language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
pennersr__django-allauth
allauth/headless/account/views.py
{ "start": 10423, "end": 12525 }
class ____(APIView): input_class = ResetPasswordInput def handle_invalid_input(self, input: ResetPasswordInput): if self.process and "key" in input.errors: self.process.record_invalid_attempt() return super().handle_invalid_input(input) def handle(self, request, *args, **kwargs): self.process = None if account_settings.PASSWORD_RESET_BY_CODE_ENABLED: self.process = ( password_reset_by_code.PasswordResetVerificationProcess.resume( self.request ) ) if not self.process: return ConflictResponse(request) return super().handle(request, *args, **kwargs) def get(self, request, *args, **kwargs): key = request.headers.get("X-Password-Reset-Key", "") if self.process: input = ResetPasswordKeyInput({"key": key}, code=self.process.code) if not input.is_valid(): self.process.record_invalid_attempt() return ErrorResponse(request, input=input) self.process.confirm_code() return response.PasswordResetKeyResponse(request, self.process.user) else: input = ResetPasswordKeyInput({"key": key}) if not input.is_valid(): return ErrorResponse(request, input=input) return response.PasswordResetKeyResponse(request, input.user) def get_input_kwargs(self): ret = {} if self.process: ret.update({"code": self.process.code, "user": self.process.user}) return ret def post(self, request, *args, **kwargs): user = self.input.user flows.password_reset.reset_password(user, self.input.cleaned_data["password"]) if self.process: self.process.confirm_code() self.process.finish() else: password_reset.finalize_password_reset(request, user) return AuthenticationResponse(self.request) @method_decorator(rate_limit(action="change_password"), name="handle")
ResetPasswordView
python
apache__airflow
providers/google/src/airflow/providers/google/cloud/triggers/vertex_ai.py
{ "start": 6904, "end": 7899 }
class ____(BaseVertexAIJobTrigger): """ Make async calls to Vertex AI to check the state of a running custom training job. Return the job when it enters a completed state. """ job_type_verbose_name = "Custom Training Job" job_serializer_class = types.TrainingPipeline statuses_success = { PipelineState.PIPELINE_STATE_PAUSED, PipelineState.PIPELINE_STATE_SUCCEEDED, } @cached_property def async_hook(self) -> CustomJobAsyncHook: return CustomJobAsyncHook( gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain, ) async def _wait_job(self) -> types.TrainingPipeline: pipeline: types.TrainingPipeline = await self.async_hook.wait_for_training_pipeline( project_id=self.project_id, location=self.location, pipeline_id=self.job_id, poll_interval=self.poll_interval, ) return pipeline
CustomTrainingJobTrigger
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/signal/fft_ops_test.py
{ "start": 1498, "end": 5666 }
class ____(test.TestCase): def _Compare_fftn( self, x, fft_length=None, axes=None, norm=None, use_placeholder=False, rtol=1e-4, atol=1e-4, ): self._CompareForward_fftn( x, fft_length, axes, norm, use_placeholder, rtol, atol ) self._CompareBackward_fftn( x, fft_length, axes, norm, use_placeholder, rtol, atol ) def _CompareForward_fftn( self, x, fft_length=None, axes=None, norm=None, use_placeholder=False, rtol=1e-4, atol=1e-4, ): x_np = self._np_fftn(x, fft_length, axes, norm) if use_placeholder: x_ph = array_ops.placeholder(dtype=dtypes.as_dtype(x.dtype)) x_tf = self._tf_fftn(x_ph, fft_length, axes, norm, feed_dict={x_ph: x}) else: x_tf = self._tf_fftn(x, fft_length, axes, norm) self.assertAllClose(x_np, x_tf, rtol=rtol, atol=atol) def _CompareBackward_fftn( self, x, fft_length=None, axes=None, norm=None, use_placeholder=False, rtol=1e-4, atol=1e-4, ): x_np = self._np_ifftn(x, fft_length, axes, norm) if use_placeholder: x_ph = array_ops.placeholder(dtype=dtypes.as_dtype(x.dtype)) x_tf = self._tf_ifftn(x_ph, fft_length, axes, norm, feed_dict={x_ph: x}) else: x_tf = self._tf_ifftn(x, fft_length, axes, norm) self.assertAllClose(x_np, x_tf, rtol=rtol, atol=atol) def _compare(self, x, rank, fft_length=None, use_placeholder=False, rtol=1e-4, atol=1e-4): self._compare_forward(x, rank, fft_length, use_placeholder, rtol, atol) self._compare_backward(x, rank, fft_length, use_placeholder, rtol, atol) def _compare_forward(self, x, rank, fft_length=None, use_placeholder=False, rtol=1e-4, atol=1e-4): x_np = self._np_fft(x, rank, fft_length) if use_placeholder: x_ph = array_ops.placeholder(dtype=dtypes.as_dtype(x.dtype)) x_tf = self._tf_fft(x_ph, rank, fft_length, feed_dict={x_ph: x}) else: x_tf = self._tf_fft(x, rank, fft_length) self.assertAllClose(x_np, x_tf, rtol=rtol, atol=atol) def _compare_backward(self, x, rank, fft_length=None, use_placeholder=False, rtol=1e-4, atol=1e-4): x_np = self._np_ifft(x, rank, fft_length) if use_placeholder: x_ph = array_ops.placeholder(dtype=dtypes.as_dtype(x.dtype)) x_tf = self._tf_ifft(x_ph, rank, fft_length, feed_dict={x_ph: x}) else: x_tf = self._tf_ifft(x, rank, fft_length) self.assertAllClose(x_np, x_tf, rtol=rtol, atol=atol) def _check_memory_fail(self, x, rank): config = config_pb2.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 1e-2 with self.cached_session(config=config, force_gpu=True): self._tf_fft(x, rank, fft_length=None) def _check_grad_complex(self, func, x, y, result_is_complex=True, rtol=1e-2, atol=1e-2): with self.cached_session(): def f(inx, iny): inx.set_shape(x.shape) iny.set_shape(y.shape) # func is a forward or inverse, real or complex, batched or unbatched # FFT function with a complex input. z = func(math_ops.complex(inx, iny)) # loss = sum(|z|^2) loss = math_ops.reduce_sum(math_ops.real(z * math_ops.conj(z))) return loss ((x_jacob_t, y_jacob_t), (x_jacob_n, y_jacob_n)) = ( gradient_checker_v2.compute_gradient(f, [x, y], delta=1e-2)) self.assertAllClose(x_jacob_t, x_jacob_n, rtol=rtol, atol=atol) self.assertAllClose(y_jacob_t, y_jacob_n, rtol=rtol, atol=atol) def _check_grad_real(self, func, x, rtol=1e-2, atol=1e-2): def f(inx): inx.set_shape(x.shape) # func is a forward RFFT function (batched or unbatched). z = func(inx) # loss = sum(|z|^2) loss = math_ops.reduce_sum(math_ops.real(z * math_ops.conj(z))) return loss (x_jacob_t,), (x_jacob_n,) = gradient_checker_v2.compute_gradient( f, [x], delta=1e-2) self.assertAllClose(x_jacob_t, x_jacob_n, rtol=rtol, atol=atol) @test_util.run_all_in_graph_and_eager_modes
BaseFFTOpsTest
python
pypa__pip
src/pip/_vendor/pyproject_hooks/_in_process/_in_process.py
{ "start": 2201, "end": 10093 }
class ____: """Implements the MetaPathFinder interface to locate modules in ``backend-path``. Since the environment provided by the frontend can contain all sorts of MetaPathFinders, the only way to ensure the backend is loaded from the right place is to prepend our own. """ def __init__(self, backend_path, backend_module): self.backend_path = backend_path self.backend_module = backend_module self.backend_parent, _, _ = backend_module.partition(".") def find_spec(self, fullname, _path, _target=None): if "." in fullname: # Rely on importlib to find nested modules based on parent's path return None # Ignore other items in _path or sys.path and use backend_path instead: spec = PathFinder.find_spec(fullname, path=self.backend_path) if spec is None and fullname == self.backend_parent: # According to the spec, the backend MUST be loaded from backend-path. # Therefore, we can halt the import machinery and raise a clean error. msg = f"Cannot find module {self.backend_module!r} in {self.backend_path!r}" raise BackendUnavailable(msg) return spec if sys.version_info >= (3, 8): def find_distributions(self, context=None): # Delayed import: Python 3.7 does not contain importlib.metadata from importlib.metadata import DistributionFinder, MetadataPathFinder context = DistributionFinder.Context(path=self.backend_path) return MetadataPathFinder.find_distributions(context=context) def _supported_features(): """Return the list of options features supported by the backend. Returns a list of strings. The only possible value is 'build_editable'. """ backend = _build_backend() features = [] if hasattr(backend, "build_editable"): features.append("build_editable") return features def get_requires_for_build_wheel(config_settings): """Invoke the optional get_requires_for_build_wheel hook Returns [] if the hook is not defined. """ backend = _build_backend() try: hook = backend.get_requires_for_build_wheel except AttributeError: return [] else: return hook(config_settings) def get_requires_for_build_editable(config_settings): """Invoke the optional get_requires_for_build_editable hook Returns [] if the hook is not defined. """ backend = _build_backend() try: hook = backend.get_requires_for_build_editable except AttributeError: return [] else: return hook(config_settings) def prepare_metadata_for_build_wheel( metadata_directory, config_settings, _allow_fallback ): """Invoke optional prepare_metadata_for_build_wheel Implements a fallback by building a wheel if the hook isn't defined, unless _allow_fallback is False in which case HookMissing is raised. """ backend = _build_backend() try: hook = backend.prepare_metadata_for_build_wheel except AttributeError: if not _allow_fallback: raise HookMissing() else: return hook(metadata_directory, config_settings) # fallback to build_wheel outside the try block to avoid exception chaining # which can be confusing to users and is not relevant whl_basename = backend.build_wheel(metadata_directory, config_settings) return _get_wheel_metadata_from_wheel( whl_basename, metadata_directory, config_settings ) def prepare_metadata_for_build_editable( metadata_directory, config_settings, _allow_fallback ): """Invoke optional prepare_metadata_for_build_editable Implements a fallback by building an editable wheel if the hook isn't defined, unless _allow_fallback is False in which case HookMissing is raised. """ backend = _build_backend() try: hook = backend.prepare_metadata_for_build_editable except AttributeError: if not _allow_fallback: raise HookMissing() try: build_hook = backend.build_editable except AttributeError: raise HookMissing(hook_name="build_editable") else: whl_basename = build_hook(metadata_directory, config_settings) return _get_wheel_metadata_from_wheel( whl_basename, metadata_directory, config_settings ) else: return hook(metadata_directory, config_settings) WHEEL_BUILT_MARKER = "PYPROJECT_HOOKS_ALREADY_BUILT_WHEEL" def _dist_info_files(whl_zip): """Identify the .dist-info folder inside a wheel ZipFile.""" res = [] for path in whl_zip.namelist(): m = re.match(r"[^/\\]+-[^/\\]+\.dist-info/", path) if m: res.append(path) if res: return res raise Exception("No .dist-info folder found in wheel") def _get_wheel_metadata_from_wheel(whl_basename, metadata_directory, config_settings): """Extract the metadata from a wheel. Fallback for when the build backend does not define the 'get_wheel_metadata' hook. """ from zipfile import ZipFile with open(os.path.join(metadata_directory, WHEEL_BUILT_MARKER), "wb"): pass # Touch marker file whl_file = os.path.join(metadata_directory, whl_basename) with ZipFile(whl_file) as zipf: dist_info = _dist_info_files(zipf) zipf.extractall(path=metadata_directory, members=dist_info) return dist_info[0].split("/")[0] def _find_already_built_wheel(metadata_directory): """Check for a wheel already built during the get_wheel_metadata hook.""" if not metadata_directory: return None metadata_parent = os.path.dirname(metadata_directory) if not os.path.isfile(pjoin(metadata_parent, WHEEL_BUILT_MARKER)): return None whl_files = glob(os.path.join(metadata_parent, "*.whl")) if not whl_files: print("Found wheel built marker, but no .whl files") return None if len(whl_files) > 1: print( "Found multiple .whl files; unspecified behaviour. " "Will call build_wheel." ) return None # Exactly one .whl file return whl_files[0] def build_wheel(wheel_directory, config_settings, metadata_directory=None): """Invoke the mandatory build_wheel hook. If a wheel was already built in the prepare_metadata_for_build_wheel fallback, this will copy it rather than rebuilding the wheel. """ prebuilt_whl = _find_already_built_wheel(metadata_directory) if prebuilt_whl: shutil.copy2(prebuilt_whl, wheel_directory) return os.path.basename(prebuilt_whl) return _build_backend().build_wheel( wheel_directory, config_settings, metadata_directory ) def build_editable(wheel_directory, config_settings, metadata_directory=None): """Invoke the optional build_editable hook. If a wheel was already built in the prepare_metadata_for_build_editable fallback, this will copy it rather than rebuilding the wheel. """ backend = _build_backend() try: hook = backend.build_editable except AttributeError: raise HookMissing() else: prebuilt_whl = _find_already_built_wheel(metadata_directory) if prebuilt_whl: shutil.copy2(prebuilt_whl, wheel_directory) return os.path.basename(prebuilt_whl) return hook(wheel_directory, config_settings, metadata_directory) def get_requires_for_build_sdist(config_settings): """Invoke the optional get_requires_for_build_wheel hook Returns [] if the hook is not defined. """ backend = _build_backend() try: hook = backend.get_requires_for_build_sdist except AttributeError: return [] else: return hook(config_settings)
_BackendPathFinder
python
getsentry__sentry-python
tests/test_tracing_utils.py
{ "start": 307, "end": 5067 }
class ____: id: str is_sentry_sdk_frame: bool namespace: Optional[str] = None in_app_include: Optional[List[str]] = None in_app_exclude: Optional[List[str]] = None abs_path: Optional[str] = None project_root: Optional[str] = None @pytest.mark.parametrize( "test_case, expected", [ ( ShouldBeIncludedTestCase( id="Frame from Sentry SDK", is_sentry_sdk_frame=True, ), False, ), ( ShouldBeIncludedTestCase( id="Frame from Django installed in virtualenv inside project root", is_sentry_sdk_frame=False, abs_path="/home/username/some_project/.venv/lib/python3.12/site-packages/django/db/models/sql/compiler", project_root="/home/username/some_project", namespace="django.db.models.sql.compiler", in_app_include=["django"], ), True, ), ( ShouldBeIncludedTestCase( id="Frame from project", is_sentry_sdk_frame=False, abs_path="/home/username/some_project/some_project/__init__.py", project_root="/home/username/some_project", namespace="some_project", ), True, ), ( ShouldBeIncludedTestCase( id="Frame from project module in `in_app_exclude`", is_sentry_sdk_frame=False, abs_path="/home/username/some_project/some_project/exclude_me/some_module.py", project_root="/home/username/some_project", namespace="some_project.exclude_me.some_module", in_app_exclude=["some_project.exclude_me"], ), False, ), ( ShouldBeIncludedTestCase( id="Frame from system-wide installed Django", is_sentry_sdk_frame=False, abs_path="/usr/lib/python3.12/site-packages/django/db/models/sql/compiler", project_root="/home/username/some_project", namespace="django.db.models.sql.compiler", ), False, ), ( ShouldBeIncludedTestCase( id="Frame from system-wide installed Django with `django` in `in_app_include`", is_sentry_sdk_frame=False, abs_path="/usr/lib/python3.12/site-packages/django/db/models/sql/compiler", project_root="/home/username/some_project", namespace="django.db.models.sql.compiler", in_app_include=["django"], ), True, ), ], ids=id_function, ) def test_should_be_included(test_case, expected): # type: (ShouldBeIncludedTestCase, bool) -> None """Checking logic, see: https://github.com/getsentry/sentry-python/issues/3312""" kwargs = asdict(test_case) kwargs.pop("id") assert _should_be_included(**kwargs) == expected @pytest.mark.parametrize( ("header", "expected"), ( ("", ""), ("foo=bar", "foo=bar"), (" foo=bar, baz = qux ", " foo=bar, baz = qux "), ("sentry-trace_id=123", ""), (" sentry-trace_id = 123 ", ""), ("sentry-trace_id=123,sentry-public_key=456", ""), ("foo=bar,sentry-trace_id=123", "foo=bar"), ("foo=bar,sentry-trace_id=123,baz=qux", "foo=bar,baz=qux"), ( "foo=bar,sentry-trace_id=123,baz=qux,sentry-public_key=456", "foo=bar,baz=qux", ), ), ) def test_strip_sentry_baggage(header, expected): assert Baggage.strip_sentry_baggage(header) == expected @pytest.mark.parametrize( ("baggage", "expected_repr"), ( (Baggage(sentry_items={}), '<Baggage "", mutable=True>'), (Baggage(sentry_items={}, mutable=False), '<Baggage "", mutable=False>'), ( Baggage(sentry_items={"foo": "bar"}), '<Baggage "sentry-foo=bar,", mutable=True>', ), ( Baggage(sentry_items={"foo": "bar"}, mutable=False), '<Baggage "sentry-foo=bar,", mutable=False>', ), ( Baggage(sentry_items={"foo": "bar"}, third_party_items="asdf=1234,"), '<Baggage "sentry-foo=bar,asdf=1234,", mutable=True>', ), ( Baggage( sentry_items={"foo": "bar"}, third_party_items="asdf=1234,", mutable=False, ), '<Baggage "sentry-foo=bar,asdf=1234,", mutable=False>', ), ), ) def test_baggage_repr(baggage, expected_repr): assert repr(baggage) == expected_repr
ShouldBeIncludedTestCase
python
realpython__materials
gemini-cli/todolist/src/todolist/database.py
{ "start": 335, "end": 474 }
class ____(Model): name = TextField(null=False, unique=True) class Meta: database = db table_name = "lists"
TaskList
python
dask__distributed
distributed/pytest_resourceleaks.py
{ "start": 8723, "end": 10414 }
class ____(ResourceChecker, name="tracemalloc"): # Report a leak if the traced memory increased by at least this many bytes LEAK_THRESHOLD = 2**20 # Report at most this many leaks NDIFF = 5 # Report less than NDIFF leaks if they amount to less than this many bytes MIN_SIZE_DIFF = 200 * 1024 def on_start_test(self) -> None: tracemalloc.start(1) def on_stop_test(self) -> None: tracemalloc.stop() def measure(self) -> tuple[int, tracemalloc.Snapshot]: current, _ = tracemalloc.get_traced_memory() snap = tracemalloc.take_snapshot() return current, snap def has_leak( self, before: tuple[int, tracemalloc.Snapshot], after: tuple[int, tracemalloc.Snapshot], ) -> bool: return after[0] > before[0] + self.LEAK_THRESHOLD def format( self, before: tuple[int, tracemalloc.Snapshot], after: tuple[int, tracemalloc.Snapshot], ) -> str: bytes_before, snap_before = before bytes_after, snap_after = after diff = snap_after.compare_to(snap_before, "traceback") lines = [ f"leaked {(bytes_after - bytes_before) / 2 ** 20:.1f} MiB " "of traced Python memory" ] for stat in diff[: self.NDIFF]: size_diff = stat.size_diff or stat.size if size_diff < self.MIN_SIZE_DIFF: break count = stat.count_diff or stat.count lines += [f" - leaked {size_diff / 2**20:.1f} MiB in {count} calls at:"] lines += [" " + line for line in stat.traceback.format()] return "\n".join(lines)
TracemallocMemoryChecker
python
django__django
tests/generic_views/views.py
{ "start": 5475, "end": 5546 }
class ____(BookConfig, generic.YearArchiveView): pass
BookYearArchive
python
numba__numba
numba/tests/doc_examples/test_llvm_pass_timings.py
{ "start": 160, "end": 953 }
class ____(unittest.TestCase): def test_pass_timings(self): with override_config('LLVM_PASS_TIMINGS', True): with captured_stdout() as stdout: # magictoken.ex_llvm_pass_timings.begin import numba @numba.njit def foo(n): c = 0 for i in range(n): for j in range(i): c += j return c foo(10) md = foo.get_metadata(foo.signatures[0]) print(md['llvm_pass_timings']) # magictoken.ex_llvm_pass_timings.end self.assertIn("Finalize object", stdout.getvalue()) if __name__ == '__main__': unittest.main()
DocsLLVMPassTimings
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/logs/events.py
{ "start": 18610, "end": 18932 }
class ____(graphene.ObjectType): class Meta: interfaces = ( GrapheneMessageEvent, GrapheneDisplayableEvent, GrapheneStepEvent, GrapheneMarkerEvent, GrapheneErrorEvent, ) name = "ResourceInitFailureEvent"
GrapheneResourceInitFailureEvent
python
pypa__pip
src/pip/_internal/cli/parser.py
{ "start": 484, "end": 3417 }
class ____(optparse.IndentedHelpFormatter): """A prettier/less verbose help formatter for optparse.""" def __init__(self, *args: Any, **kwargs: Any) -> None: # help position must be aligned with __init__.parseopts.description kwargs["max_help_position"] = 30 kwargs["indent_increment"] = 1 kwargs["width"] = shutil.get_terminal_size()[0] - 2 super().__init__(*args, **kwargs) def format_option_strings(self, option: optparse.Option) -> str: return self._format_option_strings(option) def _format_option_strings( self, option: optparse.Option, mvarfmt: str = " <{}>", optsep: str = ", " ) -> str: """ Return a comma-separated list of option strings and metavars. :param option: tuple of (short opt, long opt), e.g: ('-f', '--format') :param mvarfmt: metavar format string :param optsep: separator """ opts = [] if option._short_opts: opts.append(option._short_opts[0]) if option._long_opts: opts.append(option._long_opts[0]) if len(opts) > 1: opts.insert(1, optsep) if option.takes_value(): assert option.dest is not None metavar = option.metavar or option.dest.lower() opts.append(mvarfmt.format(metavar.lower())) return "".join(opts) def format_heading(self, heading: str) -> str: if heading == "Options": return "" return heading + ":\n" def format_usage(self, usage: str) -> str: """ Ensure there is only one newline between usage and the first heading if there is no description. """ msg = "\nUsage: {}\n".format(self.indent_lines(textwrap.dedent(usage), " ")) return msg def format_description(self, description: str | None) -> str: # leave full control over description to us if description: if hasattr(self.parser, "main"): label = "Commands" else: label = "Description" # some doc strings have initial newlines, some don't description = description.lstrip("\n") # some doc strings have final newlines and spaces, some don't description = description.rstrip() # dedent, then reindent description = self.indent_lines(textwrap.dedent(description), " ") description = f"{label}:\n{description}\n" return description else: return "" def format_epilog(self, epilog: str | None) -> str: # leave full control over epilog to us if epilog: return epilog else: return "" def indent_lines(self, text: str, indent: str) -> str: new_lines = [indent + line for line in text.split("\n")] return "\n".join(new_lines)
PrettyHelpFormatter
python
getsentry__sentry
src/sentry/integrations/bitbucket_server/webhook.py
{ "start": 2056, "end": 6136 }
class ____(BitbucketServerWebhook): @property def event_type(self) -> IntegrationWebhookEventType: return IntegrationWebhookEventType.PUSH def __call__(self, event: Mapping[str, Any], **kwargs) -> None: authors = {} if not ( (organization := kwargs.get("organization")) and (integration_id := kwargs.get("integration_id")) ): raise ValueError("Organization and integration_id must be provided") with IntegrationWebhookEvent( interaction_type=self.event_type, domain=IntegrationDomain.SOURCE_CODE_MANAGEMENT, provider_key=self.provider, ).capture() as lifecycle: try: repo = Repository.objects.get( organization_id=organization.id, provider=PROVIDER_NAME, external_id=str(event["repository"]["id"]), ) except Repository.DoesNotExist as e: lifecycle.record_halt(halt_reason=e) raise Http404() provider = repo.get_provider() try: installation = provider.get_installation(integration_id, organization.id) except Integration.DoesNotExist as e: lifecycle.record_halt(halt_reason=e) raise Http404() try: client = installation.get_client() except IntegrationError as e: lifecycle.record_halt(halt_reason=e) raise BadRequest() # while we're here, make sure repo data is up to date self.update_repo_data(repo, event) [project_name, repo_name] = repo.name.split("/") for change in event["changes"]: from_hash = None if change.get("fromHash") == "0" * 40 else change.get("fromHash") try: commits = client.get_commits( project_name, repo_name, from_hash, change.get("toHash") ) except ApiHostError as e: lifecycle.record_halt(halt_reason=e) raise BadRequest(detail="Unable to reach host") except ApiUnauthorized as e: lifecycle.record_halt(halt_reason=e) raise BadRequest() except Exception as e: sentry_sdk.capture_exception(e) raise for commit in commits: if IntegrationRepositoryProvider.should_ignore_commit(commit["message"]): continue author_email = commit["author"]["emailAddress"] # its optional, lets just throw it out for now if author_email is None or len(author_email) > 75: author = None elif author_email not in authors: authors[author_email] = author = CommitAuthor.objects.get_or_create( organization_id=organization.id, email=author_email, defaults={"name": commit["author"]["name"]}, )[0] else: author = authors[author_email] try: with transaction.atomic(router.db_for_write(Commit)): Commit.objects.create( repository_id=repo.id, organization_id=organization.id, key=commit["id"], message=commit["message"], author=author, date_added=datetime.fromtimestamp( commit["authorTimestamp"] / 1000, timezone.utc ), ) except IntegrityError: pass @region_silo_view
PushEventWebhook
python
sphinx-doc__sphinx
sphinx/environment/collectors/toctree.py
{ "start": 797, "end": 17603 }
class ____(EnvironmentCollector): def clear_doc(self, app: Sphinx, env: BuildEnvironment, docname: str) -> None: env.tocs.pop(docname, None) env.toc_secnumbers.pop(docname, None) env.toc_fignumbers.pop(docname, None) env.toc_num_entries.pop(docname, None) env.toctree_includes.pop(docname, None) env.glob_toctrees.discard(docname) env.numbered_toctrees.discard(docname) for subfn, fnset in list(env.files_to_rebuild.items()): fnset.discard(docname) if not fnset: del env.files_to_rebuild[subfn] def merge_other( self, app: Sphinx, env: BuildEnvironment, docnames: Set[str], other: BuildEnvironment, ) -> None: for docname in docnames: env.tocs[docname] = other.tocs[docname] env.toc_num_entries[docname] = other.toc_num_entries[docname] if docname in other.toctree_includes: env.toctree_includes[docname] = other.toctree_includes[docname] if docname in other.glob_toctrees: env.glob_toctrees.add(docname) if docname in other.numbered_toctrees: env.numbered_toctrees.add(docname) for subfn, fnset in other.files_to_rebuild.items(): env.files_to_rebuild.setdefault(subfn, set()).update(fnset & set(docnames)) def process_doc(self, app: Sphinx, doctree: nodes.document) -> None: """Build a TOC from the doctree and store it in the inventory.""" docname = app.env.current_document.docname numentries = [0] # nonlocal again... def build_toc( node: Element | Sequence[Element], depth: int = 1, ) -> nodes.bullet_list | None: # list of table of contents entries entries: list[Element] = [] for sectionnode in node: # find all toctree nodes in this section and add them # to the toc (just copying the toctree node which is then # resolved in self.get_and_resolve_doctree) if isinstance(sectionnode, nodes.section): title = sectionnode[0] # copy the contents of the section title, but without references # and unnecessary stuff visitor = SphinxContentsFilter(doctree) title.walkabout(visitor) nodetext = visitor.get_entry_text() # type: ignore[no-untyped-call] anchorname = _make_anchor_name(sectionnode['ids'], numentries) # make these nodes: # list_item -> compact_paragraph -> reference reference = nodes.reference( '', '', internal=True, refuri=docname, anchorname=anchorname, *nodetext, ) para = addnodes.compact_paragraph('', '', reference) item: Element = nodes.list_item('', para) sub_item = build_toc(sectionnode, depth + 1) if sub_item: item += sub_item entries.append(item) # Wrap items under an ``.. only::`` directive in a node for # post-processing elif isinstance(sectionnode, addnodes.only): onlynode = addnodes.only(expr=sectionnode['expr']) blist = build_toc(sectionnode, depth) if blist: onlynode += blist.children entries.append(onlynode) # check within the section for other node types elif isinstance(sectionnode, nodes.Element): # cache of parent node -> list item memo_parents: dict[nodes.Element, nodes.list_item] = {} toctreenode: nodes.Node for toctreenode in sectionnode.findall(): if isinstance(toctreenode, nodes.section): continue if isinstance(toctreenode, addnodes.toctree): item = toctreenode.copy() entries.append(item) # important: do the inventory stuff note_toctree(app.env, docname, toctreenode) # add object signatures within a section to the ToC elif isinstance(toctreenode, addnodes.desc): # The desc has one or more nested desc_signature, # and then a desc_content, which again may have desc nodes. # Thus, desc is the one we can bubble up to through parents. entry: nodes.list_item | None = None for sig_node in toctreenode: if not isinstance(sig_node, addnodes.desc_signature): continue # Skip if no name set if not sig_node.get('_toc_name', ''): continue # Skip if explicitly disabled if sig_node.parent.get('no-contents-entry'): continue # Skip entries with no ID (e.g. with :no-index: set) ids = sig_node['ids'] if not ids: continue anchorname = _make_anchor_name(ids, numentries) reference = nodes.reference( '', '', nodes.literal('', sig_node['_toc_name']), internal=True, refuri=docname, anchorname=anchorname, ) para = addnodes.compact_paragraph( '', '', reference, skip_section_number=True ) entry = nodes.list_item('', para) # Find parent node parent = sig_node.parent while ( parent not in memo_parents and parent != sectionnode ): parent = parent.parent # Note, it may both be the limit and in memo_parents, # prefer memo_parents, so we get the nesting. if parent in memo_parents: root_entry = memo_parents[parent] if isinstance(root_entry[-1], nodes.bullet_list): root_entry[-1].append(entry) else: root_entry.append(nodes.bullet_list('', entry)) else: assert parent == sectionnode entries.append(entry) # Save the latest desc_signature as the one we put sub entries in. # If there are multiple signatures, then the latest is used. if entry is not None: # are there any desc nodes without desc_signature nodes? memo_parents[toctreenode] = entry if entries: return nodes.bullet_list('', *entries) return None toc = build_toc(doctree) if toc: app.env.tocs[docname] = toc else: app.env.tocs[docname] = nodes.bullet_list('') app.env.toc_num_entries[docname] = numentries[0] def get_updated_docs(self, app: Sphinx, env: BuildEnvironment) -> list[str]: return self.assign_section_numbers(env) + self.assign_figure_numbers(env) def assign_section_numbers(self, env: BuildEnvironment) -> list[str]: """Assign a section number to each heading under a numbered toctree.""" # a list of all docnames whose section numbers changed rewrite_needed = [] assigned: set[str] = set() old_secnumbers = env.toc_secnumbers env.toc_secnumbers = {} def _walk_toc( node: Element, secnums: dict[str, tuple[int, ...]], depth: int, titlenode: nodes.title | None = None, ) -> None: # titlenode is the title of the document, it will get assigned a # secnumber too, so that it shows up in next/prev/parent rellinks for subnode in node.children: if isinstance(subnode, nodes.bullet_list): numstack.append(0) _walk_toc(subnode, secnums, depth - 1, titlenode) numstack.pop() titlenode = None elif isinstance(subnode, nodes.list_item): _walk_toc(subnode, secnums, depth, titlenode) titlenode = None elif isinstance(subnode, addnodes.only): # at this stage we don't know yet which sections are going # to be included; just include all of them, even if it leads # to gaps in the numbering _walk_toc(subnode, secnums, depth, titlenode) titlenode = None elif isinstance(subnode, addnodes.compact_paragraph): if 'skip_section_number' in subnode: continue numstack[-1] += 1 reference = cast('nodes.reference', subnode[0]) if depth > 0: number = numstack.copy() secnums[reference['anchorname']] = tuple(numstack) else: number = None secnums[reference['anchorname']] = () reference['secnumber'] = number if titlenode: titlenode['secnumber'] = number titlenode = None elif isinstance(subnode, addnodes.toctree): _walk_toctree(subnode, depth) def _walk_toctree(toctreenode: addnodes.toctree, depth: int) -> None: if depth == 0: return for _title, ref in toctreenode['entries']: if url_re.match(ref) or ref == 'self': # don't mess with those continue if ref in assigned: logger.warning( __( '%s is already assigned section numbers ' '(nested numbered toctree?)' ), ref, location=toctreenode, type='toc', subtype='secnum', ) elif ref in env.tocs: secnums: dict[str, tuple[int, ...]] = {} env.toc_secnumbers[ref] = secnums assigned.add(ref) _walk_toc(env.tocs[ref], secnums, depth, env.titles.get(ref)) if secnums != old_secnumbers.get(ref): rewrite_needed.append(ref) for docname in env.numbered_toctrees: assigned.add(docname) doctree = env.get_doctree(docname) for toctreenode in doctree.findall(addnodes.toctree): depth = toctreenode.get('numbered', 0) if depth: # every numbered toctree gets new numbering numstack = [0] _walk_toctree(toctreenode, depth) return rewrite_needed def assign_figure_numbers(self, env: BuildEnvironment) -> list[str]: """Assign a figure number to each figure under a numbered toctree.""" generated_docnames = frozenset(env.domains.standard_domain._virtual_doc_names) rewrite_needed = [] assigned: set[str] = set() old_fignumbers = env.toc_fignumbers env.toc_fignumbers = {} fignum_counter: dict[str, dict[tuple[int, ...], int]] = {} def get_figtype(node: Node) -> str | None: for domain in env.domains.sorted(): figtype = domain.get_enumerable_node_type(node) if isinstance(domain, StandardDomain) and not domain.get_numfig_title( node ): # Skip if uncaptioned node continue if figtype: return figtype return None def get_section_number(docname: str, section: nodes.section) -> tuple[int, ...]: anchorname = '#' + section['ids'][0] secnumbers = env.toc_secnumbers.get(docname, {}) if anchorname in secnumbers: secnum = secnumbers.get(anchorname) else: secnum = secnumbers.get('') return secnum or () def get_next_fignumber( figtype: str, secnum: tuple[int, ...] ) -> tuple[int, ...]: counter = fignum_counter.setdefault(figtype, {}) secnum = secnum[: env.config.numfig_secnum_depth] counter[secnum] = counter.get(secnum, 0) + 1 return (*secnum, counter[secnum]) def register_fignumber( docname: str, secnum: tuple[int, ...], figtype: str, fignode: Element ) -> None: env.toc_fignumbers.setdefault(docname, {}) fignumbers = env.toc_fignumbers[docname].setdefault(figtype, {}) figure_id = fignode['ids'][0] fignumbers[figure_id] = get_next_fignumber(figtype, secnum) def _walk_doctree( docname: str, doctree: Element, secnum: tuple[int, ...] ) -> None: nonlocal generated_docnames for subnode in doctree.children: if isinstance(subnode, nodes.section): next_secnum = get_section_number(docname, subnode) if next_secnum: _walk_doctree(docname, subnode, next_secnum) else: _walk_doctree(docname, subnode, secnum) elif isinstance(subnode, addnodes.toctree): for _title, subdocname in subnode['entries']: if url_re.match(subdocname) or subdocname == 'self': # don't mess with those continue if subdocname in generated_docnames: # or these continue _walk_doc(subdocname, secnum) elif isinstance(subnode, nodes.Element): figtype = get_figtype(subnode) if figtype and subnode['ids']: register_fignumber(docname, secnum, figtype, subnode) _walk_doctree(docname, subnode, secnum) def _walk_doc(docname: str, secnum: tuple[int, ...]) -> None: if docname not in assigned: assigned.add(docname) doctree = env.get_doctree(docname) _walk_doctree(docname, doctree, secnum) if env.config.numfig: _walk_doc(env.config.root_doc, ()) for docname, fignums in env.toc_fignumbers.items(): if fignums != old_fignumbers.get(docname): rewrite_needed.append(docname) return rewrite_needed def _make_anchor_name(ids: list[str], num_entries: list[int]) -> str: if not num_entries[0]: # for the very first toc entry, don't add an anchor # as it is the file's title anyway anchorname = '' else: anchorname = '#' + ids[0] num_entries[0] += 1 return anchorname def setup(app: Sphinx) -> ExtensionMetadata: app.add_env_collector(TocTreeCollector) return { 'version': 'builtin', 'parallel_read_safe': True, 'parallel_write_safe': True, }
TocTreeCollector
python
Unity-Technologies__ml-agents
ml-agents/mlagents/trainers/torch_entities/components/reward_providers/rnd_reward_provider.py
{ "start": 616, "end": 2110 }
class ____(BaseRewardProvider): """ Implementation of Random Network Distillation : https://arxiv.org/pdf/1810.12894.pdf """ def __init__(self, specs: BehaviorSpec, settings: RNDSettings) -> None: super().__init__(specs, settings) self._ignore_done = True self._random_network = RNDNetwork(specs, settings) self._training_network = RNDNetwork(specs, settings) self.optimizer = torch.optim.Adam( self._training_network.parameters(), lr=settings.learning_rate ) def evaluate(self, mini_batch: AgentBuffer) -> np.ndarray: with torch.no_grad(): target = self._random_network(mini_batch) prediction = self._training_network(mini_batch) rewards = torch.sum((prediction - target) ** 2, dim=1) return rewards.detach().cpu().numpy() def update(self, mini_batch: AgentBuffer) -> Dict[str, np.ndarray]: with torch.no_grad(): target = self._random_network(mini_batch) prediction = self._training_network(mini_batch) loss = torch.mean(torch.sum((prediction - target) ** 2, dim=1)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return {"Losses/RND Loss": loss.detach().cpu().numpy()} def get_modules(self): return { f"Module:{self.name}-pred": self._training_network, f"Module:{self.name}-target": self._random_network, }
RNDRewardProvider
python
apache__thrift
test/py.twisted/test_suite.py
{ "start": 2705, "end": 5718 }
class ____(unittest.TestCase): @defer.inlineCallbacks def setUp(self): self.handler = TestHandler() self.processor = ThriftTest.Processor(self.handler) self.pfactory = TBinaryProtocol.TBinaryProtocolFactory() self.server = reactor.listenTCP( 0, TTwisted.ThriftServerFactory(self.processor, self.pfactory), interface="127.0.0.1") self.portNo = self.server.getHost().port self.txclient = yield ClientCreator(reactor, TTwisted.ThriftClientProtocol, ThriftTest.Client, self.pfactory).connectTCP("127.0.0.1", self.portNo) self.client = self.txclient.client @defer.inlineCallbacks def tearDown(self): yield self.server.stopListening() self.txclient.transport.loseConnection() @defer.inlineCallbacks def testVoid(self): self.assertEquals((yield self.client.testVoid()), None) @defer.inlineCallbacks def testString(self): self.assertEquals((yield self.client.testString('Python')), 'Python') @defer.inlineCallbacks def testByte(self): self.assertEquals((yield self.client.testByte(63)), 63) @defer.inlineCallbacks def testI32(self): self.assertEquals((yield self.client.testI32(-1)), -1) self.assertEquals((yield self.client.testI32(0)), 0) @defer.inlineCallbacks def testI64(self): self.assertEquals((yield self.client.testI64(-34359738368)), -34359738368) @defer.inlineCallbacks def testDouble(self): self.assertEquals((yield self.client.testDouble(-5.235098235)), -5.235098235) # TODO: def testBinary(self) ... @defer.inlineCallbacks def testStruct(self): x = Xtruct() x.string_thing = "Zero" x.byte_thing = 1 x.i32_thing = -3 x.i64_thing = -5 y = yield self.client.testStruct(x) self.assertEquals(y.string_thing, "Zero") self.assertEquals(y.byte_thing, 1) self.assertEquals(y.i32_thing, -3) self.assertEquals(y.i64_thing, -5) @defer.inlineCallbacks def testException(self): try: yield self.client.testException('Xception') self.fail("should have gotten exception") except Xception as x: self.assertEquals(x.errorCode, 1001) self.assertEquals(x.message, 'Xception') try: yield self.client.testException("throw_undeclared") self.fail("should have gotten exception") except TApplicationException: pass yield self.client.testException('Safe') @defer.inlineCallbacks def testOneway(self): yield self.client.testOneway(1) start, end, seconds = yield self.handler.onewaysQueue.get() self.assertAlmostEquals(seconds, (end - start), places=1) self.assertEquals((yield self.client.testI32(-1)), -1)
ThriftTestCase
python
getsentry__sentry
src/sentry/api/serializers/models/group.py
{ "start": 29904, "end": 30248 }
class ____(Protocol): def __call__( self, project_ids: Sequence[int], group_id_list: Sequence[int], environment_ids: Sequence[int], key: str, value: str, tenant_ids: dict[str, str | int] | None = None, ) -> Mapping[int, GroupTagValue]: ... @register(Group)
_EnvironmentSeenStatsFunc
python
python__mypy
test-data/unit/plugins/attrhook2.py
{ "start": 164, "end": 1165 }
class ____(Plugin): def get_attribute_hook(self, fullname: str) -> Callable[[AttributeContext], Type] | None: if fullname == "m.Magic.magic_field": return magic_field_callback if fullname == "m.Magic.nonexistent_field": return nonexistent_field_callback if fullname == "m.Magic.no_assignment_field": return no_assignment_field_callback return None def magic_field_callback(ctx: AttributeContext) -> Type: return ctx.api.named_generic_type("builtins.str", []) def nonexistent_field_callback(ctx: AttributeContext) -> Type: ctx.api.fail("Field does not exist", ctx.context) return AnyType(TypeOfAny.from_error) def no_assignment_field_callback(ctx: AttributeContext) -> Type: if ctx.is_lvalue: ctx.api.fail(f"Cannot assign to field", ctx.context) return AnyType(TypeOfAny.from_error) return ctx.default_attr_type def plugin(version: str) -> type[AttrPlugin]: return AttrPlugin
AttrPlugin
python
python-excel__xlwt
xlwt/antlr.py
{ "start": 21406, "end": 22100 }
class ____(CommonToken): def __init__(self,*args): CommonToken.__init__(self,*args) self.hiddenBefore = None self.hiddenAfter = None def getHiddenAfter(self): return self.hiddenAfter def getHiddenBefore(self): return self.hiddenBefore def setHiddenAfter(self,t): self.hiddenAfter = t def setHiddenBefore(self, t): self.hiddenBefore = t ###xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx### ### Queue ### ###xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx### ## Shall be a circular buffer on tokens ..
CommonHiddenStreamToken
python
anthropics__anthropic-sdk-python
src/anthropic/types/beta/beta_text_editor_code_execution_view_result_block.py
{ "start": 247, "end": 548 }
class ____(BaseModel): content: str file_type: Literal["text", "image", "pdf"] num_lines: Optional[int] = None start_line: Optional[int] = None total_lines: Optional[int] = None type: Literal["text_editor_code_execution_view_result"]
BetaTextEditorCodeExecutionViewResultBlock
python
aio-libs__aiohttp
tests/test_multipart.py
{ "start": 2740, "end": 4274 }
class ____: def test_at_eof(self) -> None: m_resp = mock.create_autospec(aiohttp.ClientResponse, spec_set=True) m_stream = mock.create_autospec(MultipartReader, spec_set=True) wrapper = MultipartResponseWrapper(m_resp, m_stream) wrapper.at_eof() assert m_resp.content.at_eof.called async def test_next(self) -> None: m_resp = mock.create_autospec(aiohttp.ClientResponse, spec_set=True) m_stream = mock.create_autospec(MultipartReader, spec_set=True) wrapper = MultipartResponseWrapper(m_resp, m_stream) m_stream.next.return_value = b"" m_stream.at_eof.return_value = False await wrapper.next() assert m_stream.next.called async def test_release(self) -> None: m_resp = mock.create_autospec(aiohttp.ClientResponse, spec_set=True) m_stream = mock.create_autospec(MultipartReader, spec_set=True) wrapper = MultipartResponseWrapper(m_resp, m_stream) await wrapper.release() assert m_resp.release.called async def test_release_when_stream_at_eof(self) -> None: m_resp = mock.create_autospec(aiohttp.ClientResponse, spec_set=True) m_stream = mock.create_autospec(MultipartReader, spec_set=True) wrapper = MultipartResponseWrapper(m_resp, m_stream) m_stream.next.return_value = b"" m_stream.at_eof.return_value = True await wrapper.next() assert m_stream.next.called assert m_resp.release.called
TestMultipartResponseWrapper
python
altair-viz__altair
altair/vegalite/v6/schema/_config.py
{ "start": 65470, "end": 66460 }
class ____(TypedDict, total=False): """ :class:`altair.BindDirect` ``TypedDict`` wrapper. Parameters ---------- element An input element that exposes a *value* property and supports the `EventTarget <https://developer.mozilla.org/en-US/docs/Web/API/EventTarget>`__ interface, or a CSS selector string to such an element. When the element updates and dispatches an event, the *value* property will be used as the new, bound signal value. When the signal updates independent of the element, the *value* property will be set to the signal value and a new event will be dispatched on the element. debounce If defined, delays event handling until the specified milliseconds have elapsed since the last event was fired. event The event (default ``"input"``) to listen for to track changes on the external element. """ element: str debounce: float event: str
BindDirectKwds
python
django__django
tests/forms_tests/tests/test_forms.py
{ "start": 208121, "end": 208277 }
class ____(DjangoTemplates): form_template_name = "forms_tests/form_snippet.html" field_template_name = "forms_tests/custom_field.html"
CustomRenderer
python
PrefectHQ__prefect
src/integrations/prefect-aws/tests/observers/test_ecs_observer.py
{ "start": 33759, "end": 41424 }
class ____: @pytest.fixture def sample_event(self): return { "detail": { "taskArn": "arn:aws:ecs:us-east-1:123456789:task/cluster/task-id", "containers": [ {"name": "prefect", "exitCode": 1}, {"name": "sidecar", "exitCode": 0}, ], } } @pytest.fixture def sample_tags(self): return {"prefect.io/flow-run-id": str(uuid.uuid4())} @patch("prefect_aws.observers.ecs.prefect.get_client") @patch("prefect_aws.observers.ecs.propose_state") async def test_mark_runs_as_crashed_with_non_zero_exit_codes( self, mock_propose_state, mock_get_client, sample_event, sample_tags ): flow_run_id = uuid.UUID(sample_tags["prefect.io/flow-run-id"]) mock_client = AsyncMock() mock_context = AsyncMock() mock_context.__aenter__.return_value = mock_client mock_get_client.return_value = mock_context # Mock a running flow run flow_run = FlowRun( id=flow_run_id, name="test-flow-run", flow_id=uuid.uuid4(), state=State(type="RUNNING", name="Running"), ) mock_client.read_flow_run.return_value = flow_run await mark_runs_as_crashed(sample_event, sample_tags) mock_client.read_flow_run.assert_called_once_with(flow_run_id=flow_run_id) mock_propose_state.assert_called_once() # Verify the proposed state is a Crashed state call_args = mock_propose_state.call_args[1] proposed_state = call_args["state"] assert proposed_state.type == StateType.CRASHED assert proposed_state.name == "Crashed" assert call_args["flow_run_id"] == flow_run_id assert call_args["client"] == mock_client @patch("prefect_aws.observers.ecs.prefect.get_client") @patch("prefect_aws.observers.ecs.propose_state") async def test_mark_runs_as_crashed_with_all_zero_exit_codes( self, mock_propose_state, mock_get_client, sample_tags ): event = { "detail": { "taskArn": "arn:aws:ecs:us-east-1:123456789:task/cluster/task-id", "containers": [ {"name": "prefect", "exitCode": 0}, {"name": "sidecar", "exitCode": 0}, ], } } flow_run_id = uuid.UUID(sample_tags["prefect.io/flow-run-id"]) mock_client = AsyncMock() mock_context = AsyncMock() mock_context.__aenter__.return_value = mock_client mock_get_client.return_value = mock_context # Mock a running flow run flow_run = FlowRun( id=flow_run_id, name="test-flow-run", flow_id=uuid.uuid4(), state=State(type="RUNNING", name="Running"), ) mock_client.read_flow_run.return_value = flow_run await mark_runs_as_crashed(event, sample_tags) mock_client.read_flow_run.assert_called_once_with(flow_run_id=flow_run_id) # Should not propose crashed state when all containers have exit code 0 mock_propose_state.assert_not_called() @patch("prefect_aws.observers.ecs.prefect.get_client") @patch("prefect_aws.observers.ecs.propose_state") async def test_mark_runs_as_crashed_with_none_exit_codes( self, mock_propose_state, mock_get_client, sample_tags ): event = { "detail": { "taskArn": "arn:aws:ecs:us-east-1:123456789:task/cluster/task-id", "containers": [ {"name": "prefect", "exitCode": None}, {"name": "sidecar", "exitCode": 0}, ], } } flow_run_id = uuid.UUID(sample_tags["prefect.io/flow-run-id"]) mock_client = AsyncMock() mock_context = AsyncMock() mock_context.__aenter__.return_value = mock_client mock_get_client.return_value = mock_context # Mock a running flow run flow_run = FlowRun( id=flow_run_id, name="test-flow-run", flow_id=uuid.uuid4(), state=State(type="RUNNING", name="Running"), ) mock_client.read_flow_run.return_value = flow_run await mark_runs_as_crashed(event, sample_tags) mock_client.read_flow_run.assert_called_once_with(flow_run_id=flow_run_id) # Should propose crashed state when exit code is None (undefined exit) mock_propose_state.assert_called_once() @patch("prefect_aws.observers.ecs.prefect.get_client") async def test_mark_runs_as_crashed_missing_task_arn( self, mock_get_client, sample_tags ): event = {"detail": {}} await mark_runs_as_crashed(event, sample_tags) # Should exit early without creating client mock_get_client.assert_not_called() @patch("prefect_aws.observers.ecs.prefect.get_client") async def test_mark_runs_as_crashed_flow_run_not_found( self, mock_get_client, sample_event, sample_tags ): mock_client = AsyncMock() mock_context = AsyncMock() mock_context.__aenter__.return_value = mock_client mock_get_client.return_value = mock_context mock_client.read_flow_run.side_effect = ObjectNotFound("Flow run not found") await mark_runs_as_crashed(sample_event, sample_tags) # Should handle the exception gracefully mock_client.read_flow_run.assert_called_once() @patch("prefect_aws.observers.ecs.prefect.get_client") @patch("prefect_aws.observers.ecs.propose_state") async def test_mark_runs_as_crashed_skips_final_states( self, mock_propose_state, mock_get_client, sample_event, sample_tags ): flow_run_id = uuid.UUID(sample_tags["prefect.io/flow-run-id"]) mock_client = AsyncMock() mock_context = AsyncMock() mock_context.__aenter__.return_value = mock_client mock_get_client.return_value = mock_context # Mock a completed flow run (final state) flow_run = FlowRun( id=flow_run_id, name="test-flow-run", flow_id=uuid.uuid4(), state=State(type="COMPLETED", name="Completed"), ) mock_client.read_flow_run.return_value = flow_run await mark_runs_as_crashed(sample_event, sample_tags) mock_client.read_flow_run.assert_called_once_with(flow_run_id=flow_run_id) # Should not propose state for final states mock_propose_state.assert_not_called() @patch("prefect_aws.observers.ecs.prefect.get_client") @patch("prefect_aws.observers.ecs.propose_state") async def test_mark_runs_as_crashed_skips_scheduled_states( self, mock_propose_state, mock_get_client, sample_event, sample_tags ): flow_run_id = uuid.UUID(sample_tags["prefect.io/flow-run-id"]) mock_client = AsyncMock() mock_context = AsyncMock() mock_context.__aenter__.return_value = mock_client mock_get_client.return_value = mock_context # Mock a scheduled flow run flow_run = FlowRun( id=flow_run_id, name="test-flow-run", flow_id=uuid.uuid4(), state=State(type="SCHEDULED", name="Scheduled"), ) mock_client.read_flow_run.return_value = flow_run await mark_runs_as_crashed(sample_event, sample_tags) mock_client.read_flow_run.assert_called_once_with(flow_run_id=flow_run_id) # Should not propose state for scheduled states mock_propose_state.assert_not_called()
TestMarkRunsAsCrashed
python
ray-project__ray
python/ray/tune/tests/tutorial.py
{ "start": 491, "end": 6333 }
class ____(nn.Module): def __init__(self): super(ConvNet, self).__init__() # In this example, we don't change the model architecture # due to simplicity. self.conv1 = nn.Conv2d(1, 3, kernel_size=3) self.fc = nn.Linear(192, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 3)) x = x.view(-1, 192) x = self.fc(x) return F.log_softmax(x, dim=1) # __model_def_end__ # fmt: on # fmt: off # __train_def_begin__ # Change these values if you want the training to run quicker or slower. EPOCH_SIZE = 512 TEST_SIZE = 256 def train_func(model, optimizer, train_loader): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.train() for batch_idx, (data, target) in enumerate(train_loader): # We set this just for the example to run quickly. if batch_idx * len(data) > EPOCH_SIZE: return data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() def test_func(model, data_loader): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.eval() correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(data_loader): # We set this just for the example to run quickly. if batch_idx * len(data) > TEST_SIZE: break data, target = data.to(device), target.to(device) outputs = model(data) _, predicted = torch.max(outputs.data, 1) total += target.size(0) correct += (predicted == target).sum().item() return correct / total # __train_def_end__ # __train_func_begin__ import os import tempfile from ray.tune import Checkpoint def train_mnist(config): # Data Setup mnist_transforms = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, ))]) train_loader = DataLoader( datasets.MNIST("~/data", train=True, download=True, transform=mnist_transforms), batch_size=64, shuffle=True) test_loader = DataLoader( datasets.MNIST("~/data", train=False, transform=mnist_transforms), batch_size=64, shuffle=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = ConvNet() model.to(device) optimizer = optim.SGD( model.parameters(), lr=config["lr"], momentum=config["momentum"]) for i in range(10): train_func(model, optimizer, train_loader) acc = test_func(model, test_loader) with tempfile.TemporaryDirectory() as temp_checkpoint_dir: checkpoint = None if (i + 1) % 5 == 0: # This saves the model to the trial directory torch.save( model.state_dict(), os.path.join(temp_checkpoint_dir, "model.pth") ) checkpoint = Checkpoint.from_directory(temp_checkpoint_dir) # Send the current training result back to Tune tune.report({"mean_accuracy": acc}, checkpoint=checkpoint) # __train_func_end__ # fmt: on # __eval_func_begin__ search_space = { "lr": tune.sample_from(lambda spec: 10 ** (-10 * np.random.rand())), "momentum": tune.uniform(0.1, 0.9), } # Uncomment this to enable distributed execution # `ray.init(address="auto")` # Download the dataset first datasets.MNIST("~/data", train=True, download=True) tuner = tune.Tuner( train_mnist, param_space=search_space, ) results = tuner.fit() # __eval_func_end__ # __plot_begin__ dfs = {result.path: result.metrics_dataframe for result in results} [d.mean_accuracy.plot() for d in dfs.values()] # __plot_end__ # __run_scheduler_begin__ tuner = tune.Tuner( train_mnist, tune_config=tune.TuneConfig( num_samples=20, scheduler=ASHAScheduler(metric="mean_accuracy", mode="max"), ), param_space=search_space, ) results = tuner.fit() # Obtain a trial dataframe from all run trials of this `tune.run` call. dfs = {result.path: result.metrics_dataframe for result in results} # __run_scheduler_end__ # fmt: off # __plot_scheduler_begin__ # Plot by epoch ax = None # This plots everything on the same plot for d in dfs.values(): ax = d.mean_accuracy.plot(ax=ax, legend=False) # __plot_scheduler_end__ # fmt: on # __run_searchalg_begin__ from hyperopt import hp from ray.tune.search.hyperopt import HyperOptSearch space = { "lr": hp.loguniform("lr", -10, -1), "momentum": hp.uniform("momentum", 0.1, 0.9), } hyperopt_search = HyperOptSearch(space, metric="mean_accuracy", mode="max") tuner = tune.Tuner( train_mnist, tune_config=tune.TuneConfig( num_samples=10, search_alg=hyperopt_search, ), ) results = tuner.fit() # To enable GPUs, use this instead: # analysis = tune.run( # train_mnist, config=search_space, resources_per_trial={'gpu': 1}) # __run_searchalg_end__ # __run_analysis_begin__ best_result = results.get_best_result("mean_accuracy", mode="max") with best_result.checkpoint.as_directory() as checkpoint_dir: state_dict = torch.load(os.path.join(checkpoint_dir, "model.pth")) model = ConvNet() model.load_state_dict(state_dict) # __run_analysis_end__ from ray.tune.examples.mnist_pytorch_trainable import TrainMNIST # __trainable_run_begin__ search_space = { "lr": tune.sample_from(lambda spec: 10 ** (-10 * np.random.rand())), "momentum": tune.uniform(0.1, 0.9), } tuner = tune.Tuner( TrainMNIST, run_config=tune.RunConfig(stop={"training_iteration": 10}), param_space=search_space, ) results = tuner.fit() # __trainable_run_end__
ConvNet
python
scrapy__scrapy
tests/test_pipelines.py
{ "start": 772, "end": 1009 }
class ____: def open_spider(self, spider): pass def close_spider(self, spider): pass def process_item(self, item, spider): item["pipeline_passed"] = True return item
DeprecatedSpiderArgPipeline
python
encode__django-rest-framework
rest_framework/fields.py
{ "start": 51578, "end": 53695 }
class ____(Field): default_error_messages = { 'invalid_choice': _('"{input}" is not a valid choice.') } html_cutoff = None html_cutoff_text = _('More than {count} items...') def __init__(self, choices, **kwargs): self.choices = choices self.html_cutoff = kwargs.pop('html_cutoff', self.html_cutoff) self.html_cutoff_text = kwargs.pop('html_cutoff_text', self.html_cutoff_text) self.allow_blank = kwargs.pop('allow_blank', False) super().__init__(**kwargs) def to_internal_value(self, data): if data == '' and self.allow_blank: return '' if isinstance(data, Enum) and str(data) != str(data.value): data = data.value try: return self.choice_strings_to_values[str(data)] except KeyError: self.fail('invalid_choice', input=data) def to_representation(self, value): if value in ('', None): return value if isinstance(value, Enum) and str(value) != str(value.value): value = value.value return self.choice_strings_to_values.get(str(value), value) def iter_options(self): """ Helper method for use with templates rendering select widgets. """ return iter_options( self.grouped_choices, cutoff=self.html_cutoff, cutoff_text=self.html_cutoff_text ) def _get_choices(self): return self._choices def _set_choices(self, choices): self.grouped_choices = to_choices_dict(choices) self._choices = flatten_choices_dict(self.grouped_choices) # Map the string representation of choices to the underlying value. # Allows us to deal with eg. integer choices while supporting either # integer or string input, but still get the correct datatype out. self.choice_strings_to_values = { str(key.value) if isinstance(key, Enum) and str(key) != str(key.value) else str(key): key for key in self.choices } choices = property(_get_choices, _set_choices)
ChoiceField
python
jina-ai__jina
jina/proto/docarray_v1/pb/jina_pb2_grpc.py
{ "start": 17788, "end": 18798 }
class ____(object): """* jina gRPC service to trigger a snapshot at the Executor Runtime. """ def snapshot(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_JinaExecutorSnapshotServicer_to_server(servicer, server): rpc_method_handlers = { 'snapshot': grpc.unary_unary_rpc_method_handler( servicer.snapshot, request_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, response_serializer=jina__pb2.SnapshotStatusProto.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'jina.JinaExecutorSnapshot', rpc_method_handlers ) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API.
JinaExecutorSnapshotServicer
python
falconry__falcon
tests/_wsgi_test_app.py
{ "start": 108, "end": 739 }
class ____: def on_post(self, req, resp): parts = {} for part in req.media: # NOTE(vytas): SHA1 is no longer recommended for cryptographic # purposes, but here we are only using it for integrity checking. sha1 = hashlib.sha1() while True: chunk = part.stream.read(io.DEFAULT_BUFFER_SIZE) if not chunk: break sha1.update(chunk) parts[part.name] = { 'filename': part.filename, 'sha1': sha1.hexdigest(), } resp.media = parts
Forms
python
readthedocs__readthedocs.org
readthedocs/organizations/tests/test_filters.py
{ "start": 4962, "end": 10974 }
class ____(OrganizationFilterTestCase): def get_filterset_for_user(self, user, organization, data=None, **kwargs): self.client.force_login(user) url = reverse("organization_detail", kwargs={"slug": organization.slug}) resp = self.client.get(url, data=data) return resp.context_data.get("filter") @pytest.mark.parametrize( "user,organization,project", [ ("user_a", "org_a", "project_a"), ("owner_a", "org_a", "project_a"), ("user_b", "org_b", "project_b"), ("owner_b", "org_b", "project_b"), ], indirect=True, ) def test_unfiltered_queryset(self, user, organization, project): """No active filters returns full queryset.""" filter = self.get_filterset_for_user(user, organization) assertQuerySetEqual( filter.qs, [project], transform=lambda o: o, ordered=False, ) @pytest.mark.parametrize( "user,organization,project", [ ("user_a", "org_a", "project_a"), ("owner_a", "org_a", "project_a"), ("user_b", "org_b", "project_b"), ("owner_b", "org_b", "project_b"), ], indirect=True, ) def test_filtered_queryset_project_choice(self, user, organization, project): """Valid project choice returns expected results.""" filter = self.get_filterset_for_user( user, organization, data={"slug": project.slug}, ) assertQuerySetEqual( filter.qs, [project], transform=lambda o: o, ordered=False, ) @pytest.mark.parametrize( "user,organization,project", [ ("user_a", "org_a", "project_a"), ("owner_a", "org_a", "project_a"), ("user_b", "org_b", "project_b"), ("owner_b", "org_b", "project_b"), ], indirect=True, ) def test_filtered_queryset_project_invalid_choice( self, user, organization, project ): """Invalid project choice returns the original queryset.""" wrong_project = fixture.get(Project) filter = self.get_filterset_for_user( user, organization, data={"slug": wrong_project.slug}, ) assert not filter.is_valid() # The full queryset is still returned when a filterset is invalid assertQuerySetEqual( filter.qs, [project], transform=lambda o: o, ordered=False, ) @pytest.mark.parametrize( "user,organization,team,projects", [ ("user_a", "org_a", "team_a", ["project_a"]), ("owner_a", "org_a", "team_a", ["project_a"]), ("user_a", "org_a", "team_a_empty", ["project_a"]), ("owner_a", "org_a", "team_a_empty", []), ("user_b", "org_b", "team_b", ["project_b"]), ("owner_b", "org_b", "team_b", ["project_b"]), ], indirect=["user", "organization", "team"], ) def test_filtered_queryset_team_choice( self, user, organization, team, projects, filter_data ): """Valid team choice returns expected results.""" filter = self.get_filterset_for_user( user, organization, data={"teams__slug": team.slug}, ) assertQuerySetEqual( filter.qs, [filter_data["projects"][key] for key in projects], transform=lambda o: o, ordered=False, ) @pytest.mark.parametrize( "user,organization,project", [ ("user_a", "org_a", "project_a"), ("owner_a", "org_a", "project_a"), ("user_b", "org_b", "project_b"), ("owner_b", "org_b", "project_b"), ], indirect=True, ) def test_filtered_queryset_team_invalid_choice(self, user, organization, project): """Invalid team choice returns the original queryset.""" wrong_team = fixture.get(Team) filter = self.get_filterset_for_user( user, organization, data={"teams__slug": wrong_team.slug}, ) assert not filter.is_valid() # By default, invalid filtersets return the original queryset assertQuerySetEqual( filter.qs, [project], transform=lambda o: o, ordered=False, ) @pytest.mark.parametrize( "user,organization,project", [ ("user_a", "org_a", "project_a"), ("owner_a", "org_a", "project_a"), ("user_b", "org_b", "project_b"), ("owner_b", "org_b", "project_b"), ], indirect=True, ) def test_project_filter_choices(self, user, organization, project): """Project filter choices limited to organization projects.""" filter = self.get_filterset_for_user( user, organization, ) assert list(dict(filter.filters["slug"].field.choices).keys()) == [ "", project.slug, ] @pytest.mark.parametrize( "user,organization,teams", [ ("user_a", "org_a", ["team_a"]), ("owner_a", "org_a", ["team_a", "team_a_empty"]), ("user_b", "org_b", ["team_b"]), ("owner_b", "org_b", ["team_b"]), ], indirect=["user", "organization"], ) def test_team_filter_choices(self, user, organization, teams, filter_data): """Team filter choices limited to organization teams.""" filter = self.get_filterset_for_user( user, organization, ) choices = [filter_data["teams"][key].slug for key in teams] choices.insert(0, "") assert list(dict(filter.filters["teams__slug"].field.choices).keys()) == choices
TestOrganizationProjectFilterSet
python
getsentry__sentry
src/sentry/integrations/slack/analytics.py
{ "start": 513, "end": 646 }
class ____(BaseNotificationSent): pass @analytics.eventclass("integrations.slack.identity_linked")
SlackIntegrationNotificationSent
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/array_ops/init_ops_test.py
{ "start": 12283, "end": 14176 }
class ____(test.TestCase): @test_util.run_deprecated_v1 def testInitializerIdentical(self): for dtype in [dtypes.float32, dtypes.float64]: init1 = init_ops.uniform_unit_scaling_initializer(seed=1, dtype=dtype) init2 = init_ops.uniform_unit_scaling_initializer(seed=1, dtype=dtype) self.assertTrue(identicaltest(self, init1, init2)) init3 = init_ops.uniform_unit_scaling_initializer( 1.5, seed=1, dtype=dtype) init4 = init_ops.uniform_unit_scaling_initializer( 1.5, seed=1, dtype=dtype) self.assertTrue(identicaltest(self, init3, init4)) @test_util.run_deprecated_v1 def testInitializerDifferent(self): for dtype in [dtypes.float32, dtypes.float64]: init1 = init_ops.uniform_unit_scaling_initializer(seed=1, dtype=dtype) init2 = init_ops.uniform_unit_scaling_initializer(seed=2, dtype=dtype) init3 = init_ops.uniform_unit_scaling_initializer( 1.5, seed=1, dtype=dtype) self.assertFalse(identicaltest(self, init1, init2)) self.assertFalse(identicaltest(self, init1, init3)) self.assertFalse(identicaltest(self, init2, init3)) @test_util.run_deprecated_v1 def testZeroSize(self): shape = [0, 2] with self.cached_session(): x = variable_scope.get_variable( "x", shape=shape, initializer=init_ops.uniform_unit_scaling_initializer()) self.evaluate(variables.global_variables_initializer()) self.assertAllEqual(shape, self.evaluate(x).shape) @test_util.run_deprecated_v1 def testDuplicatedInitializer(self): init = init_ops.uniform_unit_scaling_initializer() self.assertFalse(duplicated_initializer(self, init, 1)) def testInvalidDataType(self): self.assertRaises( ValueError, init_ops.uniform_unit_scaling_initializer, dtype=dtypes.string)
UniformUnitScalingInitializationTest
python
dagster-io__dagster
python_modules/dagster/dagster/_core/definitions/schedule_definition.py
{ "start": 3396, "end": 6028 }
class ____(Enum): RUNNING = "RUNNING" STOPPED = "STOPPED" def get_or_create_schedule_context( fn: Callable[..., Any], *args: Any, **kwargs: Any ) -> "ScheduleEvaluationContext": """Based on the passed resource function and the arguments passed to it, returns the user-passed ScheduleEvaluationContext or creates one if it is not passed. Raises an exception if the user passes more than one argument or if the user-provided function requires a context parameter but none is passed. """ from dagster._config.pythonic_config import is_coercible_to_resource from dagster._core.definitions.sensor_definition import get_context_param_name context_param_name = get_context_param_name(fn) kwarg_keys_non_resource = set(kwargs.keys()) - {param.name for param in get_resource_args(fn)} if len(args) + len(kwarg_keys_non_resource) > 1: raise DagsterInvalidInvocationError( "Schedule invocation received multiple non-resource arguments. Only a first " "positional context parameter should be provided when invoking." ) if any(is_coercible_to_resource(arg) for arg in args): raise DagsterInvalidInvocationError( "If directly invoking a schedule, you may not provide resources as" " positional arguments, only as keyword arguments." ) context: Optional[ScheduleEvaluationContext] = None if len(args) > 0: context = check.opt_inst(args[0], ScheduleEvaluationContext) elif len(kwargs) > 0: if context_param_name and context_param_name not in kwargs: raise DagsterInvalidInvocationError( f"Schedule invocation expected argument '{context_param_name}'." ) context = check.opt_inst( kwargs.get(context_param_name or "context"), ScheduleEvaluationContext ) elif context_param_name: # If the context parameter is present but no value was provided, we error raise DagsterInvalidInvocationError( "Schedule evaluation function expected context argument, but no context argument " "was provided when invoking." ) context = context or build_schedule_context() resource_args_from_kwargs = {} resource_args = {param.name for param in get_resource_args(fn)} for resource_arg in resource_args: if resource_arg in kwargs: resource_args_from_kwargs[resource_arg] = kwargs[resource_arg] if resource_args_from_kwargs: return context.merge_resources(resource_args_from_kwargs) return context @public
DefaultScheduleStatus
python
pytorch__pytorch
test/jit/test_module_interface.py
{ "start": 960, "end": 22829 }
class ____(JitTestCase): def test_not_submodule_interface_call(self): @torch.jit.interface class ModuleInterface(nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: pass class TestNotModuleInterfaceCall(nn.Module): proxy_mod: ModuleInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigModule() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod.two(input) with self.assertRaisesRegexWithHighlight( RuntimeError, "object has no attribute or method", "self.proxy_mod.two" ): torch.jit.script(TestNotModuleInterfaceCall()) def test_module_interface(self): @torch.jit.interface class OneTwoModule(nn.Module): def one(self, x: Tensor, y: Tensor) -> Tensor: pass def two(self, x: Tensor) -> Tensor: pass def forward(self, x: Tensor) -> Tensor: pass @torch.jit.interface class OneTwoClass: def one(self, x: Tensor, y: Tensor) -> Tensor: pass def two(self, x: Tensor) -> Tensor: pass class FooMod(nn.Module): def one(self, x: Tensor, y: Tensor) -> Tensor: return x + y def two(self, x: Tensor) -> Tensor: return 2 * x def forward(self, x: Tensor) -> Tensor: return self.one(self.two(x), x) class BarMod(nn.Module): def one(self, x: Tensor, y: Tensor) -> Tensor: return x * y def two(self, x: Tensor) -> Tensor: return 2 / x def forward(self, x: Tensor) -> Tensor: return self.two(self.one(x, x)) @torch.jit.export def forward2(self, x: Tensor) -> Tensor: return self.two(self.one(x, x)) + 1 make_global(OneTwoModule, OneTwoClass) def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor): return mod_list[0].forward(x) + mod_list[1].forward(x) def use_class_interface(mod_list: List[OneTwoClass], x: Tensor) -> Tensor: return mod_list[0].two(x) + mod_list[1].one(x, x) scripted_foo_mod = torch.jit.script(FooMod()) scripted_bar_mod = torch.jit.script(BarMod()) self.checkScript( use_module_interface, ( [scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4), ), ) self.checkScript( use_class_interface, ( [scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4), ), ) def call_module_interface_on_other_method( mod_interface: OneTwoModule, x: Tensor ) -> Tensor: return mod_interface.forward2(x) # ensure error out when we call the module on the method other than the interface specified. with self.assertRaisesRegexWithHighlight( RuntimeError, "object has no attribute or method", "mod_interface.forward2" ): self.checkScript( call_module_interface_on_other_method, ( scripted_bar_mod, torch.rand(3, 4), ), ) def test_module_doc_string(self): @torch.jit.interface class TestInterface(nn.Module): def one(self, inp1, inp2): # type: (Tensor, Tensor) -> Tensor pass def forward(self, input): # type: (Tensor) -> Tensor r"""stuff 1""" r"""stuff 2""" pass # noqa: PIE790 r"""stuff 3""" class TestModule(nn.Module): proxy_mod: TestInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigModule() def forward(self, input): # type: (Tensor) -> Tensor return self.proxy_mod.forward(input) input = torch.randn(3, 4) self.checkModule(TestModule(), (input,)) def test_module_interface_subtype(self): @torch.jit.interface class OneTwoModule(nn.Module): def one(self, x: Tensor, y: Tensor) -> Tensor: pass def two(self, x: Tensor) -> Tensor: pass def forward(self, x: Tensor) -> Tensor: pass make_global(OneTwoModule) @torch.jit.script def as_module_interface(x: OneTwoModule) -> OneTwoModule: return x @torch.jit.script class Foo: def one(self, x: Tensor, y: Tensor) -> Tensor: return x + y def two(self, x: Tensor) -> Tensor: return 2 * x def forward(self, x: Tensor) -> Tensor: return self.one(self.two(x), x) # check class object is not a subtype of module interface with self.assertRaisesRegex( RuntimeError, "ScriptModule class can be subtype of module interface" ): as_module_interface(Foo()) class WrongMod(nn.Module): def two(self, x: int) -> int: return 2 * x def forward(self, x: Tensor) -> Tensor: return x + torch.randn(3, self.two(3)) scripted_wrong_mod = torch.jit.script(WrongMod()) # wrong module that is not compatible with module interface with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"): as_module_interface(scripted_wrong_mod) # Check that interface implementations can be contravariant in argument types and covariant in return type. @torch.jit.interface class TensorToAny(nn.Module): def forward(self, input: torch.Tensor) -> Any: pass make_global(TensorToAny) @torch.jit.script def as_tensor_to_any(x: TensorToAny) -> TensorToAny: return x @torch.jit.interface class AnyToAny(nn.Module): def forward(self, input: Any) -> Any: pass make_global(AnyToAny) @torch.jit.script def as_any_to_any(x: AnyToAny) -> AnyToAny: return x class TensorToAnyImplA(nn.Module): def forward(self, input: Any) -> Any: return input class TensorToAnyImplB(nn.Module): def forward(self, input: Any) -> torch.Tensor: return torch.tensor([1]) class AnyToAnyImpl(nn.Module): def forward(self, input: Any) -> torch.Tensor: return torch.tensor([1]) as_tensor_to_any(torch.jit.script(TensorToAnyImplA())) as_tensor_to_any(torch.jit.script(TensorToAnyImplB())) as_any_to_any(torch.jit.script(AnyToAnyImpl())) def test_module_interface_inheritance(self): with self.assertRaisesRegex( RuntimeError, "does not support inheritance yet. Please directly" ): @torch.jit.interface class InheritMod(nn.ReLU): def three(self, x: Tensor) -> Tensor: return 3 * x def test_module_swap(self): @torch.jit.interface class ModuleInterface(nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: pass def forward(self, input: Tensor) -> Tensor: pass class TestModule(nn.Module): proxy_mod: ModuleInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigModule() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod.forward(input) scripted_mod = torch.jit.script(TestModule()) input = torch.randn(3, 4) self.assertEqual(scripted_mod(input), 3 * input + 2) # module swap with module that have the same interface scripted_mod.proxy_mod = torch.jit.script(NewModule()) self.assertEqual(scripted_mod(input), input * (input + 1) + 1) # module swap with non-scripted module should throw error with self.assertRaisesRegex( RuntimeError, "a ScriptModule with non-scripted module" ): scripted_mod.proxy_mod = NewModule() def test_module_swap_wrong_module(self): @torch.jit.interface class ModuleInterface(nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: pass def forward(self, input: Tensor) -> Tensor: pass class NewModuleWrong(nn.Module): def forward(self, input: int) -> int: return input + 1 class TestModule(nn.Module): proxy_mod: ModuleInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigModule() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod.forward(input) scripted_mod = torch.jit.script(TestModule()) # module swap with in-compatible interface with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"): scripted_mod.proxy_mod = torch.jit.script(NewModuleWrong()) def test_module_swap_no_lazy_compile(self): @torch.jit.interface class ModuleInterface(nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: pass def forward(self, input: Tensor) -> Tensor: pass class TestModule(nn.Module): proxy_mod: ModuleInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigModule() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod.forward(input) class NewModuleMethodNotLazyCompile(nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: return inp1 * inp2 + 1 def forward(self, input: Tensor) -> Tensor: return input + 1 scripted_mod = torch.jit.script(TestModule()) # module swap with module that have the same interface, but the method not get # lazily compiled from forward, user need to export it explicitly for swap to work with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"): scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodNotLazyCompile()) class NewModuleMethodManualExport(nn.Module): @torch.jit.export def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: return inp1 * inp2 + 1 def forward(self, input: Tensor) -> Tensor: return input + 1 scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodManualExport()) input = torch.randn(3, 4) self.assertEqual(scripted_mod(input), input + 1) def test_module_swap_no_module_interface(self): # test module swapping with no module interface class TestNoModuleInterface(nn.Module): def __init__(self) -> None: super().__init__() self.proxy_mod = OrigModule() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod(input) scripted_no_module_interface = torch.jit.script(TestNoModuleInterface()) # proxy mod is swapped with the new ScriptModule that share the same JIT type, should succeed. scripted_no_module_interface.proxy_mod = torch.jit.script(OrigModule()) # proxy_mod is neither a module interface or have the same JIT type, should fail with self.assertRaisesRegex( RuntimeError, r"Expected a value of type '__torch__.jit.test_module_interface.OrigModule \(.*\)' " + r"for field 'proxy_mod', but found '__torch__.jit.test_module_interface.NewModule \(.*\)'", ): scripted_no_module_interface.proxy_mod = torch.jit.script(NewModule()) def test_script_module_as_interface_swap(self): @torch.jit.interface class ModuleInterface(nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: pass def forward(self, input: Tensor) -> Tensor: pass class OrigScriptModule(torch.jit.ScriptModule): @torch.jit.script_method def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: return inp1 + inp2 + 1 @torch.jit.script_method def forward(self, input: Tensor) -> Tensor: return input + self.one(input, input) + 1 class NewScriptModule(torch.jit.ScriptModule): @torch.jit.script_method def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: return inp1 * inp2 + 1 @torch.jit.script_method def forward(self, input: Tensor) -> Tensor: return self.one(input, input + 1) class TestNNModuleWithScriptModule(nn.Module): proxy_mod: ModuleInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigScriptModule() def forward(self, input: Tensor) -> Tensor: return self.proxy_mod.forward(input) input = torch.randn(3, 4) scripted_mod = torch.jit.script(TestNNModuleWithScriptModule()) self.assertEqual(scripted_mod(input), 3 * input + 2) scripted_mod.proxy_mod = NewScriptModule() self.assertEqual(scripted_mod(input), input * (input + 1) + 1) # The call to forward of proxy_mod cannot be inlined. Making sure # Freezing is throwing an error for now. def test_freeze_module_with_interface(self): class SubModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = 20 def forward(self, x): return self.b class OrigMod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = 0 def forward(self, x): return self.a @torch.jit.interface class ModInterface(torch.nn.Module): def forward(self, x: Tensor) -> int: pass class TestModule(torch.nn.Module): proxy_mod: ModInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigMod() self.sub = SubModule() # folded def forward(self, x): return self.proxy_mod(x) + self.sub(x) m = torch.jit.script(TestModule()) m.eval() mf = torch._C._freeze_module(m._c) # Assume interface has no aliasing mf = torch._C._freeze_module(m._c, freezeInterfaces=True) input = torch.tensor([1]) out_s = m.forward(input) out_f = mf.forward(input) self.assertEqual(out_s, out_f) def test_freeze_module_with_setattr_in_interface(self): class SubModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = 20 def forward(self, x): self.b += 2 return self.b @torch.jit.export def getb(self, x): return self.b class OrigMod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = 0 def forward(self, x): return self.a @torch.jit.interface class ModInterface(torch.nn.Module): def forward(self, x: Tensor) -> int: pass class TestModule(torch.nn.Module): proxy_mod: ModInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigMod() self.sub = SubModule() def forward(self, x): return self.proxy_mod(x) + self.sub.getb(x) m = torch.jit.script(TestModule()) m.proxy_mod = m.sub m.eval() mf = torch._C._freeze_module(m._c, freezeInterfaces=True) def test_freeze_module_with_inplace_mutation_in_interface(self): class SubModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = torch.tensor([1.5]) def forward(self, x): self.b[0] += 2 return self.b @torch.jit.export def getb(self, x): return self.b class OrigMod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.tensor([0.5]) def forward(self, x): return self.a @torch.jit.interface class ModInterface(torch.nn.Module): def forward(self, x: Tensor) -> Tensor: pass class TestModule(torch.nn.Module): proxy_mod: ModInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigMod() self.sub = SubModule() def forward(self, x): y = self.proxy_mod(x) z = self.sub.getb(x) return y[0] + z[0] m = torch.jit.script(TestModule()) m.proxy_mod = m.sub m.sub.b = m.proxy_mod.b m.eval() mf = torch._C._freeze_module(m._c, freezeInterfaces=True) def test_freeze_module_with_mutated_interface(self): class SubModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = torch.tensor([1.5]) def forward(self, x): return self.b @torch.jit.export def getb(self, x): return self.b class OrigMod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.tensor([0.5]) def forward(self, x): return self.a @torch.jit.interface class ModInterface(torch.nn.Module): def forward(self, x: Tensor) -> Tensor: pass class TestModule(torch.nn.Module): proxy_mod: ModInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigMod() self.sub = SubModule() def forward(self, x): self.proxy_mod = self.sub y = self.proxy_mod(x) z = self.sub.getb(x) return y[0] + z[0] m = torch.jit.script(TestModule()) m.eval() with self.assertRaisesRegex( RuntimeError, "Freezing does not support SetAttr on an interface type." ): mf = torch._C._freeze_module(m._c, freezeInterfaces=True) def test_freeze_module_with_interface_and_fork(self): class SubModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = torch.tensor([1.5]) def forward(self, x): self.b[0] += 3.2 return self.b class OrigMod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.tensor([0.5]) def forward(self, x): return self.a @torch.jit.interface class ModInterface(torch.nn.Module): def forward(self, x: Tensor) -> Tensor: pass class TestModule(torch.nn.Module): proxy_mod: ModInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigMod() self.sub = SubModule() def forward(self, x): y = self.proxy_mod(x) z = self.sub(x) return y + z class MainModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.test = TestModule() def forward(self, x): fut = torch.jit._fork(self.test.forward, x) y = self.test(x) z = torch.jit._wait(fut) return y + z m = torch.jit.script(MainModule()) m.eval() mf = torch._C._freeze_module(m._c, freezeInterfaces=True) def test_module_apis_interface(self): @torch.jit.interface class ModuleInterface(nn.Module): def one(self, inp1: Tensor, inp2: Tensor) -> Tensor: pass class TestModule(nn.Module): proxy_mod: ModuleInterface def __init__(self) -> None: super().__init__() self.proxy_mod = OrigModule() def forward(self, input): return input * 2 @torch.jit.export def method(self, input): for module in self.modules(): input = module(input) return input with self.assertRaisesRegex(Exception, "Could not compile"): scripted_mod = torch.jit.script(TestModule()) if __name__ == "__main__": raise_on_run_directly("test/test_jit.py")
TestModuleInterface
python
spack__spack
lib/spack/spack/vendor/attr/exceptions.py
{ "start": 33, "end": 369 }
class ____(AttributeError): """ A frozen/immutable instance or attribute have been attempted to be modified. It mirrors the behavior of ``namedtuples`` by using the same error message and subclassing `AttributeError`. .. versionadded:: 20.1.0 """ msg = "can't set attribute" args = [msg]
FrozenError
python
getsentry__sentry
tests/sentry/users/models/test_user.py
{ "start": 2730, "end": 7534 }
class ____(TestCase): def setUp(self) -> None: super().setUp() self.user = self.create_user() self.user_id = self.user.id # Organization membership determines which regions the deletion will cascade to self.organization = self.create_organization(region=_TEST_REGIONS[0]) self.create_member(user=self.user, organization=self.organization) self.create_saved_search( name="some-search", owner=self.user, organization=self.organization ) @assume_test_silo_mode(SiloMode.REGION) def user_tombstone_exists(self, user_id: int) -> bool: return RegionTombstone.objects.filter( table_name="auth_user", object_identifier=user_id ).exists() @assume_test_silo_mode(SiloMode.REGION) def get_user_saved_search_count(self) -> int: return SavedSearch.objects.filter(owner_id=self.user_id).count() def test_simple(self) -> None: assert not self.user_tombstone_exists(user_id=self.user_id) with outbox_runner(): self.user.delete() assert not User.objects.filter(id=self.user_id).exists() assert self.user_tombstone_exists(user_id=self.user_id) # cascade is asynchronous, ensure there is still related search, assert self.get_user_saved_search_count() == 1 with assume_test_silo_mode(SiloMode.REGION), self.tasks(): schedule_hybrid_cloud_foreign_key_jobs() # Ensure they are all now gone. assert self.get_user_saved_search_count() == 0 def test_unrelated_saved_search_is_not_deleted(self) -> None: another_user = self.create_user() self.create_member(user=another_user, organization=self.organization) self.create_saved_search( name="another-search", owner=another_user, organization=self.organization ) with outbox_runner(): self.user.delete() with assume_test_silo_mode(SiloMode.REGION), self.tasks(): schedule_hybrid_cloud_foreign_key_jobs() with assume_test_silo_mode(SiloMode.REGION): assert SavedSearch.objects.filter(owner_id=another_user.id).exists() def test_cascades_to_multiple_regions(self) -> None: eu_org = self.create_organization(region=_TEST_REGIONS[1]) self.create_member(user=self.user, organization=eu_org) self.create_saved_search(name="eu-search", owner=self.user, organization=eu_org) with outbox_runner(): self.user.delete() assert self.get_user_saved_search_count() == 2 with assume_test_silo_mode(SiloMode.REGION), self.tasks(): schedule_hybrid_cloud_foreign_key_jobs() assert self.get_user_saved_search_count() == 0 def test_deletions_create_tombstones_in_regions_for_user_with_no_orgs(self) -> None: # Create a user with no org memberships user_to_delete = self.create_user("foo@example.com") user_id = user_to_delete.id with outbox_runner(): user_to_delete.delete() assert self.user_tombstone_exists(user_id=user_id) def test_cascades_to_regions_even_if_user_ownership_revoked(self) -> None: eu_org = self.create_organization(region=_TEST_REGIONS[1]) self.create_member(user=self.user, organization=eu_org) self.create_saved_search(name="eu-search", owner=self.user, organization=eu_org) assert self.get_user_saved_search_count() == 2 with outbox_runner(), assume_test_silo_mode_of(OrganizationMember): for member in OrganizationMember.objects.filter(user_id=self.user.id): member.delete() assert find_regions_for_user(self.user.id) == set() with outbox_runner(): self.user.delete() assert self.get_user_saved_search_count() == 2 with assume_test_silo_mode(SiloMode.REGION), self.tasks(): schedule_hybrid_cloud_foreign_key_jobs() assert self.get_user_saved_search_count() == 0 def test_update_purge_region_cache(self) -> None: user = self.create_user() na_org = self.create_organization(region=_TEST_REGIONS[0]) self.create_member(user=user, organization=na_org) with patch.object(caching_module, "region_caching_service") as mock_caching_service: user.username = "bob2" user.save() mock_caching_service.clear_key.assert_any_call( key=f"user_service.get_many_by_id:{user.id}", region_name=_TEST_REGIONS[0].name, ) mock_caching_service.clear_key.assert_any_call( key=f"user_service.get_user:{user.id}", region_name=_TEST_REGIONS[0].name, ) @control_silo_test
UserHybridCloudDeletionTest
python
getsentry__sentry
src/sentry/audit_log/events.py
{ "start": 12782, "end": 13202 }
class ____(AuditLogEvent): def __init__(self) -> None: super().__init__( event_id=130, name="INTERNAL_INTEGRATION_ADD", api_name="internal-integration.create" ) def render(self, audit_log_entry: AuditLogEntry) -> str: integration_name = audit_log_entry.data.get("name") or "" return f"created internal integration {integration_name}"
InternalIntegrationAddAuditLogEvent
python
tiangolo__fastapi
docs_src/body_nested_models/tutorial007.py
{ "start": 384, "end": 581 }
class ____(BaseModel): name: str description: Union[str, None] = None price: float items: List[Item] @app.post("/offers/") async def create_offer(offer: Offer): return offer
Offer
python
getsentry__sentry
src/sentry/backup/findings.py
{ "start": 911, "end": 5044 }
class ____(FindingKind): Unknown = auto() # The instances of a particular model did not maintain total ordering of pks (that is, pks did not appear in ascending order, or appear multiple times). UnorderedInput = auto() # Multiple instances of the same custom ordinal signature exist in the input. DuplicateCustomOrdinal = auto() # The number of instances of a particular model on the left and right side of the input were not # equal. UnequalCounts = auto() # The JSON of two instances of a model, after certain fields have been scrubbed by all applicable comparators, were not byte-for-byte equivalent. UnequalJSON = auto() # Failed to compare an auto suffixed field. AutoSuffixComparator = auto() # Failed to compare an auto suffixed field because one of the fields being compared was not # present or `None`. AutoSuffixComparatorExistenceCheck = auto() # Two datetime fields were not equal. DatetimeEqualityComparator = auto() # Failed to compare datetimes because one of the fields being compared was not present or # `None`. DatetimeEqualityComparatorExistenceCheck = auto() # The right side field's datetime value was not greater (ie, "newer") than the left side's. DateUpdatedComparator = auto() # Failed to compare datetimes because one of the fields being compared was not present or # `None`. DateUpdatedComparatorExistenceCheck = auto() # Email equality comparison failed. EmailObfuscatingComparator = auto() # Failed to compare emails because one of the fields being compared was not present or # `None`. EmailObfuscatingComparatorExistenceCheck = auto() # The fields were both present but unequal. EqualOrRemovedComparator = auto() # The left field does not exist. EqualOrRemovedComparatorExistenceCheck = auto() # Hash equality comparison failed. HashObfuscatingComparator = auto() # Failed to compare hashes because one of the fields being compared was not present or # `None`. HashObfuscatingComparatorExistenceCheck = auto() # Foreign key field comparison failed. ForeignKeyComparator = auto() # Failed to compare foreign key fields because one of the fields being compared was not present # or `None`. ForeignKeyComparatorExistenceCheck = auto() # DataSource.source_id field comparison failed (dynamic foreign key). DataSourceComparator = auto() # Failed to compare DataSource.source_id field because one of the fields being compared was not present # or `None`. DataSourceComparatorExistenceCheck = auto() # Failed to compare an ignored field. IgnoredComparator = auto() # Secret token fields did not match their regex specification. SecretHexComparator = auto() # Failed to compare a secret token field because one of the fields being compared was not # present or `None`. SecretHexComparatorExistenceCheck = auto() # Subscription ID fields did not match their regex specification. SubscriptionIDComparator = auto() # Failed to compare a subscription id field because one of the fields being compared was not # present or `None`. SubscriptionIDComparatorExistenceCheck = auto() # Unordered list fields did not match. UnorderedListComparator = auto() # Failed to compare a unordered list field because one of the fields being compared was not # present or `None`. UnorderedListComparatorExistenceCheck = auto() # UUID4 fields did not match their regex specification. UUID4Comparator = auto() # Failed to compare a UUID4 field because one of the fields being compared was not present or # `None`. UUID4ComparatorExistenceCheck = auto() # Incorrect user password field. UserPasswordObfuscatingComparator = auto() # Failed to compare a user password field because one of the fields being compared was not # present or `None`. UserPasswordObfuscatingComparatorExistenceCheck = auto() # Option values OptionValueComparator = auto() @dataclass(frozen=True)
ComparatorFindingKind
python
python__mypy
mypy/test/testmodulefinder.py
{ "start": 328, "end": 5627 }
class ____(Suite): def setUp(self) -> None: self.search_paths = SearchPaths( python_path=(), mypy_path=( os.path.join(data_path, "nsx-pkg1"), os.path.join(data_path, "nsx-pkg2"), os.path.join(data_path, "nsx-pkg3"), os.path.join(data_path, "nsy-pkg1"), os.path.join(data_path, "nsy-pkg2"), os.path.join(data_path, "pkg1"), os.path.join(data_path, "pkg2"), ), package_path=(), typeshed_path=(), ) options = Options() options.namespace_packages = True self.fmc_ns = FindModuleCache(self.search_paths, fscache=None, options=options) options = Options() options.namespace_packages = False self.fmc_nons = FindModuleCache(self.search_paths, fscache=None, options=options) def test__no_namespace_packages__nsx(self) -> None: """ If namespace_packages is False, we shouldn't find nsx """ found_module = self.fmc_nons.find_module("nsx") assert_equal(ModuleNotFoundReason.NOT_FOUND, found_module) def test__no_namespace_packages__nsx_a(self) -> None: """ If namespace_packages is False, we shouldn't find nsx.a. """ found_module = self.fmc_nons.find_module("nsx.a") assert_equal(ModuleNotFoundReason.NOT_FOUND, found_module) def test__no_namespace_packages__find_a_in_pkg1(self) -> None: """ Find find pkg1/a.py for "a" with namespace_packages False. """ found_module = self.fmc_nons.find_module("a") expected = os.path.abspath(os.path.join(data_path, "pkg1", "a.py")) assert_equal(expected, found_module) def test__no_namespace_packages__find_b_in_pkg2(self) -> None: found_module = self.fmc_ns.find_module("b") expected = os.path.abspath(os.path.join(data_path, "pkg2", "b", "__init__.py")) assert_equal(expected, found_module) def test__find_nsx_as_namespace_pkg_in_pkg1(self) -> None: """ There's no __init__.py in any of the nsx dirs, return the path to the first one found in mypypath. """ found_module = self.fmc_ns.find_module("nsx") expected = os.path.abspath(os.path.join(data_path, "nsx-pkg1", "nsx")) assert_equal(expected, found_module) def test__find_nsx_a_init_in_pkg1(self) -> None: """ Find nsx-pkg1/nsx/a/__init__.py for "nsx.a" in namespace mode. """ found_module = self.fmc_ns.find_module("nsx.a") expected = os.path.abspath(os.path.join(data_path, "nsx-pkg1", "nsx", "a", "__init__.py")) assert_equal(expected, found_module) def test__find_nsx_b_init_in_pkg2(self) -> None: """ Find nsx-pkg2/nsx/b/__init__.py for "nsx.b" in namespace mode. """ found_module = self.fmc_ns.find_module("nsx.b") expected = os.path.abspath(os.path.join(data_path, "nsx-pkg2", "nsx", "b", "__init__.py")) assert_equal(expected, found_module) def test__find_nsx_c_c_in_pkg3(self) -> None: """ Find nsx-pkg3/nsx/c/c.py for "nsx.c.c" in namespace mode. """ found_module = self.fmc_ns.find_module("nsx.c.c") expected = os.path.abspath(os.path.join(data_path, "nsx-pkg3", "nsx", "c", "c.py")) assert_equal(expected, found_module) def test__find_nsy_a__init_pyi(self) -> None: """ Prefer nsy-pkg1/a/__init__.pyi file over __init__.py. """ found_module = self.fmc_ns.find_module("nsy.a") expected = os.path.abspath(os.path.join(data_path, "nsy-pkg1", "nsy", "a", "__init__.pyi")) assert_equal(expected, found_module) def test__find_nsy_b__init_py(self) -> None: """ There is a nsy-pkg2/nsy/b.pyi, but also a nsy-pkg2/nsy/b/__init__.py. We expect to find the latter when looking up "nsy.b" as a package is preferred over a module. """ found_module = self.fmc_ns.find_module("nsy.b") expected = os.path.abspath(os.path.join(data_path, "nsy-pkg2", "nsy", "b", "__init__.py")) assert_equal(expected, found_module) def test__find_nsy_c_pyi(self) -> None: """ There is a nsy-pkg2/nsy/c.pyi and nsy-pkg2/nsy/c.py We expect to find the former when looking up "nsy.b" as .pyi is preferred over .py. """ found_module = self.fmc_ns.find_module("nsy.c") expected = os.path.abspath(os.path.join(data_path, "nsy-pkg2", "nsy", "c.pyi")) assert_equal(expected, found_module) def test__find_a_in_pkg1(self) -> None: found_module = self.fmc_ns.find_module("a") expected = os.path.abspath(os.path.join(data_path, "pkg1", "a.py")) assert_equal(expected, found_module) def test__find_b_init_in_pkg2(self) -> None: found_module = self.fmc_ns.find_module("b") expected = os.path.abspath(os.path.join(data_path, "pkg2", "b", "__init__.py")) assert_equal(expected, found_module) def test__find_d_nowhere(self) -> None: found_module = self.fmc_ns.find_module("d") assert_equal(ModuleNotFoundReason.NOT_FOUND, found_module)
ModuleFinderSuite
python
Textualize__textual
tests/text_area/test_escape_binding.py
{ "start": 129, "end": 360 }
class ____(ModalScreen): BINDINGS = [("escape", "dismiss")] def compose(self) -> ComposeResult: yield TextArea( tab_behavior="focus", # the default ) yield Button("Submit")
TextAreaDialog
python
encode__django-rest-framework
tests/test_request.py
{ "start": 10422, "end": 13184 }
class ____(TestCase): def test_repr(self): http_request = factory.get('/path') request = Request(http_request) assert repr(request) == "<rest_framework.request.Request: GET '/path'>" def test_attribute_access_proxy(self): http_request = factory.get('/') request = Request(http_request) inner_sentinel = object() http_request.inner_property = inner_sentinel assert request.inner_property is inner_sentinel outer_sentinel = object() request.inner_property = outer_sentinel assert request.inner_property is outer_sentinel def test_exception_proxy(self): # ensure the exception message is not for the underlying WSGIRequest http_request = factory.get('/') request = Request(http_request) message = "'Request' object has no attribute 'inner_property'" with self.assertRaisesMessage(AttributeError, message): request.inner_property @override_settings(ROOT_URLCONF='tests.test_request') def test_duplicate_request_stream_parsing_exception(self): """ Check assumption that duplicate stream parsing will result in a `RawPostDataException` being raised. """ response = APIClient().post('/echo/', data={'a': 'b'}, format='json') request = response._request # ensure that request stream was consumed by json parser assert request.content_type.startswith('application/json') assert response.data == {'a': 'b'} # pass same HttpRequest to view, stream already consumed with pytest.raises(RawPostDataException): EchoView.as_view()(request._request) @override_settings(ROOT_URLCONF='tests.test_request') def test_duplicate_request_form_data_access(self): """ Form data is copied to the underlying django request for middleware and file closing reasons. Duplicate processing of a request with form data is 'safe' in so far as accessing `request.POST` does not trigger the duplicate stream parse exception. """ response = APIClient().post('/echo/', data={'a': 'b'}) request = response._request # ensure that request stream was consumed by form parser assert request.content_type.startswith('multipart/form-data') assert response.data == {'a': ['b']} # pass same HttpRequest to view, form data set on underlying request response = EchoView.as_view()(request._request) request = response._request # ensure that request stream was consumed by form parser assert request.content_type.startswith('multipart/form-data') assert response.data == {'a': ['b']}
TestHttpRequest
python
huggingface__transformers
src/transformers/models/lfm2_moe/modeling_lfm2_moe.py
{ "start": 27082, "end": 29217 }
class ____(GradientCheckpointingLayer): def __init__(self, config: Lfm2MoeConfig, layer_idx: int): super().__init__() self.is_attention_layer = config.layer_types[layer_idx] == "full_attention" if self.is_attention_layer: self.self_attn = Lfm2MoeAttention(config, layer_idx) else: self.conv = Lfm2MoeShortConv(config, layer_idx) self.feed_forward = ( Lfm2MoeMLP(config, intermediate_size=config.intermediate_size) if layer_idx < config.num_dense_layers else Lfm2MoeSparseMoeBlock(config) ) self.operator_norm = Lfm2MoeRMSNorm(config.hidden_size, eps=config.norm_eps) self.ffn_norm = Lfm2MoeRMSNorm(config.hidden_size, eps=config.norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Lfm2MoeHybridConvCache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> torch.Tensor: residual = hidden_states if self.is_attention_layer: hidden_states, _ = self.self_attn( hidden_states=self.operator_norm(hidden_states), position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) else: hidden_states = self.conv( hidden_states=self.operator_norm(hidden_states), past_key_values=past_key_values, cache_position=cache_position, attention_mask=attention_mask, ) hidden_states = hidden_states + residual hidden_states = hidden_states + self.feed_forward(self.ffn_norm(hidden_states)) return hidden_states @auto_docstring
Lfm2MoeDecoderLayer
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/event/registry.py
{ "start": 6130, "end": 11144 }
class ____(Generic[_ET]): """Represent :func:`.listen` arguments.""" __slots__ = ( "target", "identifier", "fn", "fn_key", "fn_wrap", "dispatch_target", ) target: _ET identifier: str fn: _ListenerFnType fn_key: _ListenerFnKeyType dispatch_target: Any _fn_wrap: Optional[_ListenerFnType] def __init__( self, target: _ET, identifier: str, fn: _ListenerFnType, dispatch_target: Any, _fn_wrap: Optional[_ListenerFnType] = None, ): self.target = target self.identifier = identifier self.fn = fn if isinstance(fn, types.MethodType): self.fn_key = id(fn.__func__), id(fn.__self__) else: self.fn_key = id(fn) self.fn_wrap = _fn_wrap self.dispatch_target = dispatch_target @property def _key(self) -> _EventKeyTupleType: return (id(self.target), self.identifier, self.fn_key) def with_wrapper(self, fn_wrap: _ListenerFnType) -> _EventKey[_ET]: if fn_wrap is self._listen_fn: return self else: return _EventKey( self.target, self.identifier, self.fn, self.dispatch_target, _fn_wrap=fn_wrap, ) def with_dispatch_target(self, dispatch_target: Any) -> _EventKey[_ET]: if dispatch_target is self.dispatch_target: return self else: return _EventKey( self.target, self.identifier, self.fn, dispatch_target, _fn_wrap=self.fn_wrap, ) def listen(self, *args: Any, **kw: Any) -> None: once = kw.pop("once", False) once_unless_exception = kw.pop("_once_unless_exception", False) named = kw.pop("named", False) target, identifier, fn = ( self.dispatch_target, self.identifier, self._listen_fn, ) dispatch_collection = getattr(target.dispatch, identifier) adjusted_fn = dispatch_collection._adjust_fn_spec(fn, named) self = self.with_wrapper(adjusted_fn) stub_function = getattr( self.dispatch_target.dispatch._events, self.identifier ) if hasattr(stub_function, "_sa_warn"): stub_function._sa_warn() if once or once_unless_exception: self.with_wrapper( util.only_once( self._listen_fn, retry_on_exception=once_unless_exception ) ).listen(*args, **kw) else: self.dispatch_target.dispatch._listen(self, *args, **kw) def remove(self) -> None: key = self._key if key not in _key_to_collection: raise exc.InvalidRequestError( "No listeners found for event %s / %r / %s " % (self.target, self.identifier, self.fn) ) dispatch_reg = _key_to_collection.pop(key) for collection_ref, listener_ref in dispatch_reg.items(): collection = collection_ref() listener_fn = listener_ref() if collection is not None and listener_fn is not None: collection.remove(self.with_wrapper(listener_fn)) def contains(self) -> bool: """Return True if this event key is registered to listen.""" return self._key in _key_to_collection def base_listen( self, propagate: bool = False, insert: bool = False, named: bool = False, retval: Optional[bool] = None, asyncio: bool = False, ) -> None: target, identifier = self.dispatch_target, self.identifier dispatch_collection = getattr(target.dispatch, identifier) for_modify = dispatch_collection.for_modify(target.dispatch) if asyncio: for_modify._set_asyncio() if insert: for_modify.insert(self, propagate) else: for_modify.append(self, propagate) @property def _listen_fn(self) -> _ListenerFnType: return self.fn_wrap or self.fn def append_to_list( self, owner: RefCollection[_ET], list_: Deque[_ListenerFnType], ) -> bool: if _stored_in_collection(self, owner): list_.append(self._listen_fn) return True else: return False def remove_from_list( self, owner: RefCollection[_ET], list_: Deque[_ListenerFnType], ) -> None: _removed_from_collection(self, owner) list_.remove(self._listen_fn) def prepend_to_list( self, owner: RefCollection[_ET], list_: Deque[_ListenerFnType], ) -> bool: if _stored_in_collection(self, owner): list_.appendleft(self._listen_fn) return True else: return False
_EventKey
python
getsentry__sentry
src/sentry/issues/endpoints/project_user_issue.py
{ "start": 5253, "end": 5568 }
class ____(serializers.Serializer): transaction = serializers.CharField(required=True) issueType = serializers.ChoiceField(required=True, choices=ISSUE_TYPE_CHOICES) traceId = serializers.CharField(required=False) timestamp = serializers.DateTimeField(required=False)
ProjectUserIssueRequestSerializer
python
apache__airflow
providers/google/src/airflow/providers/google/cloud/operators/alloy_db.py
{ "start": 27934, "end": 33462 }
class ____(AlloyDBWriteBaseOperator): """ Update an Alloy DB instance. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AlloyDBUpdateInstanceOperator` :param cluster_id: Required. ID of the cluster. :param instance_id: Required. ID of the instance to update. :param instance_configuration: Required. Instance to update. For more details please see API documentation: https://cloud.google.com/python/docs/reference/alloydb/latest/google.cloud.alloydb_v1.types.Instance :param update_mask: Optional. Field mask is used to specify the fields to be overwritten in the Instance resource by the update. :param request_id: Optional. An optional request ID to identify requests. Specify a unique request ID so that if you must retry your request, the server ignores the request if it has already been completed. The server guarantees that for at least 60 minutes since the first request. For example, consider a situation where you make an initial request and the request times out. If you make the request again with the same request ID, the server can check if the original operation with the same request ID was received, and if so, ignores the second request. This prevents clients from accidentally creating duplicate commitments. The request ID must be a valid UUID with the exception that zero UUID is not supported (00000000-0000-0000-0000-000000000000). :param validate_request: Optional. If set, performs request validation, but does not actually execute the request. :param allow_missing: Optional. If set to true, update succeeds even if instance is not found. In that case, a new instance is created and update_mask is ignored. :param project_id: Required. The ID of the Google Cloud project where the service is used. :param location: Required. The ID of the Google Cloud region where the service is used. :param gcp_conn_id: Optional. The connection ID to use to connect to Google Cloud. :param retry: Optional. A retry object used to retry requests. If `None` is specified, requests will not be retried. :param timeout: Optional. The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :param metadata: Optional. Additional metadata that is provided to the method. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). """ template_fields: Sequence[str] = tuple( {"cluster_id", "instance_id", "instance_configuration", "update_mask", "allow_missing"} | set(AlloyDBWriteBaseOperator.template_fields) ) operator_extra_links = (AlloyDBClusterLink(),) def __init__( self, cluster_id: str, instance_id: str, instance_configuration: alloydb_v1.Instance | dict, update_mask: FieldMask | dict | None = None, allow_missing: bool = False, *args, **kwargs, ): super().__init__(*args, **kwargs) self.cluster_id = cluster_id self.instance_id = instance_id self.instance_configuration = instance_configuration self.update_mask = update_mask self.allow_missing = allow_missing @property def extra_links_params(self) -> dict[str, Any]: return { "location_id": self.location, "cluster_id": self.cluster_id, "project_id": self.project_id, } def execute(self, context: Context) -> dict | None: AlloyDBClusterLink.persist(context=context) if self.validate_request: self.log.info("Validating an Update AlloyDB instance request.") else: self.log.info("Updating an AlloyDB instance.") try: operation = self.hook.update_instance( cluster_id=self.cluster_id, instance_id=self.instance_id, project_id=self.project_id, location=self.location, instance=self.instance_configuration, update_mask=self.update_mask, allow_missing=self.allow_missing, request_id=self.request_id, validate_only=self.validate_request, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) except Exception as ex: raise AirflowException(ex) from ex else: operation_result = self.get_operation_result(operation) result = alloydb_v1.Instance.to_dict(operation_result) if operation_result else None if not self.validate_request: self.log.info("AlloyDB instance %s was successfully updated.", self.cluster_id) return result
AlloyDBUpdateInstanceOperator
python
neetcode-gh__leetcode
python/0100-same-tree.py
{ "start": 164, "end": 479 }
class ____: def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool: if not p and not q: return True if p and q and p.val == q.val: return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right) else: return False
Solution
python
pandas-dev__pandas
pandas/tests/indexing/test_iloc.py
{ "start": 841, "end": 1606 }
class ____: @pytest.mark.parametrize("key", [2, -1, [0, 1, 2]]) @pytest.mark.parametrize( "index", [ Index(list("abcd"), dtype=object), Index([2, 4, "null", 8], dtype=object), date_range("20130101", periods=4), Index(range(0, 8, 2), dtype=np.float64), Index([]), ], ) def test_iloc_getitem_int_and_list_int(self, key, frame_or_series, index, request): obj = frame_or_series(range(len(index)), index=index) check_indexing_smoketest_or_raises( obj, "iloc", key, fails=IndexError, ) # array of ints (GH5006), make sure that a single indexer is returning # the correct type
TestiLoc
python
pytorch__pytorch
test/functorch/test_control_flow.py
{ "start": 335354, "end": 338948 }
class ____(torch.nn.Module): def forward(self, x): x: "f32[s6, 3]"; x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) _guards_fn = self._guards_fn(x); _guards_fn = None sym_size_int_1: "Sym(s6)" = torch.ops.aten.sym_size.int(x, 0) sin: "f32[s6, 3]" = torch.ops.aten.sin.default(x); x = None while_loop_cond_graph_0 = self.while_loop_cond_graph_0 while_loop_body_graph_0 = self.while_loop_body_graph_0 while_loop = torch.ops.higher_order.while_loop(while_loop_cond_graph_0, while_loop_body_graph_0, (sym_size_int_1, 3, 2, 2, 3, sin), ()); while_loop_cond_graph_0 = while_loop_body_graph_0 = sym_size_int_1 = sin = None getitem_6: "Sym(u10)" = while_loop[0] getitem_7: "Sym(u11)" = while_loop[1] getitem_8: "Sym(u12)" = while_loop[2] getitem_9: "Sym(u13)" = while_loop[3] getitem_10: "Sym(u14)" = while_loop[4] getitem_5: "f32[s6, 3]" = while_loop[5]; while_loop = None add: "Sym(u12 + 1)" = getitem_8 + 1 add_1: "Sym(u13 + 1)" = getitem_9 + 1 add_2: "Sym(u14 + 1)" = getitem_10 + 1 add_3: "f32[s6, 3]" = torch.ops.aten.add.Tensor(getitem_5, getitem_8); getitem_8 = None add_4: "f32[s6, 3]" = torch.ops.aten.add.Tensor(getitem_5, getitem_9); getitem_9 = None add_5: "f32[s6, 3]" = torch.ops.aten.add.Tensor(getitem_5, getitem_10); getitem_10 = None return pytree.tree_unflatten((getitem_6, getitem_7, add, add_1, add_2, add_3, add_4, add_5, getitem_5), self._out_spec) class while_loop_cond_graph_0(torch.nn.Module): def forward(self, arg0_1: "Sym(u15)", arg1_1: "Sym(u16)", arg2_1: "Sym(u17)", arg3_1: "Sym(u18)", arg4_1: "Sym(u19)", arg5_1: "f32[s6, 3]"): mul: "Sym(u17*u18)" = arg2_1 * arg3_1; arg2_1 = arg3_1 = None mul_1: "Sym(u17*u18*u19)" = mul * arg4_1; mul = arg4_1 = None mul_2: "Sym(u15*u16)" = arg0_1 * arg1_1; arg0_1 = arg1_1 = None lt: "Sym(u17*u18*u19 < u15*u16)" = mul_1 < mul_2; mul_1 = mul_2 = None return lt class while_loop_body_graph_0(torch.nn.Module): def forward(self, arg0_1: "Sym(u15)", arg1_1: "Sym(u16)", arg2_1: "Sym(u17)", arg3_1: "Sym(u18)", arg4_1: "Sym(u19)", arg5_1: "f32[s6, 3]"): add: "Sym(u15 + 1)" = arg0_1 + 1; arg0_1 = None add_1: "Sym(u16 + 1)" = arg1_1 + 1; arg1_1 = None add_2: "Sym(u17 + 1)" = arg2_1 + 1; arg2_1 = None add_3: "Sym(u18 + 1)" = arg3_1 + 1; arg3_1 = None add_4: "Sym(u19 + 1)" = arg4_1 + 1; arg4_1 = None add_5: "f32[s6, 3]" = torch.ops.aten.add.Tensor(arg5_1, 1); arg5_1 = None return (add, add_1, add_2, add_3, add_4, add_5) """, # noqa: B950 ) @skipIfTorchDynamo("Graph is not captured correctly when test with dynamo") @parametrize("dynamic", [True, False]) @parametrize("backend", ["eager", "aot_eager"]) def test_while_loop_op_pytree_int_carry_compile(self, dynamic, backend): m, args = WHILE_LOOP_TESTS["pytree_int_carry"] if backend == "eager": backend = EagerAndRecordGraphs() self._check_compile(m, args, dynamic=dynamic, backend=backend) if ( isinstance(backend, EagerAndRecordGraphs) and dynamic and not TEST_WITH_CROSSREF ): self.assertEqual(len(backend.graphs), 1) self.assertExpectedInline( normalize_gm(backend.graphs[0].print_readable(print_output=False)), """\
GraphModule
python
sqlalchemy__sqlalchemy
test/dialect/mysql/test_query.py
{ "start": 1198, "end": 2019 }
class ____(fixtures.TestBase): __only_on__ = "mysql", "mariadb" __backend__ = True def test_is_boolean_symbols_despite_no_native(self, connection): with expect_warnings("Datatype BOOL does not support CAST"): is_( connection.scalar(select(cast(true().is_(true()), Boolean))), True, ) with expect_warnings("Datatype BOOL does not support CAST"): is_( connection.scalar( select(cast(true().is_not(true()), Boolean)) ), False, ) with expect_warnings("Datatype BOOL does not support CAST"): is_( connection.scalar(select(cast(false().is_(false()), Boolean))), True, )
IdiosyncrasyTest
python
dagster-io__dagster
python_modules/libraries/dagster-airbyte/dagster_airbyte/translator.py
{ "start": 969, "end": 1308 }
class ____: RUNNING = AirbyteJobStatusType.RUNNING SUCCEEDED = AirbyteJobStatusType.SUCCEEDED CANCELLED = AirbyteJobStatusType.CANCELLED PENDING = AirbyteJobStatusType.PENDING FAILED = AirbyteJobStatusType.FAILED ERROR = AirbyteJobStatusType.ERROR INCOMPLETE = AirbyteJobStatusType.INCOMPLETE @record
AirbyteState
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/ruff/RUF049.py
{ "start": 539, "end": 575 }
class ____(Enum): ... @attrs.mutable
E
python
spack__spack
lib/spack/spack/repo.py
{ "start": 70741, "end": 77867 }
class ____(Mapping[str, RepoDescriptor]): """A collection of repository descriptors.""" def __init__(self, descriptors: Dict[str, RepoDescriptor]) -> None: self.descriptors = descriptors def __getitem__(self, name: str) -> RepoDescriptor: return self.descriptors[name] def __iter__(self): return iter(self.descriptors.keys()) def __len__(self): return len(self.descriptors) def __contains__(self, name) -> bool: return name in self.descriptors def __repr__(self): return f"RepoDescriptors({self.descriptors!r})" @staticmethod def from_config( lock: spack.util.lock.Lock, config: spack.config.Configuration, scope=None ) -> "RepoDescriptors": return RepoDescriptors( { name: parse_config_descriptor(name, cfg, lock) for name, cfg in config.get_config("repos", scope=scope).items() } ) def construct( self, cache: spack.util.file_cache.FileCache, fetch: bool = True, find_git: Callable[[], MaybeExecutable] = lambda: spack.util.git.git(required=True), overrides: Optional[Dict[str, Any]] = None, ) -> Tuple[RepoPath, Dict[str, Exception]]: """Construct a RepoPath from the descriptors. If init is True, initialize all remote repositories that have not been fetched yet. Returns: A tuple containing a RepoPath instance with all constructed Repos and a dictionary mapping paths to exceptions that occurred during construction. """ repos: List[Repo] = [] errors: Dict[str, Exception] = {} git: MaybeExecutable = None for descriptor in self.descriptors.values(): if fetch and isinstance(descriptor, RemoteRepoDescriptor): git = git or find_git() descriptor.initialize(fetch=True, git=git) else: descriptor.initialize(fetch=False) for path, result in descriptor.construct(cache=cache, overrides=overrides).items(): if isinstance(result, Repo): repos.append(result) else: errors[path] = result return RepoPath(*repos), errors def parse_config_descriptor( name: Optional[str], descriptor: Any, lock: spack.util.lock.Lock ) -> RepoDescriptor: """Parse a repository descriptor from validated configuration. This does not instantiate Repo objects, but merely turns the config into a more useful RepoDescriptor instance. Args: name: the name of the repository, used for error messages descriptor: the configuration for the repository, which can be a string (local path), or a dictionary with ``git`` key containing git URL and other options. Returns: A RepoDescriptor instance, either LocalRepoDescriptor or RemoteRepoDescriptor. Raises: BadRepoError: if the descriptor is invalid or cannot be parsed. RuntimeError: if the descriptor is of an unexpected type. """ if isinstance(descriptor, str): return LocalRepoDescriptor(name, spack.util.path.canonicalize_path(descriptor)) # Should be the case due to config validation. assert isinstance(descriptor, dict), "Repository descriptor must be a string or a dictionary" # Configuration validation works per scope, and we want to allow overriding e.g. destination # in user config without the user having to repeat the `git` key and value again. This is a # hard error, since config validation is a hard error. if "git" not in descriptor: raise RuntimeError( f"Invalid configuration for repository '{name}': {descriptor!r}. A `git` attribute is " "required for remote repositories." ) repository = descriptor["git"] assert isinstance(repository, str), "Package repository git URL must be a string" destination = descriptor.get("destination", None) if destination is None: # use a default destination dir_name = spack.util.hash.b32_hash(repository)[-7:] destination = os.path.join(spack.paths.package_repos_path, dir_name) else: destination = spack.util.path.canonicalize_path(destination) return RemoteRepoDescriptor( name=name, repository=repository, branch=descriptor.get("branch"), commit=descriptor.get("commit"), tag=descriptor.get("tag"), destination=destination, relative_paths=descriptor.get("paths"), lock=lock, ) def create_or_construct( root: str, namespace: Optional[str] = None, package_api: Tuple[int, int] = spack.package_api_version, ) -> Repo: """Create a repository, or just return a Repo if it already exists.""" repo_yaml_dir, _ = get_repo_yaml_dir(root, namespace, package_api) if not os.path.exists(repo_yaml_dir): fs.mkdirp(root) create_repo(root, namespace=namespace, package_api=package_api) return from_path(repo_yaml_dir) def create_and_enable(config: spack.config.Configuration) -> RepoPath: """Immediately call enable() on the created RepoPath instance.""" repo_path = RepoPath.from_config(config) repo_path.enable() return repo_path #: Global package repository instance. PATH: RepoPath = spack.llnl.util.lang.Singleton( lambda: create_and_enable(spack.config.CONFIG) ) # type: ignore[assignment] # Add the finder to sys.meta_path REPOS_FINDER = ReposFinder() sys.meta_path.append(REPOS_FINDER) def all_package_names(include_virtuals=False): """Convenience wrapper around ``spack.repo.all_package_names()``.""" return PATH.all_package_names(include_virtuals) @contextlib.contextmanager def use_repositories( *paths_and_repos: Union[str, Repo], override: bool = True ) -> Generator[RepoPath, None, None]: """Use the repositories passed as arguments within the context manager. Args: *paths_and_repos: paths to the repositories to be used, or already constructed Repo objects override: if True use only the repositories passed as input, if False add them to the top of the list of current repositories. Returns: Corresponding RepoPath object """ paths = {getattr(x, "root", x): getattr(x, "root", x) for x in paths_and_repos} scope_name = f"use-repo-{uuid.uuid4()}" repos_key = "repos:" if override else "repos" spack.config.CONFIG.push_scope( spack.config.InternalConfigScope(name=scope_name, data={repos_key: paths}) ) old_repo, new_repo = PATH, RepoPath.from_config(spack.config.CONFIG) old_repo.disable() enable_repo(new_repo) try: yield new_repo finally: spack.config.CONFIG.remove_scope(scope_name=scope_name) new_repo.disable() enable_repo(old_repo) def enable_repo(repo_path: RepoPath) -> None: """Set the global package repository and make them available in module search paths.""" global PATH PATH = repo_path PATH.enable()
RepoDescriptors
python
matplotlib__matplotlib
lib/matplotlib/text.py
{ "start": 59786, "end": 76107 }
class ____(Text, _AnnotationBase): """ An `.Annotation` is a `.Text` that can refer to a specific position *xy*. Optionally an arrow pointing from the text to *xy* can be drawn. Attributes ---------- xy The annotated position. xycoords The coordinate system for *xy*. arrow_patch A `.FancyArrowPatch` to point from *xytext* to *xy*. """ def __str__(self): return f"Annotation({self.xy[0]:g}, {self.xy[1]:g}, {self._text!r})" def __init__(self, text, xy, xytext=None, xycoords='data', textcoords=None, arrowprops=None, annotation_clip=None, **kwargs): """ Annotate the point *xy* with text *text*. In the simplest form, the text is placed at *xy*. Optionally, the text can be displayed in another position *xytext*. An arrow pointing from the text to the annotated point *xy* can then be added by defining *arrowprops*. Parameters ---------- text : str The text of the annotation. xy : (float, float) The point *(x, y)* to annotate. The coordinate system is determined by *xycoords*. xytext : (float, float), default: *xy* The position *(x, y)* to place the text at. The coordinate system is determined by *textcoords*. xycoords : single or two-tuple of str or `.Artist` or `.Transform` or \ callable, default: 'data' The coordinate system that *xy* is given in. The following types of values are supported: - One of the following strings: ==================== ============================================ Value Description ==================== ============================================ 'figure points' Points from the lower left of the figure 'figure pixels' Pixels from the lower left of the figure 'figure fraction' Fraction of figure from lower left 'subfigure points' Points from the lower left of the subfigure 'subfigure pixels' Pixels from the lower left of the subfigure 'subfigure fraction' Fraction of subfigure from lower left 'axes points' Points from lower left corner of the Axes 'axes pixels' Pixels from lower left corner of the Axes 'axes fraction' Fraction of Axes from lower left 'data' Use the coordinate system of the object being annotated (default) 'polar' *(theta, r)* if not native 'data' coordinates ==================== ============================================ Note that 'subfigure pixels' and 'figure pixels' are the same for the parent figure, so users who want code that is usable in a subfigure can use 'subfigure pixels'. - An `.Artist`: *xy* is interpreted as a fraction of the artist's `~matplotlib.transforms.Bbox`. E.g. *(0, 0)* would be the lower left corner of the bounding box and *(0.5, 1)* would be the center top of the bounding box. - A `.Transform` to transform *xy* to screen coordinates. - A function with one of the following signatures:: def transform(renderer) -> Bbox def transform(renderer) -> Transform where *renderer* is a `.RendererBase` subclass. The result of the function is interpreted like the `.Artist` and `.Transform` cases above. - A tuple *(xcoords, ycoords)* specifying separate coordinate systems for *x* and *y*. *xcoords* and *ycoords* must each be of one of the above described types. See :ref:`plotting-guide-annotation` for more details. textcoords : single or two-tuple of str or `.Artist` or `.Transform` \ or callable, default: value of *xycoords* The coordinate system that *xytext* is given in. All *xycoords* values are valid as well as the following strings: ================= ================================================= Value Description ================= ================================================= 'offset points' Offset, in points, from the *xy* value 'offset pixels' Offset, in pixels, from the *xy* value 'offset fontsize' Offset, relative to fontsize, from the *xy* value ================= ================================================= arrowprops : dict, optional The properties used to draw a `.FancyArrowPatch` arrow between the positions *xy* and *xytext*. Defaults to None, i.e. no arrow is drawn. For historical reasons there are two different ways to specify arrows, "simple" and "fancy": **Simple arrow:** If *arrowprops* does not contain the key 'arrowstyle' the allowed keys are: ========== ================================================= Key Description ========== ================================================= width The width of the arrow in points headwidth The width of the base of the arrow head in points headlength The length of the arrow head in points shrink Fraction of total length to shrink from both ends ? Any `.FancyArrowPatch` property ========== ================================================= The arrow is attached to the edge of the text box, the exact position (corners or centers) depending on where it's pointing to. **Fancy arrow:** This is used if 'arrowstyle' is provided in the *arrowprops*. Valid keys are the following `.FancyArrowPatch` parameters: =============== =================================== Key Description =============== =================================== arrowstyle The arrow style connectionstyle The connection style relpos See below; default is (0.5, 0.5) patchA Default is bounding box of the text patchB Default is None shrinkA In points. Default is 2 points shrinkB In points. Default is 2 points mutation_scale Default is text size (in points) mutation_aspect Default is 1 ? Any `.FancyArrowPatch` property =============== =================================== The exact starting point position of the arrow is defined by *relpos*. It's a tuple of relative coordinates of the text box, where (0, 0) is the lower left corner and (1, 1) is the upper right corner. Values <0 and >1 are supported and specify points outside the text box. By default (0.5, 0.5), so the starting point is centered in the text box. annotation_clip : bool or None, default: None Whether to clip (i.e. not draw) the annotation when the annotation point *xy* is outside the Axes area. - If *True*, the annotation will be clipped when *xy* is outside the Axes. - If *False*, the annotation will always be drawn. - If *None*, the annotation will be clipped when *xy* is outside the Axes and *xycoords* is 'data'. **kwargs Additional kwargs are passed to `.Text`. Returns ------- `.Annotation` See Also -------- :ref:`annotations` """ _AnnotationBase.__init__(self, xy, xycoords=xycoords, annotation_clip=annotation_clip) # warn about wonky input data if (xytext is None and textcoords is not None and textcoords != xycoords): _api.warn_external("You have used the `textcoords` kwarg, but " "not the `xytext` kwarg. This can lead to " "surprising results.") # clean up textcoords and assign default if textcoords is None: textcoords = self.xycoords self._textcoords = textcoords # cleanup xytext defaults if xytext is None: xytext = self.xy x, y = xytext self.arrowprops = arrowprops if arrowprops is not None: arrowprops = arrowprops.copy() if "arrowstyle" in arrowprops: self._arrow_relpos = arrowprops.pop("relpos", (0.5, 0.5)) else: # modified YAArrow API to be used with FancyArrowPatch for key in ['width', 'headwidth', 'headlength', 'shrink']: arrowprops.pop(key, None) self.arrow_patch = FancyArrowPatch((0, 0), (1, 1), **arrowprops) else: self.arrow_patch = None # Must come last, as some kwargs may be propagated to arrow_patch. Text.__init__(self, x, y, text, **kwargs) def contains(self, mouseevent): if self._different_canvas(mouseevent): return False, {} contains, tinfo = Text.contains(self, mouseevent) if self.arrow_patch is not None: in_patch, _ = self.arrow_patch.contains(mouseevent) contains = contains or in_patch return contains, tinfo @property def xycoords(self): return self._xycoords @xycoords.setter def xycoords(self, xycoords): def is_offset(s): return isinstance(s, str) and s.startswith("offset") if (isinstance(xycoords, tuple) and any(map(is_offset, xycoords)) or is_offset(xycoords)): raise ValueError("xycoords cannot be an offset coordinate") self._xycoords = xycoords @property def xyann(self): """ The text position. See also *xytext* in `.Annotation`. """ return self.get_position() @xyann.setter def xyann(self, xytext): self.set_position(xytext) def get_anncoords(self): """ Return the coordinate system to use for `.Annotation.xyann`. See also *xycoords* in `.Annotation`. """ return self._textcoords def set_anncoords(self, coords): """ Set the coordinate system to use for `.Annotation.xyann`. See also *xycoords* in `.Annotation`. """ self._textcoords = coords anncoords = property(get_anncoords, set_anncoords, doc=""" The coordinate system to use for `.Annotation.xyann`.""") def set_figure(self, fig): # docstring inherited if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) Artist.set_figure(self, fig) def update_positions(self, renderer): """ Update the pixel positions of the annotation text and the arrow patch. """ # generate transformation self.set_transform(self._get_xy_transform(renderer, self.anncoords)) arrowprops = self.arrowprops if arrowprops is None: return bbox = Text.get_window_extent(self, renderer) arrow_end = x1, y1 = self._get_position_xy(renderer) # Annotated pos. ms = arrowprops.get("mutation_scale", self.get_size()) self.arrow_patch.set_mutation_scale(ms) if "arrowstyle" not in arrowprops: # Approximately simulate the YAArrow. shrink = arrowprops.get('shrink', 0.0) width = arrowprops.get('width', 4) headwidth = arrowprops.get('headwidth', 12) headlength = arrowprops.get('headlength', 12) # NB: ms is in pts stylekw = dict(head_length=headlength / ms, head_width=headwidth / ms, tail_width=width / ms) self.arrow_patch.set_arrowstyle('simple', **stylekw) # using YAArrow style: # pick the corner of the text bbox closest to annotated point. xpos = [(bbox.x0, 0), ((bbox.x0 + bbox.x1) / 2, 0.5), (bbox.x1, 1)] ypos = [(bbox.y0, 0), ((bbox.y0 + bbox.y1) / 2, 0.5), (bbox.y1, 1)] x, relposx = min(xpos, key=lambda v: abs(v[0] - x1)) y, relposy = min(ypos, key=lambda v: abs(v[0] - y1)) self._arrow_relpos = (relposx, relposy) r = np.hypot(y - y1, x - x1) shrink_pts = shrink * r / renderer.points_to_pixels(1) self.arrow_patch.shrinkA = self.arrow_patch.shrinkB = shrink_pts # adjust the starting point of the arrow relative to the textbox. # TODO : Rotation needs to be accounted. arrow_begin = bbox.p0 + bbox.size * self._arrow_relpos # The arrow is drawn from arrow_begin to arrow_end. It will be first # clipped by patchA and patchB. Then it will be shrunk by shrinkA and # shrinkB (in points). If patchA is not set, self.bbox_patch is used. self.arrow_patch.set_positions(arrow_begin, arrow_end) if "patchA" in arrowprops: patchA = arrowprops["patchA"] elif self._bbox_patch: patchA = self._bbox_patch elif self.get_text() == "": patchA = None else: pad = renderer.points_to_pixels(4) patchA = Rectangle( xy=(bbox.x0 - pad / 2, bbox.y0 - pad / 2), width=bbox.width + pad, height=bbox.height + pad, transform=IdentityTransform(), clip_on=False) self.arrow_patch.set_patchA(patchA) @artist.allow_rasterization def draw(self, renderer): # docstring inherited if renderer is not None: self._renderer = renderer if not self.get_visible() or not self._check_xy(renderer): return # Update text positions before `Text.draw` would, so that the # FancyArrowPatch is correctly positioned. self.update_positions(renderer) self.update_bbox_position_size(renderer) if self.arrow_patch is not None: # FancyArrowPatch if (self.arrow_patch.get_figure(root=False) is None and (fig := self.get_figure(root=False)) is not None): self.arrow_patch.set_figure(fig) self.arrow_patch.draw(renderer) # Draw text, including FancyBboxPatch, after FancyArrowPatch. # Otherwise, a wedge arrowstyle can land partly on top of the Bbox. Text.draw(self, renderer) def get_window_extent(self, renderer=None): # docstring inherited # This block is the same as in Text.get_window_extent, but we need to # set the renderer before calling update_positions(). if not self.get_visible() or not self._check_xy(renderer): return Bbox.unit() if renderer is not None: self._renderer = renderer if self._renderer is None: self._renderer = self.get_figure(root=True)._get_renderer() if self._renderer is None: raise RuntimeError('Cannot get window extent without renderer') self.update_positions(self._renderer) text_bbox = Text.get_window_extent(self) bboxes = [text_bbox] if self.arrow_patch is not None: bboxes.append(self.arrow_patch.get_window_extent()) return Bbox.union(bboxes) def get_tightbbox(self, renderer=None): # docstring inherited if not self._check_xy(renderer): return Bbox.null() return super().get_tightbbox(renderer) _docstring.interpd.register(Annotation=Annotation.__init__.__doc__)
Annotation
python
google__pytype
pytype/typegraph/typegraph_serializer.py
{ "start": 1884, "end": 2358 }
class ____: # Note that cfg_nodes and bindings contain all instances of their respective # types that are found in the program, while variables only contains the # Variables that have Bindings. This means lookups of variables should be # by using `find`, not by direct index access. cfg_nodes: list[SerializedCFGNode] variables: list[SerializedVariable] bindings: list[SerializedBinding] entrypoint: CFGNodeId queries: list[SerializedQuery]
SerializedProgram
python
google__jax
jax/_src/numpy/indexing.py
{ "start": 27835, "end": 52827 }
class ____(NamedTuple): # The expected shape of the slice output. slice_shape: Sequence[int] # The slice shape to pass to lax.gather(). gather_slice_shape: Sequence[int] # The gather indices to use. gather_indices: ArrayLike # A GatherDimensionNumbers object describing the gather to perform. dnums: slicing.GatherDimensionNumbers # Are the gather_indices known to be non-overlapping and/or sorted? # (In practice, these translate to "there no advanced indices", because # only advanced indices could lead to index repetition.) unique_indices: bool indices_are_sorted: bool # Slice dimensions that have negative strides, and so must be reversed after # the gather. reversed_y_dims: Sequence[int] # Keep track of any axes created by `newaxis`. These must be inserted for # gathers and eliminated for scatters. newaxis_dims: Sequence[int] # Keep track of dimensions with scalar bool indices. These must be inserted # for gathers before performing other index operations. scalar_bool_dims: Sequence[int] # The expected sharding of the slice output. slice_sharding: NamedSharding | None = None def split_index_for_jit(idx, shape): """Splits indices into necessarily-static and dynamic parts. Used to pass indices into `jit`-ted function. """ # Convert list indices to tuples in cases (deprecated by NumPy.) idx = eliminate_deprecated_list_indexing(idx) if any(isinstance(i, str) for i in idx): raise TypeError(f"JAX does not support string indexing; got {idx=}") # Expand any (concrete) boolean indices. We can then use advanced integer # indexing logic to handle them. idx = _expand_bool_indices(idx, shape) leaves, treedef = tree_flatten(idx) dynamic = [None] * len(leaves) static = [None] * len(leaves) for i, x in enumerate(leaves): if x is Ellipsis: static[i] = x elif isinstance(x, slice): # slice objects aren't hashable. static[i] = (x.start, x.stop, x.step) else: dynamic[i] = x return treedef, tuple(static), dynamic def merge_static_and_dynamic_indices(treedef, static_idx, dynamic_idx): """Recombines indices that were split by split_index_for_jit.""" idx = [] for s, d in zip(static_idx, dynamic_idx): if d is not None: idx.append(d) elif isinstance(s, tuple): idx.append(slice(s[0], s[1], s[2])) else: idx.append(s) return treedef.unflatten(idx) def _int(aval): return not aval.shape and dtypes.issubdtype(aval.dtype, np.integer) def _aval_or_none(x): try: return core.get_aval(x) except: return None def index_to_gather(x_shape: Sequence[int], idx: Sequence[Any], x_sharding, normalize_indices: bool = True) -> _Indexer: # Convert sequences to arrays idx = tuple(lax_numpy.asarray(i, dtype=None if i else int) if isinstance(i, Sequence) else i for i in idx) abstract_idx = [_aval_or_none(i) for i in idx] float_indices = [(i, val, aval) for i, (val, aval) in enumerate(zip(idx, abstract_idx)) if aval is not None and dtypes.issubdtype(aval, np.inexact)] # Check for float or complex indices: if float_indices: i, val, aval = float_indices[0] msg = ("Indexer must have integer or boolean type, got indexer " "with type {} at position {}, indexer value {}") raise TypeError(msg.format(aval.dtype.name, i, val)) # Check whether advanced indices are contiguous. We must do this before # removing ellipses (https://github.com/jax-ml/jax/issues/25109) # If advanced idexing axes do not appear contiguously, NumPy semantics # move the advanced axes to the front. (is_advanced,) = np.nonzero([ isinstance(e, (int, np.integer, Array, np.ndarray, literals.TypedNdArray)) or lax_numpy.isscalar(e) for e in idx ]) advanced_axes_are_contiguous = np.all(np.diff(is_advanced) == 1) # Remove ellipses and add trailing slice(None)s. idx = _canonicalize_tuple_index(len(x_shape), idx) x_spec = x_sharding.spec # Check for scalar boolean indexing: this requires inserting extra dimensions # before performing the rest of the logic. scalar_bool_dims: Sequence[int] = [n for n, i in enumerate(idx) if isinstance(i, bool)] if scalar_bool_dims: idx = tuple(np.arange(int(i)) if isinstance(i, bool) else i for i in idx) x_shape = list(x_shape) x_spec = list(x_spec) for i in sorted(scalar_bool_dims): x_shape.insert(i, 1) x_spec.insert(i, None) x_shape = tuple(x_shape) x_spec = tuple(x_spec) # Check for advanced indexing: # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing advanced_indexes: Sequence[Array | np.ndarray] | None = None # The positions of the advanced indexing axes in `idx`. idx_advanced_axes: Sequence[int] = [] # The positions of the advanced indexes in x's shape. # collapsed, after None axes have been removed. See below. x_advanced_axes: Sequence[int] | None = None if _is_advanced_int_indexer(idx): idx_no_nones = [(i, d) for i, d in enumerate(idx) if d is not None] advanced_pairs = ( (lax_numpy.asarray(e), i, j) for j, (i, e) in enumerate(idx_no_nones) if lax_numpy.isscalar(e) or isinstance(e, (Sequence, Array, np.ndarray, literals.TypedNdArray))) if normalize_indices: advanced_pairs = ((_normalize_index(e, x_shape[j]), i, j) for e, i, j in advanced_pairs) advanced_indexes, idx_advanced_axes, x_advanced_axes = zip(*advanced_pairs) x_axis = 0 # Current axis in x. y_axis = 0 # Current axis in y, before collapsing. See below. collapsed_y_axis = 0 # Current axis in y, after collapsing. # Scatter dimension numbers. offset_dims: list[int] = [] collapsed_slice_dims: list[int] = [] start_index_map: list[int] = [] index_dtype = lax_utils.int_dtype_for_shape(x_shape, signed=True) # Gather indices. # Pairs of (array, start_dim) values. These will be broadcast into # gather_indices_shape, with the array dimensions aligned to start_dim, and # then concatenated. gather_indices: list[tuple[Array, int]] = [] gather_indices_shape: list[int] = [] # We perform three transformations to y before the scatter op, in order: # First, y is broadcast to slice_shape. In general `y` only need broadcast to # the right shape. slice_shape: list[int] = [] # Next, y is squeezed to remove newaxis_dims. This removes np.newaxis/`None` # indices, which the scatter cannot remove itself. newaxis_dims: list[int] = [] # Finally, we reverse reversed_y_dims to handle slices with negative strides. reversed_y_dims: list[int] = [] gather_slice_shape: list[int] = [] slice_spec = [] for idx_pos, i in enumerate(idx): # Handle the advanced indices here if: # * the advanced indices were not contiguous and we are the start. # * we are at the position of the first advanced index. if (advanced_indexes is not None and (advanced_axes_are_contiguous and idx_pos == idx_advanced_axes[0] or not advanced_axes_are_contiguous and idx_pos == 0)): advanced_index_arrs = util._broadcast_arrays(*advanced_indexes) shape = advanced_index_arrs[0].shape aia_spec = core.typeof(advanced_index_arrs[0]).sharding.spec ndim = len(shape) start_dim = len(gather_indices_shape) gather_indices.extend( (lax.convert_element_type(a, index_dtype), start_dim) for a in advanced_index_arrs ) gather_indices_shape += shape assert x_advanced_axes is not None start_index_map.extend(x_advanced_axes) collapsed_slice_dims.extend(x_advanced_axes) slice_shape.extend(shape) slice_spec.extend(aia_spec) y_axis += ndim collapsed_y_axis += ndim # Per-index bookkeeping for advanced indexes. if idx_pos in idx_advanced_axes: x_axis += 1 gather_slice_shape.append(1) continue # Handle basic int indexes. abstract_i = _aval_or_none(i) if isinstance(abstract_i, core.ShapedArray) and _int(abstract_i): if core.definitely_equal(x_shape[x_axis], 0): # XLA gives error when indexing into an axis of size 0 raise IndexError(f"index is out of bounds for axis {x_axis} with size 0") i = _normalize_index(i, x_shape[x_axis]) if normalize_indices else i i_converted = lax.convert_element_type(i, index_dtype) gather_indices.append((i_converted, len(gather_indices_shape))) collapsed_slice_dims.append(x_axis) gather_slice_shape.append(1) start_index_map.append(x_axis) x_axis += 1 # Handle np.newaxis (None) elif i is None: slice_shape.append(1) slice_spec.append(None) newaxis_dims.append(y_axis) y_axis += 1 elif isinstance(i, slice): # Handle slice index (only static, otherwise an error is raised) if not all(_is_slice_element_none_or_constant_or_symbolic(elt) for elt in (i.start, i.stop, i.step)): msg = ("Array slice indices must have static start/stop/step to be used " "with NumPy indexing syntax. " f"Found slice({i.start}, {i.stop}, {i.step}). " "To index a statically sized " "array at a dynamic position, try lax.dynamic_slice/" "dynamic_update_slice (JAX does not support dynamically sized " "arrays within JIT compiled functions).") raise IndexError(msg) start, step, slice_size = core.canonicalize_slice(i, x_shape[x_axis]) slice_shape.append(slice_size) slice_spec.append(x_spec[x_axis]) if core.definitely_equal(step, 1): # Avoid generating trivial gather (an optimization) if not core.definitely_equal(slice_size, x_shape[x_axis]): gather_indices.append((lax.convert_element_type(start, index_dtype), len(gather_indices_shape))) start_index_map.append(x_axis) gather_slice_shape.append(slice_size) offset_dims.append(collapsed_y_axis) else: indices = (lax_numpy.array(start, dtype=index_dtype) + lax_numpy.array(step, dtype=index_dtype) * lax.iota(index_dtype, slice_size)) if step < 0: reversed_y_dims.append(collapsed_y_axis) indices = lax.rev(indices, dimensions=(0,)) gather_slice_shape.append(1) gather_indices.append((indices, len(gather_indices_shape))) start_index_map.append(x_axis) gather_indices_shape.append(slice_size) collapsed_slice_dims.append(x_axis) collapsed_y_axis += 1 y_axis += 1 x_axis += 1 else: if (abstract_i is not None and not (dtypes.issubdtype(abstract_i.dtype, np.integer) or dtypes.issubdtype(abstract_i.dtype, np.bool_))): msg = ("Indexer must have integer or boolean type, got indexer " "with type {} at position {}, indexer value {}") raise TypeError(msg.format(abstract_i.dtype.name, idx_pos, i)) raise IndexError("Indexing mode not yet supported. Got unsupported indexer " f"at position {idx_pos}: {i!r}") if len(gather_indices) == 0: gather_indices_array: ArrayLike = np.zeros((0,), dtype=index_dtype) elif len(gather_indices) == 1: g, _ = gather_indices[0] gather_indices_array = lax.expand_dims(g, (g.ndim,)) else: last_dim = len(gather_indices_shape) gather_indices_shape.append(1) gather_indices_array = lax.concatenate([ lax.broadcast_in_dim(g, gather_indices_shape, tuple(range(i, i + g.ndim))) for g, i in gather_indices], last_dim) dnums = slicing.GatherDimensionNumbers( offset_dims = tuple(offset_dims), collapsed_slice_dims = tuple(sorted(collapsed_slice_dims)), start_index_map = tuple(start_index_map) ) slice_sharding = x_sharding.update(spec=slice_spec) return _Indexer( slice_shape=slice_shape, newaxis_dims=tuple(newaxis_dims), gather_slice_shape=gather_slice_shape, reversed_y_dims=reversed_y_dims, dnums=dnums, gather_indices=gather_indices_array, unique_indices=advanced_indexes is None, indices_are_sorted=advanced_indexes is None, scalar_bool_dims=scalar_bool_dims, slice_sharding=slice_sharding) def _should_unpack_list_index(x): """Helper for eliminate_deprecated_list_indexing.""" return (isinstance(x, (np.ndarray, Array, literals.TypedNdArray)) and np.ndim(x) != 0 or isinstance(x, (Sequence, slice)) or x is Ellipsis or x is None) def eliminate_deprecated_list_indexing(idx): # "Basic slicing is initiated if the selection object is a non-array, # non-tuple sequence containing slice objects, [Ellipses, or newaxis # objects]". Detects this and raises a TypeError. if not isinstance(idx, tuple): if isinstance(idx, Sequence) and not isinstance( idx, (Array, np.ndarray, literals.TypedNdArray, str) ): # As of numpy 1.16, some non-tuple sequences of indices result in a warning, while # others are converted to arrays, based on a set of somewhat convoluted heuristics # (See https://github.com/numpy/numpy/blob/v1.19.2/numpy/core/src/multiarray/mapping.c#L179-L343) # In JAX, we raise an informative TypeError for *all* non-tuple sequences. if any(_should_unpack_list_index(i) for i in idx): msg = ("Using a non-tuple sequence for multidimensional indexing is not allowed; " "use `arr[tuple(seq)]` instead of `arr[seq]`. " "See https://github.com/jax-ml/jax/issues/4564 for more information.") else: msg = ("Using a non-tuple sequence for multidimensional indexing is not allowed; " "use `arr[array(seq)]` instead of `arr[seq]`. " "See https://github.com/jax-ml/jax/issues/4564 for more information.") raise TypeError(msg) else: idx = (idx,) return idx def _is_boolean_index(i): try: abstract_i = core.get_aval(i) except TypeError: abstract_i = None return (isinstance(abstract_i, core.ShapedArray) and dtypes.issubdtype(abstract_i.dtype, np.bool_) or isinstance(i, list) and i and all(_is_scalar(e) and dtypes.issubdtype(dtypes.dtype(e), np.bool_) for e in i)) def _expand_bool_indices(idx, shape): """Converts concrete bool indexes into advanced integer indexes.""" out = [] total_dims = len(shape) num_ellipsis = sum(e is Ellipsis for e in idx) if num_ellipsis > 1: raise IndexError("an index can only have a single ellipsis ('...')") elif num_ellipsis == 1: total_dims = sum(np.ndim(e) if _is_boolean_index(e) else 1 for e in idx if e is not None and e is not Ellipsis) ellipsis_offset = 0 newaxis_offset = 0 for dim_number, i in enumerate(idx): try: abstract_i = core.get_aval(i) except TypeError: abstract_i = None if _is_boolean_index(i): if isinstance(i, list): i = lax_numpy.array(i) abstract_i = core.get_aval(i) if not core.is_concrete(i): # TODO(mattjj): improve this error by tracking _why_ the indices are not concrete raise errors.NonConcreteBooleanIndexError(abstract_i) elif np.ndim(i) == 0: out.append(bool(i)) else: i_shape = np.shape(i) start = len(out) + ellipsis_offset - newaxis_offset expected_shape = shape[start: start + np.ndim(i)] if len(i_shape) != len(expected_shape): raise IndexError(f"too many boolean indices at index {dim_number}: got mask of shape " f"{i_shape}, but only {len(expected_shape)} dimensions remain.") if not all(s1 in (0, s2) for s1, s2 in zip(i_shape, expected_shape)): raise IndexError("boolean index did not match shape of indexed array in index " f"{dim_number}: got {i_shape}, expected {expected_shape}") out.extend(np.where(i)) else: out.append(i) if i is Ellipsis: ellipsis_offset = len(shape) - total_dims - 1 if i is None: newaxis_offset += 1 return tuple(out) def _is_slice_element_none_or_constant_or_symbolic(elt): """Return True if elt is a constant or None.""" if elt is None: return True if core.is_symbolic_dim(elt): return True try: return core.is_concrete(elt) except TypeError: return False # TODO(mattjj): clean up this logic def _is_advanced_int_indexer(idx): """Returns True if idx should trigger int array indexing, False otherwise.""" # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing assert isinstance(idx, tuple) if all(e is None or e is Ellipsis or isinstance(e, slice) or _is_scalar(e) and dtypes.issubdtype(dtypes.dtype(e), np.integer) for e in idx): return False return all(e is None or e is Ellipsis or isinstance(e, slice) or _is_int_arraylike(e) for e in idx) def _is_int_arraylike(x): """Returns True if x is array-like with integer dtype, False otherwise.""" return (isinstance(x, int) and not isinstance(x, bool) or dtypes.issubdtype(getattr(x, "dtype", None), np.integer) or isinstance(x, (list, tuple)) and all(_is_int_arraylike(e) for e in x)) def _is_scalar(x): """Checks if a Python or NumPy scalar.""" return np.isscalar(x) or ( isinstance(x, (np.ndarray, literals.TypedNdArray, Array)) and np.ndim(x) == 0 ) def _canonicalize_tuple_index(arr_ndim, idx): """Helper to remove Ellipsis and add in the implicit trailing slice(None).""" num_dimensions_consumed = sum(not (e is None or e is Ellipsis or isinstance(e, bool)) for e in idx) if num_dimensions_consumed > arr_ndim: index_or_indices = "index" if num_dimensions_consumed == 1 else "indices" raise IndexError( f"Too many indices: {arr_ndim}-dimensional array indexed " f"with {num_dimensions_consumed} regular {index_or_indices}.") ellipses = (i for i, elt in enumerate(idx) if elt is Ellipsis) ellipsis_index = next(ellipses, None) if ellipsis_index is not None: if next(ellipses, None) is not None: raise IndexError( f"Multiple ellipses (...) not supported: {list(map(type, idx))}.") colons = (slice(None),) * (arr_ndim - num_dimensions_consumed) idx = idx[:ellipsis_index] + colons + idx[ellipsis_index + 1:] elif num_dimensions_consumed < arr_ndim: colons = (slice(None),) * (arr_ndim - num_dimensions_consumed) idx = tuple(idx) + colons return idx @export def place(arr: ArrayLike, mask: ArrayLike, vals: ArrayLike, *, inplace: bool = True) -> Array: """Update array elements based on a mask. JAX implementation of :func:`numpy.place`. The semantics of :func:`numpy.place` are to modify arrays in-place, which is not possible for JAX's immutable arrays. The JAX version returns a modified copy of the input, and adds the ``inplace`` parameter which must be set to `False`` by the user as a reminder of this API difference. Args: arr: array into which values will be placed. mask: boolean mask with the same size as ``arr``. vals: values to be inserted into ``arr`` at the locations indicated by mask. If too many values are supplied, they will be truncated. If not enough values are supplied, they will be repeated. inplace: must be set to False to indicate that the input is not modified in-place, but rather a modified copy is returned. Returns: A copy of ``arr`` with masked values set to entries from `vals`. See Also: - :func:`jax.numpy.put`: put elements into an array at numerical indices. - :func:`jax.numpy.ndarray.at`: array updates using NumPy-style indexing Examples: >>> x = jnp.zeros((3, 5), dtype=int) >>> mask = (jnp.arange(x.size) % 3 == 0).reshape(x.shape) >>> mask Array([[ True, False, False, True, False], [False, True, False, False, True], [False, False, True, False, False]], dtype=bool) Placing a scalar value: >>> jnp.place(x, mask, 1, inplace=False) Array([[1, 0, 0, 1, 0], [0, 1, 0, 0, 1], [0, 0, 1, 0, 0]], dtype=int32) In this case, ``jnp.place`` is similar to the masked array update syntax: >>> x.at[mask].set(1) Array([[1, 0, 0, 1, 0], [0, 1, 0, 0, 1], [0, 0, 1, 0, 0]], dtype=int32) ``place`` differs when placing values from an array. The array is repeated to fill the masked entries: >>> vals = jnp.array([1, 3, 5]) >>> jnp.place(x, mask, vals, inplace=False) Array([[1, 0, 0, 3, 0], [0, 5, 0, 0, 1], [0, 0, 3, 0, 0]], dtype=int32) """ data, mask_arr, vals_arr = util.ensure_arraylike("place", arr, mask, vals) vals_arr = vals_arr.ravel() if inplace: raise ValueError( "jax.numpy.place cannot modify arrays in-place, because JAX arrays are immutable. " "Pass inplace=False to instead return an updated array.") if data.size != mask_arr.size: raise ValueError("place: arr and mask must be the same size") if not vals_arr.size: raise ValueError("Cannot place values from an empty array") if not data.size: return data indices = lax_numpy.where(mask_arr.ravel(), size=mask_arr.size, fill_value=mask_arr.size)[0] vals_arr = lax_numpy._tile_to_size(vals_arr, len(indices)) return data.ravel().at[indices].set(vals_arr, mode='drop').reshape(data.shape) @export def put(a: ArrayLike, ind: ArrayLike, v: ArrayLike, mode: str | None = None, *, inplace: bool = True) -> Array: """Put elements into an array at given indices. JAX implementation of :func:`numpy.put`. The semantics of :func:`numpy.put` are to modify arrays in-place, which is not possible for JAX's immutable arrays. The JAX version returns a modified copy of the input, and adds the ``inplace`` parameter which must be set to `False`` by the user as a reminder of this API difference. Args: a: array into which values will be placed. ind: array of indices over the flattened array at which to put values. v: array of values to put into the array. mode: string specifying how to handle out-of-bound indices. Supported values: - ``"clip"`` (default): clip out-of-bound indices to the final index. - ``"wrap"``: wrap out-of-bound indices to the beginning of the array. inplace: must be set to False to indicate that the input is not modified in-place, but rather a modified copy is returned. Returns: A copy of ``a`` with specified entries updated. See Also: - :func:`jax.numpy.place`: place elements into an array via boolean mask. - :func:`jax.numpy.ndarray.at`: array updates using NumPy-style indexing. - :func:`jax.numpy.take`: extract values from an array at given indices. Examples: >>> x = jnp.zeros(5, dtype=int) >>> indices = jnp.array([0, 2, 4]) >>> values = jnp.array([10, 20, 30]) >>> jnp.put(x, indices, values, inplace=False) Array([10, 0, 20, 0, 30], dtype=int32) This is equivalent to the following :attr:`jax.numpy.ndarray.at` indexing syntax: >>> x.at[indices].set(values) Array([10, 0, 20, 0, 30], dtype=int32) There are two modes for handling out-of-bound indices. By default they are clipped: >>> indices = jnp.array([0, 2, 6]) >>> jnp.put(x, indices, values, inplace=False, mode='clip') Array([10, 0, 20, 0, 30], dtype=int32) Alternatively, they can be wrapped to the beginning of the array: >>> jnp.put(x, indices, values, inplace=False, mode='wrap') Array([10, 30, 20, 0, 0], dtype=int32) For N-dimensional inputs, the indices refer to the flattened array: >>> x = jnp.zeros((3, 5), dtype=int) >>> indices = jnp.array([0, 7, 14]) >>> jnp.put(x, indices, values, inplace=False) Array([[10, 0, 0, 0, 0], [ 0, 0, 20, 0, 0], [ 0, 0, 0, 0, 30]], dtype=int32) """ if inplace: raise ValueError( "jax.numpy.put cannot modify arrays in-place, because JAX arrays are immutable. " "Pass inplace=False to instead return an updated array.") arr, ind_arr, _ = util.ensure_arraylike("put", a, ind, v) ind_arr = ind_arr.ravel() v_arr = lax_numpy.ravel(v) if not arr.size or not ind_arr.size or not v_arr.size: return arr v_arr = lax_numpy._tile_to_size(v_arr, len(ind_arr)) if mode is None: scatter_mode = "drop" elif mode == "clip": ind_arr = lax_numpy.clip(ind_arr, 0, arr.size - 1) scatter_mode = "promise_in_bounds" elif mode == "wrap": ind_arr = ind_arr % arr.size scatter_mode = "promise_in_bounds" elif mode == "raise": raise NotImplementedError("The 'raise' mode to jnp.put is not supported.") else: raise ValueError(f"mode should be one of 'wrap' or 'clip'; got {mode=}") return arr.at[lax_numpy.unravel_index(ind_arr, arr.shape)].set(v_arr, mode=scatter_mode)
_Indexer
python
django__django
django/contrib/postgres/forms/ranges.py
{ "start": 3295, "end": 3484 }
class ____(BaseRangeField): default_error_messages = {"invalid": _("Enter two valid date/times.")} base_field = forms.DateTimeField range_type = DateTimeTZRange
DateTimeRangeField
python
huggingface__transformers
src/transformers/models/owlvit/modeling_owlvit.py
{ "start": 17283, "end": 22260 }
class ____(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # For int8 compatibility, sometimes the `attn_probs` are in `fp32` attn_probs = attn_probs.to(value_states.dtype) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->OwlViT
OwlViTAttention
python
django__django
django/db/models/fields/json.py
{ "start": 13954, "end": 17179 }
class ____(Transform): postgres_operator = "->" postgres_nested_operator = "#>" def __init__(self, key_name, *args, **kwargs): super().__init__(*args, **kwargs) self.key_name = str(key_name) def preprocess_lhs(self, compiler, connection): key_transforms = [self.key_name] previous = self.lhs while isinstance(previous, KeyTransform): key_transforms.insert(0, previous.key_name) previous = previous.lhs lhs, params = compiler.compile(previous) if connection.vendor == "oracle": # Escape string-formatting. key_transforms = [key.replace("%", "%%") for key in key_transforms] return lhs, params, key_transforms def as_mysql(self, compiler, connection): lhs, params, key_transforms = self.preprocess_lhs(compiler, connection) json_path = connection.ops.compile_json_path(key_transforms) return "JSON_EXTRACT(%s, %%s)" % lhs, (*params, json_path) def as_oracle(self, compiler, connection): lhs, params, key_transforms = self.preprocess_lhs(compiler, connection) json_path = connection.ops.compile_json_path(key_transforms) if connection.features.supports_primitives_in_json_field: sql = ( "COALESCE(" "JSON_VALUE(%s, q'\uffff%s\uffff')," "JSON_QUERY(%s, q'\uffff%s\uffff' DISALLOW SCALARS)" ")" ) else: sql = ( "COALESCE(" "JSON_QUERY(%s, q'\uffff%s\uffff')," "JSON_VALUE(%s, q'\uffff%s\uffff')" ")" ) # Add paths directly into SQL because path expressions cannot be passed # as bind variables on Oracle. Use a custom delimiter to prevent the # JSON path from escaping the SQL literal. Each key in the JSON path is # passed through json.dumps() with ensure_ascii=True (the default), # which converts the delimiter into the escaped \uffff format. This # ensures that the delimiter is not present in the JSON path. return sql % ((lhs, json_path) * 2), tuple(params) * 2 def as_postgresql(self, compiler, connection): lhs, params, key_transforms = self.preprocess_lhs(compiler, connection) if len(key_transforms) > 1: sql = "(%s %s %%s)" % (lhs, self.postgres_nested_operator) return sql, (*params, key_transforms) try: lookup = int(self.key_name) except ValueError: lookup = self.key_name return "(%s %s %%s)" % (lhs, self.postgres_operator), (*params, lookup) def as_sqlite(self, compiler, connection): lhs, params, key_transforms = self.preprocess_lhs(compiler, connection) json_path = connection.ops.compile_json_path(key_transforms) datatype_values = ",".join( [repr(datatype) for datatype in connection.ops.jsonfield_datatype_values] ) return ( "(CASE WHEN JSON_TYPE(%s, %%s) IN (%s) " "THEN JSON_TYPE(%s, %%s) ELSE JSON_EXTRACT(%s, %%s) END)" ) % (lhs, datatype_values, lhs, lhs), (*params, json_path) * 3
KeyTransform
python
getsentry__sentry
src/sentry/workflow_engine/migrations/0081_add_unique_constraint_to_detector_group.py
{ "start": 222, "end": 1711 }
class ____(CheckedMigration): # This flag is used to mark that a migration shouldn't be automatically run in production. # This should only be used for operations where it's safe to run the migration after your # code has deployed. So this should not be used for most operations that alter the schema # of a table. # Here are some things that make sense to mark as post deployment: # - Large data migrations. Typically we want these to be run manually so that they can be # monitored and not block the deploy for a long period of time while they run. # - Adding indexes to large tables. Since this can take a long time, we'd generally prefer to # run this outside deployments so that we don't block them. Note that while adding an index # is a schema change, it's completely safe to run the operation after the code has deployed. # Once deployed, run these manually via: https://develop.sentry.dev/database-migrations/#migration-deployment is_post_deployment = True dependencies = [ ("sentry", "0952_fix_span_item_event_type_alerts"), ("workflow_engine", "0080_update_metric_detector_config_fields"), ] operations = [ migrations.AlterField( model_name="detectorgroup", name="group", field=sentry.db.models.fields.foreignkey.FlexibleForeignKey( on_delete=django.db.models.deletion.CASCADE, to="sentry.group" ), ), ]
Migration
python
huggingface__transformers
src/transformers/models/informer/modeling_informer.py
{ "start": 42910, "end": 52142 }
class ____(InformerPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`InformerDecoderLayer`] Args: config: InformerConfig """ def __init__(self, config: InformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop if config.prediction_length is None: raise ValueError("The `prediction_length` config needs to be specified.") self.value_embedding = InformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model) self.embed_positions = InformerSinusoidalPositionalEmbedding( config.context_length + config.prediction_length, config.d_model ) self.layers = nn.ModuleList([InformerDecoderLayer(config, layer_idx=i) for i in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache in the correct position and to infer the complete sequence length. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = inputs_embeds.size()[:-1] # initialize `past_key_values` if use_cache and past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config)) past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + input_shape[1], device=inputs_embeds.device ) attention_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, ) encoder_attention_mask = create_bidirectional_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, ) hidden_states = self.value_embedding(inputs_embeds) embed_pos = self.embed_positions(inputs_embeds.size(), past_key_values_length=self.config.context_length) hidden_states = self.layernorm_embedding(hidden_states + embed_pos) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://huggingface.co/papers/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue layer_outputs = decoder_layer( hidden_states, attention_mask, encoder_hidden_states, # as a positional argument for gradient checkpointing encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @auto_docstring
InformerDecoder
python
automl__auto-sklearn
test/test_pipeline/implementations/test_util.py
{ "start": 101, "end": 1861 }
class ____(unittest.TestCase): def test_softmax_binary(self): df = np.array( [ -40.00643897, 34.69754581, 23.71181359, -29.89724287, 27.06071791, -37.78334103, -40.15812461, 40.16139229, -27.85887801, 42.67404756, -36.89753589, -36.45148009, 54.68976306, 19.47886562, -49.99821027, -35.70205302, -40.59639267, 32.96343916, -39.23777841, -37.86535019, -33.10196906, 26.84144377, -36.8569686, ] ) probas = softmax(df) expected = [[1.0, 0.0] if d < 0.0 else [0.0, 1.0] for d in df] np.testing.assert_array_almost_equal(expected, probas) def test_softmax(self): df = np.array( [ [2.75021367e10, -8.83772371e-01, -2.20516715e27], [-2.10848072e11, 2.35024444e-01, 5.20106536e25], ] ) # With a numerically unstable softmax, the output would be something # like this: # [[ 0. 0. nan] # [nan 0. 0.]] probas = softmax(df) expected = np.array([[1, 0, 0], [0, 0, 1]]) self.assertTrue((expected == probas).all()) df = np.array([[0.1, 0.6, 0.3], [0.2, 0.3, 0.5]]) probas = softmax(df) expected = np.array( [[0.25838965, 0.42601251, 0.31559783], [0.28943311, 0.31987306, 0.39069383]] ) np.testing.assert_array_almost_equal(expected, probas)
UtilTest
python
huggingface__transformers
src/transformers/models/sam/modeling_sam.py
{ "start": 2344, "end": 4368 }
class ____(ModelOutput): r""" iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`): The iou scores of the predicted masks. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`): The predicted low resolutions masks. Needs to be post-processed by the processor vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs. vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ iou_scores: Optional[torch.FloatTensor] = None pred_masks: Optional[torch.FloatTensor] = None vision_hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None vision_attentions: Optional[tuple[torch.FloatTensor, ...]] = None mask_decoder_attentions: Optional[tuple[torch.FloatTensor, ...]] = None
SamImageSegmentationOutput
python
pydata__xarray
xarray/computation/rolling_exp.py
{ "start": 1460, "end": 9389 }
class ____(Generic[T_DataWithCoords]): """ Exponentially-weighted moving window object. Similar to EWM in pandas Parameters ---------- obj : Dataset or DataArray Object to window. windows : mapping of hashable to int (or float for alpha type) A mapping from the name of the dimension to create the rolling exponential window along (e.g. `time`) to the size of the moving window. window_type : {"span", "com", "halflife", "alpha"}, default: "span" The format of the previously supplied window. Each is a simple numerical transformation of the others. Described in detail: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ewm.html Returns ------- RollingExp : type of input argument """ def __init__( self, obj: T_DataWithCoords, windows: Mapping[Any, int | float], window_type: str = "span", min_weight: float = 0.0, ): if not module_available("numbagg"): raise ImportError( "numbagg >= 0.2.1 is required for rolling_exp but currently numbagg is not installed" ) self.obj: T_DataWithCoords = obj dim, window = next(iter(windows.items())) self.dim = dim self.alpha = _get_alpha(**{window_type: window}) self.min_weight = min_weight # Don't pass min_weight=0 so we can support older versions of numbagg kwargs = dict(alpha=self.alpha, axis=-1) if min_weight > 0: kwargs["min_weight"] = min_weight self.kwargs = kwargs def mean(self, keep_attrs: bool | None = None) -> T_DataWithCoords: """ Exponentially weighted moving average. Parameters ---------- keep_attrs : bool, default: None If True, the attributes (``attrs``) will be copied from the original object to the new one. If False, the new object will be returned without attributes. If None uses the global default. Examples -------- >>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x") >>> da.rolling_exp(x=2, window_type="span").mean() <xarray.DataArray (x: 5)> Size: 40B array([1. , 1. , 1.69230769, 1.9 , 1.96694215]) Dimensions without coordinates: x """ import numbagg if keep_attrs is None: keep_attrs = _get_keep_attrs(default=True) dim_order = self.obj.dims return apply_ufunc( numbagg.move_exp_nanmean, self.obj, input_core_dims=[[self.dim]], kwargs=self.kwargs, output_core_dims=[[self.dim]], keep_attrs=keep_attrs, on_missing_core_dim="copy", dask="parallelized", ).transpose(*dim_order) def sum(self, keep_attrs: bool | None = None) -> T_DataWithCoords: """ Exponentially weighted moving sum. Parameters ---------- keep_attrs : bool, default: None If True, the attributes (``attrs``) will be copied from the original object to the new one. If False, the new object will be returned without attributes. If None uses the global default. Examples -------- >>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x") >>> da.rolling_exp(x=2, window_type="span").sum() <xarray.DataArray (x: 5)> Size: 40B array([1. , 1.33333333, 2.44444444, 2.81481481, 2.9382716 ]) Dimensions without coordinates: x """ import numbagg if keep_attrs is None: keep_attrs = _get_keep_attrs(default=True) dim_order = self.obj.dims return apply_ufunc( numbagg.move_exp_nansum, self.obj, input_core_dims=[[self.dim]], kwargs=self.kwargs, output_core_dims=[[self.dim]], keep_attrs=keep_attrs, on_missing_core_dim="copy", dask="parallelized", ).transpose(*dim_order) def std(self) -> T_DataWithCoords: """ Exponentially weighted moving standard deviation. `keep_attrs` is always True for this method. Drop attrs separately to remove attrs. Examples -------- >>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x") >>> da.rolling_exp(x=2, window_type="span").std() <xarray.DataArray (x: 5)> Size: 40B array([ nan, 0. , 0.67936622, 0.42966892, 0.25389527]) Dimensions without coordinates: x """ import numbagg dim_order = self.obj.dims return apply_ufunc( numbagg.move_exp_nanstd, self.obj, input_core_dims=[[self.dim]], kwargs=self.kwargs, output_core_dims=[[self.dim]], keep_attrs=True, on_missing_core_dim="copy", dask="parallelized", ).transpose(*dim_order) def var(self) -> T_DataWithCoords: """ Exponentially weighted moving variance. `keep_attrs` is always True for this method. Drop attrs separately to remove attrs. Examples -------- >>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x") >>> da.rolling_exp(x=2, window_type="span").var() <xarray.DataArray (x: 5)> Size: 40B array([ nan, 0. , 0.46153846, 0.18461538, 0.06446281]) Dimensions without coordinates: x """ dim_order = self.obj.dims import numbagg return apply_ufunc( numbagg.move_exp_nanvar, self.obj, input_core_dims=[[self.dim]], kwargs=self.kwargs, output_core_dims=[[self.dim]], keep_attrs=True, on_missing_core_dim="copy", dask="parallelized", ).transpose(*dim_order) def cov(self, other: T_DataWithCoords) -> T_DataWithCoords: """ Exponentially weighted moving covariance. `keep_attrs` is always True for this method. Drop attrs separately to remove attrs. Examples -------- >>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x") >>> da.rolling_exp(x=2, window_type="span").cov(da**2) <xarray.DataArray (x: 5)> Size: 40B array([ nan, 0. , 1.38461538, 0.55384615, 0.19338843]) Dimensions without coordinates: x """ dim_order = self.obj.dims import numbagg return apply_ufunc( numbagg.move_exp_nancov, self.obj, other, input_core_dims=[[self.dim], [self.dim]], kwargs=self.kwargs, output_core_dims=[[self.dim]], keep_attrs=True, on_missing_core_dim="copy", dask="parallelized", ).transpose(*dim_order) def corr(self, other: T_DataWithCoords) -> T_DataWithCoords: """ Exponentially weighted moving correlation. `keep_attrs` is always True for this method. Drop attrs separately to remove attrs. Examples -------- >>> da = xr.DataArray([1, 1, 2, 2, 2], dims="x") >>> da.rolling_exp(x=2, window_type="span").corr(da.shift(x=1)) <xarray.DataArray (x: 5)> Size: 40B array([ nan, nan, nan, 0.4330127 , 0.48038446]) Dimensions without coordinates: x """ dim_order = self.obj.dims import numbagg return apply_ufunc( numbagg.move_exp_nancorr, self.obj, other, input_core_dims=[[self.dim], [self.dim]], kwargs=self.kwargs, output_core_dims=[[self.dim]], keep_attrs=True, on_missing_core_dim="copy", dask="parallelized", ).transpose(*dim_order)
RollingExp
python
pandas-dev__pandas
pandas/core/arrays/integer.py
{ "start": 6264, "end": 6457 }
class ____(IntegerDtype): type = np.uint32 name: ClassVar[str] = "UInt32" __doc__ = _dtype_docstring.format(dtype="uint32") @register_extension_dtype @set_module("pandas")
UInt32Dtype
python
airbytehq__airbyte
airbyte-ci/connectors/connectors_insights/src/connectors_insights/pylint_plugins/cdk_deprecation_checkers.py
{ "start": 725, "end": 1157 }
class ____(BaseChecker): name = "forbidden-method-name-checker" msgs = { "C9001": ('Method name "%s" is forbidden', "forbidden-method-name", "Used when a forbidden method name is detected."), } def visit_functiondef(self, node: astroid.node) -> None: if node.name in FORBIDDEN_METHOD_NAMES: self.add_message("forbidden-method-name", node=node, args=(node.name,))
ForbiddenMethodNameChecker
python
huggingface__transformers
src/transformers/models/ijepa/modeling_ijepa.py
{ "start": 14554, "end": 15077 }
class ____(nn.Module): def __init__(self, config: IJepaConfig): super().__init__() self.config = config self.layer = nn.ModuleList([IJepaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, hidden_states: torch.Tensor) -> BaseModelOutput: for i, layer_module in enumerate(self.layer): hidden_states = layer_module(hidden_states) return BaseModelOutput(last_hidden_state=hidden_states)
IJepaEncoder
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pycodestyle/E30.py
{ "start": 7523, "end": 8023 }
class ____: def a(self): pass # wrongly indented comment def b(self): pass # end # E303 def fn(): pass pass # end # E304 @decorator def function(): pass # end # E304 @decorator # comment E304 not expected def function(): pass # end # E304 @decorator # comment E304 not expected # second comment E304 not expected def function(): pass # end # E305:7:1 def fn(): print() # comment # another comment fn() # end # E305
Test
python
dagster-io__dagster
python_modules/dagster/dagster/_core/definitions/metadata/table.py
{ "start": 874, "end": 1526 }
class ____: other: PublicAttr[Sequence[str]] """Descriptor for "table-level" constraints. Presently only one property, `other` is supported. This contains strings describing arbitrary table-level constraints. A table-level constraint is a constraint defined in terms of multiple columns (e.g. col_A > col_B) or in terms of rows. Args: other (List[str]): Descriptions of arbitrary table-level constraints. """ _DEFAULT_TABLE_CONSTRAINTS = TableConstraints(other=[]) # ######################## # ##### TABLE COLUMN CONSTRAINTS # ######################## @public @whitelist_for_serdes @record_custom
TableConstraints
python
numba__llvmlite
llvmlite/ir/instructions.py
{ "start": 10724, "end": 11619 }
class ____(Instruction): def __init__(self, parent, cond, lhs, rhs, name='', flags=()): assert lhs.type == rhs.type super(SelectInstr, self).__init__(parent, lhs.type, "select", [cond, lhs, rhs], name=name, flags=flags) @property def cond(self): return self.operands[0] @property def lhs(self): return self.operands[1] @property def rhs(self): return self.operands[2] def descr(self, buf): buf.append("select {0} {1} {2}, {3} {4}, {5} {6} {7}\n".format( ' '.join(self.flags), self.cond.type, self.cond.get_reference(), self.lhs.type, self.lhs.get_reference(), self.rhs.type, self.rhs.get_reference(), self._stringify_metadata(leading_comma=True), ))
SelectInstr
python
scipy__scipy
scipy/special/tests/test_orthogonal.py
{ "start": 8732, "end": 9998 }
class ____: def test_sh_jacobi(self): # G^(p,q)_n(x) = n! gamma(n+p)/gamma(2*n+p) * P^(p-q,q-1)_n(2*x-1) def conv(n, p): return gamma(n + 1) * gamma(n + p) / gamma(2 * n + p) psub = np.poly1d([2,-1]) q = 4 * np.random.random() p = q-1 + 2*np.random.random() # print("shifted jacobi p,q = ", p, q) G0 = orth.sh_jacobi(0,p,q) G1 = orth.sh_jacobi(1,p,q) G2 = orth.sh_jacobi(2,p,q) G3 = orth.sh_jacobi(3,p,q) G4 = orth.sh_jacobi(4,p,q) G5 = orth.sh_jacobi(5,p,q) ge0 = orth.jacobi(0,p-q,q-1)(psub) * conv(0,p) ge1 = orth.jacobi(1,p-q,q-1)(psub) * conv(1,p) ge2 = orth.jacobi(2,p-q,q-1)(psub) * conv(2,p) ge3 = orth.jacobi(3,p-q,q-1)(psub) * conv(3,p) ge4 = orth.jacobi(4,p-q,q-1)(psub) * conv(4,p) ge5 = orth.jacobi(5,p-q,q-1)(psub) * conv(5,p) assert_allclose(G0.c, ge0.c, atol=1.5e-13, rtol=0) assert_allclose(G1.c, ge1.c, atol=1.5e-13, rtol=0) assert_allclose(G2.c, ge2.c, atol=1.5e-13, rtol=0) assert_allclose(G3.c, ge3.c, atol=1.5e-13, rtol=0) assert_allclose(G4.c, ge4.c, atol=1.5e-13, rtol=0) assert_allclose(G5.c, ge5.c, atol=1.5e-13, rtol=0)
TestShJacobi
python
openai__openai-python
src/openai/resources/beta/assistants.py
{ "start": 23090, "end": 45007 }
class ____(AsyncAPIResource): @cached_property def with_raw_response(self) -> AsyncAssistantsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return AsyncAssistantsWithRawResponse(self) @cached_property def with_streaming_response(self) -> AsyncAssistantsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return AsyncAssistantsWithStreamingResponse(self) async def create( self, *, model: Union[str, ChatModel], description: Optional[str] | Omit = omit, instructions: Optional[str] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, name: Optional[str] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, response_format: Optional[AssistantResponseFormatOptionParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_resources: Optional[assistant_create_params.ToolResources] | Omit = omit, tools: Iterable[AssistantToolParam] | Omit = omit, top_p: Optional[float] | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> Assistant: """ Create an assistant with a model and instructions. Args: model: ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. description: The description of the assistant. The maximum length is 512 characters. instructions: The system instructions that the assistant uses. The maximum length is 256,000 characters. metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. name: The name of the assistant. The maximum length is 256 characters. reasoning_effort: Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently supported values are `none`, `minimal`, `low`, `medium`, and `high`. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response. - `gpt-5.1` defaults to `none`, which does not perform reasoning. The supported reasoning values for `gpt-5.1` are `none`, `low`, `medium`, and `high`. Tool calls are supported for all reasoning values in gpt-5.1. - All models before `gpt-5.1` default to `medium` reasoning effort, and do not support `none`. - The `gpt-5-pro` model defaults to (and only supports) `high` reasoning effort. response_format: Specifies the format that the model must output. Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the message the model generates is valid JSON. **Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in a long-running and seemingly "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length. temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. tool_resources: A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per assistant. Tools can be of types `code_interpreter`, `file_search`, or `function`. top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return await self._post( "/assistants", body=await async_maybe_transform( { "model": model, "description": description, "instructions": instructions, "metadata": metadata, "name": name, "reasoning_effort": reasoning_effort, "response_format": response_format, "temperature": temperature, "tool_resources": tool_resources, "tools": tools, "top_p": top_p, }, assistant_create_params.AssistantCreateParams, ), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Assistant, ) async def retrieve( self, assistant_id: str, *, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> Assistant: """ Retrieves an assistant. Args: extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not assistant_id: raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return await self._get( f"/assistants/{assistant_id}", options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Assistant, ) async def update( self, assistant_id: str, *, description: Optional[str] | Omit = omit, instructions: Optional[str] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, model: Union[ str, Literal[ "gpt-5", "gpt-5-mini", "gpt-5-nano", "gpt-5-2025-08-07", "gpt-5-mini-2025-08-07", "gpt-5-nano-2025-08-07", "gpt-4.1", "gpt-4.1-mini", "gpt-4.1-nano", "gpt-4.1-2025-04-14", "gpt-4.1-mini-2025-04-14", "gpt-4.1-nano-2025-04-14", "o3-mini", "o3-mini-2025-01-31", "o1", "o1-2024-12-17", "gpt-4o", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06", "gpt-4o-2024-05-13", "gpt-4o-mini", "gpt-4o-mini-2024-07-18", "gpt-4.5-preview", "gpt-4.5-preview-2025-02-27", "gpt-4-turbo", "gpt-4-turbo-2024-04-09", "gpt-4-0125-preview", "gpt-4-turbo-preview", "gpt-4-1106-preview", "gpt-4-vision-preview", "gpt-4", "gpt-4-0314", "gpt-4-0613", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-0613", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-0125", "gpt-3.5-turbo-16k-0613", ], ] | Omit = omit, name: Optional[str] | Omit = omit, reasoning_effort: Optional[ReasoningEffort] | Omit = omit, response_format: Optional[AssistantResponseFormatOptionParam] | Omit = omit, temperature: Optional[float] | Omit = omit, tool_resources: Optional[assistant_update_params.ToolResources] | Omit = omit, tools: Iterable[AssistantToolParam] | Omit = omit, top_p: Optional[float] | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> Assistant: """Modifies an assistant. Args: description: The description of the assistant. The maximum length is 512 characters. instructions: The system instructions that the assistant uses. The maximum length is 256,000 characters. metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. model: ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. name: The name of the assistant. The maximum length is 256 characters. reasoning_effort: Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently supported values are `none`, `minimal`, `low`, `medium`, and `high`. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response. - `gpt-5.1` defaults to `none`, which does not perform reasoning. The supported reasoning values for `gpt-5.1` are `none`, `low`, `medium`, and `high`. Tool calls are supported for all reasoning values in gpt-5.1. - All models before `gpt-5.1` default to `medium` reasoning effort, and do not support `none`. - The `gpt-5-pro` model defaults to (and only supports) `high` reasoning effort. response_format: Specifies the format that the model must output. Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the message the model generates is valid JSON. **Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in a long-running and seemingly "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length. temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. tool_resources: A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. tools: A list of tool enabled on the assistant. There can be a maximum of 128 tools per assistant. Tools can be of types `code_interpreter`, `file_search`, or `function`. top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not assistant_id: raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return await self._post( f"/assistants/{assistant_id}", body=await async_maybe_transform( { "description": description, "instructions": instructions, "metadata": metadata, "model": model, "name": name, "reasoning_effort": reasoning_effort, "response_format": response_format, "temperature": temperature, "tool_resources": tool_resources, "tools": tools, "top_p": top_p, }, assistant_update_params.AssistantUpdateParams, ), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Assistant, ) def list( self, *, after: str | Omit = omit, before: str | Omit = omit, limit: int | Omit = omit, order: Literal["asc", "desc"] | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> AsyncPaginator[Assistant, AsyncCursorPage[Assistant]]: """Returns a list of assistants. Args: after: A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. before: A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return self._get_api_list( "/assistants", page=AsyncCursorPage[Assistant], options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, query=maybe_transform( { "after": after, "before": before, "limit": limit, "order": order, }, assistant_list_params.AssistantListParams, ), ), model=Assistant, ) async def delete( self, assistant_id: str, *, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> AssistantDeleted: """ Delete an assistant. Args: extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not assistant_id: raise ValueError(f"Expected a non-empty value for `assistant_id` but received {assistant_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return await self._delete( f"/assistants/{assistant_id}", options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=AssistantDeleted, )
AsyncAssistants
python
kamyu104__LeetCode-Solutions
Python/find-the-first-player-to-win-k-games-in-a-row.py
{ "start": 42, "end": 464 }
class ____(object): def findWinningPlayer(self, skills, k): """ :type skills: List[int] :type k: int :rtype: int """ result = cnt = 0 for i in range(1, len(skills)): if skills[result] < skills[i]: result = i cnt = 0 cnt += 1 if cnt == k: return result return result
Solution
python
scikit-image__scikit-image
src/skimage/_shared/utils.py
{ "start": 6322, "end": 6663 }
class ____(metaclass=PatchClassRepr): """Signal value to help with deprecating parameters that use None. This is a proxy object, used to signal that a parameter has not been set. This is useful if ``None`` is already used for a different purpose or just to highlight a deprecated parameter in the signature. """
DEPRECATED
python
HypothesisWorks__hypothesis
hypothesis-python/tests/cover/test_observability.py
{ "start": 9620, "end": 23582 }
class ____(RuleBasedStateMachine): value = 0 @rule() def inc(self): self.value += 1 @rule() def dec(self): self.value -= 1 @invariant() def limits(self): assert abs(self.value) <= 100 @xfail_on_crosshair(Why.other, strict=False) def test_observability_captures_stateful_reprs(): with capture_observations() as ls: run_state_machine_as_test(UltraSimpleMachine) for x in ls: if x.type != "test_case" or x.status == "gave_up": continue r = x.representation assert "state.limits()" in r assert "state.inc()" in r or "state.dec()" in r # or both t = x.timing assert "execute:invariant:limits" in t has_inc = "generate:rule:inc" in t and "execute:rule:inc" in t has_dec = "generate:rule:dec" in t and "execute:rule:dec" in t assert has_inc or has_dec # BytestringProvider.draw_boolean divides [0, 127] as False and [128, 255] # as True @pytest.mark.parametrize( "buffer, expected_status", [ # Status.OVERRUN (b"", "gave_up"), # Status.INVALID (b"\x00" + bytes([255]), "gave_up"), # Status.VALID (b"\x00\x00", "passed"), # Status.INTERESTING (bytes([255]) + b"\x00", "failed"), ], ) def test_fuzz_one_input_status(buffer, expected_status): @given(st.booleans(), st.booleans()) def test_fails(should_fail, should_fail_assume): if should_fail: raise AssertionError if should_fail_assume: assume(False) with ( capture_observations() as ls, pytest.raises(AssertionError) if expected_status == "failed" else nullcontext(), ): test_fails.hypothesis.fuzz_one_input(buffer) assert len(ls) == 1 assert ls[0].status == expected_status assert ls[0].how_generated == "fuzz_one_input" def _decode_choice(value): if isinstance(value, list): if value[0] == "integer": # large integers get cast to string, stored as ["integer", str(value)] assert isinstance(value[1], str) return int(value[1]) elif value[0] == "bytes": assert isinstance(value[1], str) return base64.b64decode(value[1]) elif value[0] == "float": assert isinstance(value[1], int) choice = int_to_float(value[1]) assert math.isnan(choice) return choice else: return value[1] return value def _decode_choices(data): return [_decode_choice(value) for value in data] def _decode_nodes(data): return [ ChoiceNode( type=node["type"], value=_decode_choice(node["value"]), constraints=_decode_constraints(node["type"], node["constraints"]), was_forced=node["was_forced"], ) for node in data ] def _decode_constraints(choice_type, data): if choice_type == "integer": return { "min_value": _decode_choice(data["min_value"]), "max_value": _decode_choice(data["max_value"]), "weights": ( None if data["weights"] is None else {_decode_choice(k): v for k, v in data["weights"]} ), "shrink_towards": _decode_choice(data["shrink_towards"]), } elif choice_type == "float": return { "min_value": _decode_choice(data["min_value"]), "max_value": _decode_choice(data["max_value"]), "allow_nan": data["allow_nan"], "smallest_nonzero_magnitude": data["smallest_nonzero_magnitude"], } elif choice_type == "string": return { "intervals": IntervalSet(tuple(data["intervals"])), "min_size": _decode_choice(data["min_size"]), "max_size": _decode_choice(data["max_size"]), } elif choice_type == "bytes": return { "min_size": _decode_choice(data["min_size"]), "max_size": _decode_choice(data["max_size"]), } elif choice_type == "boolean": return {"p": data["p"]} else: raise ValueError(f"unknown choice type {choice_type}") def _has_surrogate(choice): return isinstance(choice, str) and any(0xD800 <= ord(c) <= 0xDFFF for c in choice) @example([0.0]) @example([-0.0]) @example([SIGNALING_NAN]) @example([math.nan]) @example([math.inf]) @example([-math.inf]) # json.{loads, dumps} does not roundtrip for surrogate pairs; they are combined # into the single code point by json.loads: # json.loads(json.dumps("\udbf4\udc00")) == '\U0010d000' # # Ignore this case with an `assume`, and add an explicit example to ensure we # continue to do so. @example(["\udbf4\udc00"]) @given(st.lists(choices())) def test_choices_json_roundtrips(choices): assume(not any(_has_surrogate(choice) for choice in choices)) choices2 = _decode_choices(json.loads(json.dumps(choices_to_json(choices)))) assert choices_key(choices) == choices_key(choices2) @given(st.lists(nodes())) def test_nodes_json_roundtrips(nodes): assume( not any( _has_surrogate(node.value) or any(_has_surrogate(value) for value in node.constraints.values()) for node in nodes ) ) nodes2 = _decode_nodes(json.loads(json.dumps(nodes_to_json(nodes)))) assert nodes == nodes2 @pytest.mark.parametrize( "choice, expected", [ (math.nan, ["float", float_to_int(math.nan)]), (SIGNALING_NAN, ["float", float_to_int(SIGNALING_NAN)]), (1, 1), (-1, -1), (2**63 + 1, ["integer", str(2**63 + 1)]), (-(2**63 + 1), ["integer", str(-(2**63 + 1))]), (1.0, 1.0), (-0.0, -0.0), (0.0, 0.0), (True, True), (False, False), (b"a", ["bytes", "YQ=="]), ], ) def test_choices_to_json_explicit(choice, expected): assert choices_to_json([choice]) == [expected] @pytest.mark.parametrize( "choice_node, expected", [ ( ChoiceNode( type="integer", value=2**63 + 1, constraints=integer_constr(), was_forced=False, ), { "type": "integer", "value": ["integer", str(2**63 + 1)], "constraints": integer_constr(), "was_forced": False, }, ), ], ) def test_choice_nodes_to_json_explicit(choice_node, expected): assert nodes_to_json([choice_node]) == [expected] def test_metadata_to_json(): # this is mostly a covering test than testing anything particular about # ObservationMetadata. @given(st.integers()) def f(n): pass with capture_observations(choices=True) as observations: f() observations = [obs for obs in observations if obs.type == "test_case"] for observation in observations: assert set( to_jsonable(observation.metadata, avoid_realization=False).keys() ) == { "traceback", "reproduction_decorator", "predicates", "backend", "sys.argv", "os.getpid()", "imported_at", "data_status", "phase", "interesting_origin", "choice_nodes", "choice_spans", } assert observation.metadata.choice_nodes is not None for span in observation.metadata.choice_spans: assert isinstance(span, Span) assert 0 <= span.start <= len(observation.metadata.choice_nodes) assert 0 <= span.end <= len(observation.metadata.choice_nodes) @contextlib.contextmanager def restore_callbacks(): callbacks = hypothesis.internal.observability._callbacks.copy() callbacks_all = hypothesis.internal.observability._callbacks_all_threads.copy() try: yield finally: hypothesis.internal.observability._callbacks = callbacks hypothesis.internal.observability._callbacks_all_threads = callbacks_all @contextlib.contextmanager def with_collect_coverage(*, value: bool): original_value = hypothesis.internal.observability.OBSERVABILITY_COLLECT_COVERAGE hypothesis.internal.observability.OBSERVABILITY_COLLECT_COVERAGE = value try: yield finally: hypothesis.internal.observability.OBSERVABILITY_COLLECT_COVERAGE = ( original_value ) def _callbacks(): # respect changes from the restore_callbacks context manager by re-accessing # its namespace, instead of keeping # `from hypothesis.internal.observability import _callbacks` around return hypothesis.internal.observability._callbacks @skipif_threading def test_observability_callbacks(): def f(observation): pass def g(observation): pass thread_id = threading.get_ident() with restore_callbacks(): assert not observability_enabled() add_observability_callback(f) assert _callbacks() == {thread_id: [f]} assert observability_enabled() add_observability_callback(g) assert _callbacks() == {thread_id: [f, g]} assert observability_enabled() remove_observability_callback(g) assert _callbacks() == {thread_id: [f]} assert observability_enabled() remove_observability_callback(g) assert _callbacks() == {thread_id: [f]} assert observability_enabled() remove_observability_callback(f) assert _callbacks() == {} assert not observability_enabled() @skipif_threading def test_observability_callbacks_all_threads(): thread_id = threading.get_ident() def f(observation, thread_id): pass with restore_callbacks(): assert not observability_enabled() add_observability_callback(f, all_threads=True) assert hypothesis.internal.observability._callbacks_all_threads == [f] assert _callbacks() == {} assert observability_enabled() add_observability_callback(f) assert hypothesis.internal.observability._callbacks_all_threads == [f] assert _callbacks() == {thread_id: [f]} assert observability_enabled() # remove_observability_callback removes it both from per-thread and # all_threads. The semantics of duplicated callbacks is weird enough # that I don't want to commit to anything here, so I'm leaving this as # somewhat undefined behavior, and recommending that users simply not # register a callback both normally and for all threads. remove_observability_callback(f) assert hypothesis.internal.observability._callbacks_all_threads == [] assert _callbacks() == {} assert not observability_enabled() @checks_deprecated_behaviour def test_testcase_callbacks_deprecation_bool(): bool(TESTCASE_CALLBACKS) @checks_deprecated_behaviour def test_testcase_callbacks_deprecation_append(): with restore_callbacks(): TESTCASE_CALLBACKS.append(lambda x: None) @checks_deprecated_behaviour def test_testcase_callbacks_deprecation_remove(): with restore_callbacks(): TESTCASE_CALLBACKS.remove(lambda x: None) def test_testcase_callbacks(): def f(observation): pass def g(observation): pass thread_id = threading.get_ident() with restore_callbacks(), warnings.catch_warnings(): # ignore TESTCASE_CALLBACKS deprecation warnings warnings.simplefilter("ignore") assert not bool(TESTCASE_CALLBACKS) add_observability_callback(f) assert _callbacks() == {thread_id: [f]} assert bool(TESTCASE_CALLBACKS) add_observability_callback(g) assert _callbacks() == {thread_id: [f, g]} assert bool(TESTCASE_CALLBACKS) remove_observability_callback(g) assert _callbacks() == {thread_id: [f]} assert bool(TESTCASE_CALLBACKS) remove_observability_callback(f) assert _callbacks() == {} assert not bool(TESTCASE_CALLBACKS) def test_only_receives_callbacks_from_this_thread(): @given(st.integers()) def g(n): pass def test(): count_observations = 0 def callback(observation): nonlocal count_observations count_observations += 1 add_observability_callback(callback) with warnings.catch_warnings(): g() # one per example, plus one for the overall run assert count_observations == settings().max_examples + 1 with ( restore_callbacks(), # Observability tries to record coverage, but we don't currently # support concurrent coverage collection, and issue a warning instead. # # I tried to fix this with: # # warnings.filterwarnings( # "ignore", message=r".*tool id \d+ is already taken by tool scrutineer.*" # ) # # but that had a race condition somehow and sometimes still didn't work?? The # warnings module is not thread-safe until 3.14, I think. with_collect_coverage(value=False), ): run_concurrently(test, n=5) def test_all_threads_callback(): n_threads = 5 # thread_id: count calls = defaultdict(int) def global_callback(observation, thread_id): assert isinstance(observation, (TestCaseObservation, InfoObservation)) assert isinstance(thread_id, int) calls[thread_id] += 1 @given(st.integers()) def f(n): pass with ( with_collect_coverage(value=False), with_observability_callback(global_callback, all_threads=True), ): run_concurrently(f, n=n_threads) assert len(calls) == n_threads assert all(count == (settings().max_examples + 1) for count in calls.values())
UltraSimpleMachine
python
tensorflow__tensorflow
tensorflow/python/compiler/tensorrt/test/bool_test.py
{ "start": 1083, "end": 1987 }
class ____(trt_test.TfTrtIntegrationTestBase): """Test for boolean operations in TF-TRT.""" def GraphFn(self, x1, x2): x = math_ops.logical_and(x1, x2) x = math_ops.logical_or(x, x2) q = math_ops.not_equal(x, x2) q = math_ops.logical_not(q) return array_ops.identity(q, name="output_0") def GetParams(self): shape = [2, 32, 32, 3] return self.BuildParams(self.GraphFn, dtypes.bool, [shape, shape], [shape]) def ExpectedEnginesToBuild(self, run_params): """Returns the expected engines to build.""" return ["TRTEngineOp_000"] def ShouldRunTest(self, run_params): reason = "Boolean ops are not implemented " return (run_params.dynamic_shape, reason + "in ImplicitBatch mode") \ if trt_utils.is_linked_tensorrt_version_greater_equal(8, 2, 0) \ else (False, reason + "for TRT < 8.2.0") if __name__ == "__main__": test.main()
BoolTest
python
numba__numba
numba/tests/test_dispatcher.py
{ "start": 21929, "end": 22100 }
class ____(TestSignatureHandling): """ Sams as TestSignatureHandling, but in object mode. """ jit_args = dict(forceobj=True)
TestSignatureHandlingObjectMode
python
mlflow__mlflow
mlflow/types/llm.py
{ "start": 12021, "end": 13250 }
class ____(_BaseDataclass): """ Definition for function tools (currently the only supported type of tool). Args: name (str): The name of the tool. description (str): A description of what the tool does, and how it should be used. **Optional**, defaults to ``None`` parameters: A mapping of parameter names to their definitions. If not provided, this defines a function without parameters. **Optional**, defaults to ``None`` strict (bool): A flag that represents whether or not the model should strictly follow the schema provided. """ name: str description: str | None = None parameters: ToolParamsSchema | None = None strict: bool = False def __post_init__(self): self._validate_field("name", str, True) self._validate_field("description", str, False) self._convert_dataclass("parameters", ToolParamsSchema, False) self._validate_field("strict", bool, True) def to_tool_definition(self): """ Convenience function for wrapping this in a ToolDefinition """ return ToolDefinition(type="function", function=self) @dataclass
FunctionToolDefinition
python
coleifer__peewee
examples/graph.py
{ "start": 116, "end": 575 }
class ____(Base): name = TextField(primary_key=True) def outgoing(self): return (Node .select(Node, Edge.weight) .join(Edge, on=Edge.dest) .where(Edge.src == self) .objects()) def incoming(self): return (Node .select(Node, Edge.weight) .join(Edge, on=Edge.src) .where(Edge.dest == self) .objects())
Node
python
graphql-python__graphene
graphene/utils/tests/test_dataloader.py
{ "start": 804, "end": 1115 }
class ____(ObjectType): skywalker_family = List(CharacterType) async def resolve_skywalker_family(_, info): return await info.context.character_loader.load_many(["1", "2", "3"]) mock_batch_load_fn = Mock( side_effect=lambda character_ids: [get_character(id) for id in character_ids] )
Query
python
huggingface__transformers
src/transformers/models/gemma2/modeling_gemma2.py
{ "start": 13924, "end": 16082 }
class ____(GradientCheckpointingLayer): def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.config = config self.attention_type = config.layer_types[layer_idx] self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx) self.mlp = Gemma2MLP(config) self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.pre_feedforward_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states return hidden_states @auto_docstring
Gemma2DecoderLayer
python
pypa__pipenv
pipenv/patched/pip/_internal/index/collector.py
{ "start": 8192, "end": 8817 }
class ____: """Represents one response (or page), along with its URL. :param encoding: the encoding to decode the given content. :param url: the URL from which the HTML was downloaded. :param cache_link_parsing: whether links parsed from this page's url should be cached. PyPI index urls should have this set to False, for example. """ content: bytes content_type: str encoding: Optional[str] url: str cache_link_parsing: bool = True def __str__(self) -> str: return redact_auth_from_url(self.url)
IndexContent
python
openai__openai-python
src/openai/types/evals/run_cancel_response.py
{ "start": 6108, "end": 6798 }
class ____(BaseModel): content: DataSourceResponsesInputMessagesTemplateTemplateEvalItemContent """Inputs to the model - can contain template strings.""" role: Literal["user", "assistant", "system", "developer"] """The role of the message input. One of `user`, `assistant`, `system`, or `developer`. """ type: Optional[Literal["message"]] = None """The type of the message input. Always `message`.""" DataSourceResponsesInputMessagesTemplateTemplate: TypeAlias = Union[ DataSourceResponsesInputMessagesTemplateTemplateChatMessage, DataSourceResponsesInputMessagesTemplateTemplateEvalItem, ]
DataSourceResponsesInputMessagesTemplateTemplateEvalItem
python
django-extensions__django-extensions
django_extensions/db/fields/__init__.py
{ "start": 800, "end": 3122 }
class ____: def check_is_bool(self, attrname): if not isinstance(getattr(self, attrname), bool): raise ValueError("'{}' argument must be True or False".format(attrname)) @staticmethod def _get_fields(model_cls): return [ (f, f.model if f.model != model_cls else None) for f in model_cls._meta.get_fields() if not f.is_relation or f.one_to_one or (f.many_to_one and f.related_model) ] def get_queryset(self, model_cls, slug_field): for field, model in self._get_fields(model_cls): if model and field == slug_field: return model._default_manager.all() return model_cls._default_manager.all() def find_unique(self, model_instance, field, iterator, *args): # exclude the current model instance from the queryset used in finding # next valid hash queryset = self.get_queryset(model_instance.__class__, field) if model_instance.pk: queryset = queryset.exclude(pk=model_instance.pk) # form a kwarg dict used to implement any unique_together constraints kwargs = {} for params in model_instance._meta.unique_together: if self.attname in params: for param in params: kwargs[param] = getattr(model_instance, param, None) # for support django 2.2+ query = Q() constraints = getattr(model_instance._meta, "constraints", None) if constraints: unique_constraints = filter( lambda c: isinstance(c, UniqueConstraint), constraints ) for unique_constraint in unique_constraints: if self.attname in unique_constraint.fields: condition = { field: getattr(model_instance, field, None) for field in unique_constraint.fields if field != self.attname } query &= Q(**condition) new = next(iterator) kwargs[self.attname] = new while not new or queryset.filter(query, **kwargs): new = next(iterator) kwargs[self.attname] = new setattr(model_instance, self.attname, new) return new
UniqueFieldMixin
python
sqlalchemy__sqlalchemy
test/typing/plain_files/orm/mapped_covariant.py
{ "start": 853, "end": 1254 }
class ____(Protocol): # Read-only for simplicity, mutable protocol members are complicated, # see https://mypy.readthedocs.io/en/latest/common_issues.html#covariant-subtyping-of-mutable-protocol-members-is-rejected @property def parent(self) -> Mapped[ParentProtocol]: ... def get_parent_name(child: ChildProtocol) -> str: return child.parent.name # Implementations
ChildProtocol
python
redis__redis-py
tests/test_asyncio/test_search.py
{ "start": 52604, "end": 53731 }
class ____(AsyncSearchTestsBase): @pytest.mark.redismod @pytest.mark.onlynoncluster @skip_ifmodversion_lt("2.2.0", "search") @skip_if_server_version_gte("7.9.0") async def test_config(self, decoded_r: redis.Redis): assert await decoded_r.ft().config_set("TIMEOUT", "100") with pytest.raises(redis.ResponseError): await decoded_r.ft().config_set("TIMEOUT", "null") res = await decoded_r.ft().config_get("*") assert "100" == res["TIMEOUT"] res = await decoded_r.ft().config_get("TIMEOUT") assert "100" == res["TIMEOUT"] @pytest.mark.redismod @pytest.mark.onlynoncluster @skip_if_server_version_lt("7.9.0") async def test_config_with_removed_ftconfig(self, decoded_r: redis.Redis): assert await decoded_r.config_set("timeout", "100") with pytest.raises(redis.ResponseError): await decoded_r.config_set("timeout", "null") res = await decoded_r.config_get("*") assert "100" == res["timeout"] res = await decoded_r.config_get("timeout") assert "100" == res["timeout"]
TestConfig
python
plotly__plotly.py
plotly/graph_objs/layout/yaxis/_autorangeoptions.py
{ "start": 235, "end": 5864 }
class ____(_BaseLayoutHierarchyType): _parent_path_str = "layout.yaxis" _path_str = "layout.yaxis.autorangeoptions" _valid_props = { "clipmax", "clipmin", "include", "includesrc", "maxallowed", "minallowed", } @property def clipmax(self): """ Clip autorange maximum if it goes beyond this value. Has no effect when `autorangeoptions.maxallowed` is provided. The 'clipmax' property accepts values of any type Returns ------- Any """ return self["clipmax"] @clipmax.setter def clipmax(self, val): self["clipmax"] = val @property def clipmin(self): """ Clip autorange minimum if it goes beyond this value. Has no effect when `autorangeoptions.minallowed` is provided. The 'clipmin' property accepts values of any type Returns ------- Any """ return self["clipmin"] @clipmin.setter def clipmin(self, val): self["clipmin"] = val @property def include(self): """ Ensure this value is included in autorange. The 'include' property accepts values of any type Returns ------- Any|numpy.ndarray """ return self["include"] @include.setter def include(self, val): self["include"] = val @property def includesrc(self): """ Sets the source reference on Chart Studio Cloud for `include`. The 'includesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["includesrc"] @includesrc.setter def includesrc(self, val): self["includesrc"] = val @property def maxallowed(self): """ Use this value exactly as autorange maximum. The 'maxallowed' property accepts values of any type Returns ------- Any """ return self["maxallowed"] @maxallowed.setter def maxallowed(self, val): self["maxallowed"] = val @property def minallowed(self): """ Use this value exactly as autorange minimum. The 'minallowed' property accepts values of any type Returns ------- Any """ return self["minallowed"] @minallowed.setter def minallowed(self, val): self["minallowed"] = val @property def _prop_descriptions(self): return """\ clipmax Clip autorange maximum if it goes beyond this value. Has no effect when `autorangeoptions.maxallowed` is provided. clipmin Clip autorange minimum if it goes beyond this value. Has no effect when `autorangeoptions.minallowed` is provided. include Ensure this value is included in autorange. includesrc Sets the source reference on Chart Studio Cloud for `include`. maxallowed Use this value exactly as autorange maximum. minallowed Use this value exactly as autorange minimum. """ def __init__( self, arg=None, clipmax=None, clipmin=None, include=None, includesrc=None, maxallowed=None, minallowed=None, **kwargs, ): """ Construct a new Autorangeoptions object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.yaxis.A utorangeoptions` clipmax Clip autorange maximum if it goes beyond this value. Has no effect when `autorangeoptions.maxallowed` is provided. clipmin Clip autorange minimum if it goes beyond this value. Has no effect when `autorangeoptions.minallowed` is provided. include Ensure this value is included in autorange. includesrc Sets the source reference on Chart Studio Cloud for `include`. maxallowed Use this value exactly as autorange maximum. minallowed Use this value exactly as autorange minimum. Returns ------- Autorangeoptions """ super().__init__("autorangeoptions") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.layout.yaxis.Autorangeoptions constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.yaxis.Autorangeoptions`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("clipmax", arg, clipmax) self._set_property("clipmin", arg, clipmin) self._set_property("include", arg, include) self._set_property("includesrc", arg, includesrc) self._set_property("maxallowed", arg, maxallowed) self._set_property("minallowed", arg, minallowed) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Autorangeoptions
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/loop19.py
{ "start": 95, "end": 303 }
class ____: yyy: int def method1(self, results: list[Results]): abc = None for result in results: if abc is not None and abc.zzz < result.zzz: abc = result
Foo
python
pytorch__pytorch
torch/_inductor/fx_passes/misc_patterns.py
{ "start": 2764, "end": 5148 }
class ____: numpy_compat: dict[str, tuple[str, ...]] = { "dim": ("axis",), "keepdim": ("keepdims",), "input": ("x", "a", "x1"), "other": ("x2",), } inverse_mapping: dict[str, str] cache: dict["torch.fx.graph.Target", OrderedSet[str]] def __init__(self) -> None: self.cache = {} # callable -> tuple of replaceable args e.g. ["axis"] self.inverse_mapping = {} for actual_kwarg, numpy_kwargs in self.numpy_compat.items(): for numpy_kwarg in numpy_kwargs: assert numpy_kwarg not in self.inverse_mapping self.inverse_mapping[numpy_kwarg] = actual_kwarg def __call__(self, graph: torch.fx.Graph): for node in graph.nodes: if node.op != "call_function": continue if isinstance(node.target, (OpOverload, OpOverloadPacket)): # only applies to torch ops; e.g. torch.stack(axis=1) works, torch.ops.aten.stack(axis=1) doesn't. continue kwargs = node.kwargs if node.target in self.cache: replaceable_kwargs = self.cache[node.target] else: signatures = torch.fx.operator_schemas.get_signature_for_torch_op( node.target ) signatures = () if signatures is None else signatures replaceable_kwargs = OrderedSet() for sig in signatures: for param_name in sig.parameters: if param_name in self.numpy_compat: replaceable_kwargs.update(self.numpy_compat[param_name]) self.cache[node.target] = replaceable_kwargs if not replaceable_kwargs: continue new_kwargs = {} kwargs_changed = False for k, v in kwargs.items(): if k in replaceable_kwargs: kwargs_changed = True new_kwargs[self.inverse_mapping[k]] = v else: new_kwargs[k] = v if kwargs_changed: node.kwargs = torch.fx.immutable_collections.immutable_dict(new_kwargs) counters["inductor"]["numpy_compat_normalization"] += 1 numpy_compat_normalization = NumpyCompatNormalization()
NumpyCompatNormalization
python
huggingface__transformers
src/transformers/models/smolvlm/modeling_smolvlm.py
{ "start": 6721, "end": 9180 }
class ____(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) # Ignore copy self.is_causal = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, ) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) return attn_output, attn_weights
SmolVLMVisionAttention
python
PrefectHQ__prefect
src/prefect/server/api/clients.py
{ "start": 903, "end": 2388 }
class ____: _http_client: PrefectHttpxAsyncClient def __init__(self, additional_headers: dict[str, str] | None = None): from prefect.server.api.server import create_app additional_headers = additional_headers or {} # create_app caches application instances, and invoking it with no arguments # will point it to the the currently running server instance api_app = create_app() settings = get_current_settings() # we pull the auth string from _server_ settings because this client is run on the server if auth_string_secret := settings.server.api.auth_string: if auth_string := auth_string_secret.get_secret_value(): token = base64.b64encode(auth_string.encode("utf-8")).decode("utf-8") additional_headers.setdefault("Authorization", f"Basic {token}") self._http_client = PrefectHttpxAsyncClient( transport=httpx.ASGITransport(app=api_app, raise_app_exceptions=False), headers={**additional_headers}, base_url=f"http://prefect-in-memory{settings.server.api.base_path or '/api'}", enable_csrf_support=settings.server.api.csrf_protection_enabled, raise_on_all_errors=False, ) async def __aenter__(self) -> Self: await self._http_client.__aenter__() return self async def __aexit__(self, *args: Any) -> None: await self._http_client.__aexit__(*args)
BaseClient
python
huggingface__transformers
src/transformers/models/convbert/modeling_convbert.py
{ "start": 21600, "end": 26659 }
class ____(nn.Module): r""" Compute a single vector summary of a sequence hidden states. Args: config ([`ConvBertConfig`]): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are: - `"last"` -- Take the last token hidden state (like XLNet) - `"first"` -- Take the first token hidden state (like Bert) - `"mean"` -- Take the mean of all tokens hidden states - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - `"attn"` -- Not implemented now, use multi-head attention - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes (otherwise to `config.hidden_size`). - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, another string or `None` will add no activation. - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. """ def __init__(self, config: ConvBertConfig): super().__init__() self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = nn.Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) activation_string = getattr(config, "summary_activation", None) self.activation: Callable = get_activation(activation_string) if activation_string else nn.Identity() self.first_dropout = nn.Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = nn.Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward( self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None ) -> torch.FloatTensor: """ Compute a single vector summary of a sequence hidden states. Args: hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`): The hidden states of the last layer. cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*): Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token. Returns: `torch.FloatTensor`: The summary of the sequence hidden states. """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like( hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long, ) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output @auto_docstring
ConvBertSequenceSummary
python
pytorch__pytorch
torch/utils/benchmark/utils/compare.py
{ "start": 10712, "end": 13473 }
class ____: """Helper class for displaying the results of many measurements in a formatted table. The table format is based on the information fields provided in :class:`torch.utils.benchmark.Timer` (`description`, `label`, `sub_label`, `num_threads`, etc). The table can be directly printed using :meth:`print` or casted as a `str`. For a full tutorial on how to use this class, see: https://pytorch.org/tutorials/recipes/recipes/benchmark.html Args: results: List of Measurement to display. """ def __init__(self, results: list[common.Measurement]) -> None: self._results: list[common.Measurement] = [] self.extend_results(results) self._trim_significant_figures = False self._colorize = Colorize.NONE self._highlight_warnings = False def __str__(self) -> str: return "\n".join(self._render()) def extend_results(self, results) -> None: """Append results to already stored ones. All added results must be instances of ``Measurement``. """ for r in results: if not isinstance(r, common.Measurement): raise ValueError( "Expected an instance of `Measurement`, " f"got {type(r)} instead." ) self._results.extend(results) def trim_significant_figures(self) -> None: """Enables trimming of significant figures when building the formatted table.""" self._trim_significant_figures = True def colorize(self, rowwise=False) -> None: """Colorize formatted table. Colorize columnwise by default. """ self._colorize = Colorize.ROWWISE if rowwise else Colorize.COLUMNWISE def highlight_warnings(self) -> None: """Enables warning highlighting when building formatted table.""" self._highlight_warnings = True def print(self) -> None: """Print formatted table""" print(str(self)) def _render(self): results = common.Measurement.merge(self._results) grouped_results = self._group_by_label(results) output = [self._layout(group) for group in grouped_results.values()] return output def _group_by_label(self, results: list[common.Measurement]): grouped_results: collections.defaultdict[str, list[common.Measurement]] = collections.defaultdict(list) for r in results: grouped_results[r.label].append(r) return grouped_results def _layout(self, results: list[common.Measurement]): table = Table( results, self._colorize, self._trim_significant_figures, self._highlight_warnings ) return table.render()
Compare
python
doocs__leetcode
lcof/面试题59 - II. 队列的最大值/Solution.py
{ "start": 0, "end": 707 }
class ____: def __init__(self): self.q1 = deque() self.q2 = deque() def max_value(self) -> int: return -1 if not self.q2 else self.q2[0] def push_back(self, value: int) -> None: while self.q2 and self.q2[-1] < value: self.q2.pop() self.q1.append(value) self.q2.append(value) def pop_front(self) -> int: if not self.q1: return -1 ans = self.q1.popleft() if self.q2[0] == ans: self.q2.popleft() return ans # Your MaxQueue object will be instantiated and called as such: # obj = MaxQueue() # param_1 = obj.max_value() # obj.push_back(value) # param_3 = obj.pop_front()
MaxQueue
python
apache__airflow
airflow-core/src/airflow/api_fastapi/core_api/datamodels/ui/common.py
{ "start": 2437, "end": 2574 }
class ____(BaseModel, Generic[E, N]): """Base Graph serializer for responses.""" edges: list[E] nodes: list[N]
BaseGraphResponse
python
sqlalchemy__sqlalchemy
test/orm/test_transaction.py
{ "start": 76867, "end": 78335 }
class ____( CtxManagerJoinIntoAnExternalTransactionFixture, fixtures.MappedTest ): """2.0 only recipe for "join into an external transaction" that works without event handlers """ def setup_session(self): self.trans = self.connection.begin() if ( self.join_mode.conditional_w_savepoint or self.join_mode.create_savepoint_w_savepoint ): self.nested = self.connection.begin_nested() class A: pass clear_mappers() self.mapper_registry.map_imperatively(A, self.table) self.A = A self.session = Session( self.connection, join_transaction_mode=( "create_savepoint" if ( self.join_mode.create_savepoint or self.join_mode.create_savepoint_w_savepoint ) else "conditional_savepoint" ), ) def teardown_session(self): self.session.close() if ( self.join_mode.conditional_w_savepoint or self.join_mode.create_savepoint_w_savepoint ): assert not self.nested._deactivated_from_connection assert self.nested.is_active self.nested.rollback() assert not self.trans._deactivated_from_connection assert self.trans.is_active self.trans.rollback()
ReallyNewJoinIntoAnExternalTransactionTest
python
encode__django-rest-framework
tests/test_fields.py
{ "start": 57387, "end": 57673 }
class ____(FieldValues): """ Values for `TimeField` with a no output format. """ valid_inputs = {} invalid_inputs = {} outputs = { datetime.time(13, 00): datetime.time(13, 00) } field = serializers.TimeField(format=None)
TestNoOutputFormatTimeField
python
joke2k__faker
tests/providers/test_phone_number.py
{ "start": 15030, "end": 15500 }
class ____: """Test hu_HU phone number provider methods""" def test_phone_number(self, faker, num_samples): pattern: Pattern = re.compile( r"(?:" r"\+36 \d{2} |" r"\(06\)\d{2}/|" r"\(\d{2}\)/|" r"\d{2}/|" r"06-\d{1,2}/" r")\d{3}[- ]\d{4}", ) for _ in range(num_samples): phone_number = faker.phone_number() assert isinstance(phone_number, str) assert pattern.fullmatch(phone_number)
TestHuHu
python
pyqtgraph__pyqtgraph
tests/test_stability.py
{ "start": 1917, "end": 3340 }
class ____(pg.QtCore.QThread): '''Intended to give the gc an opportunity to run from a non-gui thread.''' def run(self): i = 0 while True: i += 1 if (i % 1000000) == 0: print('--worker--') def randItem(items): return items[randint(0, len(items)-1)] def p(msg): print(msg) sys.stdout.flush() def createWidget(): p('create widget') global widgets, allWidgets if len(widgets) > 50: return None widget = randItem(widgetTypes)() widget.setWindowTitle(widget.__class__.__name__) widgets.append(widget) allWidgets[widget] = 1 p(" %s" % widget) return widget def setParent(): p('set parent') global widgets if len(widgets) < 2: return child = parent = None while child is parent: child = randItem(widgets) parent = randItem(widgets) p(" %s parent of %s" % (parent, child)) child.setParent(parent) def forgetWidget(): p('forget widget') global widgets if len(widgets) < 1: return widget = randItem(widgets) p(' %s' % widget) widgets.remove(widget) def showWidget(): p('show widget') global widgets if len(widgets) < 1: return widget = randItem(widgets) p(' %s' % widget) widget.show() def processEvents(): p('process events') QtTest.QTest.qWait(25)
WorkThread
python
getsentry__sentry
tests/sentry/integrations/bitbucket_server/test_webhook.py
{ "start": 2799, "end": 2978 }
class ____(WebhookTestBase): def test_get_request_fails(self) -> None: self.get_error_response(self.organization.id, self.integration.id, status_code=405)
WebhookGetTest
python
dagster-io__dagster
python_modules/dagster/dagster/_core/definitions/job_base.py
{ "start": 1830, "end": 3098 }
class ____(IJob): def __init__( self, job_def: "JobDefinition", ): self._job_def = job_def def get_definition(self) -> "JobDefinition": return self._job_def def get_repository_definition(self) -> Optional["RepositoryDefinition"]: return None def get_subset( self, *, op_selection: Optional[Iterable[str]] = None, asset_selection: Optional[AbstractSet[AssetKey]] = None, asset_check_selection: Optional[AbstractSet[AssetCheckKey]] = None, ) -> "InMemoryJob": op_selection = set(op_selection) if op_selection else None return InMemoryJob( self._job_def.get_subset( op_selection=op_selection, asset_selection=asset_selection, asset_check_selection=asset_check_selection, ) ) @property def op_selection(self) -> Optional[AbstractSet[str]]: return self._job_def.op_selection @property def asset_selection(self) -> Optional[AbstractSet[AssetKey]]: return self._job_def.asset_selection @property def asset_check_selection(self) -> Optional[AbstractSet[AssetCheckKey]]: return self._job_def.asset_check_selection
InMemoryJob