p for p in problems if "parsing_english_ptb" not in p] if not problems: problems_str = "\n * ".join( sorted(list(_SUPPORTED_PROBLEM_GENERATORS) + registry.list_problems())) error_msg = ("You must specify one of the supported problems to " "generate data for:\n * " + problems_str + "\n") error_msg += ("TIMIT and parsing need data_sets specified with " "--timit_paths and --parsing_path.") raise ValueError(error_msg) if not FLAGS.data_dir: FLAGS.data_dir = tempfile.gettempdir() tf.logging.warning("It is strongly recommended to specify --data_dir. " "Data will be written to default data_dir=%s.", FLAGS.data_dir) FLAGS.data_dir = os.path.expanduser(FLAGS.data_dir) tf.gfile.MakeDirs(FLAGS.data_dir) tf.logging.info("Generating problems:\n%s" % registry.display_list_by_prefix(problems, starting_spaces=4)) if FLAGS.only_list: return for problem in problems: set_random_seed() if problem in _SUPPORTED_PROBLEM_GENERATORS: generate_data_for_problem(problem) else: generate_data_for_registered_problem(problem) def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen, test_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_train_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_train_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) num_dev_shards = int(num_train_shards * 0.1) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_dev_shards) generator_utils.generate_files(dev_gen(), dev_output_files) num_test_shards = int(num_train_shards * 0.1) test_output_files = [] test_gen_data = test_gen() if test_gen_data is not None: tf.logging.info("Generating test data for %s.", problem) test_output_files = generator_utils.test_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_test_shards) generator_utils.generate_files(test_gen_data, test_output_files) all_output_files = train_output_files + dev_output_files + test_output_files generator_utils.shuffle_dataset(all_output_files) def generate_data_in_process(arg): problem_name, data_dir, tmp_dir, task_id = arg problem = registry.problem(problem_name) problem.generate_data(data_dir, tmp_dir, task_id) def generate_data_for_registered_problem(problem_name): """Generate data for a registered problem.""" tf.logging.info("Generating data for %s.", problem_name) if FLAGS.num_shards: raise ValueError("--num_shards should not be set for registered Problem.") problem = registry.problem(problem_name) task_id = None if FLAGS.task_id < 0 else FLAGS.task_id data_dir = os.path.expanduser(FLAGS.data_dir) tmp_dir = os.path.expanduser(FLAGS.tmp_dir) if task_id is None and problem.multiprocess_generate: if FLAGS.task_id_start != -1: assert FLAGS.task_id_end != -1 task_id_start = FLAGS.task_id_start task_id_end = FLAGS.task_id_end else: task_id_start = 0 task_id_end = problem.num_generate_tasks pool = multiprocessing.Pool(processes=FLAGS.num_concurrent_processes) problem.prepare_to_generate(data_dir, tmp_dir) args = [(problem_name, data_dir, tmp_dir, task_id) for task_id in range(task_id_start, task_id_end)] pool.map(generate_data_in_process, args) else: problem.generate_data(data_dir, tmp_dir, task_id) if __name__ == "__main__": tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
apache-2.0
tomsilver/nupic
examples/opf/experiments/multistep/simple_3_enc/description.py
17
1788
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.expdescriptionhelpers import importBaseDescription # the sub-experiment configuration config = \ { 'dataSource': 'file://' + os.path.join(os.path.dirname(__file__), '../datasets/simple_3.csv'), 'modelParams': { 'clParams': { 'clVerbosity': 1, 'steps': '1,3'}, 'inferenceType': 'NontemporalMultiStep', 'sensorParams': { 'encoders': { }, 'verbosity': 1}, 'spEnable': False, 'spParams': { }, 'tpEnable': False, 'tpParams': { }}, 'predictionSteps': [1, 3]} mod = importBaseDescription('../base/description.py', config) locals().update(mod.__dict__)
gpl-3.0
mlflow/mlflow
mlflow/prophet.py
1
13361
""" The ``mlflow.prophet`` module provides an API for logging and loading Prophet models. This module exports univariate Prophet models in the following flavors: Prophet (native) format This is the main flavor that can be accessed with Prophet APIs. :py:mod:`mlflow.pyfunc` Produced for use by generic pyfunc-based deployment tools and for batch auditing of historical forecasts. .. _Prophet: https://facebook.github.io/prophet/docs/quick_start.html#python-api """ import os import yaml import json import mlflow from mlflow import pyfunc from mlflow.utils.requirements_utils import _get_pinned_requirement from mlflow.utils.environment import ( _mlflow_conda_env, _validate_env_arguments, _process_pip_requirements, _process_conda_env, _CONDA_ENV_FILE_NAME, _REQUIREMENTS_FILE_NAME, _CONSTRAINTS_FILE_NAME, _PYTHON_ENV_FILE_NAME, _PythonEnv, ) from mlflow.utils.file_utils import write_to from mlflow.utils.docstring_utils import format_docstring, LOG_MODEL_PARAM_DOCS from mlflow.models.signature import ModelSignature from mlflow.models.utils import _save_example from mlflow.models import Model, ModelInputExample from mlflow.tracking.artifact_utils import _download_artifact_from_uri from mlflow.utils.model_utils import ( _get_flavor_configuration, _validate_and_copy_code_paths, _add_code_from_conf_to_system_path, _validate_and_prepare_target_save_path, ) from mlflow.models.model import MLMODEL_FILE_NAME from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS FLAVOR_NAME = "prophet" _MODEL_BINARY_KEY = "data" _MODEL_BINARY_FILE_NAME = "model.pr" _MODEL_TYPE_KEY = "model_type" def get_default_pip_requirements(): """ :return: A list of default pip requirements for MLflow Models produced by this flavor. Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment that, at a minimum, contains these requirements. """ # Note: Prophet's whl build process will fail due to missing dependencies, defaulting # to setup.py installation process. # If a pystan installation error occurs, ensure gcc>=8 is installed in your environment. # See: https://gcc.gnu.org/install/ return [_get_pinned_requirement("prophet")] def get_default_conda_env(): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements()) @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) def save_model( pr_model, path, conda_env=None, code_paths=None, mlflow_model=None, signature: ModelSignature = None, input_example: ModelInputExample = None, pip_requirements=None, extra_pip_requirements=None, ): """ Save a Prophet model to a path on the local file system. :param pr_model: Prophet model (an instance of Prophet() forecaster that has been fit on a temporal series. :param path: Local path where the serialized model (as JSON) is to be saved. :param conda_env: {{ conda_env }} :param code_paths: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path when the model is loaded. :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to. :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature model = Prophet().fit(df) train = model.history predictions = model.predict(model.make_future_dataframe(30)) signature = infer_signature(train, predictions) :param input_example: Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param pip_requirements: {{ pip_requirements }} :param extra_pip_requirements: {{ extra_pip_requirements }} """ import prophet _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements) path = os.path.abspath(path) _validate_and_prepare_target_save_path(path) code_dir_subpath = _validate_and_copy_code_paths(code_paths, path) if mlflow_model is None: mlflow_model = Model() if signature is not None: mlflow_model.signature = signature if input_example is not None: _save_example(mlflow_model, input_example, path) model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME) _save_model(pr_model, model_data_path) model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME} pyfunc.add_to_model( mlflow_model, loader_module="mlflow.prophet", conda_env=_CONDA_ENV_FILE_NAME, python_env=_PYTHON_ENV_FILE_NAME, code=code_dir_subpath, **model_bin_kwargs, ) flavor_conf = { _MODEL_TYPE_KEY: pr_model.__class__.__name__, **model_bin_kwargs, } mlflow_model.add_flavor( FLAVOR_NAME, prophet_version=prophet.__version__, code=code_dir_subpath, **flavor_conf, ) mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME)) if conda_env is None: if pip_requirements is None: # cannot use inferred requirements due to prophet's build process # as the package installation of pystan requires Cython to be present # in the path. Prophet's installation itself requires imports of # existing libraries, preventing the execution of a batched pip install # and instead using a a strictly defined list of dependencies. # NOTE: if Prophet .whl build architecture is changed, this should be # modified to a standard inferred approach. default_reqs = get_default_pip_requirements() else: default_reqs = None conda_env, pip_requirements, pip_constraints = _process_pip_requirements( default_reqs, pip_requirements, extra_pip_requirements, ) else: conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env) with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) if pip_constraints: write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints)) write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements)) _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME)) @format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) def log_model( pr_model, artifact_path, conda_env=None, code_paths=None, registered_model_name=None, signature: ModelSignature = None, input_example: ModelInputExample = None, await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS, pip_requirements=None, extra_pip_requirements=None, ): """ Log a Prophet model as an MLflow artifact for the current run. :param pr_model: Prophet model to be saved. :param artifact_path: Run-relative artifact path. :param conda_env: {{ conda_env }} :param code_paths: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path when the model is loaded. :param registered_model_name: This argument may change or be removed in a future release without warning. If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. :param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature model = Prophet().fit(df) train = model.history predictions = model.predict(model.make_future_dataframe(30)) signature = infer_signature(train, predictions) :param input_example: Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param await_registration_for: Number of seconds to wait for the model version to finish being created and is in ``READY`` status. By default, the function waits for five minutes. Specify 0 or None to skip waiting. :param pip_requirements: {{ pip_requirements }} :param extra_pip_requirements: {{ extra_pip_requirements }} :return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the metadata of the logged model. """ return Model.log( artifact_path=artifact_path, flavor=mlflow.prophet, registered_model_name=registered_model_name, pr_model=pr_model, conda_env=conda_env, code_paths=code_paths, signature=signature, input_example=input_example, await_registration_for=await_registration_for, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, ) def _save_model(model, path): from prophet.serialize import model_to_json model_ser = model_to_json(model) with open(path, "w") as f: json.dump(model_ser, f) def _load_model(path): from prophet.serialize import model_from_json with open(path, "r") as f: model = json.load(f) return model_from_json(model) def _load_pyfunc(path): """ Load PyFunc implementation for Prophet. Called by ``pyfunc.load_model``. :param path: Local filesystem path to the MLflow Model with the ``prophet`` flavor. """ return _ProphetModelWrapper(_load_model(path)) def load_model(model_uri, dst_path=None): """ Load a Prophet model from a local file or a run. :param model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html# artifact-locations>`_. :param dst_path: The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created. :return: A Prophet model instance """ local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path) flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) _add_code_from_conf_to_system_path(local_model_path, flavor_conf) pr_model_path = os.path.join( local_model_path, flavor_conf.get(_MODEL_BINARY_KEY, _MODEL_BINARY_FILE_NAME) ) return _load_model(pr_model_path) class _ProphetModelWrapper: def __init__(self, pr_model): self.pr_model = pr_model def predict(self, dataframe): return self.pr_model.predict(dataframe)
apache-2.0
elkingtonmcb/h2o-2
py/testdir_ec2_only/test_KMeans_allstate_s3n_thru_hdfs.py
9
2172
import unittest, time, sys, random sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_glm, h2o_kmeans, h2o_browse as h2b, h2o_import as h2i class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): # assume we're at 0xdata with it's hdfs namenode h2o.init(1) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_KMeans_allstate_s3n_thru_hdfs(self): bucket = 'home-0xdiag-datasets' importFolderPath = 'allstate' csvFilename = "train_set.csv" csvPathname = importFolderPath + "/" + csvFilename timeoutSecs = 600 trialMax = 3 for trial in range(trialMax): trialStart = time.time() hex_key = csvFilename + "_" + str(trial) + ".hex" start = time.time() parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='s3n', hex_key=hex_key, timeoutSecs=timeoutSecs, retryDelaySecs=10, pollTimeoutSecs=60) elapsed = time.time() - start print "parse end on ", csvPathname, 'took', elapsed, 'seconds',\ "%d pct. of timeout" % ((elapsed*100)/timeoutSecs) print "parse result:", parseResult['destination_key'] kwargs = { 'cols': None, 'initialization': 'Furthest', 'k': 12 } start = time.time() kmeans = h2o_cmd.runKMeans(parseResult=parseResult, \ timeoutSecs=timeoutSecs, retryDelaySecs=2, pollTimeoutSecs=120, **kwargs) elapsed = time.time() - start print "kmeans end on ", csvFilename, 'took', elapsed, 'seconds.', \ "%d pct. of timeout" % ((elapsed/timeoutSecs) * 100) h2o_kmeans.simpleCheckKMeans(self, kmeans, **kwargs) inspect = h2o_cmd.runInspect(None,key=kmeans['destination_key']) print h2o.dump_json(inspect) print "Trial #", trial, "completed in", time.time() - trialStart, "seconds.", \ if __name__ == '__main__': h2o.unit_main()
apache-2.0
LohithBlaze/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
84
8565
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import TempMemmap from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_lassocd_readonly_data(): n_components = 12 with TempMemmap(X) as X_read_only: dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X_read_only).transform(X_read_only) assert_array_almost_equal(np.dot(code, dico.components_), X_read_only, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
fx2003/tensorflow-study
TensorFlow实战/models/lfads/synth_data/synthetic_data_utils.py
3
10613
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== from __future__ import print_function import h5py import numpy as np import os from utils import write_datasets import matplotlib import matplotlib.pyplot as plt import scipy.signal def generate_rnn(rng, N, g, tau, dt, max_firing_rate): """Create a (vanilla) RNN with a bunch of hyper parameters for generating chaotic data. Args: rng: numpy random number generator N: number of hidden units g: scaling of recurrent weight matrix in g W, with W ~ N(0,1/N) tau: time scale of individual unit dynamics dt: time step for equation updates max_firing_rate: how to resecale the -1,1 firing rates Returns: the dictionary of these parameters, plus some others. """ rnn = {} rnn['N'] = N rnn['W'] = rng.randn(N,N)/np.sqrt(N) rnn['Bin'] = rng.randn(N)/np.sqrt(1.0) rnn['Bin2'] = rng.randn(N)/np.sqrt(1.0) rnn['b'] = np.zeros(N) rnn['g'] = g rnn['tau'] = tau rnn['dt'] = dt rnn['max_firing_rate'] = max_firing_rate mfr = rnn['max_firing_rate'] # spikes / sec nbins_per_sec = 1.0/rnn['dt'] # bins / sec # Used for plotting in LFADS rnn['conversion_factor'] = mfr / nbins_per_sec # spikes / bin return rnn def generate_data(rnn, T, E, x0s=None, P_sxn=None, input_magnitude=0.0, input_times=None): """ Generates data from an randomly initialized RNN. Args: rnn: the rnn T: Time in seconds to run (divided by rnn['dt'] to get steps, rounded down. E: total number of examples S: number of samples (subsampling N) Returns: A list of length E of NxT tensors of the network being run. """ N = rnn['N'] def run_rnn(rnn, x0, ntime_steps, input_time=None): rs = np.zeros([N,ntime_steps]) x_tm1 = x0 r_tm1 = np.tanh(x0) tau = rnn['tau'] dt = rnn['dt'] alpha = (1.0-dt/tau) W = dt/tau*rnn['W']*rnn['g'] Bin = dt/tau*rnn['Bin'] Bin2 = dt/tau*rnn['Bin2'] b = dt/tau*rnn['b'] us = np.zeros([1, ntime_steps]) for t in range(ntime_steps): x_t = alpha*x_tm1 + np.dot(W,r_tm1) + b if input_time is not None and t == input_time: us[0,t] = input_magnitude x_t += Bin * us[0,t] # DCS is this what was used? r_t = np.tanh(x_t) x_tm1 = x_t r_tm1 = r_t rs[:,t] = r_t return rs, us if P_sxn is None: P_sxn = np.eye(N) ntime_steps = int(T / rnn['dt']) data_e = [] inputs_e = [] for e in range(E): input_time = input_times[e] if input_times is not None else None r_nxt, u_uxt = run_rnn(rnn, x0s[:,e], ntime_steps, input_time) r_sxt = np.dot(P_sxn, r_nxt) inputs_e.append(u_uxt) data_e.append(r_sxt) S = P_sxn.shape[0] data_e = normalize_rates(data_e, E, S) return data_e, x0s, inputs_e def normalize_rates(data_e, E, S): # Normalization, made more complex because of the P matrices. # Normalize by min and max in each channel. This normalization will # cause offset differences between identical rnn runs, but different # t hits. for e in range(E): r_sxt = data_e[e] for i in range(S): rmin = np.min(r_sxt[i,:]) rmax = np.max(r_sxt[i,:]) assert rmax - rmin != 0, 'Something wrong' r_sxt[i,:] = (r_sxt[i,:] - rmin)/(rmax-rmin) data_e[e] = r_sxt return data_e def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100): """ Apply spikes to a continuous dataset whose values are between 0.0 and 1.0 Args: data_e: nexamples length list of NxT trials dt: how often the data are sampled max_firing_rate: the firing rate that is associated with a value of 1.0 Returns: spikified_data_e: a list of length b of the data represented as spikes, sampled from the underlying poisson process. """ spikifies_data_e = [] E = len(data_e) spikes_e = [] for e in range(E): data = data_e[e] N,T = data.shape data_s = np.zeros([N,T]).astype(np.int) for n in range(N): f = data[n,:] s = rng.poisson(f*max_firing_rate*dt, size=T) data_s[n,:] = s spikes_e.append(data_s) return spikes_e def get_train_n_valid_inds(num_trials, train_fraction, nspikifications): """Split the numbers between 0 and num_trials-1 into two portions for training and validation, based on the train fraction. Args: num_trials: the number of trials train_fraction: (e.g. .80) nspikifications: the number of spiking trials per initial condition Returns: a 2-tuple of two lists: the training indices and validation indices """ train_inds = [] valid_inds = [] for i in range(num_trials): # This line divides up the trials so that within one initial condition, # the randomness of spikifying the condition is shared among both # training and validation data splits. if (i % nspikifications)+1 > train_fraction * nspikifications: valid_inds.append(i) else: train_inds.append(i) return train_inds, valid_inds def split_list_by_inds(data, inds1, inds2): """Take the data, a list, and split it up based on the indices in inds1 and inds2. Args: data: the list of data to split inds1, the first list of indices inds2, the second list of indices Returns: a 2-tuple of two lists. """ if data is None or len(data) == 0: return [], [] else: dout1 = [data[i] for i in inds1] dout2 = [data[i] for i in inds2] return dout1, dout2 def nparray_and_transpose(data_a_b_c): """Convert the list of items in data to a numpy array, and transpose it Args: data: data_asbsc: a nested, nested list of length a, with sublist length b, with sublist length c. Returns: a numpy 3-tensor with dimensions a x c x b """ data_axbxc = np.array([datum_b_c for datum_b_c in data_a_b_c]) data_axcxb = np.transpose(data_axbxc, axes=[0,2,1]) return data_axcxb def add_alignment_projections(datasets, npcs, ntime=None, nsamples=None): """Create a matrix that aligns the datasets a bit, under the assumption that each dataset is observing the same underlying dynamical system. Args: datasets: The dictionary of dataset structures. npcs: The number of pcs for each, basically like lfads factors. nsamples (optional): Number of samples to take for each dataset. ntime (optional): Number of time steps to take in each sample. Returns: The dataset structures, with the field alignment_matrix_cxf added. This is # channels x npcs dimension """ nchannels_all = 0 channel_idxs = {} conditions_all = {} nconditions_all = 0 for name, dataset in datasets.items(): cidxs = np.where(dataset['P_sxn'])[1] # non-zero entries in columns channel_idxs[name] = [cidxs[0], cidxs[-1]+1] nchannels_all += cidxs[-1]+1 - cidxs[0] conditions_all[name] = np.unique(dataset['condition_labels_train']) all_conditions_list = \ np.unique(np.ndarray.flatten(np.array(conditions_all.values()))) nconditions_all = all_conditions_list.shape[0] if ntime is None: ntime = dataset['train_data'].shape[1] if nsamples is None: nsamples = dataset['train_data'].shape[0] # In the data workup in the paper, Chethan did intra condition # averaging, so let's do that here. avg_data_all = {} for name, conditions in conditions_all.items(): dataset = datasets[name] avg_data_all[name] = {} for cname in conditions: td_idxs = np.argwhere(np.array(dataset['condition_labels_train'])==cname) data = np.squeeze(dataset['train_data'][td_idxs,:,:], axis=1) avg_data = np.mean(data, axis=0) avg_data_all[name][cname] = avg_data # Visualize this in the morning. all_data_nxtc = np.zeros([nchannels_all, ntime * nconditions_all]) for name, dataset in datasets.items(): cidx_s = channel_idxs[name][0] cidx_f = channel_idxs[name][1] for cname in conditions_all[name]: cidxs = np.argwhere(all_conditions_list == cname) if cidxs.shape[0] > 0: cidx = cidxs[0][0] all_tidxs = np.arange(0, ntime+1) + cidx*ntime all_data_nxtc[cidx_s:cidx_f, all_tidxs[0]:all_tidxs[-1]] = \ avg_data_all[name][cname].T # A bit of filtering. We don't care about spectral properties, or # filtering artifacts, simply correlate time steps a bit. filt_len = 6 bc_filt = np.ones([filt_len])/float(filt_len) for c in range(nchannels_all): all_data_nxtc[c,:] = scipy.signal.filtfilt(bc_filt, [1.0], all_data_nxtc[c,:]) # Compute the PCs. all_data_mean_nx1 = np.mean(all_data_nxtc, axis=1, keepdims=True) all_data_zm_nxtc = all_data_nxtc - all_data_mean_nx1 corr_mat_nxn = np.dot(all_data_zm_nxtc, all_data_zm_nxtc.T) evals_n, evecs_nxn = np.linalg.eigh(corr_mat_nxn) sidxs = np.flipud(np.argsort(evals_n)) # sort such that 0th is highest evals_n = evals_n[sidxs] evecs_nxn = evecs_nxn[:,sidxs] # Project all the channels data onto the low-D PCA basis, where # low-d is the npcs parameter. all_data_pca_pxtc = np.dot(evecs_nxn[:, 0:npcs].T, all_data_zm_nxtc) # Now for each dataset, we regress the channel data onto the top # pcs, and this will be our alignment matrix for that dataset. # |B - A*W|^2 for name, dataset in datasets.items(): cidx_s = channel_idxs[name][0] cidx_f = channel_idxs[name][1] all_data_zm_chxtc = all_data_zm_nxtc[cidx_s:cidx_f,:] # ch for channel W_chxp, _, _, _ = \ np.linalg.lstsq(all_data_zm_chxtc.T, all_data_pca_pxtc.T) dataset['alignment_matrix_cxf'] = W_chxp do_debug_plot = False if do_debug_plot: pc_vecs = evecs_nxn[:,0:npcs] ntoplot = 400 plt.figure() plt.plot(np.log10(evals_n), '-x') plt.figure() plt.subplot(311) plt.imshow(all_data_pca_pxtc) plt.colorbar() plt.subplot(312) plt.imshow(np.dot(W_chxp.T, all_data_zm_chxtc)) plt.colorbar() plt.subplot(313) plt.imshow(np.dot(all_data_zm_chxtc.T, W_chxp).T - all_data_pca_pxtc) plt.colorbar() import pdb pdb.set_trace() return datasets
mit
luo66/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
256
2861
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"dada": 42, "tzara": 37}, {"gaga": 17}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
LohithBlaze/scikit-learn
sklearn/linear_model/tests/test_coordinate_descent.py
39
23697
# Authors: Olivier Grisel <olivier.grisel@ensta.org> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause from sys import version_info import numpy as np from scipy import interpolate, sparse from copy import deepcopy from sklearn.datasets import load_boston from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import TempMemmap from sklearn.linear_model.coordinate_descent import Lasso, \ LassoCV, ElasticNet, ElasticNetCV, MultiTaskLasso, MultiTaskElasticNet, \ MultiTaskElasticNetCV, MultiTaskLassoCV, lasso_path, enet_path from sklearn.linear_model import LassoLarsCV, lars_path def check_warnings(): if version_info < (2, 6): raise SkipTest("Testing for warnings is not supported in versions \ older than Python 2.6") def test_lasso_zero(): # Check that the lasso can handle zero data without crashing X = [[0], [0], [0]] y = [0, 0, 0] clf = Lasso(alpha=0.1).fit(X, y) pred = clf.predict([[1], [2], [3]]) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_lasso_toy(): # Test Lasso on a toy example for various values of alpha. # When validating this against glmnet notice that glmnet divides it # against nobs. X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line T = [[2], [3], [4]] # test sample clf = Lasso(alpha=1e-8) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.85]) assert_array_almost_equal(pred, [1.7, 2.55, 3.4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy(): # Test ElasticNet for various parameters of alpha and l1_ratio. # Actually, the parameters alpha = 0 should not be allowed. However, # we test it as a border case. # ElasticNet is tested with and without precomputed Gram matrix X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def build_dataset(n_samples=50, n_features=200, n_informative_features=10, n_targets=1): """ build an ill-posed linear regression problem with many noisy features and comparatively few samples """ random_state = np.random.RandomState(0) if n_targets > 1: w = random_state.randn(n_features, n_targets) else: w = random_state.randn(n_features) w[n_informative_features:] = 0.0 X = random_state.randn(n_samples, n_features) y = np.dot(X, w) X_test = random_state.randn(n_samples, n_features) y_test = np.dot(X_test, w) return X, y, X_test, y_test def test_lasso_cv(): X, y, X_test, y_test = build_dataset() max_iter = 150 clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter).fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True) clf.fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) # Check that the lars and the coordinate descent implementation # select a similar alpha lars = LassoLarsCV(normalize=False, max_iter=30).fit(X, y) # for this we check that they don't fall in the grid of # clf.alphas further than 1 assert_true(np.abs( np.searchsorted(clf.alphas_[::-1], lars.alpha_) - np.searchsorted(clf.alphas_[::-1], clf.alpha_)) <= 1) # check that they also give a similar MSE mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.cv_mse_path_.T) np.testing.assert_approx_equal(mse_lars(clf.alphas_[5]).mean(), clf.mse_path_[5].mean(), significant=2) # test set assert_greater(clf.score(X_test, y_test), 0.99) def test_lasso_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient clf_unconstrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) clf_unconstrained.fit(X, y) assert_true(min(clf_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients clf_constrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, positive=True, cv=2, n_jobs=1) clf_constrained.fit(X, y) assert_true(min(clf_constrained.coef_) >= 0) def test_lasso_path_return_models_vs_new_return_gives_same_coefficients(): # Test that lasso_path with lars_path style output gives the # same result # Some toy data X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T y = np.array([1, 2, 3.1]) alphas = [5., 1., .5] # Use lars_path and lasso_path(new output) with 1D linear interpolation # to compute the the same path alphas_lars, _, coef_path_lars = lars_path(X, y, method='lasso') coef_path_cont_lars = interpolate.interp1d(alphas_lars[::-1], coef_path_lars[:, ::-1]) alphas_lasso2, coef_path_lasso2, _ = lasso_path(X, y, alphas=alphas, return_models=False) coef_path_cont_lasso = interpolate.interp1d(alphas_lasso2[::-1], coef_path_lasso2[:, ::-1]) assert_array_almost_equal( coef_path_cont_lasso(alphas), coef_path_cont_lars(alphas), decimal=1) def test_enet_path(): # We use a large number of samples and of informative features so that # the l1_ratio selected is more toward ridge than lasso X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100, n_informative_features=100) max_iter = 150 # Here we have a small number of iterations, and thus the # ElasticNet might not converge. This is to speed up tests clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter, precompute=True) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) # Multi-output/target case X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) assert_equal(clf.coef_.shape, (3, 10)) # Mono-output should have same cross-validated alpha_ and l1_ratio_ # in both cases. X, y, _, _ = build_dataset(n_features=10) clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf2.fit(X, y[:, np.newaxis]) assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_) assert_almost_equal(clf1.alpha_, clf2.alpha_) def test_path_parameters(): X, y, _, _ = build_dataset() max_iter = 100 clf = ElasticNetCV(n_alphas=50, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, tol=1e-3) clf.fit(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(50, clf.n_alphas) assert_equal(50, len(clf.alphas_)) def test_warm_start(): X, y, _, _ = build_dataset() clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True) ignore_warnings(clf.fit)(X, y) ignore_warnings(clf.fit)(X, y) # do a second round with 5 iterations clf2 = ElasticNet(alpha=0.1, max_iter=10) ignore_warnings(clf2.fit)(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_) def test_lasso_alpha_warning(): X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line clf = Lasso(alpha=0) assert_warns(UserWarning, clf.fit, X, Y) def test_lasso_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope lasso = Lasso(alpha=0.1, max_iter=1000, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) lasso = Lasso(alpha=0.1, max_iter=1000, precompute=True, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) def test_enet_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True) enet.fit(X, y) assert_true(min(enet.coef_) >= 0) def test_enet_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient enetcv_unconstrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) enetcv_unconstrained.fit(X, y) assert_true(min(enetcv_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients enetcv_constrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, positive=True, n_jobs=1) enetcv_constrained.fit(X, y) assert_true(min(enetcv_constrained.coef_) >= 0) def test_uniform_targets(): enet = ElasticNetCV(fit_intercept=True, n_alphas=3) m_enet = MultiTaskElasticNetCV(fit_intercept=True, n_alphas=3) lasso = LassoCV(fit_intercept=True, n_alphas=3) m_lasso = MultiTaskLassoCV(fit_intercept=True, n_alphas=3) models_single_task = (enet, lasso) models_multi_task = (m_enet, m_lasso) rng = np.random.RandomState(0) X_train = rng.random_sample(size=(10, 3)) X_test = rng.random_sample(size=(10, 3)) y1 = np.empty(10) y2 = np.empty((10, 2)) for model in models_single_task: for y_values in (0, 5): y1.fill(y_values) assert_array_equal(model.fit(X_train, y1).predict(X_test), y1) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) for model in models_multi_task: for y_values in (0, 5): y2[:, 0].fill(y_values) y2[:, 1].fill(2 * y_values) assert_array_equal(model.fit(X_train, y2).predict(X_test), y2) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) def test_multi_task_lasso_and_enet(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] # Y_test = np.c_[y_test, y_test] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) clf = MultiTaskElasticNet(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_lasso_readonly_data(): X = np.array([[-1], [0], [1]]) Y = np.array([-1, 0, 1]) # just a straight line T = np.array([[2], [3], [4]]) # test sample with TempMemmap((X, Y)) as (X, Y): clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) def test_multi_task_lasso_readonly_data(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] with TempMemmap((X, Y)) as (X, Y): Y = np.c_[y, y] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_enet_multitarget(): n_targets = 3 X, y, _, _ = build_dataset(n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True) estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_multioutput_enetcv_error(): X = np.random.randn(10, 2) y = np.random.randn(10, 2) clf = ElasticNetCV() assert_raises(ValueError, clf.fit, X, y) def test_multitask_enet_and_lasso_cv(): X, y, _, _ = build_dataset(n_features=100, n_targets=3) clf = MultiTaskElasticNetCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00556, 3) clf = MultiTaskLassoCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00278, 3) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=50, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3) clf.fit(X, y) assert_equal(0.5, clf.l1_ratio_) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((2, 50, 3), clf.mse_path_.shape) assert_equal((2, 50), clf.alphas_.shape) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskLassoCV(n_alphas=50, eps=1e-3, max_iter=100, tol=1e-3) clf.fit(X, y) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((50, 3), clf.mse_path_.shape) assert_equal(50, len(clf.alphas_)) def test_1d_multioutput_enet_and_multitask_enet_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf.fit(X, y[:, 0]) clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_1d_multioutput_lasso_and_multitask_lasso_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = LassoCV(n_alphas=5, eps=2e-3) clf.fit(X, y[:, 0]) clf1 = MultiTaskLassoCV(n_alphas=5, eps=2e-3) clf1.fit(X, y) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_sparse_input_dtype_enet_and_lassocv(): X, y, _, _ = build_dataset(n_features=10) clf = ElasticNetCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = ElasticNetCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) clf = LassoCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = LassoCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) def test_precompute_invalid_argument(): X, y, _, _ = build_dataset() for clf in [ElasticNetCV(precompute="invalid"), LassoCV(precompute="invalid")]: assert_raises(ValueError, clf.fit, X, y) def test_warm_start_convergence(): X, y, _, _ = build_dataset() model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y) n_iter_reference = model.n_iter_ # This dataset is not trivial enough for the model to converge in one pass. assert_greater(n_iter_reference, 2) # Check that n_iter_ is invariant to multiple calls to fit # when warm_start=False, all else being equal. model.fit(X, y) n_iter_cold_start = model.n_iter_ assert_equal(n_iter_cold_start, n_iter_reference) # Fit the same model again, using a warm start: the optimizer just performs # a single pass before checking that it has already converged model.set_params(warm_start=True) model.fit(X, y) n_iter_warm_start = model.n_iter_ assert_equal(n_iter_warm_start, 1) def test_warm_start_convergence_with_regularizer_decrement(): boston = load_boston() X, y = boston.data, boston.target # Train a model to converge on a lightly regularized problem final_alpha = 1e-5 low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y) # Fitting a new model on a more regularized version of the same problem. # Fitting with high regularization is easier it should converge faster # in general. high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y) assert_greater(low_reg_model.n_iter_, high_reg_model.n_iter_) # Fit the solution to the original, less regularized version of the # problem but from the solution of the highly regularized variant of # the problem as a better starting point. This should also converge # faster than the original model that starts from zero. warm_low_reg_model = deepcopy(high_reg_model) warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha) warm_low_reg_model.fit(X, y) assert_greater(low_reg_model.n_iter_, warm_low_reg_model.n_iter_) def test_random_descent(): # Test that both random and cyclic selection give the same results. # Ensure that the test models fully converge and check a wide # range of conditions. # This uses the coordinate descent algo using the gram trick. X, y, _, _ = build_dataset(n_samples=50, n_features=20) clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # This uses the descent algo without the gram trick clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X.T, y[:20]) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X.T, y[:20]) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Sparse Case clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(sparse.csr_matrix(X), y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(sparse.csr_matrix(X), y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Multioutput case. new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis])) clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, new_y) clf_random = MultiTaskElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, new_y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Raise error when selection is not in cyclic or random. clf_random = ElasticNet(selection='invalid') assert_raises(ValueError, clf_random.fit, X, y) def test_deprection_precompute_enet(): # Test that setting precompute="auto" gives a Deprecation Warning. X, y, _, _ = build_dataset(n_samples=20, n_features=10) clf = ElasticNet(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) clf = Lasso(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) def test_enet_path_positive(): # Test that the coefs returned by positive=True in enet_path are positive X, y, _, _ = build_dataset(n_samples=50, n_features=50) for path in [enet_path, lasso_path]: pos_path_coef = path(X, y, positive=True)[1] assert_true(np.all(pos_path_coef >= 0)) def test_sparse_dense_descent_paths(): # Test that dense and sparse input give the same input for descent paths. X, y, _, _ = build_dataset(n_samples=50, n_features=20) csr = sparse.csr_matrix(X) for path in [enet_path, lasso_path]: _, coefs, _ = path(X, y, fit_intercept=False) _, sparse_coefs, _ = path(csr, y, fit_intercept=False) assert_array_almost_equal(coefs, sparse_coefs)
bsd-3-clause
MohammedWasim/scikit-learn
sklearn/datasets/tests/test_base.py
204
5878
import os import shutil import tempfile import warnings import nose import numpy from pickle import loads from pickle import dumps from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.datasets.base import Bunch from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x)
bsd-3-clause
glouppe/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
51
2668
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
elkingtonmcb/h2o-2
py/testdir_0xdata_only/test_hdfs_cdh5_fvec.py
9
4072
import unittest, time, sys, random sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_browse as h2b, h2o_import as h2i, h2o_exec as h2e import getpass class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): # assume we're at 0xdata with it's hdfs namenode h2o.init(1, use_hdfs=True, hdfs_version='cdh5', hdfs_name_node='172.16.2.180') @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_hdfs_cdh5_fvec(self): print "\nLoad a list of files from HDFS, parse and do 1 RF tree" print "\nYou can try running as hduser/hduser if fail" # larger set in my local dir # fails because classes aren't integers # "allstate_claim_prediction_train_set.zip", csvFilenameAll = [ # "3G_poker_shuffle" ("and-testing.data", 60), ### "arcene2_train.both", ### "arcene_train.both", ### "bestbuy_test.csv", ("covtype.data", 60), ("covtype4x.shuffle.data", 60), # "four_billion_rows.csv", ("hhp.unbalanced.012.data.gz", 60), ("hhp.unbalanced.data.gz", 60), ("leads.csv", 60), # ("covtype.169x.data", 1200), ("prostate_long_1G.csv", 200), ("airlines_all.csv", 1200), ] # pick 8 randomly! if (1==0): csvFilenameList = random.sample(csvFilenameAll,8) # Alternatively: do the list in order! Note the order is easy to hard else: csvFilenameList = csvFilenameAll # pop open a browser on the cloud # h2b.browseTheCloud() trial = 0 print "try importing /tmp2" d = h2i.import_only(path="tmp2/*", schema='hdfs', timeoutSecs=1000) for (csvFilename, timeoutSecs) in csvFilenameList: # creates csvFilename.hex from file in hdfs dir print "Loading", csvFilename, 'from HDFS' start = time.time() hex_key = "a.hex" csvPathname = "datasets/" + csvFilename parseResult = h2i.import_parse(path=csvPathname, schema='hdfs', hex_key=hex_key, timeoutSecs=1000) print "hdfs parse of", csvPathname, "took", time.time() - start, 'secs' start = time.time() print "Saving", csvFilename, 'to HDFS' print "Using /tmp2 to avoid the '.' prefixed files in /tmp2 (kills import)" print "Unique per-user to avoid permission issues" username = getpass.getuser() csvPathname = "tmp2/a%s.%s.csv" % (trial, username) # reuse the file name to avoid running out of space csvPathname = "tmp2/a%s.%s.csv" % ('_h2o_export_files', username) path = "hdfs://"+ h2o.nodes[0].hdfs_name_node + "/" + csvPathname h2o.nodes[0].export_files(src_key=hex_key, path=path, force=1, timeoutSecs=timeoutSecs) print "export_files of", hex_key, "to", path, "took", time.time() - start, 'secs' trial += 1 print "Re-Loading", csvFilename, 'from HDFS' start = time.time() hex_key = "a2.hex" time.sleep(2) d = h2i.import_only(path=csvPathname, schema='hdfs', timeoutSecs=1000) print h2o.dump_json(d) parseResult = h2i.import_parse(path=csvPathname, schema='hdfs', hex_key=hex_key, timeoutSecs=1000) print "hdfs re-parse of", csvPathname, "took", time.time() - start, 'secs' # currently fails # print "This comparison test only works because na's are treated as 0's. bug fix might change that na-> na" # execExpr = "sum(%s!=%s)" % ("a.hex", "a2.hex") # resultExec, result = h2e.exec_expr(execExpr=execExpr, timeoutSecs=30) # self.assertEqual(result, 0.0, msg="a.hex and a2.hex weren't the same (NA treated as 0) %s" % result) if __name__ == '__main__': h2o.unit_main()
apache-2.0
lilleswing/deepchem
contrib/one_shot_models/support_classifier.py
6
14629
""" Train support-based models. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import warnings import numpy as np import tensorflow as tf import sys import time from deepchem.models import Model from deepchem.data import pad_batch from deepchem.data import NumpyDataset from deepchem.metrics import to_one_hot from deepchem.metrics import from_one_hot from deepchem.models.tf_new_models.graph_topology import merge_dicts from deepchem.nn import model_ops from deepchem.data import SupportGenerator from deepchem.data import EpisodeGenerator from deepchem.data import get_task_dataset from deepchem.data import get_single_task_test from deepchem.data import get_task_dataset_minus_support from deepchem.nn.copy import Input class SupportGraphClassifier(Model): def __init__(self, model, test_batch_size=10, support_batch_size=10, learning_rate=.001, similarity="cosine", **kwargs): """Builds a support-based classifier. See https://arxiv.org/pdf/1606.04080v1.pdf for definition of support. Parameters ---------- sess: tf.Session Session for this model model: SequentialSupportModel Contains core layers in model. n_pos: int Number of positive examples in support. n_neg: int Number of negative examples in support. """ warnings.warn("SupportGraphClassifier is deprecated. " "Will be removed in DeepChem 1.4.", DeprecationWarning) self.similarity = similarity self.model = model self.sess = tf.Session(graph=self.model.graph) self.test_batch_size = test_batch_size self.support_batch_size = support_batch_size self.learning_rate = learning_rate self.epsilon = 1e-7 with self.model.graph.as_default(): self.add_placeholders() self.pred_op, self.scores_op, self.loss_op = self.add_training_loss() # Get train function self.train_op = self.get_training_op(self.loss_op) # Initialize self.init_fn = tf.global_variables_initializer() self.sess.run(self.init_fn) def get_training_op(self, loss): """Attaches an optimizer to the graph.""" opt = tf.train.AdamOptimizer(self.learning_rate) return opt.minimize(self.loss_op, name="train") def add_placeholders(self): """Adds placeholders to graph.""" #################################################################### DEBUG #self.test_label_placeholder = Input( # tensor=tf.placeholder(dtype='float32', shape=(self.test_batch_size), # name="label_placeholder")) #self.test_weight_placeholder = Input( # tensor=tf.placeholder(dtype='float32', shape=(self.test_batch_size), # name="weight_placeholder")) self.test_label_placeholder = tf.placeholder( dtype='float32', shape=(self.test_batch_size), name="label_placeholder") self.test_weight_placeholder = tf.placeholder( dtype='float32', shape=(self.test_batch_size), name="weight_placeholder") # TODO(rbharath): Should weights for the support be used? # Support labels #self.support_label_placeholder = Input( # tensor=tf.placeholder(dtype='float32', shape=[self.support_batch_size], # name="support_label_placeholder")) self.support_label_placeholder = tf.placeholder( dtype='float32', shape=[self.support_batch_size], name="support_label_placeholder") self.phase = tf.placeholder(dtype='bool', name='keras_learning_phase') #################################################################### DEBUG def construct_feed_dict(self, test, support, training=True, add_phase=False): """Constructs tensorflow feed from test/support sets.""" # Generate dictionary elements for support feed_dict = ( self.model.support_graph_topology.batch_to_feed_dict(support.X)) feed_dict[self.support_label_placeholder] = np.squeeze(support.y) # Get graph information for test batch_topo_dict = ( self.model.test_graph_topology.batch_to_feed_dict(test.X)) feed_dict = merge_dicts([batch_topo_dict, feed_dict]) # Generate dictionary elements for test feed_dict[self.test_label_placeholder] = np.squeeze(test.y) feed_dict[self.test_weight_placeholder] = np.squeeze(test.w) if add_phase: feed_dict[self.phase] = training return feed_dict def fit(self, dataset, n_episodes_per_epoch=1000, nb_epochs=1, n_pos=1, n_neg=9, log_every_n_samples=10, **kwargs): """Fits model on dataset using cached supports. For each epcoh, sample n_episodes_per_epoch (support, test) pairs and does gradient descent. Parameters ---------- dataset: dc.data.Dataset Dataset to fit model on. nb_epochs: int, optional number of epochs of training. n_episodes_per_epoch: int, optional Number of (support, test) pairs to sample and train on per epoch. n_pos: int, optional Number of positive examples per support. n_neg: int, optional Number of negative examples per support. log_every_n_samples: int, optional Displays info every this number of samples """ time_start = time.time() # Perform the optimization n_tasks = len(dataset.get_task_names()) n_test = self.test_batch_size feed_total, run_total = 0, 0 for epoch in range(nb_epochs): # Create different support sets episode_generator = EpisodeGenerator(dataset, n_pos, n_neg, n_test, n_episodes_per_epoch) recent_losses = [] for ind, (task, support, test) in enumerate(episode_generator): if ind % log_every_n_samples == 0: print("Epoch %d, Sample %d from task %s" % (epoch, ind, str(task))) # Get batch to try it out on feed_start = time.time() feed_dict = self.construct_feed_dict(test, support) feed_end = time.time() feed_total += (feed_end - feed_start) # Train on support set, batch pair run_start = time.time() _, loss = self.sess.run( [self.train_op, self.loss_op], feed_dict=feed_dict) run_end = time.time() run_total += (run_end - run_start) if ind % log_every_n_samples == 0: mean_loss = np.mean(np.array(recent_losses)) print("\tmean loss is %s" % str(mean_loss)) recent_losses = [] else: recent_losses.append(loss) time_end = time.time() print("fit took %s seconds" % str(time_end - time_start)) print("feed_total: %s" % str(feed_total)) print("run_total: %s" % str(run_total)) def save(self): """Save all models TODO(rbharath): Saving is not yet supported for this model. """ pass def add_training_loss(self): """Adds training loss and scores for network.""" pred, scores = self.get_scores() losses = tf.nn.sigmoid_cross_entropy_with_logits( logits=scores, labels=self.test_label_placeholder) weighted_losses = tf.multiply(losses, self.test_weight_placeholder) loss = tf.reduce_sum(weighted_losses) return pred, scores, loss def get_scores(self): """Adds tensor operations for computing scores. Computes prediction yhat (eqn (1) in Matching networks) of class for test compounds. """ # Get featurization for test # Shape (n_test, n_feat) test_feat = self.model.get_test_output() # Get featurization for support # Shape (n_support, n_feat) support_feat = self.model.get_support_output() # Computes the inner part c() of the kernel # (the inset equation in section 2.1.1 of Matching networks paper). # Normalize if self.similarity == 'cosine': g = model_ops.cosine_distances(test_feat, support_feat) else: raise ValueError("Only cosine similarity is supported.") # TODO(rbharath): euclidean kernel is broken! #elif self.similarity == 'euclidean': # g = model_ops.euclidean_distance(test_feat, support_feat) # Note that gram matrix g has shape (n_test, n_support) # soft corresponds to a(xhat, x_i) in eqn (1) of Matching Networks paper # https://arxiv.org/pdf/1606.04080v1.pdf # Computes softmax across axis 1, (so sums distances to support set for # each test entry) to get attention vector # Shape (n_test, n_support) attention = tf.nn.softmax(g) # Renormalize # Weighted sum of support labels # Shape (n_support, 1) support_labels = tf.expand_dims(self.support_label_placeholder, 1) # pred is yhat in eqn (1) of Matching Networks. # Shape squeeze((n_test, n_support) * (n_support, 1)) = (n_test,) pred = tf.squeeze(tf.matmul(attention, support_labels), [1]) # Clip softmax probabilities to range [epsilon, 1-epsilon] # Shape (n_test,) pred = tf.clip_by_value(pred, 1e-7, 1. - 1e-7) # Convert to logit space using inverse sigmoid (logit) function # logit function: log(pred) - log(1-pred) # Used to invoke tf.nn.sigmoid_cross_entropy_with_logits # in Cross Entropy calculation. # Shape (n_test,) scores = tf.log(pred) - tf.log(tf.constant(1., dtype=tf.float32) - pred) return pred, scores def predict(self, support, test): """Makes predictions on test given support. TODO(rbharath): Does not currently support any transforms. TODO(rbharath): Only for 1 task at a time currently. Is there a better way? """ y_preds = [] for (X_batch, y_batch, w_batch, ids_batch) in test.iterbatches( self.test_batch_size, deterministic=True): test_batch = NumpyDataset(X_batch, y_batch, w_batch, ids_batch) y_pred_batch = self.predict_on_batch(support, test_batch) y_preds.append(y_pred_batch) y_pred = np.concatenate(y_preds) return y_pred def predict_proba(self, support, test): """Makes predictions on test given support. TODO(rbharath): Does not currently support any transforms. TODO(rbharath): Only for 1 task at a time currently. Is there a better way? Parameters ---------- support: dc.data.Dataset The support dataset test: dc.data.Dataset The test dataset """ y_preds = [] for (X_batch, y_batch, w_batch, ids_batch) in test.iterbatches( self.test_batch_size, deterministic=True): test_batch = NumpyDataset(X_batch, y_batch, w_batch, ids_batch) y_pred_batch = self.predict_proba_on_batch(support, test_batch) y_preds.append(y_pred_batch) y_pred = np.concatenate(y_preds) return y_pred def predict_on_batch(self, support, test_batch): """Make predictions on batch of data.""" n_samples = len(test_batch) X, y, w, ids = pad_batch(self.test_batch_size, test_batch.X, test_batch.y, test_batch.w, test_batch.ids) padded_test_batch = NumpyDataset(X, y, w, ids) feed_dict = self.construct_feed_dict(padded_test_batch, support) # Get scores pred, scores = self.sess.run( [self.pred_op, self.scores_op], feed_dict=feed_dict) y_pred_batch = np.round(pred) # Remove padded elements y_pred_batch = y_pred_batch[:n_samples] return y_pred_batch def predict_proba_on_batch(self, support, test_batch): """Make predictions on batch of data.""" n_samples = len(test_batch) X, y, w, ids = pad_batch(self.test_batch_size, test_batch.X, test_batch.y, test_batch.w, test_batch.ids) padded_test_batch = NumpyDataset(X, y, w, ids) feed_dict = self.construct_feed_dict(padded_test_batch, support) # Get scores pred, scores = self.sess.run( [self.pred_op, self.scores_op], feed_dict=feed_dict) # pred corresponds to prob(example == 1) y_pred_batch = np.zeros((n_samples, 2)) # Remove padded elements pred = pred[:n_samples] y_pred_batch[:, 1] = pred y_pred_batch[:, 0] = 1 - pred return y_pred_batch def evaluate(self, dataset, metric, n_pos, n_neg, n_trials=1000, exclude_support=True): """Evaluate performance on dataset according to metrics Evaluates the performance of the trained model by sampling supports randomly for each task in dataset. For each sampled support, the accuracy of the model with support provided is computed on all data for that task. If exclude_support is True (by default), the support set is excluded from this accuracy calculation. exclude_support should be set to false if model's memorization capacity wants to be evaluated. Since the accuracy on a task is dependent on the choice of random support, the evaluation experiment is repeated n_trials times for each task. (Each task gets n_trials experiments). The computed accuracies are averaged across trials. TODO(rbharath): Currently does not support any transformers. Parameters ---------- dataset: dc.data.Dataset Dataset to test on. metrics: dc.metrics.Metric Evaluation metric. n_pos: int, optional Number of positive samples per support. n_neg: int, optional Number of negative samples per support. exclude_support: bool, optional Whether support set should be excluded when computing model accuracy. """ # Get batches test_tasks = range(len(dataset.get_task_names())) task_scores = {task: [] for task in test_tasks} support_generator = SupportGenerator(dataset, n_pos, n_neg, n_trials) for ind, (task, support) in enumerate(support_generator): print("Eval sample %d from task %s" % (ind, str(task))) # TODO(rbharath): Add test for get_task_dataset_minus_support for # multitask case with missing data... if exclude_support: print("Removing support datapoints for eval.") task_dataset = get_task_dataset_minus_support(dataset, support, task) else: print("Keeping support datapoints for eval.") task_dataset = get_task_dataset(dataset, task) y_pred = self.predict_proba(support, task_dataset) task_scores[task].append( metric.compute_metric(task_dataset.y, y_pred, task_dataset.w)) # Join information for all tasks. mean_task_scores = {} std_task_scores = {} for task in test_tasks: mean_task_scores[task] = np.mean(np.array(task_scores[task])) std_task_scores[task] = np.std(np.array(task_scores[task])) return mean_task_scores, std_task_scores
mit
luo66/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
257
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
shyamalschandra/seastar
configure.py
19
26249
#!/usr/bin/python3 # # This file is open source software, licensed to you under the terms # of the Apache License, Version 2.0 (the "License"). See the NOTICE file # distributed with this work for additional information regarding copyright # ownership. You may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import os, os.path, textwrap, argparse, sys, shlex, subprocess, tempfile, re configure_args = str.join(' ', [shlex.quote(x) for x in sys.argv[1:]]) def get_flags(): with open('/proc/cpuinfo') as f: for line in f: if line.strip(): if line.rstrip('\n').startswith('flags'): return re.sub(r'^flags\s+: ', '', line).split() def add_tristate(arg_parser, name, dest, help): arg_parser.add_argument('--enable-' + name, dest = dest, action = 'store_true', default = None, help = 'Enable ' + help) arg_parser.add_argument('--disable-' + name, dest = dest, action = 'store_false', default = None, help = 'Disable ' + help) def apply_tristate(var, test, note, missing): if (var is None) or var: if test(): return True elif var == True: print(missing) sys.exit(1) else: print(note) return False return False # # dpdk_cflags - fetch the DPDK specific CFLAGS # # Run a simple makefile that "includes" the DPDK main makefile and prints the # MACHINE_CFLAGS value # def dpdk_cflags (dpdk_target): with tempfile.NamedTemporaryFile() as sfile: dpdk_target = os.path.abspath(dpdk_target) dpdk_target = re.sub(r'\/+$', '', dpdk_target) dpdk_sdk_path = os.path.dirname(dpdk_target) dpdk_target_name = os.path.basename(dpdk_target) dpdk_arch = dpdk_target_name.split('-')[0] if args.dpdk: dpdk_sdk_path = 'dpdk' dpdk_target = os.getcwd() + '/build/dpdk' dpdk_target_name = 'x86_64-{}-linuxapp-gcc'.format(dpdk_machine) dpdk_arch = 'x86_64' sfile.file.write(bytes('include ' + dpdk_sdk_path + '/mk/rte.vars.mk' + "\n", 'utf-8')) sfile.file.write(bytes('all:' + "\n\t", 'utf-8')) sfile.file.write(bytes('@echo $(MACHINE_CFLAGS)' + "\n", 'utf-8')) sfile.file.flush() dpdk_cflags = subprocess.check_output(['make', '--no-print-directory', '-f', sfile.name, 'RTE_SDK=' + dpdk_sdk_path, 'RTE_OUTPUT=' + dpdk_target, 'RTE_TARGET=' + dpdk_target_name, 'RTE_SDK_BIN=' + dpdk_target, 'RTE_ARCH=' + dpdk_arch]) dpdk_cflags_str = dpdk_cflags.decode('utf-8') dpdk_cflags_str = re.sub(r'\n+$', '', dpdk_cflags_str) dpdk_cflags_final = '' return dpdk_cflags_str def try_compile(compiler, source = '', flags = []): with tempfile.NamedTemporaryFile() as sfile: sfile.file.write(bytes(source, 'utf-8')) sfile.file.flush() return subprocess.call([compiler, '-x', 'c++', '-o', '/dev/null', '-c', sfile.name] + flags, stdout = subprocess.DEVNULL, stderr = subprocess.DEVNULL) == 0 def try_compile_and_run(compiler, flags, source, env = {}): mktemp = tempfile.NamedTemporaryFile with mktemp() as sfile, mktemp(mode='rb') as xfile: sfile.file.write(bytes(source, 'utf-8')) sfile.file.flush() xfile.file.close() if subprocess.call([compiler, '-x', 'c++', '-o', xfile.name, sfile.name] + flags, stdout = subprocess.DEVNULL, stderr = subprocess.DEVNULL) != 0: return False e = os.environ.copy() e.update(env) env = e return subprocess.call([xfile.name], stdout = subprocess.DEVNULL, stderr = subprocess.DEVNULL, env=env) == 0 def warning_supported(warning, compiler): # gcc ignores -Wno-x even if it is not supported adjusted = re.sub('^-Wno-', '-W', warning) return try_compile(flags = [adjusted], compiler = compiler) def debug_flag(compiler): src_with_auto = textwrap.dedent('''\ template <typename T> struct x { auto f() {} }; x<int> a; ''') if try_compile(source = src_with_auto, flags = ['-g', '-std=gnu++1y'], compiler = compiler): return '-g' else: print('Note: debug information disabled; upgrade your compiler') return '' def sanitize_vptr_flag(compiler): # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67258 if (not try_compile(compiler, flags=['-fsanitize=vptr']) or try_compile_and_run(compiler, flags=['-fsanitize=undefined', '-fno-sanitize-recover'], env={'UBSAN_OPTIONS': 'exitcode=1'}, source=textwrap.dedent(''' struct A { virtual ~A() {} }; struct B : virtual A {}; struct C : virtual A {}; struct D : B, virtual C {}; int main() { D d; } '''))): return '' else: print('-fsanitize=vptr is broken, disabling') return '-fno-sanitize=vptr' modes = { 'debug': { 'sanitize': '-fsanitize=address -fsanitize=leak -fsanitize=undefined', 'sanitize_libs': '-lubsan -lasan', 'opt': '-O0 -DDEBUG -DDEBUG_SHARED_PTR -DDEFAULT_ALLOCATOR', 'libs': '', }, 'release': { 'sanitize': '', 'sanitize_libs': '', 'opt': '-O2', 'libs': '', }, } tests = [ 'tests/fileiotest', 'tests/directory_test', 'tests/linecount', 'tests/echotest', 'tests/l3_test', 'tests/ip_test', 'tests/timertest', 'tests/tcp_test', 'tests/futures_test', 'tests/alloc_test', 'tests/foreign_ptr_test', 'tests/smp_test', 'tests/thread_test', 'tests/thread_context_switch', 'tests/udp_server', 'tests/udp_client', 'tests/blkdiscard_test', 'tests/sstring_test', 'tests/httpd', 'tests/memcached/test_ascii_parser', 'tests/tcp_server', 'tests/tcp_client', 'tests/allocator_test', 'tests/output_stream_test', 'tests/udp_zero_copy', 'tests/shared_ptr_test', 'tests/slab_test', 'tests/fstream_test', 'tests/distributed_test', 'tests/rpc', 'tests/semaphore_test', 'tests/packet_test', ] apps = [ 'apps/httpd/httpd', 'apps/seawreck/seawreck', 'apps/seastar/seastar', 'apps/memcached/memcached', ] all_artifacts = apps + tests + ['libseastar.a', 'seastar.pc'] arg_parser = argparse.ArgumentParser('Configure seastar') arg_parser.add_argument('--static', dest = 'static', action = 'store_const', default = '', const = '-static', help = 'Static link (useful for running on hosts outside the build environment') arg_parser.add_argument('--pie', dest = 'pie', action = 'store_true', help = 'Build position-independent executable (PIE)') arg_parser.add_argument('--so', dest = 'so', action = 'store_true', help = 'Build shared object (SO) instead of executable') arg_parser.add_argument('--mode', action='store', choices=list(modes.keys()) + ['all'], default='all') arg_parser.add_argument('--with', dest='artifacts', action='append', choices=all_artifacts, default=[]) arg_parser.add_argument('--cflags', action = 'store', dest = 'user_cflags', default = '', help = 'Extra flags for the C++ compiler') arg_parser.add_argument('--ldflags', action = 'store', dest = 'user_ldflags', default = '', help = 'Extra flags for the linker') arg_parser.add_argument('--compiler', action = 'store', dest = 'cxx', default = 'g++', help = 'C++ compiler path') arg_parser.add_argument('--with-osv', action = 'store', dest = 'with_osv', default = '', help = 'Shortcut for compile for OSv') arg_parser.add_argument('--enable-dpdk', action = 'store_true', dest = 'dpdk', default = False, help = 'Enable dpdk (from included dpdk sources)') arg_parser.add_argument('--dpdk-target', action = 'store', dest = 'dpdk_target', default = '', help = 'Path to DPDK SDK target location (e.g. <DPDK SDK dir>/x86_64-native-linuxapp-gcc)') arg_parser.add_argument('--debuginfo', action = 'store', dest = 'debuginfo', type = int, default = 1, help = 'Enable(1)/disable(0)compiler debug information generation') add_tristate(arg_parser, name = 'hwloc', dest = 'hwloc', help = 'hwloc support') add_tristate(arg_parser, name = 'xen', dest = 'xen', help = 'Xen support') args = arg_parser.parse_args() libnet = [ 'net/proxy.cc', 'net/virtio.cc', 'net/dpdk.cc', 'net/ip.cc', 'net/ethernet.cc', 'net/arp.cc', 'net/native-stack.cc', 'net/ip_checksum.cc', 'net/udp.cc', 'net/tcp.cc', 'net/dhcp.cc', ] core = [ 'core/reactor.cc', 'core/fstream.cc', 'core/posix.cc', 'core/memory.cc', 'core/resource.cc', 'core/scollectd.cc', 'core/app-template.cc', 'core/thread.cc', 'core/dpdk_rte.cc', 'util/conversions.cc', 'net/packet.cc', 'net/posix-stack.cc', 'net/net.cc', 'rpc/rpc.cc', ] http = ['http/transformers.cc', 'http/json_path.cc', 'http/file_handler.cc', 'http/common.cc', 'http/routes.cc', 'json/json_elements.cc', 'json/formatter.cc', 'http/matcher.cc', 'http/mime_types.cc', 'http/httpd.cc', 'http/reply.cc', 'http/request_parser.rl', 'http/api_docs.cc', ] boost_test_lib = [ 'tests/test-utils.cc', 'tests/test_runner.cc', ] defines = [] libs = '-laio -lboost_program_options -lboost_system -lstdc++ -lm -lboost_unit_test_framework -lboost_thread -lcryptopp -lrt' hwloc_libs = '-lhwloc -lnuma -lpciaccess -lxml2 -lz' xen_used = False def have_xen(): source = '#include <stdint.h>\n' source += '#include <xen/xen.h>\n' source += '#include <xen/sys/evtchn.h>\n' source += '#include <xen/sys/gntdev.h>\n' source += '#include <xen/sys/gntalloc.h>\n' return try_compile(compiler = args.cxx, source = source) if apply_tristate(args.xen, test = have_xen, note = 'Note: xen-devel not installed. No Xen support.', missing = 'Error: required package xen-devel not installed.'): libs += ' -lxenstore' defines.append("HAVE_XEN") libnet += [ 'net/xenfront.cc' ] core += [ 'core/xen/xenstore.cc', 'core/xen/gntalloc.cc', 'core/xen/evtchn.cc', ] xen_used=True if xen_used and args.dpdk_target: print("Error: only xen or dpdk can be used, not both.") sys.exit(1) memcache_base = [ 'apps/memcached/ascii.rl' ] + libnet + core deps = { 'libseastar.a' : core + libnet + http, 'seastar.pc': [], 'apps/seastar/seastar': ['apps/seastar/main.cc'] + core, 'apps/httpd/httpd': ['apps/httpd/demo.json', 'apps/httpd/main.cc'] + http + libnet + core, 'apps/memcached/memcached': ['apps/memcached/memcache.cc'] + memcache_base, 'tests/memcached/test_ascii_parser': ['tests/memcached/test_ascii_parser.cc'] + memcache_base + boost_test_lib, 'tests/fileiotest': ['tests/fileiotest.cc'] + core + boost_test_lib, 'tests/directory_test': ['tests/directory_test.cc'] + core, 'tests/linecount': ['tests/linecount.cc'] + core, 'tests/echotest': ['tests/echotest.cc'] + core + libnet, 'tests/l3_test': ['tests/l3_test.cc'] + core + libnet, 'tests/ip_test': ['tests/ip_test.cc'] + core + libnet, 'tests/tcp_test': ['tests/tcp_test.cc'] + core + libnet, 'tests/timertest': ['tests/timertest.cc'] + core, 'tests/futures_test': ['tests/futures_test.cc'] + core + boost_test_lib, 'tests/alloc_test': ['tests/alloc_test.cc'] + core + boost_test_lib, 'tests/foreign_ptr_test': ['tests/foreign_ptr_test.cc'] + core + boost_test_lib, 'tests/semaphore_test': ['tests/semaphore_test.cc'] + core + boost_test_lib, 'tests/smp_test': ['tests/smp_test.cc'] + core, 'tests/thread_test': ['tests/thread_test.cc'] + core + boost_test_lib, 'tests/thread_context_switch': ['tests/thread_context_switch.cc'] + core, 'tests/udp_server': ['tests/udp_server.cc'] + core + libnet, 'tests/udp_client': ['tests/udp_client.cc'] + core + libnet, 'tests/tcp_server': ['tests/tcp_server.cc'] + core + libnet, 'tests/tcp_client': ['tests/tcp_client.cc'] + core + libnet, 'apps/seawreck/seawreck': ['apps/seawreck/seawreck.cc', 'apps/seawreck/http_response_parser.rl'] + core + libnet, 'tests/blkdiscard_test': ['tests/blkdiscard_test.cc'] + core, 'tests/sstring_test': ['tests/sstring_test.cc'] + core, 'tests/httpd': ['tests/httpd.cc'] + http + core + boost_test_lib, 'tests/allocator_test': ['tests/allocator_test.cc', 'core/memory.cc', 'core/posix.cc'], 'tests/output_stream_test': ['tests/output_stream_test.cc'] + core + libnet + boost_test_lib, 'tests/udp_zero_copy': ['tests/udp_zero_copy.cc'] + core + libnet, 'tests/shared_ptr_test': ['tests/shared_ptr_test.cc'] + core, 'tests/slab_test': ['tests/slab_test.cc'] + core, 'tests/fstream_test': ['tests/fstream_test.cc'] + core + boost_test_lib, 'tests/distributed_test': ['tests/distributed_test.cc'] + core, 'tests/rpc': ['tests/rpc.cc'] + core + libnet, 'tests/packet_test': ['tests/packet_test.cc'] + core + libnet, } warnings = [ '-Wno-mismatched-tags', # clang-only ] # The "--with-osv=<path>" parameter is a shortcut for a bunch of other # settings: if args.with_osv: args.so = True args.hwloc = False args.user_cflags = (args.user_cflags + ' -DDEFAULT_ALLOCATOR -fvisibility=default -DHAVE_OSV -I' + args.with_osv + ' -I' + args.with_osv + '/include -I' + args.with_osv + '/arch/x64') dpdk_arch_xlat = { 'native': 'native', 'nehalem': 'nhm', 'westmere': 'wsm', 'sandybridge': 'snb', 'ivybridge': 'ivb', } dpdk_machine = 'native' if args.dpdk: if not os.path.exists('dpdk') or not os.listdir('dpdk'): raise Exception('--enable-dpdk: dpdk/ is empty. Run "git submodule update --init".') cflags = args.user_cflags.split() dpdk_machine = ([dpdk_arch_xlat[cflag[7:]] for cflag in cflags if cflag.startswith('-march')] or ['native'])[0] subprocess.check_call('make -C dpdk RTE_OUTPUT=$PWD/build/dpdk/ config T=x86_64-native-linuxapp-gcc'.format( dpdk_machine=dpdk_machine), shell = True) # adjust configutation to taste dotconfig = 'build/dpdk/.config' lines = open(dotconfig, encoding='UTF-8').readlines() def update(lines, vars): ret = [] for line in lines: for var, val in vars.items(): if line.startswith(var + '='): line = var + '=' + val + '\n' ret.append(line) return ret lines = update(lines, {'CONFIG_RTE_LIBRTE_PMD_BOND': 'n', 'CONFIG_RTE_MBUF_SCATTER_GATHER': 'n', 'CONFIG_RTE_LIBRTE_IP_FRAG': 'n', 'CONFIG_RTE_APP_TEST': 'n', 'CONFIG_RTE_TEST_PMD': 'n', 'CONFIG_RTE_MBUF_REFCNT_ATOMIC': 'n', 'CONFIG_RTE_MAX_MEMSEG': '8192', 'CONFIG_RTE_EAL_IGB_UIO': 'n', 'CONFIG_RTE_LIBRTE_KNI': 'n', 'CONFIG_RTE_KNI_KMOD': 'n', 'CONFIG_RTE_LIBRTE_JOBSTATS': 'n', 'CONFIG_RTE_LIBRTE_LPM': 'n', 'CONFIG_RTE_LIBRTE_ACL': 'n', 'CONFIG_RTE_LIBRTE_POWER': 'n', 'CONFIG_RTE_LIBRTE_IP_FRAG': 'n', 'CONFIG_RTE_LIBRTE_METER': 'n', 'CONFIG_RTE_LIBRTE_SCHED': 'n', 'CONFIG_RTE_LIBRTE_DISTRIBUTOR': 'n', 'CONFIG_RTE_LIBRTE_REORDER': 'n', 'CONFIG_RTE_LIBRTE_PORT': 'n', 'CONFIG_RTE_LIBRTE_TABLE': 'n', 'CONFIG_RTE_LIBRTE_PIPELINE': 'n', }) lines += 'CONFIG_RTE_MACHINE={}'.format(dpdk_machine) open(dotconfig, 'w', encoding='UTF-8').writelines(lines) args.dpdk_target = os.getcwd() + '/build/dpdk' if args.dpdk_target: args.user_cflags = (args.user_cflags + ' -DHAVE_DPDK -I' + args.dpdk_target + '/include ' + dpdk_cflags(args.dpdk_target) + ' -Wno-error=literal-suffix -Wno-literal-suffix -Wno-invalid-offsetof') libs += (' -L' + args.dpdk_target + '/lib ') if args.with_osv: libs += '-lintel_dpdk -lrt -lm -ldl' else: libs += '-Wl,--whole-archive -lrte_pmd_vmxnet3_uio -lrte_pmd_i40e -lrte_pmd_ixgbe -lrte_pmd_e1000 -lrte_pmd_ring -Wl,--no-whole-archive -lrte_hash -lrte_kvargs -lrte_mbuf -lethdev -lrte_eal -lrte_malloc -lrte_mempool -lrte_ring -lrte_cmdline -lrte_cfgfile -lrt -lm -ldl' warnings = [w for w in warnings if warning_supported(warning = w, compiler = args.cxx)] warnings = ' '.join(warnings) dbgflag = debug_flag(args.cxx) if args.debuginfo else '' sanitize_flags = sanitize_vptr_flag(args.cxx) modes['debug']['sanitize'] += ' ' + sanitize_flags def have_hwloc(): return try_compile(compiler = args.cxx, source = '#include <hwloc.h>\n#include <numa.h>') if apply_tristate(args.hwloc, test = have_hwloc, note = 'Note: hwloc-devel/numactl-devel not installed. No NUMA support.', missing = 'Error: required packages hwloc-devel/numactl-devel not installed.'): libs += ' ' + hwloc_libs defines.append('HAVE_HWLOC') defines.append('HAVE_NUMA') if args.so: args.pie = '-shared' args.fpie = '-fpic' elif args.pie: args.pie = '-pie' args.fpie = '-fpie' else: args.pie = '' args.fpie = '' defines = ' '.join(['-D' + d for d in defines]) globals().update(vars(args)) total_memory = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') link_pool_depth = max(int(total_memory / 7e9), 1) build_modes = modes if args.mode == 'all' else [args.mode] build_artifacts = all_artifacts if not args.artifacts else args.artifacts dpdk_sources = [] if args.dpdk: for root, dirs, files in os.walk('dpdk'): dpdk_sources += [os.path.join(root, file) for file in files if file.endswith('.h') or file.endswith('.c')] dpdk_sources = ' '.join(dpdk_sources) outdir = 'build' buildfile = 'build.ninja' os.makedirs(outdir, exist_ok = True) do_sanitize = True if args.static: do_sanitize = False with open(buildfile, 'w') as f: dpdk_deps = '' if args.dpdk: # fake dependencies on dpdk, so that it is built before anything else dpdk_deps = ' {dpdk_target}/include/rte_eal.h {dpdk_target}/lib/librte_eal.a'.format(dpdk_target=args.dpdk_target) f.write(textwrap.dedent('''\ configure_args = {configure_args} builddir = {outdir} cxx = {cxx} # we disable _FORTIFY_SOURCE because it generates false positives with longjmp() (core/thread.cc) cxxflags = -std=gnu++1y {dbgflag} {fpie} -Wall -Werror -fvisibility=hidden -pthread -I. -U_FORTIFY_SOURCE {user_cflags} {warnings} {defines} ldflags = {dbgflag} -Wl,--no-as-needed {static} {pie} -fvisibility=hidden -pthread {user_ldflags} libs = {libs} pool link_pool depth = {link_pool_depth} rule ragel command = ragel -G2 -o $out $in description = RAGEL $out rule gen command = echo -e $text > $out description = GEN $out rule swagger command = json/json2code.py -f $in -o $out description = SWAGGER $out ''').format(**globals())) if args.dpdk: f.write(textwrap.dedent('''\ rule dpdkmake command = make -C build/dpdk build {dpdk_deps} : dpdkmake {dpdk_sources} ''').format(**globals())) for mode in build_modes: modeval = modes[mode] if modeval['sanitize'] and not do_sanitize: print('Note: --static disables debug mode sanitizers') modeval['sanitize'] = '' modeval['sanitize_libs'] = '' f.write(textwrap.dedent('''\ cxxflags_{mode} = {sanitize} {opt} -I $builddir/{mode}/gen libs_{mode} = {libs} {sanitize_libs} rule cxx.{mode} command = $cxx -MMD -MT $out -MF $out.d $cxxflags_{mode} $cxxflags -c -o $out $in description = CXX $out depfile = $out.d rule link.{mode} command = $cxx $cxxflags_{mode} $ldflags -o $out $in $libs $libs_{mode} description = LINK $out pool = link_pool rule link_stripped.{mode} command = $cxx $cxxflags_{mode} -s $ldflags -o $out $in $libs $libs_{mode} description = LINK (stripped) $out pool = link_pool rule ar.{mode} command = rm -f $out; ar cr $out $in; ranlib $out description = AR $out ''').format(mode = mode, **modeval)) f.write('build {mode}: phony {artifacts}\n'.format(mode = mode, artifacts = str.join(' ', ('$builddir/' + mode + '/' + x for x in build_artifacts)))) compiles = {} ragels = {} swaggers = {} for binary in build_artifacts: srcs = deps[binary] objs = ['$builddir/' + mode + '/' + src.replace('.cc', '.o') for src in srcs if src.endswith('.cc')] if binary.endswith('.pc'): vars = modeval.copy() vars.update(globals()) pc = textwrap.dedent('''\ Name: Seastar URL: http://seastar-project.org/ Description: Advanced C++ framework for high-performance server applications on modern hardware. Version: 1.0 Libs: -L{srcdir}/{builddir} -Wl,--whole-archive -lseastar -Wl,--no-whole-archive {dbgflag} -Wl,--no-as-needed {static} {pie} -fvisibility=hidden -pthread {user_ldflags} {libs} {sanitize_libs} Cflags: -std=gnu++1y {dbgflag} {fpie} -Wall -Werror -fvisibility=hidden -pthread -I{srcdir} -I{srcdir}/{builddir}/gen {user_cflags} {warnings} {defines} {sanitize} {opt} ''').format(builddir = 'build/' + mode, srcdir = os.getcwd(), **vars) f.write('build $builddir/{}/{}: gen\n text = {}\n'.format(mode, binary, repr(pc))) elif binary.endswith('.a'): f.write('build $builddir/{}/{}: ar.{} {}\n'.format(mode, binary, mode, str.join(' ', objs))) else: if binary.startswith('tests/'): # Our code's debugging information is huge, and multiplied # by many tests yields ridiculous amounts of disk space. # So we strip the tests by default; The user can very # quickly re-link the test unstripped by adding a "_g" # to the test name, e.g., "ninja build/release/testname_g" f.write('build $builddir/{}/{}: link_stripped.{} {} | {}\n'.format(mode, binary, mode, str.join(' ', objs), dpdk_deps)) f.write('build $builddir/{}/{}_g: link.{} {} | {}\n'.format(mode, binary, mode, str.join(' ', objs), dpdk_deps)) else: f.write('build $builddir/{}/{}: link.{} {} | {}\n'.format(mode, binary, mode, str.join(' ', objs), dpdk_deps)) for src in srcs: if src.endswith('.cc'): obj = '$builddir/' + mode + '/' + src.replace('.cc', '.o') compiles[obj] = src elif src.endswith('.rl'): hh = '$builddir/' + mode + '/gen/' + src.replace('.rl', '.hh') ragels[hh] = src elif src.endswith('.json'): hh = '$builddir/' + mode + '/gen/' + src + '.hh' swaggers[hh] = src else: raise Exception('No rule for ' + src) for obj in compiles: src = compiles[obj] gen_headers = list(ragels.keys()) + list(swaggers.keys()) f.write('build {}: cxx.{} {} || {} \n'.format(obj, mode, src, ' '.join(gen_headers) + dpdk_deps)) for hh in ragels: src = ragels[hh] f.write('build {}: ragel {}\n'.format(hh, src)) for hh in swaggers: src = swaggers[hh] f.write('build {}: swagger {}\n'.format(hh,src)) f.write(textwrap.dedent('''\ rule configure command = python3 configure.py $configure_args generator = 1 build build.ninja: configure | configure.py rule cscope command = find -name '*.[chS]' -o -name "*.cc" -o -name "*.hh" | cscope -bq -i- description = CSCOPE build cscope: cscope default {modes_list} ''').format(modes_list = ' '.join(build_modes), **globals()))
apache-2.0
mlflow/mlflow
examples/shap/multiclass_classification.py
1
1051
import os import numpy as np from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier import shap import mlflow from mlflow.tracking import MlflowClient from mlflow.artifacts import download_artifacts # prepare training data X, y = load_iris(return_X_y=True, as_frame=True) # train a model model = RandomForestClassifier() model.fit(X, y) # log an explanation with mlflow.start_run() as run: mlflow.shap.log_explanation(model.predict_proba, X) # list artifacts client = MlflowClient() artifact_path = "model_explanations_shap" artifacts = [x.path for x in client.list_artifacts(run.info.run_id, artifact_path)] print("# artifacts:") print(artifacts) # load back the logged explanation dst_path = download_artifacts(run_id=run.info.run_id, artifact_path=artifact_path) base_values = np.load(os.path.join(dst_path, "base_values.npy")) shap_values = np.load(os.path.join(dst_path, "shap_values.npy")) # show a force plot shap.force_plot(base_values[0], shap_values[0, 0, :], X.iloc[0, :], matplotlib=True)
apache-2.0
elkingtonmcb/h2o-2
py/testdir_single_jvm/test_ddply_plot.py
8
9513
import unittest, random, sys, time sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_browse as h2b, h2o_import as h2i, h2o_gbm, h2o_jobs as h2j, h2o_import import h2o_exec as h2e, h2o_util import math print "Copy a version of this to a two cloud test. different failure mode" DO_PLOT = True COL = 1 PHRASE = "func1" FUNC_PHRASE = "func1=function(x){max(x[,%s])}" % COL REPEAT = 20 DO_KNOWN_FAIL = False DO_APPEND_KNOWN_FAIL2 = True DO_REALS = False CLOUD_SIZE = 1 initList = [ (None, FUNC_PHRASE), # (None, "func2=function(x){a=3;nrow(x[,%s])*a}" % COL), # (None, "func3=function(x){apply(x[,%s],2,sum)/nrow(x[,%s])}" % (COL, col) ), # (None, "function(x) { cbind( mean(x[,1]), mean(x[,%s]) ) }" % COL), # (None, "func4=function(x) { mean( x[,%s]) }" % COL), # (None, "func5=function(x) { sd( x[,%s]) }" % COL), # (None, "func6=function(x) { quantile(x[,%s] , c(0.9) ) }" % COL), ] print "Data is all integers, minInt to maxInt..so it shouldn't have fp roundoff errors while summing the row counts I use?" def write_syn_dataset(csvPathname, rowCount, colCount, minInt, maxInt, SEED): r1 = random.Random(SEED) dsf = open(csvPathname, "w+") for i in range(rowCount): rowData = [] if DO_REALS: for j in range(colCount): # maybe do a significatly smaller range than min/max ints. # divide by pi to get some non-integerness ri = r1.randint(minInt,maxInt) / math.pi # make it a real? rowData.append("%+e" % ri) else: for j in range(colCount): # maybe do a significatly smaller range than min/max ints. ri = r1.randint(minInt,maxInt) rowData.append(ri) rowDataCsv = ",".join(map(str,rowData)) dsf.write(rowDataCsv + "\n") dsf.close() class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global SEED SEED = h2o.setup_random_seed() h2o.init(CLOUD_SIZE,java_heap_GB=12/CLOUD_SIZE) @classmethod def tearDownClass(cls): ### time.sleep(3600) h2o.tear_down_cloud() def test_ddply_plot(self): SYNDATASETS_DIR = h2o.make_syn_dir() if DO_KNOWN_FAIL: tryList = [ (1000000, 5, 'cD', 0, 320, 30), ] else: tryList = [ # (1000000, 5, 'cD', 0, 10, 30), (1000000, 5, 'cD', 0, 20, 30), # (1000000, 5, 'cD', 0, 40, 30), (1000000, 5, 'cD', 0, 50, 30), # (1000000, 5, 'cD', 0, 80, 30), (1000000, 5, 'cD', 0, 160, 30), # fails..don't do # (1000000, 5, 'cD', 0, 320, 30), # (1000000, 5, 'cD', 0, 320, 30), # starts to fail here. too many groups? # (1000000, 5, 'cD', 0, 640, 30), # (1000000, 5, 'cD', 0, 1280, 30), ] if DO_APPEND_KNOWN_FAIL2: tryList.append( (1000000, 5, 'cD', 0, 160, 30), ) tryList.append( (1000000, 5, 'cD', 0, 320, 30), ) ### h2b.browseTheCloud() xList = [] eList = [] fList = [] trial = 0 for (rowCount, colCount, hex_key, minInt, maxInt, timeoutSecs) in tryList: SEEDPERFILE = random.randint(0, sys.maxint) # csvFilename = 'syn_' + str(SEEDPERFILE) + "_" + str(rowCount) + 'x' + str(colCount) + '.csv' if DO_KNOWN_FAIL: # csvFilename = 'syn_binary_1000000x5.csv.gz' # fails # csvFilename = 'a1' # fails csvFilename = "syn_ddply_1Mx5_0_320.gz" bucket = "home-0xdiag-datasets" csvPathname = "standard/" + csvFilename minInt = 0 maxInt = 320 else: bucket = None csvFilename = 'syn_' + "binary" + "_" + str(rowCount) + 'x' + str(colCount) + '.csv' csvPathname = SYNDATASETS_DIR + '/' + csvFilename print "Creating random", csvPathname, "with range", (maxInt-minInt)+1 write_syn_dataset(csvPathname, rowCount, colCount, minInt, maxInt, SEEDPERFILE) for lll in range(1): # PARSE train**************************************** hexKey = 'r.hex' parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='local', hex_key=hexKey) inspect = h2o_cmd.runInspect(key=hexKey) missingValuesList = h2o_cmd.infoFromInspect(inspect, csvFilename) self.assertEqual(missingValuesList, [], "a1 should have no NAs in parsed dataset: %s" % missingValuesList) for resultKey, execExpr in initList: h2e.exec_expr(h2o.nodes[0], execExpr, resultKey=resultKey, timeoutSecs=60) #***************************************************************************************** # two columns. so worse case every combination of each possible value # only true if enough rows (more than the range?) maxExpectedGroups = ((maxInt - minInt) + 1) ** 2 # do it twice..to get the optimal cached delay for time? execExpr = "a1 = ddply(r.hex, c(1,2), " + PHRASE + ")" start = time.time() (execResult, result) = h2e.exec_expr(h2o.nodes[0], execExpr, resultKey=None, timeoutSecs=90) groups = execResult['num_rows'] # this is a coarse comparision, statistically not valid for small rows, and certain ranges? h2o_util.assertApproxEqual(groups, maxExpectedGroups, rel=0.2, msg="groups %s isn't close to expected amount %s, minInt: %s maxInt: %s" % (groups, maxExpectedGroups, minInt, maxInt)) ddplyElapsed = time.time() - start print "ddplyElapsed:", ddplyElapsed print "execResult", h2o.dump_json(execResult) a1dump = h2o_cmd.runInspect(key="a1") print "a1", h2o.dump_json(a1dump) # should never have any NAs in this result missingValuesList = h2o_cmd.infoFromInspect(a1dump, "a1") self.assertEqual(missingValuesList, [], "a1 should have no NAs: %s trial: %s" % (missingValuesList, trial)) #***************************************************************************************** execExpr = "a2 = ddply(r.hex, c(1,2), " + PHRASE + ")" start = time.time() (execResult, result) = h2e.exec_expr(h2o.nodes[0], execExpr, resultKey=None, timeoutSecs=90) groups = execResult['num_rows'] # this is a coarse comparision, statistically not valid for small rows, and certain ranges? h2o_util.assertApproxEqual(groups, maxExpectedGroups, rel=0.2, msg="groups %s isn't close to expected amount %s, minInt: %s maxInt: %s" % (groups, maxExpectedGroups, minInt, maxInt)) ddplyElapsed = time.time() - start print "ddplyElapsed:", ddplyElapsed print "execResult", h2o.dump_json(execResult) a2dump = h2o_cmd.runInspect(key="a2") print "a2", h2o.dump_json(a2dump) # should never have any NAs in this result missingValuesList = h2o_cmd.infoFromInspect(a2dump, "a2") self.assertEqual(missingValuesList, [], "a2 should have no NAs: %s trial: %s" % (missingValuesList, trial)) #***************************************************************************************** # should be same answer in both cases execExpr = "sum(a1!=a2)==0" (execResult, result) = h2e.exec_expr(h2o.nodes[0], execExpr, resultKey=None, timeoutSecs=90) execExpr = "s=c(0); s=(a1!=a2)" (execResult1, result1) = h2e.exec_expr(h2o.nodes[0], execExpr, resultKey=None, timeoutSecs=120) print "execResult", h2o.dump_json(execResult) #***************************************************************************************** # should never have any NAs in this result sdump = h2o_cmd.runInspect(key="s") print "s", h2o.dump_json(sdump) self.assertEqual(result, 1, "a1 and a2 weren't equal? Maybe ddply can vary execution order (fp error? so multiple ddply() can have different answer. %s %s %s" % (FUNC_PHRASE, result, h2o.dump_json(execResult))) # xList.append(ntrees) trial += 1 # this is the biggest it might be ..depends on the random combinations # groups = ((maxInt - minInt) + 1) ** 2 xList.append(groups) eList.append(ddplyElapsed) fList.append(ddplyElapsed) if DO_PLOT: xLabel = 'groups' eLabel = 'ddplyElapsed' fLabel = 'ddplyElapsed' eListTitle = "" fListTitle = "" h2o_gbm.plotLists(xList, xLabel, eListTitle, eList, eLabel, fListTitle, fList, fLabel) if __name__ == '__main__': h2o.unit_main()
apache-2.0
etalab/dactylo
dactylo/controllers/websockets.py
1
3223
# -*- coding: utf-8 -*- # Dactylo -- A datasets activity streams logger # By: Emmanuel Raviart <emmanuel@raviart.com> # # Copyright (C) 2013 Etalab # http://github.com/etalab/dactylo # # This file is part of Dactylo. # # Dactylo is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Dactylo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """Controllers for websockets""" import json import webob import ws4py.server.wsgiutils import ws4py.websocket from .. import contexts, model, urls, wsgihelpers #class WebSocketEmitter(ws4py.websocket.WebSocket): # def closed(self, code, reason = None): # try: # model.websocket_clients.remove(self) # except ValueError: # # Client is missing from list. # pass # def opened(self): # model.websocket_clients.append(self) #websocket_emitter_app = ws4py.server.wsgiutils.WebSocketWSGIApplication(handler_cls = WebSocketEmitter) class WebSocketMetricsEmitter(ws4py.websocket.WebSocket): def closed(self, code, reason = None): try: model.websocket_metrics_clients.remove(self) except ValueError: # Client is missing from list. pass def opened(self): model.websocket_metrics_clients.append(self) message = unicode(json.dumps(model.metrics, encoding = 'utf-8', ensure_ascii = False, indent = 2)) self.send(message) websocket_metrics_emitter_app = ws4py.server.wsgiutils.WebSocketWSGIApplication(handler_cls = WebSocketMetricsEmitter) #def api1_listen(environ, start_response): # req = webob.Request(environ) ## ctx = contexts.Ctx(req) ## headers = wsgihelpers.handle_cross_origin_resource_sharing(ctx) # assert req.method == 'GET' ## params = req.GET ## inputs = dict( ## first_key = params.get('first_key'), ## keys = params.get('keys'), ## limit = params.get('limit'), ## values = params.get('values'), ## ) # return websocket_emitter_app(environ, start_response) def api1_metrics(environ, start_response): req = webob.Request(environ) ctx = contexts.Ctx(req) # headers = wsgihelpers.handle_cross_origin_resource_sharing(ctx) assert req.method == 'GET' try: return websocket_metrics_emitter_app(environ, start_response) except ws4py.server.wsgiutils.HandshakeError as error: return wsgihelpers.bad_request(ctx, explanation = ctx._(u'WebSocket Handshake Error: {0}').format(error)) def route_api1_class(environ, start_response): router = urls.make_router( # ('GET', '^/?$', api1_listen), ('GET', '^/metrics/?$', api1_metrics), ) return router(environ, start_response)
agpl-3.0
manipopopo/tensorflow
tensorflow/contrib/learn/python/learn/preprocessing/categorical.py
40
4795
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements preprocessing transformers for categorical variables (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.util.deprecation import deprecated # pylint: disable=g-bad-import-order from . import categorical_vocabulary from ..learn_io.data_feeder import setup_processor_data_feeder # pylint: enable=g-bad-import-order class CategoricalProcessor(object): """Maps documents to sequences of word ids. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. As a common convention, Nan values are handled as unknown tokens. Both float('nan') and np.nan are accepted. """ @deprecated(None, 'Please use tensorflow/transform or tf.data for sequence ' 'processing.') def __init__(self, min_frequency=0, share=False, vocabularies=None): """Initializes a CategoricalProcessor instance. Args: min_frequency: Minimum frequency of categories in the vocabulary. share: Share vocabulary between variables. vocabularies: list of CategoricalVocabulary objects for each variable in the input dataset. Attributes: vocabularies_: list of CategoricalVocabulary objects. """ self.min_frequency = min_frequency self.share = share self.vocabularies_ = vocabularies def freeze(self, freeze=True): """Freeze or unfreeze all vocabularies. Args: freeze: Boolean, indicate if vocabularies should be frozen. """ for vocab in self.vocabularies_: vocab.freeze(freeze) def fit(self, x, unused_y=None): """Learn a vocabulary dictionary of all categories in `x`. Args: x: numpy matrix or iterable of lists/numpy arrays. unused_y: to match fit format signature of estimators. Returns: self """ x = setup_processor_data_feeder(x) for row in x: # Create vocabularies if not given. if self.vocabularies_ is None: # If not share, one per column, else one shared across. if not self.share: self.vocabularies_ = [ categorical_vocabulary.CategoricalVocabulary() for _ in row ] else: vocab = categorical_vocabulary.CategoricalVocabulary() self.vocabularies_ = [vocab for _ in row] for idx, value in enumerate(row): # Nans are handled as unknowns. if (isinstance(value, float) and math.isnan(value)) or value == np.nan: continue self.vocabularies_[idx].add(value) if self.min_frequency > 0: for vocab in self.vocabularies_: vocab.trim(self.min_frequency) self.freeze() return self def fit_transform(self, x, unused_y=None): """Learn the vocabulary dictionary and return indexies of categories. Args: x: numpy matrix or iterable of lists/numpy arrays. unused_y: to match fit_transform signature of estimators. Returns: x: iterable, [n_samples]. Category-id matrix. """ self.fit(x) return self.transform(x) def transform(self, x): """Transform documents to category-id matrix. Converts categories to ids give fitted vocabulary from `fit` or one provided in the constructor. Args: x: numpy matrix or iterable of lists/numpy arrays. Yields: x: iterable, [n_samples]. Category-id matrix. """ self.freeze() x = setup_processor_data_feeder(x) for row in x: output_row = [] for idx, value in enumerate(row): # Return <UNK> when it's Nan. if (isinstance(value, float) and math.isnan(value)) or value == np.nan: output_row.append(0) continue output_row.append(self.vocabularies_[idx].get(value)) yield np.array(output_row, dtype=np.int64)
apache-2.0
lukeiwanski/tensorflow
tensorflow/examples/tutorials/layers/cnn_mnist.py
42
5711
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convolutional Neural Network Estimator for MNIST, built with tf.layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) def cnn_model_fn(features, labels, mode): """Model function for CNN.""" # Input Layer # Reshape X to 4-D tensor: [batch_size, width, height, channels] # MNIST images are 28x28 pixels, and have one color channel input_layer = tf.reshape(features["x"], [-1, 28, 28, 1]) # Convolutional Layer #1 # Computes 32 features using a 5x5 filter with ReLU activation. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 28, 28, 1] # Output Tensor Shape: [batch_size, 28, 28, 32] conv1 = tf.layers.conv2d( inputs=input_layer, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #1 # First max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 28, 28, 32] # Output Tensor Shape: [batch_size, 14, 14, 32] pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # Convolutional Layer #2 # Computes 64 features using a 5x5 filter. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 14, 14, 32] # Output Tensor Shape: [batch_size, 14, 14, 64] conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #2 # Second max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 14, 14, 64] # Output Tensor Shape: [batch_size, 7, 7, 64] pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # Flatten tensor into a batch of vectors # Input Tensor Shape: [batch_size, 7, 7, 64] # Output Tensor Shape: [batch_size, 7 * 7 * 64] pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64]) # Dense Layer # Densely connected layer with 1024 neurons # Input Tensor Shape: [batch_size, 7 * 7 * 64] # Output Tensor Shape: [batch_size, 1024] dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) # Add dropout operation; 0.6 probability that element will be kept dropout = tf.layers.dropout( inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN) # Logits layer # Input Tensor Shape: [batch_size, 1024] # Output Tensor Shape: [batch_size, 10] logits = tf.layers.dense(inputs=dropout, units=10) predictions = { # Generate predictions (for PREDICT and EVAL mode) "classes": tf.argmax(input=logits, axis=1), # Add `softmax_tensor` to the graph. It is used for PREDICT and by the # `logging_hook`. "probabilities": tf.nn.softmax(logits, name="softmax_tensor") } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Calculate Loss (for both TRAIN and EVAL modes) loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) # Configure the Training Op (for TRAIN mode) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) train_op = optimizer.minimize( loss=loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) # Add evaluation metrics (for EVAL mode) eval_metric_ops = { "accuracy": tf.metrics.accuracy( labels=labels, predictions=predictions["classes"])} return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): # Load training and eval data mnist = tf.contrib.learn.datasets.load_dataset("mnist") train_data = mnist.train.images # Returns np.array train_labels = np.asarray(mnist.train.labels, dtype=np.int32) eval_data = mnist.test.images # Returns np.array eval_labels = np.asarray(mnist.test.labels, dtype=np.int32) # Create the Estimator mnist_classifier = tf.estimator.Estimator( model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model") # Set up logging for predictions # Log the values in the "Softmax" tensor with label "probabilities" tensors_to_log = {"probabilities": "softmax_tensor"} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=50) # Train the model train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": train_data}, y=train_labels, batch_size=100, num_epochs=None, shuffle=True) mnist_classifier.train( input_fn=train_input_fn, steps=20000, hooks=[logging_hook]) # Evaluate the model and print results eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False) eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) print(eval_results) if __name__ == "__main__": tf.app.run()
apache-2.0
diekhans/ga4gh-server
scripts/prepare_compliance_data.py
4
6553
""" A script that takes the compliance dataset (the released version of which is at https://github.com/ga4gh/compliance/tree/master/test-data) and turns it into a directory bundle of binary and JSON files suitable for use by the reference server. """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals import shutil import argparse import os import sys import glob import pysam import utils class ComplianceDataMunger(object): def __init__(self, args): self.inputDirectory = args.inputDirectory self.outputDirectory = args.outputDirectory # get all the reference files (they'll be the ones with .fa extension) self.referenceFiles = map( os.path.basename, glob.glob( os.path.join(self.inputDirectory, "*.fa"))) self.refsetsDirectory = os.path.join( self.outputDirectory, "referenceSets") self.hg37Directory = os.path.join(self.refsetsDirectory, "hg37") # datasets self.datasetsDirectory = os.path.join(self.outputDirectory, "datasets") self.readFiles = map( os.path.basename, glob.glob( os.path.join(self.inputDirectory, "*.sam"))) self.variantFiles = map( os.path.basename, glob.glob( os.path.join(self.inputDirectory, "*.vcf"))) self.datasets = [d for d in set([p.split('_')[0] for p in self.readFiles + self.variantFiles])] self.datasetReads = dict() self.datasetVariants = dict() for ds in self.datasets: self.datasetReads[ds] = [r for r in self.readFiles if r.startswith(ds)] # Variants themselves are split into groups, # based on second part of the _ split: for ds in self.datasets: self.datasetVariants[ds] = dict() # only those variants inside this dataset dsvlist = [v for v in self.variantFiles if v.startswith(ds)] # create nested dictionary based on group belonging for dsv in dsvlist: dsvGroup = dsv.split('_')[1] self.datasetVariants[ds][dsvGroup] = \ self.datasetVariants[ds].get(dsvGroup, []) + [dsv] self.datasetDirs = [os.path.join(self.outputDirectory, ds) for ds in self.datasets] def run(self): if not os.path.exists(self.outputDirectory): os.makedirs(self.outputDirectory) # Clean out, make and re-populate references directory # For now, assume a single, statically-named referenceSet print("Converting references...", file=sys.stderr) shutil.rmtree(self.refsetsDirectory, ignore_errors=True) os.makedirs(self.refsetsDirectory) shutil.copy( os.path.join(self.inputDirectory, "referenceset_hg37.json"), os.path.join(self.refsetsDirectory, "hg37.json")) os.makedirs(self.hg37Directory) for refFile in self.referenceFiles: refBase = os.path.splitext(refFile)[0] destFastaFilename = os.path.join( self.hg37Directory, refBase) + ".fa" shutil.copy(os.path.join(self.inputDirectory, refBase) + ".fa", destFastaFilename) pysam.tabix_compress(destFastaFilename, destFastaFilename + ".gz") refFasta = pysam.FastaFile(destFastaFilename + ".gz") refFasta.close() os.remove(destFastaFilename) shutil.copy( os.path.join(self.inputDirectory, refBase) + ".json", os.path.join(self.hg37Directory, refBase) + ".json") # Clean out, make and repopulate dataset directories shutil.rmtree(self.datasetsDirectory, ignore_errors=True) os.makedirs(self.datasetsDirectory) for ds in self.datasets: dsdir = os.path.join(self.datasetsDirectory, ds) os.makedirs(dsdir) # Reads print("Converting reads...", file=sys.stderr) dsReadsdir = os.path.join(dsdir, "reads") os.makedirs(dsReadsdir) for readFile in self.datasetReads[ds]: destFile = os.path.join( dsReadsdir, readFile.split('_')[1].split('.')[0]) + ".bam" readSrc = pysam.AlignmentFile( os.path.join(self.inputDirectory, readFile), "r") readDest = pysam.AlignmentFile(destFile, "wb", header=readSrc.header) destFilePath = readDest.filename for readData in readSrc: readDest.write(readData) readDest.close() readSrc.close() pysam.index(destFilePath) # Variants print("Converting variants...", file=sys.stderr) dsVariantsdir = os.path.join(dsdir, "variants") os.makedirs(dsVariantsdir) for vgroup in self.datasetVariants[ds].keys(): vgroupdir = os.path.join(dsVariantsdir, vgroup) os.makedirs(vgroupdir) for variantFile in self.datasetVariants[ds][vgroup]: destFile = os.path.join( vgroupdir, variantFile.split('_')[2]) shutil.copy( os.path.join( self.inputDirectory, variantFile), destFile) # Pysam's tabix_index automatically compresses the file # in place, creates a tabix index. pysam.tabix_index(destFile, preset="vcf") print("done converting compliance data.", file=sys.stderr) @utils.Timed() def main(): parser = argparse.ArgumentParser( description="Script to generate data bundle from a locally stored " "(and possibly locally edited) version of the compliance dataset.") parser.add_argument( "--outputDirectory", "-o", default="ga4gh-compliance-data", help="The directory to output the server-ready data bundle to.") parser.add_argument( "--inputDirectory", "-i", help="Path to local directory containing compliance dataset.", default='.') parser.add_argument('--verbose', '-v', action='count', default=0) args = parser.parse_args() cdm = ComplianceDataMunger(args) cdm.run() if __name__ == "__main__": main()
apache-2.0
elkingtonmcb/h2o-2
py/testdir_multi_jvm/test_GLM2_covtype_exec.py
9
2344
import unittest, time, sys, random sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_glm, h2o_import as h2i class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): h2o.init(3,java_heap_GB=4) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_GLM2_covtype_exec(self): csvFilename = 'covtype.data' csvPathname = 'standard/' + csvFilename hex_key = 'covtype.hex' parseResult = h2i.import_parse(bucket='home-0xdiag-datasets', path=csvPathname, schema='put', hex_key=hex_key, timeoutSecs=30) inspect = h2o_cmd.runInspect(None, parseResult['destination_key']) print "\n" + csvPathname, \ " numRows:", "{:,}".format(inspect['numRows']), \ " numCols:", "{:,}".format(inspect['numCols']) print "WARNING: max_iter set to 8 for benchmark comparisons" max_iter = 8 y = "54" h2o_cmd.runExec(str='%s[,55] = %s[,55]==1' % (hex_key, hex_key)) # L2 kwargs = { 'response': y, 'family': 'binomial', 'n_folds': 0, 'max_iter': max_iter, 'beta_epsilon': 1e-3} timeoutSecs = 120 start = time.time() kwargs.update({'alpha': 0, 'lambda': 0}) glm = h2o_cmd.runGLM(parseResult=parseResult, timeoutSecs=timeoutSecs, **kwargs) print "glm (L2) end on ", csvPathname, 'took', time.time() - start, 'seconds' h2o_glm.simpleCheckGLM(self, glm, 'C14', **kwargs) # Elastic kwargs.update({'alpha': 0.5, 'lambda': 1e-4}) start = time.time() glm = h2o_cmd.runGLM(parseResult=parseResult, timeoutSecs=timeoutSecs, **kwargs) print "glm (Elastic) end on ", csvPathname, 'took', time.time() - start, 'seconds' h2o_glm.simpleCheckGLM(self, glm, 'C14', **kwargs) # L1 kwargs.update({'alpha': 1, 'lambda': 1e-4}) start = time.time() glm = h2o_cmd.runGLM(parseResult=parseResult, timeoutSecs=timeoutSecs, **kwargs) print "glm (L1) end on ", csvPathname, 'took', time.time() - start, 'seconds' h2o_glm.simpleCheckGLM(self, glm, 'C14', **kwargs) if __name__ == '__main__': h2o.unit_main()
apache-2.0
glouppe/scikit-learn
examples/plot_kernel_ridge_regression.py
14
6227
""" ============================================= Comparison of kernel ridge regression and SVR ============================================= Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR at prediction-time. This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both complexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However, prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors. The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set. Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters epsilon and C of the SVR. """ # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause from __future__ import division import time import numpy as np from sklearn.svm import SVR from sklearn.model_selection import GridSearchCV from sklearn.model_selection import learning_curve from sklearn.kernel_ridge import KernelRidge import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # Fit regression model train_size = 100 svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}) kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) t0 = time.time() svr.fit(X[:train_size], y[:train_size]) svr_fit = time.time() - t0 print("SVR complexity and bandwidth selected and model fitted in %.3f s" % svr_fit) t0 = time.time() kr.fit(X[:train_size], y[:train_size]) kr_fit = time.time() - t0 print("KRR complexity and bandwidth selected and model fitted in %.3f s" % kr_fit) sv_ratio = svr.best_estimator_.support_.shape[0] / train_size print("Support vector ratio: %.3f" % sv_ratio) t0 = time.time() y_svr = svr.predict(X_plot) svr_predict = time.time() - t0 print("SVR prediction for %d inputs in %.3f s" % (X_plot.shape[0], svr_predict)) t0 = time.time() y_kr = kr.predict(X_plot) kr_predict = time.time() - t0 print("KRR prediction for %d inputs in %.3f s" % (X_plot.shape[0], kr_predict)) ############################################################################# # look at the results sv_ind = svr.best_estimator_.support_ plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors') plt.scatter(X[:100], y[:100], c='k', label='data') plt.hold('on') plt.plot(X_plot, y_svr, c='r', label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict)) plt.plot(X_plot, y_kr, c='g', label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict)) plt.xlabel('data') plt.ylabel('target') plt.title('SVR versus Kernel Ridge') plt.legend() # Visualize training and prediction time plt.figure() # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) sizes = np.logspace(1, 4, 7) for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1, gamma=10), "SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items(): train_time = [] test_time = [] for train_test_size in sizes: t0 = time.time() estimator.fit(X[:train_test_size], y[:train_test_size]) train_time.append(time.time() - t0) t0 = time.time() estimator.predict(X_plot[:1000]) test_time.append(time.time() - t0) plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g", label="%s (train)" % name) plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g", label="%s (test)" % name) plt.xscale("log") plt.yscale("log") plt.xlabel("Train size") plt.ylabel("Time (seconds)") plt.title('Execution Time') plt.legend(loc="best") # Visualize learning curves plt.figure() svr = SVR(kernel='rbf', C=1e1, gamma=0.1) kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1) train_sizes, train_scores_svr, test_scores_svr = \ learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) train_sizes_abs, train_scores_kr, test_scores_kr = \ learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) plt.plot(train_sizes, test_scores_svr.mean(1), 'o-', color="r", label="SVR") plt.plot(train_sizes, test_scores_kr.mean(1), 'o-', color="g", label="KRR") plt.xlabel("Train size") plt.ylabel("Mean Squared Error") plt.title('Learning curves') plt.legend(loc="best") plt.show()
bsd-3-clause
chetan51/nupic
examples/opf/experiments/missing_record/make_datasets.py
9
4817
#! /usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Generate artificial datasets for the multi-step prediction experiments """ import os import random import datetime from optparse import OptionParser from nupic.data.file_record_stream import FileRecordStream ########################################################################### def _generateSimple(filename="simple.csv", numSequences=1, elementsPerSeq=3, numRepeats=10): """ Generate a simple dataset. This contains a bunch of non-overlapping sequences. At the end of the dataset, we introduce missing records so that test code can insure that the model didn't get confused by them. Parameters: ---------------------------------------------------- filename: name of the file to produce, including extension. It will be created in a 'datasets' sub-directory within the directory containing this script. numSequences: how many sequences to generate elementsPerSeq: length of each sequence numRepeats: how many times to repeat each sequence in the output """ # Create the output file scriptDir = os.path.dirname(__file__) pathname = os.path.join(scriptDir, 'datasets', filename) print "Creating %s..." % (pathname) fields = [('timestamp', 'datetime', 'T'), ('field1', 'string', ''), ('field2', 'float', '')] outFile = FileRecordStream(pathname, write=True, fields=fields) # Create the sequences sequences = [] for i in range(numSequences): seq = [x for x in range(i*elementsPerSeq, (i+1)*elementsPerSeq)] sequences.append(seq) # Write out the sequences in random order seqIdxs = [] for i in range(numRepeats): seqIdxs += range(numSequences) random.shuffle(seqIdxs) # Put 1 hour between each record timestamp = datetime.datetime(year=2012, month=1, day=1, hour=0, minute=0, second=0) timeDelta = datetime.timedelta(hours=1) # Write out the sequences without missing records for seqIdx in seqIdxs: seq = sequences[seqIdx] for x in seq: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta # Now, write some out with missing records for seqIdx in seqIdxs: seq = sequences[seqIdx] for i,x in enumerate(seq): if i != 1: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta for seqIdx in seqIdxs: seq = sequences[seqIdx] for i,x in enumerate(seq): if i != 1: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta # Write out some more of the sequences *without* missing records for seqIdx in seqIdxs: seq = sequences[seqIdx] for x in seq: outFile.appendRecord([timestamp, str(x), x]) timestamp += timeDelta outFile.close() ############################################################################## if __name__ == '__main__': helpString = \ """%prog [options] Generate artificial datasets for testing multi-step prediction """ # ============================================================================ # Process command line arguments parser = OptionParser(helpString) parser.add_option("--verbosity", default=0, type="int", help="Verbosity level, either 0, 1, 2, or 3 [default: %default].") (options, args) = parser.parse_args() if len(args) != 0: parser.error("No arguments accepted") # Set random seed random.seed(42) # Create the dataset directory if necessary datasetsDir = os.path.join(os.path.dirname(__file__), 'datasets') if not os.path.exists(datasetsDir): os.mkdir(datasetsDir) # Generate the sample datasets _generateSimple('simple_0.csv', numSequences=1, elementsPerSeq=3, numRepeats=10)
gpl-3.0
kylerbrown/scikit-learn
sklearn/cluster/tests/test_dbscan.py
113
11393
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.ones((10, 2)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 2)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
olt/mapproxy
mapproxy/config/loader.py
1
80871
# This file is part of the MapProxy project. # Copyright (C) 2010-2016 Omniscale <http://omniscale.de> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Configuration loading and system initializing. """ from __future__ import division import os import sys import hashlib import warnings from copy import deepcopy, copy from functools import partial import logging log = logging.getLogger('mapproxy.config') from mapproxy.config import load_default_config, finish_base_config, defaults from mapproxy.config.validator import validate_references from mapproxy.config.spec import validate_options from mapproxy.util.py import memoize from mapproxy.util.ext.odict import odict from mapproxy.util.yaml import load_yaml_file, YAMLError from mapproxy.util.fs import find_exec from mapproxy.compat.modules import urlparse from mapproxy.compat import string_type, iteritems class ConfigurationError(Exception): pass class ProxyConfiguration(object): def __init__(self, conf, conf_base_dir=None, seed=False, renderd=False): self.configuration = conf self.seed = seed self.renderd = renderd if conf_base_dir is None: conf_base_dir = os.getcwd() self.load_globals(conf_base_dir=conf_base_dir) self.load_grids() self.load_caches() self.load_sources() self.load_wms_root_layer() self.load_tile_layers() self.load_services() def load_globals(self, conf_base_dir): self.globals = GlobalConfiguration(conf_base_dir=conf_base_dir, conf=self.configuration.get('globals') or {}, context=self) def load_grids(self): self.grids = {} grid_configs = dict(defaults.grids) grid_configs.update(self.configuration.get('grids') or {}) for grid_name, grid_conf in iteritems(grid_configs): grid_conf.setdefault('name', grid_name) self.grids[grid_name] = GridConfiguration(grid_conf, context=self) def load_caches(self): self.caches = odict() caches_conf = self.configuration.get('caches') if not caches_conf: return if isinstance(caches_conf, list): caches_conf = list_of_dicts_to_ordered_dict(caches_conf) for cache_name, cache_conf in iteritems(caches_conf): cache_conf['name'] = cache_name self.caches[cache_name] = CacheConfiguration(conf=cache_conf, context=self) def load_sources(self): self.sources = SourcesCollection() for source_name, source_conf in iteritems((self.configuration.get('sources') or {})): self.sources[source_name] = SourceConfiguration.load(conf=source_conf, context=self) def load_tile_layers(self): self.layers = odict() layers_conf = deepcopy(self._layers_conf_dict()) if layers_conf is None: return layers = self._flatten_layers_conf_dict(layers_conf) for layer_name, layer_conf in iteritems(layers): layer_conf['name'] = layer_name self.layers[layer_name] = LayerConfiguration(conf=layer_conf, context=self) def _legacy_layers_conf_dict(self): """ Read old style layer configuration with a dictionary where the key is the layer name. Optionally: a list an each layer is wrapped in such dictionary. :: layers: foo: title: xxx sources: [] bar: title: xxx sources: [] or :: layers: - foo: title: xxx sources: [] - bar: title: xxx sources: [] """ warnings.warn('old layer configuration syntax is deprecated since 1.4.0. ' 'use list of dictionaries as documented', RuntimeWarning) layers = [] layers_conf = self.configuration.get('layers') if not layers_conf: return None # TODO config error if isinstance(layers_conf, list): layers_conf = list_of_dicts_to_ordered_dict(layers_conf) for layer_name, layer_conf in iteritems(layers_conf): layer_conf['name'] = layer_name layers.append(layer_conf) return dict(title=None, layers=layers) def _layers_conf_dict(self): """ Returns (recursive) layer configuration as a dictionary in unified structure: :: { title: 'xxx', # required, might be None name: 'xxx', # optional # sources or layers or both are required sources: [], layers: [ {..., ...} # more layers like this ] } Multiple layers will be wrapped in an unnamed root layer, if the first level starts with multiple layers. """ layers_conf = self.configuration.get('layers') if layers_conf is None: return if isinstance(layers_conf, list): if isinstance(layers_conf[0], dict) and len(layers_conf[0].keys()) == 1: # looks like ordered legacy config layers_conf = self._legacy_layers_conf_dict() elif len(layers_conf) == 1 and ( 'layers' in layers_conf[0] or 'sources' in layers_conf[0] or 'tile_sources' in layers_conf[0]): # single root layer in list -> remove list layers_conf = layers_conf[0] else: # layer list without root -> wrap in root layer layers_conf = dict(title=None, layers=layers_conf) if len(set(layers_conf.keys()) & set('layers name title sources'.split())) < 2: # looks like unordered legacy config layers_conf = self._legacy_layers_conf_dict() return layers_conf def _flatten_layers_conf_dict(self, layers_conf, _layers=None): """ Returns a dictionary with all layers that have a name and sources. Flattens the layer tree. """ layers = _layers if _layers is not None else odict() if 'layers' in layers_conf: for layer in layers_conf.pop('layers'): self._flatten_layers_conf_dict(layer, layers) if 'name' in layers_conf and ('sources' in layers_conf or 'tile_sources' in layers_conf): layers[layers_conf['name']] = layers_conf return layers def load_wms_root_layer(self): self.wms_root_layer = None layers_conf = self._layers_conf_dict() if layers_conf is None: return self.wms_root_layer = WMSLayerConfiguration(layers_conf, context=self) def load_services(self): self.services = ServiceConfiguration(self.configuration.get('services', {}), context=self) def configured_services(self): with self: return self.services.services() def __enter__(self): # push local base_config onto config stack import mapproxy.config.config mapproxy.config.config._config.push(self.base_config) def __exit__(self, type, value, traceback): # pop local base_config from config stack import mapproxy.config.config mapproxy.config.config._config.pop() @property def base_config(self): return self.globals.base_config def config_files(self): """ Returns a dictionary with all configuration filenames and there timestamps. Contains any included files as well (see `base` option). """ return self.configuration.get('__config_files__', {}) def list_of_dicts_to_ordered_dict(dictlist): """ >>> d = list_of_dicts_to_ordered_dict([{'a': 1}, {'b': 2}, {'c': 3}]) >>> list(d.items()) [('a', 1), ('b', 2), ('c', 3)] """ result = odict() for d in dictlist: for k, v in iteritems(d): result[k] = v return result class ConfigurationBase(object): """ Base class for all configurations. """ defaults = {} def __init__(self, conf, context): """ :param conf: the configuration part for this configurator :param context: the complete proxy configuration :type context: ProxyConfiguration """ self.conf = conf self.context = context for k, v in iteritems(self.defaults): if k not in self.conf: self.conf[k] = v class GridConfiguration(ConfigurationBase): @memoize def tile_grid(self): from mapproxy.grid import tile_grid if 'base' in self.conf: base_grid_name = self.conf['base'] if not base_grid_name in self.context.grids: raise ConfigurationError('unknown base %s for grid %s' % (base_grid_name, self.conf['name'])) conf = self.context.grids[base_grid_name].conf.copy() conf.update(self.conf) conf.pop('base') self.conf = conf else: conf = self.conf align_with = None if 'align_resolutions_with' in self.conf: align_with_grid_name = self.conf['align_resolutions_with'] align_with = self.context.grids[align_with_grid_name].tile_grid() tile_size = self.context.globals.get_value('tile_size', conf, global_key='grid.tile_size') conf['tile_size'] = tuple(tile_size) tile_size = tuple(tile_size) stretch_factor = self.context.globals.get_value('stretch_factor', conf, global_key='image.stretch_factor') max_shrink_factor = self.context.globals.get_value('max_shrink_factor', conf, global_key='image.max_shrink_factor') if conf.get('origin') is None: log.warn('grid %s does not have an origin. default origin will change from sw (south/west) to nw (north-west) with MapProxy 2.0', conf['name'], ) grid = tile_grid( name=conf['name'], srs=conf.get('srs'), tile_size=tile_size, min_res=conf.get('min_res'), max_res=conf.get('max_res'), res=conf.get('res'), res_factor=conf.get('res_factor', 2.0), threshold_res=conf.get('threshold_res'), bbox=conf.get('bbox'), bbox_srs=conf.get('bbox_srs'), num_levels=conf.get('num_levels'), stretch_factor=stretch_factor, max_shrink_factor=max_shrink_factor, align_with=align_with, origin=conf.get('origin') ) return grid class GlobalConfiguration(ConfigurationBase): def __init__(self, conf_base_dir, conf, context): ConfigurationBase.__init__(self, conf, context) self.base_config = load_default_config() self._copy_conf_values(self.conf, self.base_config) self.base_config.conf_base_dir = conf_base_dir finish_base_config(self.base_config) self.image_options = ImageOptionsConfiguration(self.conf.get('image', {}), context) self.renderd_address = self.get_value('renderd.address') def _copy_conf_values(self, d, target): for k, v in iteritems(d): if v is None: continue if (hasattr(v, 'iteritems') or hasattr(v, 'items')) and k in target: self._copy_conf_values(v, target[k]) else: target[k] = v def get_value(self, key, local={}, global_key=None, default_key=None): result = dotted_dict_get(key, local) if result is None: result = dotted_dict_get(global_key or key, self.conf) if result is None: result = dotted_dict_get(default_key or global_key or key, self.base_config) return result def get_path(self, key, local, global_key=None, default_key=None): value = self.get_value(key, local, global_key, default_key) if value is not None: value = self.abspath(value) return value def abspath(self, path): return os.path.join(self.base_config.conf_base_dir, path) default_image_options = { } class ImageOptionsConfiguration(ConfigurationBase): def __init__(self, conf, context): ConfigurationBase.__init__(self, conf, context) self._init_formats() def _init_formats(self): self.formats = {} formats_config = default_image_options.copy() for format, conf in iteritems(self.conf.get('formats', {})): if format in formats_config: tmp = formats_config[format].copy() tmp.update(conf) conf = tmp if 'resampling_method' in conf: conf['resampling'] = conf.pop('resampling_method') if 'encoding_options' in conf: self._check_encoding_options(conf['encoding_options']) if 'merge_method' in conf: warnings.warn('merge_method now defaults to composite. option no longer required', DeprecationWarning) formats_config[format] = conf for format, conf in iteritems(formats_config): if 'format' not in conf and format.startswith('image/'): conf['format'] = format self.formats[format] = conf def _check_encoding_options(self, options): if not options: return options = options.copy() jpeg_quality = options.pop('jpeg_quality', None) if jpeg_quality and not isinstance(jpeg_quality, int): raise ConfigurationError('jpeg_quality is not an integer') quantizer = options.pop('quantizer', None) if quantizer and quantizer not in ('fastoctree', 'mediancut'): raise ConfigurationError('unknown quantizer') if options: raise ConfigurationError('unknown encoding_options: %r' % options) def image_opts(self, image_conf, format): from mapproxy.image.opts import ImageOptions if not image_conf: image_conf = {} conf = {} if format in self.formats: conf = self.formats[format].copy() resampling = image_conf.get('resampling_method') or conf.get('resampling') if resampling is None: resampling = self.context.globals.get_value('image.resampling_method', {}) transparent = image_conf.get('transparent') opacity = image_conf.get('opacity') img_format = image_conf.get('format') colors = image_conf.get('colors') mode = image_conf.get('mode') encoding_options = image_conf.get('encoding_options') if 'merge_method' in image_conf: warnings.warn('merge_method now defaults to composite. option no longer required', DeprecationWarning) self._check_encoding_options(encoding_options) # only overwrite default if it is not None for k, v in iteritems(dict(transparent=transparent, opacity=opacity, resampling=resampling, format=img_format, colors=colors, mode=mode, encoding_options=encoding_options, )): if v is not None: conf[k] = v if 'format' not in conf and format and format.startswith('image/'): conf['format'] = format # caches shall be able to store png and jpeg tiles with mixed format if format == 'mixed': conf['format'] = format # force 256 colors for image.paletted for backwards compat paletted = self.context.globals.get_value('image.paletted', self.conf) if conf.get('colors') is None and 'png' in conf.get('format', '') and paletted: conf['colors'] = 256 opts = ImageOptions(**conf) return opts def dotted_dict_get(key, d): """ >>> dotted_dict_get('foo', {'foo': {'bar': 1}}) {'bar': 1} >>> dotted_dict_get('foo.bar', {'foo': {'bar': 1}}) 1 >>> dotted_dict_get('bar', {'foo': {'bar': 1}}) """ parts = key.split('.') try: while parts and d: d = d[parts.pop(0)] except KeyError: return None if parts: # not completely resolved return None return d class SourcesCollection(dict): """ Collection of SourceConfigurations. Allows access to tagged WMS sources, e.g. ``sc['source_name:lyr,lyr2']`` will return the source with ``source_name`` and set ``req.layers`` to ``lyr1,lyr2``. """ def __getitem__(self, key): layers = None source_name = key if ':' in source_name: source_name, layers = source_name.split(':', 1) source = dict.__getitem__(self, source_name) if not layers: return source if source.conf.get('type') not in ('wms', 'mapserver', 'mapnik'): raise ConfigurationError("found ':' in: '%s'." " tagged sources only supported for WMS/Mapserver/Mapnik" % key) uses_req = source.conf.get('type') != 'mapnik' source = copy(source) source.conf = deepcopy(source.conf) if uses_req: supported_layers = source.conf['req'].get('layers', []) else: supported_layers = source.conf.get('layers', []) supported_layer_set = SourcesCollection.layer_set(supported_layers) layer_set = SourcesCollection.layer_set(layers) if supported_layer_set and not layer_set.issubset(supported_layer_set): raise ConfigurationError('layers (%s) not supported by source (%s)' % ( layers, ','.join(supported_layer_set))) if uses_req: source.conf['req']['layers'] = layers else: source.conf['layers'] = layers return source def __contains__(self, key): source_name = key if ':' in source_name: source_name, _ = source_name.split(':', 1) return dict.__contains__(self, source_name) @staticmethod def layer_set(layers): if isinstance(layers, (list, tuple)): return set(layers) return set(layers.split(',')) class SourceConfiguration(ConfigurationBase): supports_meta_tiles = True @classmethod def load(cls, conf, context): source_type = conf['type'] subclass = source_configuration_types.get(source_type) if not subclass: raise ConfigurationError("unknown source type '%s'" % source_type) return subclass(conf, context) @memoize def coverage(self): if not 'coverage' in self.conf: return None from mapproxy.config.coverage import load_coverage return load_coverage(self.conf['coverage']) def image_opts(self, format=None): if 'transparent' in self.conf: self.conf.setdefault('image', {})['transparent'] = self.conf['transparent'] return self.context.globals.image_options.image_opts(self.conf.get('image', {}), format) def http_client(self, url): from mapproxy.client.http import auth_data_from_url, HTTPClient http_client = None url, (username, password) = auth_data_from_url(url) insecure = ssl_ca_certs = None if 'https' in url: insecure = self.context.globals.get_value('http.ssl_no_cert_checks', self.conf) ssl_ca_certs = self.context.globals.get_path('http.ssl_ca_certs', self.conf) timeout = self.context.globals.get_value('http.client_timeout', self.conf) headers = self.context.globals.get_value('http.headers', self.conf) http_client = HTTPClient(url, username, password, insecure=insecure, ssl_ca_certs=ssl_ca_certs, timeout=timeout, headers=headers) return http_client, url @memoize def on_error_handler(self): if not 'on_error' in self.conf: return None from mapproxy.source.error import HTTPSourceErrorHandler error_handler = HTTPSourceErrorHandler() for status_code, response_conf in iteritems(self.conf['on_error']): if not isinstance(status_code, int) and status_code != 'other': raise ConfigurationError("invalid error code %r in on_error", status_code) cacheable = response_conf.get('cache', False) color = response_conf.get('response', 'transparent') if color == 'transparent': color = (255, 255, 255, 0) else: color = parse_color(color) error_handler.add_handler(status_code, color, cacheable) return error_handler def resolution_range(conf): from mapproxy.grid import resolution_range as _resolution_range if 'min_res' in conf or 'max_res' in conf: return _resolution_range(min_res=conf.get('min_res'), max_res=conf.get('max_res')) if 'min_scale' in conf or 'max_scale' in conf: return _resolution_range(min_scale=conf.get('min_scale'), max_scale=conf.get('max_scale')) class ArcGISSourceConfiguration(SourceConfiguration): source_type = ('arcgis',) def __init__(self, conf, context): SourceConfiguration.__init__(self, conf, context) def source(self, params=None): from mapproxy.client.arcgis import ArcGISClient from mapproxy.source.arcgis import ArcGISSource from mapproxy.srs import SRS from mapproxy.request.arcgis import create_request if not self.conf.get('opts', {}).get('map', True): return None if not self.context.seed and self.conf.get('seed_only'): from mapproxy.source import DummySource return DummySource(coverage=self.coverage()) # Get the supported SRS codes and formats from the configuration. supported_srs = [SRS(code) for code in self.conf.get("supported_srs", [])] supported_formats = [file_ext(f) for f in self.conf.get("supported_formats", [])] # Construct the parameters if params is None: params = {} request_format = self.conf['req'].get('format') if request_format: params['format'] = request_format request = create_request(self.conf["req"], params) http_client, request.url = self.http_client(request.url) coverage = self.coverage() res_range = resolution_range(self.conf) client = ArcGISClient(request, http_client) image_opts = self.image_opts(format=params.get('format')) return ArcGISSource(client, image_opts=image_opts, coverage=coverage, res_range=res_range, supported_srs=supported_srs, supported_formats=supported_formats or None) def fi_source(self, params=None): from mapproxy.client.arcgis import ArcGISInfoClient from mapproxy.request.arcgis import create_identify_request from mapproxy.source.arcgis import ArcGISInfoSource from mapproxy.srs import SRS if params is None: params = {} request_format = self.conf['req'].get('format') if request_format: params['format'] = request_format supported_srs = [SRS(code) for code in self.conf.get('supported_srs', [])] fi_source = None if self.conf.get('opts', {}).get('featureinfo', False): opts = self.conf['opts'] tolerance = opts.get('featureinfo_tolerance', 5) return_geometries = opts.get('featureinfo_return_geometries', False) fi_request = create_identify_request(self.conf['req'], params) http_client, fi_request.url = self.http_client(fi_request.url) fi_client = ArcGISInfoClient(fi_request, supported_srs=supported_srs, http_client=http_client, tolerance=tolerance, return_geometries=return_geometries, ) fi_source = ArcGISInfoSource(fi_client) return fi_source class WMSSourceConfiguration(SourceConfiguration): source_type = ('wms',) @staticmethod def static_legend_source(url, context): from mapproxy.cache.legend import LegendCache from mapproxy.client.wms import WMSLegendURLClient from mapproxy.source.wms import WMSLegendSource cache_dir = os.path.join(context.globals.get_path('cache.base_dir', {}), 'legends') if url.startswith('file://') and not url.startswith('file:///'): prefix = 'file://' url = prefix + context.globals.abspath(url[7:]) lg_client = WMSLegendURLClient(url) legend_cache = LegendCache(cache_dir=cache_dir) return WMSLegendSource([lg_client], legend_cache, static=True) def fi_xslt_transformer(self, conf, context): from mapproxy.featureinfo import XSLTransformer, has_xslt_support fi_transformer = None fi_xslt = conf.get('featureinfo_xslt') if fi_xslt: if not has_xslt_support: raise ValueError('featureinfo_xslt requires lxml. Please install.') fi_xslt = context.globals.abspath(fi_xslt) fi_transformer = XSLTransformer(fi_xslt) return fi_transformer def image_opts(self, format=None): if 'transparent' not in (self.conf.get('image') or {}): transparent = self.conf['req'].get('transparent') if transparent is not None: transparent = bool(str(transparent).lower() == 'true') self.conf.setdefault('image', {})['transparent'] = transparent return SourceConfiguration.image_opts(self, format=format) def source(self, params=None): from mapproxy.client.wms import WMSClient from mapproxy.request.wms import create_request from mapproxy.source.wms import WMSSource from mapproxy.srs import SRS if not self.conf.get('wms_opts', {}).get('map', True): return None if not self.context.seed and self.conf.get('seed_only'): from mapproxy.source import DummySource return DummySource(coverage=self.coverage()) if params is None: params = {} request_format = self.conf['req'].get('format') if request_format: params['format'] = request_format image_opts = self.image_opts(format=params.get('format')) supported_srs = [SRS(code) for code in self.conf.get('supported_srs', [])] supported_formats = [file_ext(f) for f in self.conf.get('supported_formats', [])] version = self.conf.get('wms_opts', {}).get('version', '1.1.1') lock = None concurrent_requests = self.context.globals.get_value('concurrent_requests', self.conf, global_key='http.concurrent_requests') if concurrent_requests: from mapproxy.util.lock import SemLock lock_dir = self.context.globals.get_path('cache.lock_dir', self.conf) lock_timeout = self.context.globals.get_value('http.client_timeout', self.conf) url = urlparse.urlparse(self.conf['req']['url']) md5 = hashlib.md5(url.netloc.encode('ascii')) lock_file = os.path.join(lock_dir, md5.hexdigest() + '.lck') lock = lambda: SemLock(lock_file, concurrent_requests, timeout=lock_timeout) coverage = self.coverage() res_range = resolution_range(self.conf) transparent_color = (self.conf.get('image') or {}).get('transparent_color') transparent_color_tolerance = self.context.globals.get_value( 'image.transparent_color_tolerance', self.conf) if transparent_color: transparent_color = parse_color(transparent_color) http_method = self.context.globals.get_value('http.method', self.conf) fwd_req_params = set(self.conf.get('forward_req_params', [])) request = create_request(self.conf['req'], params, version=version, abspath=self.context.globals.abspath) http_client, request.url = self.http_client(request.url) client = WMSClient(request, http_client=http_client, http_method=http_method, lock=lock, fwd_req_params=fwd_req_params) return WMSSource(client, image_opts=image_opts, coverage=coverage, res_range=res_range, transparent_color=transparent_color, transparent_color_tolerance=transparent_color_tolerance, supported_srs=supported_srs, supported_formats=supported_formats or None, fwd_req_params=fwd_req_params) def fi_source(self, params=None): from mapproxy.client.wms import WMSInfoClient from mapproxy.request.wms import create_request from mapproxy.source.wms import WMSInfoSource from mapproxy.srs import SRS if params is None: params = {} request_format = self.conf['req'].get('format') if request_format: params['format'] = request_format supported_srs = [SRS(code) for code in self.conf.get('supported_srs', [])] fi_source = None if self.conf.get('wms_opts', {}).get('featureinfo', False): wms_opts = self.conf['wms_opts'] version = wms_opts.get('version', '1.1.1') if 'featureinfo_format' in wms_opts: params['info_format'] = wms_opts['featureinfo_format'] fi_request = create_request(self.conf['req'], params, req_type='featureinfo', version=version, abspath=self.context.globals.abspath) fi_transformer = self.fi_xslt_transformer(self.conf.get('wms_opts', {}), self.context) http_client, fi_request.url = self.http_client(fi_request.url) fi_client = WMSInfoClient(fi_request, supported_srs=supported_srs, http_client=http_client) fi_source = WMSInfoSource(fi_client, fi_transformer=fi_transformer) return fi_source def lg_source(self, params=None): from mapproxy.cache.legend import LegendCache from mapproxy.client.wms import WMSLegendClient from mapproxy.request.wms import create_request from mapproxy.source.wms import WMSLegendSource if params is None: params = {} request_format = self.conf['req'].get('format') if request_format: params['format'] = request_format lg_source = None cache_dir = os.path.join(self.context.globals.get_path('cache.base_dir', {}), 'legends') if self.conf.get('wms_opts', {}).get('legendurl', False): lg_url = self.conf.get('wms_opts', {}).get('legendurl') lg_source = WMSSourceConfiguration.static_legend_source(lg_url, self.context) elif self.conf.get('wms_opts', {}).get('legendgraphic', False): version = self.conf.get('wms_opts', {}).get('version', '1.1.1') lg_req = self.conf['req'].copy() lg_clients = [] lg_layers = str(lg_req['layers']).split(',') del lg_req['layers'] for lg_layer in lg_layers: lg_req['layer'] = lg_layer lg_request = create_request(lg_req, params, req_type='legendgraphic', version=version, abspath=self.context.globals.abspath) http_client, lg_request.url = self.http_client(lg_request.url) lg_client = WMSLegendClient(lg_request, http_client=http_client) lg_clients.append(lg_client) legend_cache = LegendCache(cache_dir=cache_dir) lg_source = WMSLegendSource(lg_clients, legend_cache) return lg_source class MapServerSourceConfiguration(WMSSourceConfiguration): source_type = ('mapserver',) def __init__(self, conf, context): WMSSourceConfiguration.__init__(self, conf, context) self.script = self.context.globals.get_path('mapserver.binary', self.conf) if not self.script: self.script = find_exec('mapserv') if not self.script or not os.path.isfile(self.script): raise ConfigurationError('could not find mapserver binary (%r)' % (self.script, )) # set url to dummy script name, required as identifier # for concurrent_request self.conf['req']['url'] = 'mapserver://' + self.script mapfile = self.context.globals.abspath(self.conf['req']['map']) self.conf['req']['map'] = mapfile def http_client(self, url): working_dir = self.context.globals.get_path('mapserver.working_dir', self.conf) if working_dir and not os.path.isdir(working_dir): raise ConfigurationError('could not find mapserver working_dir (%r)' % (working_dir, )) from mapproxy.client.cgi import CGIClient client = CGIClient(script=self.script, working_directory=working_dir) return client, url class MapnikSourceConfiguration(SourceConfiguration): source_type = ('mapnik',) def source(self, params=None): if not self.context.seed and self.conf.get('seed_only'): from mapproxy.source import DummySource return DummySource(coverage=self.coverage()) image_opts = self.image_opts() lock = None concurrent_requests = self.context.globals.get_value('concurrent_requests', self.conf, global_key='http.concurrent_requests') if concurrent_requests: from mapproxy.util.lock import SemLock lock_dir = self.context.globals.get_path('cache.lock_dir', self.conf) md5 = hashlib.md5(self.conf['mapfile']) lock_file = os.path.join(lock_dir, md5.hexdigest() + '.lck') lock = lambda: SemLock(lock_file, concurrent_requests) coverage = self.coverage() res_range = resolution_range(self.conf) scale_factor = self.conf.get('scale_factor', None) layers = self.conf.get('layers', None) if isinstance(layers, string_type): layers = layers.split(',') mapfile = self.context.globals.abspath(self.conf['mapfile']) if self.conf.get('use_mapnik2', False): warnings.warn('use_mapnik2 option is no longer needed for Mapnik 2 support', DeprecationWarning) from mapproxy.source.mapnik import MapnikSource, mapnik as mapnik_api if mapnik_api is None: raise ConfigurationError('Could not import Mapnik, please verify it is installed!') if self.context.renderd: # only renderd guarantees that we have a single proc/thread # that accesses the same mapnik map object reuse_map_objects = True else: reuse_map_objects = False return MapnikSource(mapfile, layers=layers, image_opts=image_opts, coverage=coverage, res_range=res_range, lock=lock, reuse_map_objects=reuse_map_objects, scale_factor=scale_factor) class TileSourceConfiguration(SourceConfiguration): supports_meta_tiles = False source_type = ('tile',) defaults = {} def source(self, params=None): from mapproxy.client.tile import TileClient, TileURLTemplate from mapproxy.source.tile import TiledSource if not self.context.seed and self.conf.get('seed_only'): from mapproxy.source import DummySource return DummySource(coverage=self.coverage()) if params is None: params = {} url = self.conf['url'] if self.conf.get('origin'): warnings.warn('origin for tile sources is deprecated since 1.3.0 ' 'and will be ignored. use grid with correct origin.', RuntimeWarning) http_client, url = self.http_client(url) grid_name = self.conf.get('grid') if grid_name is None: log.warn("tile source for %s does not have a grid configured and defaults to GLOBAL_MERCATOR. default will change with MapProxy 2.0", url) grid_name = "GLOBAL_MERCATOR" grid = self.context.grids[grid_name].tile_grid() coverage = self.coverage() res_range = resolution_range(self.conf) image_opts = self.image_opts() error_handler = self.on_error_handler() format = file_ext(params['format']) client = TileClient(TileURLTemplate(url, format=format), http_client=http_client, grid=grid) return TiledSource(grid, client, coverage=coverage, image_opts=image_opts, error_handler=error_handler, res_range=res_range) def file_ext(mimetype): from mapproxy.request.base import split_mime_type _mime_class, format, _options = split_mime_type(mimetype) return format class DebugSourceConfiguration(SourceConfiguration): source_type = ('debug',) required_keys = set('type'.split()) def source(self, params=None): from mapproxy.source import DebugSource return DebugSource() source_configuration_types = { 'wms': WMSSourceConfiguration, 'arcgis': ArcGISSourceConfiguration, 'tile': TileSourceConfiguration, 'debug': DebugSourceConfiguration, 'mapserver': MapServerSourceConfiguration, 'mapnik': MapnikSourceConfiguration, } class CacheConfiguration(ConfigurationBase): defaults = {'format': 'image/png'} @memoize def cache_dir(self): cache_dir = self.conf.get('cache', {}).get('directory') if cache_dir: if self.conf.get('cache_dir'): log.warn('found cache.directory and cache_dir option for %s, ignoring cache_dir', self.conf['name']) return self.context.globals.abspath(cache_dir) return self.context.globals.get_path('cache_dir', self.conf, global_key='cache.base_dir') @memoize def has_multiple_grids(self): return len(self.grid_confs()) > 1 def lock_dir(self): lock_dir = self.context.globals.get_path('cache.tile_lock_dir', self.conf) if not lock_dir: lock_dir = os.path.join(self.cache_dir(), 'tile_locks') return lock_dir def _file_cache(self, grid_conf, file_ext): from mapproxy.cache.file import FileCache cache_dir = self.cache_dir() directory_layout = self.conf.get('cache', {}).get('directory_layout', 'tc') if self.conf.get('cache', {}).get('directory'): if self.has_multiple_grids(): raise ConfigurationError( "using single directory for cache with multiple grids in %s" % (self.conf['name']), ) pass elif self.conf.get('cache', {}).get('use_grid_names'): cache_dir = os.path.join(cache_dir, self.conf['name'], grid_conf.tile_grid().name) else: suffix = grid_conf.conf['srs'].replace(':', '') cache_dir = os.path.join(cache_dir, self.conf['name'] + '_' + suffix) link_single_color_images = self.context.globals.get_value('link_single_color_images', self.conf, global_key='cache.link_single_color_images') if link_single_color_images and sys.platform == 'win32': log.warn('link_single_color_images not supported on windows') link_single_color_images = False return FileCache( cache_dir, file_ext=file_ext, directory_layout=directory_layout, link_single_color_images=link_single_color_images, ) def _mbtiles_cache(self, grid_conf, file_ext): from mapproxy.cache.mbtiles import MBTilesCache filename = self.conf['cache'].get('filename') if not filename: filename = self.conf['name'] + '.mbtiles' if filename.startswith('.' + os.sep): mbfile_path = self.context.globals.abspath(filename) else: mbfile_path = os.path.join(self.cache_dir(), filename) sqlite_timeout = self.context.globals.get_value('cache.sqlite_timeout', self.conf) wal = self.context.globals.get_value('cache.sqlite_wal', self.conf) return MBTilesCache( mbfile_path, timeout=sqlite_timeout, wal=wal, ) def _geopackage_cache(self, grid_conf, file_ext): from mapproxy.cache.geopackage import GeopackageCache, GeopackageLevelCache filename = self.conf['cache'].get('filename') table_name = self.conf['cache'].get('table_name') or \ "{}_{}".format(self.conf['name'], grid_conf.tile_grid().name) levels = self.conf['cache'].get('levels') if not filename: filename = self.conf['name'] + '.gpkg' if filename.startswith('.' + os.sep): gpkg_file_path = self.context.globals.abspath(filename) else: gpkg_file_path = os.path.join(self.cache_dir(), filename) cache_dir = self.conf['cache'].get('directory') if cache_dir: cache_dir = os.path.join( self.context.globals.abspath(cache_dir), grid_conf.tile_grid().name ) else: cache_dir = self.cache_dir() cache_dir = os.path.join( cache_dir, self.conf['name'], grid_conf.tile_grid().name ) if levels: return GeopackageLevelCache( cache_dir, grid_conf.tile_grid(), table_name ) else: return GeopackageCache( gpkg_file_path, grid_conf.tile_grid(), table_name ) def _s3_cache(self, grid_conf, file_ext): from mapproxy.cache.s3 import S3Cache bucket_name = self.context.globals.get_value('cache.bucket_name', self.conf, global_key='cache.s3.bucket_name') if not bucket_name: raise ConfigurationError("no bucket_name configured for s3 cache %s" % self.conf['name']) profile_name = self.context.globals.get_value('cache.profile_name', self.conf, global_key='cache.s3.profile_name') directory_layout = self.conf['cache'].get('directory_layout', 'tms') base_path = self.conf['cache'].get('directory', None) if base_path is None: base_path = os.path.join(self.conf['name'], grid_conf.tile_grid().name) return S3Cache( base_path=base_path, file_ext=file_ext, directory_layout=directory_layout, bucket_name=bucket_name, profile_name=profile_name, ) def _sqlite_cache(self, grid_conf, file_ext): from mapproxy.cache.mbtiles import MBTilesLevelCache cache_dir = self.conf.get('cache', {}).get('directory') if cache_dir: cache_dir = os.path.join( self.context.globals.abspath(cache_dir), grid_conf.tile_grid().name ) else: cache_dir = self.cache_dir() cache_dir = os.path.join( cache_dir, self.conf['name'], grid_conf.tile_grid().name ) sqlite_timeout = self.context.globals.get_value('cache.sqlite_timeout', self.conf) wal = self.context.globals.get_value('cache.sqlite_wal', self.conf) return MBTilesLevelCache( cache_dir, timeout=sqlite_timeout, wal=wal, ) def _couchdb_cache(self, grid_conf, file_ext): from mapproxy.cache.couchdb import CouchDBCache, CouchDBMDTemplate db_name = self.conf['cache'].get('db_name') if not db_name: suffix = grid_conf.conf['srs'].replace(':', '') db_name = self.conf['name'] + '_' + suffix url = self.conf['cache'].get('url') if not url: url = 'http://127.0.0.1:5984' md_template = CouchDBMDTemplate(self.conf['cache'].get('tile_metadata', {})) tile_id = self.conf['cache'].get('tile_id') return CouchDBCache(url=url, db_name=db_name, file_ext=file_ext, tile_grid=grid_conf.tile_grid(), md_template=md_template, tile_id_template=tile_id) def _riak_cache(self, grid_conf, file_ext): from mapproxy.cache.riak import RiakCache default_ports = self.conf['cache'].get('default_ports', {}) default_pb_port = default_ports.get('pb', 8087) default_http_port = default_ports.get('http', 8098) nodes = self.conf['cache'].get('nodes') if not nodes: nodes = [{'host': '127.0.0.1'}] for n in nodes: if 'pb_port' not in n: n['pb_port'] = default_pb_port if 'http_port' not in n: n['http_port'] = default_http_port protocol = self.conf['cache'].get('protocol', 'pbc') bucket = self.conf['cache'].get('bucket') if not bucket: suffix = grid_conf.tile_grid().name bucket = self.conf['name'] + '_' + suffix use_secondary_index = self.conf['cache'].get('secondary_index', False) return RiakCache(nodes=nodes, protocol=protocol, bucket=bucket, tile_grid=grid_conf.tile_grid(), use_secondary_index=use_secondary_index, ) def _redis_cache(self, grid_conf, file_ext): from mapproxy.cache.redis import RedisCache host = self.conf['cache'].get('host', '127.0.0.1') port = self.conf['cache'].get('port', 6379) db = self.conf['cache'].get('db', 0) ttl = self.conf['cache'].get('default_ttl', 3600) prefix = self.conf['cache'].get('prefix') if not prefix: prefix = self.conf['name'] + '_' + grid_conf.tile_grid().name return RedisCache( host=host, port=port, db=db, prefix=prefix, ttl=ttl, ) def _compact_cache(self, grid_conf, file_ext): from mapproxy.cache.compact import CompactCacheV1 cache_dir = self.cache_dir() if self.conf.get('cache', {}).get('directory'): if self.has_multiple_grids(): raise ConfigurationError( "using single directory for cache with multiple grids in %s" % (self.conf['name']), ) pass else: cache_dir = os.path.join(cache_dir, self.conf['name'], grid_conf.tile_grid().name) if self.conf['cache']['version'] != 1: raise ConfigurationError("compact cache only supports version 1") return CompactCacheV1( cache_dir=cache_dir, ) def _tile_cache(self, grid_conf, file_ext): if self.conf.get('disable_storage', False): from mapproxy.cache.dummy import DummyCache return DummyCache() grid_conf.tile_grid() #create to resolve `base` in grid_conf.conf cache_type = self.conf.get('cache', {}).get('type', 'file') return getattr(self, '_%s_cache' % cache_type)(grid_conf, file_ext) def _tile_filter(self): filters = [] if 'watermark' in self.conf: from mapproxy.tilefilter import create_watermark_filter if self.conf['watermark'].get('color'): self.conf['watermark']['color'] = parse_color(self.conf['watermark']['color']) f = create_watermark_filter(self.conf, self.context) if f: filters.append(f) return filters @memoize def image_opts(self): from mapproxy.image.opts import ImageFormat format = None if 'format' not in self.conf.get('image', {}): format = self.conf.get('format') or self.conf.get('request_format') image_opts = self.context.globals.image_options.image_opts(self.conf.get('image', {}), format) if image_opts.format is None: if format is not None and format.startswith('image/'): image_opts.format = ImageFormat(format) else: image_opts.format = ImageFormat('image/png') return image_opts def supports_tiled_only_access(self, params=None, tile_grid=None): caches = self.caches() if len(caches) > 1: return False cache_grid, extent, tile_manager = caches[0] image_opts = self.image_opts() if (tile_grid.is_subset_of(cache_grid) and params.get('format') == image_opts.format): return True return False def source(self, params=None, tile_grid=None, tiled_only=False): from mapproxy.source.tile import CacheSource from mapproxy.layer import map_extent_from_grid caches = self.caches() if len(caches) > 1: # cache with multiple grids/sources source = self.map_layer() source.supports_meta_tiles = True return source cache_grid, extent, tile_manager = caches[0] image_opts = self.image_opts() cache_extent = map_extent_from_grid(tile_grid) cache_extent = extent.intersection(cache_extent) source = CacheSource(tile_manager, extent=cache_extent, image_opts=image_opts, tiled_only=tiled_only) return source def _sources_for_grid(self, source_names, grid_conf, request_format): sources = [] source_image_opts = [] # a cache can directly access source tiles when _all_ sources are caches too # and when they have compatible grids by using tiled_only on the CacheSource # check if all sources support tiled_only tiled_only = True for source_name in source_names: if source_name in self.context.sources: tiled_only = False break elif source_name in self.context.caches: cache_conf = self.context.caches[source_name] tiled_only = cache_conf.supports_tiled_only_access( params={'format': request_format}, tile_grid=grid_conf.tile_grid(), ) if not tiled_only: break for source_name in source_names: if source_name in self.context.sources: source_conf = self.context.sources[source_name] source = source_conf.source({'format': request_format}) elif source_name in self.context.caches: cache_conf = self.context.caches[source_name] source = cache_conf.source( params={'format': request_format}, tile_grid=grid_conf.tile_grid(), tiled_only=tiled_only, ) else: raise ConfigurationError('unknown source %s' % source_name) if source: sources.append(source) source_image_opts.append(source.image_opts) return sources, source_image_opts def _sources_for_band_merge(self, sources_conf, grid_conf, request_format): from mapproxy.image.merge import BandMerger source_names = [] for band, band_sources in iteritems(sources_conf): for source in band_sources: name = source['source'] if name in source_names: idx = source_names.index(name) else: source_names.append(name) idx = len(source_names) - 1 source["src_idx"] = idx sources, source_image_opts = self._sources_for_grid( source_names=source_names, grid_conf=grid_conf, request_format=request_format, ) if 'l' in sources_conf: mode = 'L' elif 'a' in sources_conf: mode = 'RGBA' else: mode = 'RGB' band_merger = BandMerger(mode=mode) available_bands = {'r': 0, 'g': 1, 'b': 2, 'a': 3, 'l': 0} for band, band_sources in iteritems(sources_conf): band_idx = available_bands.get(band) if band_idx is None: raise ConfigurationError("unsupported band '%s' for cache %s" % (band, self.conf['name'])) for source in band_sources: band_merger.add_ops( dst_band=band_idx, src_img=source['src_idx'], src_band=source['band'], factor=source.get('factor', 1.0), ) return band_merger, sources, source_image_opts @memoize def caches(self): from mapproxy.cache.dummy import DummyCache, DummyLocker from mapproxy.cache.tile import TileManager from mapproxy.cache.base import TileLocker from mapproxy.image.opts import compatible_image_options from mapproxy.layer import map_extent_from_grid, merge_layer_extents base_image_opts = self.image_opts() if self.conf.get('format') == 'mixed' and not self.conf.get('request_format') == 'image/png': raise ConfigurationError('request_format must be set to image/png if mixed mode is enabled') request_format = self.conf.get('request_format') or self.conf.get('format') if '/' in request_format: request_format_ext = request_format.split('/', 1)[1] else: request_format_ext = request_format caches = [] meta_buffer = self.context.globals.get_value('meta_buffer', self.conf, global_key='cache.meta_buffer') meta_size = self.context.globals.get_value('meta_size', self.conf, global_key='cache.meta_size') bulk_meta_tiles = self.context.globals.get_value('bulk_meta_tiles', self.conf, global_key='cache.bulk_meta_tiles') minimize_meta_requests = self.context.globals.get_value('minimize_meta_requests', self.conf, global_key='cache.minimize_meta_requests') concurrent_tile_creators = self.context.globals.get_value('concurrent_tile_creators', self.conf, global_key='cache.concurrent_tile_creators') renderd_address = self.context.globals.get_value('renderd.address', self.conf) band_merger = None for grid_name, grid_conf in self.grid_confs(): if isinstance(self.conf['sources'], dict): band_merger, sources, source_image_opts = self._sources_for_band_merge( self.conf['sources'], grid_conf=grid_conf, request_format=request_format, ) else: sources, source_image_opts = self._sources_for_grid( self.conf['sources'], grid_conf=grid_conf, request_format=request_format, ) if not sources: from mapproxy.source import DummySource sources = [DummySource()] source_image_opts.append(sources[0].image_opts) tile_grid = grid_conf.tile_grid() tile_filter = self._tile_filter() image_opts = compatible_image_options(source_image_opts, base_opts=base_image_opts) cache = self._tile_cache(grid_conf, image_opts.format.ext) identifier = self.conf['name'] + '_' + tile_grid.name tile_creator_class = None use_renderd = bool(renderd_address) if self.context.renderd: # we _are_ renderd use_renderd = False if self.conf.get('disable_storage', False): # can't ask renderd to create tiles that shouldn't be cached use_renderd = False if use_renderd: from mapproxy.cache.renderd import RenderdTileCreator, has_renderd_support if not has_renderd_support(): raise ConfigurationError("renderd requires requests library") if self.context.seed: priority = 10 else: priority = 100 cache_dir = self.cache_dir() lock_dir = self.context.globals.get_value('cache.tile_lock_dir') if not lock_dir: lock_dir = os.path.join(cache_dir, 'tile_locks') lock_timeout = self.context.globals.get_value('http.client_timeout', {}) locker = TileLocker(lock_dir, lock_timeout, identifier + '_renderd') # TODO band_merger tile_creator_class = partial(RenderdTileCreator, renderd_address, priority=priority, tile_locker=locker) else: from mapproxy.cache.tile import TileCreator tile_creator_class = partial(TileCreator, image_merger=band_merger) if isinstance(cache, DummyCache): locker = DummyLocker() else: locker = TileLocker( lock_dir=self.lock_dir(), lock_timeout=self.context.globals.get_value('http.client_timeout', {}), lock_cache_id=cache.lock_cache_id, ) mgr = TileManager(tile_grid, cache, sources, image_opts.format.ext, locker=locker, image_opts=image_opts, identifier=identifier, request_format=request_format_ext, meta_size=meta_size, meta_buffer=meta_buffer, minimize_meta_requests=minimize_meta_requests, concurrent_tile_creators=concurrent_tile_creators, pre_store_filter=tile_filter, tile_creator_class=tile_creator_class, bulk_meta_tiles=bulk_meta_tiles, ) extent = merge_layer_extents(sources) if extent.is_default: extent = map_extent_from_grid(tile_grid) caches.append((tile_grid, extent, mgr)) return caches @memoize def grid_confs(self): grid_names = self.conf.get('grids') if grid_names is None: log.warn('cache %s does not have any grids. default will change from [GLOBAL_MERCATOR] to [GLOBAL_WEBMERCATOR] with MapProxy 2.0', self.conf['name']) grid_names = ['GLOBAL_MERCATOR'] return [(g, self.context.grids[g]) for g in grid_names] @memoize def map_layer(self): from mapproxy.layer import CacheMapLayer, SRSConditional, ResolutionConditional image_opts = self.image_opts() max_tile_limit = self.context.globals.get_value('max_tile_limit', self.conf, global_key='cache.max_tile_limit') caches = [] main_grid = None for grid, extent, tile_manager in self.caches(): if main_grid is None: main_grid = grid caches.append((CacheMapLayer(tile_manager, extent=extent, image_opts=image_opts, max_tile_limit=max_tile_limit), (grid.srs,))) if len(caches) == 1: layer = caches[0][0] else: layer = SRSConditional(caches, caches[0][0].extent, opacity=image_opts.opacity) if 'use_direct_from_level' in self.conf: self.conf['use_direct_from_res'] = main_grid.resolution(self.conf['use_direct_from_level']) if 'use_direct_from_res' in self.conf: if len(self.conf['sources']) != 1: raise ValueError('use_direct_from_level/res only supports single sources') source_conf = self.context.sources[self.conf['sources'][0]] layer = ResolutionConditional(layer, source_conf.source(), self.conf['use_direct_from_res'], main_grid.srs, layer.extent, opacity=image_opts.opacity) return layer class WMSLayerConfiguration(ConfigurationBase): @memoize def wms_layer(self): from mapproxy.service.wms import WMSGroupLayer layers = [] this_layer = None if 'layers' in self.conf: layers_conf = self.conf['layers'] for layer_conf in layers_conf: lyr = WMSLayerConfiguration(layer_conf, self.context).wms_layer() if lyr: layers.append(lyr) if 'sources' in self.conf or 'legendurl' in self.conf: this_layer = LayerConfiguration(self.conf, self.context).wms_layer() if not layers and not this_layer: return None if not layers: layer = this_layer else: layer = WMSGroupLayer(name=self.conf.get('name'), title=self.conf.get('title'), this=this_layer, layers=layers, md=self.conf.get('md')) return layer def cache_source_names(context, cache): """ Return all sources for a cache, even if a caches uses another cache. """ source_names = [] for src in context.caches[cache].conf['sources']: if src in context.caches and src not in context.sources: source_names.extend(cache_source_names(context, src)) else: source_names.append(src) return source_names class LayerConfiguration(ConfigurationBase): @memoize def wms_layer(self): from mapproxy.service.wms import WMSLayer sources = [] fi_sources = [] lg_sources = [] lg_sources_configured = False if self.conf.get('legendurl'): legend_url = self.conf['legendurl'] lg_sources.append(WMSSourceConfiguration.static_legend_source(legend_url, self.context)) lg_sources_configured = True for source_name in self.conf.get('sources', []): fi_source_names = [] lg_source_names = [] if source_name in self.context.caches: map_layer = self.context.caches[source_name].map_layer() fi_source_names = cache_source_names(self.context, source_name) lg_source_names = cache_source_names(self.context, source_name) elif source_name in self.context.sources: source_conf = self.context.sources[source_name] if not source_conf.supports_meta_tiles: raise ConfigurationError('source "%s" of layer "%s" does not support un-tiled access' % (source_name, self.conf.get('name'))) map_layer = source_conf.source() fi_source_names = [source_name] lg_source_names = [source_name] else: raise ConfigurationError('source/cache "%s" not found' % source_name) if map_layer: sources.append(map_layer) for fi_source_name in fi_source_names: if fi_source_name not in self.context.sources: continue if not hasattr(self.context.sources[fi_source_name], 'fi_source'): continue fi_source = self.context.sources[fi_source_name].fi_source() if fi_source: fi_sources.append(fi_source) if not lg_sources_configured: for lg_source_name in lg_source_names: if lg_source_name not in self.context.sources: continue if not hasattr(self.context.sources[lg_source_name], 'lg_source'): continue lg_source = self.context.sources[lg_source_name].lg_source() if lg_source: lg_sources.append(lg_source) res_range = resolution_range(self.conf) layer = WMSLayer(self.conf.get('name'), self.conf.get('title'), sources, fi_sources, lg_sources, res_range=res_range, md=self.conf.get('md')) return layer @memoize def dimensions(self): from mapproxy.layer import Dimension dimensions = {} for dimension, conf in iteritems(self.conf.get('dimensions', {})): values = [str(val) for val in conf.get('values', ['default'])] default = conf.get('default', values[-1]) dimensions[dimension.lower()] = Dimension(dimension, values, default=default) return dimensions @memoize def tile_layers(self, grid_name_as_path=False): from mapproxy.service.tile import TileLayer from mapproxy.cache.dummy import DummyCache sources = [] if 'tile_sources' in self.conf: sources = self.conf['tile_sources'] else: for source_name in self.conf.get('sources', []): # we only support caches for tiled access... if not source_name in self.context.caches: if source_name in self.context.sources: src_conf = self.context.sources[source_name].conf # but we ignore debug layers for convenience if src_conf['type'] == 'debug': continue # and WMS layers with map: False (i.e. FeatureInfo only sources) if src_conf['type'] == 'wms' and src_conf.get('wms_opts', {}).get('map', True) == False: continue return [] sources.append(source_name) if len(sources) > 1: return [] dimensions = self.dimensions() tile_layers = [] for cache_name in sources: for grid, extent, cache_source in self.context.caches[cache_name].caches(): if dimensions and not isinstance(cache_source.cache, DummyCache): # caching of dimension layers is not supported yet raise ConfigurationError( "caching of dimension layer (%s) is not supported yet." " need to `disable_storage: true` on %s cache" % (self.conf['name'], cache_name) ) md = {} md['title'] = self.conf['title'] md['name'] = self.conf['name'] md['grid_name'] = grid.name if grid_name_as_path: md['name_path'] = (md['name'], md['grid_name']) else: md['name_path'] = (self.conf['name'], grid.srs.srs_code.replace(':', '').upper()) md['name_internal'] = md['name_path'][0] + '_' + md['name_path'][1] md['format'] = self.context.caches[cache_name].image_opts().format md['cache_name'] = cache_name md['extent'] = extent tile_layers.append(TileLayer(self.conf['name'], self.conf['title'], md, cache_source, dimensions=dimensions)) return tile_layers def fi_xslt_transformers(conf, context): from mapproxy.featureinfo import XSLTransformer, has_xslt_support fi_transformers = {} fi_xslt = conf.get('featureinfo_xslt') if fi_xslt: if not has_xslt_support: raise ValueError('featureinfo_xslt requires lxml. Please install.') for info_type, fi_xslt in fi_xslt.items(): fi_xslt = context.globals.abspath(fi_xslt) fi_transformers[info_type] = XSLTransformer(fi_xslt) return fi_transformers def extents_for_srs(bbox_srs): from mapproxy.layer import DefaultMapExtent, MapExtent from mapproxy.srs import SRS extents = {} for srs in bbox_srs: if isinstance(srs, str): bbox = DefaultMapExtent() else: srs, bbox = srs['srs'], srs['bbox'] bbox = MapExtent(bbox, SRS(srs)) extents[srs] = bbox return extents class ServiceConfiguration(ConfigurationBase): def __init__(self, conf, context): if 'wms' in conf: if conf['wms'] is None: conf['wms'] = {} if 'md' not in conf['wms']: conf['wms']['md'] = {'title': 'MapProxy WMS'} ConfigurationBase.__init__(self, conf, context) def services(self): services = [] ows_services = [] for service_name, service_conf in iteritems(self.conf): creator = getattr(self, service_name + '_service', None) if not creator: raise ValueError('unknown service: %s' % service_name) new_services = creator(service_conf or {}) # a creator can return a list of services... if not isinstance(new_services, (list, tuple)): new_services = [new_services] for new_service in new_services: if getattr(new_service, 'service', None): ows_services.append(new_service) else: services.append(new_service) if ows_services: from mapproxy.service.ows import OWSServer services.append(OWSServer(ows_services)) return services def tile_layers(self, conf, use_grid_names=False): layers = odict() for layer_name, layer_conf in iteritems(self.context.layers): for tile_layer in layer_conf.tile_layers(grid_name_as_path=use_grid_names): if not tile_layer: continue if use_grid_names: layers[tile_layer.md['name_path']] = tile_layer else: layers[tile_layer.md['name_internal']] = tile_layer return layers def kml_service(self, conf): from mapproxy.service.kml import KMLServer md = self.context.services.conf.get('wms', {}).get('md', {}).copy() md.update(conf.get('md', {})) max_tile_age = self.context.globals.get_value('tiles.expires_hours') max_tile_age *= 60 * 60 # seconds use_grid_names = conf.get('use_grid_names', False) layers = self.tile_layers(conf, use_grid_names=use_grid_names) return KMLServer(layers, md, max_tile_age=max_tile_age, use_dimension_layers=use_grid_names) def tms_service(self, conf): from mapproxy.service.tile import TileServer md = self.context.services.conf.get('wms', {}).get('md', {}).copy() md.update(conf.get('md', {})) max_tile_age = self.context.globals.get_value('tiles.expires_hours') max_tile_age *= 60 * 60 # seconds origin = conf.get('origin') use_grid_names = conf.get('use_grid_names', False) layers = self.tile_layers(conf, use_grid_names=use_grid_names) return TileServer(layers, md, max_tile_age=max_tile_age, use_dimension_layers=use_grid_names, origin=origin) def wmts_service(self, conf): from mapproxy.service.wmts import WMTSServer, WMTSRestServer md = self.context.services.conf.get('wms', {}).get('md', {}).copy() md.update(conf.get('md', {})) layers = self.tile_layers(conf, use_grid_names=True) kvp = conf.get('kvp') restful = conf.get('restful') max_tile_age = self.context.globals.get_value('tiles.expires_hours') max_tile_age *= 60 * 60 # seconds if kvp is None and restful is None: kvp = restful = True services = [] if kvp: services.append(WMTSServer(layers, md, max_tile_age=max_tile_age)) if restful: template = conf.get('restful_template') if template and '{{' in template: # TODO remove warning in 1.6 log.warn("double braces in WMTS restful_template are deprecated {{x}} -> {x}") services.append(WMTSRestServer(layers, md, template=template, max_tile_age=max_tile_age)) return services def wms_service(self, conf): from mapproxy.service.wms import WMSServer from mapproxy.request.wms import Version md = conf.get('md', {}) inspire_md = conf.get('inspire_md', {}) tile_layers = self.tile_layers(conf) attribution = conf.get('attribution') strict = self.context.globals.get_value('strict', conf, global_key='wms.strict') on_source_errors = self.context.globals.get_value('on_source_errors', conf, global_key='wms.on_source_errors') root_layer = self.context.wms_root_layer.wms_layer() if not root_layer: raise ConfigurationError("found no WMS layer") if not root_layer.title: # set title of root layer to WMS title root_layer.title = md.get('title') concurrent_layer_renderer = self.context.globals.get_value( 'concurrent_layer_renderer', conf, global_key='wms.concurrent_layer_renderer') image_formats_names = self.context.globals.get_value('image_formats', conf, global_key='wms.image_formats') image_formats = odict() for format in image_formats_names: opts = self.context.globals.image_options.image_opts({}, format) if opts.format in image_formats: log.warn('duplicate mime-type for WMS image_formats: "%s" already configured, will use last format', opts.format) image_formats[opts.format] = opts info_types = conf.get('featureinfo_types') srs = self.context.globals.get_value('srs', conf, global_key='wms.srs') self.context.globals.base_config.wms.srs = srs srs_extents = extents_for_srs(conf.get('bbox_srs', [])) versions = conf.get('versions') if versions: versions = sorted([Version(v) for v in versions]) versions = conf.get('versions') if versions: versions = sorted([Version(v) for v in versions]) max_output_pixels = self.context.globals.get_value('max_output_pixels', conf, global_key='wms.max_output_pixels') if isinstance(max_output_pixels, list): max_output_pixels = max_output_pixels[0] * max_output_pixels[1] max_tile_age = self.context.globals.get_value('tiles.expires_hours') max_tile_age *= 60 * 60 # seconds server = WMSServer(root_layer, md, attribution=attribution, image_formats=image_formats, info_types=info_types, srs=srs, tile_layers=tile_layers, strict=strict, on_error=on_source_errors, concurrent_layer_renderer=concurrent_layer_renderer, max_output_pixels=max_output_pixels, srs_extents=srs_extents, max_tile_age=max_tile_age, versions=versions, inspire_md=inspire_md, ) server.fi_transformers = fi_xslt_transformers(conf, self.context) return server def demo_service(self, conf): from mapproxy.service.demo import DemoServer services = list(self.context.services.conf.keys()) md = self.context.services.conf.get('wms', {}).get('md', {}).copy() md.update(conf.get('md', {})) layers = odict() for layer_name, layer_conf in iteritems(self.context.layers): lyr = layer_conf.wms_layer() if lyr: layers[layer_name] = lyr tile_layers = self.tile_layers(conf) image_formats = self.context.globals.get_value('image_formats', conf, global_key='wms.image_formats') srs = self.context.globals.get_value('srs', conf, global_key='wms.srs') # WMTS restful template wmts_conf = self.context.services.conf.get('wmts', {}) or {} from mapproxy.service.wmts import WMTSRestServer if wmts_conf: restful_template = wmts_conf.get('restful_template', WMTSRestServer.default_template) else: restful_template = WMTSRestServer.default_template if 'wmts' in self.context.services.conf: kvp = wmts_conf.get('kvp') restful = wmts_conf.get('restful') if kvp is None and restful is None: kvp = restful = True if kvp: services.append('wmts_kvp') if restful: services.append('wmts_restful') if 'wms' in self.context.services.conf: versions = self.context.services.conf['wms'].get('versions', ['1.1.1']) if '1.1.1' in versions: # demo service only supports 1.1.1, use wms_111 as an indicator services.append('wms_111') return DemoServer(layers, md, tile_layers=tile_layers, image_formats=image_formats, srs=srs, services=services, restful_template=restful_template) def load_configuration(mapproxy_conf, seed=False, ignore_warnings=True, renderd=False): conf_base_dir = os.path.abspath(os.path.dirname(mapproxy_conf)) # A configuration is checked/validated four times, each step has a different # focus and returns different errors. The steps are: # 1. YAML loading: checks YAML syntax like tabs vs. space, indention errors, etc. # 2. Options: checks all options agains the spec and validates their types, # e.g is disable_storage a bool, is layers a list, etc. # 3. References: checks if all referenced caches, sources and grids exist # 4. Initialization: creates all MapProxy objects, returns on first error try: conf_dict = load_configuration_file([os.path.basename(mapproxy_conf)], conf_base_dir) except YAMLError as ex: raise ConfigurationError(ex) errors, informal_only = validate_options(conf_dict) for error in errors: log.warn(error) if not informal_only or (errors and not ignore_warnings): raise ConfigurationError('invalid configuration') errors = validate_references(conf_dict) for error in errors: log.warn(error) return ProxyConfiguration(conf_dict, conf_base_dir=conf_base_dir, seed=seed, renderd=renderd) def load_configuration_file(files, working_dir): """ Return configuration dict from imported files """ # record all config files with timestamp for reloading conf_dict = {'__config_files__': {}} for conf_file in files: conf_file = os.path.normpath(os.path.join(working_dir, conf_file)) log.info('reading: %s' % conf_file) current_dict = load_yaml_file(conf_file) conf_dict['__config_files__'][os.path.abspath(conf_file)] = os.path.getmtime(conf_file) if 'base' in current_dict: current_working_dir = os.path.dirname(conf_file) base_files = current_dict.pop('base') if isinstance(base_files, string_type): base_files = [base_files] imported_dict = load_configuration_file(base_files, current_working_dir) current_dict = merge_dict(current_dict, imported_dict) conf_dict = merge_dict(conf_dict, current_dict) return conf_dict def merge_dict(conf, base): """ Return `base` dict with values from `conf` merged in. """ for k, v in iteritems(conf): if k not in base: base[k] = v else: if isinstance(base[k], dict): merge_dict(v, base[k]) else: base[k] = v return base def parse_color(color): """ >>> parse_color((100, 12, 55)) (100, 12, 55) >>> parse_color('0xff0530') (255, 5, 48) >>> parse_color('#FF0530') (255, 5, 48) >>> parse_color('#FF053080') (255, 5, 48, 128) """ if isinstance(color, (list, tuple)) and 3 <= len(color) <= 4: return tuple(color) if not isinstance(color, string_type): raise ValueError('color needs to be a tuple/list or 0xrrggbb/#rrggbb(aa) string, got %r' % color) if color.startswith('0x'): color = color[2:] if color.startswith('#'): color = color[1:] r, g, b = map(lambda x: int(x, 16), [color[:2], color[2:4], color[4:6]]) if len(color) == 8: a = int(color[6:8], 16) return r, g, b, a return r, g, b
apache-2.0
xyguo/scikit-learn
sklearn/decomposition/base.py
310
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Denis A. Engemann <d.engemann@fz-juelich.de> # Kyle Kastner <kastnerkyle@gmail.com> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
google/uncertainty-baselines
experimental/language_structure/vrnn/linear_vae_cell.py
1
24349
# coding=utf-8 # Copyright 2022 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VAE Cell in VRNN. VAE Cell is the core component of VRNN [1]. It's migrated from the Pytorch version [2]. ## References: [1]: Qiu Liang et al. Structured Attention for Unsupervised Dialogue Structure Induction. _arXiv preprint arXiv:2009.08552, 2020. https://arxiv.org/pdf/2009.08552.pdf [2]: https://github.com/Liang-Qiu/SVRNN-dialogues """ from typing import Any, Dict, Optional, Sequence, Union import numpy as np import tensorflow as tf import bert_utils # local file import from baselines.clinc_intent from vrnn import model_config # local file import from experimental.language_structure from vrnn import utils # local file import from experimental.language_structure from official.nlp.bert import bert_models from official.nlp.bert import configs INPUT_ID_NAME = 'input_word_ids' INPUT_MASK_NAME = 'input_mask' _TensorMapList = Sequence[Dict[str, tf.Tensor]] class _BERT(tf.keras.Model): """BERT model .""" def __init__(self, max_seq_length: int, bert_config: configs.BertConfig, trainable: bool): """BERT class constructor. Args: max_seq_length: the maximum input sequence length. bert_config: Configuration for a BERT model. trainable: whether the model is trainable. """ super(_BERT, self).__init__() self.bert_model = bert_models.get_transformer_encoder( bert_config, max_seq_length) self._trainable = trainable self._vocab_size = bert_config.vocab_size def call(self, inputs: Dict[str, tf.Tensor], return_sequence: bool = True) -> tf.Tensor: sequence_output, cls_output = self.bert_model(inputs) if not self._trainable: sequence_output = tf.stop_gradient(sequence_output) cls_output = tf.stop_gradient(cls_output) if return_sequence: return sequence_output else: return cls_output @property def vocab_size(self): return self._vocab_size class _Embedding(tf.keras.layers.Embedding): """Word embedding layer. A wrapper class of tf.keras.layers.Embedding. It receives a Dict[str, tf.Tensor] containing key ${input_id_key} and returns the embedding. """ def __init__(self, input_id_key: str, vocab_size: int, embed_size: int, trainable: bool, **kwargs: Dict[str, Any]): super(_Embedding, self).__init__(vocab_size, embed_size, **kwargs) self._input_id_key = input_id_key self._trainable = trainable self._vocab_size = vocab_size def call(self, inputs: Dict[str, tf.Tensor]) -> tf.Tensor: outputs = super().call(inputs[self._input_id_key]) if not self._trainable: outputs = tf.stop_gradient(outputs) return outputs @property def vocab_size(self): return self._vocab_size def _build_embedding_layer(config: model_config.EmbeddingConfig, max_seq_length: int): """Creates embedding layer of the specific `embedding_type`.""" if config.embedding_type == model_config.GLOVE_EMBED: # If word_embedding_path is specified, use the embedding size of the # pre-trained embeddings. if config.word_embedding_path: with tf.io.gfile.GFile(config.word_embedding_path, 'rb') as embedding_file: word_embedding = np.load(embedding_file) vocab_size, embed_size = word_embedding.shape if config.vocab_size != vocab_size: raise ValueError( 'Expected consistent vocab size between vocab.txt and the ' 'embedding, found {} and {}.'.format(vocab_size, config.vocab_size)) config.embed_size = embed_size embeddings_initializer = (tf.keras.initializers.Constant(word_embedding)) else: embeddings_initializer = None return _Embedding( INPUT_ID_NAME, config.vocab_size, config.embed_size, embeddings_initializer=embeddings_initializer, input_length=max_seq_length, trainable=config.trainable_embedding) elif config.embedding_type == model_config.BERT_EMBED: return _BERT( max_seq_length, bert_config=configs.BertConfig(**config.bert_config), trainable=config.trainable_embedding) raise ValueError('Invalid embedding type {}, expected {} or {}'.format( config.embedding_type, model_config.GLOVE_EMBED, model_config.BERT_EMBED)) class _DualRNN(tf.keras.Model): """Dual RNN base class. It receives two sentences (with masks) and the initial state of RNN, returns the outputs of two RNNs. To use the class, one needs to create an inheriting class implementing _run_dual_rnn(). """ def __init__(self, hidden_size: int, embedding_layer: Union[_BERT, _Embedding], num_layers: int = 1, dropout: float = 0.5, cell_type: Optional[str] = 'lstm', return_state: Optional[bool] = False, **kwargs: Dict[str, Any]): """Dual RNN base class constructor. Args: hidden_size: the hidden layer size of the RNN. embedding_layer: an embedding layer to be used. num_layers: number of layers of the RNN. dropout: dropout rate. cell_type: the RNN cell type. return_state: whether to include the final state in the outputs. **kwargs: optional arguments from childern class to be passed to _run_dual_rnn """ super(_DualRNN, self).__init__() self._hidden_size = hidden_size self._num_layers = num_layers self._dropout = dropout self._cell_type = cell_type self._return_state = return_state self.embedding_layer = embedding_layer def build(self, input_shape): self.dropout = tf.keras.layers.Dropout(self._dropout) def call(self, input_1, input_2, initial_state, **kwargs): embed_1 = self.embedding_layer(input_1) embed_2 = self.embedding_layer(input_2) input_mask_1 = self._get_input_mask(input_1) input_mask_2 = self._get_input_mask(input_2) output_1, output_2, state_1, state_2 = self._run_dual_rnn( embed_1, embed_2, input_mask_1, input_mask_2, initial_state, **kwargs) if self._return_state: return output_1, output_2, state_1, state_2 return output_1, output_2 def _get_input_mask(self, inputs: Dict[str, tf.Tensor]) -> tf.Tensor: return inputs.get(INPUT_MASK_NAME, tf.ones_like(inputs[INPUT_ID_NAME], dtype=tf.int32)) def _run_dual_rnn(self, input_1, input_2, input_mask_1, input_mask_2, initial_state, **kwargs): raise NotImplementedError('Must implement method _run_dual_rnn.') def _split_hidden_state_and_cell_state(self, state: Sequence[Any]): """Split the state into the hidden state (`h`) and optionally the cell state (`c`). When the cell state is a tuple (e.g., LSTM), `state` is of format [(h_1, c_1), (h_2, c_2), ..., (h_n, c_n)] where n is the num_layers. Otherwise `state` is of format [h_1, h_2, ..., h_n] Args: state: the cell state of each layer of the RNN. Returns: a tuple of the hidden state and (the cell state or None). """ if utils.state_is_tuple(self._cell_type): return [s[0] for s in state], [s[1] for s in state] return state, None class DualRNNEncoder(_DualRNN): """Dual RNN encoder.""" def _create_rnn(self): cells = [ utils.get_rnn_cell(self._cell_type)(units=self._hidden_size) for _ in range(self._num_layers) ] return tf.keras.layers.RNN(cells, return_state=True, return_sequences=True) def build(self, input_shape): super().build(input_shape) self.sent_rnn = self._create_rnn() def _run_dual_rnn(self, input_1, input_2, input_mask_1, input_mask_2, initial_state, **unused_kwargs): del initial_state # Not used output_1, state_1 = self._run_rnn(input_1, input_mask_1) output_2, state_2 = self._run_rnn(input_2, input_mask_2) hidden_state_1, _ = self._split_hidden_state_and_cell_state(state_1) hidden_state_2, _ = self._split_hidden_state_and_cell_state(state_2) return output_1, output_2, hidden_state_1, hidden_state_2 def _run_rnn(self, inputs, input_mask): outputs = self.sent_rnn(inputs) output = outputs[0] state = outputs[1:] seqlen = tf.reduce_sum(input_mask, axis=1) final_step_output = utils.get_last_step(output, seqlen) final_step_output = self.dropout(final_step_output) return final_step_output, state class DualRNNDecoder(_DualRNN): """Dual RNN decoder.""" def _create_rnn(self, hidden_size): cells = [ utils.get_rnn_cell(self._cell_type)( units=hidden_size, dropout=self._dropout) for _ in range(self._num_layers) ] return tf.keras.layers.RNN(cells, return_state=True, return_sequences=True) def build(self, input_shape): super().build(input_shape) self.dec_rnn_1 = self._create_rnn(self._hidden_size) self.project_1 = tf.keras.layers.Dense(self.embedding_layer.vocab_size) self.dec_rnn_2 = self._create_rnn(self._hidden_size * 2) self.project_2 = tf.keras.layers.Dense(self.embedding_layer.vocab_size) def _run_dual_rnn(self, input_1, input_2, input_mask_1, input_mask_2, initial_state, **unused_kwargs): initial_state_1 = self._rnn1_initial_state(initial_state) output_1, state_1 = self._run_rnn(input_1, input_mask_1, initial_state_1, self.dec_rnn_1, self.dropout, self.project_1) initial_state_2 = self._rnn2_initial_state(initial_state, state_1) output_2, state_2 = self._run_rnn(input_2, input_mask_2, initial_state_2, self.dec_rnn_2, self.dropout, self.project_2) hidden_state_1, _ = self._split_hidden_state_and_cell_state(state_1) hidden_state_2, _ = self._split_hidden_state_and_cell_state(state_2) return output_1, output_2, hidden_state_1, hidden_state_2 def _run_rnn(self, inputs, input_mask, initial_state, rnn, dropout, projection_layer): del input_mask # Not used outputs = rnn(inputs, initial_state=initial_state) final_state = outputs[1:] outputs = dropout(outputs[0]) outputs = projection_layer(outputs) return outputs, final_state def _concat_states(self, state_1: Sequence[tf.Tensor], state_2: Sequence[tf.Tensor]) -> Sequence[tf.Tensor]: return [tf.concat([s1, s2], axis=1) for s1, s2 in zip(state_1, state_2)] def _rnn1_initial_state(self, initial_state: Sequence[tf.Tensor]) -> Sequence[Any]: if utils.state_is_tuple(self._cell_type): return list(zip(initial_state, initial_state)) return initial_state def _rnn2_initial_state(self, initial_state: Sequence[tf.Tensor], rnn1_final_state: Sequence[Any]) -> Sequence[Any]: (rnn1_final_hidden_state, rnn1_final_cell_state ) = self._split_hidden_state_and_cell_state(rnn1_final_state) initial_hidden_state = self._concat_states(initial_state, rnn1_final_hidden_state) if utils.state_is_tuple(self._cell_type): initial_cell_state = self._concat_states(initial_state, rnn1_final_cell_state) return list(zip(initial_hidden_state, initial_cell_state)) return initial_hidden_state class _VAECell(tf.keras.layers.Layer): """VAE Cell base class. It receives two sentences (with masks) and the initial state as inputs and returns multiple outputs (see call() for details). It encodes->samples->decodes the inputs and updates the state in the meanwhile. However, the connection between any of two sequential components are component dependent. For example, the output of the sampler may not be fitted as the input of decoder. So, to use the class, one needs to create an inheriting class implementing the "glue" methods such as `_post_process_samples()`. """ def __init__(self, encoder, sampler, decoder, state_updater): super(_VAECell, self).__init__() self.encoder = encoder self.sampler = sampler self.decoder = decoder self.state_updater = state_updater def _verify_and_prepare_inputs(self, inputs: Sequence[Any]): if len(inputs) not in (5, 7): raise ValueError( 'Inputs should be a sequence of length 5 (encoder_input_1, ' 'encoderinput_2, decoder_input_1, decoder_input_2, state) or 7 ' '(encoder_input_1, encoderinput_2, decoder_input_1, decoder_input_2, ' 'state, label, label_mask), found %s' % len(inputs)) (encoder_input_1, encoder_input_2, decoder_input_1, decoder_input_2, state) = inputs[:5] if len(inputs) == 7: label, label_mask = inputs[5:] else: label = None label_mask = None return (encoder_input_1, encoder_input_2, decoder_input_1, decoder_input_2, state, label, label_mask) def _may_extract_from_tuple_state(self, state): if isinstance(state, (list, tuple)): return state[0] return state def _post_process_samples(self, samples: tf.Tensor) -> tf.Tensor: raise NotImplementedError('Must implement method to post-process samples.') def _project_encoder_outputs(self, inputs: Sequence[tf.Tensor]): raise NotImplementedError( 'Must implement method to project encoder outputs.') def _prepare_encoder_initial_state(self, inputs: Sequence[tf.Tensor]) -> tf.Tensor: raise NotImplementedError( 'Must implement method to prepare encoder initial state.') def _prepare_decoder_initial_state( self, inputs: Sequence[tf.Tensor]) -> Sequence[tf.Tensor]: raise NotImplementedError( 'Must implement method to prepare decoder initial state.') def _prepare_decoder_inputs( self, inputs: Sequence[tf.Tensor]) -> Sequence[tf.Tensor]: return inputs def _prepare_state_updater_inputs(self, inputs: Sequence[Any]): raise NotImplementedError( 'Must implement method to prepare state updater inputs.') def _post_process_decoder_state(self, state: Sequence[tf.Tensor]) -> tf.Tensor: return state[0] def _prepare_sample_logits(self, logits: tf.Tensor, label: Any, label_mask: Any) -> tf.Tensor: del self, label, label_mask # Unused. return logits def is_tuple_state(self): return self.state_updater.is_tuple_state() def call(self, inputs: Sequence[Any], return_states: Optional[bool] = False, return_samples: Optional[bool] = False): (encoder_input_1, encoder_input_2, decoder_input_1, decoder_input_2, state, label, label_mask) = self._verify_and_prepare_inputs(inputs) initial_state = self._may_extract_from_tuple_state(state) encoder_initial_state = self._prepare_encoder_initial_state([initial_state]) encoder_outputs_1, encoder_outputs_2 = self.encoder(encoder_input_1, encoder_input_2, encoder_initial_state) latent_state, sampler_inputs = self._project_encoder_outputs( [encoder_outputs_1, encoder_outputs_2, initial_state]) sample_logits = self._prepare_sample_logits(sampler_inputs, label, label_mask) samples = self.sampler(sample_logits) samples_processed = self._post_process_samples(samples) decoder_initial_state = self._prepare_decoder_initial_state( [initial_state, samples_processed]) decoder_input_1, decoder_input_2 = self._prepare_decoder_inputs( [decoder_input_1, decoder_input_2]) (decoder_outputs_1, decoder_outputs_2, decoder_state_1, decoder_state_2) = self.decoder(decoder_input_1, decoder_input_2, decoder_initial_state) decoder_state_1 = self._post_process_decoder_state(decoder_state_1) decoder_state_2 = self._post_process_decoder_state(decoder_state_2) decoder_initial_state = self._post_process_decoder_state( decoder_initial_state) state_updater_inputs = self._prepare_state_updater_inputs([ samples_processed, encoder_outputs_1, encoder_outputs_2, state, ]) next_state = self.state_updater(state_updater_inputs) outputs = [ sample_logits, decoder_outputs_1, decoder_outputs_2, next_state, latent_state ] if return_states: outputs += [decoder_initial_state, decoder_state_1, decoder_state_2] if return_samples: outputs.append(samples) return outputs class _VanillaStateUpdater(tf.keras.layers.Layer): """Vanilla hidden state updater.""" def __init__(self, cell_type, units, dropout): del dropout super(_VanillaStateUpdater, self).__init__() self._cell_type = cell_type self._units = units self.cell = utils.get_rnn_cell(cell_type)(units) def call(self, inputs): if not isinstance(inputs, (list, tuple)) or len(inputs) != 2: raise ValueError('Expect inputs to be the sequence of length 2.') inputs, state = inputs _, state = self.cell(inputs, state) return state def is_tuple_state(self): return utils.state_is_tuple(self._cell_type) class _VanillaEncoderOutputProjector(tf.keras.layers.Layer): """The layer to project vanilla vae cell's encoder outputs.""" def __init__(self, hidden_sizes: Sequence[int], output_size: int, dropout: float): super(_VanillaEncoderOutputProjector, self).__init__() self.mlp = utils.MLP(hidden_sizes, dropout=dropout) self.project_layer = tf.keras.layers.Dense(output_size) def call(self, inputs: Sequence[Any]): if len(inputs) < 3: raise ValueError( 'Expect inputs to be the sequence of length greater than 2, found {}.' .format(len(inputs))) encoder_input_1, encoder_input_2, initial_state = inputs[:3] inputs = tf.concat([initial_state, encoder_input_1, encoder_input_2], axis=1) hidden = self.mlp(inputs) return hidden, self.project_layer(hidden) class VanillaLinearVAECell(_VAECell): """Vanilla linear VAE Cell class.""" def __init__(self, config: model_config.VanillaLinearVAECellConfig): model_config.verify_embedding_configs(config.encoder_embedding, config.decoder_embedding, config.shared_embedding) # Creates embedding layers for encoder and decoder. self.encoder_embedding_layer = _build_embedding_layer( config.encoder_embedding, config.max_seq_length) if config.shared_embedding: self.decoder_embedding_layer = self.encoder_embedding_layer self.shared_embedding_layer = self.encoder_embedding_layer else: self.decoder_embedding_layer = _build_embedding_layer( config.decoder_embedding, config.max_seq_length) self.shared_embedding_layer = None encoder = DualRNNEncoder( hidden_size=config.encoder_hidden_size, embedding_layer=self.encoder_embedding_layer, num_layers=config.num_ecnoder_rnn_layers, dropout=config.dropout, cell_type=config.encoder_cell_type) sampler = utils.GumbelSoftmaxSampler(config.temperature, hard=False) decoder = DualRNNDecoder( hidden_size=config.decoder_hidden_size, embedding_layer=self.decoder_embedding_layer, # Hardcoded to be 1 layer to align with pytorch version. Otherwise, we # need to define the initial state for each layer in # _prepare_decoder_initial_state and change _post_process_decoder_state num_layers=1, dropout=config.dropout, cell_type=config.decoder_cell_type, return_state=True) state_updater = _VanillaStateUpdater(config.state_updater_cell_type, config.num_states, config.dropout) self._gumbel_softmax_label_adjustment_multiplier = ( config.gumbel_softmax_label_adjustment_multiplier) self.encoder_output_projector = _VanillaEncoderOutputProjector( hidden_sizes=list(config.encoder_projection_sizes), output_size=config.num_states, dropout=config.dropout) self.sample_post_processor = utils.MLP( config.sampler_post_processor_output_sizes, dropout=config.dropout) super(VanillaLinearVAECell, self).__init__( encoder=encoder, sampler=sampler, decoder=decoder, state_updater=state_updater) def init_bert_embedding_layers( self, config: model_config.VanillaLinearVAECellConfig): if config.encoder_embedding.embedding_type == model_config.BERT_EMBED: (self.encoder_embedding_layer, _, _) = bert_utils.load_bert_weight_from_ckpt( bert_model=self.encoder_embedding_layer, bert_ckpt_dir=config.encoder_embedding.bert_ckpt_dir) if config.decoder_embedding.embedding_type == model_config.BERT_EMBED: (self.decoder_embedding_layer, _, _) = bert_utils.load_bert_weight_from_ckpt( bert_model=self.decoder_embedding_layer, bert_ckpt_dir=config.encoder_embedding.bert_ckpt_dir) def _post_process_samples(self, samples: tf.Tensor) -> tf.Tensor: return self.sample_post_processor(samples) def _project_encoder_outputs(self, inputs: Sequence[tf.Tensor]): return self.encoder_output_projector(inputs) def _prepare_encoder_initial_state(self, inputs: Sequence[tf.Tensor]): # Encoder don't use external initial state. return None def _prepare_decoder_initial_state( self, inputs: Sequence[tf.Tensor]) -> Sequence[tf.Tensor]: if len(inputs) < 2: raise ValueError( 'Expect inputs to be the sequence of length greater than 1, found {}.' .format(len(inputs))) initial_state, samples_processed = inputs[0], inputs[1] return [tf.concat([initial_state, samples_processed], axis=1)] def _prepare_decoder_inputs( # pytype: disable=signature-mismatch # overriding-parameter-type-checks self, inputs: _TensorMapList) -> _TensorMapList: last_step_removed = [ {key: value[:, :-1] for key, value in input.items()} for input in inputs ] return last_step_removed def _prepare_state_updater_inputs(self, inputs: Sequence[Any]): if len(inputs) < 4: raise ValueError( 'Expect inputs to be the sequence of length greater than 3, found {}.' .format(len(inputs))) samples_processed, encoder_inputs_1, encoder_inputs_2, state = inputs[:4] inputs = tf.concat([samples_processed, encoder_inputs_1, encoder_inputs_2], axis=1) return [inputs, state] def _prepare_sample_logits(self, logits: tf.Tensor, label: Optional[tf.Tensor], label_mask: Any) -> tf.Tensor: if label is None and label_mask is None: return super()._prepare_sample_logits(logits, label, label_mask) if label is None or label_mask is None: raise ValueError( 'label and label_mask must be both specified, found one is None') # Add weighted one-hot label to the sample logits. # See https://aclanthology.org/2021.naacl-main.374.pdf for details. # Expand the dimension for broadcast multiply. label_mask = tf.expand_dims(label_mask, axis=-1) logits_label_adjument = tf.norm( logits, axis=-1, keepdims=True) * tf.cast( label, logits.dtype) * tf.cast(label_mask, logits.dtype) return logits + self._gumbel_softmax_label_adjustment_multiplier * logits_label_adjument
apache-2.0
kylerbrown/scikit-learn
benchmarks/bench_mnist.py
153
6006
""" ======================= MNIST dataset benchmark ======================= Benchmark on the MNIST dataset. The dataset comprises 70,000 samples and 784 features. Here, we consider the task of predicting 10 classes - digits from 0 to 9 from their raw images. By contrast to the covertype dataset, the feature space is homogenous. Example of output : [..] Classification performance: =========================== Classifier train-time test-time error-rat ------------------------------------------------------------ Nystroem-SVM 105.07s 0.91s 0.0227 ExtraTrees 48.20s 1.22s 0.0288 RandomForest 47.17s 1.21s 0.0304 SampledRBF-SVM 140.45s 0.84s 0.0486 CART 22.84s 0.16s 0.1214 dummy 0.01s 0.02s 0.8973 """ from __future__ import division, print_function # Author: Issam H. Laradji # Arnaud Joly <arnaud.v.joly@gmail.com> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_mldata from sklearn.datasets import get_data_home from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.dummy import DummyClassifier from sklearn.externals.joblib import Memory from sklearn.kernel_approximation import Nystroem from sklearn.kernel_approximation import RBFSampler from sklearn.metrics import zero_one_loss from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'mnist_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='F'): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_mldata('MNIST original') X = check_array(data['data'], dtype=dtype, order=order) y = data["target"] # Normalize features X = X / 255 ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 60000 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] return X_train, X_test, y_train, y_test ESTIMATORS = { "dummy": DummyClassifier(), 'CART': DecisionTreeClassifier(), 'ExtraTrees': ExtraTreesClassifier(n_estimators=100), 'RandomForest': RandomForestClassifier(n_estimators=100), 'Nystroem-SVM': make_pipeline(Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'SampledRBF-SVM': make_pipeline(RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['ExtraTrees', 'Nystroem-SVM'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=0, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data(order=args["order"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], int(X_train.nbytes / 1e6))) print("%s %d (size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("{0: <24} {1: >10} {2: >11} {3: >12}" "".format("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 60) for name in sorted(args["classifiers"], key=error.get): print("{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}" "".format(name, train_time[name], test_time[name], error[name])) print()
bsd-3-clause
dsquareindia/scikit-learn
examples/cluster/plot_face_ward_segmentation.py
70
2460
""" ========================================================================= A demo of structured Ward hierarchical clustering on a raccoon face image ========================================================================= Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece. """ # Author : Vincent Michel, 2010 # Alexandre Gramfort, 2011 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction.image import grid_to_graph from sklearn.cluster import AgglomerativeClustering from sklearn.utils.testing import SkipTest from sklearn.utils.fixes import sp_version if sp_version < (0, 12): raise SkipTest("Skipping because SciPy version earlier than 0.12.0 and " "thus does not include the scipy.misc.face() image.") ############################################################################### # Generate data try: face = sp.face(gray=True) except AttributeError: # Newer versions of scipy have face in misc from scipy import misc face = misc.face(gray=True) # Resize it to 10% of the original size to speed up the processing face = sp.misc.imresize(face, 0.10) / 255. X = np.reshape(face, (-1, 1)) ############################################################################### # Define the structure A of the data. Pixels connected to their neighbors. connectivity = grid_to_graph(*face.shape) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() n_clusters = 15 # number of regions ward = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward', connectivity=connectivity) ward.fit(X) label = np.reshape(ward.labels_, face.shape) print("Elapsed time: ", time.time() - st) print("Number of pixels: ", label.size) print("Number of clusters: ", np.unique(label).size) ############################################################################### # Plot the results on an image plt.figure(figsize=(5, 5)) plt.imshow(face, cmap=plt.cm.gray) for l in range(n_clusters): plt.contour(label == l, contours=1, colors=[plt.cm.spectral(l / float(n_clusters)), ]) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
dsquareindia/scikit-learn
sklearn/utils/__init__.py
13
13265
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric) from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count from ..exceptions import DataConversionWarning from .deprecation import deprecated __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric", "indices_to_mask", "deprecated"] def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask : array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def axis0_safe_slice(X, mask, len_mask): """ This mask is safer than safe_mask since it returns an empty array, when a sparse matrix is sliced with a boolean mask with all False, instead of raising an unhelpful error in older versions of SciPy. See: https://github.com/scipy/scipy/issues/5361 Also note that we can avoid doing the dot product by checking if the len_mask is not zero in _huber_loss_and_gradient but this is not going to be the bottleneck, since the number of outliers and non_outliers are typically non-zero and it makes the code tougher to follow. """ if len_mask != 0: return X[safe_mask(X, mask), :] return np.zeros(shape=(0, X.shape[1])) def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list. Data from which to sample rows or items. indices : array-like, list Indices according to which X will be subsampled. """ if hasattr(X, "iloc"): # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. If replace is False it should not be larger than the length of arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples elif (max_n_samples > n_samples) and (not replace): raise ValueError("Cannot sample %d out of arrays with dim %d " "when replace is False" % (max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x) def indices_to_mask(indices, mask_length): """Convert list of indices to boolean mask. Parameters ---------- indices : list-like List of integers treated as indices. mask_length : int Length of boolean mask to be generated. Returns ------- mask : 1d boolean nd-array Boolean array that is True where indices are present, else False. """ if mask_length <= np.max(indices): raise ValueError("mask_length must be greater than max(indices)") mask = np.zeros(mask_length, dtype=np.bool) mask[indices] = True return mask
bsd-3-clause
yavuzovski/playground
machine learning/Udacity/ud120-projects/choose_your_own/your_algorithm.py
1
2434
#!/usr/bin/python from time import time import matplotlib.pyplot as plt from prep_terrain_data import makeTerrainData from class_vis import prettyPicture features_train, labels_train, features_test, labels_test = makeTerrainData() ### the training data (features_train, labels_train) have both "fast" and "slow" ### points mixed together--separate them so we can give them different colors ### in the scatterplot and identify them visually grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii] == 0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii] == 0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii] == 1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii] == 1] #### initial visualization plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) plt.scatter(bumpy_fast, grade_fast, color="b", label="fast") plt.scatter(grade_slow, bumpy_slow, color="r", label="slow") plt.legend() plt.xlabel("bumpiness") plt.ylabel("grade") plt.show() ################################################################################ ### your code here! name your classifier object clf if you want the ### visualization code (prettyPicture) to show you the decision boundary # k-nearest neighbors # from sklearn.neighbors import KNeighborsClassifier # clf = KNeighborsClassifier(n_neighbors=20, p=12) # t0 = time() # clf.fit(features_train, labels_train) # print("training time: {0}".format(round(time() - t0, 3))) # 0.001 # print("accuracy: {0}".format(clf.score(features_test, labels_test))) # 0.944 # adaboost # from sklearn.ensemble import AdaBoostClassifier # clf = AdaBoostClassifier(learning_rate=0.3) # t0 = time() # clf.fit(features_train, labels_train) # print("training time: {0}".format(round(time() - t0, 3))) # 0.126 # print("accuracy: {0}".format(clf.score(features_test, labels_test))) # 0.928 # random forest from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_estimators=50, min_samples_split=50) t0 = time() clf.fit(features_train, labels_train) print("training time: {0}".format(round(time() - t0, 3))) # 0.155 print("accuracy: {0}".format(clf.score(features_test, labels_test))) # 0.924 try: prettyPicture(clf, features_test, labels_test) except NameError: pass
gpl-3.0
xyguo/scikit-learn
examples/applications/plot_out_of_core_classification.py
31
13829
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <eustache@diemert.fr> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves import urllib from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines ############################################################################### class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main ############################################################################### # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results ############################################################################### def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
xyguo/scikit-learn
examples/cluster/plot_cluster_iris.py
347
2593
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show()
bsd-3-clause
dsquareindia/scikit-learn
sklearn/ensemble/forest.py
8
67993
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <g.louppe@gmail.com> # Brian Holt <bdholt1@gmail.com> # Joly Arnaud <arnaud.v.joly@gmail.com> # Fares Hedayati <fares.hedayati@gmail.com> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount, parallel_helper from ..utils.multiclass import check_classification_targets from ..utils.validation import check_is_fitted __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest .. versionadded:: 0.18 Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False, random_state=random_state) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ check_is_fitted(self, 'estimators_') all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('balanced', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight != 'balanced_subsample' or not self.bootstrap): if self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. Notes ----- The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. Notes ----- The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_split=1e-7, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ X = check_array(X, accept_sparse=['csc']) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
ChanChiChoi/scikit-learn
examples/applications/svm_gui.py
285
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
fredhusser/scikit-learn
sklearn/metrics/cluster/unsupervised.py
228
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <robertlayton@gmail.com> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
fredhusser/scikit-learn
sklearn/__check_build/__init__.py
342
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
ishanic/scikit-learn
sklearn/metrics/cluster/unsupervised.py
228
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <robertlayton@gmail.com> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
ChanChiChoi/scikit-learn
examples/ensemble/plot_voting_decision_regions.py
228
2386
""" ================================================== Plot the decision boundaries of a VotingClassifier ================================================== Plot the decision boundaries of a `VotingClassifier` for two features of the Iris dataset. Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`DecisionTreeClassifier`, `KNeighborsClassifier`, and `SVC`) and used to initialize a soft-voting `VotingClassifier` with weights `[2, 1, 2]`, which means that the predicted probabilities of the `DecisionTreeClassifier` and `SVC` count 5 times as much as the weights of the `KNeighborsClassifier` classifier when the averaged probability is calculated. """ print(__doc__) from itertools import product import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import VotingClassifier # Loading some example data iris = datasets.load_iris() X = iris.data[:, [0, 2]] y = iris.target # Training classifiers clf1 = DecisionTreeClassifier(max_depth=4) clf2 = KNeighborsClassifier(n_neighbors=7) clf3 = SVC(kernel='rbf', probability=True) eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 2]) clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) eclf.fit(X, y) # Plotting decision regions x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8)) for idx, clf, tt in zip(product([0, 1], [0, 1]), [clf1, clf2, clf3, eclf], ['Decision Tree (depth=4)', 'KNN (k=7)', 'Kernel SVM', 'Soft Voting']): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4) axarr[idx[0], idx[1]].scatter(X[:, 0], X[:, 1], c=y, alpha=0.8) axarr[idx[0], idx[1]].set_title(tt) plt.show()
bsd-3-clause
ChanChiChoi/scikit-learn
sklearn/tests/test_common.py
126
7665
""" General tests for all estimators in sklearn. """ # Authors: Andreas Mueller <amueller@ais.uni-bonn.de> # Gael Varoquaux gael.varoquaux@normalesup.org # License: BSD 3 clause from __future__ import print_function import os import warnings import sys import pkgutil from sklearn.externals.six import PY3 from sklearn.utils.testing import assert_false, clean_warning_registry from sklearn.utils.testing import all_estimators from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_in from sklearn.utils.testing import ignore_warnings import sklearn from sklearn.cluster.bicluster import BiclusterMixin from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils.estimator_checks import ( _yield_all_checks, CROSS_DECOMPOSITION, check_parameters_default_constructible, check_class_weight_balanced_linear_classifier, check_transformer_n_iter, check_non_transformer_estimators_n_iter, check_get_params_invariance) def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ("Base estimators such as {0} should not be included" " in all_estimators").format(name) assert_false(name.lower().startswith('base'), msg=msg) def test_all_estimators(): # Test that estimators are default-constructible, clonable # and have working repr. estimators = all_estimators(include_meta_estimators=True) # Meta sanity-check to make sure that the estimator introspection runs # properly assert_greater(len(estimators), 0) for name, Estimator in estimators: # some can just not be sensibly default constructed yield check_parameters_default_constructible, name, Estimator def test_non_meta_estimators(): # input validation etc for non-meta estimators estimators = all_estimators() for name, Estimator in estimators: if issubclass(Estimator, BiclusterMixin): continue if name.startswith("_"): continue for check in _yield_all_checks(name, Estimator): yield check, name, Estimator def test_configure(): # Smoke test the 'configure' step of setup, this tests all the # 'configure' functions in the setup.pys in the scikit cwd = os.getcwd() setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..')) setup_filename = os.path.join(setup_path, 'setup.py') if not os.path.exists(setup_filename): return try: os.chdir(setup_path) old_argv = sys.argv sys.argv = ['setup.py', 'config'] clean_warning_registry() with warnings.catch_warnings(): # The configuration spits out warnings when not finding # Blas/Atlas development headers warnings.simplefilter('ignore', UserWarning) if PY3: with open('setup.py') as f: exec(f.read(), dict(__name__='__main__')) else: execfile('setup.py', dict(__name__='__main__')) finally: sys.argv = old_argv os.chdir(cwd) def test_class_weight_balanced_linear_classifiers(): classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): linear_classifiers = [ (name, clazz) for name, clazz in classifiers if 'class_weight' in clazz().get_params().keys() and issubclass(clazz, LinearClassifierMixin)] for name, Classifier in linear_classifiers: if name == "LogisticRegressionCV": # Contrary to RidgeClassifierCV, LogisticRegressionCV use actual # CV folds and fit a model for each CV iteration before averaging # the coef. Therefore it is expected to not behave exactly as the # other linear model. continue yield check_class_weight_balanced_linear_classifier, name, Classifier @ignore_warnings def test_import_all_consistency(): # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.', onerror=lambda _: None) submods = [modname for _, modname, _ in pkgs] for modname in submods + ['sklearn']: if ".tests." in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, '__all__', ()): if getattr(package, name, None) is None: raise AttributeError( "Module '{0}' has no attribute '{1}'".format( modname, name)) def test_root_import_all_completeness(): EXCEPTIONS = ('utils', 'tests', 'base', 'setup') for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__, onerror=lambda _: None): if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS: continue assert_in(modname, sklearn.__all__) def test_non_transformer_estimators_n_iter(): # Test that all estimators of type which are non-transformer # and which have an attribute of max_iter, return the attribute # of n_iter atleast 1. for est_type in ['regressor', 'classifier', 'cluster']: regressors = all_estimators(type_filter=est_type) for name, Estimator in regressors: # LassoLars stops early for the default alpha=1.0 for # the iris dataset. if name == 'LassoLars': estimator = Estimator(alpha=0.) else: estimator = Estimator() if hasattr(estimator, "max_iter"): # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV']): continue # Tested in test_transformer_n_iter below elif (name in CROSS_DECOMPOSITION or name in ['LinearSVC', 'LogisticRegression']): continue else: # Multitask models related to ENet cannot handle # if y is mono-output. yield (check_non_transformer_estimators_n_iter, name, estimator, 'Multi' in name) def test_transformer_n_iter(): transformers = all_estimators(type_filter='transformer') for name, Estimator in transformers: estimator = Estimator() # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if hasattr(estimator, "max_iter") and name not in external_solver: yield check_transformer_n_iter, name, estimator def test_get_params_invariance(): # Test for estimators that support get_params, that # get_params(deep=False) is a subset of get_params(deep=True) # Related to issue #4465 estimators = all_estimators(include_meta_estimators=False, include_other=True) for name, Estimator in estimators: if hasattr(Estimator, 'get_params'): yield check_get_params_invariance, name, Estimator
bsd-3-clause
andrewnc/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
228
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
ishanic/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
228
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
ashhher3/pylearn2
pylearn2/datasets/hdf5_deprecated.py
30
13414
""" Objects for datasets serialized in HDF5 format (.h5). """ __author__ = "Steven Kearnes" __copyright__ = "Copyright 2014, Stanford University" __license__ = "3-clause BSD" try: import h5py except ImportError: h5py = None import numpy as np from theano.compat.six.moves import xrange import warnings from pylearn2.datasets.dense_design_matrix import (DenseDesignMatrix, DefaultViewConverter) from pylearn2.space import CompositeSpace, VectorSpace, IndexSpace from pylearn2.utils.iteration import FiniteDatasetIterator, safe_izip from pylearn2.utils import contains_nan class HDF5DatasetDeprecated(DenseDesignMatrix): """ Dense dataset loaded from an HDF5 file. Parameters ---------- filename : str HDF5 file name. X : str, optional Key into HDF5 file for dataset design matrix. topo_view: str, optional Key into HDF5 file for topological view of dataset. y : str, optional Key into HDF5 file for dataset targets. load_all : bool, optional (default False) If true, datasets are loaded into memory instead of being left on disk. cache_size: int, optionally specify the size in bytes for the chunk cache of the HDF5 library. Useful when the HDF5 files has large chunks and when using a sequantial iterator. The chunk cache allows to only access the disk for the chunks and then copy the batches to the GPU from memory, which can result in a significant speed up. Sensible default values depend on the size of your data and the batch size you wish to use. A rule of thumb is to make a chunk contain 100 - 1000 batches and make sure they encompass complete samples. kwargs : dict, optional Keyword arguments passed to `DenseDesignMatrix`. """ def __init__(self, filename, X=None, topo_view=None, y=None, load_all=False, cache_size=None, **kwargs): self.load_all = load_all if h5py is None: raise RuntimeError("Could not import h5py.") if cache_size: propfaid = h5py.h5p.create(h5py.h5p.FILE_ACCESS) settings = list(propfaid.get_cache()) settings[2] = cache_size propfaid.set_cache(*settings) fid = h5py.h5f.open(filename, fapl=propfaid) self._file = h5py.File(fid) else: self._file = h5py.File(filename) if X is not None: X = self.get_dataset(X, load_all) if topo_view is not None: topo_view = self.get_dataset(topo_view, load_all) if y is not None: y = self.get_dataset(y, load_all) super(HDF5DatasetDeprecated, self).__init__(X=X, topo_view=topo_view, y=y, **kwargs) def _check_labels(self): """ Sanity checks for X_labels and y_labels. Since the np.all test used for these labels does not work with HDF5 datasets, we issue a warning that those values are not checked. """ if self.X_labels is not None: assert self.X is not None assert self.view_converter is None assert self.X.ndim <= 2 if self.load_all: assert np.all(self.X < self.X_labels) else: warnings.warn("HDF5Dataset cannot perform test np.all(X < " + "X_labels). Use X_labels at your own risk.") if self.y_labels is not None: assert self.y is not None assert self.y.ndim <= 2 if self.load_all: assert np.all(self.y < self.y_labels) else: warnings.warn("HDF5Dataset cannot perform test np.all(y < " + "y_labels). Use y_labels at your own risk.") def get_dataset(self, dataset, load_all=False): """ Get a handle for an HDF5 dataset, or load the entire dataset into memory. Parameters ---------- dataset : str Name or path of HDF5 dataset. load_all : bool, optional (default False) If true, load dataset into memory. """ if load_all: data = self._file[dataset][:] else: data = self._file[dataset] data.ndim = len(data.shape) # hdf5 handle has no ndim return data def iterator(self, *args, **kwargs): """ Get an iterator for this dataset. The FiniteDatasetIterator uses indexing that is not supported by HDF5 datasets, so we change the class to HDF5DatasetIterator to override the iterator.next method used in dataset iteration. Parameters ---------- WRITEME """ iterator = super(HDF5DatasetDeprecated, self).iterator(*args, **kwargs) iterator.__class__ = HDF5DatasetIterator return iterator def set_topological_view(self, V, axes=('b', 0, 1, 'c')): """ Set up dataset topological view, without building an in-memory design matrix. This is mostly copied from DenseDesignMatrix, except: * HDF5ViewConverter is used instead of DefaultViewConverter * Data specs are derived from topo_view, not X * NaN checks have been moved to HDF5DatasetIterator.next Note that y may be loaded into memory for reshaping if y.ndim != 2. Parameters ---------- V : ndarray Topological view. axes : tuple, optional (default ('b', 0, 1, 'c')) Order of axes in topological view. """ shape = [V.shape[axes.index('b')], V.shape[axes.index(0)], V.shape[axes.index(1)], V.shape[axes.index('c')]] self.view_converter = HDF5ViewConverter(shape[1:], axes=axes) self.X = self.view_converter.topo_view_to_design_mat(V) # self.X_topo_space stores a "default" topological space that # will be used only when self.iterator is called without a # data_specs, and with "topo=True", which is deprecated. self.X_topo_space = self.view_converter.topo_space # Update data specs X_space = VectorSpace(dim=V.shape[axes.index('b')]) X_source = 'features' if self.y is None: space = X_space source = X_source else: if self.y.ndim == 1: dim = 1 else: dim = self.y.shape[-1] # check if y_labels has been specified if getattr(self, 'y_labels', None) is not None: y_space = IndexSpace(dim=dim, max_labels=self.y_labels) elif getattr(self, 'max_labels', None) is not None: y_space = IndexSpace(dim=dim, max_labels=self.max_labels) else: y_space = VectorSpace(dim=dim) y_source = 'targets' space = CompositeSpace((X_space, y_space)) source = (X_source, y_source) self.data_specs = (space, source) self.X_space = X_space self._iter_data_specs = (X_space, X_source) class HDF5DatasetIterator(FiniteDatasetIterator): """ Dataset iterator for HDF5 datasets. FiniteDatasetIterator expects a design matrix to be available, but this will not always be the case when using HDF5 datasets with topological views. Parameters ---------- dataset : Dataset Dataset over which to iterate. subset_iterator : object Iterator that returns slices of the dataset. data_specs : tuple, optional A (space, source) tuple. return_tuple : bool, optional (default False) Whether to return a tuple even if only one source is used. convert : list, optional A list of callables (in the same order as the sources in data_specs) that will be applied to each slice of the dataset. """ def next(self): """ Get the next subset of the dataset during dataset iteration. Converts index selections for batches to boolean selections that are supported by HDF5 datasets. """ next_index = self._subset_iterator.next() # convert to boolean selection sel = np.zeros(self.num_examples, dtype=bool) sel[next_index] = True next_index = sel rval = [] for data, fn in safe_izip(self._raw_data, self._convert): try: this_data = data[next_index] except TypeError: # FB: Why this try..except is there? I think this is useless. # Do not hide the original if we can't fall back. # FV: This is triggered if the shape of next_index is # incompatible with the shape of the dataset. See for an # example test_hdf5_topo_view(), where where i # next.index.shape = (10,) and data is 'data': <HDF5 # dataset "y": shape (10, 3), type "<f8"> # I think it would be better to explicitly check if # next_index.shape is incompatible with data.shape, for # instance checking if next_index.ndim == data.ndim if data.ndim > 1: this_data = data[next_index, :] else: raise # Check if the dataset data is a vector and transform it into a # one-column matrix. This is needed to automatically convert the # shape of the data later (in the format_as method of the # Space.) if fn: this_data = fn(this_data) assert not contains_nan(this_data) rval.append(this_data) rval = tuple(rval) if not self._return_tuple and len(rval) == 1: rval, = rval return rval class HDF5ViewConverter(DefaultViewConverter): """ View converter that doesn't have to transpose the data. In order to keep data on disk, does not generate a full design matrix. Instead, an instance of HDF5TopoViewConverter is returned, which transforms data from the topological view into the design view for each batch. Parameters ---------- shape : tuple Shape of this view. axes : tuple, optional (default ('b', 0, 1, 'c')) Order of axes in topological view. """ def topo_view_to_design_mat(self, V): """ Generate a design matrix from the topological view. This override of DefaultViewConverter.topo_view_to_design_mat does not attempt to transpose the topological view, since transposition is not supported by HDF5 datasets. Parameters ---------- WRITEME """ v_shape = (V.shape[self.axes.index('b')], V.shape[self.axes.index(0)], V.shape[self.axes.index(1)], V.shape[self.axes.index('c')]) if np.any(np.asarray(self.shape) != np.asarray(v_shape[1:])): raise ValueError('View converter for views of shape batch size ' 'followed by ' + str(self.shape) + ' given tensor of shape ' + str(v_shape)) rval = HDF5TopoViewConverter(V, self.axes) return rval class HDF5TopoViewConverter(object): """ Class for transforming batches from the topological view to the design matrix view. Parameters ---------- topo_view : HDF5 dataset On-disk topological view. axes : tuple, optional (default ('b', 0, 1, 'c')) Order of axes in topological view. """ def __init__(self, topo_view, axes=('b', 0, 1, 'c')): self.topo_view = topo_view self.axes = axes self.topo_view_shape = (topo_view.shape[axes.index('b')], topo_view.shape[axes.index(0)], topo_view.shape[axes.index(1)], topo_view.shape[axes.index('c')]) self.pixels_per_channel = (self.topo_view_shape[1] * self.topo_view_shape[2]) self.n_channels = self.topo_view_shape[3] self.shape = (self.topo_view_shape[0], np.product(self.topo_view_shape[1:])) self.ndim = len(self.shape) def __getitem__(self, item): """ Indexes the design matrix and transforms the requested batch from the topological view. Parameters ---------- item : slice or ndarray Batch selection. Either a slice or a boolean mask. """ sel = [slice(None)] * len(self.topo_view_shape) sel[self.axes.index('b')] = item sel = tuple(sel) V = self.topo_view[sel] batch_size = V.shape[self.axes.index('b')] rval = np.zeros((batch_size, self.pixels_per_channel * self.n_channels), dtype=V.dtype) for i in xrange(self.n_channels): ppc = self.pixels_per_channel sel = [slice(None)] * len(V.shape) sel[self.axes.index('c')] = i sel = tuple(sel) rval[:, i * ppc:(i + 1) * ppc] = V[sel].reshape(batch_size, ppc) return rval
bsd-3-clause
zxsted/scipy
scipy/stats/mstats_basic.py
18
82304
""" An extension of scipy.stats.stats to support masked arrays """ # Original author (2007): Pierre GF Gerard-Marchant # TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ? # TODO : ttest_rel looks botched: what are x1,x2,v1,v2 for ? # TODO : reimplement ksonesamp from __future__ import division, print_function, absolute_import __all__ = ['argstoarray', 'betai', 'count_tied_groups', 'describe', 'f_oneway','f_value_wilks_lambda','find_repeats','friedmanchisquare', 'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis', 'ks_twosamp','ks_2samp','kurtosis','kurtosistest', 'linregress', 'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign', 'normaltest', 'obrientransform', 'pearsonr','plotting_positions','pointbiserialr', 'rankdata', 'scoreatpercentile','sem', 'sen_seasonal_slopes','signaltonoise','skew','skewtest','spearmanr', 'theilslopes','threshold','tmax','tmean','tmin','trim','trimboth', 'trimtail','trima','trimr','trimmed_mean','trimmed_std', 'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp', 'ttest_ind','ttest_rel','tvar', 'variation', 'winsorize', ] import numpy as np from numpy import ndarray import numpy.ma as ma from numpy.ma import masked, nomask from scipy._lib.six import iteritems import itertools import warnings from collections import namedtuple from . import distributions import scipy.special as special from . import futil from ._stats_mstats_common import ( linregress as stats_linregress, theilslopes as stats_theilslopes ) genmissingvaldoc = """ Notes ----- Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked. """ def _chk_asarray(a, axis): # Always returns a masked array, raveled for axis=None a = ma.asanyarray(a) if axis is None: a = ma.ravel(a) outaxis = 0 else: outaxis = axis return a, outaxis def _chk2_asarray(a, b, axis): a = ma.asanyarray(a) b = ma.asanyarray(b) if axis is None: a = ma.ravel(a) b = ma.ravel(b) outaxis = 0 else: outaxis = axis return a, b, outaxis def _chk_size(a,b): a = ma.asanyarray(a) b = ma.asanyarray(b) (na, nb) = (a.size, b.size) if na != nb: raise ValueError("The size of the input array should match!" " (%s <> %s)" % (na, nb)) return (a, b, na) def argstoarray(*args): """ Constructs a 2D array from a group of sequences. Sequences are filled with missing values to match the length of the longest sequence. Parameters ---------- args : sequences Group of sequences. Returns ------- argstoarray : MaskedArray A ( `m` x `n` ) masked array, where `m` is the number of arguments and `n` the length of the longest argument. Notes ----- `numpy.ma.row_stack` has identical behavior, but is called with a sequence of sequences. """ if len(args) == 1 and not isinstance(args[0], ndarray): output = ma.asarray(args[0]) if output.ndim != 2: raise ValueError("The input should be 2D") else: n = len(args) m = max([len(k) for k in args]) output = ma.array(np.empty((n,m), dtype=float), mask=True) for (k,v) in enumerate(args): output[k,:len(v)] = v output[np.logical_not(np.isfinite(output._data))] = masked return output def find_repeats(arr): """Find repeats in arr and return a tuple (repeats, repeat_count). Masked values are discarded. Parameters ---------- arr : sequence Input array. The array is flattened if it is not 1D. Returns ------- repeats : ndarray Array of repeated values. counts : ndarray Array of counts. """ marr = ma.compressed(arr) if not marr.size: return (np.array(0), np.array(0)) (v1, v2, n) = futil.dfreps(ma.array(ma.compressed(arr), copy=True)) return (v1[:n], v2[:n]) def count_tied_groups(x, use_missing=False): """ Counts the number of tied values. Parameters ---------- x : sequence Sequence of data on which to counts the ties use_missing : bool, optional Whether to consider missing values as tied. Returns ------- count_tied_groups : dict Returns a dictionary (nb of ties: nb of groups). Examples -------- >>> from scipy.stats import mstats >>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6] >>> mstats.count_tied_groups(z) {2: 1, 3: 2} In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x). >>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6]) >>> mstats.count_tied_groups(z) {2: 2, 3: 1} >>> z[[1,-1]] = np.ma.masked >>> mstats.count_tied_groups(z, use_missing=True) {2: 2, 3: 1} """ nmasked = ma.getmask(x).sum() # We need the copy as find_repeats will overwrite the initial data data = ma.compressed(x).copy() (ties, counts) = find_repeats(data) nties = {} if len(ties): nties = dict(zip(np.unique(counts), itertools.repeat(1))) nties.update(dict(zip(*find_repeats(counts)))) if nmasked and use_missing: try: nties[nmasked] += 1 except KeyError: nties[nmasked] = 1 return nties def rankdata(data, axis=None, use_missing=False): """Returns the rank (also known as order statistics) of each data point along the given axis. If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is False, or set to the average rank of the unmasked values if use_missing is True. Parameters ---------- data : sequence Input data. The data is transformed to a masked array axis : {None,int}, optional Axis along which to perform the ranking. If None, the array is first flattened. An exception is raised if the axis is specified for arrays with a dimension larger than 2 use_missing : bool, optional Whether the masked values have a rank of 0 (False) or equal to the average rank of the unmasked values (True). """ def _rank1d(data, use_missing=False): n = data.count() rk = np.empty(data.size, dtype=float) idx = data.argsort() rk[idx[:n]] = np.arange(1,n+1) if use_missing: rk[idx[n:]] = (n+1)/2. else: rk[idx[n:]] = 0 repeats = find_repeats(data.copy()) for r in repeats[0]: condition = (data == r).filled(False) rk[condition] = rk[condition].mean() return rk data = ma.array(data, copy=False) if axis is None: if data.ndim > 1: return _rank1d(data.ravel(), use_missing).reshape(data.shape) else: return _rank1d(data, use_missing) else: return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray) def mode(a, axis=0): """ Returns an array of the modal (most common) value in the passed array. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. Returns ------- mode : ndarray Array of modal values. count : ndarray Array of counts for each mode. Notes ----- For more details, see `stats.mode`. """ a, axis = _chk_asarray(a, axis) def _mode1D(a): (rep,cnt) = find_repeats(a) if not cnt.ndim: return (0, 0) elif cnt.size: return (rep[cnt.argmax()], cnt.max()) else: not_masked_indices = ma.flatnotmasked_edges(a) first_not_masked_index = not_masked_indices[0] return (a[first_not_masked_index], 1) if axis is None: output = _mode1D(ma.ravel(a)) output = (ma.array(output[0]), ma.array(output[1])) else: output = ma.apply_along_axis(_mode1D, axis, a) newshape = list(a.shape) newshape[axis] = 1 slices = [slice(None)] * output.ndim slices[axis] = 0 modes = output[tuple(slices)].reshape(newshape) slices[axis] = 1 counts = output[tuple(slices)].reshape(newshape) output = (modes, counts) ModeResult = namedtuple('ModeResult', ('mode', 'count')) return ModeResult(*output) @np.deprecate(message="mstats.betai is deprecated in scipy 0.17.0; " "use special.betainc instead.") def betai(a, b, x): """ betai() is deprecated in scipy 0.17.0. For details about this function, see `stats.betai`. """ return _betai(a, b, x) def _betai(a, b, x): x = np.asanyarray(x) x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x) def msign(x): """Returns the sign of x, or 0 if x is masked.""" return ma.filled(np.sign(x), 0) def pearsonr(x,y): """ Calculates a Pearson correlation coefficient and the p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as `x` increases, so does `y`. Negative correlations imply that as `x` increases, `y` decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : 1-D array_like Input y : 1-D array_like Input Returns ------- pearsonr : float Pearson's correlation coefficient, 2-tailed p-value. References ---------- http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) # Get the common mask and the total nb of unmasked elements m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() df = n-2 if df < 0: return (masked, masked) (mx, my) = (x.mean(), y.mean()) (xm, ym) = (x-mx, y-my) r_num = ma.add.reduce(xm*ym) r_den = ma.sqrt(ma.dot(xm,xm) * ma.dot(ym,ym)) r = r_num / r_den # Presumably, if r > 1, then it is only some small artifact of floating # point arithmetic. r = min(r, 1.0) r = max(r, -1.0) df = n - 2 if r is masked or abs(r) == 1.0: prob = 0. else: t_squared = (df / ((1.0 - r) * (1.0 + r))) * r * r prob = _betai(0.5*df, 0.5, df/(df + t_squared)) return r, prob def spearmanr(x, y, use_ties=True): """ Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as `x` increases, so does `y`. Negative correlations imply that as `x` increases, `y` decreases. Missing values are discarded pair-wise: if a value is missing in `x`, the corresponding value in `y` is masked. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : array_like The length of `x` must be > 2. y : array_like The length of `y` must be > 2. use_ties : bool, optional Whether the correction for ties should be computed. Returns ------- correlation : float Spearman correlation coefficient pvalue : float 2-tailed p-value. References ---------- [CRCProbStat2000] section 14.7 """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) df = n-2 if df < 0: raise ValueError("The input must have at least 3 entries!") # Gets the ranks and rank differences rankx = rankdata(x) ranky = rankdata(y) dsq = np.add.reduce((rankx-ranky)**2) # Tie correction if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum(v*k*(k**2-1) for (k,v) in iteritems(xties))/12. corr_y = np.sum(v*k*(k**2-1) for (k,v) in iteritems(yties))/12. else: corr_x = corr_y = 0 denom = n*(n**2 - 1)/6. if corr_x != 0 or corr_y != 0: rho = denom - dsq - corr_x - corr_y rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y)) else: rho = 1. - dsq/denom t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho if t is masked: prob = 0. else: prob = _betai(0.5*df, 0.5, df/(df + t * t)) SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) return SpearmanrResult(rho, prob) def kendalltau(x, y, use_ties=True, use_missing=False): """ Computes Kendall's rank correlation tau on two variables *x* and *y*. Parameters ---------- x : sequence First data list (for example, time). y : sequence Second data list. use_ties : {True, False}, optional Whether ties correction should be performed. use_missing : {False, True}, optional Whether missing data should be allocated a rank of 0 (False) or the average rank (True) Returns ------- correlation : float Kendall tau pvalue : float Approximate 2-side p-value. """ (x, y, n) = _chk_size(x, y) (x, y) = (x.flatten(), y.flatten()) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) n -= m.sum() KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue')) if n < 2: return KendalltauResult(np.nan, np.nan) rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0) ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0) idx = rx.argsort() (rx, ry) = (rx[idx], ry[idx]) C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum([v*k*(k-1) for (k,v) in iteritems(xties)], dtype=float) corr_y = np.sum([v*k*(k-1) for (k,v) in iteritems(yties)], dtype=float) denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.) else: denom = n*(n-1)/2. tau = (C-D) / denom var_s = n*(n-1)*(2*n+5) if use_ties: var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(xties)) var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(yties)) v1 = np.sum([v*k*(k-1) for (k, v) in iteritems(xties)], dtype=float) *\ np.sum([v*k*(k-1) for (k, v) in iteritems(yties)], dtype=float) v1 /= 2.*n*(n-1) if n > 2: v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(xties)], dtype=float) * \ np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(yties)], dtype=float) v2 /= 9.*n*(n-1)*(n-2) else: v2 = 0 else: v1 = v2 = 0 var_s /= 18. var_s += (v1 + v2) z = (C-D)/np.sqrt(var_s) prob = special.erfc(abs(z)/np.sqrt(2)) return KendalltauResult(tau, prob) def kendalltau_seasonal(x): """ Computes a multivariate Kendall's rank correlation tau, for seasonal data. Parameters ---------- x : 2-D ndarray Array of seasonal data, with seasons in columns. """ x = ma.array(x, subok=True, copy=False, ndmin=2) (n,m) = x.shape n_p = x.count(0) S_szn = np.sum(msign(x[i:]-x[i]).sum(0) for i in range(n)) S_tot = S_szn.sum() n_tot = x.count() ties = count_tied_groups(x.compressed()) corr_ties = np.sum(v*k*(k-1) for (k,v) in iteritems(ties)) denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2. R = rankdata(x, axis=0, use_missing=True) K = ma.empty((m,m), dtype=int) covmat = ma.empty((m,m), dtype=float) denom_szn = ma.empty(m, dtype=float) for j in range(m): ties_j = count_tied_groups(x[:,j].compressed()) corr_j = np.sum(v*k*(k-1) for (k,v) in iteritems(ties_j)) cmb = n_p[j]*(n_p[j]-1) for k in range(j,m,1): K[j,k] = np.sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum() for i in range(n)) covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() - n*(n_p[j]+1)*(n_p[k]+1))/3. K[k,j] = K[j,k] covmat[k,j] = covmat[j,k] denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2. var_szn = covmat.diagonal() z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn) z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum()) z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum()) prob_szn = special.erfc(abs(z_szn)/np.sqrt(2)) prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2)) prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2)) chi2_tot = (z_szn*z_szn).sum() chi2_trd = m * z_szn.mean()**2 output = {'seasonal tau': S_szn/denom_szn, 'global tau': S_tot/denom_tot, 'global tau (alt)': S_tot/denom_szn.sum(), 'seasonal p-value': prob_szn, 'global p-value (indep)': prob_tot_ind, 'global p-value (dep)': prob_tot_dep, 'chi2 total': chi2_tot, 'chi2 trend': chi2_trd, } return output def pointbiserialr(x, y): """Calculates a point biserial correlation coefficient and its p-value. Parameters ---------- x : array_like of bools Input array. y : array_like Input array. Returns ------- correlation : float R value pvalue : float 2-tailed p-value Notes ----- Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked. For more details on `pointbiserialr`, see `stats.pointbiserialr`. """ x = ma.fix_invalid(x, copy=True).astype(bool) y = ma.fix_invalid(y, copy=True).astype(float) # Get rid of the missing data m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: unmask = np.logical_not(m) x = x[unmask] y = y[unmask] n = len(x) # phat is the fraction of x values that are True phat = x.sum() / float(n) y0 = y[~x] # y-values where x is False y1 = y[x] # y-values where x is True y0m = y0.mean() y1m = y1.mean() rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std() df = n-2 t = rpb*ma.sqrt(df/(1.0-rpb**2)) prob = _betai(0.5*df, 0.5, df/(df+t*t)) PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation', 'pvalue')) return PointbiserialrResult(rpb, prob) def linregress(*args): """ Linear regression calculation Note that the non-masked version is used, and that this docstring is replaced by the non-masked docstring + some info on missing data. """ if len(args) == 1: # Input is a single 2-D array containing x and y args = ma.array(args[0], copy=True) if len(args) == 2: x = args[0] y = args[1] else: x = args[:, 0] y = args[:, 1] else: # Input is two 1-D arrays x = ma.array(args[0]).flatten() y = ma.array(args[1]).flatten() m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False) if m is not nomask: x = ma.array(x, mask=m) y = ma.array(y, mask=m) if np.any(~m): slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m], y.data[~m]) else: # All data is masked return None, None, None, None, None else: slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data) LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) return LinregressResult(slope, intercept, r, prob, sterrest) if stats_linregress.__doc__: linregress.__doc__ = stats_linregress.__doc__ + genmissingvaldoc def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- For more details on `theilslopes`, see `stats.theilslopes`. """ y = ma.asarray(y).flatten() if x is None: x = ma.arange(len(y), dtype=float) else: x = ma.asarray(x).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x))) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) y._mask = x._mask = m # Disregard any masked elements of x or y y = y.compressed() x = x.compressed().astype(float) # We now have unmasked arrays so can use `stats.theilslopes` return stats_theilslopes(y, x, alpha=alpha) def sen_seasonal_slopes(x): x = ma.array(x, subok=True, copy=False, ndmin=2) (n,_) = x.shape # Get list of slopes per season szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None] for i in range(n)]) szn_medslopes = ma.median(szn_slopes, axis=0) medslope = ma.median(szn_slopes, axis=None) return szn_medslopes, medslope def ttest_1samp(a, popmean, axis=0): """ Calculates the T-test for the mean of ONE group of scores. Parameters ---------- a : array_like sample observation popmean : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension axis : int or None, optional Axis along which to compute test. If None, compute over the whole array `a`. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- For more details on `ttest_1samp`, see `stats.ttest_1samp`. """ a, axis = _chk_asarray(a, axis) if a.size == 0: return (np.nan, np.nan) x = a.mean(axis=axis) v = a.var(axis=axis, ddof=1) n = a.count(axis=axis) df = n - 1. svar = ((n - 1) * v) / df t = (x - popmean) / ma.sqrt(svar / n) prob = _betai(0.5*df, 0.5, df/(df + t*t)) Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue')) return Ttest_1sampResult(t, prob) ttest_onesamp = ttest_1samp def ttest_ind(a, b, axis=0, equal_var=True): """ Calculates the T-test for the means of TWO INDEPENDENT samples of scores. Parameters ---------- a, b : array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. equal_var : bool, optional If True, perform a standard independent 2 sample test that assumes equal population variances. If False, perform Welch's t-test, which does not assume equal population variance. .. versionadded:: 0.17.0 Returns ------- statistic : float or array The calculated t-statistic. pvalue : float or array The two-tailed p-value. Notes ----- For more details on `ttest_ind`, see `stats.ttest_ind`. """ a, b, axis = _chk2_asarray(a, b, axis) Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue')) if a.size == 0 or b.size == 0: return Ttest_indResult(np.nan, np.nan) (x1, x2) = (a.mean(axis), b.mean(axis)) (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1)) (n1, n2) = (a.count(axis), b.count(axis)) if equal_var: df = n1 + n2 - 2. svar = ((n1-1)*v1+(n2-1)*v2) / df denom = ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # n-D computation here! else: vn1 = v1/n1 vn2 = v2/n2 df = ((vn1 + vn2)**2) / ((vn1**2) / (n1 - 1) + (vn2**2) / (n2 - 1)) # If df is undefined, variances are zero. # It doesn't matter what df is as long as it is not NaN. df = np.where(np.isnan(df), 1, df) denom = ma.sqrt(vn1 + vn2) t = (x1-x2) / denom t = ma.filled(t, 1) # replace NaN t-values with 1.0 probs = _betai(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape) return Ttest_indResult(t, probs.squeeze()) def ttest_rel(a, b, axis=0): """ Calculates the T-test on TWO RELATED samples of scores, a and b. Parameters ---------- a, b : array_like The arrays must have the same shape. axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- For more details on `ttest_rel`, see `stats.ttest_rel`. """ a, b, axis = _chk2_asarray(a, b, axis) if len(a) != len(b): raise ValueError('unequal length arrays') Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue')) if a.size == 0 or b.size == 0: return Ttest_relResult(np.nan, np.nan) n = a.count(axis) df = (n-1.0) d = (a-b).astype('d') denom = ma.sqrt((n*ma.add.reduce(d*d,axis) - ma.add.reduce(d,axis)**2) / df) t = ma.add.reduce(d, axis) / denom t = ma.filled(t, 1) probs = _betai(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape).squeeze() return Ttest_relResult(t, probs) def mannwhitneyu(x,y, use_continuity=True): """ Computes the Mann-Whitney statistic Missing values in `x` and/or `y` are discarded. Parameters ---------- x : sequence Input y : sequence Input use_continuity : {True, False}, optional Whether a continuity correction (1/2.) should be taken into account. Returns ------- statistic : float The Mann-Whitney statistics pvalue : float Approximate p-value assuming a normal distribution. """ x = ma.asarray(x).compressed().view(ndarray) y = ma.asarray(y).compressed().view(ndarray) ranks = rankdata(np.concatenate([x,y])) (nx, ny) = (len(x), len(y)) nt = nx + ny U = ranks[:nx].sum() - nx*(nx+1)/2. U = max(U, nx*ny - U) u = nx*ny - U mu = (nx*ny)/2. sigsq = (nt**3 - nt)/12. ties = count_tied_groups(ranks) sigsq -= np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/12. sigsq *= nx*ny/float(nt*(nt-1)) if use_continuity: z = (U - 1/2. - mu) / ma.sqrt(sigsq) else: z = (U - mu) / ma.sqrt(sigsq) prob = special.erfc(abs(z)/np.sqrt(2)) MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue')) return MannwhitneyuResult(u, prob) def kruskal(*args): """ Compute the Kruskal-Wallis H-test for independent samples Parameters ---------- sample1, sample2, ... : array_like Two or more arrays with the sample measurements can be given as arguments. Returns ------- statistic : float The Kruskal-Wallis H statistic, corrected for ties pvalue : float The p-value for the test using the assumption that H has a chi square distribution Notes ----- For more details on `kruskal`, see `stats.kruskal`. """ output = argstoarray(*args) ranks = ma.masked_equal(rankdata(output, use_missing=False), 0) sumrk = ranks.sum(-1) ngrp = ranks.count(-1) ntot = ranks.count() H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1) # Tie correction ties = count_tied_groups(ranks) T = 1. - np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/float(ntot**3-ntot) if T == 0: raise ValueError('All numbers are identical in kruskal') H /= T df = len(output) - 1 prob = distributions.chi2.sf(H, df) KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue')) return KruskalResult(H, prob) kruskalwallis = kruskal def ks_twosamp(data1, data2, alternative="two-sided"): """ Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded. Parameters ---------- data1 : array_like First data set data2 : array_like Second data set alternative : {'two-sided', 'less', 'greater'}, optional Indicates the alternative hypothesis. Default is 'two-sided'. Returns ------- d : float Value of the Kolmogorov Smirnov test p : float Corresponding p-value. """ (data1, data2) = (ma.asarray(data1), ma.asarray(data2)) (n1, n2) = (data1.count(), data2.count()) n = (n1*n2/float(n1+n2)) mix = ma.concatenate((data1.compressed(), data2.compressed())) mixsort = mix.argsort(kind='mergesort') csum = np.where(mixsort < n1, 1./n1, -1./n2).cumsum() # Check for ties if len(np.unique(mix)) < (n1+n2): csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]] alternative = str(alternative).lower()[0] if alternative == 't': d = ma.abs(csum).max() prob = special.kolmogorov(np.sqrt(n)*d) elif alternative == 'l': d = -csum.min() prob = np.exp(-2*n*d**2) elif alternative == 'g': d = csum.max() prob = np.exp(-2*n*d**2) else: raise ValueError("Invalid value for the alternative hypothesis: " "should be in 'two-sided', 'less' or 'greater'") return (d, prob) ks_2samp = ks_twosamp @np.deprecate(message="mstats.threshold is deprecated in scipy 0.17.0") def threshold(a, threshmin=None, threshmax=None, newval=0): """ Clip array to a given value. Similar to numpy.clip(), except that values less than `threshmin` or greater than `threshmax` are replaced by `newval`, instead of by `threshmin` and `threshmax` respectively. Parameters ---------- a : ndarray Input data threshmin : {None, float}, optional Lower threshold. If None, set to the minimum value. threshmax : {None, float}, optional Upper threshold. If None, set to the maximum value. newval : {0, float}, optional Value outside the thresholds. Returns ------- threshold : ndarray Returns `a`, with values less then `threshmin` and values greater `threshmax` replaced with `newval`. """ a = ma.array(a, copy=True) mask = np.zeros(a.shape, dtype=bool) if threshmin is not None: mask |= (a < threshmin).filled(False) if threshmax is not None: mask |= (a > threshmax).filled(False) a[mask] = newval return a def trima(a, limits=None, inclusive=(True,True)): """ Trims an array by masking the data outside some given limits. Returns a masked version of the input array. Parameters ---------- a : array_like Input array. limits : {None, tuple}, optional Tuple of (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit will be masked. A limit is None indicates an open interval. inclusive : (bool, bool) tuple, optional Tuple of (lower flag, upper flag), indicating whether values exactly equal to the lower (upper) limit are allowed. """ a = ma.asarray(a) a.unshare_mask() if (limits is None) or (limits == (None, None)): return a (lower_lim, upper_lim) = limits (lower_in, upper_in) = inclusive condition = False if lower_lim is not None: if lower_in: condition |= (a < lower_lim) else: condition |= (a <= lower_lim) if upper_lim is not None: if upper_in: condition |= (a > upper_lim) else: condition |= (a >= upper_lim) a[condition.filled(True)] = masked return a def trimr(a, limits=None, inclusive=(True, True), axis=None): """ Trims an array by masking some proportion of the data on each end. Returns a masked version of the input array. Parameters ---------- a : sequence Input array. limits : {None, tuple}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)). The value of one limit can be set to None to indicate an open interval. inclusive : {(True,True) tuple}, optional Tuple of flags indicating whether the number of data being masked on the left (right) end should be truncated (True) or rounded (False) to integers. axis : {None,int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. """ def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive): n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n - np.round(n*up_limit) a[idx[upidx:]] = masked return a a = ma.asarray(a) a.unshare_mask() if limits is None: return a # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if axis is None: shp = a.shape return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp) else: return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc) trimdoc = """ Parameters ---------- a : sequence Input array limits : {None, tuple}, optional If `relative` is False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If `relative` is True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed inclusive : {(bool, bool) tuple}, optional If `relative` is False, tuple indicating whether values exactly equal to the absolute limits are allowed. If `relative` is True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). relative : bool, optional Whether to consider the limits as absolute values (False) or proportions to cut (True). axis : int, optional Axis along which to trim. """ def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None): """ Trims an array by masking the data outside some given limits. Returns a masked version of the input array. %s Examples -------- >>> from scipy.stats.mstats import trim >>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10] >>> print(trim(z,(3,8))) [-- -- 3 4 5 6 7 8 -- --] >>> print(trim(z,(0.1,0.2),relative=True)) [-- 2 3 4 5 6 7 8 -- --] """ if relative: return trimr(a, limits=limits, inclusive=inclusive, axis=axis) else: return trima(a, limits=limits, inclusive=inclusive) if trim.__doc__ is not None: trim.__doc__ = trim.__doc__ % trimdoc def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None): """ Trims the smallest and largest data values. Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and ``int(proportiontocut * n)`` largest values of data along the given axis, where n is the number of unmasked values before trimming. Parameters ---------- data : ndarray Data to trim. proportiontocut : float, optional Percentage of trimming (as a float between 0 and 1). If n is the number of unmasked values before trimming, the number of values after trimming is ``(1 - 2*proportiontocut) * n``. Default is 0.2. inclusive : {(bool, bool) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : int, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ return trimr(data, limits=(proportiontocut,proportiontocut), inclusive=inclusive, axis=axis) def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True), axis=None): """ Trims the data by masking values from one tail. Parameters ---------- data : array_like Data to trim. proportiontocut : float, optional Percentage of trimming. If n is the number of unmasked values before trimming, the number of values after trimming is ``(1 - proportiontocut) * n``. Default is 0.2. tail : {'left','right'}, optional If 'left' the `proportiontocut` lowest values will be masked. If 'right' the `proportiontocut` highest values will be masked. Default is 'left'. inclusive : {(bool, bool) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). Default is (True, True). axis : int, optional Axis along which to perform the trimming. If None, the input array is first flattened. Default is None. Returns ------- trimtail : ndarray Returned array of same shape as `data` with masked tail values. """ tail = str(tail).lower()[0] if tail == 'l': limits = (proportiontocut,None) elif tail == 'r': limits = (None, proportiontocut) else: raise TypeError("The tail argument should be in ('left','right')") return trimr(data, limits=limits, axis=axis, inclusive=inclusive) trim1 = trimtail def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None): """Returns the trimmed mean of the data along the given axis. %s """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis) else: return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis) def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed variance of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits, inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.var(axis=axis, ddof=ddof) def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed standard deviation of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits,inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.std(axis=axis,ddof=ddof) def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None): """ Returns the standard error of the trimmed mean along the given axis. Parameters ---------- a : sequence Input array limits : {(0.1,0.1), tuple of float}, optional tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. If n is the number of unmasked data before trimming, the values smaller than ``n * limits[0]`` and the values larger than ``n * `limits[1]`` are masked, and the total number of unmasked data after trimming is ``n * (1.-sum(limits))``. In each case, the value of one limit can be set to None to indicate an open interval. If `limits` is None, no trimming is performed. inclusive : {(bool, bool) tuple} optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : int, optional Axis along which to trim. Returns ------- trimmed_stde : scalar or ndarray """ def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive): "Returns the standard error of the trimmed mean for a 1D input data." n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n - np.round(n*up_limit) a[idx[upidx:]] = masked a[idx[:lowidx]] = a[idx[lowidx]] a[idx[upidx:]] = a[idx[upidx-1]] winstd = a.std(ddof=1) return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a))) a = ma.array(a, copy=True, subok=True) a.unshare_mask() if limits is None: return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis)) if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if (axis is None): return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc) else: if a.ndim > 2: raise ValueError("Array 'a' must be at most two dimensional, but got a.ndim = %d" % a.ndim) return ma.apply_along_axis(_trimmed_stde_1D, axis, a, lolim,uplim,loinc,upinc) def tmean(a, limits=None, inclusive=(True,True)): """ Compute the trimmed mean. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). Returns ------- tmean : float Notes ----- For more details on `tmean`, see `stats.tmean`. """ return trima(a, limits=limits, inclusive=inclusive).mean() def tvar(a, limits=None, inclusive=(True,True)): """ Compute the trimmed variance This function computes the sample variance of an array of values, while ignoring values which are outside of given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). Returns ------- tvar : float Trimmed variance. Notes ----- For more details on `tvar`, see `stats.tvar`. """ a = a.astype(float).ravel() if limits is None: n = (~a.mask).sum() # todo: better way to do that? r = trima(a, limits=limits, inclusive=inclusive).var() * (n/(n-1.)) else: raise ValueError('mstats.tvar() with limits not implemented yet so far') return r def tmin(a, lowerlimit=None, axis=0, inclusive=True): """ Compute the trimmed minimum Parameters ---------- a : array_like array of values lowerlimit : None or float, optional Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the lower limit are included. The default value is True. Returns ------- tmin : float, int or ndarray Notes ----- For more details on `tmin`, see `stats.tmin`. """ a, axis = _chk_asarray(a, axis) am = trima(a, (lowerlimit, None), (inclusive, False)) return ma.minimum.reduce(am, axis) def tmax(a, upperlimit, axis=0, inclusive=True): """ Compute the trimmed maximum This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit. Parameters ---------- a : array_like array of values upperlimit : None or float, optional Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the upper limit are included. The default value is True. Returns ------- tmax : float, int or ndarray Notes ----- For more details on `tmax`, see `stats.tmax`. """ a, axis = _chk_asarray(a, axis) am = trima(a, (None, upperlimit), (False, inclusive)) return ma.maximum.reduce(am, axis) def tsem(a, limits=None, inclusive=(True,True)): """ Compute the trimmed standard error of the mean. This function finds the standard error of the mean for given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). Returns ------- tsem : float Notes ----- For more details on `tsem`, see `stats.tsem`. """ a = ma.asarray(a).ravel() if limits is None: n = float(a.count()) return a.std(ddof=1)/ma.sqrt(n) am = trima(a.ravel(), limits, inclusive) sd = np.sqrt(am.var(ddof=1)) return sd / np.sqrt(am.count()) def winsorize(a, limits=None, inclusive=(True, True), inplace=False, axis=None): """Returns a Winsorized version of the input array. The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set to the (1 - limits[1])th percentile. Masked values are skipped. Parameters ---------- a : sequence Input array. limits : {None, tuple of float}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) The value of one limit can be set to None to indicate an open interval. inclusive : {(True, True) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). inplace : {False, True}, optional Whether to winsorize in place (True) or to use a copy (False) axis : {None, int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. Notes ----- This function is applied to reduce the effect of possibly spurious outliers by limiting the extreme values. """ def _winsorize1D(a, low_limit, up_limit, low_include, up_include): n = a.count() idx = a.argsort() if low_limit: if low_include: lowidx = int(low_limit * n) else: lowidx = np.round(low_limit * n) a[idx[:lowidx]] = a[idx[lowidx]] if up_limit is not None: if up_include: upidx = n - int(n * up_limit) else: upidx = n - np.round(n * up_limit) a[idx[upidx:]] = a[idx[upidx - 1]] return a # We are going to modify a: better make a copy a = ma.array(a, copy=np.logical_not(inplace)) if limits is None: return a if (not isinstance(limits, tuple)) and isinstance(limits, float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) (loinc, upinc) = inclusive if axis is None: shp = a.shape return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc).reshape(shp) else: return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc, upinc) def moment(a, moment=1, axis=0): """ Calculates the nth moment about the mean for a sample. Parameters ---------- a : array_like data moment : int, optional order of central moment that is returned axis : int or None, optional Axis along which the central moment is computed. Default is 0. If None, compute over the whole array `a`. Returns ------- n-th central moment : ndarray or float The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done. Notes ----- For more details about `moment`, see `stats.moment`. """ a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: # Exponentiation by squares: form exponent sequence n_list = [moment] current_n = moment while current_n > 2: if current_n % 2: current_n = (current_n-1)/2 else: current_n /= 2 n_list.append(current_n) # Starting point for exponentiation by squares a_zero_mean = a - ma.expand_dims(a.mean(axis), axis) if n_list[-1] == 1: s = a_zero_mean.copy() else: s = a_zero_mean**2 # Perform multiplications for n in n_list[-2::-1]: s = s**2 if n % 2: s *= a_zero_mean return s.mean(axis) def variation(a, axis=0): """ Computes the coefficient of variation, the ratio of the biased standard deviation to the mean. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array `a`. Returns ------- variation : ndarray The calculated variation along the requested axis. Notes ----- For more details about `variation`, see `stats.variation`. """ a, axis = _chk_asarray(a, axis) return a.std(axis)/a.mean(axis) def skew(a, axis=0, bias=True): """ Computes the skewness of a data set. Parameters ---------- a : ndarray data axis : int or None, optional Axis along which skewness is calculated. Default is 0. If None, compute over the whole array `a`. bias : bool, optional If False, then the calculations are corrected for statistical bias. Returns ------- skewness : ndarray The skewness of values along an axis, returning 0 where all values are equal. Notes ----- For more details about `skew`, see `stats.skew`. """ a, axis = _chk_asarray(a,axis) n = a.count(axis) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m3 / m2**1.5) finally: np.seterr(**olderr) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5 np.place(vals, can_correct, nval) return vals def kurtosis(a, axis=0, fisher=True, bias=True): """ Computes the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators Use `kurtosistest` to see if result is close enough to normal. Parameters ---------- a : array data for which the kurtosis is calculated axis : int or None, optional Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array `a`. fisher : bool, optional If True, Fisher's definition is used (normal ==> 0.0). If False, Pearson's definition is used (normal ==> 3.0). bias : bool, optional If False, then the calculations are corrected for statistical bias. Returns ------- kurtosis : array The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition. Notes ----- For more details about `kurtosis`, see `stats.kurtosis`. """ a, axis = _chk_asarray(a, axis) m2 = moment(a, 2, axis) m4 = moment(a, 4, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: n = a.count(axis) can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0) if can_correct.any(): n = np.extract(can_correct, n) m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0) np.place(vals, can_correct, nval+3.0) if fisher: return vals - 3 else: return vals def describe(a, axis=0, ddof=0, bias=True): """ Computes several descriptive statistics of the passed array. Parameters ---------- a : array_like Data array axis : int or None, optional Axis along which to calculate statistics. Default 0. If None, compute over the whole array `a`. ddof : int, optional degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe bias : bool, optional If False, then the skewness and kurtosis calculations are corrected for statistical bias. Returns ------- nobs : int (size of the data (discarding missing values) minmax : (int, int) min, max mean : float arithmetic mean variance : float unbiased variance skewness : float biased skewness kurtosis : float biased kurtosis Examples -------- >>> from scipy.stats.mstats import describe >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) >>> describe(ma) DescribeResult(nobs=array(3), minmax=(masked_array(data = 0, mask = False, fill_value = 999999) , masked_array(data = 2, mask = False, fill_value = 999999) ), mean=1.0, variance=0.66666666666666663, skewness=masked_array(data = 0.0, mask = False, fill_value = 1e+20) , kurtosis=-1.5) """ a, axis = _chk_asarray(a, axis) n = a.count(axis) mm = (ma.minimum.reduce(a), ma.maximum.reduce(a)) m = a.mean(axis) v = a.var(axis, ddof=ddof) sk = skew(a, axis, bias=bias) kurt = kurtosis(a, axis, bias=bias) DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis')) return DescribeResult(n, mm, m, v, sk, kurt) def stde_median(data, axis=None): """Returns the McKean-Schrader estimate of the standard error of the sample median along the given axis. masked values are discarded. Parameters ---------- data : ndarray Data to trim. axis : {None,int}, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ def _stdemed_1D(data): data = np.sort(data.compressed()) n = len(data) z = 2.5758293035489004 k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0)) return ((data[n-k] - data[k-1])/(2.*z)) data = ma.array(data, copy=False, subok=True) if (axis is None): return _stdemed_1D(data) else: if data.ndim > 2: raise ValueError("Array 'data' must be at most two dimensional, " "but got data.ndim = %d" % data.ndim) return ma.apply_along_axis(_stdemed_1D, axis, data) def skewtest(a, axis=0): """ Tests whether the skew is different from the normal distribution. Parameters ---------- a : array The data to be tested axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float The computed z-score for this test. pvalue : float a 2-sided p-value for the hypothesis test Notes ----- For more details about `skewtest`, see `stats.skewtest`. """ a, axis = _chk_asarray(a, axis) if axis is None: a = a.ravel() axis = 0 b2 = skew(a,axis) n = a.count(axis) if np.min(n) < 8: raise ValueError( "skewtest is not valid with less than 8 samples; %i samples" " were given." % np.min(n)) y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2))) beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9)) W2 = -1 + ma.sqrt(2*(beta2-1)) delta = 1/ma.sqrt(0.5*ma.log(W2)) alpha = ma.sqrt(2.0/(W2-1)) y = ma.where(y == 0, 1, y) Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1)) SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue')) return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) def kurtosistest(a, axis=0): """ Tests whether a dataset has normal kurtosis Parameters ---------- a : array array of the sample data axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float The computed z-score for this test. pvalue : float The 2-sided p-value for the hypothesis test Notes ----- For more details about `kurtosistest`, see `stats.kurtosistest`. """ a, axis = _chk_asarray(a, axis) n = a.count(axis=axis) if np.min(n) < 5: raise ValueError( "kurtosistest requires at least 5 observations; %i observations" " were given." % np.min(n)) if np.min(n) < 20: warnings.warn( "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % np.min(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) x = (b2-E)/ma.sqrt(varb2) sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2./(9.0*A) denom = 1 + x*ma.sqrt(2/(A-4.0)) if np.ma.isMaskedArray(denom): # For multi-dimensional array input denom[denom < 0] = masked elif denom < 0: denom = masked term2 = ma.power((1-2.0/A)/denom,1/3.0) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue')) return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) def normaltest(a, axis=0): """ Tests whether a sample differs from a normal distribution. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. Notes ----- For more details about `normaltest`, see `stats.normaltest`. """ a, axis = _chk_asarray(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue')) return NormaltestResult(k2, distributions.chi2.sf(k2, 2)) def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()): """ Computes empirical quantiles for a data array. Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``, where ``x[j]`` is the j-th order statistic, and gamma is a function of ``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and ``g = n*p + m - j``. Reinterpreting the above equations to compare to **R** lead to the equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)`` Typical values of (alphap,betap) are: - (0,1) : ``p(k) = k/n`` : linear interpolation of cdf (**R** type 4) - (.5,.5) : ``p(k) = (k - 1/2.)/n`` : piecewise linear function (**R** type 5) - (0,0) : ``p(k) = k/(n+1)`` : (**R** type 6) - (1,1) : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])]. (**R** type 7, **R** default) - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (**R** type 8) - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (**R** type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM Parameters ---------- a : array_like Input data, as a sequence or array of dimension at most 2. prob : array_like, optional List of quantiles to compute. alphap : float, optional Plotting positions parameter, default is 0.4. betap : float, optional Plotting positions parameter, default is 0.4. axis : int, optional Axis along which to perform the trimming. If None (default), the input array is first flattened. limit : tuple, optional Tuple of (lower, upper) values. Values of `a` outside this open interval are ignored. Returns ------- mquantiles : MaskedArray An array containing the calculated quantiles. Notes ----- This formulation is very similar to **R** except the calculation of ``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined with each type. References ---------- .. [1] *R* statistical software: http://www.r-project.org/ .. [2] *R* ``quantile`` function: http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html Examples -------- >>> from scipy.stats.mstats import mquantiles >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.]) >>> mquantiles(a) array([ 19.2, 40. , 42.8]) Using a 2D array, specifying axis and limit. >>> data = np.array([[ 6., 7., 1.], ... [ 47., 15., 2.], ... [ 49., 36., 3.], ... [ 15., 39., 4.], ... [ 42., 40., -999.], ... [ 41., 41., -999.], ... [ 7., -999., -999.], ... [ 39., -999., -999.], ... [ 43., -999., -999.], ... [ 40., -999., -999.], ... [ 36., -999., -999.]]) >>> print(mquantiles(data, axis=0, limit=(0, 50))) [[ 19.2 14.6 1.45] [ 40. 37.5 2.5 ] [ 42.8 40.05 3.55]] >>> data[:, 2] = -999. >>> print(mquantiles(data, axis=0, limit=(0, 50))) [[19.200000000000003 14.6 --] [40.0 37.5 --] [42.800000000000004 40.05 --]] """ def _quantiles1D(data,m,p): x = np.sort(data.compressed()) n = len(x) if n == 0: return ma.array(np.empty(len(p), dtype=float), mask=True) elif n == 1: return ma.array(np.resize(x, p.shape), mask=nomask) aleph = (n*p + m) k = np.floor(aleph.clip(1, n-1)).astype(int) gamma = (aleph-k).clip(0,1) return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()] data = ma.array(a, copy=False) if data.ndim > 2: raise TypeError("Array should be 2D at most !") if limit: condition = (limit[0] < data) & (data < limit[1]) data[~condition.filled(True)] = masked p = np.array(prob, copy=False, ndmin=1) m = alphap + p*(1.-alphap-betap) # Computes quantiles along axis (or globally) if (axis is None): return _quantiles1D(data, m, p) return ma.apply_along_axis(_quantiles1D, axis, data, m, p) def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4): """Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median. This function is a shortcut to mquantile """ if (per < 0) or (per > 100.): raise ValueError("The percentile should be between 0. and 100. !" " (got %s)" % per) return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap, limit=limit, axis=0).squeeze() def plotting_positions(data, alpha=0.4, beta=0.4): """ Returns plotting positions (or empirical percentile points) for the data. Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where: - i is the rank order statistics - n is the number of unmasked values along the given axis - `alpha` and `beta` are two parameters. Typical values for `alpha` and `beta` are: - (0,1) : ``p(k) = k/n``, linear interpolation of cdf (R, type 4) - (.5,.5) : ``p(k) = (k-1/2.)/n``, piecewise linear function (R, type 5) - (0,0) : ``p(k) = k/(n+1)``, Weibull (R type 6) - (1,1) : ``p(k) = (k-1)/(n-1)``, in this case, ``p(k) = mode[F(x[k])]``. That's R default (R type 7) - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then ``p(k) ~ median[F(x[k])]``. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8) - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM - (.3175, .3175): used in scipy.stats.probplot Parameters ---------- data : array_like Input data, as a sequence or array of dimension at most 2. alpha : float, optional Plotting positions parameter. Default is 0.4. beta : float, optional Plotting positions parameter. Default is 0.4. Returns ------- positions : MaskedArray The calculated plotting positions. """ data = ma.array(data, copy=False).reshape(1,-1) n = data.count() plpos = np.empty(data.size, dtype=float) plpos[n:] = 0 plpos[data.argsort()[:n]] = ((np.arange(1, n+1) - alpha) / (n + 1.0 - alpha - beta)) return ma.array(plpos, mask=data._mask) meppf = plotting_positions def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If an `f_oneway()` run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data @np.deprecate(message="mstats.signaltonoise is deprecated in scipy 0.16.0") def signaltonoise(data, axis=0): """Calculates the signal-to-noise ratio, as the ratio of the mean over standard deviation along the given axis. Parameters ---------- data : sequence Input data axis : {0, int}, optional Axis along which to compute. If None, the computation is performed on a flat version of the array. """ data = ma.array(data, copy=False) m = data.mean(axis) sd = data.std(axis, ddof=0) return m/sd def sem(a, axis=0, ddof=1): """ Calculates the standard error of the mean of the input array. Also sometimes called standard error of measurement. Parameters ---------- a : array_like An array containing the values for which the standard error is returned. axis : int or None, optional If axis is None, ravel `a` first. If axis is an integer, this will be the axis over which to operate. Defaults to 0. ddof : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1. Returns ------- s : ndarray or float The standard error of the mean in the sample(s), along the input axis. Notes ----- The default value for `ddof` changed in scipy 0.15.0 to be consistent with `stats.sem` as well as with the most common definition used (like in the R documentation). Examples -------- Find standard error along the first axis: >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> print(stats.mstats.sem(a)) [2.8284271247461903 2.8284271247461903 2.8284271247461903 2.8284271247461903] Find standard error across the whole array, using n degrees of freedom: >>> print(stats.mstats.sem(a, axis=None, ddof=0)) 1.2893796958227628 """ a, axis = _chk_asarray(a, axis) n = a.count(axis=axis) s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n) return s def f_oneway(*args): """ Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7. Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays, one per treatment group. Returns ------- statistic : float The computed F-value of the test. pvalue : float The associated p-value from the F-distribution. """ # Construct a single array of arguments: each row is a group data = argstoarray(*args) ngroups = len(data) ntot = data.count() sstot = (data**2).sum() - (data.sum())**2/float(ntot) ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum() sswg = sstot-ssbg dfbg = ngroups-1 dfwg = ntot - ngroups msb = ssbg/float(dfbg) msw = sswg/float(dfwg) f = msb/msw prob = special.fdtrc(dfbg, dfwg, f) # equivalent to stats.f.sf F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue')) return F_onewayResult(f, prob) @np.deprecate(message="mstats.f_value_wilks_lambda deprecated in scipy 0.17.0") def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b): """Calculation of Wilks lambda F-statistic for multivariate data, per Maxwell & Delaney p.657. """ ER = ma.array(ER, copy=False, ndmin=2) EF = ma.array(EF, copy=False, ndmin=2) if ma.getmask(ER).any() or ma.getmask(EF).any(): raise NotImplementedError("Not implemented when the inputs " "have missing data") lmbda = np.linalg.det(EF) / np.linalg.det(ER) q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5)) q = ma.filled(q, 1) n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1) d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1) return n_um / d_en def friedmanchisquare(*args): """Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value. Each input is considered a given group. Ideally, the number of treatments among each group should be equal. If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of the smallest group. If a group has some missing values, the corresponding treatments are masked in the other groups. The test statistic is corrected for ties. Masked values in one group are propagated to the other groups. Returns ------- statistic : float the test statistic. pvalue : float the associated p-value. """ data = argstoarray(*args).astype(float) k = len(data) if k < 3: raise ValueError("Less than 3 groups (%i): " % k + "the Friedman test is NOT appropriate.") ranked = ma.masked_values(rankdata(data, axis=0), 0) if ranked._mask is not nomask: ranked = ma.mask_cols(ranked) ranked = ranked.compressed().reshape(k,-1).view(ndarray) else: ranked = ranked._data (k,n) = ranked.shape # Ties correction repeats = np.array([find_repeats(_) for _ in ranked.T], dtype=object) ties = repeats[repeats.nonzero()].reshape(-1,2)[:,-1].astype(int) tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k)) ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2) chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction FriedmanchisquareResult = namedtuple('FriedmanchisquareResult', ('statistic', 'pvalue')) return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k-1))
bsd-3-clause
ChanChiChoi/scikit-learn
examples/svm/plot_svm_scale_c.py
222
5375
""" ============================================== Scaling the regularization parameter for SVCs ============================================== The following example illustrates the effect of scaling the regularization parameter when using :ref:`svm` for :ref:`classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: .. math:: C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w) where - :math:`C` is used to set the amount of regularization - :math:`\mathcal{L}` is a `loss` function of our samples and our model parameters. - :math:`\Omega` is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, :ref:`cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. """ print(__doc__) # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # Jaques Grobler <jaques.grobler@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.cross_validation import ShuffleSplit from sklearn.grid_search import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features / 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features / 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['b', 'g', 'r', 'c'] for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(n=n_samples, train_size=train_size, n_iter=250, random_state=1)) grid.fit(X, y) scores = [x[1] for x in grid.grid_scores_] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show()
bsd-3-clause
google/uncertainty-baselines
experimental/cifar10_resnet20/main.py
1
5433
# coding=utf-8 # Copyright 2022 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""CIFAR-10 ResNet-20 example for Uncertainty Baselines. """ import os.path from absl import app from absl import flags from absl import logging import numpy as np import tensorflow as tf import uncertainty_baselines as ub # Flags relating to hyperparameters. flags.DEFINE_integer('batch_size', 512, 'The training batch size.') flags.DEFINE_integer('eval_batch_size', 100, 'The evaluation batch size.') flags.DEFINE_string('optimizer', 'adam', 'The optimizer to train with.') flags.DEFINE_float('learning_rate', 0.01, 'The learning rate.') flags.DEFINE_float( 'weight_decay', None, 'The model decoupled weight decay rate.') # Flags relating to setting up the job. flags.DEFINE_bool('use_tpu', False, 'Whether to run on CPU or TPU.') flags.DEFINE_string('tpu', '', 'Name of the TPU to use.') # Flags relating to the training/eval loop. flags.DEFINE_string('output_dir', None, 'Base output directory.') flags.DEFINE_integer( 'eval_frequency', 100, 'How many steps between evaluating on the (validation and) test set.') flags.DEFINE_integer('train_steps', 2000, 'How many steps to train for.') flags.DEFINE_integer('seed', 1337, 'Random seed.') FLAGS = flags.FLAGS def _check_batch_replica_divisible( total_batch_size: int, strategy: tf.distribute.Strategy): """Ensure the batch size is evenly divisible by the number of replicas.""" if total_batch_size % strategy.num_replicas_in_sync != 0: raise ValueError( 'Batch size must be evenly divisible by the number of replicas in the ' 'job. Total batch size: {}, num replicas: {}'.format( total_batch_size, strategy.num_replicas_in_sync)) def _ds_as_tuple(ds): return ds.map(lambda d: (d['features'], d['labels'])) def run(trial_dir: str): """Run the experiment.""" tf.random.set_seed(FLAGS.seed) np.random.seed(FLAGS.seed) strategy = ub.strategy_utils.get_strategy(FLAGS.tpu, FLAGS.use_tpu) with strategy.scope(): # Setup CIFAR-10 tf.data.Dataset splits. # Use 5000 validation images. train_dataset_builder = ub.datasets.Cifar10Dataset( split='train', validation_percent=0.1) train_dataset = train_dataset_builder.load(batch_size=FLAGS.batch_size) train_dataset = _ds_as_tuple(train_dataset) train_dataset = strategy.experimental_distribute_dataset(train_dataset) val_dataset_builder = ub.datasets.Cifar10Dataset( split='validation', validation_percent=0.1) val_dataset = val_dataset_builder.load(batch_size=FLAGS.eval_batch_size) val_dataset = _ds_as_tuple(val_dataset) val_dataset = strategy.experimental_distribute_dataset(val_dataset) test_dataset_builder = ub.datasets.Cifar10Dataset(split='test') test_dataset = test_dataset_builder.load(batch_size=FLAGS.eval_batch_size) test_dataset = _ds_as_tuple(test_dataset) test_dataset = strategy.experimental_distribute_dataset(test_dataset) # Setup optimizer. _check_batch_replica_divisible(FLAGS.batch_size, strategy) _check_batch_replica_divisible(FLAGS.eval_batch_size, strategy) optimizer = ub.optimizers.get( optimizer_name=FLAGS.optimizer, learning_rate_schedule='constant', learning_rate=FLAGS.learning_rate, weight_decay=FLAGS.weight_decay) # Setup model. model = ub.models.resnet20( batch_size=FLAGS.batch_size, l2_weight=None) model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['sparse_categorical_accuracy']) # Train and eval. steps_per_epoch = train_dataset_builder.num_examples // FLAGS.batch_size validation_steps = ( val_dataset_builder.num_examples // FLAGS.eval_batch_size) history = model.fit( x=train_dataset, batch_size=FLAGS.batch_size, epochs=FLAGS.train_steps // steps_per_epoch, steps_per_epoch=steps_per_epoch, validation_data=val_dataset, validation_steps=validation_steps, validation_freq=FLAGS.eval_frequency, shuffle=False) logging.info(history) test_steps = test_dataset_builder.num_examples // FLAGS.eval_batch_size test_result = model.evaluate( x=test_dataset, batch_size=FLAGS.eval_batch_size, steps=test_steps) logging.info(test_result) # Save a checkpoint after training. if trial_dir: model.save_weights( os.path.join(trial_dir, 'model.ckpt-{}'.format(FLAGS.train_steps))) def main(argv): del argv logging.info('Starting CIFAR-10 ResNet-20 experiment!') trial_dir = os.path.join(FLAGS.output_dir, '0') logging.info('Saving to dir: %s', trial_dir) if not tf.io.gfile.exists(trial_dir): tf.io.gfile.makedirs(trial_dir) return run(trial_dir) if __name__ == '__main__': app.run(main)
apache-2.0
fredhusser/scikit-learn
sklearn/utils/tests/test_sparsefuncs.py
156
13799
import numpy as np import scipy.sparse as sp from scipy import linalg from numpy.testing import assert_array_almost_equal, assert_array_equal from sklearn.datasets import make_classification from sklearn.utils.sparsefuncs import (mean_variance_axis, inplace_column_scale, inplace_row_scale, inplace_swap_row, inplace_swap_column, min_max_axis, count_nonzero, csc_median_axis_0) from sklearn.utils.sparsefuncs_fast import assign_rows_csr from sklearn.utils.testing import assert_raises def test_mean_variance_axis0(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 X_csr = sp.csr_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csr, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) X_csc = sp.csc_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csc, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=0) X = X.astype(np.float32) X_csr = X_csr.astype(np.float32) X_csc = X_csr.astype(np.float32) X_means, X_vars = mean_variance_axis(X_csr, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) X_means, X_vars = mean_variance_axis(X_csc, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=0) def test_mean_variance_illegal_axis(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_csr = sp.csr_matrix(X) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-3) assert_raises(ValueError, mean_variance_axis, X_csr, axis=2) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-1) def test_mean_variance_axis1(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 X_csr = sp.csr_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csr, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) X_csc = sp.csc_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csc, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=1) X = X.astype(np.float32) X_csr = X_csr.astype(np.float32) X_csc = X_csr.astype(np.float32) X_means, X_vars = mean_variance_axis(X_csr, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) X_means, X_vars = mean_variance_axis(X_csc, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=1) def test_densify_rows(): X = sp.csr_matrix([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_rows = np.array([0, 2, 3], dtype=np.intp) out = np.ones((6, X.shape[1]), dtype=np.float64) out_rows = np.array([1, 3, 4], dtype=np.intp) expect = np.ones_like(out) expect[out_rows] = X[X_rows, :].toarray() assign_rows_csr(X, X_rows, out_rows, out) assert_array_equal(out, expect) def test_inplace_column_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(200) XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_row_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(100) XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_swap_row(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) def test_inplace_swap_column(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) def test_min_max_axis0(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) def test_min_max_axis1(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) def test_min_max_axis_errors(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) assert_raises(TypeError, min_max_axis, X_csr.tolil(), axis=0) assert_raises(ValueError, min_max_axis, X_csr, axis=2) assert_raises(ValueError, min_max_axis, X_csc, axis=-3) def test_count_nonzero(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) X_nonzero = X != 0 sample_weight = [.5, .2, .3, .1, .1] X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None] for axis in [0, 1, -1, -2, None]: assert_array_almost_equal(count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis)) assert_array_almost_equal(count_nonzero(X_csr, axis=axis, sample_weight=sample_weight), X_nonzero_weighted.sum(axis=axis)) assert_raises(TypeError, count_nonzero, X_csc) assert_raises(ValueError, count_nonzero, X_csr, axis=2) def test_csc_row_median(): # Test csc_row_median actually calculates the median. # Test that it gives the same output when X is dense. rng = np.random.RandomState(0) X = rng.rand(100, 50) dense_median = np.median(X, axis=0) csc = sp.csc_matrix(X) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test that it gives the same output when X is sparse X = rng.rand(51, 100) X[X < 0.7] = 0.0 ind = rng.randint(0, 50, 10) X[ind] = -X[ind] csc = sp.csc_matrix(X) dense_median = np.median(X, axis=0) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test for toy data. X = [[0, -2], [-1, -1], [1, 0], [2, 1]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5])) X = [[0, -2], [-1, -5], [1, -3]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0., -3])) # Test that it raises an Error for non-csc matrices. assert_raises(TypeError, csc_median_axis_0, sp.csr_matrix(X))
bsd-3-clause
icoderaven/slytherin_dagger
src/linear_predictor.py
1
4306
#!/usr/bin/env python import math import numpy as np import scipy import scipy.linalg as la import os from sklearn import linear_model class LinearPredictor: def __init__(self): self.m_w = 0 self.m_mean_x = 0 self.m_mean_y = 0 self.m_std_x = 1 # ---------------------------------------------------------------------- #load predictor from file #---------------------------------------------------------------------- def load(self, filename): A = np.load(filename) #load numpy array stored in filename self.m_w = A[0, :] self.m_mean_x = A[1, :] self.m_std_x = A[2, :] self.m_mean_y = A[3, 0] #---------------------------------------------------------------------- #compute ouput prediction given input features #---------------------------------------------------------------------- def predict(self, feat_array): #renormalize features xtmp = (feat_array - self.m_mean_x) / self.m_std_x #compute dot product between features and predictor return np.dot(xtmp, self.m_w) + self.m_mean_y def to_string(self): print self.m_w def load(filename): pred = LinearPredictor() pred.load(filename) return pred def train(X, y, filename, options, feature_weight=np.array([1.0]), sample_weight_type="None", print_flag=0): mean_x = X.mean(0) std_x = X.std(0) mean_y = y.mean(0) n = mean_x.size # hack to keep bias feature when removing mean and renormalizing with std #mean_x[n - 1] = 0; #std_x[n - 1] = 1; for index, x in enumerate(std_x): if x == 0.0: std_x[index] = 1.0 print "WARNING: Failing index with zero stddev = %d" % index #renormalize features X = (X - mean_x) / std_x (r, c) = X.shape #solve ridge regression if options.size == 0: options = np.array([1]) # compute sample weights y = y m = y.size sample_weights = np.ones(m) X_sub = np.array([]) y_sub = np.array([]) nonzero_val = 0.01 if sample_weight_type == "weighted": nb_nonzero = np.sum(abs(y) > nonzero_val) weight_nonzero = m / (2.0 * nb_nonzero) weight_zero = m / (2.0 * (m - nb_nonzero)) sample_weights[abs(y) > nonzero_val] = weight_nonzero sample_weights[abs(y) <= nonzero_val] = weight_zero elif sample_weight_type == "subsample": nb_nonzero = np.sum(abs(y) > nonzero_val) if nb_nonzero < m - nb_nonzero: X_sub = X[abs(y) > nonzero_val, :] y_sub = y[abs(y) > nonzero_val] Xtmp = X[abs(y) <= nonzero_val, :] ytmp = y[abs(y) <= nonzero_val] X_sub = np.vstack((X_sub, Xtmp[range(0, m - nb_nonzero, int((m - nb_nonzero) / nb_nonzero)), :])) y_sub = np.append(y_sub, ytmp[range(0, m - nb_nonzero, int((m - nb_nonzero) / nb_nonzero))]) y_sub = y_sub - mean_y else: X_sub = X[abs(y) <= nonzero_val, :] y_sub = y[abs(y) <= nonzero_val] Xtmp = X[abs(y) > nonzero_val, :] ytmp = y[abs(y) > nonzero_val] X_sub = np.vstack((X_sub, Xtmp[range(0, nb_nonzero, int(nb_nonzero / (m - nb_nonzero))), :])) y_sub = np.append(y_sub, ytmp[range(0, nb_nonzero, int(nb_nonzero / (m - nb_nonzero)))]) y_sub = y_sub - mean_y y = y - mean_y A = np.zeros((4, n)) A[1, :] = mean_x A[2, :] = std_x A[3,:] = mean_y for i in range(options.size): #print "[DAgger] Training with Regularizer %f" % (options[i]) reg = math.sqrt(r) * options[i] outname, outext = os.path.splitext(filename) fname = "%s-%f%s" % (outname, options[i], outext) reg_algo = linear_model.Ridge(alpha=reg, fit_intercept=False) #reg_algo = linear_model.Lasso(alpha=reg/math.sqrt(r), fit_intercept=False) if sample_weight_type == "None": reg_algo.fit(X,y) w = reg_algo.coef_ elif sample_weight_type == "subsample": reg_algo.fit(X_sub,y_sub) w = reg_algo.coef_ if print_flag ==1: print "[DAgger] learned weights for reg ", options[i], ": " print w A[0, :] = w np.save(fname, A)
bsd-3-clause
mythsmith/veusz
veusz/plugins/field.py
1
14590
# Copyright (C) 2010 Jeremy S. Sanders # Email: Jeremy Sanders <jeremy@jeremysanders.net> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ############################################################################## """Data entry fields for plugins.""" from __future__ import division from .. import qtall as qt4 from .. import utils from .. import setting class Field(object): """A class to represent an input field on the dialog or command line.""" def __init__(self, name, descr=None, default=None): """name: name of field descr: description to show to user default: default value.""" self.name = name if descr: self.descr = descr else: self.descr = name self.default = default def makeControl(self, doc, currentwidget): """Create a set of controls for field.""" return None def setControlVal(self, controls, val): """Update control's value to val.""" pass def getControlResults(self, cntrls): """Get result from created contrls.""" return None class FieldText(Field): """Text entry on the dialog.""" def makeControl(self, doc, currentwidget): l = qt4.QLabel(self.descr) e = qt4.QLineEdit() if self.default: e.setText(self.default) return (l, e) def setControlVal(self, controls, val): controls[1].setText(val) def getControlResults(self, cntrls): return cntrls[1].text() class FieldCombo(Field): """Drop-down combobox on dialog.""" def __init__(self, name, descr=None, default=None, items=(), editable=True): """name: name of field descr: description to show to user default: default value items: items in drop-down box editable: whether user can enter their own value.""" Field.__init__(self, name, descr=descr, default=default) self.items = items self.editable = editable def makeControl(self, doc, currentwidget): l = qt4.QLabel(self.descr) c = qt4.QComboBox() c.addItems(self.items) c.setEditable(bool(self.editable)) if self.default: self.setControlVal((l, c), self.default) return (l, c) def setControlVal(self, controls, val): """Update value to val.""" if self.editable: controls[1].setEditText(val) else: controls[1].setCurrentIndex(controls[1].findText(val)) def getControlResults(self, cntrls): return cntrls[1].currentText() class _WidgetCombo(qt4.QComboBox): """Combo box for selecting widgets.""" def __init__(self, doc, widgettypes, default): """doc: Veusz document widgettypes: set of allowed widgettypes or empty for all default: default path.""" qt4.QComboBox.__init__(self) self.doc = doc self.widgettypes = widgettypes self.default = default self.updateWidgets() doc.signalModified.connect(self.updateWidgets) def _iterateWidgets(self, comboitems, paths, widget, level): """Walk widget tree recursively. Adds name onto a list of strings (comboitems) Adds path to widget onto list of paths (paths) """ if not self.widgettypes or widget.typename in self.widgettypes: comboitems.append(' '*level + widget.name) paths.append(widget.path) for w in widget.children: self._iterateWidgets(comboitems, paths, w, level+1) @qt4.pyqtSlot() def updateWidgets(self): """Update combo with new widgets.""" self.paths = [] # veusz widget paths of items comboitems = [] # names of items (with tree spacing) self._iterateWidgets(comboitems, self.paths, self.doc.basewidget, 0) if self.count() == 0: # first time around add default to get it selected, yuck :-( try: idx = self.paths.index(self.default) self.addItem( comboitems[idx] ) except ValueError: pass utils.populateCombo(self, comboitems) def getWidgetPath(self): """Get path of selected widget.""" return self.paths[self.currentIndex()] class FieldWidget(Field): """Drop-down combobox for selecting widgets.""" def __init__(self, name, descr=None, default='/', widgettypes=set()): """name: name of field descr: description to show to user default: default value - set to '' to get current widget.""" Field.__init__(self, name, descr=descr, default=default) self.widgettypes = widgettypes def makeControl(self, doc, currentwidget): default = self.default if default == '': default = currentwidget l = qt4.QLabel(self.descr) c = _WidgetCombo(doc, self.widgettypes, default) return (l, c) def setControlVal(self, controls, val): controls[1].setCurrentIndex(controls[1].findText(val)) def getControlResults(self, cntrls): return cntrls[1].getWidgetPath() class _FieldSetting(Field): """Field using a setting internally to avoid code duplication. Designed to be subclassed.""" def __init__(self, settingkls, name, descr=None, default='', setnparams = {}): Field.__init__(self, name, descr=descr, default=default) self.default = default self.setn = settingkls(name, default, **setnparams) def makeControl(self, doc, currentwidget): """Use setting makeControl method to make control.""" self.setn.parent = self # setting looks to parent for document self.setn.set(self.default) self.document = doc l = qt4.QLabel(self.descr) c = self.setn.makeControl(None) def updateval(cntrl, setn, val): setn.set(val) # if control changes setting, update setting c.sigSettingChanged.connect(updateval) return (l, c) def setControlVal(self, cntrls, val): self.setn.set(val) def getDocument(self): """This is used by settings to get their document.""" return self.document def getControlResults(self, cntrls): """Get result from setting.""" return self.setn.get() class FieldBool(_FieldSetting): """A true/false value using a check box.""" def __init__(self, name, descr=None, default=False): _FieldSetting.__init__(self, setting.Bool, name, descr=descr, default=default) class FieldInt(_FieldSetting): """An integer number field.""" def __init__(self, name, descr=None, default=0, minval=-9999999, maxval=9999999): """name: name of field descr: description to show to user default: default value. minval and maxval: minimum and maximum integers """ _FieldSetting.__init__(self, setting.Int, name, descr=descr, default=default, setnparams={'minval': minval, 'maxval': maxval}) class FieldFloat(_FieldSetting): """A floating point number field.""" def __init__(self, name, descr=None, default=None, minval=-1e99, maxval=1e99): """name: name of field descr: description to show to user default: default value. minval and maxval: minimum and maximum values """ _FieldSetting.__init__(self, setting.Float, name, descr=descr, default=default, setnparams={'minval': minval, 'maxval': maxval}) class FieldFloatOrAuto(_FieldSetting): """A floating point value or the text 'Auto'.""" def __init__(self, name, descr=None, default='Auto'): """name: name of field descr: description to show to user default: default value. """ _FieldSetting.__init__(self, setting.FloatOrAuto, name, descr=descr, default=default) class FieldColor(_FieldSetting): """Field for selecting a color - returns #rrggbb string.""" def __init__(self, name, descr=None, default='black'): _FieldSetting.__init__(self, setting.Color, name, descr=descr, default=default) class FieldFillStyle(_FieldSetting): """Field for selecting fill styles - returns a string.""" def __init__(self, name, descr=None, default='solid'): _FieldSetting.__init__(self, setting.FillStyle, name, descr=descr, default=default) class FieldLineStyle(_FieldSetting): """Field for selecting line styles - returns a string.""" def __init__(self, name, descr=None, default='solid'): _FieldSetting.__init__(self, setting.LineStyle, name, descr=descr, default=default) class FieldMarker(_FieldSetting): """Field for selecting a marker type. Returns a string """ def __init__(self, name, descr=None, default='circle'): _FieldSetting.__init__(self, setting.Marker, name, descr=descr, default=default) class FieldArrow(_FieldSetting): """Field for selecting an arrow type. Returns a string """ def __init__(self, name, descr=None, default='none'): _FieldSetting.__init__(self, setting.Arrow, name, descr=descr, default=default) class FieldErrorStyle(_FieldSetting): """Field for selecting an error bar style Returns a string """ def __init__(self, name, descr=None, default='bar'): _FieldSetting.__init__(self, setting.ErrorStyle, name, descr=descr, default=default) class FieldDistance(_FieldSetting): """Field for selecting a veusz-style distance, e.g. '1pt'. Returns a string """ def __init__(self, name, descr=None, default='1pt'): _FieldSetting.__init__(self, setting.Distance, name, descr=descr, default=default) class FieldFloatList(_FieldSetting): """Field for entering multiple numbers, separated by commas or spaces Returns a list/tuple of floats """ def __init__(self, name, descr=None, default=()): _FieldSetting.__init__(self, setting.FloatList, name, descr=descr, default=default) class FieldDataset(_FieldSetting): """Field for selecting a datset. Returns a string. Note that the validity of dataset names is not checked Note that a blank string may result """ def __init__(self, name, descr=None, default='', dims=1, datatype='numeric'): """name: name of field descr: description to show to user default: default value (ignored currently) dims: dimensions of dataset to show datatype: type of data: numeric or text """ _FieldSetting.__init__(self, setting.Dataset, name, descr=descr, default=default, setnparams={'dimensions': dims, 'datatype': datatype}) class FieldTextMulti(_FieldSetting): """Field for entering multiple lines of text. Returns a tuple/list of strings. """ def __init__(self, name, descr=None, default=('')): _FieldSetting.__init__(self, setting.Strings, name, descr=descr, default=default) class FieldDatasetMulti(_FieldSetting): """Field for entering multiple datasets. Returns a tuple/list of strings. """ def __init__(self, name, descr=None, default=(''), dims=1, datatype='numeric'): """dims is number of dimensions of datasets to show in drop-down list. datatype is 'numeric' or 'text' """ _FieldSetting.__init__(self, setting.Datasets, name, descr=descr, default=default, setnparams={'dimensions': dims, 'datatype': datatype}) class FieldLineMulti(_FieldSetting): """A field for holding a set of lines. Consists of tuples [('dotted', '1pt', 'color', <trans>, False), ...] These are style, width, color, and hide or style, widget, color, transparency, hide This is compatible with the contour widget line style """ def __init__(self, name, descr=None, default=(('solid', '1pt', 'black', False),) ): _FieldSetting.__init__(self, setting.LineSet, name, descr=descr, default=default) class FieldFillMulti(_FieldSetting): """A field for holding a set of fills. Consists of tuples [('solid', 'color', <trans>, False), ...] These are color, fill style, and hide or color, fill style, transparency and hide This is compatible with the contour widget line style """ def __init__(self, name, descr=None, default=()): _FieldSetting.__init__(self, setting.FillSet, name, descr=descr, default=default) class FieldFontFamily(_FieldSetting): """A field for holding a font family. Returns a string. """ def __init__(self, name, descr=None, default=None): """Default None selects the default font.""" if default is None: default = setting.Text.defaultfamily _FieldSetting.__init__(self, setting.FontFamily, name, descr=descr, default=default) class FieldFilename(_FieldSetting): """Select a filename with a browse button.""" def __init__(self, name, descr=None, default=''): _FieldSetting.__init__(self, setting.Filename, name, descr=descr, default=default)
gpl-2.0
ChanChiChoi/scikit-learn
examples/decomposition/plot_sparse_coding.py
246
3846
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ] pl.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): pl.subplot(1, 2, subplot + 1) pl.title('Sparse coding against %s dictionary' % title) pl.plot(y, ls='dotted', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) pl.axis('tight') pl.legend() pl.subplots_adjust(.04, .07, .97, .90, .09, .2) pl.show()
bsd-3-clause
kylerbrown/scikit-learn
sklearn/metrics/metrics.py
232
1262
import warnings warnings.warn("sklearn.metrics.metrics is deprecated and will be removed in " "0.18. Please import from sklearn.metrics", DeprecationWarning) from .ranking import auc from .ranking import average_precision_score from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score
bsd-3-clause
golharam/rgtools
scripts/galaxy/api/load_data_with_metadata.py
1
3466
#!/usr/bin/env python """ This script scans a directory for files with companion '.json' files, then loads the data from the file, and attaches the .json contents using the 'extended_metadata' system in the library Sample call: python load_data_with_metadata.py <api_key> <api_url> /data/folder "API Imports" NOTE: The upload method used requires the data library filesystem upload allow_library_path_paste """ import os import shutil import sys import json import time import argparse sys.path.insert( 0, os.path.dirname( __file__ ) ) from common import submit, display def load_file(fullpath, api_key, api_url, library_id, library_folder_id, uuid_field=None): data = {} data['folder_id'] = library_folder_id data['file_type'] = 'auto' data['dbkey'] = '' data['upload_option'] = 'upload_paths' data['filesystem_paths'] = fullpath data['create_type'] = 'file' data['link_data_only'] = 'link_to_files' handle = open( fullpath + ".json" ) smeta = handle.read() handle.close() ext_meta = json.loads(smeta) data['extended_metadata'] = ext_meta if uuid_field is not None and uuid_field in ext_meta: data['uuid'] = ext_meta[uuid_field] libset = submit(api_key, api_url + "libraries/%s/contents" % library_id, data, return_formatted = True) print libset def main(api_key, api_url, in_folder, data_library, uuid_field=None): # Find/Create data library with the above name. Assume we're putting datasets in the root folder '/' libs = display(api_key, api_url + 'libraries', return_formatted=False) library_id = None for library in libs: if library['name'] == data_library: library_id = library['id'] if not library_id: lib_create_data = {'name':data_library} library = submit(api_key, api_url + 'libraries', lib_create_data, return_formatted=False) library_id = library['id'] folders = display(api_key, api_url + "libraries/%s/contents" % library_id, return_formatted = False) for f in folders: if f['name'] == "/": library_folder_id = f['id'] if not library_id or not library_folder_id: print "Failure to configure library destination." sys.exit(1) if os.path.isfile(in_folder): fullpath = in_folder print "Loading ", fullpath load_file(fullpath, api_key, api_url, library_id, library_folder_id, uuid_field) #if os.path.exists(in_folder + ".json"): # fullpath = os.path.abspath(in_folder) # print "Loading", fullpath # load_file(fullpath, api_key, api_url, library_id, library_folder_id, uuid_field) else: for fname in os.listdir(in_folder): fullpath = os.path.join(in_folder, fname) if os.path.isfile(fullpath) and os.path.exists(fullpath + ".json"): print "Loading", fullpath load_file(fullpath, api_key, api_url, library_id, library_folder_id, uuid_field) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("api_key", help="API KEY") parser.add_argument('api_url', help='API URL') parser.add_argument("in_folder", help="Input Folder") parser.add_argument("data_library", help="Data Library") parser.add_argument("--uuid_field", help="UUID Field", default=None) args = parser.parse_args() main(args.api_key, args.api_url, args.in_folder, args.data_library, args.uuid_field)
lgpl-3.0
google/uncertainty-baselines
baselines/jft/active_learning.py
1
32769
# coding=utf-8 # Copyright 2022 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Active learning loop. This script implements a basic Active Learning loop using predictive entropy as acquisition function. The below command is for running this script on a TPU-VM. Execute in `baselines/jft`: python3 active_learning.py \ --config='experiments/vit_l32_active_learning_cifar.py' \ --config.model_init='gs://ub-checkpoints/ImageNet21k_ViT-L32/1/checkpoint.npz' \ --output_dir active_learning_results Use `gs://ub-checkpoints/ImageNet21k_BE-L32/baselines-jft-0209_205214/1/checkpoint.npz` for BE """ # pylint: enable=line-too-long from functools import partial # pylint: disable=g-importing-member standard use import logging import multiprocessing from absl import app from absl import flags from clu import metric_writers from clu import parameter_overview from clu import periodic_actions from clu import preprocess_spec import flax import flax.jax_utils as flax_utils import jax import jax.numpy as jnp from ml_collections.config_flags import config_flags import numpy as np import tensorflow_datasets as tfds import tqdm import uncertainty_baselines as ub import al_utils # local file import from baselines.jft import batchensemble_utils # local file import from baselines.jft import checkpoint_utils # local file import from baselines.jft import deterministic_utils # local file import from baselines.jft import input_utils # local file import from baselines.jft import ood_utils # local file import from baselines.jft import preprocess_utils # local file import from baselines.jft import train_utils # local file import from baselines.jft config_flags.DEFINE_config_file( 'config', None, 'Training configuration.', lock_config=True) flags.DEFINE_string('output_dir', default=None, help='Work unit directory.') flags.DEFINE_integer( 'num_cores', default=None, help='Unused. How many devices being used.') flags.DEFINE_boolean( 'use_gpu', default=None, help='Unused. Whether or not running on GPU.') flags.DEFINE_string('tpu', None, 'Unused. Name of the TPU. Only used if use_gpu is False.') FLAGS = flags.FLAGS NINF_SCORE = float('-inf') def get_ids_logits_masks(*, model, opt_repl, ds, use_pre_logits=False, average_logits=True, prefetch_to_device=1, config=None): """Obtain (pre) logits for each datapoint. This can be then used to compute entropies, and so on. Args: model: a initialized model. opt_repl: an optimizer with parameters. ds: a dataset. use_pre_logits: if True, return pre logit instead of logit average_logits: if True, average the logits. prefetch_to_device: how many batches to prefix config: experiment config. Returns: a tuple of jnp arrays of ids, logits, labels and masks. """ @partial(jax.pmap, axis_name='batch') def compute_batch_outputs(params, images): logits, out = model.apply({'params': flax.core.freeze(params)}, images, train=False) if config and config.model_type == 'batchensemble': ens_size = config.model.transformer.ens_size loss_name = config.get('loss', 'sigmoid_xent') logits = jnp.asarray(jnp.split(logits, ens_size)) if loss_name == 'sigmoid_xent': if average_logits: logits = batchensemble_utils.log_average_sigmoid_probs(logits) elif loss_name == 'softmax_xent': if average_logits: logits = batchensemble_utils.log_average_softmax_probs(logits) else: raise ValueError(f'Loss name: {loss_name} not supported.') if use_pre_logits: # pre_logits [batch_size, hidden_size, ens_size] pre_logits = jnp.transpose( jnp.asarray(jnp.split(out['pre_logits'], ens_size)), axes=[1, 2, 0]) output = pre_logits else: output = logits else: if use_pre_logits: # pre_logits [batch_size, hidden_size] output = out['pre_logits'] else: output = logits # TODO(joost,andreas): For multi host this requires: # output = jax.lax.all_gather(output, axis_name='batch') return output iter_ds = input_utils.start_input_pipeline(ds, prefetch_to_device) outputs = [] ids = [] labels = [] masks = [] for _, batch in enumerate(iter_ds): batch_id = batch['id'] batch_label = batch['labels'] batch_mask = batch['mask'] batch_output = compute_batch_outputs(opt_repl.target, batch['image']) # This moves the batch_output from TPU to CPU right away. batch_output = jax.device_put(batch_output, jax.devices('cpu')[0]) # TODO(joost,andreas): if we run on multi host, we need to index # batch_outputs: batch_outputs[0] ids.append(batch_id) outputs.append(batch_output) labels.append(batch_label) masks.append(batch_mask) if average_logits: # 0 dimension is TPU shard, 1 is batch outputs = jnp.concatenate(outputs, axis=1) else: # 0 dimension is TPU shard, 1 is ensemble, 2 is batch outputs = jnp.concatenate(outputs, axis=2) ids = jnp.concatenate(ids, axis=1) labels = jnp.concatenate(labels, axis=1) masks = jnp.concatenate(masks, axis=1) # NOTE(joost,andreas): due to batch padding, entropies/ids will be of size: # if training set size % batch size > 0: # (training set size // batch size + 1) * batch size # else: # just training set size return ids, outputs, labels, masks def get_entropy_scores(logits, masks): """Obtain scores using entropy scoring. Args: logits: the logits of the pool set. masks: the masks belonging to the pool set. Returns: a list of scores belonging to the pool set. """ log_probs = jax.nn.log_softmax(logits) probs = jax.nn.softmax(logits) weighted_nats = -probs * log_probs # One simple trick to avoid NaNs later on. weighted_nats = jnp.where(jnp.isnan(weighted_nats), 0, weighted_nats) entropy = jnp.sum(weighted_nats, axis=-1, keepdims=False) entropy = jnp.where(masks, entropy, NINF_SCORE) return entropy def get_bald_scores(logits, masks): """Obtain scores using BALD scoring. Args: logits: the logits of the pool set, first dimension is the ensemble. masks: the masks belonging to the pool set. Returns: a list of scores belonging to the pool set. """ # TPU shard, ensemble size, batch size, logits _, ens_size, _, _ = logits.shape log_probs = jax.nn.log_softmax(logits) probs = jax.nn.softmax(logits) weighted_nats = -probs * log_probs weighted_nats = jnp.where(jnp.isnan(weighted_nats), 0, weighted_nats) marginal_entropy = jnp.mean(jnp.sum(weighted_nats, axis=-1), axis=1) marginal_log_probs = jax.nn.logsumexp(log_probs, axis=1) - jnp.log(ens_size) marginal_probs = jnp.mean(probs, axis=1) weighted_marginal_nats = -marginal_probs * marginal_log_probs weighted_marginal_nats = jnp.where( jnp.isnan(weighted_marginal_nats), 0, weighted_marginal_nats) entropy_marginal = jnp.sum(weighted_marginal_nats, axis=-1) # Mask results. bald = entropy_marginal - marginal_entropy bald = jnp.where(masks, bald, NINF_SCORE) return bald def get_margin_scores(logits, masks): """Obtain scores using margin scoring. Args: logits: the logits of the pool set. masks: the masks belonging to the pool set. Returns: a list of scores belonging to the pool set. """ probs = jax.nn.softmax(logits) top2_probs = jax.lax.top_k(probs, k=2)[0] # top_k's documentation does not specify whether the top-k are sorted or not. margins = jnp.abs(top2_probs[..., 0] - top2_probs[..., 1]) # Lower margin means higher uncertainty, so we invert the scores. # Then higer margin score means higher uncertainty. margin_scores = 1.0 - margins margin_scores = jnp.where(masks, margin_scores, NINF_SCORE) return margin_scores def get_msp_scores(logits, masks): """Obtain scores using maximum softmax probability scoring. Args: logits: the logits of the pool set. masks: the masks belonging to the pool set. Returns: a list of scores belonging to the pool set. """ probs = jax.nn.softmax(logits) max_probs = jnp.max(probs, axis=-1) # High max prob means low uncertainty, so we invert the value. msp_scores = 1.0 - max_probs msp_scores = jnp.where(masks, msp_scores, NINF_SCORE) return msp_scores def get_uniform_scores(masks, rng): """Obtain scores using uniform sampling. Args: masks: the masks belonging to the pool set. rng: the RNG to use for uniform sampling. Returns: a list of scores belonging to the pool set. """ uniform_scores = jax.random.uniform(key=rng, shape=masks.shape) uniform_scores = jnp.where(masks, uniform_scores, NINF_SCORE) return uniform_scores def get_density_scores(*, model, opt_repl, train_ds, pool_pre_logits, pool_masks, config=None): """Obtain scores using density method. Args: model: an initialized model. opt_repl: the current optimizer. train_ds: the dataset to fit the density estimator on. pool_pre_logits: the pre logits (features) of the pool set. pool_masks: the masks belonging to the pool_pre_logits. config: experiment config. Returns: a list of scores belonging to the pool set. """ # Fit LDA _, train_pre_logits, train_labels, train_masks = get_ids_logits_masks( model=model, opt_repl=opt_repl, ds=train_ds, use_pre_logits=True, config=config) # train_masks_bool [num_cores, per_core_batch_size] train_masks_bool = train_masks.astype(bool) # train_pre_logits [num_cores, per_core_batch_size, hidden_size, ens_size] # train_embeds [batch_size, hidden_size, ens_size] # batch_size = num_cores * per_core_batch_size train_embeds = train_pre_logits[train_masks_bool] train_labels = np.argmax(train_labels[train_masks_bool], axis=-1).ravel() use_ens = False if len(train_embeds.shape) == 3: # The output needs to the ensembled # embeds is of the shape [batch_size, hidden_size, ens_size] use_ens = True ens_size = train_embeds.shape[-1] if not use_ens: # Single model # train_embeds shape [batch_size, hidden_size] mean_list, cov = ood_utils.compute_mean_and_cov(train_embeds, train_labels) else: # Ensemble models # train_embeds shape [batch_size, hidden_size, ens_size] mean_list, cov = [], [] for m in range(ens_size): mu, sigma = ood_utils.compute_mean_and_cov(train_embeds[..., m], train_labels) mean_list.append(mu) cov.append(sigma) # Evaluate LDA on pool set if not use_ens: # Single model # pool_pre_logits [num_cores, per_core_batch_size, hidden_size] pool_pre_logits = pool_pre_logits.reshape(-1, pool_pre_logits.shape[-1]) dists = ood_utils.compute_mahalanobis_distance(pool_pre_logits, mean_list, cov) scores = np.array(jax.nn.logsumexp(-dists / 2, axis=-1)) else: # Ensemble models # pool_pre_logits [num_cores, per_core_batch_size, hidden_size, ens_size] pool_pre_logits = pool_pre_logits.reshape( [-1] + [s for s in pool_pre_logits.shape[2:]]) for m in range(ens_size): scores_list = [] d = ood_utils.compute_mahalanobis_distance(pool_pre_logits[..., m], mean_list[m], cov[m]) s = np.array(jax.nn.logsumexp(-d / 2, axis=-1)) scores_list.append(s) scores = np.mean(np.array(scores_list), axis=0) # Convert likelihood to AL score pool_masks_bool = np.array(pool_masks.ravel(), dtype=bool) scores[pool_masks_bool] = ( scores[pool_masks_bool].max() - scores[pool_masks_bool]) scores[~pool_masks_bool] = NINF_SCORE return scores def stochastic_score_acquisition(scores, acquisition_batch_size, beta, rng): """Stochastic acquisition method for batch selection https://arxiv.org/abs/2106.12059.""" noise = jax.random.gumbel(rng, [len(scores)]) noised_scores = scores + noise / beta selected_noised_scores, selected_indices = jax.lax.top_k( noised_scores, acquisition_batch_size) selected_scores = scores[selected_indices] logging.info(msg=f'selected_noised_scores = {selected_noised_scores}; ' f'selected_scores = {selected_scores}') return selected_scores, selected_indices def select_acquisition_batch_indices(*, acquisition_batch_size, scores, ids, ignored_ids, power_acquisition=True, rng=None): """Select what data points to acquire from the pool set. Args: acquisition_batch_size: the number of data point to acquire. scores: acquisition scores assigned to data points. ids: the ids belonging to the scores. ignored_ids: the ids to ignore (previously acquired). power_acquisition: True if use power method for batch selection. rng: rng for power acquisition. None if not using power_acquisition. Returns: a tuple of lists with the ids to be acquired and their scores. """ scores = jnp.array(scores.ravel()) ids = jnp.array(ids.ravel()) # Ignore already acquired ids # TODO(joost,andreas): vectorize this ids_list = ids.tolist() for ignored_id in ignored_ids: scores = scores.at[ids_list.index(ignored_id)].set(NINF_SCORE) f_ent = scores[scores > NINF_SCORE] logging.info(msg=f'Score statistics pool set - ' f'min: {f_ent.min()}, mean: {f_ent.mean()}, max: {f_ent.max()}') if power_acquisition: assert rng is not None, ('rng should not be None if power acquisition is ' 'used.') beta = 1 _, selected_indices = stochastic_score_acquisition( jnp.log(scores), acquisition_batch_size, beta, rng) else: # Use top-k otherwise. selected_scores, selected_indices = jax.lax.top_k(scores, acquisition_batch_size) logging.info(msg=f'Top-k scores: {selected_scores}') selected_ids = ids[selected_indices].tolist() selected_scores = scores[selected_indices].tolist() logging.info( msg=f'Data selected - ids: {selected_ids}, with scores: {selected_scores}' ) return selected_ids, selected_scores def acquire_points(model, current_opt_repl, pool_train_ds, train_eval_ds, train_subset_data_builder, acquisition_method, config, rng_loop): """Acquire ids of the current batch.""" pool_ids, pool_outputs, _, pool_masks = get_ids_logits_masks( model=model, opt_repl=current_opt_repl, ds=pool_train_ds, use_pre_logits=acquisition_method == 'density', average_logits=acquisition_method != 'bald', config=config) if acquisition_method == 'uniform': rng_loop, rng_acq = jax.random.split(rng_loop, 2) pool_scores = get_uniform_scores(pool_masks, rng_acq) elif acquisition_method == 'entropy': pool_scores = get_entropy_scores(pool_outputs, pool_masks) elif acquisition_method == 'margin': pool_scores = get_margin_scores(pool_outputs, pool_masks) elif acquisition_method == 'msp': pool_scores = get_msp_scores(pool_outputs, pool_masks) elif acquisition_method == 'bald': pool_scores = get_bald_scores(pool_outputs, pool_masks) elif acquisition_method == 'density': if train_subset_data_builder.subset_ids: pool_scores = get_density_scores( model=model, opt_repl=current_opt_repl, train_ds=train_eval_ds, pool_pre_logits=pool_outputs, pool_masks=pool_masks, config=config) else: rng_loop, rng_acq = jax.random.split(rng_loop, 2) pool_scores = get_uniform_scores(pool_masks, rng_acq) else: raise ValueError('Acquisition method not found.') rng_loop, rng_acq = jax.random.split(rng_loop, 2) acquisition_batch_ids, _ = select_acquisition_batch_indices( acquisition_batch_size=config.get('acquisition_batch_size'), scores=pool_scores, ids=pool_ids, ignored_ids=train_subset_data_builder.subset_ids, power_acquisition=config.get('power_acquisition', True), rng=rng_acq) return acquisition_batch_ids, rng_loop def get_accuracy(*, evaluation_fn, opt_repl, ds, prefetch_to_device=1): """A helper function to obtain accuracy over a dataset. Args: evaluation_fn: a function that evaluates a forward pass in a model. opt_repl: an optimizer with parameters. ds: a dataset. prefetch_to_device: number of batches to prefetc (default: 1). Returns: The accuracy as a float between 0 and 1. """ iter_ds = input_utils.start_input_pipeline(ds, prefetch_to_device) ncorrect, nseen = [], [] for batch in iter_ds: batch_ncorrect, _, batch_n, _ = evaluation_fn(opt_repl.target, batch['image'], batch['labels'], batch['mask']) ncorrect += [batch_ncorrect[0]] nseen += [batch_n[0]] ncorrect = np.sum(ncorrect) nseen = np.sum(nseen) return ncorrect / nseen def finetune(*, update_fn, opt_repl, lr_fn, ds, rngs_loop, total_steps, train_eval_ds, val_ds, evaluation_fn, early_stopping_patience, prefetch_to_device=1, profiler=None): """Finetunes a model on a dataset. Args: update_fn: a function that updates the model given relevant inputs. opt_repl: the optimizer. lr_fn: a function that returns the learning rate given a step. ds: the dataset to finetune on. rngs_loop: the rng for the loop. total_steps: the total number of fine-tuning steps to take. train_eval_ds: train dataset in eval mode (no augmentation or shuffling). val_ds: validation dataset for early stopping. evaluation_fn: function used for evaluation on validation set. early_stopping_patience: number of steps to wait before stopping training. prefetch_to_device: number of batches to prefetch (default: 1). profiler: periodic_actions.Profile. Returns: The optimizer with updated parameters and the updated rng. """ iter_ds = input_utils.start_input_pipeline(ds, prefetch_to_device) lr_iter = train_utils.prefetch_scalar( map(lr_fn, range(total_steps)), prefetch_to_device) best_opt_accuracy = -1 best_step = 1 train_val_accuracies = [] for current_step, train_batch, lr_repl in zip( tqdm.trange(1, total_steps + 1), iter_ds, lr_iter): opt_repl, rngs_loop, _ = update_fn(opt_repl, lr_repl, train_batch['image'], train_batch['labels'], rngs_loop) if jax.process_index() == 0 and profiler is not None: profiler(current_step) if current_step % 5 == 0: train_accuracy = get_accuracy( evaluation_fn=evaluation_fn, opt_repl=opt_repl, ds=train_eval_ds) val_accuracy = get_accuracy( evaluation_fn=evaluation_fn, opt_repl=opt_repl, ds=val_ds) logging.info( msg=f'Current accuracy - train:{train_accuracy}, val: {val_accuracy}') train_val_accuracies.append((current_step, train_accuracy, val_accuracy)) if val_accuracy >= best_opt_accuracy: best_step = current_step best_opt_accuracy = val_accuracy best_opt_repl = jax.device_get(opt_repl) else: logging.info( msg=(f'Current val accuracy {val_accuracy} ' f'(vs {best_opt_accuracy})')) if current_step - best_step >= early_stopping_patience: logging.info(msg='Early stopping, returning best opt_repl!') break # best_opt_repl could be unassigned, but we should error out then info = dict( best_val_accuracy=best_opt_accuracy, best_step=best_step, train_val_accuracies=train_val_accuracies) return best_opt_repl, rngs_loop, info def main(config, output_dir): if jax.process_count() > 1: raise NotImplementedError # Note: switch to ProfileAllHosts() if you need to profile all hosts. # (Xprof data become much larger and take longer to load for analysis) profiler = periodic_actions.Profile( # Create profile after every restart to analyze pre-emption related # problems and assure we get similar performance in every run. logdir=output_dir, first_profile=10) logging.info(config) acquisition_method = config.get('acquisition_method') if acquisition_method == 'bald': assert config.model_type == 'batchensemble', 'Bald requires batch ensemble' # Create an asynchronous multi-metric writer. writer = metric_writers.create_default_writer( output_dir, just_logging=jax.process_index() > 0) writer.write_hparams(dict(config)) # The pool is used to perform misc operations such as logging in async way. pool = multiprocessing.pool.ThreadPool() def write_note(note): if jax.process_index() == 0: logging.info('NOTE: %s', note) write_note(f'Initializing for {acquisition_method}') # Download dataset data_builder = tfds.builder(config.dataset) data_builder.download_and_prepare() seed = config.get('seed', 0) rng = jax.random.PRNGKey(seed) batch_size = config.batch_size batch_size_eval = config.get('batch_size_eval', batch_size) local_batch_size = batch_size // jax.process_count() local_batch_size_eval = batch_size_eval // jax.process_count() pp_eval = preprocess_spec.parse( spec=config.pp_eval, available_ops=preprocess_utils.all_ops()) val_ds = input_utils.get_data( dataset=config.dataset, split=config.val_split, rng=None, process_batch_size=local_batch_size_eval, preprocess_fn=pp_eval, num_epochs=1, repeat_after_batching=True, shuffle=False, prefetch_size=config.get('prefetch_to_host', 2), drop_remainder=False, ) test_ds = input_utils.get_data( dataset=config.dataset, split=config.test_split, rng=None, process_batch_size=local_batch_size_eval, preprocess_fn=pp_eval, num_epochs=1, repeat_after_batching=True, shuffle=False, prefetch_size=config.get('prefetch_to_host', 2), drop_remainder=False, ) # Init model if config.model_type == 'deterministic': model_utils = deterministic_utils reinit_params = config.get('model_reinit_params', ('head/kernel', 'head/bias')) head_prefix = 'head' model = ub.models.vision_transformer( num_classes=config.num_classes, **config.get('model', {})) elif config.model_type == 'batchensemble': model_utils = batchensemble_utils reinit_params = ('batchensemble_head/bias', 'batchensemble_head/kernel', 'batchensemble_head/fast_weight_alpha', 'batchensemble_head/fast_weight_gamma') head_prefix = 'batchensemble_head' model = ub.models.vision_transformer_be( num_classes=config.num_classes, **config.model) else: raise ValueError('Expect config.model_type to be "deterministic" or' f'"batchensemble", but received {config.model_type}.') update_fn = model_utils.create_update_fn(model, config) evaluation_fn = model_utils.create_evaluation_fn(model, config) # NOTE: We need this because we need an Id field of type int. # TODO(andreas): Rename to IdSubsetDatasetBuilder? # The original tf dataset builder but with int ids. pool_subset_data_builder = al_utils.SubsetDatasetBuilder( data_builder, subset_ids=None) # NOTE: below line is necessary on multi host setup # pool_ds_rng = jax.random.fold_in(pool_ds_rng, jax.process_index()) rng, pool_ds_rng = jax.random.split(rng) pool_train_ds = input_utils.get_data( dataset=pool_subset_data_builder, split=config.train_split, rng=pool_ds_rng, process_batch_size=local_batch_size, preprocess_fn=pp_eval, num_epochs=1, repeat_after_batching=True, shuffle=False, prefetch_size=config.get('prefetch_to_host', 2), drop_remainder=False) # Potentially acquire an initial training set. initial_training_set_size = config.get('initial_training_set_size', 10) if initial_training_set_size > 0: write_note(f'Creating {initial_training_set_size} initial training ids.') rng, rng_initial = jax.random.split(rng) initial_training_set_batch_ids = al_utils.sample_class_balanced_ids( initial_training_set_size, pool_train_ds, config.num_classes, shuffle_rng=rng_initial) else: initial_training_set_batch_ids = [] write_note(f'{len(initial_training_set_batch_ids)} initial training ids ' f'= {initial_training_set_batch_ids}') train_subset_data_builder = al_utils.SubsetDatasetBuilder( data_builder, subset_ids=initial_training_set_batch_ids) init = model_utils.create_init(model, config, test_ds) rng, rng_init = jax.random.split(rng) params_cpu = init(rng_init) if jax.process_index() == 0: num_params = sum(p.size for p in jax.tree_flatten(params_cpu)[0]) parameter_overview.log_parameter_overview(params_cpu) writer.write_scalars(step=0, scalars={'num_params': num_params}) # Load the optimizer from flax. opt_name = config.get('optim_name') opt_def = getattr(flax.optim, opt_name)(**config.get('optim', {})) if config.get('finetune_head_only', False): head_params = flax.traverse_util.ModelParamTraversal( lambda path, _: head_prefix in path) opt_def = flax.optim.MultiOptimizer((head_params, opt_def)) # We jit this, such that the arrays that are created on the same # device as the input is, in this case the CPU. Else they'd be on device[0]. opt_cpu = jax.jit(opt_def.create)(params_cpu) if config.model_init: write_note('Loading the model checkpoint...') loaded_params = checkpoint_utils.load_checkpoint( tree=None, path=config.model_init) loaded_params = checkpoint_utils.restore_from_pretrained_params( params_cpu, loaded_params, config.model.representation_size, config.model.classifier, reinit_params, ) else: write_note('Use random model initialization.') loaded_params = params_cpu opt_cpu = opt_cpu.replace(target=loaded_params) del loaded_params, params_cpu # Free up memory. # TODO(dusenberrymw): Remove this once checkpoint_utils is fixed to return # only CPU arrays. opt_cpu = jax.device_get(opt_cpu) test_accuracies = [] training_sizes = [] rng, rng_loop = jax.random.split(rng) rngs_loop = flax_utils.replicate(rng_loop) # TODO(joost,andreas): double check if below is still necessary # (train_split is independent of this) # NOTE: train_ds_rng is re-used for all train_ds creations rng, train_ds_rng = jax.random.split(rng) measurements = {} accumulated_steps = 0 current_train_ds_length = len(train_subset_data_builder.subset_ids) write_note(f'Initial training set size: {current_train_ds_length}') while current_train_ds_length <= config.get('max_training_set_size'): current_opt_repl = flax_utils.replicate(opt_cpu) # Only fine-tune if there is anything to fine-tune with. if current_train_ds_length > 0: # We repeat the dataset several times, such that we can obtain batches # of size batch_size, even at start of training. These batches will be # effectively 'bootstrap' sampled, meaning they are sampled with # replacement from the original training set. repeated_train_ds = input_utils.get_data( dataset=train_subset_data_builder, split=config.train_split, rng=train_ds_rng, process_batch_size=local_batch_size, preprocess_fn=preprocess_spec.parse( spec=config.pp_train, available_ops=preprocess_utils.all_ops()), cache='loaded', shuffle_buffer_size=config.shuffle_buffer_size, prefetch_size=config.get('prefetch_to_host', 2), ) # We use this dataset to evaluate how well we perform on the training set, # and for fitting the feature density method. # We need training set accuracy to evaluate if we fit well within # max_steps budget. train_eval_ds = input_utils.get_data( dataset=train_subset_data_builder, split=config.train_split, rng=train_ds_rng, process_batch_size=local_batch_size, preprocess_fn=pp_eval, cache='loaded', num_epochs=1, repeat_after_batching=True, shuffle=False, prefetch_size=config.get('prefetch_to_host', 2), drop_remainder=False, ) # NOTE: warmup and decay are not a good fit for the small training set # lr_fn = train_utils.create_learning_rate_schedule(config.total_steps, # **config.get('lr', {}) # ) lr_fn = lambda x: config.lr.base early_stopping_patience = config.get('early_stopping_patience', 15) current_opt_repl, rngs_loop, measurements = finetune( update_fn=update_fn, opt_repl=current_opt_repl, lr_fn=lr_fn, ds=repeated_train_ds, rngs_loop=rngs_loop, total_steps=config.total_steps, train_eval_ds=train_eval_ds, val_ds=val_ds, evaluation_fn=evaluation_fn, early_stopping_patience=early_stopping_patience, profiler=profiler) train_val_accuracies = measurements.pop('train_val_accuracies') current_steps = 0 for step, train_acc, val_acc in train_val_accuracies: writer.write_scalars(accumulated_steps + step, { 'train_accuracy': train_acc, 'val_accuracy': val_acc }) current_steps = step accumulated_steps += current_steps + 10 else: train_eval_ds = None test_accuracy = get_accuracy( evaluation_fn=evaluation_fn, opt_repl=current_opt_repl, ds=test_ds) write_note(f'Accuracy at {current_train_ds_length}: {test_accuracy}') test_accuracies.append(test_accuracy) measurements.update({'test_accuracy': test_accuracy}) writer.write_scalars(current_train_ds_length, measurements) training_subset_ids = train_subset_data_builder.subset_ids # Start picking the next training points. training_sizes.append(current_train_ds_length) acquisition_batch_ids, rng_loop = acquire_points( model, current_opt_repl, pool_train_ds, train_eval_ds, train_subset_data_builder, acquisition_method, config, rng_loop) train_subset_data_builder.subset_ids.update(acquisition_batch_ids) write_note(f'Training set ids at train set size {current_train_ds_length}:' f'{training_subset_ids}') write_note(f'Selected ids at train set size {current_train_ds_length}:' f'{acquisition_batch_ids}') current_train_ds_length = len(train_subset_data_builder.subset_ids) write_note( f'Training set size after acquisition: {current_train_ds_length}') write_note(f'Final acquired training ids: ' f'{train_subset_data_builder.subset_ids}' f'Accuracies: {test_accuracies}') pool.close() pool.join() writer.close() # TODO(joost,andreas): save the final checkpoint return (train_subset_data_builder.subset_ids, test_accuracies) if __name__ == '__main__': jax.config.config_with_absl() def _main(argv): del argv main(FLAGS.config, FLAGS.output_dir) app.run(_main) # Ignore the returned values from `main`.
apache-2.0
xyguo/scikit-learn
sklearn/tree/export.py
14
16020
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <g.louppe@gmail.com> # Peter Prettenhofer <peter.prettenhofer@gmail.com> # Brian Holt <bdholt1@gmail.com> # Noel Dawe <noel@dawe.me> # Satrajit Gosh <satrajit.ghosh@gmail.com> # Trevor Stephens <trev.stephens@gmail.com> # Licence: BSD 3 clause import numpy as np from ..externals import six from . import _criterion from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list def export_graphviz(decision_tree, out_file="tree.dot", max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) if len(sorted_values) == 1: alpha = 0 else: alpha = int(np.round(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1]), 0)) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(np.round(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0])), 0)) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
xyguo/scikit-learn
sklearn/utils/tests/test_multiclass.py
33
13405
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution from sklearn.utils.multiclass import check_classification_targets class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formatted as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that weren't supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_check_classification_targets(): for y_type in EXAMPLES.keys(): if y_type in ["unknown", "continuous", 'continuous-multioutput']: for example in EXAMPLES[y_type]: msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, check_classification_targets, example) else: for example in EXAMPLES[y_type]: check_classification_targets(example) # @ignore_warnings def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
google/uncertainty-baselines
uncertainty_baselines/datasets/toxic_comments_test.py
1
7250
# coding=utf-8 # Copyright 2022 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for toxicity classification datasets.""" from absl.testing import parameterized import pandas as pd import tensorflow as tf import tensorflow_datasets as tfds from uncertainty_baselines.datasets import toxic_comments HUB_PREPROCESS_URL = 'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3' CCDataClass = toxic_comments.CivilCommentsDataset CCIdentitiesDataClass = toxic_comments.CivilCommentsIdentitiesDataset WTDataClass = toxic_comments.WikipediaToxicityDataset def _create_fake_signals(dataset_name, is_train_signals): is_train_signals = is_train_signals[:5] is_train_signals += [0] * (5 - len(is_train_signals)) fake_signals = { 'civil_comments_identities': pd.DataFrame({ 'id': [b'876617', b'688889', b'5769682', b'4997434', b'5489660'], 'is_train': is_train_signals }), 'civil_comments': pd.DataFrame({ 'id': [b'634903', b'5977874', b'5390534', b'871483', b'825427'], 'is_train': is_train_signals }), 'wikipedia_toxicity': pd.DataFrame({ 'id': [ b'ee9697785fe41ff8', b'29fec512f2ee929e', b'88944b29dde50648', b'c7bf1f59096102f3', b'7d71ee0e8ea0794a' ], 'is_train': is_train_signals }) } return fake_signals[dataset_name] class ToxicCommentsDatasetTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('civil_train', tfds.Split.TRAIN, CCDataClass), ('civil_valid', tfds.Split.VALIDATION, CCDataClass), ('civil_test', tfds.Split.TEST, CCDataClass), ('civil_identities_train', tfds.Split.TRAIN, CCIdentitiesDataClass), ('civil_identities_valid', tfds.Split.VALIDATION, CCIdentitiesDataClass), ('civil_identities_test', tfds.Split.TEST, CCIdentitiesDataClass), ('wiki_train', tfds.Split.TRAIN, WTDataClass), ('wiki_valid', tfds.Split.VALIDATION, WTDataClass), ('wiki_test', tfds.Split.TEST, WTDataClass)) def testDatasetSize(self, split, dataset_class): batch_size = 9 if split == tfds.Split.TRAIN else 5 dataset_builder = dataset_class( split=split, dataset_type='tfds', shuffle_buffer_size=20) dataset = dataset_builder.load(batch_size=batch_size).take(1) element = next(iter(dataset)) features = element['features'] labels = element['labels'] ids = element['id'] self.assertEqual(features.shape[0], batch_size) self.assertEqual(labels.shape[0], batch_size) self.assertEqual(ids.shape[0], batch_size) @parameterized.named_parameters( ('civil_train', tfds.Split.TRAIN, CCDataClass), ('civil_valid', tfds.Split.VALIDATION, CCDataClass), ('civil_test', tfds.Split.TEST, CCDataClass), ('civil_identities_train', tfds.Split.TRAIN, CCIdentitiesDataClass), ('civil_identities_valid', tfds.Split.VALIDATION, CCIdentitiesDataClass), ('civil_identities_test', tfds.Split.TEST, CCIdentitiesDataClass), ('wiki_train', tfds.Split.TRAIN, WTDataClass), ('wiki_valid', tfds.Split.VALIDATION, WTDataClass), ('wiki_test', tfds.Split.TEST, WTDataClass)) def testTFHubProcessor(self, split, dataset_class): batch_size = 9 if split == tfds.Split.TRAIN else 5 dataset_builder = dataset_class( split=split, dataset_type='tfds', shuffle_buffer_size=20, tf_hub_preprocessor_url=HUB_PREPROCESS_URL) dataset = dataset_builder.load(batch_size=batch_size).take(1) element = next(iter(dataset)) input_ids = element['input_ids'] input_mask = element['input_mask'] segment_ids = element['segment_ids'] self.assertEqual(input_ids.shape[0], batch_size) self.assertEqual(input_mask.shape[0], batch_size) self.assertEqual(segment_ids.shape[0], batch_size) @parameterized.named_parameters( ('civil_comments', CCDataClass), ('civil_comments_identities', CCIdentitiesDataClass), ('wikipedia_toxicity', WTDataClass)) def testSubType(self, dataset_class): """Test if toxicity subtype is available from the example.""" batch_size = 9 dataset_builder = dataset_class( split=tfds.Split.TRAIN, dataset_type='tfds', shuffle_buffer_size=20) dataset = dataset_builder.load(batch_size=batch_size).take(1) element = next(iter(dataset)) for subtype_name in dataset_builder.additional_labels: self.assertEqual(element[subtype_name].shape[0], batch_size) self.assertEqual(element[subtype_name].dtype, tf.float32) @parameterized.named_parameters( ('civil_comments', 'civil_comments', CCDataClass), ('civil_comments_identities', 'civil_comments_identities', CCIdentitiesDataClass), ('wikipedia_toxicity', 'wikipedia_toxicity', WTDataClass)) def testAppendSignals(self, dataset_name, dataset_class): """Test if toxicity subtype is available from the example.""" batch_size = 5 is_train_signals = [1, 0, 0, 1, 0] signals = _create_fake_signals(dataset_name, is_train_signals) dataset_builder = dataset_class( split=tfds.Split.TRAIN, dataset_type='tfds', is_training=False, # Fix the order. signals=signals, shuffle_buffer_size=20) dataset = dataset_builder.load(batch_size=batch_size).take(1) element = next(iter(dataset)) self.assertEqual(element['is_train'].numpy().tolist(), is_train_signals) @parameterized.named_parameters( ('civil_comments', 'civil_comments', CCDataClass), ('civil_comments_identities', 'civil_comments_identities', CCIdentitiesDataClass), ('wikipedia_toxicity', 'wikipedia_toxicity', WTDataClass)) def testOnlyKeepTrainExamples(self, dataset_name, dataset_class): """Test if toxicity subtype is available from the example.""" batch_size = 3 is_train_signals = [1, 1, 0, 1, 1] signals = _create_fake_signals(dataset_name, is_train_signals) dataset_builder = dataset_class( split=tfds.Split.TRAIN, dataset_type='tfds', is_training=False, # Fix the order. signals=signals, only_keep_train_examples=True, shuffle_buffer_size=20) dataset = dataset_builder.load(batch_size=batch_size).take(1) element = next(iter(dataset)) self.assertEqual(dataset_builder.num_examples, sum(is_train_signals)) expected_is_train_ids = signals[signals['is_train'] == 1]['id'].values.tolist() self.assertEqual(element['id'].numpy().tolist(), expected_is_train_ids[:batch_size]) if __name__ == '__main__': tf.test.main()
apache-2.0
ishanic/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
385
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
xyguo/scikit-learn
examples/applications/topics_extraction_with_nmf_lda.py
37
3869
""" ======================================================================================= Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation ======================================================================================= This is an example of applying Non-negative Matrix Factorization and Latent Dirichlet Allocation on a corpus of documents and extract additive models of the topic structure of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown). The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of seconds. You can try to increase the dimensions of the problem, but be aware that the time complexity is polynomial in NMF. In LDA, the time complexity is proportional to (n_samples * iterations). """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # Lars Buitinck # Chyi-Kwei Yau <chyikwei.yau@gmail.com> # License: BSD 3 clause from __future__ import print_function from time import time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation from sklearn.datasets import fetch_20newsgroups n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print() # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics # to filter out useless terms early on: the posts are stripped of headers, # footers and quoted replies, and common English words, words occurring in # only one document or in at least 95% of the documents are removed. print("Loading dataset...") t0 = time() dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) data_samples = dataset.data[:n_samples] print("done in %0.3fs." % (time() - t0)) # Use tf-idf features for NMF. print("Extracting tf-idf features for NMF...") tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tfidf = tfidf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) # Use tf (raw term count) features for LDA. print("Extracting tf features for LDA...") tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(data_samples) print("done in %0.3fs." % (time() - t0)) # Fit the NMF model print("Fitting the NMF model with tf-idf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) t0 = time() nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model:") tfidf_feature_names = tfidf_vectorizer.get_feature_names() print_top_words(nmf, tfidf_feature_names, n_top_words) print("Fitting LDA models with tf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', learning_offset=50., random_state=0) t0 = time() lda.fit(tf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(lda, tf_feature_names, n_top_words)
bsd-3-clause
MichaelChatzidakis/Mn_Classifier_CNNs
test_digitized_spectra.py
1
4604
import glob from keras.models import load_model import pandas as pd import numpy as np from matplotlib import pyplot as plt import glob import os import sys from train_crossval import load_data from sklearn.model_selection import StratifiedKFold from keras.utils import np_utils def main(argv): data_path = '/home/mike/Mn_Valences/Mn_Classifier_CV_Good_Copy/Data/Digitized_Mn_Usecases.pkl' data = pd.read_pickle(data_path) valence_names = ['Mn4', 'Mn2', 'Mn3', 'mixed23', 'mixed34', 'mixed'] spectra_set,key=[],[] for valence in range(len(data)): for spectra in range(len(data[valence])): bins = 300 lower_bound=600 upper_bound=700 x = data[valence].iloc[spectra]['Energy'] y = data[valence].iloc[spectra]['Intensity'] x = x[(x>lower_bound)] x = x[(x<upper_bound)] y = y[x.index] min_energy = np.min(x) max_energy = np.max(x) new_energy=np.linspace(min_energy,max_energy,bins) new_intensity = np.interp(new_energy, x, y) spectra_set.append(new_intensity) key.append(spectra) labels = [2]*12+[0]*10+[1]*9 spectra_set=spectra_set[:len(labels)] x,y = load_data() cv = StratifiedKFold(n_splits=10, random_state=13, shuffle=False) X_train = [x[train_index] for train_index, test_index in cv.split(x, y)] X_test = [x[test_index] for train_index, test_index in cv.split(x, y)] y_train = [y[train_index] for train_index, test_index in cv.split(x, y)] y_test = [y[test_index] for train_index, test_index in cv.split(x, y)] spectra_set=np.array(spectra_set).astype('float32') spectra_set -= np.mean(x) spectra_set /= np.max(x) spectra_set = spectra_set.reshape(spectra_set.shape + (1,)) labels = np.array(labels) labels = np_utils.to_categorical(labels) neural_network_name=['mlp_500epochs_Shift_dataaug-x0', 'cnn_500epochs_Shift_dataaug-x0', 'cnnmlp_500epochs_Shift_dataaug-x0', 'mlp_500epochs_Shift_dataaug-x1', 'cnn_500epochs_Shift_dataaug-x1', 'cnnmlp_500epochs_Shift_dataaug-x1', 'mlp_500epochs_Shift_dataaug-x10', 'cnn_500epochs_Shift_dataaug-x10', 'cnnmlp_500epochs_Shift_dataaug-x10'] scores = np.zeros((9,10)) for j,name in enumerate(neural_network_name): print(name) weights_paths=load_best_weights(name) for i in range(10): print("fold", i) model=load_model(weights_paths[i]) scores[j][i]=model.evaluate(spectra_set, labels, verbose=0)[1] print(scores[j][i]) import pdb; pdb.set_trace() pd.DataFrame(scores).to_csv('{}_scores_dig_ref_spec.csv'.format(neural_network_name)) def load_best_weights(model): root_path = os.path.join('/home/mike/Mn_Valences/Mn_Classifier_Reviewer_edits/weights/cross_validation_results/', model) try: weight_folds=sorted(next(os.walk(root_path))[1]) except StopIteration: pass weights=[] for fold in weight_folds: files_path = os.path.join(root_path, fold, '*.h5') cv_weights = sorted(glob.iglob(files_path), key=os.path.getctime, reverse=True) weights.append(cv_weights[0]) return weights def get_pred_score(spectra_set, models): pred_score_mlp1=[] for j, unknown_spectra in enumerate(spectra_set): pred_label=[] print("loading spectra: {}.".format( round(unknown_spectra.mean(),4) ) ) for i in range(10): print(j, i) data_set = X_train[i] unknown_spectra -= np.mean(data_set) unknown_spectra /= np.max(data_set) pred = models[i].predict(unknown_spectra.reshape(1,300,1), verbosity=1) pred_label.append(np.argmax(pred)) pred_label=pred_label pred_score_mlp1.append(pred_label) print("Real label is {}, predicted label is {}".format(labels[j], pred_score_mlp1[j])) return pred_score_mlp1 def get_acc_scores(pred_score_cnnmlp): ss=pd.DataFrame([(pred_score_cnnmlp)]).transpose() ss['round'] =np.round(pred_score_cnnmlp).astype('int') ss['labels']=labels ss['correct'] = ss['round']==ss['labels'] acc=[] for valence in [0,1,2]: acc.append(ss[ss['labels']==valence]['correct'].sum()/len( ss[ss['labels']==valence]['correct'])*1.0) return acc if __name__ == "__main__": main(sys.argv)
mit
ChanChiChoi/scikit-learn
examples/ensemble/plot_ensemble_oob.py
257
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <hui.kian.ho@gmail.com> # Gilles Louppe <g.louppe@gmail.com> # Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
rigdenlab/conkit
conkit/misc/tests/test___init__.py
1
4394
"""Testing facility for conkit.misc.__init__""" __author__ = "Felix Simkovic" __date__ = "10 Jan 2018" import unittest from conkit.misc import * from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler class TestMiscInit(unittest.TestCase): def test_load_validation_model_1(self): classifier, scaler = load_validation_model() self.assertIsInstance(classifier, SVC) self.assertIsInstance(scaler, StandardScaler) def test_load_validation_model_2(self): classifier, scaler = load_validation_model() self.assertEqual(classifier.n_features_in_, len(SELECTED_VALIDATION_FEATURES)) self.assertEqual(scaler.n_features_in_, len(SELECTED_VALIDATION_FEATURES)) def test_load_validation_model_3(self): classifier, scaler = load_validation_model() self.assertTrue(hasattr(classifier, 'predict_proba')) self.assertTrue(hasattr(scaler, 'transform')) def test_normalize_1(self): self.assertListEqual([0.0, 0.5, 1.0], normalize([1, 2, 3])) def test_normalize_2(self): self.assertListEqual([0.0, 0.5, 1.0], normalize([0.0, 0.5, 1.0])) def test_normalize_3(self): self.assertListEqual([0.0, 0.5, 1.0], normalize([-3, -2, -1])) def test_normalize_4(self): self.assertListEqual([0.0, 1.0], normalize([1, 2])) def test_normalize_5(self): self.assertListEqual([-1.0, 1.0], normalize([1, 2], vmin=-1)) def test_normalize_6(self): self.assertListEqual([0.0, 2.0], normalize([1, 2], vmax=2)) def test_normalize_7(self): self.assertListEqual([0.0, -1.0], normalize([1, 2], vmax=-1)) def test_normalize_8(self): self.assertListEqual([0.2, 0.8], normalize([1, 2], vmin=0.2, vmax=0.8)) def test_normalize_9(self): self.assertListEqual([0.2, 0.5, 0.8], normalize([1, 2, 3], vmin=0.2, vmax=0.8)) def test_normalize_10(self): self.assertListEqual([1.0, 1.0, 1.0], normalize([2, 2, 2])) def test_normalize_11(self): self.assertListEqual([0.8, 0.8, 0.8], normalize([2, 2, 2], vmin=0.2, vmax=0.8)) def test_deprecated_1(self): @deprecate("0.0.0") def f(): return True self.assertTrue(f()) def test_deprecated_2(self): @deprecate("0.0.0", msg="hello world") def f(): return True self.assertTrue(f()) def test_deprecated_3(self): @deprecate("0.0.0") def f(a, b): return a + b self.assertEqual(2, f(1, 1)) def test_deprecated_4(self): @deprecate("0.0.0") class Obj(object): pass self.assertTrue(Obj()) def test_deprecated_5(self): class Obj(object): @deprecate("0.0.0") def f(self, a, b): return a + b self.assertEqual(2, Obj().f(1, 1)) def test_deprecated_6(self): class Obj(object): @staticmethod @deprecate("0.0.0") def f(a, b): return a + b self.assertEqual(2, Obj.f(1, 1)) def test_deprecated_7(self): class Obj(object): @classmethod @deprecate("0.0.0") def f(cls, a, b): return a + b self.assertEqual(2, Obj().f(1, 1)) def test_deprecated_8(self): class Obj(object): @property @deprecate("0.0.0") def x(self): return 1 self.assertEqual(1, Obj().x) def test_deprecated_9(self): class Obj(object): @property def x(self): return self._x @x.setter @deprecate("0.0.0") def x(self, x): self._x = x o = Obj() o.x = 2 self.assertEqual(2, o.x) def test_deprecated_10(self): class Obj(object): @deprecate("0.0.0") @staticmethod def f(a, b): return a + b with self.assertRaises(Exception): Obj.f(1, 1) def test_deprecated_11(self): class Obj(object): @deprecate("0.0.0") @classmethod def f(cls, a, b): return a + b with self.assertRaises(AttributeError): Obj().f(1, 1) if __name__ == "__main__": unittest.main(verbosity=2)
bsd-3-clause
swethasubramanian/LungCancerDetection
src/models/predict_model.py
2
6291
""" A script to predict nodules using conv net model and for analysis of results """ import tflearn from cnn_model import CNNModel import tensorflow as tf import pickle import pandas as pd import numpy as np import h5py from sklearn.metrics import roc_curve, auc, confusion_matrix import itertools import matplotlib.pyplot as plt hdfs_file = '../data/test.h5' def create_mosaic(image, nrows, ncols): """ Tiles all the layers in nrows x ncols Args: ------ image = 3d numpy array of M * N * number of filters dimensions nrows = integer representing number of images in a row ncol = integer representing number of images in a column returns formatted image """ M = image.shape[1] N = image.shape[2] npad = ((0,0), (1,1), (1,1)) image = np.pad(image, pad_width = npad, mode = 'constant',\ constant_values = 0) M += 2 N += 2 image = image.reshape(nrows, ncols, M, N) image = np.transpose(image, (0,2,1,3)) image = image.reshape(M*nrows, N*ncols) return image def format_image(image, num_images): """ Formats images """ idxs = np.random.choice(image.shape[0], num_images) M = image.shape[1] N = image.shape[2] imagex = np.squeeze(image[idxs, :, :, :]) print imagex.shape return imagex def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Purples): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) #plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() #plt.grid('off') plt.ylabel('True label') plt.xlabel('Predicted label') def load_images(filename): """ Loads images contained in hdfs file """ h5f2 = h5py.File(filename, 'r') X_test_images = h5f2['X'] Y_test_labels = h5f2['Y'] return X_test_images, Y_test_labels def plot_predictions(images, filename): """ Plots the predictions mosaic """ imagex = format_image(images, 4) mosaic = create_mosaic(imagex, 2, 2) plt.figure(figsize = (12, 12)) plt.imshow(mosaic, cmap = 'gray') plt.axis('off') plt.savefig(filename + '.png', bbox_inches='tight') def get_predictions(X_test_images, Y_test_labels): """ Args: ------ Given hdfs file of X_test_images and Y_test_labels returns: -------- predictions: probability values for each class label_predictions: returns predicted classes """ ## Model definition convnet = CNNModel() network = convnet.define_network(X_test_images) model = tflearn.DNN(network, tensorboard_verbose=0,\ checkpoint_path='nodule3-classifier.tfl.ckpt') model.load("nodule3-classifier.tfl") predictions = np.vstack(model.predict(X_test_images[:,:,:,:])) #label_predictions = np.vstack(model.predict_label(X_test_images[:,:,:,:])) score = model.evaluate(X_test_images, Y_test_labels) label_predictions = np.zeros_like(predictions) label_predictions[np.arange(len(predictions)), predictions.argmax(1)] = 1 return predictions, label_predictions def get_roc_curve(Y_test_labels, predictions): """ Args: ------- hdfs datasets: Y_test_labels and predictions Returns: -------- fpr: false positive Rate tpr: true posiive Rate roc_auc: area under the curve value """ fpr, tpr, thresholds = roc_curve(Y_test_labels[:,1], predictions[:,1], pos_label=1) roc_auc = auc(fpr, tpr) return fpr, tpr, roc_auc def get_metrics(Y_test_labels, label_predictions): """ Args: ----- Y_test_labels, label_predictions Returns: -------- precision, recall and specificity values and cm """ cm = confusion_matrix(Y_test_labels[:,1], label_predictions[:,1]) TN = cm[0][0] FP = cm[0][1] FN = cm[1][0] TP = cm[1][1] precision = TP*1.0/(TP+FP) recall = TP*1.0/(TP+FN) specificity = TN*1.0/(TN+FP) return precision, recall, specificity, cm def plot_roc_curve(fpr, tpr, roc_auc): """ Plots ROC curve Args: ----- FPR, TPR and AUC """ plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='(AUC = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.axis('equal') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc="lower right") plt.savefig('roc1.png', bbox_inches='tight') def main(): X_test_images, Y_test_labels = load_images(hdfs_file) predictions, label_predictions = \ get_predictions(X_test_images, Y_test_labels) fpr, tpr, roc_auc = get_roc_curve(Y_test_labels, predictions) plot_roc_curve(fpr, tpr, roc_auc) precision, recall, specificity, cm =\ get_metrics(Y_test_labels, label_predictions) print precision, recall, specificity # Plot non-normalized confusion matrix plt.figure() plot_confusion_matrix(cm, classes=['no-nodule', 'nodule'], \ title='Confusion matrix') plt.savefig('confusion_matrix.png', bbox_inches='tight') # Plot all inputs representing True Positives, FP, FN, TN TP_images = X_test_images[(Y_test_labels[:,1] == 1) & (label_predictions[:,1] == 1), :,:,:] FP_images = X_test_images[(Y_test_labels[:,1] == 0) & (label_predictions[:,1] == 1), :,:,:] TN_images = X_test_images[(Y_test_labels[:,1] == 0) & (label_predictions[:,1] == 0), :,:,:] FN_images = X_test_images[(Y_test_labels[:,1] == 1) & (label_predictions[:,1] == 0), :,:,:] ## Choose 16 images randomly plot_predictions(TP_images, 'preds_tps') plot_predictions(TN_images, 'preds_tns') plot_predictions(FN_images, 'preds_fns') plot_predictions(FP_images, 'preds_fps') if __name__ == "__main__": main()
mit
zachmayer/gensim
gensim/corpora/sharded_corpus.py
63
35097
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Original author: Jan Hajic jr. # Copyright (C) 2015 Radim Rehurek and gensim team. # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ This module implements a corpus class that stores its data in separate files called "shards". This is a compromise between speed (keeping the whole dataset in memory) and memory footprint (keeping the data on disk and reading from it on demand). The corpus is intended for situations where you need to use your data as numpy arrays for some iterative processing (like training something using SGD, which usually involves heavy matrix multiplication). """ from __future__ import print_function import logging import os import math import numpy import scipy.sparse as sparse import time logger = logging.getLogger(__name__) #: Specifies which dtype should be used for serializing the shards. _default_dtype = float try: import theano _default_dtype = theano.config.floatX except ImportError: logger.info('Could not import Theano, will use standard float for default ShardedCorpus dtype.') from six.moves import xrange import gensim from gensim.corpora import IndexedCorpus from gensim.interfaces import TransformedCorpus class ShardedCorpus(IndexedCorpus): """ This corpus is designed for situations where you need to train a model on matrices, with a large number of iterations. (It should be faster than gensim's other IndexedCorpus implementations for this use case; check the `benchmark_datasets.py` script. It should also serialize faster.) The corpus stores its data in separate files called "shards". This is a compromise between speed (keeping the whole dataset in memory) and memory footprint (keeping the data on disk and reading from it on demand). Persistence is done using the standard gensim load/save methods. .. note:: The dataset is **read-only**, there is - as opposed to gensim's Similarity class, which works similarly - no way of adding documents to the dataset (for now). You can use ShardedCorpus to serialize your data just like any other gensim corpus that implements serialization. However, because the data is saved as numpy 2-dimensional ndarrays (or scipy sparse matrices), you need to supply the dimension of your data to the corpus. (The dimension of word frequency vectors will typically be the size of the vocabulary, etc.) >>> corpus = gensim.utils.mock_data() >>> output_prefix = 'mydata.shdat' >>> ShardedCorpus.serialize(output_prefix, corpus, dim=1000) The `output_prefix` tells the ShardedCorpus where to put the data. Shards are saved as `output_prefix.0`, `output_prefix.1`, etc. All shards must be of the same size. The shards can be re-sized (which is essentially a re-serialization into new-size shards), but note that this operation will temporarily take twice as much disk space, because the old shards are not deleted until the new shards are safely in place. After serializing the data, the corpus will then save itself to the file `output_prefix`. On further initialization with the same `output_prefix`, the corpus will load the already built dataset unless the `overwrite` option is given. (A new object is "cloned" from the one saved to `output_prefix` previously.) To retrieve data, you can load the corpus and use it like a list: >>> sh_corpus = ShardedCorpus.load(output_prefix) >>> batch = sh_corpus[100:150] This will retrieve a numpy 2-dimensional array of 50 rows and 1000 columns (1000 was the dimension of the data we supplied to the corpus). To retrieve gensim-style sparse vectors, set the `gensim` property: >>> sh_corpus.gensim = True >>> batch = sh_corpus[100:150] The batch now will be a generator of gensim vectors. Since the corpus needs the data serialized in order to be able to operate, it will serialize data right away on initialization. Instead of calling `ShardedCorpus.serialize()`, you can just initialize and use the corpus right away: >>> corpus = ShardedCorpus(output_prefix, corpus, dim=1000) >>> batch = corpus[100:150] ShardedCorpus also supports working with scipy sparse matrices, both during retrieval and during serialization. If you want to serialize your data as sparse matrices, set the `sparse_serialization` flag. For retrieving your data as sparse matrices, use the `sparse_retrieval` flag. (You can also retrieve densely serialized data as sparse matrices, for the sake of completeness, and vice versa.) By default, the corpus will retrieve numpy ndarrays even if it was serialized into sparse matrices. >>> sparse_prefix = 'mydata.sparse.shdat' >>> ShardedCorpus.serialize(sparse_prefix, corpus, dim=1000, sparse_serialization=True) >>> sparse_corpus = ShardedCorpus.load(sparse_prefix) >>> batch = sparse_corpus[100:150] >>> type(batch) <type 'numpy.ndarray'> >>> sparse_corpus.sparse_retrieval = True >>> batch = sparse_corpus[100:150] <class 'scipy.sparse.csr.csr_matrix'> While you *can* touch the `sparse_retrieval` attribute during the life of a ShardedCorpus object, you should definitely not touch ` `sharded_serialization`! Changing the attribute will not miraculously re-serialize the data in the requested format. The CSR format is used for sparse data throughout. Internally, to retrieve data, the dataset keeps track of which shard is currently open and on a `__getitem__` request, either returns an item from the current shard, or opens a new one. The shard size is constant, except for the last shard. """ def __init__(self, output_prefix, corpus, dim=None, shardsize=4096, overwrite=False, sparse_serialization=False, sparse_retrieval=False, gensim=False): """Initializes the dataset. If `output_prefix` is not found, builds the shards. :type output_prefix: str :param output_prefix: The absolute path to the file from which shard filenames should be derived. The individual shards will be saved as `output_prefix.0`, `output_prefix.1`, etc. The `output_prefix` path then works as the filename to which the ShardedCorpus object itself will be automatically saved. Normally, gensim corpora do not do this, but ShardedCorpus needs to remember several serialization settings: namely the shard size and whether it was serialized in dense or sparse format. By saving automatically, any new ShardedCorpus with the same `output_prefix` will be able to find the information about the data serialized with the given prefix. If you want to *overwrite* your data serialized with some output prefix, set the `overwrite` flag to True. Of course, you can save your corpus separately as well using the `save()` method. :type corpus: gensim.interfaces.CorpusABC :param corpus: The source corpus from which to build the dataset. :type dim: int :param dim: Specify beforehand what the dimension of a dataset item should be. This is useful when initializing from a corpus that doesn't advertise its dimension, or when it does and you want to check that the corpus matches the expected dimension. **If `dim` is left unused and `corpus` does not provide its dimension in an expected manner, initialization will fail.** :type shardsize: int :param shardsize: How many data points should be in one shard. More data per shard means less shard reloading but higher memory usage and vice versa. :type overwrite: bool :param overwrite: If set, will build dataset from given corpus even if `output_prefix` already exists. :type sparse_serialization: bool :param sparse_serialization: If set, will save the data in a sparse form (as csr matrices). This is to speed up retrieval when you know you will be using sparse matrices. ..note:: This property **should not change** during the lifetime of the dataset. (If you find out you need to change from a sparse to a dense representation, the best practice is to create another ShardedCorpus object.) :type sparse_retrieval: bool :param sparse_retrieval: If set, will retrieve data as sparse vectors (numpy csr matrices). If unset, will return ndarrays. Note that retrieval speed for this option depends on how the dataset was serialized. If `sparse_serialization` was set, then setting `sparse_retrieval` will be faster. However, if the two settings do not correspond, the conversion on the fly will slow the dataset down. :type gensim: bool :param gensim: If set, will convert the output to gensim sparse vectors (list of tuples (id, value)) to make it behave like any other gensim corpus. This **will** slow the dataset down. """ self.output_prefix = output_prefix self.shardsize = shardsize self.n_docs = 0 self.offsets = [] self.n_shards = 0 self.dim = dim # This number may change during initialization/loading. # Sparse vs. dense serialization and retrieval. self.sparse_serialization = sparse_serialization self.sparse_retrieval = sparse_retrieval self.gensim = gensim # The "state" of the dataset. self.current_shard = None # The current shard itself (numpy ndarray) self.current_shard_n = None # Current shard is the current_shard_n-th self.current_offset = None # The index into the dataset which # corresponds to index 0 of current shard logger.info('Initializing sharded corpus with prefix ' '{0}'.format(output_prefix)) if (not os.path.isfile(output_prefix)) or overwrite: logger.info('Building from corpus...') self.init_shards(output_prefix, corpus, shardsize) # Save automatically, to facilitate re-loading # and retain information about how the corpus # was serialized. logger.info('Saving ShardedCorpus object to ' '{0}'.format(self.output_prefix)) self.save() else: logger.info('Cloning existing...') self.init_by_clone() def init_shards(self, output_prefix, corpus, shardsize=4096, dtype=_default_dtype): """Initialize shards from the corpus.""" if not gensim.utils.is_corpus(corpus): raise ValueError('Cannot initialize shards without a corpus to read' ' from! (Got corpus type: {0})'.format(type(corpus))) proposed_dim = self._guess_n_features(corpus) if proposed_dim != self.dim: if self.dim is None: logger.info('Deriving dataset dimension from corpus: ' '{0}'.format(proposed_dim)) else: logger.warn('Dataset dimension derived from input corpus diffe' 'rs from initialization argument, using corpus.' '(corpus {0}, init arg {1})'.format(proposed_dim, self.dim)) self.dim = proposed_dim self.offsets = [0] start_time = time.clock() logger.info('Running init from corpus.') for n, doc_chunk in enumerate(gensim.utils.grouper(corpus, chunksize=shardsize)): logger.info('Chunk no. {0} at {1} s'.format(n, time.clock() - start_time)) current_shard = numpy.zeros((len(doc_chunk), self.dim), dtype=dtype) logger.debug('Current chunk dimension: ' '{0} x {1}'.format(len(doc_chunk), self.dim)) for i, doc in enumerate(doc_chunk): doc = dict(doc) current_shard[i][list(doc)] = list(gensim.matutils.itervalues(doc)) # Handles the updating as well. if self.sparse_serialization: current_shard = sparse.csr_matrix(current_shard) self.save_shard(current_shard) end_time = time.clock() logger.info('Built {0} shards in {1} s.'.format(self.n_shards, end_time - start_time)) def init_by_clone(self): """ Initialize by copying over attributes of another ShardedCorpus instance saved to the output_prefix given at __init__(). """ temp = self.__class__.load(self.output_prefix) self.n_shards = temp.n_shards self.n_docs = temp.n_docs self.offsets = temp.offsets if temp.dim != self.dim: if self.dim is None: logger.info('Loaded dataset dimension: {0}'.format(temp.dim)) else: logger.warn('Loaded dataset dimension differs from init arg ' 'dimension, using loaded dim. ' '(loaded {0}, init {1})'.format(temp.dim, self.dim)) self.dim = temp.dim # To be consistent with the loaded data! def save_shard(self, shard, n=None, filename=None): """ Pickle the given shard. If `n` is not given, will consider the shard a new one. If `filename` is given, will use that file name instead of generating one. """ new_shard = False if n is None: n = self.n_shards # Saving the *next* one by default. new_shard = True if not filename: filename = self._shard_name(n) gensim.utils.pickle(shard, filename) if new_shard: self.offsets.append(self.offsets[-1] + shard.shape[0]) self.n_docs += shard.shape[0] self.n_shards += 1 def load_shard(self, n): """ Load (unpickle) the n-th shard as the "live" part of the dataset into the Dataset object.""" #logger.debug('ShardedCorpus loading shard {0}, ' # 'current shard: {1}'.format(n, self.current_shard_n)) # No-op if the shard is already open. if self.current_shard_n == n: return filename = self._shard_name(n) if not os.path.isfile(filename): raise ValueError('Attempting to load nonexistent shard no. {0}'.format(n)) shard = gensim.utils.unpickle(filename) self.current_shard = shard self.current_shard_n = n self.current_offset = self.offsets[n] def reset(self): """ Reset to no shard at all. Used for saving. """ self.current_shard = None self.current_shard_n = None self.current_offset = None def shard_by_offset(self, offset): """ Determine which shard the given offset belongs to. If the offset is greater than the number of available documents, raises a `ValueError`. Assumes that all shards have the same size. """ k = int(offset / self.shardsize) if offset >= self.n_docs: raise ValueError('Too high offset specified ({0}), available ' 'docs: {1}'.format(offset, self.n_docs)) if offset < 0: raise ValueError('Negative offset {0} currently not' ' supported.'.format(offset)) return k k = -1 for i, o in enumerate(self.offsets): if o > offset: # Condition should fire for every valid offset, # since the last offset is n_docs (one-past-end). k = i - 1 # First offset is always 0, so i is at least 1. break return k def in_current(self, offset): """ Determine whether the given offset falls within the current shard. """ return (self.current_offset <= offset) \ and (offset < self.offsets[self.current_shard_n + 1]) def in_next(self, offset): """ Determine whether the given offset falls within the next shard. This is a very small speedup: typically, we will be iterating through the data forward. Could save considerable time with a very large number of smaller shards. """ if self.current_shard_n == self.n_shards: return False # There's no next shard. return (self.offsets[self.current_shard_n + 1] <= offset) \ and (offset < self.offsets[self.current_shard_n + 2]) def resize_shards(self, shardsize): """ Re-process the dataset to new shard size. This may take pretty long. Also, note that you need some space on disk for this one (we're assuming there is enough disk space for double the size of the dataset and that there is enough memory for old + new shardsize). :type shardsize: int :param shardsize: The new shard size. """ # Determine how many new shards there will be n_new_shards = int(math.floor(self.n_docs / float(shardsize))) if self.n_docs % shardsize != 0: n_new_shards += 1 new_shard_names = [] new_offsets = [0] for new_shard_idx in xrange(n_new_shards): new_start = shardsize * new_shard_idx new_stop = new_start + shardsize # Last shard? if new_stop > self.n_docs: # Sanity check assert new_shard_idx == n_new_shards - 1, \ 'Shard no. {0} that ends at {1} over last document' \ ' ({2}) is not the last projected shard ({3})???' \ ''.format(new_shard_idx, new_stop, self.n_docs, n_new_shards) new_stop = self.n_docs new_shard = self[new_start:new_stop] new_shard_name = self._resized_shard_name(new_shard_idx) new_shard_names.append(new_shard_name) try: self.save_shard(new_shard, new_shard_idx, new_shard_name) except Exception: # Clean up on unsuccessful resize. for new_shard_name in new_shard_names: os.remove(new_shard_name) raise new_offsets.append(new_stop) # Move old shard files out, new ones in. Complicated due to possibility # of exceptions. old_shard_names = [self._shard_name(n) for n in xrange(self.n_shards)] try: for old_shard_n, old_shard_name in enumerate(old_shard_names): os.remove(old_shard_name) except Exception as e: logger.error('Exception occurred during old shard no. {0} ' 'removal: {1}.\nAttempting to at least move ' 'new shards in.'.format(old_shard_n, str(e))) finally: # If something happens with cleaning up - try to at least get the # new guys in. try: for shard_n, new_shard_name in enumerate(new_shard_names): os.rename(new_shard_name, self._shard_name(shard_n)) # If something happens when we're in this stage, we're screwed. except Exception as e: print(e) raise RuntimeError('Resizing completely failed for some reason.' ' Sorry, dataset is probably ruined...') finally: # Sets the new shard stats. self.n_shards = n_new_shards self.offsets = new_offsets self.shardsize = shardsize self.reset() def _shard_name(self, n): """Generate the name for the n-th shard.""" return self.output_prefix + '.' + str(n) def _resized_shard_name(self, n): """ Generate the name for the n-th new shard temporary file when resizing dataset. The file will then be re-named to standard shard name. """ return self.output_prefix + '.resize-temp.' + str(n) def _guess_n_features(self, corpus): """Attempt to guess number of features in `corpus`.""" n_features = None if hasattr(corpus, 'dim'): # print 'Guessing from \'dim\' attribute.' n_features = corpus.dim elif hasattr(corpus, 'dictionary'): # print 'GUessing from dictionary.' n_features = len(corpus.dictionary) elif hasattr(corpus, 'n_out'): # print 'Guessing from \'n_out\' attribute.' n_features = corpus.n_out elif hasattr(corpus, 'num_terms'): # print 'Guessing from \'num_terms\' attribute.' n_features = corpus.num_terms elif isinstance(corpus, TransformedCorpus): # TransformedCorpus: first check if the transformer object # defines some output dimension; if it doesn't, relegate guessing # to the corpus that is being transformed. This may easily fail! try: return self._guess_n_features(corpus.obj) except TypeError: return self._guess_n_features(corpus.corpus) else: if not self.dim: raise TypeError('Couldn\'t find number of features, ' 'refusing to guess (dimension set to {0},' 'type of corpus: {1}).'.format(self.dim, type(corpus))) else: logger.warn('Couldn\'t find number of features, trusting ' 'supplied dimension ({0})'.format(self.dim)) n_features = self.dim if self.dim and n_features != self.dim: logger.warn('Discovered inconsistent dataset dim ({0}) and ' 'feature count from corpus ({1}). Coercing to dimension' ' given by argument.'.format(self.dim, n_features)) return n_features def __len__(self): return self.n_docs def _ensure_shard(self, offset): # No shard loaded if self.current_shard is None: shard_n = self.shard_by_offset(offset) self.load_shard(shard_n) # Find appropriate shard, if necessary elif not self.in_current(offset): if self.in_next(offset): self.load_shard(self.current_shard_n + 1) else: shard_n = self.shard_by_offset(offset) self.load_shard(shard_n) def get_by_offset(self, offset): """As opposed to getitem, this one only accepts ints as offsets.""" self._ensure_shard(offset) result = self.current_shard[offset - self.current_offset] return result def __getitem__(self, offset): """ Retrieve the given row of the dataset. Supports slice notation. """ if isinstance(offset, list): # Handle all serialization & retrieval options. if self.sparse_serialization: l_result = sparse.vstack([self.get_by_offset(i) for i in offset]) if self.gensim: l_result = self._getitem_sparse2gensim(l_result) elif not self.sparse_retrieval: l_result = numpy.array(l_result.todense()) else: l_result = numpy.array([self.get_by_offset(i) for i in offset]) if self.gensim: l_result = self._getitem_dense2gensim(l_result) elif self.sparse_retrieval: l_result = sparse.csr_matrix(l_result) return l_result elif isinstance(offset, slice): start = offset.start stop = offset.stop if stop > self.n_docs: raise IndexError('Requested slice offset {0} out of range' ' ({1} docs)'.format(stop, self.n_docs)) # - get range of shards over which to iterate first_shard = self.shard_by_offset(start) last_shard = self.n_shards - 1 if not stop == self.n_docs: last_shard = self.shard_by_offset(stop) # This fails on one-past # slice indexing; that's why there's a code branch here. #logger.debug('ShardedCorpus: Retrieving slice {0}: ' # 'shard {1}'.format((offset.start, offset.stop), # (first_shard, last_shard))) self.load_shard(first_shard) # The easy case: both in one shard. if first_shard == last_shard: s_result = self.current_shard[start - self.current_offset: stop - self.current_offset] # Handle different sparsity settings: s_result = self._getitem_format(s_result) return s_result # The hard case: the slice is distributed across multiple shards # - initialize numpy.zeros() s_result = numpy.zeros((stop - start, self.dim), dtype=self.current_shard.dtype) if self.sparse_serialization: s_result = sparse.csr_matrix((0, self.dim), dtype=self.current_shard.dtype) # - gradually build it up. We will be using three set of start:stop # indexes: # - into the dataset (these are the indexes the caller works with) # - into the current shard # - into the result # Indexes into current result rows. These are always smaller than # the dataset indexes by `start` (as we move over the shards, # we're moving by the same number of rows through the result). result_start = 0 result_stop = self.offsets[self.current_shard_n + 1] - start # Indexes into current shard. These are trickiest: # - if in starting shard, these are from (start - current_offset) # to self.shardsize # - if in intermediate shard, these are from 0 to self.shardsize # - if in ending shard, these are from 0 # to (stop - current_offset) shard_start = start - self.current_offset shard_stop = self.offsets[self.current_shard_n + 1] - \ self.current_offset #s_result[result_start:result_stop] = self.current_shard[ # shard_start:shard_stop] s_result = self.__add_to_slice(s_result, result_start, result_stop, shard_start, shard_stop) # First and last get special treatment, these are in between for shard_n in xrange(first_shard+1, last_shard): self.load_shard(shard_n) result_start = result_stop result_stop += self.shardsize shard_start = 0 shard_stop = self.shardsize s_result = self.__add_to_slice(s_result, result_start, result_stop, shard_start, shard_stop) # Last shard self.load_shard(last_shard) result_start = result_stop result_stop += stop - self.current_offset shard_start = 0 shard_stop = stop - self.current_offset s_result = self.__add_to_slice(s_result, result_start, result_stop, shard_start, shard_stop) s_result = self._getitem_format(s_result) return s_result else: s_result = self.get_by_offset(offset) s_result = self._getitem_format(s_result) return s_result def __add_to_slice(self, s_result, result_start, result_stop, start, stop): """ Add the rows of the current shard from `start` to `stop` into rows `result_start` to `result_stop` of `s_result`. Operation is based on the self.sparse_serialize setting. If the shard contents are dense, then s_result is assumed to be an ndarray that already supports row indices `result_start:result_stop`. If the shard contents are sparse, assumes that s_result has `result_start` rows and we should add them up to `result_stop`. Returns the resulting s_result. """ if (result_stop - result_start) != (stop - start): raise ValueError('Result start/stop range different than stop/start' 'range (%d - %d vs. %d - %d)'.format(result_start, result_stop, start, stop)) # Dense data: just copy using numpy's slice notation if not self.sparse_serialization: s_result[result_start:result_stop] = self.current_shard[start:stop] return s_result # A bit more difficult, we're using a different structure to build the # result. else: if s_result.shape != (result_start, self.dim): raise ValueError('Assuption about sparse s_result shape ' 'invalid: {0} expected rows, {1} real ' 'rows.'.format(result_start, s_result.shape[0])) tmp_matrix = self.current_shard[start:stop] s_result = sparse.vstack([s_result, tmp_matrix]) return s_result def _getitem_format(self, s_result): if self.sparse_serialization: if self.gensim: s_result = self._getitem_sparse2gensim(s_result) elif not self.sparse_retrieval: s_result = numpy.array(s_result.todense()) else: if self.gensim: s_result = self._getitem_dense2gensim(s_result) elif self.sparse_retrieval: s_result = sparse.csr_matrix(s_result) return s_result def _getitem_sparse2gensim(self, result): """ Change given sparse result matrix to gensim sparse vectors. Uses the internals of the sparse matrix to make this fast. """ def row_sparse2gensim(row_idx, csr_matrix): indices = csr_matrix.indices[csr_matrix.indptr[row_idx]:csr_matrix.indptr[row_idx+1]] g_row = [(col_idx, csr_matrix[row_idx, col_idx]) for col_idx in indices] return g_row output = (row_sparse2gensim(i, result) for i in xrange(result.shape[0])) return output def _getitem_dense2gensim(self, result): """Change given dense result matrix to gensim sparse vectors.""" if len(result.shape) == 1: output = gensim.matutils.full2sparse(result) else: output = (gensim.matutils.full2sparse(result[i]) for i in xrange(result.shape[0])) return output # Overriding the IndexedCorpus and other corpus superclass methods def __iter__(self): """ Yield dataset items one by one (generator). """ for i in xrange(len(self)): yield self[i] def save(self, *args, **kwargs): """ Save itself (the wrapper) in clean state (after calling `reset()`) to the output_prefix file. If you wish to save to a different file, use the `fname` argument as the first positional arg. """ # Can we save to a different file than output_prefix? Well, why not? if len(args) == 0: args = tuple([self.output_prefix]) attrs_to_ignore = ['current_shard', 'current_shard_n', 'current_offset'] if 'ignore' not in kwargs: kwargs['ignore'] = frozenset(attrs_to_ignore) else: kwargs['ignore'] = frozenset([v for v in kwargs['ignore']] + attrs_to_ignore) super(ShardedCorpus, self).save(*args, **kwargs) # # self.reset() # with smart_open(self.output_prefix, 'wb') as pickle_handle: # cPickle.dump(self, pickle_handle) @classmethod def load(cls, fname, mmap=None): """ Load itself in clean state. `mmap` has no effect here. """ return super(ShardedCorpus, cls).load(fname, mmap) @staticmethod def save_corpus(fname, corpus, id2word=None, progress_cnt=1000, metadata=False, **kwargs): """ Implement a serialization interface. Do not call directly; use the `serialize` method instead. Note that you might need some ShardedCorpus init parameters, most likely the dimension (`dim`). Again, pass these as `kwargs` to the `serialize` method. All this thing does is initialize a ShardedCorpus from a corpus with the `output_prefix` argument set to the `fname` parameter of this method. The initialization of a ShardedCorpus takes care of serializing the data (in dense form) to shards. Ignore the parameters id2word, progress_cnt and metadata. They currently do nothing and are here only to provide a compatible method signature with superclass. """ ShardedCorpus(fname, corpus, **kwargs) @classmethod def serialize(serializer, fname, corpus, id2word=None, index_fname=None, progress_cnt=None, labels=None, metadata=False, **kwargs): """ Iterate through the document stream `corpus`, saving the documents as a ShardedCorpus to `fname`. Use this method instead of calling `save_corpus` directly. You may need to supply some kwargs that are used upon dataset creation (namely: `dim`, unless the dataset can infer the dimension from the given corpus). Ignore the parameters id2word, index_fname, progress_cnt, labels and metadata. They currently do nothing and are here only to provide a compatible method signature with superclass.""" serializer.save_corpus(fname, corpus, id2word=id2word, progress_cnt=progress_cnt, metadata=metadata, **kwargs)
lgpl-2.1
fredhusser/scikit-learn
sklearn/tests/test_metaestimators.py
225
4954
"""Common tests for metaestimators""" import functools import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.six import iterkeys from sklearn.datasets import make_classification from sklearn.utils.testing import assert_true, assert_false, assert_raises from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier class DelegatorData(object): def __init__(self, name, construct, skip_methods=(), fit_args=make_classification()): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData('Pipeline', lambda est: Pipeline([('est', est)])), DelegatorData('GridSearchCV', lambda est: GridSearchCV( est, param_grid={'param': [5]}, cv=2), skip_methods=['score']), DelegatorData('RandomizedSearchCV', lambda est: RandomizedSearchCV( est, param_distributions={'param': [5]}, cv=2, n_iter=1), skip_methods=['score']), DelegatorData('RFE', RFE, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('RFECV', RFECV, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('BaggingClassifier', BaggingClassifier, skip_methods=['transform', 'inverse_transform', 'score', 'predict_proba', 'predict_log_proba', 'predict']) ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError('%r is hidden' % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) return True def _check_fit(self): if not hasattr(self, 'coef_'): raise RuntimeError('Estimator is not fit') @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, *args, **kwargs): self._check_fit() return 1.0 methods = [k for k in iterkeys(SubEstimator.__dict__) if not k.startswith('_') and not k.startswith('fit')] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert_true(hasattr(delegate, method)) assert_true(hasattr(delegator, method), msg="%s does not have method %r when its delegate does" % (delegator_data.name, method)) # delegation before fit raises an exception assert_raises(Exception, getattr(delegator, method), delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert_false(hasattr(delegate, method)) assert_false(hasattr(delegator, method), msg="%s has method %r when its delegate does not" % (delegator_data.name, method))
bsd-3-clause
Averroes/statsmodels
statsmodels/formula/tests/test_formula.py
29
4647
from statsmodels.compat.python import iteritems, StringIO import warnings from statsmodels.formula.api import ols from statsmodels.formula.formulatools import make_hypotheses_matrices from statsmodels.tools import add_constant from statsmodels.datasets.longley import load, load_pandas import numpy.testing as npt from statsmodels.tools.testing import assert_equal from numpy.testing.utils import WarningManager longley_formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' class CheckFormulaOLS(object): @classmethod def setupClass(cls): cls.data = load() def test_endog_names(self): assert self.model.endog_names == 'TOTEMP' def test_exog_names(self): assert self.model.exog_names == ['Intercept', 'GNPDEFL', 'GNP', 'UNEMP', 'ARMED', 'POP', 'YEAR'] def test_design(self): npt.assert_equal(self.model.exog, add_constant(self.data.exog, prepend=True)) def test_endog(self): npt.assert_equal(self.model.endog, self.data.endog) def test_summary(self): # smoke test warn_ctx = WarningManager() warn_ctx.__enter__() try: warnings.filterwarnings("ignore", "kurtosistest only valid for n>=20") self.model.fit().summary() finally: warn_ctx.__exit__() class TestFormulaPandas(CheckFormulaOLS): @classmethod def setupClass(cls): data = load_pandas().data cls.model = ols(longley_formula, data) super(TestFormulaPandas, cls).setupClass() class TestFormulaDict(CheckFormulaOLS): @classmethod def setupClass(cls): data = dict((k, v.tolist()) for k, v in iteritems(load_pandas().data)) cls.model = ols(longley_formula, data) super(TestFormulaDict, cls).setupClass() class TestFormulaRecArray(CheckFormulaOLS): @classmethod def setupClass(cls): data = load().data cls.model = ols(longley_formula, data) super(TestFormulaRecArray, cls).setupClass() def test_tests(): formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' dta = load_pandas().data results = ols(formula, dta).fit() test_formula = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)' LC = make_hypotheses_matrices(results, test_formula) R = LC.coefs Q = LC.constants npt.assert_almost_equal(R, [[0, 1, -1, 0, 0, 0, 0], [0, 0 , 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1./1829]], 8) npt.assert_array_equal(Q, [[0],[2],[1]]) def test_formula_labels(): # make sure labels pass through patsy as expected # data(Duncan) from car in R dta = StringIO(""""type" "income" "education" "prestige"\n"accountant" "prof" 62 86 82\n"pilot" "prof" 72 76 83\n"architect" "prof" 75 92 90\n"author" "prof" 55 90 76\n"chemist" "prof" 64 86 90\n"minister" "prof" 21 84 87\n"professor" "prof" 64 93 93\n"dentist" "prof" 80 100 90\n"reporter" "wc" 67 87 52\n"engineer" "prof" 72 86 88\n"undertaker" "prof" 42 74 57\n"lawyer" "prof" 76 98 89\n"physician" "prof" 76 97 97\n"welfare.worker" "prof" 41 84 59\n"teacher" "prof" 48 91 73\n"conductor" "wc" 76 34 38\n"contractor" "prof" 53 45 76\n"factory.owner" "prof" 60 56 81\n"store.manager" "prof" 42 44 45\n"banker" "prof" 78 82 92\n"bookkeeper" "wc" 29 72 39\n"mail.carrier" "wc" 48 55 34\n"insurance.agent" "wc" 55 71 41\n"store.clerk" "wc" 29 50 16\n"carpenter" "bc" 21 23 33\n"electrician" "bc" 47 39 53\n"RR.engineer" "bc" 81 28 67\n"machinist" "bc" 36 32 57\n"auto.repairman" "bc" 22 22 26\n"plumber" "bc" 44 25 29\n"gas.stn.attendant" "bc" 15 29 10\n"coal.miner" "bc" 7 7 15\n"streetcar.motorman" "bc" 42 26 19\n"taxi.driver" "bc" 9 19 10\n"truck.driver" "bc" 21 15 13\n"machine.operator" "bc" 21 20 24\n"barber" "bc" 16 26 20\n"bartender" "bc" 16 28 7\n"shoe.shiner" "bc" 9 17 3\n"cook" "bc" 14 22 16\n"soda.clerk" "bc" 12 30 6\n"watchman" "bc" 17 25 11\n"janitor" "bc" 7 20 8\n"policeman" "bc" 34 47 41\n"waiter" "bc" 8 32 10""") from pandas import read_table dta = read_table(dta, sep=" ") model = ols("prestige ~ income + education", dta).fit() assert_equal(model.fittedvalues.index, dta.index) def test_formula_predict(): from numpy import log formula = """TOTEMP ~ log(GNPDEFL) + log(GNP) + UNEMP + ARMED + POP + YEAR""" data = load_pandas() dta = load_pandas().data results = ols(formula, dta).fit() npt.assert_almost_equal(results.fittedvalues.values, results.predict(data.exog), 8)
bsd-3-clause
elkingtonmcb/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
154
8058
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed, []) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
scalyr/scalyr-agent-2
scalyr_agent/third_party/pymysql/tests/test_SSCursor.py
2
3766
import sys try: from pymysql.tests import base import pymysql.cursors from pymysql.constants import CLIENT except Exception: # For local testing from top-level directory, without installing sys.path.append('../pymysql') from pymysql.tests import base import pymysql.cursors from pymysql.constants import CLIENT class TestSSCursor(base.PyMySQLTestCase): def test_SSCursor(self): affected_rows = 18446744073709551615 conn = self.connect(client_flag=CLIENT.MULTI_STATEMENTS) data = [ ('America', '', 'America/Jamaica'), ('America', '', 'America/Los_Angeles'), ('America', '', 'America/Lima'), ('America', '', 'America/New_York'), ('America', '', 'America/Menominee'), ('America', '', 'America/Havana'), ('America', '', 'America/El_Salvador'), ('America', '', 'America/Costa_Rica'), ('America', '', 'America/Denver'), ('America', '', 'America/Detroit'),] cursor = conn.cursor(pymysql.cursors.SSCursor) # Create table cursor.execute('CREATE TABLE tz_data (' 'region VARCHAR(64),' 'zone VARCHAR(64),' 'name VARCHAR(64))') conn.begin() # Test INSERT for i in data: cursor.execute('INSERT INTO tz_data VALUES (%s, %s, %s)', i) self.assertEqual(conn.affected_rows(), 1, 'affected_rows does not match') conn.commit() # Test fetchone() iter = 0 cursor.execute('SELECT * FROM tz_data') while True: row = cursor.fetchone() if row is None: break iter += 1 # Test cursor.rowcount self.assertEqual(cursor.rowcount, affected_rows, 'cursor.rowcount != %s' % (str(affected_rows))) # Test cursor.rownumber self.assertEqual(cursor.rownumber, iter, 'cursor.rowcount != %s' % (str(iter))) # Test row came out the same as it went in self.assertEqual((row in data), True, 'Row not found in source data') # Test fetchall cursor.execute('SELECT * FROM tz_data') self.assertEqual(len(cursor.fetchall()), len(data), 'fetchall failed. Number of rows does not match') # Test fetchmany cursor.execute('SELECT * FROM tz_data') self.assertEqual(len(cursor.fetchmany(2)), 2, 'fetchmany failed. Number of rows does not match') # So MySQLdb won't throw "Commands out of sync" while True: res = cursor.fetchone() if res is None: break # Test update, affected_rows() cursor.execute('UPDATE tz_data SET zone = %s', ['Foo']) conn.commit() self.assertEqual(cursor.rowcount, len(data), 'Update failed. affected_rows != %s' % (str(len(data)))) # Test executemany cursor.executemany('INSERT INTO tz_data VALUES (%s, %s, %s)', data) self.assertEqual(cursor.rowcount, len(data), 'executemany failed. cursor.rowcount != %s' % (str(len(data)))) # Test multiple datasets cursor.execute('SELECT 1; SELECT 2; SELECT 3') self.assertListEqual(list(cursor), [(1, )]) self.assertTrue(cursor.nextset()) self.assertListEqual(list(cursor), [(2, )]) self.assertTrue(cursor.nextset()) self.assertListEqual(list(cursor), [(3, )]) self.assertFalse(cursor.nextset()) cursor.execute('DROP TABLE IF EXISTS tz_data') cursor.close() __all__ = ["TestSSCursor"] if __name__ == "__main__": import unittest unittest.main()
apache-2.0
jaor/python
bigml/api_handlers/modelhandler.py
2
6695
# -*- coding: utf-8 -*- #pylint: disable=abstract-method # # Copyright 2014-2022 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base class for models' REST calls https://bigml.com/api/models """ try: import simplejson as json except ImportError: import json from bigml.api_handlers.resourcehandler import ResourceHandlerMixin from bigml.api_handlers.resourcehandler import check_resource_type, \ resource_is_ready, get_resource_type, check_resource, \ get_cluster_id from bigml.constants import (MODEL_PATH, CLUSTER_PATH, DATASET_PATH, TINY_RESOURCE) class ModelHandlerMixin(ResourceHandlerMixin): """This class is used by the BigML class as a mixin that provides the REST calls models. It should not be instantiated independently. """ def __init__(self): """Initializes the ModelHandler. This class is intended to be used as a mixin on ResourceHandler, that inherits its attributes and basic method from BigMLConnection, and must not be instantiated independently. """ self.model_url = self.url + MODEL_PATH def create_model(self, origin_resource, args=None, wait_time=3, retries=10): """Creates a model from an origin_resource. Uses a remote resource to create a new model using the arguments in `args`. The allowed remote resources can be: - dataset - list of datasets - cluster In the case of using cluster id as origin_resource, a centroid must also be provided in the args argument. The first centroid is used otherwise. """ create_args = {} if args is not None: create_args.update(args) if isinstance(origin_resource, list): # mutidatasets create_args = self._set_create_from_datasets_args( origin_resource, args=create_args, wait_time=wait_time, retries=retries) else: resource_type = get_resource_type(origin_resource) # model from cluster and centroid if resource_type == CLUSTER_PATH: cluster_id = get_cluster_id(origin_resource) cluster = check_resource(cluster_id, query_string=TINY_RESOURCE, wait_time=wait_time, retries=retries, raise_on_error=True, api=self) if 'centroid' not in create_args: try: centroid = list(cluster['object'][ 'cluster_models'].keys())[0] create_args.update({'centroid': centroid}) except KeyError: raise KeyError("Failed to generate the model. A " "centroid id is needed in the args " "argument to generate a model from " "a cluster.") create_args.update({'cluster': cluster_id}) elif resource_type == DATASET_PATH: create_args = self._set_create_from_datasets_args( origin_resource, args=create_args, wait_time=wait_time, retries=retries) else: raise Exception("A dataset, list of dataset ids" " or cluster id plus centroid id are needed" " to create a" " dataset. %s found." % resource_type) body = json.dumps(create_args) return self._create(self.model_url, body) def get_model(self, model, query_string='', shared_username=None, shared_api_key=None): """Retrieves a model. The model parameter should be a string containing the model id or the dict returned by create_model. As model is an evolving object that is processed until it reaches the FINISHED or FAULTY state, the function will return a dict that encloses the model values and state info available at the time it is called. If this is a shared model, the username and sharing api key must also be provided. If it's a model inside an ensemble or fusion, the shared_ref is needed. """ check_resource_type(model, MODEL_PATH, message="A model id is needed.") return self.get_resource(model, query_string=query_string, shared_username=shared_username, shared_api_key=shared_api_key) def model_is_ready(self, model, **kwargs): """Checks whether a model's status is FINISHED. """ check_resource_type(model, MODEL_PATH, message="A model id is needed.") resource = self.get_model(model, **kwargs) return resource_is_ready(resource) def list_models(self, query_string=''): """Lists all your models. """ return self._list(self.model_url, query_string) def update_model(self, model, changes): """Updates a model. """ check_resource_type(model, MODEL_PATH, message="A model id is needed.") return self.update_resource(model, changes) def delete_model(self, model): """Deletes a model. """ check_resource_type(model, MODEL_PATH, message="A model id is needed.") return self.delete_resource(model) def clone_model(self, model, args=None, wait_time=3, retries=10): """Creates a cloned model from an existing `model` """ create_args = self._set_clone_from_args( model, "model", args=args, wait_time=wait_time, retries=retries) body = json.dumps(create_args) return self._create(self.model_url, body)
apache-2.0
raghavrv/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
79
1234
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) lw = 2 plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color='gold', lw=lw, label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color='teal', lw=lw, label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), color='yellowgreen', lw=lw, label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), color='cornflowerblue', lw=lw, label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, color='orange', lw=lw, label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), color='darkorchid', lw=lw, linestyle='--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y=1, f(x))$") plt.show()
bsd-3-clause
elkingtonmcb/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
255
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
frank-tancf/scikit-learn
sklearn/datasets/tests/test_kddcup99.py
57
1336
"""Test kddcup99 loader. Only 'percent10' mode is tested, as the full data is too big to use in unit-testing. The test is skipped if the data wasn't previously fetched and saved to scikit-learn data folder. """ import errno from sklearn.datasets import fetch_kddcup99 from sklearn.utils.testing import assert_equal, SkipTest def test_percent10(): try: data = fetch_kddcup99(download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("kddcup99 dataset can not be loaded.") assert_equal(data.data.shape, (494021, 41)) assert_equal(data.target.shape, (494021,)) data_shuffled = fetch_kddcup99(shuffle=True, random_state=0) assert_equal(data.data.shape, data_shuffled.data.shape) assert_equal(data.target.shape, data_shuffled.target.shape) data = fetch_kddcup99('SA') assert_equal(data.data.shape, (100655, 41)) assert_equal(data.target.shape, (100655,)) data = fetch_kddcup99('SF') assert_equal(data.data.shape, (73237, 4)) assert_equal(data.target.shape, (73237,)) data = fetch_kddcup99('http') assert_equal(data.data.shape, (58725, 3)) assert_equal(data.target.shape, (58725,)) data = fetch_kddcup99('smtp') assert_equal(data.data.shape, (9571, 3)) assert_equal(data.target.shape, (9571,))
bsd-3-clause
ecobost/pipeline
python/pipeline/temperature.py
5
5751
import datajoint as dj from pipeline import experiment from commons import lab from datajoint.jobs import key_hash import os import numpy as np from .utils import h5, signal from .exceptions import PipelineException from . import notify schema = dj.schema('pipeline_temperature') @schema class Temperature(dj.Imported): definition = """ # temperature across the scan -> experiment.Scan --- temp_time : longblob # (secs) times of each temperature sample in behavior clock temperatures : longblob # (Celsius) temperature trace median_temperature : float # (Celsius) median temperature over the recording temp_ts=CURRENT_TIMESTAMP : timestamp """ @property def key_source(self): return experiment.Scan() & experiment.Scan.BehaviorFile().proj() def _make_tuples(self, key): # Get behavior filename behavior_path = (experiment.Session() & key).fetch1('behavior_path') local_path = lab.Paths().get_local_path(behavior_path) filename = (experiment.Scan.BehaviorFile() & key).fetch1('filename') full_filename = os.path.join(local_path, filename) # Read file data = h5.read_behavior_file(full_filename) # Get counter timestamps and convert to seconds ts = h5.ts2sec(data['ts'], is_packeted=True) # Read temperature (if available) and invalidate points with unreliable timestamps temp_raw = data.get('temperature', None) if temp_raw is None: raise PipelineException('Scan {animal_id}-{session}-{scan_idx} does not have ' 'temperature data'.format(**key)) temp_raw[np.isnan(ts)] = float('nan') # Read temperature and smooth it temp_celsius = (temp_raw * 100 - 32) / 1.8 # F to C sampling_rate = int(round(1 / np.nanmedian(np.diff(ts)))) # samples per second smooth_temp = signal.low_pass_filter(temp_celsius, sampling_rate, cutoff_freq=1, filter_size=2 * sampling_rate) # Resample at 1 Hz downsampled_ts = ts[::sampling_rate] downsampled_temp = smooth_temp[::sampling_rate] # Insert self.insert1({**key, 'temp_time': downsampled_ts, 'temperatures': downsampled_temp, 'median_temperature': np.nanmedian(downsampled_temp)}) self.notify(key) @notify.ignore_exceptions def notify(self, key): ts, temperatures = (self & key).fetch1('temp_time', 'temperatures') import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 5)) plt.plot(ts, temperatures) plt.ylabel('Temperature (C)') plt.xlabel('Seconds') img_filename = '/tmp/' + key_hash(key) + '.png' fig.savefig(img_filename) plt.close(fig) msg = 'temperature for {animal_id}-{session}-{scan_idx}'.format(**key) slack_user = notify.SlackUser() & (experiment.Session() & key) slack_user.notify(file=img_filename, file_title=msg) def session_plot(self): """ Do a plot of how temperature progress through a session""" import matplotlib.pyplot as plt import matplotlib.ticker as ticker # Check that plot is restricted to a single session session_key = self.fetch('KEY', limit=1)[0] session_key.pop('scan_idx') if len(self & session_key) != len(self): raise PipelineException('Plot can only be generated for one session at a ' 'time') # Get times and timestamps, scan_ts scan_indices, ts, temperatures = self.fetch('scan_idx', 'temp_time', 'temperatures', order_by='scan_idx') session_ts = (experiment.Session() & self).fetch1('session_ts') scan_ts = (experiment.Scan() & self).fetch('scan_ts', order_by='scan_idx') abs_ts = [(sts - session_ts).seconds + (t - t[0]) for sts, t in zip(scan_ts, ts)] # Plot fig = plt.figure(figsize=(10, 5)) for abs_ts_, temp_, scan_idx in zip(abs_ts, temperatures, scan_indices): plt.plot(abs_ts_ / 3600, temp_, label='Scan {}'.format(scan_idx)) # in hours plt.title('Temperature for {animal_id}-{session} starting at {session_ts}'.format( session_ts=session_ts, **session_key)) plt.ylabel('Temperature (Celsius)') plt.xlabel('Hour') plt.legend() # Plot formatting plt.gca().yaxis.set_major_locator(ticker.MultipleLocator(0.5)) plt.grid(linestyle='--', alpha=0.8) return fig @schema class TempDrift(dj.Computed): definition = """ # assuming temperature increases/decreases consistently, compute rate of change -> Temperature --- temp_slope : float # (C/hour) change in temperature rmse : float # (C) root mean squared error of the fit """ def _make_tuples(self, key): # Get all times and temperatures ts, temperatures = (Temperature() & key).fetch1('temp_time', 'temperatures') ts = ts[~np.isnan(temperatures)] temperatures = temperatures[~np.isnan(temperatures)] # Fit a line (robust regression) from sklearn import linear_model X = ts.reshape(-1, 1) y = temperatures model = linear_model.TheilSenRegressor() model.fit(X, y) # Get results z_slope = model.coef_[0] * 3600 # C/hour rmse = np.sqrt(np.mean((temperatures - model.predict(X)) ** 2)) self.insert1({**key, 'temp_slope': z_slope, 'rmse': rmse})
lgpl-3.0
FCH808/FCH808.github.io
Intro to Machine Learning/ud120-projects/pca/eigenfaces.py
5
4980
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ original source: http://scikit-learn.org/stable/auto_examples/applications/face_recognition.html """ print __doc__ from time import time import logging import pylab as pl import numpy as np from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape np.random.seed(42) # fot machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print "Total dataset size:" print "n_samples: %d" % n_samples print "n_features: %d" % n_features print "n_classes: %d" % n_classes ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print "done in %0.3fs" % (time() - t0) eigenfaces = pca.components_.reshape((n_components, h, w)) print "Projecting the input data on the eigenfaces orthonormal basis" t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print "done in %0.3fs" % (time() - t0) ############################################################################### # Train a SVM classification model print "Fitting the classifier to the training set" t0 = time() param_grid = { 'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid) clf = clf.fit(X_train_pca, y_train) print "done in %0.3fs" % (time() - t0) print "Best estimator found by grid search:" print clf.best_estimator_ ############################################################################### # Quantitative evaluation of the model quality on the test set print "Predicting the people names on the testing set" t0 = time() y_pred = clf.predict(X_test_pca) print "done in %0.3fs" % (time() - t0) print classification_report(y_test, y_pred, target_names=target_names) print confusion_matrix(y_test, y_pred, labels=range(n_classes)) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" pl.figure(figsize=(1.8 * n_col, 2.4 * n_row)) pl.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): pl.subplot(n_row, n_col, i + 1) pl.imshow(images[i].reshape((h, w)), cmap=pl.cm.gray) pl.title(titles[i], size=12) pl.xticks(()) pl.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) pl.show()
mit
andrewcmyers/tensorflow
tensorflow/contrib/keras/python/keras/datasets/cifar.py
84
1542
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities used by the CIFAR10 and CIFAR100 datasets. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from six.moves import cPickle def load_batch(fpath, label_key='labels'): """Internal utility for parsing CIFAR data. Arguments: fpath: path the file to parse. label_key: key for label data in the retrieve dictionary. Returns: A tuple `(data, labels)`. """ f = open(fpath, 'rb') if sys.version_info < (3,): d = cPickle.load(f) else: d = cPickle.load(f, encoding='bytes') # decode utf8 d_decoded = {} for k, v in d.items(): d_decoded[k.decode('utf8')] = v d = d_decoded f.close() data = d['data'] labels = d[label_key] data = data.reshape(data.shape[0], 3, 32, 32) return data, labels
apache-2.0
yonglehou/scikit-learn
examples/mixture/plot_gmm_selection.py
247
3223
""" ================================= Gaussian Mixture Model Selection ================================= This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify the right model. Unlike Bayesian procedures, such inferences are prior-free. In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is selected. """ print(__doc__) import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] lowest_bic = np.infty bic = [] n_components_range = range(1, 7) cv_types = ['spherical', 'tied', 'diag', 'full'] for cv_type in cv_types: for n_components in n_components_range: # Fit a mixture of Gaussians with EM gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type) gmm.fit(X) bic.append(gmm.bic(X)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] best_gmm = gmm bic = np.array(bic) color_iter = itertools.cycle(['k', 'r', 'g', 'b', 'c', 'm', 'y']) clf = best_gmm bars = [] # Plot the BIC scores spl = plt.subplot(2, 1, 1) for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): xpos = np.array(n_components_range) + .2 * (i - 2) bars.append(plt.bar(xpos, bic[i * len(n_components_range): (i + 1) * len(n_components_range)], width=.2, color=color)) plt.xticks(n_components_range) plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) plt.title('BIC score per model') xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ .2 * np.floor(bic.argmin() / len(n_components_range)) plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) spl.set_xlabel('Number of components') spl.legend([b[0] for b in bars], cv_types) # Plot the winner splot = plt.subplot(2, 1, 2) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip(clf.means_, clf.covars_, color_iter)): v, w = linalg.eigh(covar) if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan2(w[0][1], w[0][0]) angle = 180 * angle / np.pi # convert to degrees v *= 4 ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title('Selected GMM: full model, 2 components') plt.subplots_adjust(hspace=.35, bottom=.02) plt.show()
bsd-3-clause
yonglehou/scikit-learn
sklearn/mixture/tests/test_gmm.py
199
17427
import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/scipy/stats/stats.py
7
186886
# Copyright 2002 Gary Strangman. All rights reserved # Copyright 2002-2016 The SciPy Developers # # The original code from Gary Strangman was heavily adapted for # use in SciPy by Travis Oliphant. The original code came with the # following disclaimer: # # This software is provided "as-is". There are no expressed or implied # warranties of any kind, including, but not limited to, the warranties # of merchantability and fitness for a given application. In no event # shall Gary Strangman be liable for any direct, indirect, incidental, # special, exemplary or consequential damages (including, but not limited # to, loss of use, data or profits, or business interruption) however # caused and on any theory of liability, whether in contract, strict # liability or tort (including negligence or otherwise) arising in any way # out of the use of this software, even if advised of the possibility of # such damage. """ A collection of basic statistical functions for python. The function names appear below. Some scalar functions defined here are also available in the scipy.special package where they work on arbitrary sized arrays. Disclaimers: The function list is obviously incomplete and, worse, the functions are not optimized. All functions have been tested (some more so than others), but they are far from bulletproof. Thus, as with any free software, no warranty or guarantee is expressed or implied. :-) A few extra functions that don't appear in the list below can be found by interested treasure-hunters. These functions don't necessarily have both list and array versions but were deemed useful. Central Tendency ---------------- .. autosummary:: :toctree: generated/ gmean hmean mode Moments ------- .. autosummary:: :toctree: generated/ moment variation skew kurtosis normaltest Altered Versions ---------------- .. autosummary:: :toctree: generated/ tmean tvar tstd tsem describe Frequency Stats --------------- .. autosummary:: :toctree: generated/ itemfreq scoreatpercentile percentileofscore histogram cumfreq relfreq Variability ----------- .. autosummary:: :toctree: generated/ obrientransform signaltonoise sem zmap zscore iqr Trimming Functions ------------------ .. autosummary:: :toctree: generated/ threshold trimboth trim1 Correlation Functions --------------------- .. autosummary:: :toctree: generated/ pearsonr fisher_exact spearmanr pointbiserialr kendalltau weightedtau linregress theilslopes Inferential Stats ----------------- .. autosummary:: :toctree: generated/ ttest_1samp ttest_ind ttest_ind_from_stats ttest_rel chisquare power_divergence ks_2samp mannwhitneyu ranksums wilcoxon kruskal friedmanchisquare combine_pvalues Probability Calculations ------------------------ .. autosummary:: :toctree: generated/ chisqprob betai ANOVA Functions --------------- .. autosummary:: :toctree: generated/ f_oneway f_value Support Functions ----------------- .. autosummary:: :toctree: generated/ ss square_of_sums rankdata References ---------- .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ from __future__ import division, print_function, absolute_import import warnings import math from collections import namedtuple import numpy as np from numpy import array, asarray, ma, zeros from scipy._lib.six import callable, string_types from scipy._lib._version import NumpyVersion import scipy.special as special import scipy.linalg as linalg from . import distributions from . import mstats_basic from ._distn_infrastructure import _lazywhere from ._stats_mstats_common import _find_repeats, linregress, theilslopes from ._stats import _kendall_dis, _toint64, _weightedrankedtau __all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar', 'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation', 'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest', 'normaltest', 'jarque_bera', 'itemfreq', 'scoreatpercentile', 'percentileofscore', 'histogram', 'histogram2', 'cumfreq', 'relfreq', 'obrientransform', 'signaltonoise', 'sem', 'zmap', 'zscore', 'iqr', 'threshold', 'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway', 'pearsonr', 'fisher_exact', 'spearmanr', 'pointbiserialr', 'kendalltau', 'weightedtau', 'linregress', 'theilslopes', 'ttest_1samp', 'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel', 'kstest', 'chisquare', 'power_divergence', 'ks_2samp', 'mannwhitneyu', 'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare', 'chisqprob', 'betai', 'f_value_wilks_lambda', 'f_value', 'f_value_multivariate', 'ss', 'square_of_sums', 'fastsort', 'rankdata', 'combine_pvalues', ] def _chk_asarray(a, axis): if axis is None: a = np.ravel(a) outaxis = 0 else: a = np.asarray(a) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) return a, outaxis def _chk2_asarray(a, b, axis): if axis is None: a = np.ravel(a) b = np.ravel(b) outaxis = 0 else: a = np.asarray(a) b = np.asarray(b) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) if b.ndim == 0: b = np.atleast_1d(b) return a, b, outaxis def _contains_nan(a, nan_policy='propagate'): policies = ['propagate', 'raise', 'omit'] if nan_policy not in policies: raise ValueError("nan_policy must be one of {%s}" % ', '.join("'%s'" % s for s in policies)) try: # Calling np.sum to avoid creating a huge array into memory # e.g. np.isnan(a).any() with np.errstate(invalid='ignore'): contains_nan = np.isnan(np.sum(a)) except TypeError: # If the check cannot be properly performed we fallback to omiting # nan values and raising a warning. This can happen when attempting to # sum things that are not numbers (e.g. as in the function `mode`). contains_nan = False nan_policy = 'omit' warnings.warn("The input array could not be properly checked for nan " "values. nan values will be ignored.", RuntimeWarning) if contains_nan and nan_policy == 'raise': raise ValueError("The input contains nan values") return (contains_nan, nan_policy) def gmean(a, axis=0, dtype=None): """ Compute the geometric mean along the specified axis. Returns the geometric average of the array elements. That is: n-th root of (x1 * x2 * ... * xn) Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or None, optional Axis along which the geometric mean is computed. Default is 0. If None, compute over the whole array `a`. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. Returns ------- gmean : ndarray see dtype parameter above See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average hmean : Harmonic mean Notes ----- The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values. """ if not isinstance(a, np.ndarray): # if not an ndarray object attempt to convert it log_a = np.log(np.array(a, dtype=dtype)) elif dtype: # Must change the default dtype allowing array type if isinstance(a, np.ma.MaskedArray): log_a = np.log(np.ma.asarray(a, dtype=dtype)) else: log_a = np.log(np.asarray(a, dtype=dtype)) else: log_a = np.log(a) return np.exp(log_a.mean(axis=axis)) def hmean(a, axis=0, dtype=None): """ Calculates the harmonic mean along the specified axis. That is: n / (1/x1 + 1/x2 + ... + 1/xn) Parameters ---------- a : array_like Input array, masked array or object that can be converted to an array. axis : int or None, optional Axis along which the harmonic mean is computed. Default is 0. If None, compute over the whole array `a`. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer `dtype` with a precision less than that of the default platform integer. In that case, the default platform integer is used. Returns ------- hmean : ndarray see `dtype` parameter above See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average gmean : Geometric mean Notes ----- The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity. """ if not isinstance(a, np.ndarray): a = np.array(a, dtype=dtype) if np.all(a > 0): # Harmonic mean only defined if greater than zero if isinstance(a, np.ma.MaskedArray): size = a.count(axis) else: if axis is None: a = a.ravel() size = a.shape[0] else: size = a.shape[axis] return size / np.sum(1.0/a, axis=axis, dtype=dtype) else: raise ValueError("Harmonic mean only defined if all elements greater than zero") ModeResult = namedtuple('ModeResult', ('mode', 'count')) def mode(a, axis=0, nan_policy='propagate'): """ Returns an array of the modal (most common) value in the passed array. If there is more than one such value, only the smallest is returned. The bin-count for the modal bins is also returned. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- mode : ndarray Array of modal values. count : ndarray Array of counts for each mode. Examples -------- >>> a = np.array([[6, 8, 3, 0], ... [3, 2, 1, 7], ... [8, 1, 8, 4], ... [5, 3, 0, 5], ... [4, 7, 5, 9]]) >>> from scipy import stats >>> stats.mode(a) (array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]])) To get mode of whole array, specify ``axis=None``: >>> stats.mode(a, axis=None) (array([3]), array([3])) """ a, axis = _chk_asarray(a, axis) if a.size == 0: return ModeResult(np.array([]), np.array([])) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.mode(a, axis) scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape, dtype=a.dtype) oldcounts = np.zeros(testshape, dtype=int) for score in scores: template = (a == score) counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return ModeResult(mostfrequent, oldcounts) def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am def tmean(a, limits=None, inclusive=(True, True), axis=None): """ Compute the trimmed mean. This function finds the arithmetic mean of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to compute test. Default is None. Returns ------- tmean : float See also -------- trim_mean : returns mean after trimming a proportion from both tails. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmean(x) 9.5 >>> stats.tmean(x, (3,17)) 10.0 """ a = asarray(a) if limits is None: return np.mean(a, None) am = _mask_to_limits(a.ravel(), limits, inclusive) return am.mean(axis=axis) def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed variance This function computes the sample variance of an array of values, while ignoring values which are outside of given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tvar : float Trimmed variance. Notes ----- `tvar` computes the unbiased sample variance, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tvar(x) 35.0 >>> stats.tvar(x, (3,17)) 20.0 """ a = asarray(a) a = a.astype(float).ravel() if limits is None: n = len(a) return a.var() * n/(n-1.) am = _mask_to_limits(a, limits, inclusive) return np.ma.var(am, ddof=ddof, axis=axis) def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'): """ Compute the trimmed minimum This function finds the miminum value of an array `a` along the specified axis, but only considering values greater than a specified lower limit. Parameters ---------- a : array_like array of values lowerlimit : None or float, optional Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the lower limit are included. The default value is True. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- tmin : float, int or ndarray Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmin(x) 0 >>> stats.tmin(x, 13) 13 >>> stats.tmin(x, 13, inclusive=False) 14 """ a, axis = _chk_asarray(a, axis) am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False)) contains_nan, nan_policy = _contains_nan(am, nan_policy) if contains_nan and nan_policy == 'omit': am = ma.masked_invalid(am) res = ma.minimum.reduce(am, axis).data if res.ndim == 0: return res[()] return res def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'): """ Compute the trimmed maximum This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit. Parameters ---------- a : array_like array of values upperlimit : None or float, optional Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the upper limit are included. The default value is True. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- tmax : float, int or ndarray Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmax(x) 19 >>> stats.tmax(x, 13) 13 >>> stats.tmax(x, 13, inclusive=False) 12 """ a, axis = _chk_asarray(a, axis) am = _mask_to_limits(a, (None, upperlimit), (False, inclusive)) contains_nan, nan_policy = _contains_nan(am, nan_policy) if contains_nan and nan_policy == 'omit': am = ma.masked_invalid(am) res = ma.maximum.reduce(am, axis).data if res.ndim == 0: return res[()] return res def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed sample standard deviation This function finds the sample standard deviation of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tstd : float Notes ----- `tstd` computes the unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tstd(x) 5.9160797830996161 >>> stats.tstd(x, (3,17)) 4.4721359549995796 """ return np.sqrt(tvar(a, limits, inclusive, axis, ddof)) def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed standard error of the mean. This function finds the standard error of the mean for given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tsem : float Notes ----- `tsem` uses unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tsem(x) 1.3228756555322954 >>> stats.tsem(x, (3,17)) 1.1547005383792515 """ a = np.asarray(a).ravel() if limits is None: return a.std(ddof=ddof) / np.sqrt(a.size) am = _mask_to_limits(a, limits, inclusive) sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis)) return sd / np.sqrt(am.count()) ##################################### # MOMENTS # ##################################### def moment(a, moment=1, axis=0, nan_policy='propagate'): r""" Calculates the nth moment about the mean for a sample. A moment is a specific quantitative measure of the shape of a set of points. It is often used to calculate coefficients of skewness and kurtosis due to its close relationship with them. Parameters ---------- a : array_like data moment : int or array_like of ints, optional order of central moment that is returned. Default is 1. axis : int or None, optional Axis along which the central moment is computed. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- n-th central moment : ndarray or float The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done. See also -------- kurtosis, skew, describe Notes ----- The k-th central moment of a data sample is: .. math:: m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k Where n is the number of samples and x-bar is the mean. This function uses exponentiation by squares [1]_ for efficiency. References ---------- .. [1] http://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.moment(a, moment, axis) if a.size == 0: # empty array, return nan(s) with shape matching `moment` if np.isscalar(moment): return np.nan else: return np.ones(np.asarray(moment).shape, dtype=np.float64) * np.nan # for array_like moment input, return a value for each. if not np.isscalar(moment): mmnt = [_moment(a, i, axis) for i in moment] return np.array(mmnt) else: return _moment(a, moment, axis) def _moment(a, moment, axis): if np.abs(moment - np.round(moment)) > 0: raise ValueError("All moment parameters must be integers") if moment == 0: # When moment equals 0, the result is 1, by definition. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.ones(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return 1.0 elif moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: # Exponentiation by squares: form exponent sequence n_list = [moment] current_n = moment while current_n > 2: if current_n % 2: current_n = (current_n-1)/2 else: current_n /= 2 n_list.append(current_n) # Starting point for exponentiation by squares a_zero_mean = a - np.expand_dims(np.mean(a, axis), axis) if n_list[-1] == 1: s = a_zero_mean.copy() else: s = a_zero_mean**2 # Perform multiplications for n in n_list[-2::-1]: s = s**2 if n % 2: s *= a_zero_mean return np.mean(s, axis) def variation(a, axis=0, nan_policy='propagate'): """ Computes the coefficient of variation, the ratio of the biased standard deviation to the mean. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- variation : ndarray The calculated variation along the requested axis. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.variation(a, axis) return a.std(axis) / a.mean(axis) def skew(a, axis=0, bias=True, nan_policy='propagate'): """ Computes the skewness of a data set. For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more weight in the left tail of the distribution. The function `skewtest` can be used to determine if the skewness value is close enough to 0, statistically speaking. Parameters ---------- a : ndarray data axis : int or None, optional Axis along which skewness is calculated. Default is 0. If None, compute over the whole array `a`. bias : bool, optional If False, then the calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- skewness : ndarray The skewness of values along an axis, returning 0 where all values are equal. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Section 2.2.24.1 """ a, axis = _chk_asarray(a, axis) n = a.shape[axis] contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.skew(a, axis, bias) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) zero = (m2 == 0) vals = _lazywhere(~zero, (m2, m3), lambda m2, m3: m3 / m2**1.5, 0.) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = np.sqrt((n-1.0)*n) / (n-2.0) * m3/m2**1.5 np.place(vals, can_correct, nval) if vals.ndim == 0: return vals.item() return vals def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'): """ Computes the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators Use `kurtosistest` to see if result is close enough to normal. Parameters ---------- a : array data for which the kurtosis is calculated axis : int or None, optional Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array `a`. fisher : bool, optional If True, Fisher's definition is used (normal ==> 0.0). If False, Pearson's definition is used (normal ==> 3.0). bias : bool, optional If False, then the calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- kurtosis : array The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.kurtosis(a, axis, fisher, bias) n = a.shape[axis] m2 = moment(a, 2, axis) m4 = moment(a, 4, axis) zero = (m2 == 0) olderr = np.seterr(all='ignore') try: vals = np.where(zero, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: can_correct = (n > 3) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0) np.place(vals, can_correct, nval + 3.0) if vals.ndim == 0: vals = vals.item() # array scalar if fisher: return vals - 3 else: return vals DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis')) def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'): """ Computes several descriptive statistics of the passed array. Parameters ---------- a : array_like Input data. axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom (only for variance). Default is 1. bias : bool, optional If False, then the skewness and kurtosis calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- nobs : int Number of observations (length of data along `axis`). minmax: tuple of ndarrays or floats Minimum and maximum value of data array. mean : ndarray or float Arithmetic mean of data along axis. variance : ndarray or float Unbiased variance of the data along axis, denominator is number of observations minus one. skewness : ndarray or float Skewness, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction. kurtosis : ndarray or float Kurtosis (Fisher). The kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom are used. See Also -------- skew, kurtosis Examples -------- >>> from scipy import stats >>> a = np.arange(10) >>> stats.describe(a) DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.1666666666666661, skewness=0.0, kurtosis=-1.2242424242424244) >>> b = [[1, 2], [3, 4]] >>> stats.describe(b) DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])), mean=array([ 2., 3.]), variance=array([ 2., 2.]), skewness=array([ 0., 0.]), kurtosis=array([-2., -2.])) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.describe(a, axis, ddof, bias) if a.size == 0: raise ValueError("The input must not be empty.") n = a.shape[axis] mm = (np.min(a, axis=axis), np.max(a, axis=axis)) m = np.mean(a, axis=axis) v = np.var(a, axis=axis, ddof=ddof) sk = skew(a, axis, bias=bias) kurt = kurtosis(a, axis, bias=bias) return DescribeResult(n, mm, m, v, sk, kurt) ##################################### # NORMALITY TESTS # ##################################### SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue')) def skewtest(a, axis=0, nan_policy='propagate'): """ Tests whether the skew is different from the normal distribution. This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution. Parameters ---------- a : array The data to be tested axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float The computed z-score for this test. pvalue : float a 2-sided p-value for the hypothesis test Notes ----- The sample size must be at least 8. References ---------- .. [1] R. B. D'Agostino, A. J. Belanger and R. B. D'Agostino Jr., "A suggestion for using powerful and informative tests of normality", American Statistician 44, pp. 316-321, 1990. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.skewtest(a, axis) if axis is None: a = np.ravel(a) axis = 0 b2 = skew(a, axis) n = float(a.shape[axis]) if n < 8: raise ValueError( "skewtest is not valid with less than 8 samples; %i samples" " were given." % int(n)) y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2))) beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) / ((n-2.0) * (n+5) * (n+7) * (n+9))) W2 = -1 + math.sqrt(2 * (beta2 - 1)) delta = 1 / math.sqrt(0.5 * math.log(W2)) alpha = math.sqrt(2.0 / (W2 - 1)) y = np.where(y == 0, 1, y) Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1)) return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue')) def kurtosistest(a, axis=0, nan_policy='propagate'): """ Tests whether a dataset has normal kurtosis This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``. Parameters ---------- a : array array of the sample data axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float The computed z-score for this test. pvalue : float The 2-sided p-value for the hypothesis test Notes ----- Valid only for n>20. The Z-score is set to 0 for bad entries. This function uses the method described in [1]_. References ---------- .. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.kurtosistest(a, axis) n = float(a.shape[axis]) if n < 5: raise ValueError( "kurtosistest requires at least 5 observations; %i observations" " were given." % int(n)) if n < 20: warnings.warn("kurtosistest only valid for n>=20 ... continuing " "anyway, n=%i" % int(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) # [1]_ Eq. 1 x = (b2-E) / np.sqrt(varb2) # [1]_ Eq. 4 # [1]_ Eq. 2: sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) # [1]_ Eq. 3: A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2/(9.0*A) denom = 1 + x*np.sqrt(2/(A-4.0)) denom = np.where(denom < 0, 99, denom) term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom, 1/3.0)) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) # [1]_ Eq. 5 Z = np.where(denom == 99, 0, Z) if Z.ndim == 0: Z = Z[()] # zprob uses upper tail, so Z needs to be positive return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue')) def normaltest(a, axis=0, nan_policy='propagate'): """ Tests whether a sample differs from a normal distribution. This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [1]_, [2]_ test that combines skew and kurtosis to produce an omnibus test of normality. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. References ---------- .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for moderate and large sample size", Biometrika, 58, 341-348 .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from normality", Biometrika, 60, 613-622 """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.normaltest(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return NormaltestResult(k2, distributions.chi2.sf(k2, 2)) def jarque_bera(x): """ Perform the Jarque-Bera goodness of fit test on sample data. The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution. Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom. Parameters ---------- x : array_like Observations of a random variable. Returns ------- jb_value : float The test statistic. p : float The p-value for the hypothesis test. References ---------- .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality, homoscedasticity and serial independence of regression residuals", 6 Econometric Letters 255-259. Examples -------- >>> from scipy import stats >>> np.random.seed(987654321) >>> x = np.random.normal(0, 1, 100000) >>> y = np.random.rayleigh(1, 100000) >>> stats.jarque_bera(x) (4.7165707989581342, 0.09458225503041906) >>> stats.jarque_bera(y) (6713.7098548143422, 0.0) """ x = np.asarray(x) n = float(x.size) if n == 0: raise ValueError('At least one observation is required.') mu = x.mean() diffx = x - mu skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.) kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2 jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4) p = 1 - distributions.chi2.cdf(jb_value, 2) return jb_value, p ##################################### # FREQUENCY FUNCTIONS # ##################################### def itemfreq(a): """ Returns a 2-D array of item frequencies. Parameters ---------- a : (N,) array_like Input array. Returns ------- itemfreq : (K, 2) ndarray A 2-D frequency table. Column 1 contains sorted, unique values from `a`, column 2 contains their respective counts. Examples -------- >>> from scipy import stats >>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4]) >>> stats.itemfreq(a) array([[ 0., 2.], [ 1., 4.], [ 2., 2.], [ 4., 1.], [ 5., 1.]]) >>> np.bincount(a) array([2, 4, 2, 0, 1, 1]) >>> stats.itemfreq(a/10.) array([[ 0. , 2. ], [ 0.1, 4. ], [ 0.2, 2. ], [ 0.4, 1. ], [ 0.5, 1. ]]) """ items, inv = np.unique(a, return_inverse=True) freq = np.bincount(inv) return np.array([items, freq]).T def scoreatpercentile(a, per, limit=(), interpolation_method='fraction', axis=None): """ Calculate the score at a given percentile of the input sequence. For example, the score at `per=50` is the median. If the desired quantile lies between two data points, we interpolate between them, according to the value of `interpolation`. If the parameter `limit` is provided, it should be a tuple (lower, upper) of two values. Parameters ---------- a : array_like A 1-D array of values from which to extract score. per : array_like Percentile(s) at which to extract score. Values should be in range [0,100]. limit : tuple, optional Tuple of two scalars, the lower and upper limits within which to compute the percentile. Values of `a` outside this (closed) interval will be ignored. interpolation_method : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j` - fraction: ``i + (j - i) * fraction`` where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. - lower: ``i``. - higher: ``j``. axis : int, optional Axis along which the percentiles are computed. Default is None. If None, compute over the whole array `a`. Returns ------- score : float or ndarray Score at percentile(s). See Also -------- percentileofscore, numpy.percentile Notes ----- This function will become obsolete in the future. For Numpy 1.9 and higher, `numpy.percentile` provides all the functionality that `scoreatpercentile` provides. And it's significantly faster. Therefore it's recommended to use `numpy.percentile` for users that have numpy >= 1.9. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ # adapted from NumPy's percentile function. When we require numpy >= 1.8, # the implementation of this function can be replaced by np.percentile. a = np.asarray(a) if a.size == 0: # empty array, return nan(s) with shape matching `per` if np.isscalar(per): return np.nan else: return np.ones(np.asarray(per).shape, dtype=np.float64) * np.nan if limit: a = a[(limit[0] <= a) & (a <= limit[1])] sorted = np.sort(a, axis=axis) if axis is None: axis = 0 return _compute_qth_percentile(sorted, per, interpolation_method, axis) # handle sequence of per's without calling sort multiple times def _compute_qth_percentile(sorted, per, interpolation_method, axis): if not np.isscalar(per): score = [_compute_qth_percentile(sorted, i, interpolation_method, axis) for i in per] return np.array(score) if (per < 0) or (per > 100): raise ValueError("percentile must be in the range [0, 100]") indexer = [slice(None)] * sorted.ndim idx = per / 100. * (sorted.shape[axis] - 1) if int(idx) != idx: # round fractional indices according to interpolation method if interpolation_method == 'lower': idx = int(np.floor(idx)) elif interpolation_method == 'higher': idx = int(np.ceil(idx)) elif interpolation_method == 'fraction': pass # keep idx as fraction and interpolate else: raise ValueError("interpolation_method can only be 'fraction', " "'lower' or 'higher'") i = int(idx) if i == idx: indexer[axis] = slice(i, i + 1) weights = array(1) sumval = 1.0 else: indexer[axis] = slice(i, i + 2) j = i + 1 weights = array([(j - idx), (idx - i)], float) wshape = [1] * sorted.ndim wshape[axis] = 2 weights.shape = wshape sumval = weights.sum() # Use np.add.reduce (== np.sum but a little faster) to coerce data type return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval def percentileofscore(a, score, kind='rank'): """ The percentile rank of a score relative to a list of scores. A `percentileofscore` of, for example, 80% means that 80% of the scores in `a` are below the given score. In the case of gaps or ties, the exact definition depends on the optional keyword, `kind`. Parameters ---------- a : array_like Array of scores to which `score` is compared. score : int or float Score that is compared to the elements in `a`. kind : {'rank', 'weak', 'strict', 'mean'}, optional This optional parameter specifies the interpretation of the resulting score: - "rank": Average percentage ranking of score. In case of multiple matches, average the percentage rankings of all matching scores. - "weak": This kind corresponds to the definition of a cumulative distribution function. A percentileofscore of 80% means that 80% of values are less than or equal to the provided score. - "strict": Similar to "weak", except that only values that are strictly less than the given score are counted. - "mean": The average of the "weak" and "strict" scores, often used in testing. See http://en.wikipedia.org/wiki/Percentile_rank Returns ------- pcos : float Percentile-position of score (0-100) relative to `a`. See Also -------- numpy.percentile Examples -------- Three-quarters of the given values lie below a given score: >>> from scipy import stats >>> stats.percentileofscore([1, 2, 3, 4], 3) 75.0 With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3) 70.0 Only 2/5 values are strictly less than 3: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict') 40.0 But 4/5 values are less than or equal to 3: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak') 80.0 The average between the weak and the strict scores is >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean') 60.0 """ a = np.array(a) n = len(a) if kind == 'rank': if not np.any(a == score): a = np.append(a, score) a_len = np.array(list(range(len(a)))) else: a_len = np.array(list(range(len(a)))) + 1.0 a = np.sort(a) idx = [a == score] pct = (np.mean(a_len[idx]) / n) * 100.0 return pct elif kind == 'strict': return np.sum(a < score) / float(n) * 100 elif kind == 'weak': return np.sum(a <= score) / float(n) * 100 elif kind == 'mean': return (np.sum(a < score) + np.sum(a <= score)) * 50 / float(n) else: raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'") @np.deprecate(message=("scipy.stats.histogram2 is deprecated in scipy 0.16.0; " "use np.histogram2d instead")) def histogram2(a, bins): """ Compute histogram using divisions in bins. Count the number of times values from array `a` fall into numerical ranges defined by `bins`. Range x is given by bins[x] <= range_x < bins[x+1] where x =0,N and N is the length of the `bins` array. The last range is given by bins[N] <= range_N < infinity. Values less than bins[0] are not included in the histogram. Parameters ---------- a : array_like of rank 1 The array of values to be assigned into bins bins : array_like of rank 1 Defines the ranges of values to use during histogramming. Returns ------- histogram2 : ndarray of rank 1 Each value represents the occurrences for a given bin (range) of values. """ # comment: probably obsoleted by numpy.histogram() n = np.searchsorted(np.sort(a), bins) n = np.concatenate([n, [len(a)]]) return n[1:] - n[:-1] HistogramResult = namedtuple('HistogramResult', ('count', 'lowerlimit', 'binsize', 'extrapoints')) @np.deprecate(message=("scipy.stats.histogram is deprecated in scipy 0.17.0; " "use np.histogram instead")) def histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False): # _histogram is used in relfreq/cumfreq, so need to keep it res = _histogram(a, numbins=numbins, defaultlimits=defaultlimits, weights=weights, printextras=printextras) return res def _histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False): """ Separates the range into several bins and returns the number of instances in each bin. Parameters ---------- a : array_like Array of scores which will be put into bins. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultlimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 printextras : bool, optional If True, if there are extra points (i.e. the points that fall outside the bin limits) a warning is raised saying how many of those points there are. Default is False. Returns ------- count : ndarray Number of points (or sum of weights) in each bin. lowerlimit : float Lowest value of histogram, the lower limit of the first bin. binsize : float The size of the bins (all bins have the same size). extrapoints : int The number of points outside the range of the histogram. See Also -------- numpy.histogram Notes ----- This histogram is based on numpy's histogram but has a larger range by default if default limits is not set. """ a = np.ravel(a) if defaultlimits is None: if a.size == 0: # handle empty arrays. Undetermined range, so use 0-1. defaultlimits = (0, 1) else: # no range given, so use values in `a` data_min = a.min() data_max = a.max() # Have bins extend past min and max values slightly s = (data_max - data_min) / (2. * (numbins - 1.)) defaultlimits = (data_min - s, data_max + s) # use numpy's histogram method to compute bins hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits, weights=weights) # hist are not always floats, convert to keep with old output hist = np.array(hist, dtype=float) # fixed width for bins is assumed, as numpy's histogram gives # fixed width bins for int values for 'bins' binsize = bin_edges[1] - bin_edges[0] # calculate number of extra points extrapoints = len([v for v in a if defaultlimits[0] > v or v > defaultlimits[1]]) if extrapoints > 0 and printextras: warnings.warn("Points outside given histogram range = %s" % extrapoints) return HistogramResult(hist, defaultlimits[0], binsize, extrapoints) CumfreqResult = namedtuple('CumfreqResult', ('cumcount', 'lowerlimit', 'binsize', 'extrapoints')) def cumfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Returns a cumulative frequency histogram, using the histogram function. A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the specified bin. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultreallimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- cumcount : ndarray Binned values of cumulative frequency. lowerlimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> x = [1, 4, 2, 1, 3, 1] >>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) >>> res.cumcount array([ 1., 2., 3., 3.]) >>> res.extrapoints 3 Create a normal distribution with 1000 random values >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) Calculate cumulative frequencies >>> res = stats.cumfreq(samples, numbins=25) Calculate space of values for x >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size, ... res.cumcount.size) Plot histogram and cumulative histogram >>> fig = plt.figure(figsize=(10, 4)) >>> ax1 = fig.add_subplot(1, 2, 1) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax1.hist(samples, bins=25) >>> ax1.set_title('Histogram') >>> ax2.bar(x, res.cumcount, width=res.binsize) >>> ax2.set_title('Cumulative histogram') >>> ax2.set_xlim([x.min(), x.max()]) >>> plt.show() """ h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights) cumhist = np.cumsum(h * 1, axis=0) return CumfreqResult(cumhist, l, b, e) RelfreqResult = namedtuple('RelfreqResult', ('frequency', 'lowerlimit', 'binsize', 'extrapoints')) def relfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Returns a relative frequency histogram, using the histogram function. A relative frequency histogram is a mapping of the number of observations in each of the bins relative to the total of observations. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultreallimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- frequency : ndarray Binned values of relative frequency. lowerlimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> a = np.array([2, 4, 1, 2, 3, 2]) >>> res = stats.relfreq(a, numbins=4) >>> res.frequency array([ 0.16666667, 0.5 , 0.16666667, 0.16666667]) >>> np.sum(res.frequency) # relative frequencies should add up to 1 1.0 Create a normal distribution with 1000 random values >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) Calculate relative frequencies >>> res = stats.relfreq(samples, numbins=25) Calculate space of values for x >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size, ... res.frequency.size) Plot relative frequency histogram >>> fig = plt.figure(figsize=(5, 4)) >>> ax = fig.add_subplot(1, 1, 1) >>> ax.bar(x, res.frequency, width=res.binsize) >>> ax.set_title('Relative frequency histogram') >>> ax.set_xlim([x.min(), x.max()]) >>> plt.show() """ a = np.asanyarray(a) h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights) h = h / float(a.shape[0]) return RelfreqResult(h, l, b, e) ##################################### # VARIABILITY FUNCTIONS # ##################################### def obrientransform(*args): """ Computes the O'Brien transform on input data (any number of arrays). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If `f_oneway` is run on the transformed data and found significant, the variances are unequal. From Maxwell and Delaney [1]_, p.112. Parameters ---------- args : tuple of array_like Any number of arrays. Returns ------- obrientransform : ndarray Transformed data for use in an ANOVA. The first dimension of the result corresponds to the sequence of transformed arrays. If the arrays given are all 1-D of the same length, the return value is a 2-D array; otherwise it is a 1-D array of type object, with each element being an ndarray. References ---------- .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990. Examples -------- We'll test the following data sets for differences in their variance. >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10] >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15] Apply the O'Brien transform to the data. >>> from scipy.stats import obrientransform >>> tx, ty = obrientransform(x, y) Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the transformed data. >>> from scipy.stats import f_oneway >>> F, p = f_oneway(tx, ty) >>> p 0.1314139477040335 If we require that ``p < 0.05`` for significance, we cannot conclude that the variances are different. """ TINY = np.sqrt(np.finfo(float).eps) # `arrays` will hold the transformed arguments. arrays = [] for arg in args: a = np.asarray(arg) n = len(a) mu = np.mean(a) sq = (a - mu)**2 sumsq = sq.sum() # The O'Brien transform. t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2)) # Check that the mean of the transformed data is equal to the # original variance. var = sumsq / (n - 1) if abs(var - np.mean(t)) > TINY: raise ValueError('Lack of convergence in obrientransform.') arrays.append(t) return np.array(arrays) @np.deprecate(message="scipy.stats.signaltonoise is deprecated in scipy 0.16.0") def signaltonoise(a, axis=0, ddof=0): """ The signal-to-noise ratio of the input data. Returns the signal-to-noise ratio of `a`, here defined as the mean divided by the standard deviation. Parameters ---------- a : array_like An array_like object containing the sample data. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Degrees of freedom correction for standard deviation. Default is 0. Returns ------- s2n : ndarray The mean to standard deviation ratio(s) along `axis`, or 0 where the standard deviation is 0. """ a = np.asanyarray(a) m = a.mean(axis) sd = a.std(axis=axis, ddof=ddof) return np.where(sd == 0, 0, m/sd) def sem(a, axis=0, ddof=1, nan_policy='propagate'): """ Calculates the standard error of the mean (or standard error of measurement) of the values in the input array. Parameters ---------- a : array_like An array containing the values for which the standard error is returned. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- s : ndarray or float The standard error of the mean in the sample(s), along the input axis. Notes ----- The default value for `ddof` is different to the default (0) used by other ddof containing routines, such as np.std and np.nanstd. Examples -------- Find standard error along the first axis: >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> stats.sem(a) array([ 2.8284, 2.8284, 2.8284, 2.8284]) Find standard error across the whole array, using n degrees of freedom: >>> stats.sem(a, axis=None, ddof=0) 1.2893796958227628 """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.sem(a, axis, ddof) n = a.shape[axis] s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n) return s def zscore(a, axis=0, ddof=0): """ Calculates the z score of each value in the sample, relative to the sample mean and standard deviation. Parameters ---------- a : array_like An array like object containing the sample data. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. Returns ------- zscore : array_like The z-scores, standardized by mean and standard deviation of input array `a`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, ... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508]) >>> from scipy import stats >>> stats.zscore(a) array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786, 0.6748, -1.1488, -1.3324]) Computing along a specified axis, using n-1 degrees of freedom (``ddof=1``) to calculate the standard deviation: >>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608], ... [ 0.7149, 0.0775, 0.6072, 0.9656], ... [ 0.6341, 0.1403, 0.9759, 0.4064], ... [ 0.5918, 0.6948, 0.904 , 0.3721], ... [ 0.0921, 0.2481, 0.1188, 0.1366]]) >>> stats.zscore(b, axis=1, ddof=1) array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358], [ 0.33048416, -1.37380874, 0.04251374, 1.00081084], [ 0.26796377, -1.12598418, 1.23283094, -0.37481053], [-0.22095197, 0.24468594, 1.19042819, -1.21416216], [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]]) """ a = np.asanyarray(a) mns = a.mean(axis=axis) sstd = a.std(axis=axis, ddof=ddof) if axis and mns.ndim < a.ndim: return ((a - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd, axis=axis)) else: return (a - mns) / sstd def zmap(scores, compare, axis=0, ddof=0): """ Calculates the relative z-scores. Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array. Parameters ---------- scores : array_like The input for which z-scores are calculated. compare : array_like The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as `scores`. axis : int or None, optional Axis over which mean and variance of `compare` are calculated. Default is 0. If None, compute over the whole array `scores`. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. Returns ------- zscore : array_like Z-scores, in the same shape as `scores`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> from scipy.stats import zmap >>> a = [0.5, 2.0, 2.5, 3] >>> b = [0, 1, 2, 3, 4] >>> zmap(a, b) array([-1.06066017, 0. , 0.35355339, 0.70710678]) """ scores, compare = map(np.asanyarray, [scores, compare]) mns = compare.mean(axis=axis) sstd = compare.std(axis=axis, ddof=ddof) if axis and mns.ndim < compare.ndim: return ((scores - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd, axis=axis)) else: return (scores - mns) / sstd # Private dictionary initialized only once at module level # See https://en.wikipedia.org/wiki/Robust_measures_of_scale _scale_conversions = {'raw': 1.0, 'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)} def iqr(x, axis=None, rng=(25, 75), scale='raw', nan_policy='propagate', interpolation='linear', keepdims=False): """ Compute the interquartile range of the data along the specified axis. The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. It is a measure of the dispersion similar to standard deviation or variance, but is much more robust against outliers [2]_. The ``rng`` parameter allows this function to compute other percentile ranges than the actual IQR. For example, setting ``rng=(0, 100)`` is equivalent to `numpy.ptp`. The IQR of an empty array is `np.nan`. .. versionadded:: 0.18.0 Parameters ---------- x : array_like Input array or object that can be converted to an array. axis : int or sequence of int, optional Axis along which the range is computed. The default is to compute the IQR for the entire array. rng : Two-element sequence containing floats in range of [0,100] optional Percentiles over which to compute the range. Each must be between 0 and 100, inclusive. The default is the true IQR: `(25, 75)`. The order of the elements is not important. scale : scalar or str, optional The numerical value of scale will be divided out of the final result. The following string values are recognized: 'raw' : No scaling, just return the raw IQR. 'normal' : Scale by :math:`2 \\sqrt{2} erf^{-1}(\\frac{1}{2}) \\approx 1.349`. The default is 'raw'. Array-like scale is also allowed, as long as it broadcasts correctly to the output such that ``out / scale`` is a valid operation. The output dimensions depend on the input array, `x`, the `axis` argument, and the `keepdims` flag. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional Specifies the interpolation method to use when the percentile boundaries lie between two data points `i` and `j`: * 'linear' : `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * 'lower' : `i`. * 'higher' : `j`. * 'nearest' : `i` or `j` whichever is nearest. * 'midpoint' : `(i + j) / 2`. Default is 'linear'. keepdims : bool, optional If this is set to `True`, the reduced axes are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array `x`. Returns ------- iqr : scalar or ndarray If ``axis=None``, a scalar is returned. If the input contains integers or floats of smaller precision than ``np.float64``, then the output data-type is ``np.float64``. Otherwise, the output data-type is the same as that of the input. See Also -------- numpy.std, numpy.var Examples -------- >>> from scipy.stats import iqr >>> x = np.array([[10, 7, 4], [3, 2, 1]]) >>> x array([[10, 7, 4], [ 3, 2, 1]]) >>> iqr(x) 4.0 >>> iqr(x, axis=0) array([ 3.5, 2.5, 1.5]) >>> iqr(x, axis=1) array([ 3., 1.]) >>> iqr(x, axis=1, keepdims=True) array([[ 3.], [ 1.]]) Notes ----- This function is heavily dependent on the version of `numpy` that is installed. Versions greater than 1.11.0b3 are highly recommended, as they include a number of enhancements and fixes to `numpy.percentile` and `numpy.nanpercentile` that affect the operation of this function. The following modifications apply: Below 1.10.0 : `nan_policy` is poorly defined. The default behavior of `numpy.percentile` is used for 'propagate'. This is a hybrid of 'omit' and 'propagate' that mostly yields a skewed version of 'omit' since NaNs are sorted to the end of the data. A warning is raised if there are NaNs in the data. Below 1.9.0: `numpy.nanpercentile` does not exist. This means that `numpy.percentile` is used regardless of `nan_policy` and a warning is issued. See previous item for a description of the behavior. Below 1.9.0: `keepdims` and `interpolation` are not supported. The keywords get ignored with a warning if supplied with non-default values. However, multiple axes are still supported. References ---------- .. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range .. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale .. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile """ x = asarray(x) # This check prevents percentile from raising an error later. Also, it is # consistent with `np.var` and `np.std`. if not x.size: return np.nan # An error may be raised here, so fail-fast, before doing lengthy # computations, even though `scale` is not used until later if isinstance(scale, string_types): scale_key = scale.lower() if scale_key not in _scale_conversions: raise ValueError("{0} not a valid scale for `iqr`".format(scale)) scale = _scale_conversions[scale_key] # Select the percentile function to use based on nans and policy contains_nan, nan_policy = _contains_nan(x, nan_policy) if contains_nan and nan_policy == 'omit': percentile_func = _iqr_nanpercentile else: percentile_func = _iqr_percentile if len(rng) != 2: raise TypeError("quantile range must be two element sequence") rng = sorted(rng) pct = percentile_func(x, rng, axis=axis, interpolation=interpolation, keepdims=keepdims, contains_nan=contains_nan) out = np.subtract(pct[1], pct[0]) if scale != 1.0: out /= scale return out def _iqr_percentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False): """ Private wrapper that works around older versions of `numpy`. While this function is pretty much necessary for the moment, it should be removed as soon as the minimum supported numpy version allows. """ if contains_nan and NumpyVersion(np.__version__) < '1.10.0a': # I see no way to avoid the version check to ensure that the corrected # NaN behavior has been implemented except to call `percentile` on a # small array. msg = "Keyword nan_policy='propagate' not correctly supported for " \ "numpy versions < 1.10.x. The default behavior of " \ "`numpy.percentile` will be used." warnings.warn(msg, RuntimeWarning) try: # For older versions of numpy, there are two things that can cause a # problem here: missing keywords and non-scalar axis. The former can be # partially handled with a warning, the latter can be handled fully by # hacking in an implementation similar to numpy's function for # providing multi-axis functionality # (`numpy.lib.function_base._ureduce` for the curious). result = np.percentile(x, q, axis=axis, keepdims=keepdims, interpolation=interpolation) except TypeError: if interpolation != 'linear' or keepdims: # At time or writing, this means np.__version__ < 1.9.0 warnings.warn("Keywords interpolation and keepdims not supported " "for your version of numpy", RuntimeWarning) try: # Special processing if axis is an iterable original_size = len(axis) except TypeError: # Axis is a scalar at this point pass else: axis = np.unique(np.asarray(axis) % x.ndim) if original_size > axis.size: # mimic numpy if axes are duplicated raise ValueError("duplicate value in axis") if axis.size == x.ndim: # axis includes all axes: revert to None axis = None elif axis.size == 1: # no rolling necessary axis = axis[0] else: # roll multiple axes to the end and flatten that part out for ax in axis[::-1]: x = np.rollaxis(x, ax, x.ndim) x = x.reshape(x.shape[:-axis.size] + (np.prod(x.shape[-axis.size:]),)) axis = -1 result = np.percentile(x, q, axis=axis) return result def _iqr_nanpercentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False): """ Private wrapper that works around the following: 1. A bug in `np.nanpercentile` that was around until numpy version 1.11.0. 2. A bug in `np.percentile` NaN handling that was fixed in numpy version 1.10.0. 3. The non-existence of `np.nanpercentile` before numpy version 1.9.0. While this function is pretty much necessary for the moment, it should be removed as soon as the minimum supported numpy version allows. """ if hasattr(np, 'nanpercentile'): # At time or writing, this means np.__version__ < 1.9.0 result = np.nanpercentile(x, q, axis=axis, interpolation=interpolation, keepdims=keepdims) # If non-scalar result and nanpercentile does not do proper axis roll. # I see no way of avoiding the version test since dimensions may just # happen to match in the data. if result.ndim > 1 and NumpyVersion(np.__version__) < '1.11.0a': axis = np.asarray(axis) if axis.size == 1: # If only one axis specified, reduction happens along that dimension if axis.ndim == 0: axis = axis[None] result = np.rollaxis(result, axis[0]) else: # If multiple axes, reduced dimeision is last result = np.rollaxis(result, -1) else: msg = "Keyword nan_policy='omit' not correctly supported for numpy " \ "versions < 1.9.x. The default behavior of numpy.percentile " \ "will be used." warnings.warn(msg, RuntimeWarning) result = _iqr_percentile(x, q, axis=axis) return result ##################################### # TRIMMING FUNCTIONS # ##################################### @np.deprecate(message="stats.threshold is deprecated in scipy 0.17.0") def threshold(a, threshmin=None, threshmax=None, newval=0): """ Clip array to a given value. Similar to numpy.clip(), except that values less than `threshmin` or greater than `threshmax` are replaced by `newval`, instead of by `threshmin` and `threshmax` respectively. Parameters ---------- a : array_like Data to threshold. threshmin : float, int or None, optional Minimum threshold, defaults to None. threshmax : float, int or None, optional Maximum threshold, defaults to None. newval : float or int, optional Value to put in place of values in `a` outside of bounds. Defaults to 0. Returns ------- out : ndarray The clipped input array, with values less than `threshmin` or greater than `threshmax` replaced with `newval`. Examples -------- >>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8]) >>> from scipy import stats >>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1) array([-1, -1, 6, 3, -1, 6, -1, -1, -1, 8]) """ a = asarray(a).copy() mask = zeros(a.shape, dtype=bool) if threshmin is not None: mask |= (a < threshmin) if threshmax is not None: mask |= (a > threshmax) a[mask] = newval return a SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper')) def sigmaclip(a, low=4., high=4.): """ Iterative sigma-clipping of array elements. The output array contains only those elements of the input array `c` that satisfy the conditions :: mean(c) - std(c)*low < c < mean(c) + std(c)*high Starting from the full sample, all elements outside the critical range are removed. The iteration continues with a new critical range until no elements are outside the range. Parameters ---------- a : array_like Data array, will be raveled if not 1-D. low : float, optional Lower bound factor of sigma clipping. Default is 4. high : float, optional Upper bound factor of sigma clipping. Default is 4. Returns ------- clipped : ndarray Input array with clipped elements removed. lower : float Lower threshold value use for clipping. upper : float Upper threshold value use for clipping. Examples -------- >>> from scipy.stats import sigmaclip >>> a = np.concatenate((np.linspace(9.5, 10.5, 31), ... np.linspace(0, 20, 5))) >>> fact = 1.5 >>> c, low, upp = sigmaclip(a, fact, fact) >>> c array([ 9.96666667, 10. , 10.03333333, 10. ]) >>> c.var(), c.std() (0.00055555555555555165, 0.023570226039551501) >>> low, c.mean() - fact*c.std(), c.min() (9.9646446609406727, 9.9646446609406727, 9.9666666666666668) >>> upp, c.mean() + fact*c.std(), c.max() (10.035355339059327, 10.035355339059327, 10.033333333333333) >>> a = np.concatenate((np.linspace(9.5, 10.5, 11), ... np.linspace(-100, -50, 3))) >>> c, low, upp = sigmaclip(a, 1.8, 1.8) >>> (c == np.linspace(9.5, 10.5, 11)).all() True """ c = np.asarray(a).ravel() delta = 1 while delta: c_std = c.std() c_mean = c.mean() size = c.size critlower = c_mean - c_std*low critupper = c_mean + c_std*high c = c[(c > critlower) & (c < critupper)] delta = size - c.size return SigmaclipResult(c, critlower, critupper) def trimboth(a, proportiontocut, axis=0): """ Slices off a proportion of items from both ends of an array. Slices off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). The trimmed values are the lowest and highest ones. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off`proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float Proportion (in range 0-1) of total data set to trim of each end. axis : int or None, optional Axis along which to trim data. Default is 0. If None, compute over the whole array `a`. Returns ------- out : ndarray Trimmed version of array `a`. The order of the trimmed content is undefined. See Also -------- trim_mean Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,) """ a = np.asarray(a) if a.size == 0: return a if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut >= uppercut): raise ValueError("Proportion too big.") atmp = np.partition(a, (lowercut, uppercut - 1), axis) sl = [slice(None)] * atmp.ndim sl[axis] = slice(lowercut, uppercut) return atmp[sl] def trim1(a, proportiontocut, tail='right', axis=0): """ Slices off a proportion from ONE end of the passed array distribution. If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost' 10% of scores. The lowest or highest values are trimmed (depending on the tail). Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off of 'left' or 'right' of distribution tail : {'left', 'right'}, optional Defaults to 'right'. axis : int or None, optional Axis along which to trim data. Default is 0. If None, compute over the whole array `a`. Returns ------- trim1 : ndarray Trimmed version of array `a`. The order of the trimmed content is undefined. """ a = np.asarray(a) if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] # avoid possible corner case if proportiontocut >= 1: return [] if tail.lower() == 'right': lowercut = 0 uppercut = nobs - int(proportiontocut * nobs) elif tail.lower() == 'left': lowercut = int(proportiontocut * nobs) uppercut = nobs atmp = np.partition(a, (lowercut, uppercut - 1), axis) return atmp[lowercut:uppercut] def trim_mean(a, proportiontocut, axis=0): """ Return mean of array after trimming distribution from both tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. The input is sorted before slicing. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off of both tails of the distribution axis : int or None, optional Axis along which the trimmed means are computed. Default is 0. If None, compute over the whole array `a`. Returns ------- trim_mean : ndarray Mean of trimmed array. See Also -------- trimboth tmean : compute the trimmed mean ignoring values outside given `limits`. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.trim_mean(x, 0.1) 9.5 >>> x2 = x.reshape(5, 4) >>> x2 array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]]) >>> stats.trim_mean(x2, 0.25) array([ 8., 9., 10., 11.]) >>> stats.trim_mean(x2, 0.25, axis=1) array([ 1.5, 5.5, 9.5, 13.5, 17.5]) """ a = np.asarray(a) if a.size == 0: return np.nan if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut > uppercut): raise ValueError("Proportion too big.") atmp = np.partition(a, (lowercut, uppercut - 1), axis) sl = [slice(None)] * atmp.ndim sl[axis] = slice(lowercut, uppercut) return np.mean(atmp[sl], axis=axis) F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue')) def f_oneway(*args): """ Performs a 1-way ANOVA. The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test is applied to samples from two or more groups, possibly with differing sizes. Parameters ---------- sample1, sample2, ... : array_like The sample measurements for each group. Returns ------- statistic : float The computed F-value of the test. pvalue : float The associated p-value from the F-distribution. Notes ----- The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid. 1. The samples are independent. 2. Each sample is from a normally distributed population. 3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity. If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although with some loss of power. The algorithm is from Heiman[2], pp.394-7. References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 14. http://faculty.vassar.edu/lowry/ch14pt1.html .. [2] Heiman, G.W. Research Methods in Statistics. 2002. .. [3] McDonald, G. H. "Handbook of Biological Statistics", One-way ANOVA. http://www.biostathandbook.com/onewayanova.html Examples -------- >>> import scipy.stats as stats [3]_ Here are some data on a shell measurement (the length of the anterior adductor muscle scar, standardized by dividing by length) in the mussel Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon; Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a much larger data set used in McDonald et al. (1991). >>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735, ... 0.0659, 0.0923, 0.0836] >>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835, ... 0.0725] >>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105] >>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764, ... 0.0689] >>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045] >>> stats.f_oneway(tillamook, newport, petersburg, magadan, tvarminne) (7.1210194716424473, 0.00028122423145345439) """ args = [np.asarray(arg, dtype=float) for arg in args] # ANOVA on N groups, each in its own array num_groups = len(args) alldata = np.concatenate(args) bign = len(alldata) # Determine the mean of the data, and subtract that from all inputs to a # variance (via sum_of_sq / sq_of_sum) calculation. Variance is invariance # to a shift in location, and centering all data around zero vastly # improves numerical stability. offset = alldata.mean() alldata -= offset sstot = _sum_of_squares(alldata) - (_square_of_sums(alldata) / float(bign)) ssbn = 0 for a in args: ssbn += _square_of_sums(a - offset) / float(len(a)) # Naming: variables ending in bn/b are for "between treatments", wn/w are # for "within treatments" ssbn -= (_square_of_sums(alldata) / float(bign)) sswn = sstot - ssbn dfbn = num_groups - 1 dfwn = bign - num_groups msb = ssbn / float(dfbn) msw = sswn / float(dfwn) f = msb / msw prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf return F_onewayResult(f, prob) def pearsonr(x, y): """ Calculates a Pearson correlation coefficient and the p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed, and not necessarily zero-mean. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : (N,) array_like Input y : (N,) array_like Input Returns ------- r : float Pearson's correlation coefficient p-value : float 2-tailed p-value References ---------- http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation """ # x and y should have same length. x = np.asarray(x) y = np.asarray(y) n = len(x) mx = x.mean() my = y.mean() xm, ym = x - mx, y - my r_num = np.add.reduce(xm * ym) r_den = np.sqrt(_sum_of_squares(xm) * _sum_of_squares(ym)) r = r_num / r_den # Presumably, if abs(r) > 1, then it is only some small artifact of floating # point arithmetic. r = max(min(r, 1.0), -1.0) df = n - 2 if abs(r) == 1.0: prob = 0.0 else: t_squared = r**2 * (df / ((1.0 - r) * (1.0 + r))) prob = _betai(0.5*df, 0.5, df/(df+t_squared)) return r, prob def fisher_exact(table, alternative='two-sided'): """Performs a Fisher exact test on a 2x2 contingency table. Parameters ---------- table : array_like of ints A 2x2 contingency table. Elements should be non-negative integers. alternative : {'two-sided', 'less', 'greater'}, optional Which alternative hypothesis to the null hypothesis the test uses. Default is 'two-sided'. Returns ------- oddsratio : float This is prior odds ratio and not a posterior estimate. p_value : float P-value, the probability of obtaining a distribution at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. See Also -------- chi2_contingency : Chi-square test of independence of variables in a contingency table. Notes ----- The calculated odds ratio is different from the one R uses. This scipy implementation returns the (more common) "unconditional Maximum Likelihood Estimate", while R uses the "conditional Maximum Likelihood Estimate". For tables with large numbers, the (inexact) chi-square test implemented in the function `chi2_contingency` can also be used. Examples -------- Say we spend a few days counting whales and sharks in the Atlantic and Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the Indian ocean 2 whales and 5 sharks. Then our contingency table is:: Atlantic Indian whales 8 2 sharks 1 5 We use this table to find the p-value: >>> import scipy.stats as stats >>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]]) >>> pvalue 0.0349... The probability that we would observe this or an even more imbalanced ratio by chance is about 3.5%. A commonly used significance level is 5%--if we adopt that, we can therefore conclude that our observed imbalance is statistically significant; whales prefer the Atlantic while sharks prefer the Indian ocean. """ hypergeom = distributions.hypergeom c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm if not c.shape == (2, 2): raise ValueError("The input `table` must be of shape (2, 2).") if np.any(c < 0): raise ValueError("All values in `table` must be nonnegative.") if 0 in c.sum(axis=0) or 0 in c.sum(axis=1): # If both values in a row or column are zero, the p-value is 1 and # the odds ratio is NaN. return np.nan, 1.0 if c[1,0] > 0 and c[0,1] > 0: oddsratio = c[0,0] * c[1,1] / float(c[1,0] * c[0,1]) else: oddsratio = np.inf n1 = c[0,0] + c[0,1] n2 = c[1,0] + c[1,1] n = c[0,0] + c[1,0] def binary_search(n, n1, n2, side): """Binary search for where to begin lower/upper halves in two-sided test. """ if side == "upper": minval = mode maxval = n else: minval = 0 maxval = mode guess = -1 while maxval - minval > 1: if maxval == minval + 1 and guess == minval: guess = maxval else: guess = (maxval + minval) // 2 pguess = hypergeom.pmf(guess, n1 + n2, n1, n) if side == "upper": ng = guess - 1 else: ng = guess + 1 if pguess <= pexact < hypergeom.pmf(ng, n1 + n2, n1, n): break elif pguess < pexact: maxval = guess else: minval = guess if guess == -1: guess = minval if side == "upper": while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess -= 1 while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess += 1 else: while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess += 1 while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess -= 1 return guess if alternative == 'less': pvalue = hypergeom.cdf(c[0,0], n1 + n2, n1, n) elif alternative == 'greater': # Same formula as the 'less' case, but with the second column. pvalue = hypergeom.cdf(c[0,1], n1 + n2, n1, c[0,1] + c[1,1]) elif alternative == 'two-sided': mode = int(float((n + 1) * (n1 + 1)) / (n1 + n2 + 2)) pexact = hypergeom.pmf(c[0,0], n1 + n2, n1, n) pmode = hypergeom.pmf(mode, n1 + n2, n1, n) epsilon = 1 - 1e-4 if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon: return oddsratio, 1. elif c[0,0] < mode: plower = hypergeom.cdf(c[0,0], n1 + n2, n1, n) if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, plower guess = binary_search(n, n1, n2, "upper") pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n) else: pupper = hypergeom.sf(c[0,0] - 1, n1 + n2, n1, n) if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, pupper guess = binary_search(n, n1, n2, "lower") pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n) else: msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}" raise ValueError(msg) if pvalue > 1.0: pvalue = 1.0 return oddsratio, pvalue SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) def spearmanr(a, b=None, axis=0, nan_policy='propagate'): """ Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. The Spearman correlation is a nonparametric measure of the monotonicity of the relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- a, b : 1D or 2D array_like, b is optional One or two 1-D or 2-D arrays containing multiple variables and observations. When these are 1-D, each represents a vector of observations of a single variable. For the behavior in the 2-D case, see under ``axis``, below. Both arrays need to have the same length in the ``axis`` dimension. axis : int or None, optional If axis=0 (default), then each column represents a variable, with observations in the rows. If axis=1, the relationship is transposed: each row represents a variable, while the columns contain observations. If axis=None, then both arrays will be raveled. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- correlation : float or ndarray (2-D square) Spearman correlation matrix or correlation coefficient (if only 2 variables are given as parameters. Correlation matrix is square with length equal to total number of variables (columns or rows) in a and b combined. pvalue : float The two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated, has same dimension as rho. Notes ----- Changes in scipy 0.8.0: rewrite to add tie-handling, and axis. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Section 14.7 Examples -------- >>> from scipy import stats >>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7]) (0.82078268166812329, 0.088587005313543798) >>> np.random.seed(1234321) >>> x2n = np.random.randn(100, 2) >>> y2n = np.random.randn(100, 2) >>> stats.spearmanr(x2n) (0.059969996999699973, 0.55338590803773591) >>> stats.spearmanr(x2n[:,0], x2n[:,1]) (0.059969996999699973, 0.55338590803773591) >>> rho, pval = stats.spearmanr(x2n, y2n) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> pval array([[ 0. , 0.55338591, 0.06435364, 0.53617935], [ 0.55338591, 0. , 0.27592895, 0.80234077], [ 0.06435364, 0.27592895, 0. , 0.73039992], [ 0.53617935, 0.80234077, 0.73039992, 0. ]]) >>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> stats.spearmanr(x2n, y2n, axis=None) (0.10816770419260482, 0.1273562188027364) >>> stats.spearmanr(x2n.ravel(), y2n.ravel()) (0.10816770419260482, 0.1273562188027364) >>> xint = np.random.randint(10, size=(100, 2)) >>> stats.spearmanr(xint) (0.052760927029710199, 0.60213045837062351) """ a, axisout = _chk_asarray(a, axis) a_contains_nan, nan_policy = _contains_nan(a, nan_policy) if a_contains_nan: a = ma.masked_invalid(a) if a.size <= 1: return SpearmanrResult(np.nan, np.nan) ar = np.apply_along_axis(rankdata, axisout, a) br = None if b is not None: b, axisout = _chk_asarray(b, axis) b_contains_nan, nan_policy = _contains_nan(b, nan_policy) if a_contains_nan or b_contains_nan: b = ma.masked_invalid(b) if nan_policy == 'propagate': rho, pval = mstats_basic.spearmanr(a, b, axis) return SpearmanrResult(rho * np.nan, pval * np.nan) if nan_policy == 'omit': return mstats_basic.spearmanr(a, b, axis) br = np.apply_along_axis(rankdata, axisout, b) n = a.shape[axisout] rs = np.corrcoef(ar, br, rowvar=axisout) olderr = np.seterr(divide='ignore') # rs can have elements equal to 1 try: # clip the small negative values possibly caused by rounding # errors before taking the square root t = rs * np.sqrt(((n-2)/((rs+1.0)*(1.0-rs))).clip(0)) finally: np.seterr(**olderr) prob = 2 * distributions.t.sf(np.abs(t), n-2) if rs.shape == (2, 2): return SpearmanrResult(rs[1, 0], prob[1, 0]) else: return SpearmanrResult(rs, prob) PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation', 'pvalue')) def pointbiserialr(x, y): r""" Calculates a point biserial correlation coefficient and its p-value. The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply a determinative relationship. This function uses a shortcut formula but produces the same result as `pearsonr`. Parameters ---------- x : array_like of bools Input array. y : array_like Input array. Returns ------- correlation : float R value pvalue : float 2-tailed p-value Notes ----- `pointbiserialr` uses a t-test with ``n-1`` degrees of freedom. It is equivalent to `pearsonr.` The value of the point-biserial correlation can be calculated from: .. math:: r_{pb} = \frac{\overline{Y_{1}} - \overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}} Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}` are number of observations coded 0 and 1 respectively; :math:`N` is the total number of observations and :math:`s_{y}` is the standard deviation of all the metric observations. A value of :math:`r_{pb}` that is significantly different from zero is completely equivalent to a significant difference in means between the two groups. Thus, an independent groups t Test with :math:`N-2` degrees of freedom may be used to test whether :math:`r_{pb}` is nonzero. The relation between the t-statistic for comparing two independent groups and :math:`r_{pb}` is given by: .. math:: t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}} References ---------- .. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math. Statist., Vol. 20, no.1, pp. 125-126, 1949. .. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25, np. 3, pp. 603-607, 1954. .. [3] http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06227/full Examples -------- >>> from scipy import stats >>> a = np.array([0, 0, 0, 1, 1, 1, 1]) >>> b = np.arange(7) >>> stats.pointbiserialr(a, b) (0.8660254037844386, 0.011724811003954652) >>> stats.pearsonr(a, b) (0.86602540378443871, 0.011724811003954626) >>> np.corrcoef(a, b) array([[ 1. , 0.8660254], [ 0.8660254, 1. ]]) """ rpb, prob = pearsonr(x, y) return PointbiserialrResult(rpb, prob) KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue')) def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate'): """ Calculates Kendall's tau, a correlation measure for ordinal data. Kendall's tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement, values close to -1 indicate strong disagreement. This is the 1945 "tau-b" version of Kendall's tau [2]_, which can account for ties and which reduces to the 1938 "tau-a" version [1]_ in absence of ties. Parameters ---------- x, y : array_like Arrays of rankings, of the same shape. If arrays are not 1-D, they will be flattened to 1-D. initial_lexsort : bool, optional Unused (deprecated). nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that if the input contains nan 'omit' delegates to mstats_basic.kendalltau(), which has a different implementation. Returns ------- correlation : float The tau statistic. pvalue : float The two-sided p-value for a hypothesis test whose null hypothesis is an absence of association, tau = 0. See also -------- spearmanr : Calculates a Spearman rank-order correlation coefficient. theilslopes : Computes the Theil-Sen estimator for a set of points (x, y). weightedtau : Computes a weighted version of Kendall's tau. Notes ----- The definition of Kendall's tau that is used is [2]_:: tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U)) where P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties only in `x`, and U the number of ties only in `y`. If a tie occurs for the same pair in both `x` and `y`, it is not added to either T or U. References ---------- .. [1] Maurice G. Kendall, "A New Measure of Rank Correlation", Biometrika Vol. 30, No. 1/2, pp. 81-93, 1938. .. [2] Maurice G. Kendall, "The treatment of ties in ranking problems", Biometrika Vol. 33, No. 3, pp. 239-251. 1945. .. [3] Gottfried E. Noether, "Elements of Nonparametric Statistics", John Wiley & Sons, 1967. .. [4] Peter M. Fenwick, "A new data structure for cumulative frequency tables", Software: Practice and Experience, Vol. 24, No. 3, pp. 327-336, 1994. Examples -------- >>> from scipy import stats >>> x1 = [12, 2, 1, 12, 2] >>> x2 = [1, 4, 7, 1, 0] >>> tau, p_value = stats.kendalltau(x1, x2) >>> tau -0.47140452079103173 >>> p_value 0.2827454599327748 """ x = np.asarray(x).ravel() y = np.asarray(y).ravel() if x.size != y.size: raise ValueError("All inputs to `kendalltau` must be of the same size, " "found x-size %s and y-size %s" % (x.size, y.size)) elif not x.size or not y.size: return KendalltauResult(np.nan, np.nan) # Return NaN if arrays are empty # check both x and y cnx, npx = _contains_nan(x, nan_policy) cny, npy = _contains_nan(y, nan_policy) contains_nan = cnx or cny if npx == 'omit' or npy == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'propagate': return KendalltauResult(np.nan, np.nan) elif contains_nan and nan_policy == 'omit': x = ma.masked_invalid(x) y = ma.masked_invalid(y) return mstats_basic.kendalltau(x, y) if initial_lexsort is not None: # deprecate to drop! warnings.warn('"initial_lexsort" is gone!') def count_rank_tie(ranks): cnt = np.bincount(ranks).astype('int64', copy=False) cnt = cnt[cnt > 1] return ((cnt * (cnt - 1) // 2).sum(), (cnt * (cnt - 1.) * (cnt - 2)).sum(), (cnt * (cnt - 1.) * (2*cnt + 5)).sum()) size = x.size perm = np.argsort(y) # sort on y and convert y to dense ranks x, y = x[perm], y[perm] y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp) # stable sort on x and convert x to dense ranks perm = np.argsort(x, kind='mergesort') x, y = x[perm], y[perm] x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp) dis = _kendall_dis(x, y) # discordant pairs obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True] cnt = np.diff(np.where(obs)[0]).astype('int64', copy=False) ntie = (cnt * (cnt - 1) // 2).sum() # joint ties xtie, x0, x1 = count_rank_tie(x) # ties in x, stats ytie, y0, y1 = count_rank_tie(y) # ties in y, stats tot = (size * (size - 1)) // 2 if xtie == tot or ytie == tot: return KendalltauResult(np.nan, np.nan) # Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie # = con + dis + xtie + ytie - ntie con_minus_dis = tot - xtie - ytie + ntie - 2 * dis tau = con_minus_dis / np.sqrt(tot - xtie) / np.sqrt(tot - ytie) # Limit range to fix computational errors tau = min(1., max(-1., tau)) # con_minus_dis is approx normally distributed with this variance [3]_ var = (size * (size - 1) * (2.*size + 5) - x1 - y1) / 18. + ( 2. * xtie * ytie) / (size * (size - 1)) + x0 * y0 / (9. * size * (size - 1) * (size - 2)) pvalue = special.erfc(np.abs(con_minus_dis) / np.sqrt(var) / np.sqrt(2)) # Limit range to fix computational errors return KendalltauResult(min(1., max(-1., tau)), pvalue) WeightedTauResult = namedtuple('WeightedTauResult', ('correlation', 'pvalue')) def weightedtau(x, y, rank=True, weigher=None, additive=True): r""" Computes a weighted version of Kendall's :math:`\tau`. The weighted :math:`\tau` is a weighted version of Kendall's :math:`\tau` in which exchanges of high weight are more influential than exchanges of low weight. The default parameters compute the additive hyperbolic version of the index, :math:`\tau_\mathrm h`, which has been shown to provide the best balance between important and unimportant elements [1]_. The weighting is defined by means of a rank array, which assigns a nonnegative rank to each element, and a weigher function, which assigns a weight based from the rank to each element. The weight of an exchange is then the sum or the product of the weights of the ranks of the exchanged elements. The default parameters compute :math:`\tau_\mathrm h`: an exchange between elements with rank :math:`r` and :math:`s` (starting from zero) has weight :math:`1/(r+1) + 1/(s+1)`. Specifying a rank array is meaningful only if you have in mind an external criterion of importance. If, as it usually happens, you do not have in mind a specific rank, the weighted :math:`\tau` is defined by averaging the values obtained using the decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`). This is the behavior with default parameters. Note that if you are computing the weighted :math:`\tau` on arrays of ranks, rather than of scores (i.e., a larger value implies a lower rank) you must negate the ranks, so that elements of higher rank are associated with a larger value. Parameters ---------- x, y : array_like Arrays of scores, of the same shape. If arrays are not 1-D, they will be flattened to 1-D. rank: array_like of ints or bool, optional A nonnegative rank assigned to each element. If it is None, the decreasing lexicographical rank by (`x`, `y`) will be used: elements of higher rank will be those with larger `x`-values, using `y`-values to break ties (in particular, swapping `x` and `y` will give a different result). If it is False, the element indices will be used directly as ranks. The default is True, in which case this function returns the average of the values obtained using the decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`). weigher : callable, optional The weigher function. Must map nonnegative integers (zero representing the most important element) to a nonnegative weight. The default, None, provides hyperbolic weighing, that is, rank :math:`r` is mapped to weight :math:`1/(r+1)`. additive : bool, optional If True, the weight of an exchange is computed by adding the weights of the ranks of the exchanged elements; otherwise, the weights are multiplied. The default is True. Returns ------- correlation : float The weighted :math:`\tau` correlation index. pvalue : float Presently ``np.nan``, as the null statistics is unknown (even in the additive hyperbolic case). See also -------- kendalltau : Calculates Kendall's tau. spearmanr : Calculates a Spearman rank-order correlation coefficient. theilslopes : Computes the Theil-Sen estimator for a set of points (x, y). Notes ----- This function uses an :math:`O(n \log n)`, mergesort-based algorithm [1]_ that is a weighted extension of Knight's algorithm for Kendall's :math:`\tau` [2]_. It can compute Shieh's weighted :math:`\tau` [3]_ between rankings without ties (i.e., permutations) by setting `additive` and `rank` to False, as the definition given in [1]_ is a generalization of Shieh's. NaNs are considered the smallest possible score. .. versionadded:: 0.19.0 References ---------- .. [1] Sebastiano Vigna, "A weighted correlation index for rankings with ties", Proceedings of the 24th international conference on World Wide Web, pp. 1166-1176, ACM, 2015. .. [2] W.R. Knight, "A Computer Method for Calculating Kendall's Tau with Ungrouped Data", Journal of the American Statistical Association, Vol. 61, No. 314, Part 1, pp. 436-439, 1966. .. [3] Grace S. Shieh. "A weighted Kendall's tau statistic", Statistics & Probability Letters, Vol. 39, No. 1, pp. 17-24, 1998. Examples -------- >>> from scipy import stats >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, 0] >>> tau, p_value = stats.weightedtau(x, y) >>> tau -0.56694968153682723 >>> p_value nan >>> tau, p_value = stats.weightedtau(x, y, additive=False) >>> tau -0.62205716951801038 NaNs are considered the smallest possible score: >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, np.nan] >>> tau, _ = stats.weightedtau(x, y) >>> tau -0.56694968153682723 This is exactly Kendall's tau: >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, 0] >>> tau, _ = stats.weightedtau(x, y, weigher=lambda x: 1) >>> tau -0.47140452079103173 >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, 0] >>> stats.weightedtau(x, y, rank=None) WeightedTauResult(correlation=-0.4157652301037516, pvalue=nan) >>> stats.weightedtau(y, x, rank=None) WeightedTauResult(correlation=-0.71813413296990281, pvalue=nan) """ x = np.asarray(x).ravel() y = np.asarray(y).ravel() if x.size != y.size: raise ValueError("All inputs to `weightedtau` must be of the same size, " "found x-size %s and y-size %s" % (x.size, y.size)) if not x.size: return WeightedTauResult(np.nan, np.nan) # Return NaN if arrays are empty # If there are NaNs we apply _toint64() if np.isnan(np.min(x)): x = _toint64(x) if np.isnan(np.min(y)): y = _toint64(y) # Reduce to ranks unsupported types if x.dtype != y.dtype: if x.dtype != np.int64: x = _toint64(x) if y.dtype != np.int64: y = _toint64(y) else: if x.dtype not in (np.int32, np.int64, np.float32, np.float64): x = _toint64(x) y = _toint64(y) if rank is True: return WeightedTauResult(( _weightedrankedtau(x, y, None, weigher, additive) + _weightedrankedtau(y, x, None, weigher, additive) ) / 2, np.nan) if rank is False: rank = np.arange(x.size, dtype=np.intp) elif rank is not None: rank = np.asarray(rank).ravel() if rank.size != x.size: raise ValueError("All inputs to `weightedtau` must be of the same size, " "found x-size %s and rank-size %s" % (x.size, rank.size)) return WeightedTauResult(_weightedrankedtau(x, y, rank, weigher, additive), np.nan) ##################################### # INFERENTIAL STATISTICS # ##################################### Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue')) def ttest_1samp(a, popmean, axis=0, nan_policy='propagate'): """ Calculates the T-test for the mean of ONE group of scores. This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations `a` is equal to the given population mean, `popmean`. Parameters ---------- a : array_like sample observation popmean : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension axis : int or None, optional Axis along which to compute test. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Examples -------- >>> from scipy import stats >>> np.random.seed(7654567) # fix seed to get the same result >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2)) Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don't reject it in the first case. >>> stats.ttest_1samp(rvs,5.0) (array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674])) >>> stats.ttest_1samp(rvs,0.0) (array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999])) Examples using axis and non-scalar dimension for population mean. >>> stats.ttest_1samp(rvs,[5.0,0.0]) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs,[[5.0],[0.0]]) (array([[-0.68014479, -0.04323899], [ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01], [ 7.89094663e-03, 1.49986458e-04]])) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.ttest_1samp(a, popmean, axis) n = a.shape[axis] df = n - 1 d = np.mean(a, axis) - popmean v = np.var(a, axis, ddof=1) denom = np.sqrt(v / float(n)) with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(d, denom) t, prob = _ttest_finish(df, t) return Ttest_1sampResult(t, prob) def _ttest_finish(df, t): """Common code between all 3 t-test functions.""" prob = distributions.t.sf(np.abs(t), df) * 2 # use np.abs to get upper tail if t.ndim == 0: t = t[()] return t, prob def _ttest_ind_from_stats(mean1, mean2, denom, df): d = mean1 - mean2 with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(d, denom) t, prob = _ttest_finish(df, t) return (t, prob) def _unequal_var_ttest_denom(v1, n1, v2, n2): vn1 = v1 / n1 vn2 = v2 / n2 with np.errstate(divide='ignore', invalid='ignore'): df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)) # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0). # Hence it doesn't matter what df is as long as it's not NaN. df = np.where(np.isnan(df), 1, df) denom = np.sqrt(vn1 + vn2) return df, denom def _equal_var_ttest_denom(v1, n1, v2, n2): df = n1 + n2 - 2.0 svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2)) return df, denom Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue')) def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True): """ T-test for means of two independent samples from descriptive statistics. This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. Parameters ---------- mean1 : array_like The mean(s) of sample 1. std1 : array_like The standard deviation(s) of sample 1. nobs1 : array_like The number(s) of observations of sample 1. mean2 : array_like The mean(s) of sample 2 std2 : array_like The standard deviations(s) of sample 2. nobs2 : array_like The number(s) of observations of sample 2. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. Returns ------- statistic : float or array The calculated t-statistics pvalue : float or array The two-tailed p-value. See also -------- scipy.stats.ttest_ind Notes ----- .. versionadded:: 0.16.0 References ---------- .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test """ if equal_var: df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) else: df, denom = _unequal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) res = _ttest_ind_from_stats(mean1, mean2, denom, df) return Ttest_indResult(*res) def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate'): """ Calculates the T-test for the means of *two independent* samples of scores. This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. This test assumes that the populations have identical variances by default. Parameters ---------- a, b : array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. .. versionadded:: 0.11.0 nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array The calculated t-statistic. pvalue : float or array The two-tailed p-value. Notes ----- We can use this test, if we observe two independent samples from the same or different population, e.g. exam scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. References ---------- .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) Test with sample with identical means: >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) >>> stats.ttest_ind(rvs1,rvs2) (0.26833823296239279, 0.78849443369564776) >>> stats.ttest_ind(rvs1,rvs2, equal_var = False) (0.26833823296239279, 0.78849452749500748) `ttest_ind` underestimates p for unequal variances: >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500) >>> stats.ttest_ind(rvs1, rvs3) (-0.46580283298287162, 0.64145827413436174) >>> stats.ttest_ind(rvs1, rvs3, equal_var = False) (-0.46580283298287162, 0.64149646246569292) When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic: >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs4) (-0.99882539442782481, 0.3182832709103896) >>> stats.ttest_ind(rvs1, rvs4, equal_var = False) (-0.69712570584654099, 0.48716927725402048) T-test with different means, variance, and n: >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs5) (-1.4679669854490653, 0.14263895620529152) >>> stats.ttest_ind(rvs1, rvs5, equal_var = False) (-0.94365973617132992, 0.34744170334794122) """ a, b, axis = _chk2_asarray(a, b, axis) # check both a and b cna, npa = _contains_nan(a, nan_policy) cnb, npb = _contains_nan(b, nan_policy) contains_nan = cna or cnb if npa == 'omit' or npb == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) b = ma.masked_invalid(b) return mstats_basic.ttest_ind(a, b, axis, equal_var) if a.size == 0 or b.size == 0: return Ttest_indResult(np.nan, np.nan) v1 = np.var(a, axis, ddof=1) v2 = np.var(b, axis, ddof=1) n1 = a.shape[axis] n2 = b.shape[axis] if equal_var: df, denom = _equal_var_ttest_denom(v1, n1, v2, n2) else: df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2) res = _ttest_ind_from_stats(np.mean(a, axis), np.mean(b, axis), denom, df) return Ttest_indResult(*res) Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue')) def ttest_rel(a, b, axis=0, nan_policy='propagate'): """ Calculates the T-test on TWO RELATED samples of scores, a and b. This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values. Parameters ---------- a, b : array_like The arrays must have the same shape. axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- Examples for the use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics. References ---------- http://en.wikipedia.org/wiki/T-test#Dependent_t-test Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) # fix random seed to get same numbers >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs2) (0.24101764965300962, 0.80964043445811562) >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs3) (-3.9995108708727933, 7.3082402191726459e-005) """ a, b, axis = _chk2_asarray(a, b, axis) cna, npa = _contains_nan(a, nan_policy) cnb, npb = _contains_nan(b, nan_policy) contains_nan = cna or cnb if npa == 'omit' or npb == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) b = ma.masked_invalid(b) m = ma.mask_or(ma.getmask(a), ma.getmask(b)) aa = ma.array(a, mask=m, copy=True) bb = ma.array(b, mask=m, copy=True) return mstats_basic.ttest_rel(aa, bb, axis) if a.shape[axis] != b.shape[axis]: raise ValueError('unequal length arrays') if a.size == 0 or b.size == 0: return np.nan, np.nan n = a.shape[axis] df = float(n - 1) d = (a - b).astype(np.float64) v = np.var(d, axis, ddof=1) dm = np.mean(d, axis) denom = np.sqrt(v / float(n)) with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(dm, denom) t, prob = _ttest_finish(df, t) return Ttest_relResult(t, prob) KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue')) def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'): """ Perform the Kolmogorov-Smirnov test for goodness of fit. This performs a test of the distribution G(x) of an observed random variable against a given distribution F(x). Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either 'two-sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions. Parameters ---------- rvs : str, array or callable If a string, it should be the name of a distribution in `scipy.stats`. If an array, it should be a 1-D array of observations of random variables. If a callable, it should be a function to generate random variables; it is required to have a keyword argument `size`. cdf : str or callable If a string, it should be the name of a distribution in `scipy.stats`. If `rvs` is a string then `cdf` can be False or the same as `rvs`. If a callable, that callable is used to calculate the cdf. args : tuple, sequence, optional Distribution parameters, used if `rvs` or `cdf` are strings. N : int, optional Sample size if `rvs` is string or callable. Default is 20. alternative : {'two-sided', 'less','greater'}, optional Defines the alternative hypothesis (see explanation above). Default is 'two-sided'. mode : 'approx' (default) or 'asymp', optional Defines the distribution used for calculating the p-value. - 'approx' : use approximation to exact distribution of test statistic - 'asymp' : use asymptotic distribution of test statistic Returns ------- statistic : float KS test statistic, either D, D+ or D-. pvalue : float One-tailed or two-tailed p-value. Notes ----- In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function F(x) of the hypothesis, ``G(x)<=F(x)``, resp. ``G(x)>=F(x)``. Examples -------- >>> from scipy import stats >>> x = np.linspace(-15, 15, 9) >>> stats.kstest(x, 'norm') (0.44435602715924361, 0.038850142705171065) >>> np.random.seed(987654321) # set random seed to get the same result >>> stats.kstest('norm', False, N=100) (0.058352892479417884, 0.88531190944151261) The above lines are equivalent to: >>> np.random.seed(987654321) >>> stats.kstest(stats.norm.rvs(size=100), 'norm') (0.058352892479417884, 0.88531190944151261) *Test against one-sided alternative hypothesis* Shift distribution to larger values, so that ``cdf_dgp(x) < norm.cdf(x)``: >>> np.random.seed(987654321) >>> x = stats.norm.rvs(loc=0.2, size=100) >>> stats.kstest(x,'norm', alternative = 'less') (0.12464329735846891, 0.040989164077641749) Reject equal distribution against alternative hypothesis: less >>> stats.kstest(x,'norm', alternative = 'greater') (0.0072115233216311081, 0.98531158590396395) Don't reject equal distribution against alternative hypothesis: greater >>> stats.kstest(x,'norm', mode='asymp') (0.12464329735846891, 0.08944488871182088) *Testing t distributed random variables against normal distribution* With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not reject the hypothesis that the sample came from the normal distribution: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(100,size=100),'norm') (0.072018929165471257, 0.67630062862479168) With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at the 10% level: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(3,size=100),'norm') (0.131016895759829, 0.058826222555312224) """ if isinstance(rvs, string_types): if (not cdf) or (cdf == rvs): cdf = getattr(distributions, rvs).cdf rvs = getattr(distributions, rvs).rvs else: raise AttributeError("if rvs is string, cdf has to be the " "same distribution") if isinstance(cdf, string_types): cdf = getattr(distributions, cdf).cdf if callable(rvs): kwds = {'size': N} vals = np.sort(rvs(*args, **kwds)) else: vals = np.sort(rvs) N = len(vals) cdfvals = cdf(vals, *args) # to not break compatibility with existing code if alternative == 'two_sided': alternative = 'two-sided' if alternative in ['two-sided', 'greater']: Dplus = (np.arange(1.0, N + 1)/N - cdfvals).max() if alternative == 'greater': return KstestResult(Dplus, distributions.ksone.sf(Dplus, N)) if alternative in ['two-sided', 'less']: Dmin = (cdfvals - np.arange(0.0, N)/N).max() if alternative == 'less': return KstestResult(Dmin, distributions.ksone.sf(Dmin, N)) if alternative == 'two-sided': D = np.max([Dplus, Dmin]) if mode == 'asymp': return KstestResult(D, distributions.kstwobign.sf(D * np.sqrt(N))) if mode == 'approx': pval_two = distributions.kstwobign.sf(D * np.sqrt(N)) if N > 2666 or pval_two > 0.80 - N*0.3/1000: return KstestResult(D, pval_two) else: return KstestResult(D, 2 * distributions.ksone.sf(D, N)) # Map from names to lambda_ values used in power_divergence(). _power_div_lambda_names = { "pearson": 1, "log-likelihood": 0, "freeman-tukey": -0.5, "mod-log-likelihood": -1, "neyman": -2, "cressie-read": 2/3, } def _count(a, axis=None): """ Count the number of non-masked elements of an array. This function behaves like np.ma.count(), but is much faster for ndarrays. """ if hasattr(a, 'count'): num = a.count(axis=axis) if isinstance(num, np.ndarray) and num.ndim == 0: # In some cases, the `count` method returns a scalar array (e.g. # np.array(3)), but we want a plain integer. num = int(num) else: if axis is None: num = a.size else: num = a.shape[axis] return num Power_divergenceResult = namedtuple('Power_divergenceResult', ('statistic', 'pvalue')) def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None): """ Cressie-Read power divergence statistic and goodness of fit test. This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read power divergence statistic. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. lambda_ : float or str, optional `lambda_` gives the power in the Cressie-Read power divergence statistic. The default is 1. For convenience, `lambda_` may be assigned one of the following strings, in which case the corresponding numerical value is used:: String Value Description "pearson" 1 Pearson's chi-squared statistic. In this case, the function is equivalent to `stats.chisquare`. "log-likelihood" 0 Log-likelihood ratio. Also known as the G-test [3]_. "freeman-tukey" -1/2 Freeman-Tukey statistic. "mod-log-likelihood" -1 Modified log-likelihood ratio. "neyman" -2 Neyman's statistic. "cressie-read" 2/3 The power recommended in [5]_. Returns ------- statistic : float or ndarray The Cressie-Read power divergence test statistic. The value is a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D. pvalue : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `stat` are scalars. See Also -------- chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. When `lambda_` is less than zero, the formula for the statistic involves dividing by `f_obs`, so a warning or error may be generated if any value in `f_obs` is 0. Similarly, a warning or error may be generated if any value in `f_exp` is zero when `lambda_` >= 0. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. This function handles masked arrays. If an element of `f_obs` or `f_exp` is masked, then data at that position is ignored, and does not count towards the size of the data set. .. versionadded:: 0.13.0 References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test .. [3] "G-test", http://en.wikipedia.org/wiki/G-test .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and practice of statistics in biological research", New York: Freeman (1981) .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984), pp. 440-464. Examples -------- (See `chisquare` for more examples.) When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic): >>> from scipy.stats import power_divergence >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood') (2.006573162632538, 0.84823476779463769) The expected frequencies can be given with the `f_exp` argument: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[16, 16, 16, 16, 16, 8], ... lambda_='log-likelihood') (3.3281031458963746, 0.6495419288047497) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> power_divergence(obs, lambda_="log-likelihood") (array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> power_divergence(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> power_divergence(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the test statistic with `ddof`. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we must use ``axis=1``: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], ... [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ # Convert the input argument `lambda_` to a numerical value. if isinstance(lambda_, string_types): if lambda_ not in _power_div_lambda_names: names = repr(list(_power_div_lambda_names.keys()))[1:-1] raise ValueError("invalid string for lambda_: {0!r}. Valid strings " "are {1}".format(lambda_, names)) lambda_ = _power_div_lambda_names[lambda_] elif lambda_ is None: lambda_ = 1 f_obs = np.asanyarray(f_obs) if f_exp is not None: f_exp = np.atleast_1d(np.asanyarray(f_exp)) else: # Compute the equivalent of # f_exp = f_obs.mean(axis=axis, keepdims=True) # Older versions of numpy do not have the 'keepdims' argument, so # we have to do a little work to achieve the same result. # Ignore 'invalid' errors so the edge case of a data set with length 0 # is handled without spurious warnings. with np.errstate(invalid='ignore'): f_exp = np.atleast_1d(f_obs.mean(axis=axis)) if axis is not None: reduced_shape = list(f_obs.shape) reduced_shape[axis] = 1 f_exp.shape = reduced_shape # `terms` is the array of terms that are summed along `axis` to create # the test statistic. We use some specialized code for a few special # cases of lambda_. if lambda_ == 1: # Pearson's chi-squared statistic terms = (f_obs - f_exp)**2 / f_exp elif lambda_ == 0: # Log-likelihood ratio (i.e. G-test) terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp) elif lambda_ == -1: # Modified log-likelihood ratio terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs) else: # General Cressie-Read power divergence. terms = f_obs * ((f_obs / f_exp)**lambda_ - 1) terms /= 0.5 * lambda_ * (lambda_ + 1) stat = terms.sum(axis=axis) num_obs = _count(terms, axis=axis) ddof = asarray(ddof) p = distributions.chi2.sf(stat, num_obs - 1 - ddof) return Power_divergenceResult(stat, p) def chisquare(f_obs, f_exp=None, ddof=0, axis=0): """ Calculates a one-way chi square test. The chi square test tests the null hypothesis that the categorical data has the given frequencies. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. Returns ------- chisq : float or ndarray The chi-squared test statistic. The value is a float if `axis` is None or `f_obs` and `f_exp` are 1-D. p : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `chisq` are scalars. See Also -------- power_divergence mstats.chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test Examples -------- When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. >>> from scipy.stats import chisquare >>> chisquare([16, 18, 16, 14, 12, 12]) (2.0, 0.84914503608460956) With `f_exp` the expected frequencies can be given. >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8]) (3.5, 0.62338762774958223) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> chisquare(obs) (array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> chisquare(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> chisquare(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the chi-squared statistic with `ddof`. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we use ``axis=1``: >>> chisquare([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis, lambda_="pearson") Ks_2sampResult = namedtuple('Ks_2sampResult', ('statistic', 'pvalue')) def ks_2samp(data1, data2): """ Computes the Kolmogorov-Smirnov statistic on 2 samples. This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous distribution. Parameters ---------- data1, data2 : sequence of 1-D ndarrays two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different Returns ------- statistic : float KS statistic pvalue : float two-tailed p-value Notes ----- This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample K-S test, the distribution is assumed to be continuous. This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution. If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the two samples are the same. Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) #fix random seed to get the same result >>> n1 = 200 # size of first sample >>> n2 = 300 # size of second sample For a different distribution, we can reject the null hypothesis since the pvalue is below 1%: >>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1) >>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5) >>> stats.ks_2samp(rvs1, rvs2) (0.20833333333333337, 4.6674975515806989e-005) For a slightly different distribution, we cannot reject the null hypothesis at a 10% or lower alpha since the p-value at 0.144 is higher than 10% >>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0) >>> stats.ks_2samp(rvs1, rvs3) (0.10333333333333333, 0.14498781825751686) For an identical distribution, we cannot reject the null hypothesis since the p-value is high, 41%: >>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0) >>> stats.ks_2samp(rvs1, rvs4) (0.07999999999999996, 0.41126949729859719) """ data1 = np.sort(data1) data2 = np.sort(data2) n1 = data1.shape[0] n2 = data2.shape[0] data_all = np.concatenate([data1, data2]) cdf1 = np.searchsorted(data1, data_all, side='right') / (1.0*n1) cdf2 = np.searchsorted(data2, data_all, side='right') / (1.0*n2) d = np.max(np.absolute(cdf1 - cdf2)) # Note: d absolute not signed distance en = np.sqrt(n1 * n2 / float(n1 + n2)) try: prob = distributions.kstwobign.sf((en + 0.12 + 0.11 / en) * d) except: prob = 1.0 return Ks_2sampResult(d, prob) def tiecorrect(rankvals): """ Tie correction factor for ties in the Mann-Whitney U and Kruskal-Wallis H tests. Parameters ---------- rankvals : array_like A 1-D sequence of ranks. Typically this will be the array returned by `stats.rankdata`. Returns ------- factor : float Correction factor for U or H. See Also -------- rankdata : Assign ranks to the data mannwhitneyu : Mann-Whitney rank test kruskal : Kruskal-Wallis H test References ---------- .. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. Examples -------- >>> from scipy.stats import tiecorrect, rankdata >>> tiecorrect([1, 2.5, 2.5, 4]) 0.9 >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4]) >>> ranks array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5]) >>> tiecorrect(ranks) 0.9833333333333333 """ arr = np.sort(rankvals) idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0] cnt = np.diff(idx).astype(np.float64) size = np.float64(arr.size) return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size) MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue')) def mannwhitneyu(x, y, use_continuity=True, alternative=None): """ Computes the Mann-Whitney rank test on samples x and y. Parameters ---------- x, y : array_like Array of samples, should be one-dimensional. use_continuity : bool, optional Whether a continuity correction (1/2.) should be taken into account. Default is True. alternative : None (deprecated), 'less', 'two-sided', or 'greater' Whether to get the p-value for the one-sided hypothesis ('less' or 'greater') or for the two-sided hypothesis ('two-sided'). Defaults to None, which results in a p-value half the size of the 'two-sided' p-value and a different U statistic. The default behavior is not the same as using 'less' or 'greater': it only exists for backward compatibility and is deprecated. Returns ------- statistic : float The Mann-Whitney U statistic, equal to min(U for x, U for y) if `alternative` is equal to None (deprecated; exists for backward compatibility), and U for y otherwise. pvalue : float p-value assuming an asymptotic normal distribution. One-sided or two-sided, depending on the choice of `alternative`. Notes ----- Use only when the number of observation in each sample is > 20 and you have 2 independent samples of ranks. Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U. This test corrects for ties and by default uses a continuity correction. """ if alternative is None: warnings.warn("Calling `mannwhitneyu` without specifying " "`alternative` is deprecated.", DeprecationWarning) x = np.asarray(x) y = np.asarray(y) n1 = len(x) n2 = len(y) ranked = rankdata(np.concatenate((x, y))) rankx = ranked[0:n1] # get the x-ranks u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0) # calc U for x u2 = n1*n2 - u1 # remainder is U for y T = tiecorrect(ranked) if T == 0: raise ValueError('All numbers are identical in mannwhitneyu') sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0) meanrank = n1*n2/2.0 + 0.5 * use_continuity if alternative is None or alternative == 'two-sided': bigu = max(u1, u2) elif alternative == 'less': bigu = u1 elif alternative == 'greater': bigu = u2 else: raise ValueError("alternative should be None, 'less', 'greater' " "or 'two-sided'") z = (bigu - meanrank) / sd if alternative is None: # This behavior, equal to half the size of the two-sided # p-value, is deprecated. p = distributions.norm.sf(abs(z)) elif alternative == 'two-sided': p = 2 * distributions.norm.sf(abs(z)) else: p = distributions.norm.sf(z) u = u2 # This behavior is deprecated. if alternative is None: u = min(u1, u2) return MannwhitneyuResult(u, p) RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue')) def ranksums(x, y): """ Compute the Wilcoxon rank-sum statistic for two samples. The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values in the other sample. This test should be used to compare two samples from continuous distributions. It does not handle ties between measurements in x and y. For tie-handling and an optional continuity correction see `scipy.stats.mannwhitneyu`. Parameters ---------- x,y : array_like The data from the two samples Returns ------- statistic : float The test statistic under the large-sample approximation that the rank sum statistic is normally distributed pvalue : float The two-sided p-value of the test References ---------- .. [1] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test """ x, y = map(np.asarray, (x, y)) n1 = len(x) n2 = len(y) alldata = np.concatenate((x, y)) ranked = rankdata(alldata) x = ranked[:n1] s = np.sum(x, axis=0) expected = n1 * (n1+n2+1) / 2.0 z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0) prob = 2 * distributions.norm.sf(abs(z)) return RanksumsResult(z, prob) KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue')) def kruskal(*args, **kwargs): """ Compute the Kruskal-Wallis H-test for independent samples The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different. Parameters ---------- sample1, sample2, ... : array_like Two or more arrays with the sample measurements can be given as arguments. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float The Kruskal-Wallis H statistic, corrected for ties pvalue : float The p-value for the test using the assumption that H has a chi square distribution See Also -------- f_oneway : 1-way ANOVA mannwhitneyu : Mann-Whitney rank test on two samples. friedmanchisquare : Friedman test for repeated measurements Notes ----- Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements. References ---------- .. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in One-Criterion Variance Analysis", Journal of the American Statistical Association, Vol. 47, Issue 260, pp. 583-621, 1952. .. [2] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance Examples -------- >>> from scipy import stats >>> x = [1, 3, 5, 7, 9] >>> y = [2, 4, 6, 8, 10] >>> stats.kruskal(x, y) KruskalResult(statistic=0.27272727272727337, pvalue=0.60150813444058948) >>> x = [1, 1, 1] >>> y = [2, 2, 2] >>> z = [2, 2] >>> stats.kruskal(x, y, z) KruskalResult(statistic=7.0, pvalue=0.030197383422318501) """ args = list(map(np.asarray, args)) num_groups = len(args) if num_groups < 2: raise ValueError("Need at least two groups in stats.kruskal()") for arg in args: if arg.size == 0: return KruskalResult(np.nan, np.nan) n = np.asarray(list(map(len, args))) if 'nan_policy' in kwargs.keys(): if kwargs['nan_policy'] not in ('propagate', 'raise', 'omit'): raise ValueError("nan_policy must be 'propagate', " "'raise' or'omit'") else: nan_policy = kwargs['nan_policy'] else: nan_policy = 'propagate' contains_nan = False for arg in args: cn = _contains_nan(arg, nan_policy) if cn[0]: contains_nan = True break if contains_nan and nan_policy == 'omit': for a in args: a = ma.masked_invalid(a) return mstats_basic.kruskal(*args) if contains_nan and nan_policy == 'propagate': return KruskalResult(np.nan, np.nan) alldata = np.concatenate(args) ranked = rankdata(alldata) ties = tiecorrect(ranked) if ties == 0: raise ValueError('All numbers are identical in kruskal') # Compute sum^2/n for each group and sum j = np.insert(np.cumsum(n), 0, 0) ssbn = 0 for i in range(num_groups): ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / float(n[i]) totaln = np.sum(n) h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1) df = num_groups - 1 h /= ties return KruskalResult(h, distributions.chi2.sf(h, df)) FriedmanchisquareResult = namedtuple('FriedmanchisquareResult', ('statistic', 'pvalue')) def friedmanchisquare(*args): """ Computes the Friedman test for repeated measurements The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same distribution. It is often used to test for consistency among measurements obtained in different ways. For example, if two measurement techniques are used on the same set of individuals, the Friedman test can be used to determine if the two measurement techniques are consistent. Parameters ---------- measurements1, measurements2, measurements3... : array_like Arrays of measurements. All of the arrays must have the same number of elements. At least 3 sets of measurements must be given. Returns ------- statistic : float the test statistic, correcting for ties pvalue : float the associated p-value assuming that the test statistic has a chi squared distribution Notes ----- Due to the assumption that the test statistic has a chi squared distribution, the p-value is only reliable for n > 10 and more than 6 repeated measurements. References ---------- .. [1] http://en.wikipedia.org/wiki/Friedman_test """ k = len(args) if k < 3: raise ValueError('Less than 3 levels. Friedman test not appropriate.') n = len(args[0]) for i in range(1, k): if len(args[i]) != n: raise ValueError('Unequal N in friedmanchisquare. Aborting.') # Rank data data = np.vstack(args).T data = data.astype(float) for i in range(len(data)): data[i] = rankdata(data[i]) # Handle ties ties = 0 for i in range(len(data)): replist, repnum = find_repeats(array(data[i])) for t in repnum: ties += t * (t*t - 1) c = 1 - ties / float(k*(k*k - 1)*n) ssbn = np.sum(data.sum(axis=0)**2) chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1)) def combine_pvalues(pvalues, method='fisher', weights=None): """ Methods for combining the p-values of independent tests bearing upon the same hypothesis. Parameters ---------- pvalues : array_like, 1-D Array of p-values assumed to come from independent tests. method : {'fisher', 'stouffer'}, optional Name of method to use to combine p-values. The following methods are available: - "fisher": Fisher's method (Fisher's combined probability test), the default. - "stouffer": Stouffer's Z-score method. weights : array_like, 1-D, optional Optional array of weights used only for Stouffer's Z-score method. Returns ------- statistic: float The statistic calculated by the specified method: - "fisher": The chi-squared statistic - "stouffer": The Z-score pval: float The combined p-value. Notes ----- Fisher's method (also known as Fisher's combined probability test) [1]_ uses a chi-squared statistic to compute a combined p-value. The closely related Stouffer's Z-score method [2]_ uses Z-scores rather than p-values. The advantage of Stouffer's method is that it is straightforward to introduce weights, which can make Stouffer's method more powerful than Fisher's method when the p-values are from studies of different size [3]_ [4]_. Fisher's method may be extended to combine p-values from dependent tests [5]_. Extensions such as Brown's method and Kost's method are not currently implemented. .. versionadded:: 0.15.0 References ---------- .. [1] https://en.wikipedia.org/wiki/Fisher%27s_method .. [2] http://en.wikipedia.org/wiki/Fisher's_method#Relation_to_Stouffer.27s_Z-score_method .. [3] Whitlock, M. C. "Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach." Journal of Evolutionary Biology 18, no. 5 (2005): 1368-1373. .. [4] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis." Journal of Evolutionary Biology 24, no. 8 (2011): 1836-1841. .. [5] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method """ pvalues = np.asarray(pvalues) if pvalues.ndim != 1: raise ValueError("pvalues is not 1-D") if method == 'fisher': Xsq = -2 * np.sum(np.log(pvalues)) pval = distributions.chi2.sf(Xsq, 2 * len(pvalues)) return (Xsq, pval) elif method == 'stouffer': if weights is None: weights = np.ones_like(pvalues) elif len(weights) != len(pvalues): raise ValueError("pvalues and weights must be of the same size.") weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("weights is not 1-D") Zi = distributions.norm.isf(pvalues) Z = np.dot(weights, Zi) / np.linalg.norm(weights) pval = distributions.norm.sf(Z) return (Z, pval) else: raise ValueError( "Invalid method '%s'. Options are 'fisher' or 'stouffer'", method) ##################################### # PROBABILITY CALCULATIONS # ##################################### @np.deprecate(message="stats.chisqprob is deprecated in scipy 0.17.0; " "use stats.distributions.chi2.sf instead.") def chisqprob(chisq, df): """ Probability value (1-tail) for the Chi^2 probability distribution. Broadcasting rules apply. Parameters ---------- chisq : array_like or float > 0 df : array_like or float, probably int >= 1 Returns ------- chisqprob : ndarray The area from `chisq` to infinity under the Chi^2 probability distribution with degrees of freedom `df`. """ return distributions.chi2.sf(chisq, df) @np.deprecate(message="stats.betai is deprecated in scipy 0.17.0; " "use special.betainc instead") def betai(a, b, x): """ Returns the incomplete beta function. I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt) where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma function of a. The standard broadcasting rules apply to a, b, and x. Parameters ---------- a : array_like or float > 0 b : array_like or float > 0 x : array_like or float x will be clipped to be no greater than 1.0 . Returns ------- betai : ndarray Incomplete beta function. """ return _betai(a, b, x) def _betai(a, b, x): x = np.asarray(x) x = np.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x) ##################################### # ANOVA CALCULATIONS # ##################################### @np.deprecate(message="stats.f_value_wilks_lambda deprecated in scipy 0.17.0") def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b): """Calculation of Wilks lambda F-statistic for multivarite data, per Maxwell & Delaney p.657. """ if isinstance(ER, (int, float)): ER = array([[ER]]) if isinstance(EF, (int, float)): EF = array([[EF]]) lmbda = linalg.det(EF) / linalg.det(ER) if (a-1)**2 + (b-1)**2 == 5: q = 1 else: q = np.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5)) n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1) d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1) return n_um / d_en @np.deprecate(message="stats.f_value deprecated in scipy 0.17.0") def f_value(ER, EF, dfR, dfF): """ Returns an F-statistic for a restricted vs. unrestricted model. Parameters ---------- ER : float `ER` is the sum of squared residuals for the restricted model or null hypothesis EF : float `EF` is the sum of squared residuals for the unrestricted model or alternate hypothesis dfR : int `dfR` is the degrees of freedom in the restricted model dfF : int `dfF` is the degrees of freedom in the unrestricted model Returns ------- F-statistic : float """ return (ER - EF) / float(dfR - dfF) / (EF / float(dfF)) @np.deprecate(message="stats.f_value_multivariate deprecated in scipy 0.17.0") def f_value_multivariate(ER, EF, dfnum, dfden): """ Returns a multivariate F-statistic. Parameters ---------- ER : ndarray Error associated with the null hypothesis (the Restricted model). From a multivariate F calculation. EF : ndarray Error associated with the alternate hypothesis (the Full model) From a multivariate F calculation. dfnum : int Degrees of freedom the Restricted model. dfden : int Degrees of freedom associated with the Restricted model. Returns ------- fstat : float The computed F-statistic. """ if isinstance(ER, (int, float)): ER = array([[ER]]) if isinstance(EF, (int, float)): EF = array([[EF]]) n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum) d_en = linalg.det(EF) / float(dfden) return n_um / d_en ##################################### # SUPPORT FUNCTIONS # ##################################### RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts')) def find_repeats(arr): """ Find repeats and repeat counts. Parameters ---------- arr : array_like Input array. This is cast to float64. Returns ------- values : ndarray The unique values from the (flattened) input that are repeated. counts : ndarray Number of times the corresponding 'value' is repeated. Notes ----- In numpy >= 1.9 `numpy.unique` provides similar functionality. The main difference is that `find_repeats` only returns repeated values. Examples -------- >>> from scipy import stats >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5]) RepeatedResults(values=array([ 2.]), counts=array([4])) >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]]) RepeatedResults(values=array([ 4., 5.]), counts=array([2, 2])) """ # Note: always copies. return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64))) @np.deprecate(message="scipy.stats.ss is deprecated in scipy 0.17.0") def ss(a, axis=0): return _sum_of_squares(a, axis) def _sum_of_squares(a, axis=0): """ Squares each element of the input array, and returns the sum(s) of that. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate. Default is 0. If None, compute over the whole array `a`. Returns ------- sum_of_squares : ndarray The sum along the given axis for (a**2). See also -------- _square_of_sums : The square(s) of the sum(s) (the opposite of `_sum_of_squares`). """ a, axis = _chk_asarray(a, axis) return np.sum(a*a, axis) @np.deprecate(message="scipy.stats.square_of_sums is deprecated " "in scipy 0.17.0") def square_of_sums(a, axis=0): return _square_of_sums(a, axis) def _square_of_sums(a, axis=0): """ Sums elements of the input array, and returns the square(s) of that sum. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate. Default is 0. If None, compute over the whole array `a`. Returns ------- square_of_sums : float or ndarray The square of the sum over `axis`. See also -------- _sum_of_squares : The sum of squares (the opposite of `square_of_sums`). """ a, axis = _chk_asarray(a, axis) s = np.sum(a, axis) if not np.isscalar(s): return s.astype(float) * s else: return float(s) * s @np.deprecate(message="scipy.stats.fastsort is deprecated in scipy 0.16.0") def fastsort(a): """ Sort an array and provide the argsort. Parameters ---------- a : array_like Input array. Returns ------- fastsort : ndarray of type int sorted indices into the original array """ # TODO: the wording in the docstring is nonsense. it = np.argsort(a) as_ = a[it] return as_, it def rankdata(a, method='average'): """ rankdata(a, method='average') Assign ranks to data, dealing with ties appropriately. Ranks begin at 1. The `method` argument controls how ranks are assigned to equal values. See [1]_ for further discussion of ranking methods. Parameters ---------- a : array_like The array of values to be ranked. The array is first flattened. method : str, optional The method used to assign ranks to tied elements. The options are 'average', 'min', 'max', 'dense' and 'ordinal'. 'average': The average of the ranks that would have been assigned to all the tied values is assigned to each value. 'min': The minimum of the ranks that would have been assigned to all the tied values is assigned to each value. (This is also referred to as "competition" ranking.) 'max': The maximum of the ranks that would have been assigned to all the tied values is assigned to each value. 'dense': Like 'min', but the rank of the next highest element is assigned the rank immediately after those assigned to the tied elements. 'ordinal': All values are given a distinct rank, corresponding to the order that the values occur in `a`. The default is 'average'. Returns ------- ranks : ndarray An array of length equal to the size of `a`, containing rank scores. References ---------- .. [1] "Ranking", http://en.wikipedia.org/wiki/Ranking Examples -------- >>> from scipy.stats import rankdata >>> rankdata([0, 2, 3, 2]) array([ 1. , 2.5, 4. , 2.5]) >>> rankdata([0, 2, 3, 2], method='min') array([ 1, 2, 4, 2]) >>> rankdata([0, 2, 3, 2], method='max') array([ 1, 3, 4, 3]) >>> rankdata([0, 2, 3, 2], method='dense') array([ 1, 2, 3, 2]) >>> rankdata([0, 2, 3, 2], method='ordinal') array([ 1, 2, 4, 3]) """ if method not in ('average', 'min', 'max', 'dense', 'ordinal'): raise ValueError('unknown method "{0}"'.format(method)) arr = np.ravel(np.asarray(a)) algo = 'mergesort' if method == 'ordinal' else 'quicksort' sorter = np.argsort(arr, kind=algo) inv = np.empty(sorter.size, dtype=np.intp) inv[sorter] = np.arange(sorter.size, dtype=np.intp) if method == 'ordinal': return inv + 1 arr = arr[sorter] obs = np.r_[True, arr[1:] != arr[:-1]] dense = obs.cumsum()[inv] if method == 'dense': return dense # cumulative counts of each unique value count = np.r_[np.nonzero(obs)[0], len(obs)] if method == 'max': return count[dense] if method == 'min': return count[dense - 1] + 1 # average method return .5 * (count[dense] + count[dense - 1] + 1)
mit
Leminen/project_template_deeplearning
src/models/logreg_example.py
1
7774
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 10 16:43:52 2017 @author: leminen """ import os import tensorflow as tf import matplotlib.pyplot as plt import datetime import argparse import shlex import src.utils as utils import src.data.util_data as util_data def hparams_parser_train(hparams_string): parser = argparse.ArgumentParser() parser.add_argument('--epoch_max', type=int, default='100', help='Max number of epochs to run') parser.add_argument('--batch_size', type=int, default='64', help='Number of samples in each batch') ## add more model parameters to enable configuration from terminal return parser.parse_args(shlex.split(hparams_string)) def hparams_parser_evaluate(hparams_string): parser = argparse.ArgumentParser() parser.add_argument('--epoch_no', type=int, default=None, help='Epoch no to reload') ## add more model parameters to enable configuration from terminal return parser.parse_args(shlex.split(hparams_string)) class logreg_example(object): def __init__(self, dataset, id): self.model = 'logreg_example' if id != None: self.model = self.model + '_' + id self.dir_base = 'models/' + self.model self.dir_logs = self.dir_base + '/logs' self.dir_checkpoints = self.dir_base + '/checkpoints' self.dir_results = self.dir_base + '/results' utils.checkfolder(self.dir_checkpoints) utils.checkfolder(self.dir_logs) utils.checkfolder(self.dir_results) # Specify valid dataset for model if dataset == 'MNIST': self.dateset_filenames = ['data/processed/MNIST/train.tfrecord'] self.lbl_dim = 10 else: raise ValueError('Selected Dataset is not supported by model: logreg_example') def _create_inference(self, inputs): """ Define the inference model for the network Args: Returns: """ X = tf.reshape(inputs,[-1,784]) w = tf.Variable(tf.random_normal(shape=[784, 10], stddev=0.01), name='weights') b = tf.Variable(tf.zeros([1, 10]), name="bias") outputs = tf.matmul(X, w) + b return outputs def _create_losses(self, outputs, labels): """ Define loss function[s] for the network Args: Returns: """ entropy = tf.nn.softmax_cross_entropy_with_logits(logits=outputs, labels=labels, name='loss') loss = tf.reduce_mean(entropy) # computes the mean over all the examples in the batch return loss def _create_optimizer(self, loss): """ Create optimizer for the network Args: Returns: """ optimizer = tf.train.AdamOptimizer(learning_rate = 0.01) optimizer_op = optimizer.minimize(loss) return optimizer_op def _create_summaries(self, loss): """ Create summaries for the network Args: Returns: """ ### Add summaries with tf.name_scope("summaries"): tf.summary.scalar('model_loss', loss) # placeholder summary summary_op = tf.summary.merge_all() return summary_op def train(self, hparams_string): """ Run training of the network Args: Returns: """ args_train = hparams_parser_train(hparams_string) batch_size = args_train.batch_size epoch_max = args_train.epoch_max utils.save_model_configuration(args_train, self.dir_base) # Use dataset for loading in datasamples from .tfrecord (https://www.tensorflow.org/programmers_guide/datasets#consuming_tfrecord_data) # The iterator will get a new batch from the dataset each time a sess.run() is executed on the graph. dataset = tf.data.TFRecordDataset(self.dateset_filenames) dataset = dataset.map(util_data.decode_image) # decoding the tfrecord dataset = dataset.map(self._preProcessData) # potential local preprocessing of data dataset = dataset.shuffle(buffer_size = 10000, seed = None) dataset = dataset.batch(batch_size = batch_size) iterator = dataset.make_initializable_iterator() inputs = iterator.get_next() # depends on self._preProcessData [in_image, in_label] = inputs # show network architecture utils.show_all_variables() # define model, loss, optimizer and summaries. outputs = self._create_inference(in_image) loss = self._create_losses(outputs, in_label) optimizer_op = self._create_optimizer(loss) summary_op = self._create_summaries(loss) with tf.Session() as sess: # Initialize all model Variables. sess.run(tf.global_variables_initializer()) # Create Saver object for loading and storing checkpoints saver = tf.train.Saver() # Create Writer object for storing graph and summaries for TensorBoard writer = tf.summary.FileWriter(self.dir_logs, sess.graph) # Reload Tensor values from latest checkpoint ckpt = tf.train.get_checkpoint_state(self.dir_checkpoints) epoch_start = 0 if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) ckpt_name = os.path.basename(ckpt.model_checkpoint_path) epoch_start = int(ckpt_name.split('-')[-1]) interationCnt = 0 # Do training loops for epoch_n in range(epoch_start, epoch_max): # Initiate or Re-initiate iterator sess.run(iterator.initializer) # Test model output before any training if epoch_n == 0: summary = sess.run(summary_op) writer.add_summary(summary, global_step=-1) utils.show_message('Running training epoch no: {0}'.format(epoch_n)) while True: try: _, summary = sess.run([optimizer_op, summary_op]) writer.add_summary(summary, global_step=interationCnt) counter =+ 1 except tf.errors.OutOfRangeError: # Do some evaluation after each Epoch break if epoch_n % 1 == 0: saver.save(sess,os.path.join(self.dir_checkpoints, self.model + '.model'), global_step=epoch_n) def evaluate(self, hparams_string): """ Run prediction of the network Args: Returns: """ args_evaluate = hparams_parser_evaluate(hparams_string) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) def _preProcessData(self, image_proto, lbl_proto, class_proto, height_proto, width_proto, channels_proto, origin_proto): """ Local preprocessing of data from dataset also used to select which elements to parse onto the model Args: all outputs of util_data.decode_image Returns: """ image = image_proto label = tf.one_hot(lbl_proto, self.lbl_dim) return image, label
mit
nightjean/Deep-Learning
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_benchmark_test.py
82
8976
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Regression test for DNNLinearCombinedEstimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tempfile from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.platform import test from tensorflow.python.training import adagrad from tensorflow.python.training import ftrl from tensorflow.python.training import server_lib # Desired training steps, reported in benchmark. Actual steps might be slightly # more than this since supervisor training runs for a non-detrministic number of # steps. _ITERS = 100 _METRIC_KEYS = { 'accuracy', 'auc', 'accuracy/threshold_0.500000_mean', 'loss', 'precision/positive_threshold_0.500000_mean', 'recall/positive_threshold_0.500000_mean', } class DNNLinearCombinedClassifierBenchmark(test.Benchmark): def _assertSingleClassMetrics(self, metrics): estimator_test_utils.assert_in_range(0.9, 1.0, 'auc', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy/threshold_0.500000_mean', metrics) estimator_test_utils.assert_in_range( 0.9, 1.0, 'precision/positive_threshold_0.500000_mean', metrics) estimator_test_utils.assert_in_range( 0.9, 1.0, 'recall/positive_threshold_0.500000_mean', metrics) self._assertCommonMetrics(metrics) def _assertCommonMetrics(self, metrics): estimator_test_utils.assert_in_range(_ITERS, _ITERS + 5, 'global_step', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics) estimator_test_utils.assert_in_range(0.0, 0.2, 'loss', metrics) self.report_benchmark( iters=metrics['global_step'], extras={k: v for k, v in metrics.items() if k in _METRIC_KEYS}) def benchmarkMatrixData(self): iris = test_data.prepare_iris_data_for_logistic_regression() cont_feature = feature_column.real_valued_column('feature', dimension=4) bucketized_feature = feature_column.bucketized_column( cont_feature, test_data.get_quantile_based_buckets(iris.data, 10)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=tempfile.mkdtemp(), linear_feature_columns=(bucketized_feature,), dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3)) input_fn = test_data.iris_input_logistic_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertSingleClassMetrics(metrics) def benchmarkTensorData(self): def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant( iris.data[:, i], dtype=dtypes.float32), (-1, 1)) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=('en', 'fr', 'zh'), indices=((0, 0), (0, 1), (60, 0)), dense_shape=(len(iris.target), 2)) labels = array_ops.reshape( constant_op.constant( iris.target, dtype=dtypes.int32), (-1, 1)) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column(str(i)) for i in range(4) ] linear_features = [ feature_column.bucketized_column( cont_features[i], test_data.get_quantile_based_buckets(iris.data[:, i], 10)) for i in range(4) ] linear_features.append( feature_column.sparse_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=tempfile.mkdtemp(), linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=(3, 3)) metrics = classifier.fit(input_fn=_input_fn, steps=_ITERS).evaluate( input_fn=_input_fn, steps=100) self._assertSingleClassMetrics(metrics) def benchmarkCustomOptimizer(self): iris = test_data.prepare_iris_data_for_logistic_regression() cont_feature = feature_column.real_valued_column('feature', dimension=4) bucketized_feature = feature_column.bucketized_column( cont_feature, test_data.get_quantile_based_buckets(iris.data, 10)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=tempfile.mkdtemp(), linear_feature_columns=(bucketized_feature,), linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3), dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1)) input_fn = test_data.iris_input_logistic_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertSingleClassMetrics(metrics) def benchmarkMultiClass(self): iris = base.load_iris() cont_feature = feature_column.real_valued_column('feature', dimension=4) bucketized_feature = feature_column.bucketized_column( cont_feature, test_data.get_quantile_based_buckets(iris.data, 10)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=(bucketized_feature,), dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3)) input_fn = test_data.iris_input_multiclass_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertCommonMetrics(metrics) def benchmarkPartitionedVariables(self): def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=('en', 'fr', 'zh'), indices=((0, 0), (0, 1), (2, 0)), dense_shape=(3, 2)) } labels = constant_op.constant(((1,), (0,), (0,))) return features, labels # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_feature = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) embedding_feature = feature_column.embedding_column( sparse_feature, dimension=1) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=(sparse_feature,), dnn_feature_columns=(embedding_feature,), dnn_hidden_units=(3, 3), config=config) metrics = classifier.fit(input_fn=_input_fn, steps=_ITERS).evaluate( input_fn=_input_fn, steps=100) self._assertCommonMetrics(metrics) if __name__ == '__main__': test.main()
apache-2.0
deniszgonjanin/ckanext-bcgov
ckanext/bcgov/logic/action.py
2
28743
# Copyright 2015, Province of British Columbia # License: https://github.com/bcgov/ckanext-bcgov/blob/master/license import ckan.plugins.toolkit as toolkit import logging import datetime import sqlalchemy import ckan.logic as logic import ckan.plugins as plugins import smtplib from time import time import ckan.lib as lib from email import Utils from email.mime.text import MIMEText from email.header import Header from pylons import config from ckan.common import _, c, g import ckan.lib.plugins as lib_plugins import ckan.lib.dictization.model_save as model_save import ckan.lib.uploader as uploader import ckan.lib.helpers as h import ckan.lib.munge as munge import paste.deploy.converters from ckan.lib.mailer import MailerException import ckan.model as model from ckanext.bcgov.util.util import get_user_list import pprint # shortcuts get_action = logic.get_action _check_access = logic.check_access NotFound = logic.NotFound _validate = lib.navl.dictization_functions.validate ValidationError = logic.ValidationError _get_action = logic.get_action log = logging.getLogger('ckanext.edc_schema') _or_ = sqlalchemy.or_ ''' Checking package status and sending a notification if the state is changed. ''' def add_msg_niceties(recipient_name, body, sender_name, sender_url): return "Dear %s,<br><br>" % recipient_name \ + "\r\n\r\n%s\r\n\r\n" % body \ + "<br><br>--<br>\r\n%s (<a href=\"%s\">%s</a>)" % (sender_name, sender_url, sender_url) def send_state_change_notifications(members, email_dict, sender_name, sender_url): ''' Sends state change notifications to sub-org members. Updated by Khalegh Mamakani on March 5 2015. List of changes : - Creating the smtp connection once for all notifications instead of connecting and disconnecting for every single recipient. - Using a thread to send the notifications in the background. ''' #Email common fields subject = email_dict['subject'] mail_from = config.get('smtp.mail_from') subject = Header(subject.encode('utf-8'), 'utf-8') # Connecting to smtp server. smtp_connection = smtplib.SMTP() if 'smtp.test_server' in config: # If 'smtp.test_server' is configured we assume we're running tests, # and don't use the smtp.server, starttls, user, password etc. options. smtp_server = config['smtp.test_server'] smtp_starttls = False smtp_user = None smtp_password = None else: smtp_server = config.get('smtp.server', 'localhost') smtp_starttls = paste.deploy.converters.asbool( config.get('smtp.starttls')) smtp_user = config.get('smtp.user') smtp_password = config.get('smtp.password') smtp_connection.connect(smtp_server) try: # Identify ourselves and prompt the server for supported features. smtp_connection.ehlo() # If 'smtp.starttls' is on in CKAN config, try to put the SMTP # connection into TLS mode. if smtp_starttls: if smtp_connection.has_extn('STARTTLS'): smtp_connection.starttls() # Re-identify ourselves over TLS connection. smtp_connection.ehlo() else: raise MailerException("SMTP server does not support STARTTLS") # If 'smtp.user' is in CKAN config, try to login to SMTP server. if smtp_user: assert smtp_password, ("If smtp.user is configured then " "smtp.password must be configured as well.") smtp_connection.login(smtp_user, smtp_password) ''' Adding extra email fields and Sending notification for each individual member. ''' for member in members : if member.email : body = email_dict['body'] msg = MIMEText(body.encode('utf-8'), 'html', 'utf-8') msg['Subject'] = subject msg['From'] = "%s <%s>" % (sender_name, mail_from) msg['Date'] = Utils.formatdate(time()) recipient_email = member.email recipient_name = member.fullname or member.name body = add_msg_niceties(recipient_name, body, sender_name, sender_url) recipient = u"%s <%s>" % (recipient_name, recipient_email) msg['To'] = Header(recipient, 'utf-8') try : smtp_connection.sendmail(mail_from, [recipient_email], msg.as_string()) log.info("Sent state change email to user {0} with email {1}".format(recipient_name, recipient_email)) except Exception, e: log.error('Failed to send notification to user {0} email address : {1}'.format(recipient_email, recipient_email)) except smtplib.SMTPException, e: msg = '%r' % e log.exception(msg) log.error('Failed to connect to smtp server') finally: smtp_connection.quit() def check_record_state(context, old_state, new_data, site_title, site_url, dataset_url): ''' Checks if the dataset state has been changed during the update and informs the users involving in package management. Updated by Khalegh Mamakani on MArch 5th 2015. List of changes : - replaced get_user_list with a model query to get the list of all members of the org with the given role ( Preventing action functions calls and multiple for loops) - Removed the nested for loops for finding and sending notification to members (Replaced by a single for loop). ''' new_state = new_data['edc_state'] #If dataset's state has not been changed do nothing if (old_state == new_state): return ''' Get the organization and sub-organization data ''' org_id = new_data.get('org') sub_org_id = new_data.get('sub_org') org = model.Group.get(org_id) sub_org = model.Group.get(sub_org_id) # Do not send emails for "DRAFT" datasets if new_state == "DRAFT": return # Basic dataset info dataset_title = new_data['title'] org_title = org.title sub_org_title = sub_org.title orgs_titles = org_title + ' - ' + sub_org_title # Prepare email subject = '' body = '' role = 'admin' # Change email based on new_state changes if new_state == 'PENDING PUBLISH' : subject = 'EDC - PENDING PUBLISH ' + dataset_title body = 'The following record is "Pending Publication" for ' + orgs_titles + '<br><br>\ Record <a href="' + dataset_url + '">' + dataset_url + '</a>, ' + dataset_title + '<br><br>\ Please review and act as required.' elif new_state == 'REJECTED': subject = 'EDC - REJECTED ' + new_data['title'] body = 'The following record is "REJECTED" for ' + orgs_titles + '<br><br>\ Record <a href="' + dataset_url + '">' + dataset_url + '</a>, ' + dataset_title + '<br><br>\ Please review and act as required.' role = 'editor' elif new_state == 'PUBLISHED': subject = 'EDC - PUBLISHED ' + new_data['title'] body = 'The following record is "PUBLISHED" for ' + orgs_titles + '<br><br>\ Record <a href="' + dataset_url + '">' + dataset_url + '</a>, ' + dataset_title + '<br><br>\ Please review and act as required.' role = 'editor' elif new_state == 'PENDING ARCHIVE': subject = 'EDC - PENDING ARCHIVE ' + new_data['title'] body = 'The following record is "Pending Archival" for ' + orgs_titles + '<br><br>\ Record <a href="' + dataset_url + '">' + dataset_url + '</a>, ' + dataset_title + '<br><br>\ Please review and act as required.' elif new_state == 'ARCHIVED': subject = 'EDC - ARCHIVED ' + new_data['title'] body = 'The following record is "ARCHIVED" for ' + orgs_titles + '<br><br>\ Record <a href="' + dataset_url + '">' + dataset_url + '</a>, ' + dataset_title + '<br><br>\ Please review and act as required.' role = 'editor' else : pass email_dict = { 'subject': subject, 'body': body } # Get the entire list of users ''' Get the list of sub-organization users with the given role; Added by Khalegh Mamakani ''' log.info('Sending state change notification to organization users with role %s' %(role,)) query = model.Session.query(model.User) \ .join(model.Member, model.User.id == model.Member.table_id) \ .filter(model.Member.capacity == role) \ .filter(model.Member.group_id == sub_org.id) members = query.all() send_state_change_notifications(members, email_dict, site_title, site_url) def edc_package_update(context, input_data_dict): ''' Find a package, from the given object_name, and update it with the given fields. 1) Call __package_search to find the package 2) Check the results (success == true), (count==1) 3) Modify the data 4) Call get_action(package_update) to update the package ''' from ckan.lib.search import SearchError # first, do the search q = 'object_name:' + input_data_dict.get("object_name") fq = '' offset = 0 limit = 2 sort = 'metadata_modified desc' try : data_dict = { 'q' : q, 'fq' : fq, 'start' : offset, 'rows' : limit, 'sort' : sort } #Use package_search to filter the list query = get_action('package_search')(context, data_dict) except SearchError, se : log.error('Search error : %s', str(se)) raise SearchError(str(se)) #check the search results - there can be only 1!! results = query['results'] the_count = query['count'] if the_count != 1: log.error('Search for the dataset with q={0} returned 0 or more than 1 record.'.format(q)) return_dict = {} return_dict['results'] = query return_dict['success'] = False return_dict['error'] = True #results[0]['imap_layer_key'] = input_data_dict.get("imap_layer_key") # JER - the line below was removed because we don't use the data, and getting it into the query was a nightmare # #results[0]['imap_display_name'] = input_data_dict.get("imap_display_name") #results[0]['link_to_imap'] = input_data_dict.get("link_to_imap") try : package_dict = get_action('package_show')(context, {'id': results[0]['id']}) if not package_dict : return_dict = {} return_dict['success'] = False return_dict['error'] = True return return_dict current_imap_link = package_dict.get('link_to_imap', None) visibility = package_dict['metadata_visibility'] #pprint.pprint('package_dict:') #pprint.pprint(package_dict) #package_dict['imap_layer_key'] = input_data_dict.get("imap_layer_key") public_map_link = config.get('edc.imap_url_pub') private_map_link = config.get('edc.imap_url_gov') update = {} #don't update archived records #Upadted by Khalegh Mamakani to update the i-map link only if it has not been done already. new_imap_link = None if (package_dict['edc_state'] != 'ARCHIVED'): if (visibility == 'Public'): if (input_data_dict.get("imap_layers_pub")): new_imap_link = public_map_link + input_data_dict.get("imap_layers_pub") else: if (input_data_dict.get("imap_layers_gov")): new_imap_link = private_map_link + input_data_dict.get("imap_layers_gov") if (new_imap_link != None) and (new_imap_link != current_imap_link) : log.info('Updating IMAP Link to : {0} for dataset {1}'.format(new_imap_link, package_dict.get('title'))) package_dict['link_to_imap'] = new_imap_link update = get_action('package_update')(context, package_dict) except Exception, ue: log.error('Error raised when updating dataset imap_link for dataset {0}.'.format(package_dict.get('name'))) raise Exception(str(ue)) response_dict = {} response_dict['results'] = update return response_dict def edc_package_update_bcgw(context, input_data_dict): ''' Find a package, from the given object_name, and update it with the given fields. 1) Call __package_search to find the package 2) Check the results (success == true), (count==1) 3) Modify the data 4) Call get_action(package_update) to update the package ''' from ckan.lib.search import SearchError ''' Fixed unicode characters decoding problem. ''' import json input_dict_str = json.dumps(input_data_dict, ensure_ascii=False) input_data_dict = json.loads(input_dict_str, encoding="cp1252") update = {} # first, do the search q = 'object_name:' + input_data_dict.get("object_name") fq = '' offset = 0 limit = 2 sort = 'metadata_modified desc' try : data_dict = { 'q' : q, 'fq' : fq, 'start' : offset, 'rows' : limit, 'sort' : sort } #Use package_search to filter the list query = get_action('package_search')(context, data_dict) except SearchError, se : log.error('Search error : %s', str(se)) raise SearchError(str(se)) #check the search results - there can be only 1!! the_count = query['count'] if the_count != 1: #raise SearchError('Search returned 0 or more than 1 item') return_dict = {} return_dict['results'] = query return_dict['success'] = False return_dict['error'] = True return return_dict results = query['results'] results[0]['details'] = input_data_dict.get("details") update = None #need the right data package package_dict = get_action('package_show')(context, {'id': results[0]['id']}) if package_dict['edc_state'] == 'ARCHIVED' : return_dict = {} return_dict['results'] = None return return_dict if not package_dict : return_dict = {} return_dict['success'] = False return_dict['error'] = True return return_dict #Check if input_data has been modified and is not the same as package data data_changed = False current_details = package_dict.get('details') curent_obj_short_name = package_dict.get('object_short_name') current_obj_table_comments = package_dict.get('object_table_comments') if current_details != input_data_dict.get('details') : log.info('Dataset details have been changed for dataset {0}.'.format(package_dict.get('title'))) log.info('Current Details : ') log.info(current_details) log.info('New details :') log.info(input_data_dict.get('details')) package_dict['details'] = input_data_dict.get('details') data_changed = True if curent_obj_short_name != input_data_dict.get('object_short_name') : log.info('Dataset object_short_name has been changed for dataset {0}.'.format(package_dict.get('title'))) log.info('Current object_short_name :') log.info(curent_obj_short_name) log.info('New object_short_name :') log.info(input_data_dict.get('object_short_name')) package_dict['object_short_name'] = input_data_dict.get('object_short_name') data_changed = True if current_obj_table_comments != input_data_dict.get('object_table_comments') : log.info('Dataset current_obj_table_comments has been changed for dataset {0}.'.format(package_dict.get('title'))) log.info('Current object_table_comments :') log.info(current_obj_table_comments) log.info('New object_table_comments :') log.info(input_data_dict.get('object_table_comments')) package_dict['object_table_comments'] = input_data_dict.get('object_table_comments') data_changed = True if data_changed : log.info('Updating data dictionary for dataset {0}'.format(package_dict.get('title'))) update = get_action('package_update')(context, package_dict) response_dict = {} response_dict['results'] = update return response_dict def package_update(context, data_dict): '''Update a dataset (package). You must be authorized to edit the dataset and the groups that it belongs to. Plugins may change the parameters of this function depending on the value of the dataset's ``type`` attribute, see the ``IDatasetForm`` plugin interface. For further parameters see ``package_create()``. :param id: the name or id of the dataset to update :type id: string :returns: the updated dataset (if 'return_package_dict' is True in the context, which is the default. Otherwise returns just the dataset id) :rtype: dictionary ''' model = context['model'] user = context['user'] name_or_id = data_dict.get("id") or data_dict['name'] pkg = model.Package.get(name_or_id) if pkg is None: raise NotFound(_('Package was not found.')) context["package"] = pkg data_dict["id"] = pkg.id # FIXME: first modifications to package_updade begin here: # tag strings are reconstructed because validators are stripping # tags passed and only taking taks as tag_string values # image upload support has also been added here old_data = get_action('package_show')(context, {'id': pkg.id}) ''' Constructing the tag_string from the given tags. There must be at least one tag, otherwise the tag_string will be empty and a validation error will be raised. ''' if not data_dict.get('tag_string'): data_dict['tag_string'] = ', '.join( h.dict_list_reduce(data_dict.get('tags', {}), 'name')) for key, value in old_data.iteritems() : if key not in data_dict : data_dict[key] = value #data_dict['resources'] = data_dict.get('resources', old_data.get('resources')) # iso_topic_cat = data_dict.get('iso_topic_string', []) # if isinstance(iso_topic_cat, basestring): # iso_topic_cat = [iso_topic_cat] # # data_dict['iso_topic_string'] = ','.join(iso_topic_cat) #Set the package last modified date data_dict['record_last_modified'] = str(datetime.date.today()) # If the Created Date has not yet been set, then set it if data_dict['edc_state'] == 'DRAFT' and not data_dict.get('record_create_date'): data_dict['record_create_date'] = str(datetime.date.today()) # If the Publish Date has not yet been set, then set it if data_dict['edc_state'] == 'PUBLISHED' and not data_dict.get('record_publish_date'): data_dict['record_publish_date'] = str(datetime.date.today()) # If the Archive Date has not yet been set, then set it if data_dict['edc_state'] == 'ARCHIVED' and not data_dict.get('record_archive_date'): data_dict['record_archive_date'] = str(datetime.date.today()) _check_access('package_update', context, data_dict) # get the schema package_plugin = lib_plugins.lookup_package_plugin(pkg.type) if 'schema' in context: schema = context['schema'] else: schema = package_plugin.update_package_schema() image_url = old_data.get('image_url', None) upload = uploader.Upload('edc', image_url) upload.update_data_dict(data_dict, 'image_url', 'image_upload', 'clear_upload') #Adding image display url for the uploaded image image_url = data_dict.get('image_url') data_dict['image_display_url'] = image_url if image_url and not image_url.startswith('http'): image_url = munge.munge_filename(image_url) data_dict['image_display_url'] = h.url_for_static('uploads/edc/%s' % data_dict.get('image_url'), qualified=True) if 'api_version' not in context: # check_data_dict() is deprecated. If the package_plugin has a # check_data_dict() we'll call it, if it doesn't have the method we'll # do nothing. check_data_dict = getattr(package_plugin, 'check_data_dict', None) if check_data_dict: try: package_plugin.check_data_dict(data_dict, schema) except TypeError: # Old plugins do not support passing the schema so we need # to ensure they still work. package_plugin.check_data_dict(data_dict) # FIXME: modifications to package_update end here^ data, errors = _validate(data_dict, schema, context) # log.debug('package_update validate_errs=%r user=%s package=%s data=%r', # errors, context.get('user'), # context.get('package').name if context.get('package') else '', # data) if errors: model.Session.rollback() raise ValidationError(errors) rev = model.repo.new_revision() rev.author = user if 'message' in context: rev.message = context['message'] else: rev.message = _(u'REST API: Update object %s') % data.get("name") #avoid revisioning by updating directly model.Session.query(model.Package).filter_by(id=pkg.id).update( {"metadata_modified": datetime.datetime.utcnow()}) model.Session.refresh(pkg) pkg = model_save.package_dict_save(data, context) context_org_update = context.copy() context_org_update['ignore_auth'] = True context_org_update['defer_commit'] = True _get_action('package_owner_org_update')(context_org_update, {'id': pkg.id, 'organization_id': pkg.owner_org}) for item in plugins.PluginImplementations(plugins.IPackageController): item.edit(pkg) item.after_update(context, data) upload.upload(uploader.get_max_image_size()) #TODO the next two blocks are copied from ckan/ckan/logic/action/update.py # This codebase is currently hard to maintain because large chunks of the # CKAN action API and the CKAN controllers are simply overriden. This is # probably worse than just forking CKAN would have been, because in that # case at least we could track changes. - @deniszgonjanin # Needed to let extensions know the new resources ids model.Session.flush() if data.get('resources'): for index, resource in enumerate(data['resources']): resource['id'] = pkg.resources[index].id # Create default views for resources if necessary if data.get('resources'): logic.get_action('package_create_default_resource_views')( {'model': context['model'], 'user': context['user'], 'ignore_auth': True}, {'package': data}) if not context.get('defer_commit'): model.repo.commit() log.debug('Updated object %s' % pkg.name) return_id_only = context.get('return_id_only', False) # Make sure that a user provided schema is not used on package_show context.pop('schema', None) # we could update the dataset so we should still be able to read it. context['ignore_auth'] = True output = data_dict['id'] if return_id_only \ else _get_action('package_show')(context, {'id': data_dict['id']}) ''' Send state change notifications if required; Added by Khalegh Mamakani Using a thread to run the job in the background so that package_update will not wait for notifications sending. ''' old_state = old_data.get('edc_state') context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} dataset_url = config.get('ckan.site_url') + h.url_for(controller='package', action="read", id = data_dict['name']) import threading notify_thread = threading.Thread(target=check_record_state, args=(context, old_state, data_dict, g.site_title, g.site_url, dataset_url) ) notify_thread.start() return output def post_disqus_comment(context, comment_dict): ''' Uses Disqus api to post a guest comment. Comment_dict : thread : message : author_email : author_name : ''' import urllib2 import urllib import json import pycurl from disqusapi import DisqusAPI import cStringIO public_api = 'qUpq4pP5Kg6bKmAraTSig2lwghWO5KNqCTmiCdRHD66rgGTWKVCQloJVqvpfe5HI' secret_api = 'r7fjQCL36LDS2fTWMjLHYZpsiN99MnXZ5D6n8byIMPPZ1x9ohMvnTDOpczHba9N9' ''' Add the secret api to comment dictionary. The secret api is taken from the Disqus account(Login to your Disqus account to get the secret api key). ''' comment_dict['api_secret'] = secret_api comment_dict['forum'] = u'h3testblog' identifier = comment_dict['thread'] comment_dict['thread'] = 'ident:' + identifier # Set the fields string : fields_string = '' url = 'http://disqus.com/api/3.0/posts/create.json'; # url= 'https://disqus.com/api/3.0/threads/list.json?api_secret=frFrznmdh6WlR5Xz9dvv6749Ong8l4hWprLdFItoa743d9SwGJ7koQLJuyhKZ7A0&forum=h3testblog' # comment_dict = {'api_secret' : secret_api, # 'forum': 'h3testblog'} # data_string = urllib.quote(json.dumps(comment_dict)) # # try: # request = urllib2.Request('https://disqus.com/api/3.0/threads/list.json') # request.add_header('Accept', 'application/json') # request.add_header('Authorization', public_api) # # request.add_header('Authorization', secret_api) # response = urllib2.urlopen(request, data_string) # # assert response.code == 200 # # response_dict = json.loads(response.read()) # # assert response_dict['success'] is True # # result = response_dict['result'] # except Exception: # pass #Get the thread id first : thread_dict = {'api_secret' : secret_api, 'forum' : 'h3testblog', 'thread' : 'ident:' + identifier } thread_string = '' #Construct the post fields string for key, value in thread_dict.iteritems() : thread_string += key + '=' + value + '&' thread_string = thread_string[:-1] buf = cStringIO.StringIO() c = pycurl.Curl() c.setopt(pycurl.URL, 'https://disqus.com/api/3.0/threads/set.json?' + thread_string) c.setopt(pycurl.VERBOSE, 0) c.setopt(c.WRITEFUNCTION, buf.write) c.perform() response = json.loads(buf.getvalue()).get('response', []) thread = None if len(response) > 0 : thread = response[0] if thread: thread_id = thread.get('id', None) buf.close() comment_dict['thread'] = thread_id del comment_dict['forum'] # from disqusapi import DisqusAPI # # client = DisqusAPI(secret_api, public_api) # client.posts.create(api_secret=public_api, **comment_dict) # #Construct the post fields string fields_string = '' for key, value in comment_dict.iteritems() : fields_string += key + '=' + value + '&' fields_string = fields_string[:-1] buf = cStringIO.StringIO() #Post the comment using curl c = pycurl.Curl() c.setopt(pycurl.URL, url) c.setopt(pycurl.VERBOSE, 0) c.setopt(c.POSTFIELDS, fields_string) c.setopt(c.WRITEFUNCTION, buf.write) c.perform() buf.close() @toolkit.side_effect_free def package_autocomplete(context, data_dict): '''Return a list of datasets (packages) that match a string. Datasets with names or titles that contain the query string will be returned. :param q: the string to search for :type q: string :param limit: the maximum number of resource formats to return (optional, default: 10) :type limit: int :rtype: list of dictionaries ''' _check_access('package_autocomplete', context, data_dict) limit = data_dict.get('limit', 10) q = data_dict['q'] q_lower = q.lower() pkg_list = [] pkg_dict = get_action('package_search')(context, {'fq': 'title:' + q, 'rows': limit}) pkg_dict = pkg_dict['results'] for package in pkg_dict: if package['name'].startswith(q_lower): match_field = 'name' match_displayed = package['name'] else: match_field = 'title' match_displayed = '%s (%s)' % (package['title'], package['name']) result_dict = {'name':package['name'], 'title':package['title'], 'match_field':match_field, 'match_displayed':match_displayed} pkg_list.append(result_dict) return pkg_list
agpl-3.0