language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
spyder-ide__spyder
spyder/api/plugin_registration/_confpage.py
{ "start": 558, "end": 5918 }
class ____(PluginConfigPage): def setup_page(self): newcb = self.create_checkbox self.plugins_checkboxes = {} header_label = QLabel( _("Disable a Spyder plugin (external or built-in) to prevent it " "from loading until re-enabled here, to simplify the interface " "or in case it causes problems.") ) header_label.setWordWrap(True) # To save the plugin elements internal_elements = [] external_elements = [] # ------------------ Internal plugins --------------------------------- for plugin_name in self.plugin.all_internal_plugins: (conf_section_name, PluginClass) = self.plugin.all_internal_plugins[plugin_name] if not getattr(PluginClass, 'CAN_BE_DISABLED', True): # Do not list core plugins that can not be disabled continue plugin_state = self.get_option( 'enable', section=conf_section_name, default=True) cb = newcb('', 'enable', default=True, section=conf_section_name, restart=True) internal_elements.append( dict( title=PluginClass.get_name(), description=PluginClass.get_description(), icon=PluginClass.get_icon(), widget=cb, additional_info=_("Built-in"), additional_info_color=SpyderPalette.COLOR_TEXT_4, ) ) self.plugins_checkboxes[plugin_name] = (cb.checkbox, plugin_state) # ------------------ External plugins --------------------------------- for plugin_name in self.plugin.all_external_plugins: (conf_section_name, PluginClass) = self.plugin.all_external_plugins[plugin_name] if not getattr(PluginClass, 'CAN_BE_DISABLED', True): # Do not list external plugins that can not be disabled continue plugin_state = self.get_option( f'{conf_section_name}/enable', section=self.plugin._external_plugins_conf_section, default=True ) cb = newcb('', f'{conf_section_name}/enable', default=True, section=self.plugin._external_plugins_conf_section, restart=True) external_elements.append( dict( title=PluginClass.get_name(), description=PluginClass.get_description(), icon=PluginClass.get_icon(), widget=cb ) ) self.plugins_checkboxes[plugin_name] = (cb.checkbox, plugin_state) # Sort elements by title for easy searching collator = Collator() internal_elements.sort(key=lambda e: collator.sort_key(e['title'])) external_elements.sort(key=lambda e: collator.sort_key(e['title'])) # Build plugins table, showing external plugins first. self._plugins_table = ElementsTable( self, add_padding_around_widgets=True ) self._plugins_table.setup_elements( external_elements + internal_elements ) # Finder to filter plugins finder = FinderWidget( self, find_on_change=True, show_close_button=False, set_min_width=False, ) finder.sig_find_text.connect(self._do_find) # Layout layout = QVBoxLayout() layout.addWidget(header_label) layout.addSpacing(15) layout.addWidget(self._plugins_table) layout.addWidget(finder) layout.addSpacing(15) self.setLayout(layout) def apply_settings(self): for plugin_name in self.plugins_checkboxes: cb, previous_state = self.plugins_checkboxes[plugin_name] if cb.isChecked() and not previous_state: self.plugin.set_plugin_enabled(plugin_name) PluginClass = None external = False if plugin_name in self.plugin.all_internal_plugins: (__, PluginClass) = self.plugin.all_internal_plugins[plugin_name] elif plugin_name in self.plugin.all_external_plugins: (__, PluginClass) = self.plugin.all_external_plugins[plugin_name] external = True # noqa # TODO: Once we can test that all plugins can be restarted # without problems during runtime, we can enable the # autorestart feature provided by the plugin registry: # self.plugin.register_plugin(self.main, PluginClass, # external=external) elif not cb.isChecked() and previous_state: # TODO: Once we can test that all plugins can be restarted # without problems during runtime, we can enable the # autorestart feature provided by the plugin registry: # self.plugin.delete_plugin(plugin_name) pass return set({}) def _do_find(self, text): self._plugins_table.do_find(text)
PluginsConfigPage
python
jmcnamara__XlsxWriter
xlsxwriter/chart_line.py
{ "start": 323, "end": 3860 }
class ____(chart.Chart): """ A class for writing the Excel XLSX Line charts. """ ########################################################################### # # Public API. # ########################################################################### def __init__(self, options: Optional[Dict[str, Any]] = None) -> None: """ Constructor. """ super().__init__() if options is None: options = {} self.subtype = options.get("subtype") if not self.subtype: self.subtype = "standard" self.default_marker = {"type": "none"} self.smooth_allowed = True # Override and reset the default axis values. if self.subtype == "percent_stacked": self.y_axis["defaults"]["num_format"] = "0%" # Set the available data label positions for this chart type. self.label_position_default = "right" self.label_positions = { "center": "ctr", "right": "r", "left": "l", "above": "t", "below": "b", # For backward compatibility. "top": "t", "bottom": "b", } self.set_y_axis({}) ########################################################################### # # Private API. # ########################################################################### def _write_chart_type(self, args) -> None: # Override the virtual superclass method with a chart specific method. # Write the c:lineChart element. self._write_line_chart(args) ########################################################################### # # XML methods. # ########################################################################### def _write_line_chart(self, args) -> None: # Write the <c:lineChart> element. if args["primary_axes"]: series = self._get_primary_axes_series() else: series = self._get_secondary_axes_series() if not series: return subtype = self.subtype if subtype == "percent_stacked": subtype = "percentStacked" self._xml_start_tag("c:lineChart") # Write the c:grouping element. self._write_grouping(subtype) # Write the series elements. for data in series: self._write_ser(data) # Write the c:dropLines element. self._write_drop_lines() # Write the c:hiLowLines element. self._write_hi_low_lines() # Write the c:upDownBars element. self._write_up_down_bars() # Write the c:marker element. self._write_marker_value() # Write the c:axId elements self._write_axis_ids(args) self._xml_end_tag("c:lineChart") def _write_d_pt_point(self, index, point) -> None: # Write an individual <c:dPt> element. Override the parent method to # add markers. self._xml_start_tag("c:dPt") # Write the c:idx element. self._write_idx(index) self._xml_start_tag("c:marker") # Write the c:spPr element. self._write_sp_pr(point) self._xml_end_tag("c:marker") self._xml_end_tag("c:dPt") def _write_marker_value(self) -> None: # Write the <c:marker> element without a sub-element. attributes = [("val", 1)] self._xml_empty_tag("c:marker", attributes)
ChartLine
python
apache__airflow
devel-common/src/tests_common/test_utils/fake_datetime.py
{ "start": 855, "end": 1058 }
class ____(datetime): """A fake replacement for datetime that can be mocked for testing.""" def __new__(cls, *args, **kwargs): return datetime.__new__(datetime, *args, **kwargs)
FakeDatetime
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/sql/ddl.py
{ "start": 37979, "end": 38187 }
class ____(_CreateDropBase["Table"]): """Represent a COMMENT ON TABLE '' statement. Note this varies a lot across database backends. """ __visit_name__ = "drop_table_comment"
DropTableComment
python
PyCQA__pylint
tests/pyreverse/functional/class_diagrams/attributes/duplicates.py
{ "start": 420, "end": 620 }
class ____: def __init__(self) -> None: self.val: str | int = "1" self.lav: list[str] = [] def bar(self) -> None: self.val = "2" self.lav = []
DuplicateAnnotations
python
apache__airflow
airflow-core/tests/unit/jobs/test_scheduler_job.py
{ "start": 7311, "end": 323847 }
class ____: @staticmethod def clean_db(): clear_db_dags() clear_db_runs() clear_db_backfills() clear_db_pools() clear_db_import_errors() clear_db_jobs() clear_db_assets() clear_db_deadline() clear_db_callbacks() clear_db_triggers() @pytest.fixture(autouse=True) def per_test(self) -> Generator: self.clean_db() self.job_runner: SchedulerJobRunner | None = None yield self.clean_db() @pytest.fixture(autouse=True) def set_instance_attrs(self) -> Generator: # Speed up some tests by not running the tasks, just look at what we # enqueue! self.null_exec: MockExecutor | None = MockExecutor() yield self.null_exec = None @pytest.fixture def mock_executors(self): mock_jwt_generator = MagicMock(spec=JWTGenerator) mock_jwt_generator.generate.return_value = "mock-token" default_executor = mock.MagicMock(name="DefaultExecutor", slots_available=8, slots_occupied=0) default_executor.name = ExecutorName(alias="default_exec", module_path="default.exec.module.path") default_executor.jwt_generator = mock_jwt_generator default_executor.team_name = None # Global executor default_executor.sentry_integration = "" second_executor = mock.MagicMock(name="SeconadaryExecutor", slots_available=8, slots_occupied=0) second_executor.name = ExecutorName(alias="secondary_exec", module_path="secondary.exec.module.path") second_executor.jwt_generator = mock_jwt_generator second_executor.team_name = None # Global executor second_executor.sentry_integration = "" # TODO: Task-SDK Make it look like a bound method. Needed until we remove the old queue_workload # interface from executors default_executor.queue_workload.__func__ = BaseExecutor.queue_workload second_executor.queue_workload.__func__ = BaseExecutor.queue_workload with mock.patch("airflow.jobs.job.Job.executors", new_callable=PropertyMock) as executors_mock: executors_mock.return_value = [default_executor, second_executor] yield [default_executor, second_executor] @pytest.fixture def mock_executor(self, mock_executors): default_executor = mock_executors[0] with mock.patch("airflow.jobs.job.Job.executors", new_callable=PropertyMock) as executors_mock: executors_mock.return_value = [default_executor] yield default_executor def test_is_alive(self): scheduler_job = Job(heartrate=10, state=State.RUNNING) self.job_runner = SchedulerJobRunner(scheduler_job) assert scheduler_job.is_alive() scheduler_job.latest_heartbeat = timezone.utcnow() - datetime.timedelta(seconds=20) assert scheduler_job.is_alive() scheduler_job.latest_heartbeat = timezone.utcnow() - datetime.timedelta(seconds=31) assert not scheduler_job.is_alive() # test because .seconds was used before instead of total_seconds # internal repr of datetime is (days, seconds) scheduler_job.latest_heartbeat = timezone.utcnow() - datetime.timedelta(days=1) assert not scheduler_job.is_alive() scheduler_job.state = State.SUCCESS scheduler_job.latest_heartbeat = timezone.utcnow() - datetime.timedelta(seconds=10) assert not scheduler_job.is_alive(), "Completed jobs even with recent heartbeat should not be alive" @pytest.mark.parametrize( "heartrate", [10, 5], ) def test_heartrate(self, heartrate): with conf_vars({("scheduler", "scheduler_heartbeat_sec"): str(heartrate)}): scheduler_job = Job(executor=self.null_exec) _ = SchedulerJobRunner(job=scheduler_job) assert scheduler_job.heartrate == heartrate def test_no_orphan_process_will_be_left(self): current_process = psutil.Process() old_children = current_process.children(recursive=True) scheduler_job = Job( executor=MockExecutor(do_update=False), ) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) run_job(scheduler_job, execute_callable=self.job_runner._execute) # Remove potential noise created by previous tests. current_children = set(current_process.children(recursive=True)) - set(old_children) assert not current_children @mock.patch("airflow.jobs.scheduler_job_runner.TaskCallbackRequest") @mock.patch("airflow.jobs.scheduler_job_runner.Stats.incr") def test_process_executor_events(self, mock_stats_incr, mock_task_callback, dag_maker): dag_id = "test_process_executor_events" task_id_1 = "dummy_task" session = settings.Session() with dag_maker(dag_id=dag_id, fileloc="/test_path1/"): task1 = EmptyOperator(task_id=task_id_1) ti1 = dag_maker.create_dagrun().get_task_instance(task1.task_id) mock_stats_incr.reset_mock() executor = MockExecutor(do_update=False) task_callback = mock.MagicMock(spec=TaskCallbackRequest) mock_task_callback.return_value = task_callback scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) ti1.state = State.QUEUED session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.FAILED, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.FAILED scheduler_job.executor.callback_sink.send.assert_not_called() # ti in success state ti1.state = State.SUCCESS session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.SUCCESS, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.SUCCESS scheduler_job.executor.callback_sink.send.assert_not_called() mock_stats_incr.assert_has_calls( [ mock.call( "scheduler.tasks.killed_externally", tags={"dag_id": dag_id, "task_id": ti1.task_id}, ), mock.call("operator_failures_EmptyOperator", tags={"dag_id": dag_id, "task_id": ti1.task_id}), mock.call("ti_failures", tags={"dag_id": dag_id, "task_id": ti1.task_id}), ], any_order=True, ) @mock.patch("airflow.jobs.scheduler_job_runner.TaskCallbackRequest", spec=TaskCallbackRequest) @mock.patch("airflow.jobs.scheduler_job_runner.Stats.incr") def test_process_executor_events_restarting_cleared_task( self, mock_stats_incr, mock_task_callback, dag_maker ): """ Test processing of RESTARTING task instances by scheduler's _process_executor_events. Simulates the complete flow when a running task is cleared: 1. Task is RUNNING and has exhausted retries (try_number > max_tries) 2. User clears the task → state becomes RESTARTING 3. Executor successfully terminates the task → reports SUCCESS 4. Scheduler processes the event and sets task to None (scheduled) 5. max_tries is adjusted to allow retry beyond normal limits This test prevents regression of issue #55045 where RESTARTING tasks would get stuck due to scheduler not processing executor events. """ dag_id = "test_restarting_max_tries" task_id = "test_task" session = settings.Session() with dag_maker(dag_id=dag_id, fileloc="/test_path1/", max_active_runs=1): task1 = EmptyOperator(task_id=task_id, retries=2) ti1 = dag_maker.create_dagrun().get_task_instance(task1.task_id) # Set up exhausted task scenario: try_number > max_tries ti1.state = TaskInstanceState.RESTARTING # Simulates cleared running task ti1.try_number = 4 # Already tried 4 times ti1.max_tries = 3 # Originally only allowed 3 tries session.merge(ti1) session.commit() # Verify task is in RESTARTING state and eligible for retry assert ti1.state == TaskInstanceState.RESTARTING assert ti1.is_eligible_to_retry() is True, "RESTARTING should bypass max_tries" # Set up scheduler and executor executor = MockExecutor(do_update=False) task_callback = mock.MagicMock(spec=TaskCallbackRequest) mock_task_callback.return_value = task_callback scheduler_job = Job(executor=executor) job_runner = SchedulerJobRunner(scheduler_job) # Simulate executor reporting task completion (this triggers the bug scenario) executor.event_buffer[ti1.key] = State.SUCCESS, None # Process the executor event job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state is None, "Task should be set to None (scheduled) state after RESTARTING processing" # Verify max_tries was adjusted to allow retry expected_max_tries = 4 + 2 assert ti1.max_tries == expected_max_tries, ( f"max_tries should be adjusted to {expected_max_tries}, got {ti1.max_tries}" ) # Verify task is now eligible for retry despite being previously exhausted assert ti1.is_eligible_to_retry() is True, ( "Task should be eligible for retry after max_tries adjustment" ) # Verify try_number wasn't changed (scheduler doesn't increment it here) assert ti1.try_number == 4, "try_number should remain unchanged" @mock.patch("airflow.jobs.scheduler_job_runner.TaskCallbackRequest") @mock.patch("airflow.jobs.scheduler_job_runner.Stats.incr") def test_process_executor_events_with_no_callback(self, mock_stats_incr, mock_task_callback, dag_maker): dag_id = "test_process_executor_events_with_no_callback" task_id = "test_task" run_id = "test_run" mock_stats_incr.reset_mock() executor = MockExecutor(do_update=False) task_callback = mock.MagicMock(spec=TaskCallbackRequest) mock_task_callback.return_value = task_callback scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) session = settings.Session() with dag_maker(dag_id=dag_id, fileloc="/test_path1/"): task1 = EmptyOperator(task_id=task_id, retries=1) ti1 = dag_maker.create_dagrun( run_id=run_id, logical_date=DEFAULT_DATE + timedelta(hours=1) ).get_task_instance(task1.task_id) mock_stats_incr.reset_mock() executor = MockExecutor(do_update=False) task_callback = mock.MagicMock() mock_task_callback.return_value = task_callback scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) ti1.state = State.QUEUED session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.FAILED, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.UP_FOR_RETRY scheduler_job.executor.callback_sink.send.assert_not_called() # ti in success state ti1.state = State.SUCCESS session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.SUCCESS, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.SUCCESS scheduler_job.executor.callback_sink.send.assert_not_called() mock_stats_incr.assert_has_calls( [ mock.call( "scheduler.tasks.killed_externally", tags={"dag_id": dag_id, "task_id": task_id}, ), mock.call("operator_failures_EmptyOperator", tags={"dag_id": dag_id, "task_id": task_id}), mock.call("ti_failures", tags={"dag_id": dag_id, "task_id": task_id}), ], any_order=True, ) @mock.patch("airflow.jobs.scheduler_job_runner.TaskCallbackRequest") @mock.patch("airflow.jobs.scheduler_job_runner.Stats.incr") def test_process_executor_events_with_callback( self, mock_stats_incr, mock_task_callback, dag_maker, session ): dag_id = "test_process_executor_events_with_callback" task_id_1 = "dummy_task" with dag_maker(dag_id=dag_id, fileloc="/test_path1/") as dag: EmptyOperator(task_id=task_id_1, on_failure_callback=lambda x: print("hi")) dr = dag_maker.create_dagrun() ti1 = dr.task_instances[0] mock_stats_incr.reset_mock() task_callback = mock.MagicMock() mock_task_callback.return_value = task_callback executor = MockExecutor(do_update=False) scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) ti1.state = State.QUEUED session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.FAILED, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db() assert ti1.state == State.FAILED mock_task_callback.assert_called_once_with( filepath=dag.relative_fileloc, ti=mock.ANY, bundle_name="dag_maker", bundle_version=None, msg=f"Executor {executor} reported that the task instance " "<TaskInstance: test_process_executor_events_with_callback.dummy_task test [queued]> " "finished with state failed, but the task instance's state attribute is queued. " "Learn more: https://airflow.apache.org/docs/apache-airflow/stable/troubleshooting.html#task-state-changed-externally", context_from_server=mock.ANY, task_callback_type=TaskInstanceState.FAILED, ) scheduler_job.executor.callback_sink.send.assert_called_once_with(task_callback) scheduler_job.executor.callback_sink.reset_mock() mock_stats_incr.assert_any_call( "scheduler.tasks.killed_externally", tags={ "dag_id": "test_process_executor_events_with_callback", "task_id": "dummy_task", }, ) @mock.patch("airflow.jobs.scheduler_job_runner.TaskCallbackRequest") @mock.patch("airflow.jobs.scheduler_job_runner.Stats.incr") def test_process_executor_event_missing_dag(self, mock_stats_incr, mock_task_callback, dag_maker, caplog): dag_id = "test_process_executor_events_with_callback" task_id_1 = "dummy_task" with dag_maker(dag_id=dag_id, fileloc="/test_path1/"): task1 = EmptyOperator(task_id=task_id_1, on_failure_callback=lambda x: print("hi")) ti1 = dag_maker.create_dagrun().get_task_instance(task1.task_id) mock_stats_incr.reset_mock() executor = MockExecutor(do_update=False) task_callback = mock.MagicMock() mock_task_callback.return_value = task_callback scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) self.job_runner.scheduler_dag_bag = mock.MagicMock() self.job_runner.scheduler_dag_bag.get_dag_for_run.side_effect = Exception("failed") session = settings.Session() ti1.state = State.QUEUED session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.FAILED, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db() assert ti1.state == State.FAILED @mock.patch("airflow.jobs.scheduler_job_runner.TaskCallbackRequest") @mock.patch("airflow.jobs.scheduler_job_runner.Stats.incr") def test_process_executor_events_ti_requeued(self, mock_stats_incr, mock_task_callback, dag_maker): dag_id = "test_process_executor_events_ti_requeued" task_id_1 = "dummy_task" session = settings.Session() with dag_maker(dag_id=dag_id, fileloc="/test_path1/"): task1 = EmptyOperator(task_id=task_id_1) ti1 = dag_maker.create_dagrun().get_task_instance(task1.task_id) mock_stats_incr.reset_mock() executor = MockExecutor(do_update=False) task_callback = mock.MagicMock() mock_task_callback.return_value = task_callback scheduler_job = Job(executor=executor) session.add(scheduler_job) session.flush() self.job_runner = SchedulerJobRunner(scheduler_job) # ti is queued with another try number - do not fail it ti1.state = State.QUEUED ti1.queued_by_job_id = scheduler_job.id ti1.try_number = 2 session.merge(ti1) session.commit() executor.event_buffer[ti1.key.with_try_number(1)] = State.SUCCESS, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.QUEUED scheduler_job.executor.callback_sink.send.assert_not_called() # ti is queued by another scheduler - do not fail it ti1.state = State.QUEUED ti1.queued_by_job_id = scheduler_job.id - 1 session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.SUCCESS, None self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.QUEUED scheduler_job.executor.callback_sink.send.assert_not_called() # ti is queued by this scheduler but it is handed back to the executor - do not fail it ti1.state = State.QUEUED ti1.queued_by_job_id = 1 session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.SUCCESS, None executor.has_task = mock.MagicMock(return_value=True) self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.QUEUED scheduler_job.executor.callback_sink.send.assert_not_called() mock_stats_incr.assert_not_called() @pytest.mark.usefixtures("testing_dag_bundle") @mock.patch("airflow.jobs.scheduler_job_runner.Stats.incr") def test_process_executor_events_with_asset_events(self, mock_stats_incr, session, dag_maker): """ Test that _process_executor_events handles asset events without DetachedInstanceError. Regression test for scheduler crashes when task callbacks are built with consumed_asset_events that weren't eager-loaded. """ asset1 = Asset(uri="test://asset1", name="test_asset_executor", group="test_group") asset_model = AssetModel(name=asset1.name, uri=asset1.uri, group=asset1.group) session.add(asset_model) session.flush() with dag_maker(dag_id="test_executor_events_with_assets", schedule=[asset1], fileloc="/test_path1/"): EmptyOperator(task_id="dummy_task", on_failure_callback=lambda ctx: None) dag = dag_maker.dag sync_dag_to_db(dag) DagVersion.get_latest_version(dag.dag_id) dr = dag_maker.create_dagrun() # Create asset event and attach to dag run asset_event = AssetEvent( asset_id=asset_model.id, source_task_id="upstream_task", source_dag_id="upstream_dag", source_run_id="upstream_run", source_map_index=-1, ) session.add(asset_event) session.flush() dr.consumed_asset_events.append(asset_event) session.add(dr) session.flush() executor = MockExecutor(do_update=False) scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) ti1 = dr.get_task_instance("dummy_task") ti1.state = State.QUEUED session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.FAILED, None # This should not raise DetachedInstanceError self.job_runner._process_executor_events(executor=executor, session=session) ti1.refresh_from_db(session=session) assert ti1.state == State.FAILED # Verify callback was created with asset event data scheduler_job.executor.callback_sink.send.assert_called_once() callback_request = scheduler_job.executor.callback_sink.send.call_args.args[0] assert callback_request.context_from_server is not None assert len(callback_request.context_from_server.dag_run.consumed_asset_events) == 1 assert callback_request.context_from_server.dag_run.consumed_asset_events[0].asset.uri == asset1.uri def test_execute_task_instances_is_paused_wont_execute(self, session, dag_maker): dag_id = "SchedulerJobTest.test_execute_task_instances_is_paused_wont_execute" task_id_1 = "dummy_task" with dag_maker(dag_id=dag_id, session=session) as dag: EmptyOperator(task_id=task_id_1) assert isinstance(dag, SerializedDAG) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr1 = dag_maker.create_dagrun(run_type=DagRunType.BACKFILL_JOB) (ti1,) = dr1.task_instances ti1.state = State.SCHEDULED self.job_runner._critical_section_enqueue_task_instances(session) session.flush() ti1.refresh_from_db(session=session) assert ti1.state == State.SCHEDULED session.rollback() @pytest.mark.usefixtures("testing_dag_bundle") def test_find_and_purge_task_instances_without_heartbeats_with_asset_events( self, session, dag_maker, create_dagrun ): """ Test that heartbeat purge succeeds when DagRun has consumed_asset_events. Regression test for DetachedInstanceError when building TaskCallbackRequest with asset event data after session expunge. """ asset1 = Asset(uri="test://asset1", name="test_asset", group="test_group") asset_model = AssetModel(name=asset1.name, uri=asset1.uri, group=asset1.group) session.add(asset_model) session.flush() with dag_maker(dag_id="test_heartbeat_with_assets", schedule=[asset1]): EmptyOperator(task_id="dummy_task") dag = dag_maker.dag scheduler_dag = sync_dag_to_db(dag) dag_v = DagVersion.get_latest_version(dag.dag_id) data_interval = infer_automated_data_interval(scheduler_dag.timetable, DEFAULT_LOGICAL_DATE) dag_run = create_dagrun( scheduler_dag, logical_date=DEFAULT_DATE, run_type=DagRunType.SCHEDULED, data_interval=data_interval, ) # Create asset alias and event with full relationships asset_alias = AssetAliasModel(name="test_alias", group="test_group") session.add(asset_alias) session.flush() asset_event = AssetEvent( asset_id=asset_model.id, source_task_id="upstream_task", source_dag_id="upstream_dag", source_run_id="upstream_run", source_map_index=-1, ) session.add(asset_event) session.flush() # Attach alias to event and event to dag run asset_event.source_aliases.append(asset_alias) dag_run.consumed_asset_events.append(asset_event) session.add_all([asset_event, dag_run]) session.flush() executor = MockExecutor() scheduler_job = Job(executor=executor) with mock.patch("airflow.executors.executor_loader.ExecutorLoader.load_executor") as loader_mock: loader_mock.return_value = executor self.job_runner = SchedulerJobRunner(job=scheduler_job) ti = dag_run.get_task_instance("dummy_task") assert ti is not None # sanity check: dag_maker.create_dagrun created the TI ti.state = State.RUNNING ti.last_heartbeat_at = timezone.utcnow() - timedelta(minutes=6) ti.start_date = timezone.utcnow() - timedelta(minutes=10) ti.queued_by_job_id = scheduler_job.id ti.dag_version = dag_v session.merge(ti) session.flush() executor.running.add(ti.key) tis_without_heartbeats = self.job_runner._find_task_instances_without_heartbeats(session=session) assert len(tis_without_heartbeats) == 1 ti_from_query = tis_without_heartbeats[0] ti_key = ti_from_query.key # Detach all ORM objects to mirror scheduler behaviour after session closes session.expunge_all() # This should not raise DetachedInstanceError now that eager loads are in place self.job_runner._purge_task_instances_without_heartbeats(tis_without_heartbeats, session=session) assert ti_key not in executor.running executor.callback_sink.send.assert_called_once() callback_request = executor.callback_sink.send.call_args.args[0] assert callback_request.context_from_server is not None assert len(callback_request.context_from_server.dag_run.consumed_asset_events) == 1 consumed_event = callback_request.context_from_server.dag_run.consumed_asset_events[0] assert consumed_event.asset.uri == asset1.uri assert len(consumed_event.source_aliases) == 1 assert consumed_event.source_aliases[0].name == "test_alias" # @pytest.mark.usefixtures("mock_executor") def test_execute_task_instances_backfill_tasks_will_execute(self, dag_maker): """ Tests that backfill tasks won't get executed. """ dag_id = "SchedulerJobTest.test_execute_task_instances_backfill_tasks_will_execute" task_id_1 = "dummy_task" with dag_maker(dag_id=dag_id): task1 = EmptyOperator(task_id=task_id_1) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr1 = dag_maker.create_dagrun(run_type=DagRunType.BACKFILL_JOB) dag_version = DagVersion.get_latest_version(dr1.dag_id) ti1 = TaskInstance(task1, run_id=dr1.run_id, dag_version_id=dag_version.id) ti1.refresh_from_db() ti1.state = State.SCHEDULED session.merge(ti1) session.flush() assert dr1.run_type == DagRunType.BACKFILL_JOB self.job_runner._critical_section_enqueue_task_instances(session) session.flush() ti1.refresh_from_db() assert ti1.state == TaskInstanceState.QUEUED session.rollback() def test_setup_callback_sink_standalone_dag_processor(self, mock_executors): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._execute() assert isinstance(scheduler_job.executor.callback_sink, DatabaseCallbackSink) def test_setup_callback_sink_standalone_dag_processor_multiple_executors(self, mock_executors): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._execute() for executor in scheduler_job.executors: assert isinstance(executor.callback_sink, DatabaseCallbackSink) def test_executor_start_called(self, mock_executors): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._execute() scheduler_job.executor.start.assert_called_once() for executor in scheduler_job.executors: executor.start.assert_called_once() def test_executor_job_id_assigned(self, mock_executors, configure_testing_dag_bundle): with configure_testing_dag_bundle(os.devnull): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._execute() assert scheduler_job.executor.job_id == scheduler_job.id for executor in scheduler_job.executors: assert executor.job_id == scheduler_job.id def test_executor_heartbeat(self, mock_executors, configure_testing_dag_bundle): with configure_testing_dag_bundle(os.devnull): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._execute() for executor in scheduler_job.executors: executor.heartbeat.assert_called_once() def test_executor_events_processed(self, mock_executors, configure_testing_dag_bundle): with configure_testing_dag_bundle(os.devnull): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._execute() for executor in scheduler_job.executors: executor.get_event_buffer.assert_called_once() @patch("traceback.extract_stack") def test_executor_debug_dump(self, patch_traceback_extract_stack, mock_executors): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._debug_dump(1, mock.MagicMock()) for executor in scheduler_job.executors: executor.debug_dump.assert_called_once() patch_traceback_extract_stack.assert_called() def test_find_executable_task_instances_backfill(self, dag_maker): dag_id = "SchedulerJobTest.test_find_executable_task_instances_backfill" task_id_1 = "dummy" with dag_maker(dag_id=dag_id, max_active_tasks=16): task1 = EmptyOperator(task_id=task_id_1) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr_non_backfill = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) dr_backfill = dag_maker.create_dagrun_after( dr_non_backfill, run_type=DagRunType.BACKFILL_JOB, state=State.RUNNING ) ti_backfill = dr_backfill.get_task_instance(task1.task_id) ti_non_backfill = dr_non_backfill.get_task_instance(task1.task_id) ti_backfill.state = State.SCHEDULED ti_non_backfill.state = State.SCHEDULED session.merge(dr_backfill) session.merge(ti_backfill) session.merge(ti_non_backfill) session.flush() queued_tis = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(queued_tis) == 2 assert {x.key for x in queued_tis} == {ti_non_backfill.key, ti_backfill.key} session.rollback() def test_find_executable_task_instances_pool(self, dag_maker): dag_id = "SchedulerJobTest.test_find_executable_task_instances_pool" task_id_1 = "dummy" task_id_2 = "dummydummy" session = settings.Session() with dag_maker(dag_id=dag_id, max_active_tasks=16, session=session): EmptyOperator(task_id=task_id_1, pool="a", priority_weight=2) EmptyOperator(task_id=task_id_2, pool="b", priority_weight=1) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED) tis = [ dr1.get_task_instance(task_id_1, session=session), dr1.get_task_instance(task_id_2, session=session), dr2.get_task_instance(task_id_1, session=session), dr2.get_task_instance(task_id_2, session=session), ] tis.sort(key=lambda ti: ti.key) for ti in tis: ti.state = State.SCHEDULED session.merge(ti) pool = Pool(pool="a", slots=1, description="haha", include_deferred=False) pool2 = Pool(pool="b", slots=100, description="haha", include_deferred=False) session.add(pool) session.add(pool2) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) session.flush() assert len(res) == 3 res_keys = [] for ti in res: res_keys.append(ti.key) assert tis[0].key in res_keys assert tis[2].key in res_keys assert tis[3].key in res_keys session.rollback() @pytest.mark.parametrize( ("state", "total_executed_ti"), [ (DagRunState.SUCCESS, 0), (DagRunState.FAILED, 0), (DagRunState.RUNNING, 2), (DagRunState.QUEUED, 0), ], ) def test_find_executable_task_instances_only_running_dagruns( self, state, total_executed_ti, dag_maker, session ): """Test that only task instances of 'running' dagruns are executed""" dag_id = "SchedulerJobTest.test_find_executable_task_instances_only_running_dagruns" task_id_1 = "dummy" task_id_2 = "dummydummy" with dag_maker(dag_id=dag_id, session=session): EmptyOperator(task_id=task_id_1) EmptyOperator(task_id=task_id_2) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun(state=state) tis = dr.task_instances for ti in tis: ti.state = State.SCHEDULED session.merge(ti) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) session.flush() assert total_executed_ti == len(res) def test_find_executable_task_instances_order_logical_date(self, dag_maker): """ Test that task instances follow logical_date order priority. If two dagruns with different logical dates are scheduled, tasks with earliest dagrun logical date will first be executed """ dag_id_1 = "SchedulerJobTest.test_find_executable_task_instances_order_logical_date-a" dag_id_2 = "SchedulerJobTest.test_find_executable_task_instances_order_logical_date-b" task_id = "task-a" session = settings.Session() with dag_maker(dag_id=dag_id_1, max_active_tasks=16, session=session): EmptyOperator(task_id=task_id) dr1 = dag_maker.create_dagrun(logical_date=DEFAULT_DATE + timedelta(hours=1)) with dag_maker(dag_id=dag_id_2, max_active_tasks=16, session=session): EmptyOperator(task_id=task_id) dr2 = dag_maker.create_dagrun() dr1 = session.merge(dr1, load=False) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) tis = dr1.task_instances + dr2.task_instances for ti in tis: ti.state = State.SCHEDULED session.merge(ti) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) session.flush() assert [ti.key for ti in res] == [tis[1].key] session.rollback() def test_find_executable_task_instances_order_priority(self, dag_maker): dag_id_1 = "SchedulerJobTest.test_find_executable_task_instances_order_priority-a" dag_id_2 = "SchedulerJobTest.test_find_executable_task_instances_order_priority-b" task_id = "task-a" session = settings.Session() with dag_maker(dag_id=dag_id_1, max_active_tasks=16, session=session): EmptyOperator(task_id=task_id, priority_weight=1) dr1 = dag_maker.create_dagrun() with dag_maker(dag_id=dag_id_2, max_active_tasks=16, session=session): EmptyOperator(task_id=task_id, priority_weight=4) dr2 = dag_maker.create_dagrun() dr1 = session.merge(dr1, load=False) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) tis = dr1.task_instances + dr2.task_instances for ti in tis: ti.state = State.SCHEDULED session.merge(ti) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) session.flush() assert [ti.key for ti in res] == [tis[1].key] session.rollback() def test_find_executable_task_instances_executor(self, dag_maker, mock_executors): """ Test that tasks for all executors are set to queued, if space allows it """ scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id = "SchedulerJobTest.test_find_executable_task_instances_executor" with dag_maker(dag_id=dag_id): op1 = EmptyOperator(task_id="dummy1") # No executor specified, runs on default executor op2 = EmptyOperator(task_id="dummy2", executor="default_exec") op3 = EmptyOperator(task_id="dummy3", executor="default.exec.module.path") op4 = EmptyOperator(task_id="dummy4", executor="secondary_exec") op5 = EmptyOperator(task_id="dummy5", executor="secondary.exec.module.path") dag_run = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti1 = dag_run.get_task_instance(op1.task_id, session) ti2 = dag_run.get_task_instance(op2.task_id, session) ti3 = dag_run.get_task_instance(op3.task_id, session) ti4 = dag_run.get_task_instance(op4.task_id, session) ti5 = dag_run.get_task_instance(op5.task_id, session) tis_tuple = (ti1, ti2, ti3, ti4, ti5) for ti in tis_tuple: ti.state = State.SCHEDULED session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 5 res_ti_keys = [res_ti.key for res_ti in res] for ti in tis_tuple: assert ti.key in res_ti_keys @conf_vars({("core", "multi_team"): "true"}) def test_find_executable_task_instances_executor_with_teams(self, dag_maker, mock_executors, session): """ Test that tasks are correctly routed to team-specific executors when multi-team is enabled """ clear_db_teams() clear_db_dag_bundles() team1 = Team(name="team_a") team2 = Team(name="team_b") session.add_all([team1, team2]) session.flush() bundle1 = DagBundleModel(name="bundle_a") bundle2 = DagBundleModel(name="bundle_b") bundle1.teams.append(team1) bundle2.teams.append(team2) session.add_all([bundle1, bundle2]) session.flush() mock_executors[0].team_name = "team_a" mock_executors[1].team_name = "team_b" with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): op1 = EmptyOperator(task_id="task_a_default") # No explicit executor - should use team's default op2 = EmptyOperator( task_id="task_a_explicit", executor="default_exec" ) # Team-specific explicit executor dr1 = dag_maker.create_dagrun() with dag_maker(dag_id="dag_b", bundle_name="bundle_b", session=session): op3 = EmptyOperator(task_id="task_b_default") # Team b's default op4 = EmptyOperator(task_id="task_b_explicit", executor="secondary_exec") # Team b explicit dr2 = dag_maker.create_dagrun() # DAG with no team (global) with dag_maker(dag_id="dag_global", session=session): op5 = EmptyOperator(task_id="task_global") # Global task - any executor dr3 = dag_maker.create_dagrun() tis = [ dr1.get_task_instance(op1.task_id, session), dr1.get_task_instance(op2.task_id, session), dr2.get_task_instance(op3.task_id, session), dr2.get_task_instance(op4.task_id, session), dr3.get_task_instance(op5.task_id, session), ] for ti in tis: ti.state = State.SCHEDULED session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) # All tasks should be queued since they have valid executor mappings assert len(res) == 5 # Verify that each task is routed to the correct executor executor_to_tis = self.job_runner._executor_to_tis(res, session) # Team pi tasks should go to mock_executors[0] (configured for team_pi) a_tis_in_executor = [ti for ti in executor_to_tis.get(mock_executors[0], []) if ti.dag_id == "dag_a"] assert len(a_tis_in_executor) == 2 # Team rho tasks should go to mock_executors[1] (configured for team_rho) b_tis_in_executor = [ti for ti in executor_to_tis.get(mock_executors[1], []) if ti.dag_id == "dag_b"] assert len(b_tis_in_executor) == 2 # Global task should go to the default executor (scheduler_job.executor) global_tis_in_executor = [ ti for ti in executor_to_tis.get(scheduler_job.executor, []) if ti.dag_id == "dag_global" ] assert len(global_tis_in_executor) == 1 # Verify no cross-contamination: team pi tasks should not be in team rho executor and vice versa a_tis_in_wrong_executor = [ ti for ti in executor_to_tis.get(mock_executors[1], []) if ti.dag_id == "dag_a" ] assert len(a_tis_in_wrong_executor) == 0 b_tis_in_wrong_executor = [ ti for ti in executor_to_tis.get(mock_executors[0], []) if ti.dag_id == "dag_b" ] assert len(b_tis_in_wrong_executor) == 0 def test_find_executable_task_instances_order_priority_with_pools(self, dag_maker): """ The scheduler job should pick tasks with higher priority for execution even if different pools are involved. """ scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id = "SchedulerJobTest.test_find_executable_task_instances_order_priority_with_pools" session.add(Pool(pool="pool1", slots=32, include_deferred=False)) session.add(Pool(pool="pool2", slots=32, include_deferred=False)) with dag_maker(dag_id=dag_id, max_active_tasks=2): op1 = EmptyOperator(task_id="dummy1", priority_weight=1, pool="pool1") op2 = EmptyOperator(task_id="dummy2", priority_weight=2, pool="pool2") op3 = EmptyOperator(task_id="dummy3", priority_weight=3, pool="pool1") dag_run = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti1 = dag_run.get_task_instance(op1.task_id, session) ti2 = dag_run.get_task_instance(op2.task_id, session) ti3 = dag_run.get_task_instance(op3.task_id, session) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED ti3.state = State.SCHEDULED session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 2 assert ti3.key == res[0].key assert ti2.key == res[1].key session.rollback() def test_find_executable_task_instances_order_logical_date_and_priority(self, dag_maker): dag_id_1 = "SchedulerJobTest.test_find_executable_task_instances_order_logical_date_and_priority-a" dag_id_2 = "SchedulerJobTest.test_find_executable_task_instances_order_logical_date_and_priority-b" task_id = "task-a" session = settings.Session() with dag_maker(dag_id=dag_id_1, max_active_tasks=16, session=session): EmptyOperator(task_id=task_id, priority_weight=1) dr1 = dag_maker.create_dagrun() with dag_maker(dag_id=dag_id_2, max_active_tasks=16, session=session): EmptyOperator(task_id=task_id, priority_weight=4) dr2 = dag_maker.create_dagrun(logical_date=DEFAULT_DATE + timedelta(hours=1)) dr1 = session.merge(dr1, load=False) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) tis = dr1.task_instances + dr2.task_instances for ti in tis: ti.state = State.SCHEDULED session.merge(ti) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) session.flush() assert [ti.key for ti in res] == [tis[1].key] session.rollback() def test_find_executable_task_instances_in_default_pool(self, dag_maker, mock_executor): set_default_pool_slots(1) dag_id = "SchedulerJobTest.test_find_executable_task_instances_in_default_pool" with dag_maker(dag_id=dag_id): op1 = EmptyOperator(task_id="dummy1") op2 = EmptyOperator(task_id="dummy2") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) session = settings.Session() dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED, state=State.RUNNING) ti1 = dr1.get_task_instance(op1.task_id, session) ti2 = dr2.get_task_instance(op2.task_id, session) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() # Two tasks w/o pool up for execution and our default pool size is 1 res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 1 ti2.state = State.RUNNING session.flush() # One task w/o pool up for execution and one task running res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 0 session.rollback() session.close() def test_queued_task_instances_fails_with_missing_dag(self, dag_maker, session): """Check that task instances of missing DAGs are failed""" dag_id = "SchedulerJobTest.test_find_executable_task_instances_not_in_dagbag" task_id_1 = "dummy" task_id_2 = "dummydummy" with dag_maker(dag_id=dag_id, session=session, default_args={"max_active_tis_per_dag": 1}): EmptyOperator(task_id=task_id_1) EmptyOperator(task_id=task_id_2) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner.scheduler_dag_bag = mock.MagicMock() self.job_runner.scheduler_dag_bag.get_dag_for_run.return_value = None dr = dag_maker.create_dagrun(state=DagRunState.RUNNING) tis = dr.task_instances for ti in tis: ti.state = State.SCHEDULED session.merge(ti) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) session.flush() assert len(res) == 0 tis = dr.get_task_instances(session=session) assert len(tis) == 2 assert all(ti.state == State.FAILED for ti in tis) def test_nonexistent_pool(self, dag_maker): dag_id = "SchedulerJobTest.test_nonexistent_pool" with dag_maker(dag_id=dag_id, max_active_tasks=16): EmptyOperator(task_id="dummy_wrong_pool", pool="this_pool_doesnt_exist") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr = dag_maker.create_dagrun() ti = dr.task_instances[0] ti.state = State.SCHEDULED session.merge(ti) session.commit() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) session.flush() assert len(res) == 0 session.rollback() def test_infinite_pool(self, dag_maker): dag_id = "SchedulerJobTest.test_infinite_pool" with dag_maker(dag_id=dag_id, max_active_tasks=16): EmptyOperator(task_id="dummy", pool="infinite_pool") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr = dag_maker.create_dagrun() ti = dr.task_instances[0] ti.state = State.SCHEDULED session.merge(ti) infinite_pool = Pool( pool="infinite_pool", slots=-1, description="infinite pool", include_deferred=False, ) session.add(infinite_pool) session.commit() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) session.flush() assert len(res) == 1 session.rollback() def test_not_enough_pool_slots(self, caplog, dag_maker): dag_id = "SchedulerJobTest.test_test_not_enough_pool_slots" with dag_maker(dag_id=dag_id, max_active_tasks=16): EmptyOperator(task_id="cannot_run", pool="some_pool", pool_slots=4) EmptyOperator(task_id="can_run", pool="some_pool", pool_slots=1) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr = dag_maker.create_dagrun() ti = dr.task_instances[0] ti.state = State.SCHEDULED session.merge(ti) ti = dr.task_instances[1] ti.state = State.SCHEDULED session.merge(ti) some_pool = Pool(pool="some_pool", slots=2, description="my pool", include_deferred=False) session.add(some_pool) session.commit() with caplog.at_level(logging.WARNING): self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert ( "Not executing <TaskInstance: " "SchedulerJobTest.test_test_not_enough_pool_slots.cannot_run test [scheduled]>. " "Requested pool slots (4) are greater than total pool slots: '2' for pool: some_pool" in caplog.text ) assert ( session.query(TaskInstance) .filter(TaskInstance.dag_id == dag_id, TaskInstance.state == State.SCHEDULED) .count() == 1 ) assert ( session.query(TaskInstance) .filter(TaskInstance.dag_id == dag_id, TaskInstance.state == State.QUEUED) .count() == 1 ) session.flush() session.rollback() def test_find_executable_task_instances_none(self, dag_maker): dag_id = "SchedulerJobTest.test_find_executable_task_instances_none" task_id_1 = "dummy" with dag_maker(dag_id=dag_id, max_active_tasks=16): EmptyOperator(task_id=task_id_1) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() assert len(self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session)) == 0 session.rollback() def test_tis_for_queued_dagruns_are_not_run(self, dag_maker): """ This tests that tis from queued dagruns are not queued """ dag_id = "test_tis_for_queued_dagruns_are_not_run" task_id_1 = "dummy" with dag_maker(dag_id): task1 = EmptyOperator(task_id=task_id_1) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() ti1 = dr1.get_task_instance(task1.task_id) ti2 = dr2.get_task_instance(task1.task_id) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.merge(ti1) session.merge(ti2) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 1 assert ti2.key == res[0].key ti1.refresh_from_db() ti2.refresh_from_db() assert ti1.state == State.SCHEDULED assert ti2.state == State.QUEUED @pytest.mark.parametrize("active_state", [TaskInstanceState.RUNNING, TaskInstanceState.QUEUED]) def test_find_executable_task_instances_concurrency(self, dag_maker, active_state, session): """ We verify here that, with varying amounts of queued / running / scheduled tasks, the correct number of TIs are queued """ dag_id = "check_MAT_dag" with dag_maker(dag_id=dag_id, max_active_tasks=2, session=session): EmptyOperator(task_id="task_1") EmptyOperator(task_id="task_2") EmptyOperator(task_id="task_3") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, run_id="run_1", session=session) dr2 = dag_maker.create_dagrun_after( dr1, run_type=DagRunType.SCHEDULED, run_id="run_2", session=session ) dr3 = dag_maker.create_dagrun_after( dr2, run_type=DagRunType.SCHEDULED, run_id="run_3", session=session ) # set 2 tis in dr1 to running # no more can be queued t1, t2, t3 = dr1.get_task_instances(session=session) t1.state = active_state t2.state = active_state t3.state = State.SCHEDULED session.merge(t1) session.merge(t2) session.merge(t3) # set 1 ti from dr1 to running # one can be queued t1, t2, t3 = dr2.get_task_instances(session=session) t1.state = active_state t2.state = State.SCHEDULED t3.state = State.SCHEDULED session.merge(t1) session.merge(t2) session.merge(t3) # set 0 tis from dr1 to running # two can be queued t1, t2, t3 = dr3.get_task_instances(session=session) t1.state = State.SCHEDULED t2.state = State.SCHEDULED t3.state = State.SCHEDULED session.merge(t1) session.merge(t2) session.merge(t3) session.flush() queued_tis = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) queued_runs = Counter([x.run_id for x in queued_tis]) assert queued_runs["run_1"] == 0 assert queued_runs["run_2"] == 1 assert queued_runs["run_3"] == 2 session.commit() session.query(TaskInstance).all() # now we still have max tis running so no more will be queued queued_tis = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert queued_tis == [] session.rollback() # TODO: This is a hack, I think I need to just remove the setting and have it on always def test_find_executable_task_instances_max_active_tis_per_dag(self, dag_maker): dag_id = "SchedulerJobTest.test_find_executable_task_instances_max_active_tis_per_dag" with dag_maker(dag_id=dag_id, max_active_tasks=16): task1 = EmptyOperator(task_id="dummy", max_active_tis_per_dag=2) task2 = EmptyOperator(task_id="dummy2") executor = MockExecutor(do_update=True) scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED) dr3 = dag_maker.create_dagrun_after(dr2, run_type=DagRunType.SCHEDULED) ti1_1 = dr1.get_task_instance(task1.task_id) ti2 = dr1.get_task_instance(task2.task_id) ti1_1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti2) session.flush() with mock.patch("airflow.executors.executor_loader.ExecutorLoader.load_executor") as loader_mock: loader_mock.side_effect = executor.get_mock_loader_side_effect() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 2 ti1_1.state = State.RUNNING ti2.state = State.RUNNING ti1_2 = dr2.get_task_instance(task1.task_id) ti1_2.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti2) session.merge(ti1_2) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 1 ti1_2.state = State.RUNNING ti1_3 = dr3.get_task_instance(task1.task_id) ti1_3.state = State.SCHEDULED session.merge(ti1_2) session.merge(ti1_3) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 0 ti1_1.state = State.SCHEDULED ti1_2.state = State.SCHEDULED ti1_3.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti1_2) session.merge(ti1_3) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 2 ti1_1.state = State.RUNNING ti1_2.state = State.SCHEDULED ti1_3.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti1_2) session.merge(ti1_3) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 1 session.rollback() def test_change_state_for_executable_task_instances_no_tis_with_state(self, dag_maker): dag_id = "SchedulerJobTest.test_change_state_for__no_tis_with_state" task_id_1 = "dummy" with dag_maker(dag_id=dag_id, max_active_tasks=2): task1 = EmptyOperator(task_id=task_id_1) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED) dr3 = dag_maker.create_dagrun_after(dr2, run_type=DagRunType.SCHEDULED) ti1 = dr1.get_task_instance(task1.task_id) ti2 = dr2.get_task_instance(task1.task_id) ti3 = dr3.get_task_instance(task1.task_id) ti1.state = State.RUNNING ti2.state = State.RUNNING ti3.state = State.RUNNING session.merge(ti1) session.merge(ti2) session.merge(ti3) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=100, session=session) assert len(res) == 0 session.rollback() def test_find_executable_task_instances_not_enough_pool_slots_for_first(self, dag_maker): set_default_pool_slots(1) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id = "SchedulerJobTest.test_find_executable_task_instances_not_enough_pool_slots_for_first" with dag_maker(dag_id=dag_id): op1 = EmptyOperator(task_id="dummy1", priority_weight=2, pool_slots=2) op2 = EmptyOperator(task_id="dummy2", priority_weight=1, pool_slots=1) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti1 = dr1.get_task_instance(op1.task_id, session) ti2 = dr1.get_task_instance(op2.task_id, session) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() # Schedule ti with lower priority, # because the one with higher priority is limited by a concurrency limit res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 1 assert res[0].key == ti2.key session.rollback() def test_find_executable_task_instances_not_enough_dag_concurrency_for_first(self, dag_maker): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id_1 = ( "SchedulerJobTest.test_find_executable_task_instances_not_enough_dag_concurrency_for_first-a" ) dag_id_2 = ( "SchedulerJobTest.test_find_executable_task_instances_not_enough_dag_concurrency_for_first-b" ) with dag_maker(dag_id=dag_id_1, max_active_tasks=1): op1a = EmptyOperator(task_id="dummy1-a", priority_weight=2) op1b = EmptyOperator(task_id="dummy1-b", priority_weight=2) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) with dag_maker(dag_id=dag_id_2): op2 = EmptyOperator(task_id="dummy2", priority_weight=1) dr2 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti1a = dr1.get_task_instance(op1a.task_id, session) ti1b = dr1.get_task_instance(op1b.task_id, session) ti2 = dr2.get_task_instance(op2.task_id, session) ti1a.state = State.RUNNING ti1b.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() # Schedule ti with lower priority, # because the one with higher priority is limited by a concurrency limit res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) assert len(res) == 1 assert res[0].key == ti2.key session.rollback() def test_find_executable_task_instances_not_enough_task_concurrency_for_first(self, dag_maker): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id = "SchedulerJobTest.test_find_executable_task_instances_not_enough_task_concurrency_for_first" with dag_maker(dag_id=dag_id): op1a = EmptyOperator(task_id="dummy1-a", priority_weight=2, max_active_tis_per_dag=1) op1b = EmptyOperator(task_id="dummy1-b", priority_weight=1) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED) ti1a = dr1.get_task_instance(op1a.task_id, session) ti1b = dr1.get_task_instance(op1b.task_id, session) ti2a = dr2.get_task_instance(op1a.task_id, session) ti1a.state = State.RUNNING ti1b.state = State.SCHEDULED ti2a.state = State.SCHEDULED session.flush() # Schedule ti with lower priority, # because the one with higher priority is limited by a concurrency limit res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) assert len(res) == 1 assert res[0].key == ti1b.key session.rollback() def test_find_executable_task_instances_task_concurrency_per_dagrun_for_first(self, dag_maker): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id = "SchedulerJobTest.test_find_executable_task_instances_task_concurrency_per_dagrun_for_first" with dag_maker(dag_id=dag_id): op1a = EmptyOperator(task_id="dummy1-a", priority_weight=2, max_active_tis_per_dagrun=1) op1b = EmptyOperator(task_id="dummy1-b", priority_weight=1) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED) ti1a = dr1.get_task_instance(op1a.task_id, session) ti1b = dr1.get_task_instance(op1b.task_id, session) ti2a = dr2.get_task_instance(op1a.task_id, session) ti1a.state = State.RUNNING ti1b.state = State.SCHEDULED ti2a.state = State.SCHEDULED session.flush() # Schedule ti with higher priority, # because it's running in a different DAG run with 0 active tis res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) assert len(res) == 1 assert res[0].key == ti2a.key session.rollback() def test_find_executable_task_instances_not_enough_task_concurrency_per_dagrun_for_first(self, dag_maker): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id = ( "SchedulerJobTest" ".test_find_executable_task_instances_not_enough_task_concurrency_per_dagrun_for_first" ) with dag_maker(dag_id=dag_id): op1a = EmptyOperator.partial( task_id="dummy1-a", priority_weight=2, max_active_tis_per_dagrun=1 ).expand_kwargs([{"inputs": 1}, {"inputs": 2}]) op1b = EmptyOperator(task_id="dummy1-b", priority_weight=1) dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti1a0 = dr.get_task_instance(op1a.task_id, session, map_index=0) ti1a1 = dr.get_task_instance(op1a.task_id, session, map_index=1) ti1b = dr.get_task_instance(op1b.task_id, session) ti1a0.state = State.RUNNING ti1a1.state = State.SCHEDULED ti1b.state = State.SCHEDULED session.flush() # Schedule ti with lower priority, # because the one with higher priority is limited by a concurrency limit res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) assert len(res) == 1 assert res[0].key == ti1b.key session.rollback() def test_find_executable_task_instances_negative_open_pool_slots(self, dag_maker): """ Pools with negative open slots should not block other pools. Negative open slots can happen when reducing the number of total slots in a pool while tasks are running in that pool. """ set_default_pool_slots(0) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() pool1 = Pool(pool="pool1", slots=1, include_deferred=False) pool2 = Pool(pool="pool2", slots=1, include_deferred=False) session.add(pool1) session.add(pool2) dag_id = "SchedulerJobTest.test_find_executable_task_instances_negative_open_pool_slots" with dag_maker(dag_id=dag_id): op1 = EmptyOperator(task_id="op1", pool="pool1") op2 = EmptyOperator(task_id="op2", pool="pool2", pool_slots=2) dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti1 = dr1.get_task_instance(op1.task_id, session) ti2 = dr1.get_task_instance(op2.task_id, session) ti1.state = State.SCHEDULED ti2.state = State.RUNNING session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=1, session=session) assert len(res) == 1 assert res[0].key == ti1.key session.rollback() @mock.patch("airflow.jobs.scheduler_job_runner.Stats.gauge") def test_emit_pool_starving_tasks_metrics(self, mock_stats_gauge, dag_maker): scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dag_id = "SchedulerJobTest.test_emit_pool_starving_tasks_metrics" with dag_maker(dag_id=dag_id): op = EmptyOperator(task_id="op", pool_slots=2) dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti = dr.get_task_instance(op.task_id, session) ti.state = State.SCHEDULED set_default_pool_slots(1) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 0 mock_stats_gauge.assert_has_calls( [ mock.call("scheduler.tasks.starving", 1), mock.call(f"pool.starving_tasks.{Pool.DEFAULT_POOL_NAME}", 1), mock.call("pool.starving_tasks", 1, tags={"pool_name": Pool.DEFAULT_POOL_NAME}), ], any_order=True, ) mock_stats_gauge.reset_mock() set_default_pool_slots(2) session.flush() res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) assert len(res) == 1 mock_stats_gauge.assert_has_calls( [ mock.call("scheduler.tasks.starving", 0), mock.call(f"pool.starving_tasks.{Pool.DEFAULT_POOL_NAME}", 0), mock.call("pool.starving_tasks", 0, tags={"pool_name": Pool.DEFAULT_POOL_NAME}), ], any_order=True, ) session.rollback() session.close() def test_enqueue_task_instances_with_queued_state(self, dag_maker, session): dag_id = "SchedulerJobTest.test_enqueue_task_instances_with_queued_state" task_id_1 = "dummy" session = settings.Session() with dag_maker(dag_id=dag_id, start_date=DEFAULT_DATE, session=session): task1 = EmptyOperator(task_id=task_id_1) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) dr1 = dag_maker.create_dagrun() ti1 = dr1.get_task_instance(task1.task_id, session) with patch.object(BaseExecutor, "queue_workload") as mock_queue_workload: self.job_runner._enqueue_task_instances_with_queued_state( [ti1], executor=scheduler_job.executor, session=session ) assert mock_queue_workload.called session.rollback() @pytest.mark.parametrize("state", [State.FAILED, State.SUCCESS]) def test_enqueue_task_instances_sets_ti_state_to_None_if_dagrun_in_finish_state(self, state, dag_maker): """This tests that task instances whose dagrun is in finished state are not queued""" dag_id = "SchedulerJobTest.test_enqueue_task_instances_with_queued_state" task_id_1 = "dummy" session = settings.Session() with dag_maker(dag_id=dag_id, start_date=DEFAULT_DATE, session=session): task1 = EmptyOperator(task_id=task_id_1) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr1 = dag_maker.create_dagrun(state=state) ti = dr1.get_task_instance(task1.task_id, session) ti.state = State.SCHEDULED session.merge(ti) session.commit() with patch.object(BaseExecutor, "queue_workload") as mock_queue_workload: self.job_runner._enqueue_task_instances_with_queued_state( [ti], executor=scheduler_job.executor, session=session ) session.flush() ti.refresh_from_db(session=session) assert ti.state == State.NONE mock_queue_workload.assert_not_called() @pytest.mark.parametrize( ("task1_exec", "task2_exec"), [ ("default_exec", "default_exec"), ("default_exec", "secondary_exec"), ("secondary_exec", "secondary_exec"), ], ) @pytest.mark.usefixtures("mock_executors") def test_critical_section_enqueue_task_instances(self, task1_exec, task2_exec, dag_maker, session): dag_id = "SchedulerJobTest.test_execute_task_instances" # important that len(tasks) is less than max_active_tasks # because before scheduler._execute_task_instances would only # check the num tasks once so if max_active_tasks was 3, # we could execute arbitrarily many tasks in the second run with dag_maker(dag_id=dag_id, max_active_tasks=3, session=session): task1 = EmptyOperator(task_id="t1", executor=task1_exec) task2 = EmptyOperator(task_id="t2", executor=task2_exec) task3 = EmptyOperator(task_id="t3", executor=task2_exec) task4 = EmptyOperator(task_id="t4", executor=task2_exec) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # create first dag run with 3 running tasks dr1 = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, session=session) dr1_ti1 = dr1.get_task_instance(task1.task_id, session) dr1_ti2 = dr1.get_task_instance(task2.task_id, session) dr1_ti3 = dr1.get_task_instance(task3.task_id, session) dr1_ti4 = dr1.get_task_instance(task4.task_id, session) dr1_ti1.state = State.RUNNING dr1_ti2.state = State.RUNNING dr1_ti3.state = State.RUNNING dr1_ti4.state = State.SCHEDULED session.flush() def _count_tis(states): return session.scalar( select(func.count(TaskInstance.task_id)).where( TaskInstance.dag_id == dag_id, TaskInstance.state.in_(states), ) ) assert dr1.state == State.RUNNING assert _count_tis([TaskInstanceState.RUNNING]) == 3 # create second dag run dr2 = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED, session=session) dr2_ti1 = dr2.get_task_instance(task1.task_id, session) dr2_ti2 = dr2.get_task_instance(task2.task_id, session) dr2_ti3 = dr2.get_task_instance(task3.task_id, session) dr2_ti4 = dr2.get_task_instance(task4.task_id, session) # manually set to scheduled so we can pick them up dr2_ti1.state = State.SCHEDULED dr2_ti2.state = State.SCHEDULED dr2_ti3.state = State.SCHEDULED dr2_ti4.state = State.SCHEDULED session.flush() assert dr2.state == State.RUNNING num_queued = self.job_runner._critical_section_enqueue_task_instances(session=session) assert num_queued == 3 # check that max_active_tasks is respected assert _count_tis([TaskInstanceState.RUNNING, TaskInstanceState.QUEUED]) == 6 # this doesn't really tell us anything since we set these values manually, but hey dr1_counter = Counter(x.state for x in dr1.get_task_instances(session=session)) assert dr1_counter[State.RUNNING] == 3 assert dr1_counter[State.SCHEDULED] == 1 # this is the more meaningful bit # three of dr2's tasks should be queued since that's max active tasks # and max active tasks is evaluated per-dag-run dr2_counter = Counter(x.state for x in dr2.get_task_instances(session=session)) assert dr2_counter[State.QUEUED] == 3 assert dr2_counter[State.SCHEDULED] == 1 num_queued = self.job_runner._critical_section_enqueue_task_instances(session=session) assert num_queued == 0 def test_execute_task_instances_limit_second_executor(self, dag_maker, mock_executors): dag_id = "SchedulerJobTest.test_execute_task_instances_limit" task_id_1 = "dummy_task" task_id_2 = "dummy_task_2" session = settings.Session() # important that len(tasks) is less than max_active_tasks # because before scheduler._execute_task_instances would only # check the num tasks once so if max_active_tasks was 3, # we could execute arbitrarily many tasks in the second run with dag_maker(dag_id=dag_id, max_active_tasks=16, session=session): task1 = EmptyOperator(task_id=task_id_1, executor="default_exec") task2 = EmptyOperator(task_id=task_id_2, executor="secondary_exec") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) def _create_dagruns(): dagrun = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.RUNNING) yield dagrun for _ in range(3): dagrun = dag_maker.create_dagrun_after( dagrun, run_type=DagRunType.SCHEDULED, state=State.RUNNING, ) yield dagrun tis1 = [] tis2 = [] for dr in _create_dagruns(): ti1 = dr.get_task_instance(task1.task_id, session) tis1.append(ti1) ti2 = dr.get_task_instance(task2.task_id, session) tis2.append(ti2) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() scheduler_job.max_tis_per_query = 6 # First pass we'll grab 6 of the 8 tasks (limited by max_tis_per_query) res = self.job_runner._critical_section_enqueue_task_instances(session) assert res == 6 session.flush() for ti in tis1[:3] + tis2[:3]: ti.refresh_from_db(session) assert ti.state == TaskInstanceState.QUEUED for ti in tis1[3:] + tis2[3:]: ti.refresh_from_db(session) assert ti.state == TaskInstanceState.SCHEDULED # The remaining TIs are queued res = self.job_runner._critical_section_enqueue_task_instances(session) assert res == 2 session.flush() for ti in tis1 + tis2: ti.refresh_from_db(session) assert ti.state == State.QUEUED @pytest.mark.parametrize( ("task1_exec", "task2_exec"), [ ("default_exec", "default_exec"), ("default_exec", "secondary_exec"), ("secondary_exec", "secondary_exec"), ], ) def test_execute_task_instances_limit(self, task1_exec, task2_exec, dag_maker, mock_executors): dag_id = "SchedulerJobTest.test_execute_task_instances_limit" task_id_1 = "dummy_task" task_id_2 = "dummy_task_2" session = settings.Session() # important that len(tasks) is less than max_active_tasks # because before scheduler._execute_task_instances would only # check the num tasks once so if max_active_tasks was 3, # we could execute arbitrarily many tasks in the second run with dag_maker(dag_id=dag_id, max_active_tasks=16, session=session): task1 = EmptyOperator(task_id=task_id_1, executor=task1_exec) task2 = EmptyOperator(task_id=task_id_2, executor=task2_exec) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) def _create_dagruns(): dagrun = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.RUNNING) yield dagrun for _ in range(3): dagrun = dag_maker.create_dagrun_after( dagrun, run_type=DagRunType.SCHEDULED, state=State.RUNNING, ) yield dagrun tis = [] for dr in _create_dagruns(): ti1 = dr.get_task_instance(task1.task_id, session) tis.append(ti1) ti2 = dr.get_task_instance(task2.task_id, session) tis.append(ti2) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() scheduler_job.max_tis_per_query = 2 total_enqueued = self.job_runner._critical_section_enqueue_task_instances(session) assert total_enqueued == 2 def test_execute_task_instances_limit_slots(self, dag_maker, mock_executors): dag_id = "SchedulerJobTest.test_execute_task_instances_limit" task_id_1 = "dummy_task" task_id_2 = "dummy_task_2" session = settings.Session() # important that len(tasks) is less than max_active_tasks # because before scheduler._execute_task_instances would only # check the num tasks once so if max_active_tasks was 3, # we could execute arbitrarily many tasks in the second run with dag_maker(dag_id=dag_id, max_active_tasks=16, session=session): task1 = EmptyOperator(task_id=task_id_1, executor="default_exec") task2 = EmptyOperator(task_id=task_id_2, executor="secondary_exec") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) def _create_dagruns(): dagrun = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.RUNNING) yield dagrun for _ in range(3): dagrun = dag_maker.create_dagrun_after( dagrun, run_type=DagRunType.SCHEDULED, state=State.RUNNING, ) yield dagrun tis = [] for dr in _create_dagruns(): ti1 = dr.get_task_instance(task1.task_id, session) tis.append(ti1) ti2 = dr.get_task_instance(task2.task_id, session) tis.append(ti2) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() scheduler_job.max_tis_per_query = 8 scheduler_job.executor.slots_available = 2 # Limit only the default executor to 2 slots. # Check that we don't "overfill" an executor when the max tis per query is larger than slots # available. Of the 8 tasks returned by the query, the default executor will only take 2 and the # secondary executor will take 4 (since only 4 of the 8 TIs in the result will be for that executor) res = self.job_runner._critical_section_enqueue_task_instances(session) assert res == 6 scheduler_job.executor.slots_available = 6 # The default executor has more slots freed now and # will take the other two TIs. res = self.job_runner._critical_section_enqueue_task_instances(session) assert res == 2 def test_execute_task_instances_unlimited(self, dag_maker, mock_executor): """Test that max_tis_per_query=0 is unlimited""" dag_id = "SchedulerJobTest.test_execute_task_instances_unlimited" task_id_1 = "dummy_task" task_id_2 = "dummy_task_2" session = settings.Session() with dag_maker(dag_id=dag_id, max_active_tasks=1024, session=session): task1 = EmptyOperator(task_id=task_id_1) task2 = EmptyOperator(task_id=task_id_2) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) def _create_dagruns(): dagrun = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.RUNNING) yield dagrun for _ in range(19): dagrun = dag_maker.create_dagrun_after( dagrun, run_type=DagRunType.SCHEDULED, state=State.RUNNING, ) yield dagrun for dr in _create_dagruns(): ti1 = dr.get_task_instance(task1.task_id, session) ti2 = dr.get_task_instance(task2.task_id, session) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() scheduler_job.max_tis_per_query = 0 scheduler_job.executor.parallelism = 32 scheduler_job.executor.slots_available = 31 res = self.job_runner._critical_section_enqueue_task_instances(session) # 20 dag runs * 2 tasks each = 40, but limited by number of slots available assert res == 31 session.rollback() @pytest.mark.parametrize( ("task1_exec", "task2_exec"), [ ("default_exec", "default_exec"), ("default_exec", "secondary_exec"), ("secondary_exec", "secondary_exec"), ], ) def test_execute_task_instances_unlimited_multiple_executors( self, task1_exec, task2_exec, dag_maker, mock_executors ): """Test that max_tis_per_query=0 is unlimited""" dag_id = "SchedulerJobTest.test_execute_task_instances_unlimited" task_id_1 = "dummy_task" task_id_2 = "dummy_task_2" session = settings.Session() with dag_maker(dag_id=dag_id, max_active_tasks=1024, session=session): task1 = EmptyOperator(task_id=task_id_1, executor=task1_exec) task2 = EmptyOperator(task_id=task_id_2, executor=task2_exec) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) def _create_dagruns(): dagrun = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.RUNNING) yield dagrun for _ in range(40): dagrun = dag_maker.create_dagrun_after( dagrun, run_type=DagRunType.SCHEDULED, state=State.RUNNING, ) yield dagrun for dr in _create_dagruns(): ti1 = dr.get_task_instance(task1.task_id, session) ti2 = dr.get_task_instance(task2.task_id, session) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() scheduler_job.max_tis_per_query = 0 for executor in mock_executors: executor.parallelism = 32 executor.slots_available = 31 total_enqueued = 0 with conf_vars({("core", "parallelism"): "40"}): # 40 dag runs * 2 tasks each = 80. Two executors have capacity for 61 concurrent jobs, but they # together respect core.parallelism and will not run more in aggregate then that allows. total_enqueued += self.job_runner._critical_section_enqueue_task_instances(session) if task1_exec != task2_exec: # Two executors will execute up to core parallelism assert total_enqueued == 40 else: # A single executor will only run up to its available slots assert total_enqueued == 31 session.rollback() def test_adopt_or_reset_orphaned_tasks(self, dag_maker, session): with dag_maker("test_execute_helper_reset_orphaned_tasks", session=session): op1 = EmptyOperator(task_id="op1") scheduler_job = Job() session.add(scheduler_job) session.flush() dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti = dr.get_task_instance(task_id=op1.task_id, session=session) ti.state = State.QUEUED ti.queued_by_job_id = scheduler_job.id session.flush() dr2 = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED) ti2 = dr2.get_task_instance(task_id=op1.task_id, session=session) ti2.state = State.QUEUED ti2.queued_by_job_id = scheduler_job.id session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=0) self.job_runner.adopt_or_reset_orphaned_tasks() ti = dr.get_task_instance(task_id=op1.task_id, session=session) assert ti.state == State.NONE ti2 = dr2.get_task_instance(task_id=op1.task_id, session=session) assert ti2.state == State.NONE, "Tasks run by Backfill Jobs should be treated the same" def test_adopt_or_reset_orphaned_tasks_multiple_executors(self, dag_maker, mock_executors): """ Test that with multiple executors configured tasks are sorted correctly and handed off to the correct executor for adoption. """ session = settings.Session() with dag_maker("test_execute_helper_reset_orphaned_tasks_multiple_executors"): op1 = EmptyOperator(task_id="op1") op2 = EmptyOperator(task_id="op2", executor="default_exec") op3 = EmptyOperator(task_id="op3", executor="secondary_exec") dr = dag_maker.create_dagrun() scheduler_job = Job() session.add(scheduler_job) session.commit() ti1 = dr.get_task_instance(task_id=op1.task_id, session=session) ti2 = dr.get_task_instance(task_id=op2.task_id, session=session) ti3 = dr.get_task_instance(task_id=op3.task_id, session=session) tis = [ti1, ti2, ti3] for ti in tis: ti.state = State.QUEUED ti.queued_by_job_id = scheduler_job.id session.commit() new_scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=new_scheduler_job, num_runs=0) self.job_runner.adopt_or_reset_orphaned_tasks() # Default executor is called for ti1 (no explicit executor override uses default) and ti2 (where we # explicitly marked that for execution by the default executor) try: mock_executors[0].try_adopt_task_instances.assert_called_once_with([ti1, ti2]) except AssertionError: # The order of the TIs given to try_adopt_task_instances is not consistent, so check the other # order first before allowing AssertionError to fail the test mock_executors[0].try_adopt_task_instances.assert_called_once_with([ti2, ti1]) # Second executor called for ti3 mock_executors[1].try_adopt_task_instances.assert_called_once_with([ti3]) def test_adopt_sets_last_heartbeat_on_adopt(self, dag_maker, session, mock_executor): with dag_maker("test_adopt_sets_last_heartbeat_on_adopt", session=session): op1 = EmptyOperator(task_id="op1") old_scheduler_job = Job() session.add(old_scheduler_job) session.flush() dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) ti = dr.get_task_instance(task_id=op1.task_id, session=session) ti.state = State.QUEUED ti.queued_by_job_id = old_scheduler_job.id ti.last_heartbeat_at = None session.commit() # Executor adopts all TIs (returns empty list to reset), so TI is adopted mock_executor.try_adopt_task_instances.return_value = [] new_scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=new_scheduler_job, num_runs=0) self.job_runner.adopt_or_reset_orphaned_tasks(session=session) ti.refresh_from_db(session=session) assert ti.state == State.QUEUED assert ti.queued_by_job_id == new_scheduler_job.id assert ti.last_heartbeat_at is not None def test_adopt_sets_dagrun_conf_when_none(self, dag_maker, session, mock_executor): with dag_maker("test_adopt_sets_dagrun_conf_when_none", session=session): op1 = EmptyOperator(task_id="op1") old_scheduler_job = Job() session.add(old_scheduler_job) session.flush() dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) # Ensure conf starts as None dr.conf = None session.merge(dr) session.flush() dr = session.scalar(select(DagRun).where(DagRun.id == dr.id)) assert dr.conf is None ti = dr.get_task_instance(task_id=op1.task_id, session=session) ti.state = State.QUEUED ti.queued_by_job_id = old_scheduler_job.id session.commit() # Executor adopts all TIs (returns empty list to reset), so TI is adopted mock_executor.try_adopt_task_instances.return_value = [] new_scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=new_scheduler_job, num_runs=0) self.job_runner.adopt_or_reset_orphaned_tasks(session=session) # DagRun.conf should be set to {} on adoption when it was None session.refresh(dr) assert dr.conf == {} def test_purge_without_heartbeat_skips_when_missing_dag_version(self, dag_maker, session, caplog): with dag_maker("test_purge_without_heartbeat_skips_when_missing_dag_version", session=session): EmptyOperator(task_id="task") dag_run = dag_maker.create_dagrun(run_id="test_run", state=DagRunState.RUNNING) mock_executor = MagicMock() scheduler_job = Job(executor=mock_executor) self.job_runner = SchedulerJobRunner(scheduler_job) ti = dag_run.get_task_instance(task_id="task", session=session) ti.state = TaskInstanceState.RUNNING ti.queued_by_job_id = scheduler_job.id ti.last_heartbeat_at = timezone.utcnow() - timedelta(hours=1) # Simulate missing dag_version ti.dag_version_id = None session.merge(ti) session.commit() with caplog.at_level("WARNING", logger="airflow.jobs.scheduler_job_runner"): self.job_runner._purge_task_instances_without_heartbeats([ti], session=session) # Should log a warning and skip processing assert any("DAG Version not found for TaskInstance" in rec.message for rec in caplog.records) mock_executor.send_callback.assert_not_called() # State should be unchanged (not failed) ti.refresh_from_db(session=session) assert ti.state == TaskInstanceState.RUNNING @staticmethod def mock_failure_callback(context): pass @conf_vars({("scheduler", "num_stuck_in_queued_retries"): "2"}) def test_handle_stuck_queued_tasks_multiple_attempts(self, dag_maker, session, mock_executors): """Verify that tasks stuck in queued will be rescheduled up to N times.""" with dag_maker("test_fail_stuck_queued_tasks_multiple_executors"): EmptyOperator(task_id="op1", on_failure_callback=TestSchedulerJob.mock_failure_callback) EmptyOperator(task_id="op2", executor="default_exec") def _queue_tasks(tis): for ti in tis: ti.state = "queued" ti.queued_dttm = timezone.utcnow() session.commit() run_id = str(uuid4()) dr = dag_maker.create_dagrun(run_id=run_id) tis = dr.get_task_instances(session=session) _queue_tasks(tis=tis) scheduler_job = Job() scheduler = SchedulerJobRunner(job=scheduler_job, num_runs=0) # job_runner._reschedule_stuck_task = MagicMock() scheduler._task_queued_timeout = -300 # always in violation of timeout with _loader_mock(mock_executors): scheduler._handle_tasks_stuck_in_queued() # If the task gets stuck in queued once, we reset it to scheduled tis = dr.get_task_instances(session=session) assert [x.state for x in tis] == ["scheduled", "scheduled"] assert [x.queued_dttm for x in tis] == [None, None] _queue_tasks(tis=tis) log_events = [ x.event for x in session.scalars(select(Log).where(Log.run_id == run_id).order_by(Log.id)).all() ] assert log_events == [ "stuck in queued reschedule", "stuck in queued reschedule", ] with _loader_mock(mock_executors): scheduler._handle_tasks_stuck_in_queued() log_events = [ x.event for x in session.scalars(select(Log).where(Log.run_id == run_id).order_by(Log.id)).all() ] assert log_events == [ "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", ] mock_executors[0].fail.assert_not_called() tis = dr.get_task_instances(session=session) assert [x.state for x in tis] == ["scheduled", "scheduled"] _queue_tasks(tis=tis) with _loader_mock(mock_executors): scheduler._handle_tasks_stuck_in_queued() log_events = [ x.event for x in session.scalars(select(Log).where(Log.run_id == run_id).order_by(Log.id)).all() ] assert log_events == [ "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued tries exceeded", "stuck in queued tries exceeded", ] mock_executors[ 0 ].send_callback.assert_called_once() # this should only be called for the task that has a callback states = [x.state for x in dr.get_task_instances(session=session)] assert states == ["failed", "failed"] mock_executors[0].fail.assert_called() @conf_vars({("scheduler", "num_stuck_in_queued_retries"): "2"}) def test_handle_stuck_queued_tasks_reschedule_sensors(self, dag_maker, session, mock_executors): """Reschedule sensors go in and out of running repeatedly using the same try_number Make sure that they get three attempts per reschedule, not 3 attempts per try_number""" with dag_maker("test_fail_stuck_queued_tasks_multiple_executors"): EmptyOperator(task_id="op1", on_failure_callback=TestSchedulerJob.mock_failure_callback) EmptyOperator(task_id="op2", executor="default_exec") def _queue_tasks(tis): for ti in tis: ti.state = "queued" ti.queued_dttm = timezone.utcnow() session.commit() def _add_running_event(tis): for ti in tis: updated_entry = Log( dttm=timezone.utcnow(), dag_id=ti.dag_id, task_id=ti.task_id, map_index=ti.map_index, event="running", run_id=ti.run_id, try_number=ti.try_number, ) session.add(updated_entry) run_id = str(uuid4()) dr = dag_maker.create_dagrun(run_id=run_id) tis = dr.get_task_instances(session=session) _queue_tasks(tis=tis) scheduler_job = Job() scheduler = SchedulerJobRunner(job=scheduler_job, num_runs=0) # job_runner._reschedule_stuck_task = MagicMock() scheduler._task_queued_timeout = -300 # always in violation of timeout with _loader_mock(mock_executors): scheduler._handle_tasks_stuck_in_queued() # If the task gets stuck in queued once, we reset it to scheduled tis = dr.get_task_instances(session=session) assert [x.state for x in tis] == ["scheduled", "scheduled"] assert [x.queued_dttm for x in tis] == [None, None] _queue_tasks(tis=tis) log_events = [ x.event for x in session.scalars(select(Log).where(Log.run_id == run_id).order_by(Log.id)).all() ] assert log_events == [ "stuck in queued reschedule", "stuck in queued reschedule", ] with _loader_mock(mock_executors): scheduler._handle_tasks_stuck_in_queued() log_events = [ x.event for x in session.scalars(select(Log).where(Log.run_id == run_id).order_by(Log.id)).all() ] assert log_events == [ "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", ] mock_executors[0].fail.assert_not_called() tis = dr.get_task_instances(session=session) assert [x.state for x in tis] == ["scheduled", "scheduled"] _add_running_event(tis) # This should "reset" the count of stuck queued for _ in range(3): # Should be able to be stuck 3 more times before failing _queue_tasks(tis=tis) with _loader_mock(mock_executors): scheduler._handle_tasks_stuck_in_queued() tis = dr.get_task_instances(session=session) log_events = [ x.event for x in session.scalars(select(Log).where(Log.run_id == run_id).order_by(Log.id)).all() ] assert log_events == [ "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "running", "running", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued reschedule", "stuck in queued tries exceeded", "stuck in queued tries exceeded", ] mock_executors[ 0 ].send_callback.assert_called_once() # this should only be called for the task that has a callback states = [x.state for x in dr.get_task_instances(session=session)] assert states == ["failed", "failed"] mock_executors[0].fail.assert_called() def test_revoke_task_not_imp_tolerated(self, dag_maker, session, caplog): """Test that if executor no implement revoke_task then we don't blow up.""" with dag_maker("test_fail_stuck_queued_tasks"): op1 = EmptyOperator(task_id="op1") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task_id=op1.task_id, session=session) ti.state = State.QUEUED ti.queued_dttm = timezone.utcnow() - timedelta(minutes=15) session.commit() from airflow.executors.local_executor import LocalExecutor assert "revoke_task" in BaseExecutor.__dict__ # this is just verifying that LocalExecutor is good enough for this test # in that it does not implement revoke_task assert "revoke_task" not in LocalExecutor.__dict__ scheduler_job = Job(executor=LocalExecutor()) job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=0) job_runner._task_queued_timeout = 300 job_runner._handle_tasks_stuck_in_queued() def test_executor_end_called(self, mock_executors): """ Test to make sure executor.end gets called with a successful scheduler loop run """ scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) run_job(scheduler_job, execute_callable=self.job_runner._execute) scheduler_job.executor.end.assert_called_once() def test_executor_end_called_multiple_executors(self, mock_executors): """ Test to make sure executor.end gets called on all executors with a successful scheduler loop run """ scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) run_job(scheduler_job, execute_callable=self.job_runner._execute) scheduler_job.executor.end.assert_called_once() for executor in scheduler_job.executors: executor.end.assert_called_once() def test_cleanup_methods_all_called(self): """ Test to make sure all cleanup methods are called when the scheduler loop has an exception """ scheduler_job = Job(executor=mock.MagicMock(slots_available=8)) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._run_scheduler_loop = mock.MagicMock(side_effect=RuntimeError("oops")) scheduler_job.executor.end = mock.MagicMock(side_effect=RuntimeError("triple oops")) with pytest.raises(RuntimeError, match="oops"): run_job(scheduler_job, execute_callable=self.job_runner._execute) scheduler_job.executor.end.assert_called_once() def test_cleanup_methods_all_called_multiple_executors(self, mock_executors): """ Test to make sure all cleanup methods are called when the scheduler loop has an exception """ scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._run_scheduler_loop = mock.MagicMock(side_effect=RuntimeError("oops")) scheduler_job.executor.end = mock.MagicMock(side_effect=RuntimeError("triple oops")) with pytest.raises(RuntimeError, match="oops"): run_job(scheduler_job, execute_callable=self.job_runner._execute) for executor in scheduler_job.executors: executor.end.assert_called_once() def test_queued_dagruns_stops_creating_when_max_active_is_reached(self, dag_maker): """This tests that queued dagruns stops creating once max_active_runs is reached""" with dag_maker(max_active_runs=10) as dag: EmptyOperator(task_id="mytask") session = settings.Session() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() orm_dag = session.get(DagModel, dag.dag_id) assert orm_dag is not None for _ in range(20): self.job_runner._create_dag_runs([orm_dag], session) drs = session.query(DagRun).all() assert len(drs) == 10 for dr in drs: dr.state = State.RUNNING session.merge(dr) session.commit() assert session.query(DagRun.state).filter(DagRun.state == State.RUNNING).count() == 10 for _ in range(20): self.job_runner._create_dag_runs([orm_dag], session) assert session.query(DagRun).count() == 10 assert session.query(DagRun.state).filter(DagRun.state == State.RUNNING).count() == 10 assert session.query(DagRun.state).filter(DagRun.state == State.QUEUED).count() == 0 assert orm_dag.next_dagrun_create_after is None def test_runs_are_created_after_max_active_runs_was_reached(self, dag_maker, session): """ Test that when creating runs once max_active_runs is reached the runs does not stick """ scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) # Use catchup=True to ensure proper run creation behavior after max_active_runs is no longer reached with dag_maker(max_active_runs=1, session=session, catchup=True) as dag: # Need to use something that doesn't immediately get marked as success by the scheduler BashOperator(task_id="task", bash_command="true") dag_run = dag_maker.create_dagrun(state=State.RUNNING, session=session, run_type=DagRunType.SCHEDULED) # Reach max_active_runs for _ in range(3): self.job_runner._do_scheduling(session) # Complete dagrun # Add dag_run back in to the session (_do_scheduling does an expunge_all) dag_run = session.merge(dag_run) session.refresh(dag_run) dag_run.get_task_instance(task_id="task", session=session).state = State.SUCCESS # create new run for _ in range(3): self.job_runner._do_scheduling(session) # Assert that new runs has created dag_runs = DagRun.find(dag_id=dag.dag_id, session=session) assert len(dag_runs) == 2 @pytest.mark.parametrize( ("ti_state", "final_ti_span_status"), [ pytest.param(State.SUCCESS, SpanStatus.ENDED, id="dr_ended_successfully"), pytest.param(State.RUNNING, SpanStatus.ACTIVE, id="dr_still_running"), ], ) def test_recreate_unhealthy_scheduler_spans_if_needed(self, ti_state, final_ti_span_status, dag_maker): with dag_maker( dag_id="test_recreate_unhealthy_scheduler_spans_if_needed", start_date=DEFAULT_DATE, max_active_runs=1, dagrun_timeout=datetime.timedelta(seconds=60), ): EmptyOperator(task_id="dummy") session = settings.Session() old_job = Job() old_job.job_type = SchedulerJobRunner.job_type session.add(old_job) session.commit() assert old_job.is_alive() is False new_job = Job() new_job.job_type = SchedulerJobRunner.job_type session.add(new_job) session.flush() self.job_runner = SchedulerJobRunner(job=new_job) self.job_runner.active_spans = ThreadSafeDict() assert len(self.job_runner.active_spans.get_all()) == 0 dr = dag_maker.create_dagrun() dr.state = State.RUNNING dr.span_status = SpanStatus.ACTIVE dr.scheduled_by_job_id = old_job.id ti = dr.get_task_instances(session=session)[0] ti.state = ti_state ti.start_date = timezone.utcnow() ti.span_status = SpanStatus.ACTIVE ti.queued_by_job_id = old_job.id session.merge(ti) session.merge(dr) session.commit() assert dr.scheduled_by_job_id != self.job_runner.job.id assert dr.scheduled_by_job_id == old_job.id assert dr.run_id is not None assert dr.state == State.RUNNING assert dr.span_status == SpanStatus.ACTIVE assert self.job_runner.active_spans.get("dr:" + str(dr.id)) is None assert self.job_runner.active_spans.get("ti:" + ti.id) is None assert ti.state == ti_state assert ti.span_status == SpanStatus.ACTIVE self.job_runner._recreate_unhealthy_scheduler_spans_if_needed(dr, session) assert self.job_runner.active_spans.get("dr:" + str(dr.id)) is not None if final_ti_span_status == SpanStatus.ACTIVE: assert self.job_runner.active_spans.get("ti:" + ti.id) is not None assert len(self.job_runner.active_spans.get_all()) == 2 else: assert self.job_runner.active_spans.get("ti:" + ti.id) is None assert len(self.job_runner.active_spans.get_all()) == 1 assert dr.span_status == SpanStatus.ACTIVE assert ti.span_status == final_ti_span_status def test_end_spans_of_externally_ended_ops(self, dag_maker): with dag_maker( dag_id="test_end_spans_of_externally_ended_ops", start_date=DEFAULT_DATE, max_active_runs=1, dagrun_timeout=datetime.timedelta(seconds=60), ): EmptyOperator(task_id="dummy") session = settings.Session() job = Job() job.job_type = SchedulerJobRunner.job_type session.add(job) self.job_runner = SchedulerJobRunner(job=job) self.job_runner.active_spans = ThreadSafeDict() assert len(self.job_runner.active_spans.get_all()) == 0 dr = dag_maker.create_dagrun() dr.state = State.SUCCESS dr.span_status = SpanStatus.SHOULD_END ti = dr.get_task_instances(session=session)[0] ti.state = State.SUCCESS ti.span_status = SpanStatus.SHOULD_END ti.context_carrier = {} session.merge(ti) session.merge(dr) session.commit() dr_span = Trace.start_root_span(span_name="dag_run_span", start_as_current=False) ti_span = Trace.start_child_span(span_name="ti_span", start_as_current=False) self.job_runner.active_spans.set("dr:" + str(dr.id), dr_span) self.job_runner.active_spans.set("ti:" + ti.id, ti_span) assert dr.span_status == SpanStatus.SHOULD_END assert ti.span_status == SpanStatus.SHOULD_END assert self.job_runner.active_spans.get("dr:" + str(dr.id)) is not None assert self.job_runner.active_spans.get("ti:" + ti.id) is not None self.job_runner._end_spans_of_externally_ended_ops(session) assert dr.span_status == SpanStatus.ENDED assert ti.span_status == SpanStatus.ENDED assert self.job_runner.active_spans.get("dr:" + str(dr.id)) is None assert self.job_runner.active_spans.get("ti:" + ti.id) is None @pytest.mark.parametrize( ("state", "final_span_status"), [ pytest.param(State.SUCCESS, SpanStatus.ENDED, id="dr_ended_successfully"), pytest.param(State.RUNNING, SpanStatus.NEEDS_CONTINUANCE, id="dr_still_running"), ], ) def test_end_active_spans(self, state, final_span_status, dag_maker): with dag_maker( dag_id="test_end_active_spans", start_date=DEFAULT_DATE, max_active_runs=1, dagrun_timeout=datetime.timedelta(seconds=60), ): EmptyOperator(task_id="dummy") session = settings.Session() job = Job() job.job_type = SchedulerJobRunner.job_type self.job_runner = SchedulerJobRunner(job=job) self.job_runner.active_spans = ThreadSafeDict() assert len(self.job_runner.active_spans.get_all()) == 0 dr = dag_maker.create_dagrun() dr.state = state dr.span_status = SpanStatus.ACTIVE ti = dr.get_task_instances(session=session)[0] ti.state = state ti.span_status = SpanStatus.ACTIVE ti.context_carrier = {} session.merge(ti) session.merge(dr) session.commit() dr_span = Trace.start_root_span(span_name="dag_run_span", start_as_current=False) ti_span = Trace.start_child_span(span_name="ti_span", start_as_current=False) self.job_runner.active_spans.set("dr:" + str(dr.id), dr_span) self.job_runner.active_spans.set("ti:" + ti.id, ti_span) assert dr.span_status == SpanStatus.ACTIVE assert ti.span_status == SpanStatus.ACTIVE assert self.job_runner.active_spans.get("dr:" + str(dr.id)) is not None assert self.job_runner.active_spans.get("ti:" + ti.id) is not None assert len(self.job_runner.active_spans.get_all()) == 2 self.job_runner._end_active_spans(session) assert dr.span_status == final_span_status assert ti.span_status == final_span_status assert self.job_runner.active_spans.get("dr:" + str(dr.id)) is None assert self.job_runner.active_spans.get("ti:" + ti.id) is None assert len(self.job_runner.active_spans.get_all()) == 0 def test_dagrun_timeout_verify_max_active_runs(self, dag_maker): """ Test if a dagrun will not be scheduled if max_dag_runs has been reached and dagrun_timeout is not reached """ with dag_maker( dag_id="test_scheduler_verify_max_active_runs_and_dagrun_timeout", start_date=DEFAULT_DATE, max_active_runs=1, dagrun_timeout=datetime.timedelta(seconds=60), ) as dag: EmptyOperator(task_id="dummy") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() orm_dag = session.get(DagModel, dag.dag_id) assert orm_dag is not None self.job_runner._create_dag_runs([orm_dag], session) self.job_runner._start_queued_dagruns(session) drs = DagRun.find(dag_id=dag.dag_id, session=session) assert len(drs) == 1 dr = drs[0] assert orm_dag.next_dagrun_create_after is None # But we should record the date of _what run_ it would be assert isinstance(orm_dag.next_dagrun, datetime.datetime) assert isinstance(orm_dag.next_dagrun_data_interval_start, datetime.datetime) assert isinstance(orm_dag.next_dagrun_data_interval_end, datetime.datetime) # Should be scheduled as dagrun_timeout has passed dr.start_date = timezone.utcnow() - datetime.timedelta(days=1) session.flush() callback = self.job_runner._schedule_dag_run(dr, session) session.flush() session.refresh(dr) assert dr.state == State.FAILED session.refresh(orm_dag) assert isinstance(orm_dag.next_dagrun, datetime.datetime) assert isinstance(orm_dag.next_dagrun_data_interval_start, datetime.datetime) assert isinstance(orm_dag.next_dagrun_data_interval_end, datetime.datetime) assert isinstance(orm_dag.next_dagrun_create_after, datetime.datetime) expected_callback = DagCallbackRequest( filepath=dr.dag.relative_fileloc, dag_id=dr.dag_id, is_failure_callback=True, run_id=dr.run_id, bundle_name=orm_dag.bundle_name, bundle_version=orm_dag.bundle_version, context_from_server=DagRunContext( dag_run=dr, last_ti=dr.get_last_ti(dag, session), ), msg="timed_out", ) # Verify dag failure callback request is sent assert callback == expected_callback session.rollback() session.close() def test_dagrun_timeout_fails_run(self, dag_maker): """ Test if a dagrun will be set failed if timeout, even without max_active_runs """ session = settings.Session() with dag_maker( dag_id="test_scheduler_fail_dagrun_timeout", dagrun_timeout=datetime.timedelta(seconds=60), session=session, ): EmptyOperator(task_id="dummy") dr = dag_maker.create_dagrun(start_date=timezone.utcnow() - datetime.timedelta(days=1)) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) callback = self.job_runner._schedule_dag_run(dr, session) session.flush() session.refresh(dr) assert dr.state == State.FAILED assert isinstance(callback, DagCallbackRequest) assert callback.dag_id == dr.dag_id assert callback.run_id == dr.run_id assert callback.msg == "timed_out" session.rollback() session.close() def test_dagrun_timeout_fails_run_and_update_next_dagrun(self, dag_maker): """ Test that dagrun timeout fails run and update the next dagrun """ session = settings.Session() # Explicitly set catchup=True as test specifically expects runs to be created in date order with dag_maker( max_active_runs=1, dag_id="test_scheduler_fail_dagrun_timeout", dagrun_timeout=datetime.timedelta(seconds=60), catchup=True, ): EmptyOperator(task_id="dummy") dr = dag_maker.create_dagrun(start_date=timezone.utcnow() - datetime.timedelta(days=1)) # check that next_dagrun is dr.logical_date dag_maker.dag_model.next_dagrun == dr.logical_date scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._schedule_dag_run(dr, session) session.flush() session.refresh(dr) assert dr.state == State.FAILED # check that next_dagrun_create_after has been updated by calculate_dagrun_date_fields assert dag_maker.dag_model.next_dagrun_create_after == dr.logical_date + timedelta(days=1) # check that no running/queued runs yet assert ( session.query(DagRun).filter(DagRun.state.in_([DagRunState.RUNNING, DagRunState.QUEUED])).count() == 0 ) @pytest.mark.parametrize( ("state", "expected_callback_msg"), [(State.SUCCESS, "success"), (State.FAILED, "task_failure")] ) def test_dagrun_callbacks_are_called(self, state, expected_callback_msg, dag_maker, session): """ Test if DagRun is successful, and if Success callbacks is defined, it is sent to DagFileProcessor. """ with dag_maker( dag_id="test_dagrun_callbacks_are_called", on_success_callback=lambda x: print("success"), on_failure_callback=lambda x: print("failed"), session=session, ) as dag: EmptyOperator(task_id="dummy") scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun() ti = dr.get_task_instance("dummy", session) ti.set_state(state, session) session.flush() with mock.patch.object(settings, "USE_JOB_SCHEDULE", False): self.job_runner._do_scheduling(session) expected_callback = DagCallbackRequest( filepath=dag.relative_fileloc, dag_id=dr.dag_id, is_failure_callback=bool(state == State.FAILED), run_id=dr.run_id, msg=expected_callback_msg, bundle_name="dag_maker", bundle_version=None, context_from_server=DagRunContext( dag_run=dr, last_ti=ti, ), ) # Verify dag failure callback request is sent to file processor scheduler_job.executor.callback_sink.send.assert_called_once_with(expected_callback) session.rollback() session.close() @pytest.mark.parametrize( ("state", "expected_callback_msg"), [(State.SUCCESS, "success"), (State.FAILED, "task_failure")] ) def test_dagrun_plugins_are_notified(self, state, expected_callback_msg, dag_maker, session): """ Test if DagRun is successful, and if Success callbacks is defined, it is sent to DagFileProcessor. """ with dag_maker( dag_id="test_dagrun_callbacks_are_called", on_success_callback=lambda x: print("success"), on_failure_callback=lambda x: print("failed"), session=session, ): EmptyOperator(task_id="dummy") dag_listener.clear() get_listener_manager().add_listener(dag_listener) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun() ti = dr.get_task_instance("dummy", session) ti.set_state(state, session) with mock.patch.object(settings, "USE_JOB_SCHEDULE", False): self.job_runner._do_scheduling(session) assert len(dag_listener.success) or len(dag_listener.failure) dag_listener.success = [] dag_listener.failure = [] session.rollback() def test_dagrun_timeout_callbacks_are_stored_in_database(self, dag_maker, session): with dag_maker( dag_id="test_dagrun_timeout_callbacks_are_stored_in_database", on_failure_callback=lambda x: print("failed"), dagrun_timeout=timedelta(hours=1), session=session, ) as dag: EmptyOperator(task_id="empty") scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) scheduler_job.executor.callback_sink = DatabaseCallbackSink() dr = dag_maker.create_dagrun(start_date=DEFAULT_DATE) with mock.patch.object(settings, "USE_JOB_SCHEDULE", False): self.job_runner._do_scheduling(session) callback = ( session.query(DbCallbackRequest) .order_by(DbCallbackRequest.id.desc()) .first() .get_callback_request() ) expected_callback = DagCallbackRequest( filepath=dag.relative_fileloc, dag_id=dr.dag_id, is_failure_callback=True, run_id=dr.run_id, msg="timed_out", bundle_name="dag_maker", bundle_version=None, context_from_server=DagRunContext( dag_run=dr, last_ti=dr.get_last_ti(dag, session), ), ) assert callback == expected_callback def test_dagrun_callbacks_commited_before_sent(self, dag_maker): """ Tests that before any callbacks are sent to the processor, the session is committed. This ensures that the dagrun details are up to date when the callbacks are run. """ with dag_maker(dag_id="test_dagrun_callbacks_commited_before_sent"): EmptyOperator(task_id="dummy") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._send_dag_callbacks_to_processor = mock.Mock() self.job_runner._schedule_dag_run = mock.Mock() dr = dag_maker.create_dagrun() session = settings.Session() ti = dr.get_task_instance("dummy") ti.set_state(State.SUCCESS, session) with ( mock.patch.object(settings, "USE_JOB_SCHEDULE", False), mock.patch("airflow.jobs.scheduler_job_runner.prohibit_commit") as mock_guard, ): mock_guard.return_value.__enter__.return_value.commit.side_effect = session.commit def mock_schedule_dag_run(*args, **kwargs): mock_guard.reset_mock() return None def mock_send_dag_callbacks_to_processor(*args, **kwargs): mock_guard.return_value.__enter__.return_value.commit.assert_called() self.job_runner._send_dag_callbacks_to_processor.side_effect = ( mock_send_dag_callbacks_to_processor ) self.job_runner._schedule_dag_run.side_effect = mock_schedule_dag_run self.job_runner._do_scheduling(session) # Verify dag failure callback request is sent to file processor self.job_runner._send_dag_callbacks_to_processor.assert_called_once() # and mock_send_dag_callbacks_to_processor has asserted the callback was sent after a commit session.rollback() session.close() @pytest.mark.parametrize("state", [State.SUCCESS, State.FAILED]) def test_dagrun_callbacks_are_not_added_when_callbacks_are_not_defined(self, state, dag_maker, session): """ Test if no on_*_callback are defined on DAG, Callbacks not registered and sent to DAG Processor """ with dag_maker( dag_id="test_dagrun_callbacks_are_not_added_when_callbacks_are_not_defined", session=session, ): BashOperator(task_id="test_task", bash_command="echo hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._send_dag_callbacks_to_processor = mock.Mock() dr = dag_maker.create_dagrun() ti = dr.get_task_instance("test_task", session) ti.set_state(state, session) with mock.patch.object(settings, "USE_JOB_SCHEDULE", False): self.job_runner._do_scheduling(session) # Verify Callback is not set (i.e is None) when no callbacks are set on DAG self.job_runner._send_dag_callbacks_to_processor.assert_called_once() call_args = self.job_runner._send_dag_callbacks_to_processor.call_args.args assert call_args[0].dag_id == dr.dag_id assert call_args[1] is None session.rollback() @pytest.mark.parametrize(("state", "msg"), [[State.SUCCESS, "success"], [State.FAILED, "task_failure"]]) def test_dagrun_callbacks_are_added_when_callbacks_are_defined(self, state, msg, dag_maker): """ Test if on_*_callback are defined on DAG, Callbacks ARE registered and sent to DAG Processor """ with dag_maker( dag_id="test_dagrun_callbacks_are_added_when_callbacks_are_defined", on_failure_callback=lambda: True, on_success_callback=lambda: True, ): BashOperator(task_id="test_task", bash_command="echo hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._send_dag_callbacks_to_processor = mock.Mock() session = settings.Session() dr = dag_maker.create_dagrun() ti = dr.get_task_instance("test_task") ti.set_state(state, session) with mock.patch.object(settings, "USE_JOB_SCHEDULE", False): self.job_runner._do_scheduling(session) # Verify Callback is set (i.e is None) when no callbacks are set on DAG self.job_runner._send_dag_callbacks_to_processor.assert_called_once() call_args = self.job_runner._send_dag_callbacks_to_processor.call_args.args assert call_args[0].dag_id == dr.dag_id assert call_args[1] is not None assert call_args[1].msg == msg session.rollback() session.close() def test_dagrun_notify_called_success(self, dag_maker): with dag_maker( dag_id="test_dagrun_notify_called", on_success_callback=lambda x: print("success"), on_failure_callback=lambda x: print("failed"), ): EmptyOperator(task_id="dummy") dag_listener.clear() get_listener_manager().add_listener(dag_listener) executor = MockExecutor(do_update=False) scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) session = settings.Session() dr = dag_maker.create_dagrun() ti = dr.get_task_instance("dummy") ti.set_state(State.SUCCESS, session) with mock.patch.object(settings, "USE_JOB_SCHEDULE", False): self.job_runner._do_scheduling(session) assert dag_listener.success[0].dag_id == dr.dag_id assert dag_listener.success[0].run_id == dr.run_id assert dag_listener.success[0].state == DagRunState.SUCCESS def test_do_not_schedule_removed_task(self, dag_maker, session): """Test that scheduler doesn't schedule task instances for tasks removed from DAG.""" interval = datetime.timedelta(days=1) dag_id = "test_scheduler_do_not_schedule_removed_task" # Create initial DAG with a task with dag_maker( dag_id=dag_id, schedule=interval, start_date=DEFAULT_DATE, ): EmptyOperator(task_id="dummy") # Create a dagrun for the initial DAG dr = dag_maker.create_dagrun() assert dr is not None # Verify the task instance was created initial_tis = ( session.query(TaskInstance) .filter(TaskInstance.dag_id == dag_id, TaskInstance.task_id == "dummy") .all() ) assert len(initial_tis) == 1 # Update the DAG to remove the task (simulate DAG file change) with dag_maker( dag_id=dag_id, schedule=interval, start_date=DEFAULT_DATE, ): pass # No tasks in the DAG now # Create a new dagrun for the updated DAG dr2 = dag_maker.create_dagrun(logical_date=DEFAULT_DATE + interval, run_id="test_run_2") assert dr2 is not None scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # Try to find executable task instances - should not find any for the removed task res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) # Should be empty because the task no longer exists in the DAG assert res == [] # Verify no new task instances were created for the removed task in the new dagrun new_tis = ( session.query(TaskInstance) .filter( TaskInstance.dag_id == dag_id, TaskInstance.task_id == "dummy", TaskInstance.run_id == "test_run_2", ) .all() ) assert len(new_tis) == 0 @pytest.mark.parametrize( ("ti_states", "run_state"), [ (["failed", "success"], "failed"), (["success", "success"], "success"), ], ) def test_dagrun_state_correct(self, ti_states, run_state, dag_maker, session): """ DagRuns with one failed and one incomplete root task -> FAILED """ with dag_maker(): @task def my_task(): ... for _ in ti_states: my_task() dr = dag_maker.create_dagrun(state="running", triggered_by=DagRunTriggeredByType.TIMETABLE) for idx, state in enumerate(ti_states): dr.task_instances[idx].state = state session.commit() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._do_scheduling(session) assert ( session.query(DagRun).filter(DagRun.dag_id == dr.dag_id, DagRun.run_id == dr.run_id).one().state == run_state ) def test_dagrun_root_after_dagrun_unfinished(self, mock_executor, testing_dag_bundle): """ DagRuns with one successful and one future root task -> SUCCESS Noted: the DagRun state could be still in running state during CI. """ dagbag = DagBag(TEST_DAG_FOLDER, include_examples=False) sync_bag_to_db(dagbag, "testing", None) dag_id = "test_dagrun_states_root_future" scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=2) run_job(scheduler_job, execute_callable=self.job_runner._execute) first_run = DagRun.find(dag_id=dag_id)[0] ti_ids = [(ti.task_id, ti.state) for ti in first_run.get_task_instances()] assert ti_ids == [("current", State.SUCCESS)] assert first_run.state in [State.SUCCESS, State.RUNNING] def test_scheduler_start_date(self, testing_dag_bundle): """ Test that the scheduler respects start_dates, even when DAGs have run """ dagbag = DagBag(TEST_DAG_FOLDER, include_examples=False) with create_session() as session: dag_id = "test_start_date_scheduling" dag = dagbag.get_dag(dag_id) # Deactivate other dags in this file other_dag = dagbag.get_dag("test_task_start_date_scheduling") other_dag.is_paused_upon_creation = True scheduler_dag, _ = sync_dags_to_db([dag, other_dag]) scheduler_dag.clear() assert scheduler_dag.start_date > datetime.datetime.now(timezone.utc) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) run_job(scheduler_job, execute_callable=self.job_runner._execute) # zero tasks ran assert len(session.query(TaskInstance).filter(TaskInstance.dag_id == dag_id).all()) == 0 session.commit() assert self.null_exec.sorted_tasks == [] # previously, running this backfill would kick off the Scheduler # because it would take the most recent run and start from there # That behavior still exists, but now it will only do so if after the # start date data_interval_end = DEFAULT_DATE + timedelta(days=1) scheduler_dag.create_dagrun( state="success", triggered_by=DagRunTriggeredByType.TIMETABLE, run_id="abc123", logical_date=DEFAULT_DATE, run_type=DagRunType.BACKFILL_JOB, data_interval=DataInterval(DEFAULT_DATE, data_interval_end), run_after=data_interval_end, ) # one task "ran" assert len(session.query(TaskInstance).filter(TaskInstance.dag_id == dag_id).all()) == 1 session.commit() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) run_job(scheduler_job, execute_callable=self.job_runner._execute) # still one task assert len(session.query(TaskInstance).filter(TaskInstance.dag_id == dag_id).all()) == 1 session.commit() assert self.null_exec.sorted_tasks == [] def test_scheduler_task_start_date_catchup_true(self, testing_dag_bundle): """ Test that with catchup=True, the scheduler respects task start dates that are different from DAG start dates """ dagbag = DagBag( dag_folder=os.path.join(settings.DAGS_FOLDER, "test_scheduler_dags.py"), include_examples=False, ) dag_id = "test_task_start_date_scheduling" dag = dagbag.get_dag(dag_id) # Explicitly set catchup=True dag.catchup = True dag.is_paused_upon_creation = False dagbag.bag_dag(dag=dag) # Deactivate other dags in this file other_dag = dagbag.get_dag("test_start_date_scheduling") other_dag.is_paused_upon_creation = True dagbag.bag_dag(dag=other_dag) sync_bag_to_db(dagbag, "testing", None) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=3) run_job(scheduler_job, execute_callable=self.job_runner._execute) session = settings.Session() tiq = session.query(TaskInstance).filter(TaskInstance.dag_id == dag_id) ti1s = tiq.filter(TaskInstance.task_id == "dummy1").all() ti2s = tiq.filter(TaskInstance.task_id == "dummy2").all() # With catchup=True, future task start dates are respected assert len(ti1s) == 0, "Expected no instances for dummy1 (start date in future with catchup=True)" assert len(ti2s) >= 2, "Expected multiple instances for dummy2" for ti in ti2s: assert ti.state == State.SUCCESS def test_scheduler_task_start_date_catchup_false(self, testing_dag_bundle): """ Test that with catchup=False, the scheduler ignores task start dates and schedules for the most recent interval """ dagbag = DagBag( dag_folder=os.path.join(settings.DAGS_FOLDER, "test_scheduler_dags.py"), include_examples=False, ) dag_id = "test_task_start_date_scheduling" dag = dagbag.get_dag(dag_id) dag.catchup = False dag.is_paused_upon_creation = False dagbag.bag_dag(dag=dag) # Deactivate other dags in this file other_dag = dagbag.get_dag("test_start_date_scheduling") other_dag.is_paused_upon_creation = True dagbag.bag_dag(dag=other_dag) sync_bag_to_db(dagbag, "testing", None) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=3) run_job(scheduler_job, execute_callable=self.job_runner._execute) session = settings.Session() tiq = session.query(TaskInstance).filter(TaskInstance.dag_id == dag_id) ti1s = tiq.filter(TaskInstance.task_id == "dummy1").all() ti2s = tiq.filter(TaskInstance.task_id == "dummy2").all() # With catchup=False, future task start dates are ignored assert len(ti1s) >= 1, "Expected instances for dummy1 (ignoring future start date with catchup=False)" assert len(ti2s) >= 1, "Expected instances for dummy2" # Check that both tasks are scheduled for the same recent interval if ti1s and ti2s: recent_ti1 = ti1s[0] recent_ti2 = ti2s[0] assert recent_ti1.logical_date == recent_ti2.logical_date, ( "Both tasks should be scheduled for the same interval" ) def test_scheduler_multiprocessing(self): """ Test that the scheduler can successfully queue multiple dags in parallel """ dagbag = DagBag(TEST_DAG_FOLDER, include_examples=False) dag_ids = [ "test_start_date_scheduling", "test_task_start_date_scheduling", ] for dag_id in dag_ids: dag = dagbag.get_dag(dag_id) if not dag: raise ValueError(f"could not find dag {dag_id}") create_scheduler_dag(dag).clear() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) run_job(scheduler_job, execute_callable=self.job_runner._execute) # zero tasks ran dag_id = "test_start_date_scheduling" session = settings.Session() assert len(session.query(TaskInstance).filter(TaskInstance.dag_id == dag_id).all()) == 0 def test_scheduler_verify_pool_full(self, dag_maker, mock_executor): """ Test task instances not queued when pool is full """ with dag_maker(dag_id="test_scheduler_verify_pool_full"): BashOperator( task_id="dummy", pool="test_scheduler_verify_pool_full", bash_command="echo hi", ) session = settings.Session() pool = Pool(pool="test_scheduler_verify_pool_full", slots=1, include_deferred=False) session.add(pool) session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # Create 2 dagruns, which will create 2 task instances. dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) self.job_runner._schedule_dag_run(dr, session) dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.RUNNING) self.job_runner._schedule_dag_run(dr, session) session.flush() task_instances_list = self.job_runner._executable_task_instances_to_queued( max_tis=32, session=session ) assert len(task_instances_list) == 1 @pytest.mark.need_serialized_dag def test_scheduler_verify_pool_full_2_slots_per_task(self, dag_maker, session, mock_executor): """ Test task instances not queued when pool is full. Variation with non-default pool_slots """ # Explicitly set catchup=True as tests expect runs to be created in date order with dag_maker( dag_id="test_scheduler_verify_pool_full_2_slots_per_task", start_date=DEFAULT_DATE, session=session, catchup=True, ): BashOperator( task_id="dummy", pool="test_scheduler_verify_pool_full_2_slots_per_task", pool_slots=2, bash_command="echo hi", ) pool = Pool(pool="test_scheduler_verify_pool_full_2_slots_per_task", slots=6, include_deferred=False) session.add(pool) session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # Create 5 dagruns, which will create 5 task instances. def _create_dagruns(): dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) yield dr for _ in range(4): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED) yield dr for dr in _create_dagruns(): self.job_runner._schedule_dag_run(dr, session) task_instances_list = self.job_runner._executable_task_instances_to_queued( max_tis=32, session=session ) # As tasks require 2 slots, only 3 can fit into 6 available assert len(task_instances_list) == 3 @pytest.mark.need_serialized_dag def test_scheduler_keeps_scheduling_pool_full(self, dag_maker, mock_executor): """ Test task instances in a pool that isn't full keep getting scheduled even when a pool is full. """ session = settings.Session() pool_p1 = Pool(pool="test_scheduler_keeps_scheduling_pool_full_p1", slots=1, include_deferred=False) pool_p2 = Pool(pool="test_scheduler_keeps_scheduling_pool_full_p2", slots=10, include_deferred=False) session.add(pool_p1) session.add(pool_p2) session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # We'll use this to create 30 dagruns for each DAG. # To increase the chances the TIs from the "full" pool will get # retrieved first, we schedule all TIs from the first dag first. def _create_dagruns(dag: SerializedDAG): next_info = dag.next_dagrun_info(None) assert next_info is not None for i in range(30): yield dag.create_dagrun( run_id=f"scheduled_{i}", run_type=DagRunType.SCHEDULED, logical_date=next_info.logical_date, data_interval=next_info.data_interval, run_after=next_info.run_after, state=DagRunState.RUNNING, triggered_by=DagRunTriggeredByType.TEST, session=session, ) next_info = dag.next_dagrun_info(next_info.data_interval) if next_info is None: break with dag_maker( dag_id="test_scheduler_keeps_scheduling_pool_full_d1", start_date=DEFAULT_DATE, ) as dag_d1: BashOperator( task_id="test_scheduler_keeps_scheduling_pool_full_t1", pool="test_scheduler_keeps_scheduling_pool_full_p1", bash_command="echo hi", ) for dr in _create_dagruns(dag_d1): self.job_runner._schedule_dag_run(dr, session) with dag_maker( dag_id="test_scheduler_keeps_scheduling_pool_full_d2", start_date=DEFAULT_DATE, ) as dag_d2: BashOperator( task_id="test_scheduler_keeps_scheduling_pool_full_t2", pool="test_scheduler_keeps_scheduling_pool_full_p2", bash_command="echo hi", ) for dr in _create_dagruns(dag_d2): self.job_runner._schedule_dag_run(dr, session) self.job_runner._executable_task_instances_to_queued(max_tis=2, session=session) task_instances_list2 = self.job_runner._executable_task_instances_to_queued( max_tis=2, session=session ) # Make sure we get TIs from a non-full pool in the 2nd list assert len(task_instances_list2) > 0 assert all( task_instance.pool != "test_scheduler_keeps_scheduling_pool_full_p1" for task_instance in task_instances_list2 ) def test_scheduler_verify_priority_and_slots(self, dag_maker, mock_executor): """ Test task instances with higher priority are not queued when pool does not have enough slots. Though tasks with lower priority might be executed. """ with dag_maker(dag_id="test_scheduler_verify_priority_and_slots"): # Medium priority, not enough slots BashOperator( task_id="test_scheduler_verify_priority_and_slots_t0", pool="test_scheduler_verify_priority_and_slots", pool_slots=2, priority_weight=2, bash_command="echo hi", ) # High priority, occupies first slot BashOperator( task_id="test_scheduler_verify_priority_and_slots_t1", pool="test_scheduler_verify_priority_and_slots", pool_slots=1, priority_weight=3, bash_command="echo hi", ) # Low priority, occupies second slot BashOperator( task_id="test_scheduler_verify_priority_and_slots_t2", pool="test_scheduler_verify_priority_and_slots", pool_slots=1, priority_weight=1, bash_command="echo hi", ) session = settings.Session() pool = Pool(pool="test_scheduler_verify_priority_and_slots", slots=2, include_deferred=False) session.add(pool) session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun() for ti in dr.task_instances: ti.state = State.SCHEDULED session.merge(ti) session.flush() task_instances_list = self.job_runner._executable_task_instances_to_queued( max_tis=32, session=session ) # Only second and third assert len(task_instances_list) == 2 ti0 = ( session.query(TaskInstance) .filter(TaskInstance.task_id == "test_scheduler_verify_priority_and_slots_t0") .first() ) assert ti0.state == State.SCHEDULED ti1 = ( session.query(TaskInstance) .filter(TaskInstance.task_id == "test_scheduler_verify_priority_and_slots_t1") .first() ) assert ti1.state == State.QUEUED ti2 = ( session.query(TaskInstance) .filter(TaskInstance.task_id == "test_scheduler_verify_priority_and_slots_t2") .first() ) assert ti2.state == State.QUEUED def test_verify_integrity_if_dag_not_changed(self, dag_maker, session): # CleanUp session.query(SerializedDagModel).filter( SerializedDagModel.dag_id == "test_verify_integrity_if_dag_not_changed" ).delete(synchronize_session=False) with dag_maker(dag_id="test_verify_integrity_if_dag_not_changed") as dag: BashOperator(task_id="dummy", bash_command="echo hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() orm_dag = dag_maker.dag_model assert orm_dag is not None scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._create_dag_runs([orm_dag], session) drs = DagRun.find(dag_id=dag.dag_id, session=session) assert len(drs) == 1 dr = drs[0] # Verify that DagRun.verify_integrity is not called with mock.patch("airflow.jobs.scheduler_job_runner.DagRun.verify_integrity") as mock_verify_integrity: self.job_runner._schedule_dag_run(dr, session) mock_verify_integrity.assert_not_called() session.flush() tis_count = ( session.query(func.count(TaskInstance.task_id)) .filter( TaskInstance.dag_id == dr.dag_id, TaskInstance.logical_date == dr.logical_date, TaskInstance.task_id == dr.dag.tasks[0].task_id, TaskInstance.state == State.SCHEDULED, ) .scalar() ) assert tis_count == 1 latest_dag_version = DagVersion.get_latest_version(dr.dag_id, session=session) for ti in dr.task_instances: assert ti.dag_version_id == latest_dag_version.id session.rollback() session.close() def test_verify_integrity_if_dag_changed(self, dag_maker): # CleanUp with create_session() as session: session.query(SerializedDagModel).filter( SerializedDagModel.dag_id == "test_verify_integrity_if_dag_changed" ).delete(synchronize_session=False) with dag_maker(dag_id="test_verify_integrity_if_dag_changed", serialized=False) as dag: BashOperator(task_id="dummy", bash_command="echo hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() orm_dag = dag_maker.dag_model assert orm_dag is not None SerializedDagModel.write_dag(LazyDeserializedDAG.from_dag(dag), bundle_name="testing") assert orm_dag.bundle_version is None scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._create_dag_runs([orm_dag], session) drs = DagRun.find(dag_id=dag.dag_id, session=session) assert len(drs) == 1 dr = drs[0] self.job_runner._schedule_dag_run(dag_run=dr, session=session) len(self.job_runner.scheduler_dag_bag.get_dag_for_run(dr, session).tasks) == 1 dag_version_1 = DagVersion.get_latest_version(dr.dag_id, session=session) assert dr.dag_versions[-1].id == dag_version_1.id # Now let's say the DAG got updated (new task got added) BashOperator(task_id="bash_task_1", dag=dag, bash_command="echo hi") SerializedDagModel.write_dag( LazyDeserializedDAG.from_dag(dag), bundle_name="testing", session=session ) session.commit() dag_version_2 = DagVersion.get_latest_version(dr.dag_id, session=session) assert dag_version_2 != dag_version_1 self.job_runner._schedule_dag_run(dr, session) session.commit() drs = DagRun.find(dag_id=dag.dag_id, session=session) assert len(drs) == 1 dr = drs[0] assert dr.dag_versions[-1].id == dag_version_2.id assert len(self.job_runner.scheduler_dag_bag.get_dag_for_run(dr, session).tasks) == 2 if SQLALCHEMY_V_1_4: tis_count = ( session.query(func.count(TaskInstance.task_id)) .filter( TaskInstance.dag_id == dr.dag_id, TaskInstance.logical_date == dr.logical_date, TaskInstance.state == State.SCHEDULED, ) .scalar() ) if SQLALCHEMY_V_2_0: tis_count = session.scalar( select(func.count(TaskInstance.task_id)).where( TaskInstance.dag_id == dr.dag_id, TaskInstance.logical_date == dr.logical_date, TaskInstance.state == State.SCHEDULED, ) ) assert tis_count == 2 latest_dag_version = DagVersion.get_latest_version(dr.dag_id, session=session) assert dr.dag_versions[-1].id == latest_dag_version.id session.rollback() session.close() def test_verify_integrity_not_called_for_versioned_bundles(self, dag_maker, session): with dag_maker("test_verify_integrity_if_dag_not_changed") as dag: BashOperator(task_id="dummy", bash_command="echo hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) orm_dag = dag_maker.dag_model assert orm_dag is not None self.job_runner._create_dag_runs([orm_dag], session) drs = DagRun.find(dag_id=dag.dag_id, session=session) assert len(drs) == 1 dr = drs[0] # Simulate versioned bundle by adding a version to dr.bundle_version dr.bundle_version = "1" session.merge(dr) session.commit() drs = session.query(DagRun).options(joinedload(DagRun.task_instances)).all() dr = drs[0] assert dr.bundle_version == "1" dag_version_1 = DagVersion.get_latest_version(dr.dag_id, session=session) # Now let's say the DAG got updated (new task got added) BashOperator(task_id="bash_task_1", dag=dag_maker.dag, bash_command="echo hi") sync_dag_to_db(dag_maker.dag, bundle_name="dag_maker", session=session) session.commit() dag_version_2 = DagVersion.get_latest_version(dr.dag_id, session=session) assert dag_version_2 != dag_version_1 # Verify that DagRun.verify_integrity is not called with mock.patch("airflow.jobs.scheduler_job_runner.DagRun.verify_integrity") as mock_verify_integrity: self.job_runner._schedule_dag_run(dr, session) mock_verify_integrity.assert_not_called() @pytest.mark.need_serialized_dag def test_retry_still_in_executor(self, dag_maker, session): """ Checks if the scheduler does not put a task in limbo, when a task is retried but is still present in the executor. """ executor = MockExecutor(do_update=False) with dag_maker( dag_id="test_retry_still_in_executor", schedule="@once", session=session, ) as dag: dag_task1 = BashOperator( task_id="test_retry_handling_op", bash_command="exit 1", retries=1, ) dag_maker.dag_model.calculate_dagrun_date_fields(dag, None) @provide_session def do_schedule(session): # Use a empty file since the above mock will return the # expected DAGs. Also specify only a single file so that it doesn't # try to schedule the above DAG repeatedly. scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) scheduler_job.heartrate = 0 # Since the DAG is not in the directory watched by scheduler job, # it would've been marked as deleted and not being scheduled. with mock.patch.object(DagModel, "deactivate_deleted_dags"): with mock.patch( "airflow.executors.executor_loader.ExecutorLoader.load_executor" ) as loader_mock: loader_mock.side_effect = executor.get_mock_loader_side_effect() run_job(scheduler_job, execute_callable=self.job_runner._execute) do_schedule() with create_session() as session: ti = ( session.query(TaskInstance) .filter( TaskInstance.dag_id == "test_retry_still_in_executor", TaskInstance.task_id == "test_retry_handling_op", ) .first() ) assert ti is not None, "Task not created by scheduler" ti.task = dag_task1 def run_with_error(ti, ignore_ti_state=False): with contextlib.suppress(AirflowException): ti.run(ignore_ti_state=ignore_ti_state) assert ti.try_number == 1 # At this point, scheduler has tried to schedule the task once and # heartbeated the executor once, which moved the state of the task from # SCHEDULED to QUEUED and then to SCHEDULED, to fail the task execution # we need to ignore the TaskInstance state as SCHEDULED is not a valid state to start # executing task. run_with_error(ti, ignore_ti_state=True) assert ti.state == State.UP_FOR_RETRY assert ti.try_number == 1 ti.refresh_from_db(lock_for_update=True, session=session) ti.state = State.SCHEDULED session.merge(ti) session.commit() # To verify that task does get re-queued. executor.do_update = True do_schedule() ti.refresh_from_db() assert ti.try_number == 1 assert ti.state == State.SUCCESS def test_adopt_or_reset_orphaned_tasks_nothing(self): """Try with nothing.""" scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() assert self.job_runner.adopt_or_reset_orphaned_tasks(session=session) == 0 @pytest.mark.parametrize( "adoptable_state", list(sorted(State.adoptable_states)), ) def test_adopt_or_reset_resettable_tasks(self, dag_maker, adoptable_state, session): dag_id = "test_adopt_or_reset_adoptable_tasks_" + adoptable_state.name with dag_maker(dag_id=dag_id, schedule="@daily"): task_id = dag_id + "_task" EmptyOperator(task_id=task_id) old_job = Job() session.add(old_job) session.commit() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr1 = dag_maker.create_dagrun(run_type=DagRunType.MANUAL) ti = dr1.get_task_instances(session=session)[0] ti.state = adoptable_state ti.queued_by_job_id = old_job.id session.merge(ti) session.merge(dr1) session.commit() num_reset_tis = self.job_runner.adopt_or_reset_orphaned_tasks(session=session) assert num_reset_tis == 1 def test_adopt_or_reset_orphaned_tasks_external_triggered_dag(self, dag_maker, session): dag_id = "test_reset_orphaned_tasks_external_triggered_dag" with dag_maker(dag_id=dag_id, schedule="@daily"): task_id = dag_id + "_task" EmptyOperator(task_id=task_id) old_job = Job() session.add(old_job) session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() dr1 = dag_maker.create_dagrun(run_type=DagRunType.MANUAL) ti = dr1.get_task_instances(session=session)[0] ti.state = State.QUEUED ti.queued_by_job_id = old_job.id session.merge(ti) session.merge(dr1) session.commit() num_reset_tis = self.job_runner.adopt_or_reset_orphaned_tasks(session=session) assert num_reset_tis == 1 def test_adopt_or_reset_orphaned_tasks_backfill_dag(self, dag_maker): dag_id = "test_adopt_or_reset_orphaned_tasks_backfill_dag" with dag_maker(dag_id=dag_id, schedule="@daily"): task_id = dag_id + "_task" EmptyOperator(task_id=task_id) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() session.add(scheduler_job) session.flush() dr1 = dag_maker.create_dagrun(run_type=DagRunType.BACKFILL_JOB) ti = dr1.get_task_instances(session=session)[0] ti.state = State.SCHEDULED session.merge(ti) session.merge(dr1) session.flush() assert dr1.run_type == DagRunType.BACKFILL_JOB assert self.job_runner.adopt_or_reset_orphaned_tasks(session=session) == 0 session.rollback() def test_reset_orphaned_tasks_no_orphans(self, dag_maker): dag_id = "test_reset_orphaned_tasks_no_orphans" with dag_maker(dag_id=dag_id, schedule="@daily"): task_id = dag_id + "_task" EmptyOperator(task_id=task_id) scheduler_job = Job() scheduler_job.state = "running" self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() session.add(scheduler_job) session.flush() dr1 = dag_maker.create_dagrun() tis = dr1.get_task_instances(session=session) tis[0].state = State.RUNNING tis[0].queued_by_job_id = scheduler_job.id session.merge(dr1) session.merge(tis[0]) session.flush() assert self.job_runner.adopt_or_reset_orphaned_tasks(session=session) == 0 tis[0].refresh_from_db() assert tis[0].state == State.RUNNING def test_reset_orphaned_tasks_non_running_dagruns(self, dag_maker): """Ensure orphaned tasks with non-running dagruns are not reset.""" dag_id = "test_reset_orphaned_tasks_non_running_dagruns" with dag_maker(dag_id=dag_id, schedule="@daily"): task_id = dag_id + "_task" EmptyOperator(task_id=task_id) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() session.add(scheduler_job) session.flush() dr1 = dag_maker.create_dagrun() dr1.state = State.QUEUED tis = dr1.get_task_instances(session=session) assert len(tis) == 1 tis[0].state = State.SCHEDULED session.merge(dr1) session.merge(tis[0]) session.flush() assert self.job_runner.adopt_or_reset_orphaned_tasks(session=session) == 0 session.rollback() def test_adopt_or_reset_orphaned_tasks_stale_scheduler_jobs(self, dag_maker): dag_id = "test_adopt_or_reset_orphaned_tasks_stale_scheduler_jobs" with dag_maker(dag_id=dag_id, schedule="@daily"): EmptyOperator(task_id="task1") EmptyOperator(task_id="task2") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() scheduler_job.state = State.RUNNING scheduler_job.latest_heartbeat = timezone.utcnow() session.add(scheduler_job) old_job = Job() old_job_runner = SchedulerJobRunner(job=old_job) old_job_runner.job.state = State.RUNNING old_job_runner.job.latest_heartbeat = timezone.utcnow() - timedelta(minutes=15) session.add(old_job) session.flush() dr1 = dag_maker.create_dagrun( run_type=DagRunType.SCHEDULED, logical_date=DEFAULT_DATE, start_date=timezone.utcnow(), ) ti1, ti2 = dr1.get_task_instances(session=session) dr1.state = State.RUNNING ti1.state = State.QUEUED ti1.queued_by_job_id = old_job.id session.merge(dr1) session.merge(ti1) ti2.state = State.QUEUED ti2.queued_by_job_id = scheduler_job.id session.merge(ti2) session.flush() num_reset_tis = self.job_runner.adopt_or_reset_orphaned_tasks(session=session) assert num_reset_tis == 1 session.refresh(ti1) assert ti1.state is None session.refresh(ti2) assert ti2.state == State.QUEUED session.rollback() def test_adopt_or_reset_orphaned_tasks_only_fails_scheduler_jobs(self, caplog): """Make sure we only set SchedulerJobs to failed, not all jobs""" session = settings.Session() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) scheduler_job.state = State.RUNNING scheduler_job.latest_heartbeat = timezone.utcnow() session.add(scheduler_job) session.flush() old_job = Job() self.job_runner = SchedulerJobRunner(job=old_job) old_job.state = State.RUNNING old_job.latest_heartbeat = timezone.utcnow() - timedelta(minutes=15) session.add(old_job) session.flush() old_task_job = Job(state=State.RUNNING) old_task_job.latest_heartbeat = timezone.utcnow() - timedelta(minutes=15) session.add(old_task_job) session.flush() with caplog.at_level("INFO", logger="airflow.jobs.scheduler_job_runner"): self.job_runner.adopt_or_reset_orphaned_tasks(session=session) session.expire_all() assert old_job.state == State.FAILED assert old_task_job.state == State.RUNNING assert "Marked 1 SchedulerJob instances as failed" in caplog.messages @pytest.mark.parametrize( "kwargs", [ param( dict( schedule=None, backfill_runs=0, other_runs=2, max_active_runs=2, should_update=False, ), id="no_dag_schedule", ), param( dict( schedule="0 0 * * *", backfill_runs=0, other_runs=2, max_active_runs=2, should_update=False, ), id="dag_schedule_at_capacity", ), param( dict( schedule="0 0 * * *", backfill_runs=0, other_runs=1, max_active_runs=2, should_update=True, ), id="dag_schedule_under_capacity", ), param( dict( schedule="0 0 * * *", backfill_runs=0, other_runs=5, max_active_runs=2, should_update=False, ), id="dag_schedule_over_capacity", ), param( dict( schedule="0 0 * * *", number_running=None, backfill_runs=5, other_runs=1, max_active_runs=2, should_update=True, ), id="dag_schedule_under_capacity_many_backfill", ), ], ) @pytest.mark.parametrize("provide_run_count", [True, False]) def test_should_update_dag_next_dagruns(self, provide_run_count: bool, kwargs: dict, session, dag_maker): """Test if really required to update next dagrun or possible to save run time""" schedule: str | None = kwargs["schedule"] backfill_runs: int = kwargs["backfill_runs"] other_runs: int = kwargs["other_runs"] max_active_runs: int = kwargs["max_active_runs"] should_update: bool = kwargs["should_update"] with dag_maker(schedule=schedule, max_active_runs=max_active_runs) as dag: EmptyOperator(task_id="dummy") index = 0 for index in range(other_runs): dag_maker.create_dagrun( run_id=f"run_{index}", logical_date=(DEFAULT_DATE + timedelta(days=index)), start_date=timezone.utcnow(), state=State.RUNNING, run_type=DagRunType.SCHEDULED, session=session, ) for index in range(index + 1, index + 1 + backfill_runs): dag_maker.create_dagrun( run_id=f"run_{index}", logical_date=(DEFAULT_DATE + timedelta(days=index)), start_date=timezone.utcnow(), state=State.RUNNING, run_type=DagRunType.BACKFILL_JOB, session=session, ) assert index == other_runs + backfill_runs - 1 # sanity check session.commit() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) actual = self.job_runner._should_update_dag_next_dagruns( dag=dag, dag_model=dag_maker.dag_model, active_non_backfill_runs=other_runs if provide_run_count else None, # exclude backfill here session=session, ) assert actual == should_update @pytest.mark.parametrize( ("run_type", "expected"), [ (DagRunType.MANUAL, False), (DagRunType.SCHEDULED, True), (DagRunType.BACKFILL_JOB, False), (DagRunType.ASSET_TRIGGERED, False), ], ids=[ DagRunType.MANUAL.name, DagRunType.SCHEDULED.name, DagRunType.BACKFILL_JOB.name, DagRunType.ASSET_TRIGGERED.name, ], ) def test_should_update_dag_next_dagruns_after_run_type(self, run_type, expected, session, dag_maker): """Test that whether next dag run is updated depends on run type""" with dag_maker( schedule="*/1 * * * *", max_active_runs=3, ) as dag: EmptyOperator(task_id="dummy") dag_model = dag_maker.dag_model run = dag_maker.create_dagrun( run_id="run", run_type=run_type, logical_date=DEFAULT_DATE, start_date=timezone.utcnow(), state=State.SUCCESS, session=session, ) session.flush() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) actual = self.job_runner._should_update_dag_next_dagruns( dag=dag, dag_model=dag_model, last_dag_run=run, session=session, ) assert actual == expected def test_create_dag_runs(self, dag_maker): """ Test various invariants of _create_dag_runs. - That the run created has the creating_job_id set - That the run created is on QUEUED State - That dag_model has next_dagrun """ with dag_maker(dag_id="test_create_dag_runs") as dag: EmptyOperator(task_id="dummy") dag_model = dag_maker.dag_model scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) with create_session() as session: self.job_runner._create_dag_runs([dag_model], session) dr = session.query(DagRun).filter(DagRun.dag_id == dag.dag_id).one() assert dr.state == State.QUEUED assert dr.start_date is None assert dr.creating_job_id == scheduler_job.id @pytest.mark.need_serialized_dag def test_create_dag_runs_assets(self, session, dag_maker): """ Test various invariants of _create_dag_runs. - That the run created has the creating_job_id set - That the run created is on QUEUED State - That dag_model has next_dagrun """ asset1 = Asset(uri="test://asset1", name="test_asset", group="test_group") asset2 = Asset(uri="test://asset2", name="test_asset_2", group="test_group") with dag_maker(dag_id="assets-1", start_date=timezone.utcnow(), session=session): BashOperator(task_id="task", bash_command="echo 1", outlets=[asset1]) dr = dag_maker.create_dagrun( run_id="run1", logical_date=(DEFAULT_DATE + timedelta(days=100)), data_interval=(DEFAULT_DATE + timedelta(days=10), DEFAULT_DATE + timedelta(days=11)), ) asset1_id = session.query(AssetModel.id).filter_by(uri=asset1.uri).scalar() event1 = AssetEvent( asset_id=asset1_id, source_task_id="task", source_dag_id=dr.dag_id, source_run_id=dr.run_id, source_map_index=-1, ) session.add(event1) # Create a second event, creation time is more recent, but data interval is older dr = dag_maker.create_dagrun( run_id="run2", logical_date=(DEFAULT_DATE + timedelta(days=101)), data_interval=(DEFAULT_DATE + timedelta(days=5), DEFAULT_DATE + timedelta(days=6)), ) event2 = AssetEvent( asset_id=asset1_id, source_task_id="task", source_dag_id=dr.dag_id, source_run_id=dr.run_id, source_map_index=-1, ) session.add(event2) with dag_maker(dag_id="assets-consumer-multiple", schedule=[asset1, asset2]): pass dag2 = dag_maker.dag with dag_maker(dag_id="assets-consumer-single", schedule=[asset1]): pass dag3 = dag_maker.dag session = dag_maker.session session.add_all( [ AssetDagRunQueue(asset_id=asset1_id, target_dag_id=dag2.dag_id), AssetDagRunQueue(asset_id=asset1_id, target_dag_id=dag3.dag_id), ] ) session.flush() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) with create_session() as session: self.job_runner._create_dagruns_for_dags(session, session) def dict_from_obj(obj): """Get dict of column attrs from SqlAlchemy object.""" return {k.key: obj.__dict__.get(k) for k in obj.__mapper__.column_attrs} # dag3 should be triggered since it only depends on asset1, and it's been queued created_run = session.query(DagRun).filter(DagRun.dag_id == dag3.dag_id).one() assert created_run.state == State.QUEUED assert created_run.start_date is None # we don't have __eq__ defined on AssetEvent because... given the fact that in the future # we may register events from other systems, asset_id + timestamp might not be enough PK assert list(map(dict_from_obj, created_run.consumed_asset_events)) == list( map(dict_from_obj, [event1, event2]) ) assert created_run.data_interval_start is None assert created_run.data_interval_end is None # dag2 ADRQ record should still be there since the dag run was *not* triggered assert session.query(AssetDagRunQueue).filter_by(target_dag_id=dag2.dag_id).one() is not None # dag2 should not be triggered since it depends on both asset 1 and 2 assert session.query(DagRun).filter(DagRun.dag_id == dag2.dag_id).one_or_none() is None # dag3 ADRQ record should be deleted since the dag run was triggered assert session.query(AssetDagRunQueue).filter_by(target_dag_id=dag3.dag_id).one_or_none() is None assert created_run.creating_job_id == scheduler_job.id @pytest.mark.need_serialized_dag def test_create_dag_runs_asset_alias_with_asset_event_attached(self, session, dag_maker): """ Test Dag Run trigger on AssetAlias includes the corresponding AssetEvent in `consumed_asset_events`. """ # Simulate an Asset created at runtime, and it is not an active asset asset1 = Asset(uri="test://asset1", name="test_asset", group="test_group") # Create an AssetAlias, and the Asset will be attached to this AssetAlias asset_alias = AssetAlias(name="test_asset_alias_with_asset_event", group="test_group") # Add it to the DB so the event can be created from this Asset asm = AssetModel(name=asset1.name, uri=asset1.uri, group=asset1.group) session.add(asm) asam = AssetAliasModel(name=asset_alias.name, group=asset_alias.group) # Simulate a Producer dag attach an asset event at runtime to an AssetAlias # Don't use outlets here because the needs to associate an asset alias with an asset event in the association table with dag_maker(dag_id="asset-alias-producer", start_date=timezone.utcnow(), session=session): BashOperator(task_id="simulate-asset-alias-outlet", bash_command="echo 1") dr = dag_maker.create_dagrun(run_id="asset-alias-producer-run") asset1_id = session.query(AssetModel.id).filter_by(uri=asset1.uri).scalar() # Create an AssetEvent, which is associated with the Asset, and it is attached to the AssetAlias event = AssetEvent( asset_id=asset1_id, source_task_id="simulate-asset-alias-outlet", source_dag_id=dr.dag_id, source_run_id=dr.run_id, source_map_index=-1, ) # Attach the Asset and the AssetEvent to the Asset Alias asam.assets.append(asm) asam.asset_events.append(event) session.add_all([asam, event]) session.flush() # Create the Consumer DAG and Trigger it with scheduler with dag_maker(dag_id="asset-alias-consumer", schedule=[asset_alias]): pass consumer_dag = dag_maker.dag session = dag_maker.session session.add_all( [ AssetDagRunQueue(asset_id=asset1_id, target_dag_id=consumer_dag.dag_id), ] ) session.flush() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) with create_session() as session: self.job_runner._create_dagruns_for_dags(session, session) def dict_from_obj(obj): """Get dict of column attrs from SqlAlchemy object.""" return {k.key: obj.__dict__.get(k) for k in obj.__mapper__.column_attrs} created_run = session.query(DagRun).filter(DagRun.dag_id == consumer_dag.dag_id).one() assert created_run.state == State.QUEUED assert created_run.start_date is None # The AssetEvent should be included in the consumed_asset_events when the consumer DAG is # triggered on AssetAlias assert list(map(dict_from_obj, created_run.consumed_asset_events)) == list( map(dict_from_obj, [event]) ) assert created_run.data_interval_start is None assert created_run.data_interval_end is None assert created_run.creating_job_id == scheduler_job.id @pytest.mark.need_serialized_dag @pytest.mark.parametrize( ("disable", "enable"), [ pytest.param({"is_stale": True}, {"is_stale": False}, id="active"), pytest.param({"is_paused": True}, {"is_paused": False}, id="paused"), ], ) def test_no_create_dag_runs_when_dag_disabled(self, session, dag_maker, disable, enable): asset = Asset(uri="test://asset_1", name="test_asset_1", group="test_group") with dag_maker(dag_id="consumer", schedule=[asset], session=session): pass with dag_maker(dag_id="producer", schedule="@daily", session=session): BashOperator(task_id="task", bash_command="echo 1", outlets=asset) asset_manger = AssetManager() asset_id = session.scalars(select(AssetModel.id).filter_by(uri=asset.uri, name=asset.name)).one() ase_q = select(AssetEvent).where(AssetEvent.asset_id == asset_id).order_by(AssetEvent.timestamp) adrq_q = select(AssetDagRunQueue).where( AssetDagRunQueue.asset_id == asset_id, AssetDagRunQueue.target_dag_id == "consumer" ) # Simulate the consumer DAG being disabled. session.execute(update(DagModel).where(DagModel.dag_id == "consumer").values(**disable)) # An ADRQ is not scheduled although an event is emitted. dr1: DagRun = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) asset_manger.register_asset_change( task_instance=dr1.get_task_instance("task", session=session), asset=asset, session=session, ) session.flush() assert session.scalars(ase_q).one().source_run_id == dr1.run_id assert session.scalars(adrq_q).one_or_none() is None # Simulate the consumer DAG being enabled. session.execute(update(DagModel).where(DagModel.dag_id == "consumer").values(**enable)) # An ADRQ should be scheduled for the new event, but not the previous one. dr2: DagRun = dag_maker.create_dagrun_after(dr1, run_type=DagRunType.SCHEDULED) asset_manger.register_asset_change( task_instance=dr2.get_task_instance("task", session=session), asset=asset, session=session, ) session.flush() assert [e.source_run_id for e in session.scalars(ase_q)] == [dr1.run_id, dr2.run_id] assert session.scalars(adrq_q).one().target_dag_id == "consumer" @time_machine.travel(DEFAULT_DATE + datetime.timedelta(days=1, seconds=9), tick=False) @mock.patch("airflow.jobs.scheduler_job_runner.Stats.timing") def test_start_dagruns(self, stats_timing, dag_maker, session): """ Test that _start_dagrun: - moves runs to RUNNING State - emit the right DagRun metrics """ from airflow.models.dag import get_last_dagrun with dag_maker(dag_id="test_start_dag_runs") as dag: EmptyOperator(task_id="dummy") dag_model = dag_maker.dag_model scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._create_dag_runs([dag_model], session) self.job_runner._start_queued_dagruns(session) dr = session.query(DagRun).filter(DagRun.dag_id == dag.dag_id).first() # Assert dr state is running assert dr.state == State.RUNNING stats_timing.assert_has_calls( [ mock.call( "dagrun.schedule_delay.test_start_dag_runs", datetime.timedelta(seconds=9), ), mock.call( "dagrun.schedule_delay", datetime.timedelta(seconds=9), tags={"dag_id": "test_start_dag_runs"}, ), ] ) assert get_last_dagrun(dag.dag_id, session).creating_job_id == scheduler_job.id def test_extra_operator_links_not_loaded_in_scheduler_loop(self, dag_maker): """ Test that Operator links are not loaded inside the Scheduling Loop (that does not include DagFileProcessorProcess) especially the critical loop of the Scheduler. This is to avoid running User code in the Scheduler and prevent any deadlocks """ with dag_maker(dag_id="test_extra_operator_links_not_loaded_in_scheduler") as dag: # This CustomOperator has Extra Operator Links registered via plugins _ = CustomOperator(task_id="custom_task") custom_task = dag.task_dict["custom_task"] # Test that custom_task has >= 1 Operator Links (after de-serialization) assert custom_task.operator_extra_links session = settings.Session() scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._do_scheduling(session=session) self.job_runner._start_queued_dagruns(session) session.flush() # assert len(self.job_runner.scheduler_dag_bag._dags) == 1 # sanity check # Get serialized dag dr = DagRun.find(dag_id=dag.dag_id)[0] s_dag_2 = self.job_runner.scheduler_dag_bag.get_dag_for_run(dr, session=session) custom_task = s_dag_2.task_dict["custom_task"] # Test that custom_task has no Operator Links (after de-serialization) in the Scheduling Loop assert not custom_task.operator_extra_links def test_scheduler_create_dag_runs_does_not_raise_error_when_no_serdag(self, caplog, dag_maker): """ Test that scheduler._create_dag_runs does not raise an error when the DAG does not exist in serialized_dag table """ with dag_maker(dag_id="test_scheduler_create_dag_runs_does_not_raise_error", serialized=False): EmptyOperator( task_id="dummy", ) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) caplog.set_level("FATAL") caplog.clear() with ( create_session() as session, caplog.at_level( "ERROR", logger="airflow.jobs.scheduler_job_runner", ), ): self._clear_serdags(dag_id=dag_maker.dag.dag_id, session=session) self.job_runner._create_dag_runs([dag_maker.dag_model], session) assert caplog.messages == [ "DAG 'test_scheduler_create_dag_runs_does_not_raise_error' not found in serialized_dag table", ] def _clear_serdags(self, dag_id, session): SDM = SerializedDagModel sdms = session.scalars(select(SDM).where(SDM.dag_id == dag_id)) for sdm in sdms: session.delete(sdm) session.commit() def test_bulk_write_to_db_external_trigger_dont_skip_scheduled_run(self, dag_maker, testing_dag_bundle): """ Test that externally triggered Dag Runs should not affect (by skipping) next scheduled DAG runs """ with dag_maker( dag_id="test_bulk_write_to_db_external_trigger_dont_skip_scheduled_run", schedule="*/1 * * * *", max_active_runs=5, catchup=True, ) as dag: EmptyOperator(task_id="dummy") session = settings.Session() # Verify that dag_model.next_dagrun is equal to next logical_date dag_model = dag_maker.dag_model assert dag_model.next_dagrun == DEFAULT_DATE assert dag_model.next_dagrun_data_interval_start == DEFAULT_DATE assert dag_model.next_dagrun_data_interval_end == DEFAULT_DATE + timedelta(minutes=1) scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) # Verify a DagRun is created with the correct dates # when Scheduler._do_scheduling is run in the Scheduler Loop self.job_runner._do_scheduling(session) dr1 = session.scalar( select(DagRun).where(DagRun.dag_id == dag_model.dag_id).order_by(DagRun.id.asc()).limit(1) ) assert dr1 is not None assert dr1.state == DagRunState.RUNNING assert dr1.logical_date == DEFAULT_DATE assert dr1.data_interval_start == DEFAULT_DATE assert dr1.data_interval_end == DEFAULT_DATE + timedelta(minutes=1) # Verify that dag_model.next_dagrun is set to next interval dag_model = session.get(DagModel, dag.dag_id) assert dag_model.next_dagrun == DEFAULT_DATE + timedelta(minutes=1) assert dag_model.next_dagrun_data_interval_start == DEFAULT_DATE + timedelta(minutes=1) assert dag_model.next_dagrun_data_interval_end == DEFAULT_DATE + timedelta(minutes=2) # Trigger the Dag externally data_interval = infer_automated_data_interval(dag.timetable, DEFAULT_LOGICAL_DATE) dr = dag.create_dagrun( run_id="test", state=DagRunState.RUNNING, logical_date=timezone.utcnow(), run_type=DagRunType.MANUAL, session=session, data_interval=data_interval, run_after=DEFAULT_LOGICAL_DATE, triggered_by=DagRunTriggeredByType.TEST, ) assert dr is not None # Test that 'dag_model.next_dagrun' has not been changed because of newly created external # triggered DagRun. dag_model = session.get(DagModel, dag.dag_id) assert dag_model.next_dagrun == DEFAULT_DATE + timedelta(minutes=1) assert dag_model.next_dagrun_data_interval_start == DEFAULT_DATE + timedelta(minutes=1) assert dag_model.next_dagrun_data_interval_end == DEFAULT_DATE + timedelta(minutes=2) def test_scheduler_create_dag_runs_check_existing_run(self, dag_maker, session): """ Test that if a dag run exists, scheduler._create_dag_runs does not raise an error. And if a Dag Run does not exist it creates next Dag Run. In both cases the Scheduler sets next logical date as DagModel.next_dagrun """ # By setting catchup=True explicitly, we ensure the test behaves as originally intended # using the historical date as the next_dagrun date. with dag_maker( dag_id="test_scheduler_create_dag_runs_check_existing_run", schedule=timedelta(days=1), catchup=True, ) as dag: EmptyOperator(task_id="dummy") assert get_last_dagrun(dag.dag_id, session) is None dag_model = dag_maker.dag_model # Assert dag_model.next_dagrun is set correctly assert dag_model.next_dagrun == DEFAULT_DATE dagrun = dag_maker.create_dagrun( run_type=DagRunType.SCHEDULED, logical_date=dag_model.next_dagrun, start_date=timezone.utcnow(), state=State.RUNNING, session=session, creating_job_id=2, ) session.flush() assert get_last_dagrun(dag.dag_id, session) == dagrun scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) # Test that this does not raise any error self.job_runner._create_dag_runs([dag_model], session) # Assert the next dagrun fields are set correctly to next logical date assert dag_model.next_dagrun_data_interval_start == DEFAULT_DATE + timedelta(days=1) assert dag_model.next_dagrun_data_interval_end == DEFAULT_DATE + timedelta(days=2) assert dag_model.next_dagrun == DEFAULT_DATE + timedelta(days=1) session.rollback() @conf_vars({("scheduler", "use_job_schedule"): "false"}) def test_do_schedule_max_active_runs_dag_timed_out(self, dag_maker, session): """Test that tasks are set to a finished state when their DAG times out""" with dag_maker( dag_id="test_max_active_run_with_dag_timed_out", schedule="@once", max_active_runs=1, catchup=True, dagrun_timeout=datetime.timedelta(seconds=1), ) as dag: task1 = BashOperator( task_id="task1", bash_command=' for((i=1;i<=600;i+=1)); do sleep "$i"; done', ) data_interval = infer_automated_data_interval(dag.timetable, DEFAULT_LOGICAL_DATE) run1 = dag.create_dagrun( run_id="test1", run_type=DagRunType.SCHEDULED, logical_date=DEFAULT_DATE, state=State.RUNNING, start_date=timezone.utcnow() - timedelta(seconds=2), session=session, data_interval=data_interval, run_after=DEFAULT_LOGICAL_DATE, triggered_by=DagRunTriggeredByType.TEST, ) run1_ti = run1.get_task_instance(task1.task_id, session) run1_ti.state = State.RUNNING logical_date_2 = DEFAULT_DATE + timedelta(seconds=10) run2 = dag.create_dagrun( run_id="test2", run_type=DagRunType.SCHEDULED, logical_date=logical_date_2, state=State.QUEUED, session=session, data_interval=data_interval, run_after=logical_date_2, triggered_by=DagRunTriggeredByType.TEST, ) scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) my_dag = session.get(DagModel, dag.dag_id) self.job_runner._create_dag_runs([my_dag], session) # Run relevant part of scheduling again to assert run2 has been scheduled self.job_runner._schedule_dag_run(run1, session) run1 = session.merge(run1) session.refresh(run1) assert run1.state == State.FAILED assert run1_ti.state == State.SKIPPED session.flush() # Run relevant part of scheduling again to assert run2 has been scheduled self.job_runner._start_queued_dagruns(session) session.flush() run2 = session.merge(run2) session.refresh(run2) assert run2.state == State.RUNNING self.job_runner._schedule_dag_run(run2, session) session.expunge_all() run2_ti = run2.get_task_instance(task1.task_id, session) assert run2_ti.state == State.SCHEDULED def test_do_schedule_max_active_runs_task_removed(self, session, dag_maker): """Test that tasks in removed state don't count as actively running.""" with dag_maker( dag_id="test_do_schedule_max_active_runs_task_removed", start_date=DEFAULT_DATE, schedule="@once", max_active_runs=1, session=session, ): # Can't use EmptyOperator as that goes straight to success BashOperator(task_id="dummy1", bash_command="true") run1 = dag_maker.create_dagrun( run_type=DagRunType.SCHEDULED, logical_date=DEFAULT_DATE + timedelta(hours=1), state=State.RUNNING, ) executor = MockExecutor(do_update=False) scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(job=scheduler_job) with mock.patch("airflow.executors.executor_loader.ExecutorLoader.load_executor") as loader_mock: # The executor is mocked, so cannot be loaded/imported. Mock load_executor and return the # correct object for the given input executor name. loader_mock.side_effect = executor.get_mock_loader_side_effect() num_queued = self.job_runner._do_scheduling(session) assert num_queued == 1 session.flush() ti = run1.task_instances[0] ti.refresh_from_db(session=session) assert ti.state == State.QUEUED def test_more_runs_are_not_created_when_max_active_runs_is_reached(self, dag_maker, caplog): """ This tests that when max_active_runs is reached, _create_dag_runs doesn't create more dagruns """ # Explicitly set catchup=True as test specifically expects historical dates to be respected with dag_maker(max_active_runs=1, catchup=True): EmptyOperator(task_id="task") scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() assert session.query(DagRun).count() == 0 query, _ = DagModel.dags_needing_dagruns(session) dag_models = query.all() self.job_runner._create_dag_runs(dag_models, session) dr = session.query(DagRun).one() dr.state == DagRunState.QUEUED assert session.query(DagRun).count() == 1 assert dag_maker.dag_model.next_dagrun_create_after is None session.flush() # dags_needing_dagruns query should not return any value query, _ = DagModel.dags_needing_dagruns(session) assert len(query.all()) == 0 self.job_runner._create_dag_runs(dag_models, session) assert session.query(DagRun).count() == 1 assert dag_maker.dag_model.next_dagrun_create_after is None assert dag_maker.dag_model.next_dagrun == DEFAULT_DATE # set dagrun to success dr = session.query(DagRun).one() dr.state = DagRunState.SUCCESS ti = dr.get_task_instance("task", session) ti.state = TaskInstanceState.SUCCESS session.merge(ti) session.merge(dr) session.flush() # check that next_dagrun is set properly by Schedulerjob._update_dag_next_dagruns self.job_runner._schedule_dag_run(dr, session) session.flush() query, _ = DagModel.dags_needing_dagruns(session) assert len(query.all()) == 1 # assert next_dagrun has been updated correctly assert dag_maker.dag_model.next_dagrun == DEFAULT_DATE + timedelta(days=1) # assert no dagruns is created yet assert ( session.query(DagRun).filter(DagRun.state.in_([DagRunState.RUNNING, DagRunState.QUEUED])).count() == 0 ) def test_max_active_runs_creation_phasing(self, dag_maker, session): """ Test that when creating runs once max_active_runs is reached that the runs come in the right order without gaps """ def complete_one_dagrun(): ti = ( session.query(TaskInstance) .join(TaskInstance.dag_run) .filter(TaskInstance.state != State.SUCCESS) .order_by(DagRun.logical_date) .first() ) if ti: ti.state = State.SUCCESS session.flush() self.clean_db() # Explicitly set catchup=True as test specifically expects runs to be created in date order with dag_maker(max_active_runs=3, session=session, catchup=True) as dag: # Need to use something that doesn't immediately get marked as success by the scheduler BashOperator(task_id="task", bash_command="true") scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) query, _ = DagModel.dags_needing_dagruns(session) query.all() for _ in range(3): self.job_runner._do_scheduling(session) model: DagModel = session.get(DagModel, dag.dag_id) # Pre-condition assert DagRun.active_runs_of_dags(dag_ids=["test_dag"], exclude_backfill=True, session=session) == { "test_dag": 3 } assert model.next_dagrun == timezone.DateTime(2016, 1, 3, tzinfo=timezone.utc) assert model.next_dagrun_create_after is None complete_one_dagrun() assert DagRun.active_runs_of_dags(dag_ids=["test_dag"], exclude_backfill=True, session=session) == { "test_dag": 3 } for _ in range(5): self.job_runner._do_scheduling(session) complete_one_dagrun() expected_logical_dates = [datetime.datetime(2016, 1, d, tzinfo=timezone.utc) for d in range(1, 6)] dagrun_logical_dates = [ dr.logical_date for dr in session.query(DagRun).order_by(DagRun.logical_date).all() ] assert dagrun_logical_dates == expected_logical_dates @pytest.mark.usefixtures("testing_dag_bundle") def test_do_schedule_max_active_runs_and_manual_trigger(self, dag_maker, mock_executors): """ Make sure that when a DAG is already at max_active_runs, that manually triggered dagruns don't start running. """ # Explicitly set catchup=True as test specifically expects runs to be created in date order with dag_maker( dag_id="test_max_active_run_plus_manual_trigger", schedule="@once", max_active_runs=1, catchup=True, ) as dag: # Can't use EmptyOperator as that goes straight to success task1 = BashOperator(task_id="dummy1", bash_command="true") task2 = BashOperator(task_id="dummy2", bash_command="true") task1 >> task2 BashOperator(task_id="dummy3", bash_command="true") session = settings.Session() dag_run = dag_maker.create_dagrun(state=State.QUEUED, session=session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) num_queued = self.job_runner._do_scheduling(session) # Add it back in to the session so we can refresh it. (_do_scheduling does an expunge_all to reduce # memory) dag_run = session.merge(dag_run) session.refresh(dag_run) assert num_queued == 2 assert dag_run.state == State.RUNNING # Now that this one is running, manually trigger a dag. dag_maker.create_dagrun( run_type=DagRunType.MANUAL, logical_date=DEFAULT_DATE + timedelta(hours=1), state=State.QUEUED, session=session, ) session.flush() self.job_runner._do_scheduling(session) # Assert that only 1 dagrun is active assert len(DagRun.find(dag_id=dag.dag_id, state=State.RUNNING, session=session)) == 1 # Assert that the other one is queued assert len(DagRun.find(dag_id=dag.dag_id, state=State.QUEUED, session=session)) == 1 def test_max_active_runs_in_a_dag_doesnt_stop_running_dag_runs_in_other_dags(self, dag_maker): session = settings.Session() # Explicitly set catchup=True as test specifically expects historical dates to be respected with dag_maker( "test_dag1", start_date=DEFAULT_DATE, schedule=timedelta(hours=1), max_active_runs=1, catchup=True, ): EmptyOperator(task_id="mytask") dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(29): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) # Explicitly set catchup=True as test specifically expects historical dates to be respected with dag_maker( "test_dag2", start_date=timezone.datetime(2020, 1, 1), schedule=timedelta(hours=1), catchup=True, ): EmptyOperator(task_id="mytask") dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(9): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._start_queued_dagruns(session) session.flush() self.job_runner._start_queued_dagruns(session) session.flush() dag1_running_count = ( session.query(func.count(DagRun.id)) .filter(DagRun.dag_id == "test_dag1", DagRun.state == State.RUNNING) .scalar() ) running_count = session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() assert dag1_running_count == 1 assert running_count == 11 def test_max_active_runs_in_a_dag_doesnt_prevent_backfill_from_running_catchup_true(self, dag_maker): session = settings.Session() with dag_maker( "test_dag1", start_date=DEFAULT_DATE, schedule=timedelta(days=1), max_active_runs=1, catchup=True, ) as dag: EmptyOperator(task_id="mytask") dag1_dag_id = dag.dag_id dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(29): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) with dag_maker( "test_dag2", start_date=timezone.datetime(2020, 1, 1), schedule=timedelta(days=1), catchup=True, ): EmptyOperator(task_id="mytask") dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(9): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._start_queued_dagruns(session) session.flush() self.job_runner._start_queued_dagruns(session) session.flush() dag1_running_count = ( session.query(func.count(DagRun.id)) .filter(DagRun.dag_id == "test_dag1", DagRun.state == State.RUNNING) .scalar() ) running_count = session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() assert dag1_running_count == 1 assert running_count == 11 from_date = pendulum.parse("2021-01-01") to_date = pendulum.parse("2021-01-06") _create_backfill( dag_id=dag1_dag_id, from_date=from_date, to_date=to_date, max_active_runs=3, reverse=False, triggering_user_name="test_user", dag_run_conf={}, ) dag1_running_count = ( session.query(func.count(DagRun.id)) .filter(DagRun.dag_id == "test_dag1", DagRun.state == State.RUNNING) .scalar() ) assert dag1_running_count == 1 total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) assert total_running_count == 11 # scheduler will now mark backfill runs as running self.job_runner._start_queued_dagruns(session) session.flush() dag1_running_count = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, ) .scalar() ) assert dag1_running_count == 4 total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) assert total_running_count == 14 # and doing it again does not change anything self.job_runner._start_queued_dagruns(session) session.flush() dag1_running_count = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, ) .scalar() ) assert dag1_running_count == 4 total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) assert total_running_count == 14 def test_max_active_runs_in_a_dag_doesnt_prevent_backfill_from_running_catchup_false(self, dag_maker): """Test that with catchup=False, backfills can still run even when max_active_runs is reached for normal DAG runs""" session = settings.Session() with dag_maker( "test_dag1", start_date=DEFAULT_DATE, schedule=timedelta(days=1), max_active_runs=1, catchup=False, ) as dag: EmptyOperator(task_id="mytask") dag1_dag_id = dag.dag_id dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) # Fewer DAG runs since we're only testing recent dates with catchup=False for _ in range(2): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) with dag_maker( "test_dag2", start_date=timezone.datetime(2020, 1, 1), schedule=timedelta(days=1), catchup=False, ) as dag: EmptyOperator(task_id="mytask") dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(2): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._start_queued_dagruns(session) session.flush() self.job_runner._start_queued_dagruns(session) session.flush() dag1_running_count = ( session.query(func.count(DagRun.id)) .filter(DagRun.dag_id == "test_dag1", DagRun.state == State.RUNNING) .scalar() ) running_count = session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() assert dag1_running_count == 1 # With catchup=False, only the most recent interval is scheduled for each DAG assert ( running_count == 2 ) # 1 from test_dag1 (limited by max_active_runs) + 1 from test_dag2 (only most recent with catchup=False) # Test that backfills can still run despite max_active_runs being reached for normal runs from_date = pendulum.parse("2021-01-01") to_date = pendulum.parse("2021-01-06") _backfill = _create_backfill( dag_id=dag1_dag_id, from_date=from_date, to_date=to_date, max_active_runs=3, reverse=False, triggering_user_name="test_user", dag_run_conf={}, ) # scheduler will now mark backfill runs as running self.job_runner._start_queued_dagruns(session) session.flush() dag1_running_count = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, ) .scalar() ) # Even with catchup=False, backfill runs should start assert dag1_running_count == 4 total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) assert ( total_running_count == 5 ) # 4 from test_dag1 + 1 from test_dag2 (only most recent with catchup=False) def test_backfill_runs_are_started_with_lower_priority_catchup_true(self, dag_maker, session): """ Here we are going to create all the runs at the same time and see which ones are scheduled first. On the first scheduler run, I expect that backfill runs would not be started due to being outside the limit in the queued runs query. """ dag1_dag_id = "test_dag1" with dag_maker( dag_id=dag1_dag_id, start_date=DEFAULT_DATE, schedule=timedelta(days=1), max_active_runs=1, catchup=True, ): EmptyOperator(task_id="mytask") def _running_counts(): dag1_non_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type != DagRunType.BACKFILL_JOB, ) .scalar() ) dag1_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type == DagRunType.BACKFILL_JOB, ) .scalar() ) total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) return dag1_non_b_running, dag1_b_running, total_running_count scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) from_date = pendulum.parse("2021-01-01") to_date = pendulum.parse("2021-01-06") _create_backfill( dag_id=dag1_dag_id, from_date=from_date, to_date=to_date, max_active_runs=3, reverse=False, triggering_user_name="test_user", dag_run_conf={}, ) dag1_non_b_running, dag1_b_running, total_running = _running_counts() # now let's create some "normal" dag runs and verify that they can run dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(29): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) with dag_maker( "test_dag2", start_date=timezone.datetime(2020, 1, 1), schedule=timedelta(days=1), catchup=True, ): EmptyOperator(task_id="mytask") dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(9): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) # initial state -- nothing is running assert dag1_non_b_running == 0 assert dag1_b_running == 0 assert total_running == 0 assert session.query(func.count(DagRun.id)).scalar() == 46 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 36 # now let's run it once self.job_runner._start_queued_dagruns(session) session.flush() # after running the scheduler one time, observe that only one dag run is started # this is because there are 30 runs for dag 1 so neither the backfills nor # any runs for dag2 get started assert DagRun.DEFAULT_DAGRUNS_TO_EXAMINE == 20 dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 1 assert dag1_b_running == 0 assert total_running == 1 assert session.scalar(select(func.count()).select_from(DagRun)) == 46 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 36 # we run scheduler again and observe that now all the runs are created # this must be because sorting is working self.job_runner._start_queued_dagruns(session) session.flush() dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 1 assert dag1_b_running == 3 assert total_running == 14 assert session.scalar(select(func.count()).select_from(DagRun)) == 46 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 36 # run it a 3rd time and nothing changes self.job_runner._start_queued_dagruns(session) session.flush() dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 1 assert dag1_b_running == 3 assert total_running == 14 assert session.scalar(select(func.count()).select_from(DagRun)) == 46 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 36 def test_backfill_runs_are_started_with_lower_priority_catchup_false(self, dag_maker, session): """ Test that with catchup=False, backfill runs are still started with lower priority than regular DAG runs, but the scheduler processes fewer runs overall due to catchup=False behavior. """ dag1_dag_id = "test_dag1" with dag_maker( dag_id=dag1_dag_id, start_date=DEFAULT_DATE, schedule=timedelta(days=1), max_active_runs=1, catchup=False, ): EmptyOperator(task_id="mytask") def _running_counts(): dag1_non_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type != DagRunType.BACKFILL_JOB, ) .scalar() ) dag1_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type == DagRunType.BACKFILL_JOB, ) .scalar() ) total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) return dag1_non_b_running, dag1_b_running, total_running_count scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) from_date = pendulum.parse("2021-01-01") to_date = pendulum.parse("2021-01-06") _create_backfill( dag_id=dag1_dag_id, from_date=from_date, to_date=to_date, max_active_runs=3, reverse=False, triggering_user_name="test_user", dag_run_conf={}, ) dag1_non_b_running, dag1_b_running, total_running = _running_counts() # Create fewer DAG runs since we're only testing recent dates with catchup=False dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) # With catchup=False, we only create a few runs instead of 29 for _ in range(4): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) with dag_maker( "test_dag2", start_date=timezone.datetime(2020, 1, 1), schedule=timedelta(days=1), catchup=False, ): EmptyOperator(task_id="mytask") dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) # With catchup=False, we only create a few runs instead of 9 for _ in range(2): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) # initial state -- nothing is running assert dag1_non_b_running == 0 assert dag1_b_running == 0 assert total_running == 0 # Total 14 runs: 5 for dag1 + 3 for dag2 + 6 backfill runs (Jan 1-6 inclusive) assert session.query(func.count(DagRun.id)).scalar() == 14 # now let's run it once self.job_runner._start_queued_dagruns(session) session.flush() # With catchup=False, the scheduler behaves differently than with catchup=True dag1_non_b_running, dag1_b_running, total_running = _running_counts() # One normal run starts due to max_active_runs=1 assert dag1_non_b_running == 1 # With catchup=False, backfill runs are started immediately alongside regular runs assert dag1_b_running == 3 # Total running = 1 normal dag1 + 3 backfills + 1 from dag2 assert total_running == 5 # Running the scheduler again doesn't change anything since we've already reached # the limits for both normal runs (max_active_runs=1) and backfill runs (default max_active_runs_per_dag=16) self.job_runner._start_queued_dagruns(session) session.flush() dag1_non_b_running, dag1_b_running, total_running = _running_counts() # Still only one normal run due to max_active_runs=1 assert dag1_non_b_running == 1 # Backfill runs remain at 3 (the maximum allowed by our test configuration) assert dag1_b_running == 3 # Total running count remains the same assert total_running == 5 # Total runs remain the same assert session.query(func.count(DagRun.id)).scalar() == 14 def test_backfill_maxed_out_no_prevent_non_backfill_max_out(self, dag_maker): session = settings.Session() dag1_dag_id = "test_dag1" with dag_maker( dag_id=dag1_dag_id, start_date=DEFAULT_DATE, schedule=timedelta(days=1), max_active_runs=1, catchup=True, ): EmptyOperator(task_id="mytask") def _running_counts(): dag1_non_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type != DagRunType.BACKFILL_JOB, ) .scalar() ) dag1_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type == DagRunType.BACKFILL_JOB, ) .scalar() ) total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) return dag1_non_b_running, dag1_b_running, total_running_count scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) from_date = pendulum.parse("2021-01-01") to_date = pendulum.parse("2021-01-06") _create_backfill( dag_id=dag1_dag_id, from_date=from_date, to_date=to_date, max_active_runs=3, reverse=False, triggering_user_name="test_user", dag_run_conf={}, ) dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 0 assert dag1_b_running == 0 assert total_running == 0 assert session.query(func.count(DagRun.id)).scalar() == 6 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 6 # scheduler will now mark backfill runs as running # it should mark 3 of them running since that is backfill max active runs self.job_runner._start_queued_dagruns(session) session.flush() dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 0 assert dag1_b_running == 3 assert total_running == 3 assert session.scalar(select(func.count()).select_from(DagRun)) == 6 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 6 # and nothing should change if scheduler runs again self.job_runner._start_queued_dagruns(session) session.flush() self.job_runner._start_queued_dagruns(session) session.flush() dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 0 assert dag1_b_running == 3 assert total_running == 3 assert session.scalar(select(func.count()).select_from(DagRun)) == 6 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 6 # now let's create some "normal" dag runs and verify that they can run dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(29): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) with dag_maker( "test_dag2", start_date=timezone.datetime(2020, 1, 1), schedule=timedelta(days=1), catchup=True, ): EmptyOperator(task_id="mytask") dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) for _ in range(9): dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) # ok at this point, there are new dag runs created, but no new running runs dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 0 assert dag1_b_running == 3 assert total_running == 3 # we created a lot of drs assert session.scalar(select(func.count()).select_from(DagRun)) == 46 # and in particular there are 36 total runs for dag1 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 36 # but now let's run the scheduler once self.job_runner._start_queued_dagruns(session) session.flush() # now we should see one more non-backfill run running, and 11 more in total dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 1 assert dag1_b_running == 3 # this should be 14 but it is not. why? # answer: because dag2 got starved out by dag1 # if we run the scheduler again, dag2 should get queued assert total_running == 4 assert session.scalar(select(func.count()).select_from(DagRun)) == 46 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 36 # run scheduler a second time self.job_runner._start_queued_dagruns(session) session.flush() dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 1 assert dag1_b_running == 3 # on the second try, dag 2's 10 runs now start running assert total_running == 14 assert session.scalar(select(func.count()).select_from(DagRun)) == 46 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 36 @pytest.mark.parametrize( ("pause_it", "expected_running"), [ (True, 0), (False, 3), ], ) def test_backfill_runs_not_started_when_backfill_paused( self, pause_it, expected_running, dag_maker, session ): """ When backfill is paused, will not start. """ dag1_dag_id = "test_dag1" # Explicitly needs catchup True for backfill test with dag_maker( dag_id=dag1_dag_id, start_date=DEFAULT_DATE, schedule=timedelta(days=1), max_active_runs=1, catchup=True, ): EmptyOperator(task_id="mytask") def _running_counts(): dag1_non_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type != DagRunType.BACKFILL_JOB, ) .scalar() ) dag1_b_running = ( session.query(func.count(DagRun.id)) .filter( DagRun.dag_id == dag1_dag_id, DagRun.state == State.RUNNING, DagRun.run_type == DagRunType.BACKFILL_JOB, ) .scalar() ) total_running_count = ( session.query(func.count(DagRun.id)).filter(DagRun.state == State.RUNNING).scalar() ) return dag1_non_b_running, dag1_b_running, total_running_count scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) from_date = pendulum.parse("2021-01-01") to_date = pendulum.parse("2021-01-06") b = _create_backfill( dag_id=dag1_dag_id, from_date=from_date, to_date=to_date, max_active_runs=3, reverse=False, triggering_user_name="test_user", dag_run_conf={}, ) dag1_non_b_running, dag1_b_running, total_running = _running_counts() # initial state -- nothing is running assert dag1_non_b_running == 0 assert dag1_b_running == 0 assert total_running == 0 assert session.query(func.count(DagRun.id)).scalar() == 6 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 6 if pause_it: b = session.get(Backfill, b.id) b.is_paused = True session.commit() # now let's run scheduler once self.job_runner._start_queued_dagruns(session) session.flush() assert DagRun.DEFAULT_DAGRUNS_TO_EXAMINE == 20 dag1_non_b_running, dag1_b_running, total_running = _running_counts() assert dag1_non_b_running == 0 assert dag1_b_running == expected_running assert total_running == expected_running assert session.scalar(select(func.count()).select_from(DagRun)) == 6 assert session.scalar(select(func.count()).where(DagRun.dag_id == dag1_dag_id)) == 6 def test_start_queued_dagruns_do_follow_logical_date_order(self, dag_maker): session = settings.Session() with dag_maker("test_dag1", max_active_runs=1): EmptyOperator(task_id="mytask") date = DEFAULT_DATE for i in range(30): dr = dag_maker.create_dagrun( run_id=f"dagrun_{i}", run_type=DagRunType.SCHEDULED, state=State.QUEUED, logical_date=date, ) date = dr.logical_date + timedelta(hours=1) scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._start_queued_dagruns(session) session.flush() dr = DagRun.find(run_id="dagrun_0") ti = dr[0].get_task_instance(task_id="mytask", session=session) ti.state = State.SUCCESS session.merge(ti) session.commit() assert dr[0].state == State.RUNNING dr[0].state = State.SUCCESS session.merge(dr[0]) session.flush() assert dr[0].state == State.SUCCESS self.job_runner._start_queued_dagruns(session) session.flush() dr = DagRun.find(run_id="dagrun_1") assert len(session.query(DagRun).filter(DagRun.state == State.RUNNING).all()) == 1 assert dr[0].state == State.RUNNING def test_no_dagruns_would_stuck_in_running(self, dag_maker): # Test that running dagruns are not stuck in running. # Create one dagrun in 'running' state and 1 in 'queued' state from one dag(max_active_runs=1) # Create 16 dagruns in 'running' state and 16 in 'queued' state from another dag # Create 16 dagruns in 'running' state and 16 in 'queued' state from yet another dag # Finish the task of the first dag, and check that another dagrun starts running # from the first dag. session = settings.Session() # first dag and dagruns date = timezone.datetime(2016, 1, 1) logical_date = timezone.coerce_datetime(date) with dag_maker("test_dagrun_states_are_correct_1", max_active_runs=1, start_date=date) as dag: task1 = EmptyOperator(task_id="dummy_task") dr1_running = dag_maker.create_dagrun(run_id="dr1_run_1", logical_date=date) data_interval = infer_automated_data_interval(dag.timetable, logical_date) dag_maker.create_dagrun( run_id="dr1_run_2", state=State.QUEUED, logical_date=dag.next_dagrun_info( last_automated_dagrun=data_interval, restricted=False ).data_interval.start, ) # second dag and dagruns date = timezone.datetime(2020, 1, 1) with dag_maker("test_dagrun_states_are_correct_2", start_date=date) as dag: EmptyOperator(task_id="dummy_task") for i in range(16): dr = dag_maker.create_dagrun( run_id=f"dr2_run_{i + 1}", state=State.RUNNING, logical_date=date, ) date = dr.logical_date + timedelta(hours=1) dr16 = DagRun.find(run_id="dr2_run_16") date = dr16[0].logical_date + timedelta(hours=1) for i in range(16, 32): dr = dag_maker.create_dagrun( run_id=f"dr2_run_{i + 1}", state=State.QUEUED, logical_date=date, ) date = dr.logical_date + timedelta(hours=1) # third dag and dagruns date = timezone.datetime(2021, 1, 1) with dag_maker("test_dagrun_states_are_correct_3", start_date=date) as dag: EmptyOperator(task_id="dummy_task") for i in range(16): dr = dag_maker.create_dagrun( run_id=f"dr3_run_{i + 1}", state=State.RUNNING, logical_date=date, ) date = dr.logical_date + timedelta(hours=1) dr16 = DagRun.find(run_id="dr3_run_16") date = dr16[0].logical_date + timedelta(hours=1) for i in range(16, 32): dr = dag_maker.create_dagrun( run_id=f"dr2_run_{i + 1}", state=State.QUEUED, logical_date=date, ) date = dr.logical_date + timedelta(hours=1) scheduler_job = Job(executor=MockExecutor(do_update=False)) self.job_runner = SchedulerJobRunner(job=scheduler_job) dag_version = DagVersion.get_latest_version(dag_id=dag.dag_id) ti = TaskInstance(task=task1, run_id=dr1_running.run_id, dag_version_id=dag_version.id) ti.refresh_from_db() ti.state = State.SUCCESS session.merge(ti) session.flush() # Run the scheduler loop with mock.patch.object(settings, "USE_JOB_SCHEDULE", False): self.job_runner._do_scheduling(session) self.job_runner._do_scheduling(session) assert DagRun.find(run_id="dr1_run_1")[0].state == State.SUCCESS assert DagRun.find(run_id="dr1_run_2")[0].state == State.RUNNING @pytest.mark.parametrize( ("state", "start_date", "end_date"), [ [State.NONE, None, None], [ State.UP_FOR_RETRY, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], [ State.UP_FOR_RESCHEDULE, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], ], ) def test_dag_file_processor_process_task_instances(self, state, start_date, end_date, dag_maker): """ Test if _process_task_instances puts the right task instances into the mock_list. """ with dag_maker(dag_id="test_scheduler_process_execute_task"): BashOperator(task_id="dummy", bash_command="echo hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED) assert dr is not None with create_session() as session: ti = dr.get_task_instances(session=session)[0] ti.state = state ti.start_date = start_date ti.end_date = end_date self.job_runner._schedule_dag_run(dr, session) assert session.query(TaskInstance).filter_by(state=State.SCHEDULED).count() == 1 session.refresh(ti) assert ti.state == State.SCHEDULED @pytest.mark.parametrize( ("state", "start_date", "end_date"), [ [State.NONE, None, None], [ State.UP_FOR_RETRY, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], [ State.UP_FOR_RESCHEDULE, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], ], ) def test_dag_file_processor_process_task_instances_with_max_active_tis_per_dag( self, state, start_date, end_date, dag_maker ): """ Test if _process_task_instances puts the right task instances into the mock_list. """ with dag_maker(dag_id="test_scheduler_process_execute_task_with_max_active_tis_per_dag"): BashOperator(task_id="dummy", max_active_tis_per_dag=2, bash_command="echo Hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun( run_type=DagRunType.SCHEDULED, ) assert dr is not None with create_session() as session: ti = dr.get_task_instances(session=session)[0] ti.state = state ti.start_date = start_date ti.end_date = end_date self.job_runner._schedule_dag_run(dr, session) assert session.query(TaskInstance).filter_by(state=State.SCHEDULED).count() == 1 session.refresh(ti) assert ti.state == State.SCHEDULED @pytest.mark.parametrize( ("state", "start_date", "end_date"), [ [State.NONE, None, None], [ State.UP_FOR_RETRY, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], [ State.UP_FOR_RESCHEDULE, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], ], ) def test_dag_file_processor_process_task_instances_with_max_active_tis_per_dagrun( self, state, start_date, end_date, dag_maker ): """ Test if _process_task_instances puts the right task instances into the mock_list. """ with dag_maker(dag_id="test_scheduler_process_execute_task_with_max_active_tis_per_dagrun"): BashOperator(task_id="dummy", max_active_tis_per_dagrun=2, bash_command="echo Hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun( run_type=DagRunType.SCHEDULED, ) assert dr is not None with create_session() as session: ti = dr.get_task_instances(session=session)[0] ti.state = state ti.start_date = start_date ti.end_date = end_date self.job_runner._schedule_dag_run(dr, session) assert session.query(TaskInstance).filter_by(state=State.SCHEDULED).count() == 1 session.refresh(ti) assert ti.state == State.SCHEDULED @pytest.mark.parametrize( ("state", "start_date", "end_date"), [ [State.NONE, None, None], [ State.UP_FOR_RETRY, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], [ State.UP_FOR_RESCHEDULE, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15), ], ], ) def test_dag_file_processor_process_task_instances_depends_on_past( self, state, start_date, end_date, dag_maker ): """ Test if _process_task_instances puts the right task instances into the mock_list. """ with dag_maker( dag_id="test_scheduler_process_execute_task_depends_on_past", default_args={ "depends_on_past": True, }, ): BashOperator(task_id="dummy1", bash_command="echo hi") BashOperator(task_id="dummy2", bash_command="echo hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun( run_type=DagRunType.SCHEDULED, ) assert dr is not None with create_session() as session: tis = dr.get_task_instances(session=session) for ti in tis: ti.state = state ti.start_date = start_date ti.end_date = end_date self.job_runner._schedule_dag_run(dr, session) assert session.query(TaskInstance).filter_by(state=State.SCHEDULED).count() == 2 session.refresh(tis[0]) session.refresh(tis[1]) assert tis[0].state == State.SCHEDULED assert tis[1].state == State.SCHEDULED def test_scheduler_job_add_new_task(self, dag_maker): """ Test if a task instance will be added if the dag is updated """ with dag_maker(dag_id="test_scheduler_add_new_task", serialized=False) as dag: BashOperator(task_id="dummy", bash_command="echo test") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) session = settings.Session() orm_dag = dag_maker.dag_model assert orm_dag is not None scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._create_dag_runs([orm_dag], session) drs = ( session.query(DagRun) .options(joinedload(DagRun.task_instances).joinedload(TaskInstance.dag_version)) .all() ) assert len(drs) == 1 dr = drs[0] tis = dr.get_task_instances(session=session) assert len(tis) == 1 BashOperator(task_id="dummy2", dag=dag, bash_command="echo test") sync_dag_to_db(dag_maker.dag, bundle_name="dag_maker", session=session) session.commit() self.job_runner._schedule_dag_run(dr, session) session.expunge_all() assert session.query(TaskInstance).filter_by(state=State.SCHEDULED).count() == 2 session.flush() drs = DagRun.find(dag_id=dag.dag_id, session=session) assert len(drs) == 1 dr = drs[0] tis = dr.get_task_instances(session=session) assert len(tis) == 2 @pytest.mark.need_serialized_dag def test_runs_respected_after_clear(self, dag_maker, session): """ Test dag after dag.clear, max_active_runs is respected """ with dag_maker( dag_id="test_scheduler_max_active_runs_respected_after_clear", start_date=DEFAULT_DATE, max_active_runs=1, ) as dag: BashOperator(task_id="dummy", bash_command="echo Hi") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) dr = dag_maker.create_dagrun(run_type=DagRunType.SCHEDULED, state=State.QUEUED) dr = dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) dag_maker.create_dagrun_after(dr, run_type=DagRunType.SCHEDULED, state=State.QUEUED) dag.clear(session=session) assert len(DagRun.find(dag_id=dag.dag_id, state=State.QUEUED, session=session)) == 3 self.job_runner._start_queued_dagruns(session) session.flush() # Assert that only 1 dagrun is active assert len(DagRun.find(dag_id=dag.dag_id, state=State.RUNNING, session=session)) == 1 # Assert that the other two are queued assert len(DagRun.find(dag_id=dag.dag_id, state=State.QUEUED, session=session)) == 2 def test_timeout_triggers(self, dag_maker): """ Tests that tasks in the deferred state, but whose trigger timeout has expired, are correctly failed. """ session = settings.Session() # Create the test DAG and task with dag_maker( dag_id="test_timeout_triggers", start_date=DEFAULT_DATE, schedule="@once", max_active_runs=1, session=session, ): EmptyOperator(task_id="dummy1") # Create a Task Instance for the task that is allegedly deferred # but past its timeout, and one that is still good. # We don't actually need a linked trigger here; the code doesn't check. dr1 = dag_maker.create_dagrun() dr2 = dag_maker.create_dagrun( run_id="test2", logical_date=DEFAULT_DATE + datetime.timedelta(seconds=1) ) ti1 = dr1.get_task_instance("dummy1", session) ti2 = dr2.get_task_instance("dummy1", session) ti1.state = State.DEFERRED ti1.trigger_timeout = timezone.utcnow() - datetime.timedelta(seconds=60) ti2.state = State.DEFERRED ti2.trigger_timeout = timezone.utcnow() + datetime.timedelta(seconds=60) session.flush() # Boot up the scheduler and make it check timeouts scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner.check_trigger_timeouts(session=session) # Make sure that TI1 is now scheduled to fail, and 2 wasn't touched session.refresh(ti1) session.refresh(ti2) assert ti1.state == State.SCHEDULED assert ti1.next_method == "__fail__" assert ti2.state == State.DEFERRED def test_retry_on_db_error_when_update_timeout_triggers(self, dag_maker, testing_dag_bundle, session): """ Tests that it will retry on DB error like deadlock when updating timeout triggers. """ from sqlalchemy.exc import OperationalError retry_times = 3 # Create the test DAG and task with dag_maker( dag_id="test_retry_on_db_error_when_update_timeout_triggers", start_date=DEFAULT_DATE, schedule="@once", max_active_runs=1, session=session, ): EmptyOperator(task_id="dummy1") # Mock the db failure within retry times might_fail_session = MagicMock(wraps=session) def check_if_trigger_timeout(max_retries: int): def make_side_effect(): call_count = 0 def side_effect(*args, **kwargs): nonlocal call_count if call_count < retry_times - 1: call_count += 1 raise OperationalError("any_statement", "any_params", "any_orig") return session.execute(*args, **kwargs) return side_effect might_fail_session.execute.side_effect = make_side_effect() try: # Create a Task Instance for the task that is allegedly deferred # but past its timeout, and one that is still good. # We don't actually need a linked trigger here; the code doesn't check. sync_dag_to_db(dag_maker.dag, session=session) dr1 = dag_maker.create_dagrun() dr2 = dag_maker.create_dagrun( run_id="test2", logical_date=DEFAULT_DATE + datetime.timedelta(seconds=1) ) ti1 = dr1.get_task_instance("dummy1", session) ti2 = dr2.get_task_instance("dummy1", session) ti1.state = State.DEFERRED ti1.trigger_timeout = timezone.utcnow() - datetime.timedelta(seconds=60) ti2.state = State.DEFERRED ti2.trigger_timeout = timezone.utcnow() + datetime.timedelta(seconds=60) session.flush() # Boot up the scheduler and make it check timeouts scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner.check_trigger_timeouts(max_retries=max_retries, session=might_fail_session) # Make sure that TI1 is now scheduled to fail, and 2 wasn't touched session.refresh(ti1) session.refresh(ti2) assert ti1.state == State.SCHEDULED assert ti1.next_method == "__fail__" assert ti2.state == State.DEFERRED finally: self.clean_db() # Positive case, will retry until success before reach max retry times check_if_trigger_timeout(retry_times) # Negative case: no retries, execute only once. with pytest.raises(OperationalError): check_if_trigger_timeout(1) def test_find_and_purge_task_instances_without_heartbeats_nothing(self): executor = MockExecutor(do_update=False) scheduler_job = Job(executor=executor) with mock.patch("airflow.executors.executor_loader.ExecutorLoader.load_executor") as loader_mock: loader_mock.return_value = executor self.job_runner = SchedulerJobRunner(scheduler_job) self.job_runner._find_and_purge_task_instances_without_heartbeats() executor.callback_sink.send.assert_not_called() @pytest.mark.usefixtures("testing_dag_bundle") def test_find_and_purge_task_instances_without_heartbeats(self, session, create_dagrun): dagfile = EXAMPLE_STANDARD_DAGS_FOLDER / "example_branch_operator.py" dagbag = DagBag(dagfile) dag = dagbag.get_dag("example_branch_operator") scheduler_dag = sync_dag_to_db(dag) dag_v = DagVersion.get_latest_version(dag.dag_id) data_interval = infer_automated_data_interval(scheduler_dag.timetable, DEFAULT_LOGICAL_DATE) dag_run = create_dagrun( scheduler_dag, logical_date=DEFAULT_DATE, run_type=DagRunType.SCHEDULED, data_interval=data_interval, ) executor = MockExecutor() scheduler_job = Job(executor=executor) with mock.patch("airflow.executors.executor_loader.ExecutorLoader.load_executor") as loader_mock: loader_mock.return_value = executor self.job_runner = SchedulerJobRunner(job=scheduler_job) # We will provision 2 tasks so we can check we only find task instances without heartbeats from this scheduler tasks_to_setup = ["branching", "run_this_first"] for task_id in tasks_to_setup: task = dag.get_task(task_id=task_id) ti = TaskInstance(task, run_id=dag_run.run_id, state=State.RUNNING, dag_version_id=dag_v.id) ti.last_heartbeat_at = timezone.utcnow() - timedelta(minutes=6) ti.start_date = timezone.utcnow() - timedelta(minutes=10) ti.queued_by_job_id = 999 session.add(ti) session.flush() assert task.task_id == "run_this_first" # Make sure we have the task/ti we expect ti.queued_by_job_id = scheduler_job.id session.flush() executor.running.add(ti.key) # The executor normally does this during heartbeat. self.job_runner._find_and_purge_task_instances_without_heartbeats() assert ti.key not in executor.running executor.callback_sink.send.assert_called_once() callback_requests = executor.callback_sink.send.call_args.args assert len(callback_requests) == 1 callback_request = callback_requests[0] assert callback_request.filepath == dag.relative_fileloc assert callback_request.msg == str( self.job_runner._generate_task_instance_heartbeat_timeout_message_details(ti) ) assert callback_request.is_failure_callback is True assert callback_request.ti.dag_id == ti.dag_id assert callback_request.ti.task_id == ti.task_id assert callback_request.ti.run_id == ti.run_id assert callback_request.ti.map_index == ti.map_index # Verify context_from_server is passed assert callback_request.context_from_server is not None assert callback_request.context_from_server.dag_run.logical_date == ti.dag_run.logical_date assert callback_request.context_from_server.max_tries == ti.max_tries @pytest.mark.usefixtures("testing_dag_bundle") def test_task_instance_heartbeat_timeout_message(self, session, create_dagrun): """ Check that the task instance heartbeat timeout message comes out as expected """ dagfile = EXAMPLE_STANDARD_DAGS_FOLDER / "example_branch_operator.py" dagbag = DagBag(dagfile) dag = dagbag.get_dag("example_branch_operator") scheduler_dag = sync_dag_to_db(dag, session=session) session.query(Job).delete() data_interval = infer_automated_data_interval(scheduler_dag.timetable, DEFAULT_LOGICAL_DATE) dag_run = create_dagrun( scheduler_dag, logical_date=DEFAULT_DATE, run_type=DagRunType.SCHEDULED, data_interval=data_interval, ) scheduler_job = Job(executor=MockExecutor()) self.job_runner = SchedulerJobRunner(job=scheduler_job) # We will provision 2 tasks so we can check we only find task instance heartbeat timeouts from this scheduler tasks_to_setup = ["branching", "run_this_first"] dag_version = DagVersion.get_latest_version(dag.dag_id) for task_id in tasks_to_setup: task = dag.get_task(task_id=task_id) ti = TaskInstance(task, run_id=dag_run.run_id, state=State.RUNNING, dag_version_id=dag_version.id) ti.queued_by_job_id = 999 session.add(ti) session.flush() assert task.task_id == "run_this_first" # Make sure we have the task/ti we expect ti.queued_by_job_id = scheduler_job.id session.flush() task_instance_heartbeat_timeout_message = ( self.job_runner._generate_task_instance_heartbeat_timeout_message_details(ti) ) assert task_instance_heartbeat_timeout_message == { "DAG Id": "example_branch_operator", "Task Id": "run_this_first", "Run Id": "scheduled__2016-01-01T00:00:00+00:00", } ti.hostname = "10.10.10.10" ti.map_index = 2 ti.external_executor_id = "abcdefg" task_instance_heartbeat_timeout_message = ( self.job_runner._generate_task_instance_heartbeat_timeout_message_details(ti) ) assert task_instance_heartbeat_timeout_message == { "DAG Id": "example_branch_operator", "Task Id": "run_this_first", "Run Id": "scheduled__2016-01-01T00:00:00+00:00", "Hostname": "10.10.10.10", "Map Index": 2, "External Executor Id": "abcdefg", } @mock.patch.object(settings, "USE_JOB_SCHEDULE", False) def run_scheduler_until_dagrun_terminal(self): """ Run a scheduler until any dag run reaches a terminal state, or the scheduler becomes "idle". This needs a DagRun to be pre-created (it can be in running or queued state) as no more will be created as we turn off creating new DagRuns via setting USE_JOB_SCHEDULE to false Note: This doesn't currently account for tasks that go into retry -- the scheduler would be detected as idle in that circumstance """ # Spy on _do_scheduling and _process_executor_events so we can notice # if nothing happened, and abort early! If there is nothing # to schedule and no events, it means we have stalled. def spy_on_return(orig, result): def spy(*args, **kwargs): ret = orig(*args, **kwargs) result.append(ret) return ret return spy num_queued_tis: deque[int] = deque([], 3) num_finished_events: deque[int] = deque([], 3) do_scheduling_spy = mock.patch.object( self.job_runner, "_do_scheduling", side_effect=spy_on_return(self.job_runner._do_scheduling, num_queued_tis), ) executor_events_spy = mock.patch.object( self.job_runner, "_process_executor_events", side_effect=spy_on_return(self.job_runner._process_executor_events, num_finished_events), ) orig_set_state = DagRun.set_state def watch_set_state(dr: DagRun, state, **kwargs): if state in (DagRunState.SUCCESS, DagRunState.FAILED): # Stop the scheduler self.job_runner.num_runs = 1 # type: ignore[union-attr] orig_set_state(dr, state, **kwargs) def watch_heartbeat(*args, **kwargs): if len(num_queued_tis) < 3 or len(num_finished_events) < 3: return queued_any_tis = any(val > 0 for val in num_queued_tis) finished_any_events = any(val > 0 for val in num_finished_events) assert queued_any_tis or finished_any_events, ( "Scheduler has stalled without setting the DagRun state!" ) set_state_spy = mock.patch.object(DagRun, "set_state", new=watch_set_state) heartbeat_spy = mock.patch.object(self.job_runner.job, "heartbeat", new=watch_heartbeat) # with heartbeat_spy, set_state_spy, do_scheduling_spy, executor_events_spy: with heartbeat_spy, set_state_spy, do_scheduling_spy, executor_events_spy: run_job(self.job_runner.job, execute_callable=self.job_runner._execute) @pytest.mark.long_running @pytest.mark.parametrize("dag_id", ["test_mapped_classic", "test_mapped_taskflow"]) def test_mapped_dag(self, dag_id, session, testing_dag_bundle): """End-to-end test of a simple mapped dag""" from airflow.executors.local_executor import LocalExecutor dagbag = DagBag(dag_folder=TEST_DAGS_FOLDER, include_examples=False) sync_bag_to_db(dagbag, "testing", None) dagbag.process_file(str(TEST_DAGS_FOLDER / f"{dag_id}.py")) dag = dagbag.get_dag(dag_id) assert dag logical_date = timezone.coerce_datetime(timezone.utcnow() - datetime.timedelta(days=2)) data_interval = infer_automated_data_interval(dag.timetable, logical_date) dr = dag.create_dagrun( run_id=f"{dag_id}_1", run_type=DagRunType.MANUAL, start_date=timezone.utcnow(), state=State.RUNNING, session=session, logical_date=logical_date, data_interval=data_interval, run_after=data_interval, triggered_by=DagRunTriggeredByType.TEST, ) executor = LocalExecutor() job = Job(executor=executor) self.job_runner = SchedulerJobRunner(job=job) self.run_scheduler_until_dagrun_terminal() dr.refresh_from_db(session) assert dr.state == DagRunState.SUCCESS def test_should_mark_empty_task_as_success(self, testing_dag_bundle): dag_file = Path(__file__).parents[1] / "dags/test_only_empty_tasks.py" # Write DAGs to dag and serialized_dag table dagbag = DagBag(dag_folder=dag_file, include_examples=False) sync_bag_to_db(dagbag, "testing", None) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # Create DagRun session = settings.Session() orm_dag = session.get(DagModel, "test_only_empty_tasks") self.job_runner._create_dag_runs([orm_dag], session) drs = DagRun.find(dag_id="test_only_empty_tasks", session=session) assert len(drs) == 1 dr = drs[0] # Schedule TaskInstances self.job_runner._schedule_dag_run(dr, session) session.expunge_all() with create_session() as session: tis = session.query(TaskInstance).all() dags = self.job_runner.scheduler_dag_bag._dags.values() assert [dag.dag_id for dag in dags] == ["test_only_empty_tasks"] assert len(tis) == 6 assert { ("test_task_a", "success"), ("test_task_b", None), ("test_task_c", "success"), ("test_task_on_execute", "scheduled"), ("test_task_on_success", "scheduled"), ("test_task_outlets", "scheduled"), } == {(ti.task_id, ti.state) for ti in tis} for state, start_date, end_date, duration in [ (ti.state, ti.start_date, ti.end_date, ti.duration) for ti in tis ]: if state == "success": assert start_date is not None assert end_date is not None assert duration == 0.0 else: assert start_date is None assert end_date is None assert duration is None self.job_runner._schedule_dag_run(dr, session) session.expunge_all() with create_session() as session: tis = session.query(TaskInstance).all() assert len(tis) == 6 assert { ("test_task_a", "success"), ("test_task_b", "success"), ("test_task_c", "success"), ("test_task_on_execute", "scheduled"), ("test_task_on_success", "scheduled"), ("test_task_outlets", "scheduled"), } == {(ti.task_id, ti.state) for ti in tis} for state, start_date, end_date, duration in [ (ti.state, ti.start_date, ti.end_date, ti.duration) for ti in tis ]: if state == "success": assert start_date is not None assert end_date is not None assert duration == 0.0 else: assert start_date is None assert end_date is None assert duration is None @pytest.mark.need_serialized_dag def test_catchup_works_correctly(self, dag_maker, testing_dag_bundle): """Test that catchup works correctly""" session = settings.Session() with dag_maker( dag_id="test_catchup_schedule_dag", schedule=timedelta(days=1), start_date=DEFAULT_DATE, catchup=True, max_active_runs=1, session=session, ) as dag: EmptyOperator(task_id="dummy") scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._create_dag_runs([dag_maker.dag_model], session) self.job_runner._start_queued_dagruns(session) # first dagrun logical date is DEFAULT_DATE 2016-01-01T00:00:00+00:00 dr = DagRun.find(logical_date=DEFAULT_DATE, session=session)[0] ti = dr.get_task_instance(task_id="dummy") ti.state = State.SUCCESS session.merge(ti) session.flush() self.job_runner._schedule_dag_run(dr, session) session.flush() # Run the second time so _update_dag_next_dagrun will run self.job_runner._schedule_dag_run(dr, session) session.flush() dag_maker.dag.catchup = False dag = sync_dag_to_db(dag_maker.dag, bundle_name="dag_maker", session=session) assert not dag.catchup dm = DagModel.get_dagmodel(dag.dag_id) self.job_runner._create_dag_runs([dm], session) # Check catchup worked correctly by ensuring logical_date is quite new # Our dag is a daily dag assert ( session.query(DagRun.logical_date) .filter(DagRun.logical_date != DEFAULT_DATE) # exclude the first run .scalar() ) > (timezone.utcnow() - timedelta(days=2)) def test_update_dagrun_state_for_paused_dag(self, dag_maker, session): """Test that _update_dagrun_state_for_paused_dag puts DagRuns in terminal states""" with dag_maker("testdag") as dag: EmptyOperator(task_id="task1") scheduled_run = dag_maker.create_dagrun( logical_date=datetime.datetime(2022, 1, 1), run_type=DagRunType.SCHEDULED, ) scheduled_run.last_scheduling_decision = datetime.datetime.now(timezone.utc) - timedelta(minutes=1) ti = scheduled_run.get_task_instances(session=session)[0] ti.set_state(TaskInstanceState.RUNNING) dm = DagModel.get_dagmodel(dag.dag_id, session) dm.is_paused = True session.flush() assert scheduled_run.state == State.RUNNING scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._update_dag_run_state_for_paused_dags(session=session) session.flush() # TI still running, DagRun left in running (scheduled_run,) = DagRun.find(dag_id=dag.dag_id, run_type=DagRunType.SCHEDULED, session=session) assert scheduled_run.state == State.RUNNING prior_last_scheduling_decision = scheduled_run.last_scheduling_decision # Make sure we don't constantly try dagruns over and over self.job_runner._update_dag_run_state_for_paused_dags(session=session) (scheduled_run,) = DagRun.find(dag_id=dag.dag_id, run_type=DagRunType.SCHEDULED, session=session) assert scheduled_run.state == State.RUNNING # last_scheduling_decision is bumped by update_state, so check that to determine if we tried again assert prior_last_scheduling_decision == scheduled_run.last_scheduling_decision # Once the TI is in a terminal state though, DagRun goes to success ti.set_state(TaskInstanceState.SUCCESS, session=session) self.job_runner._update_dag_run_state_for_paused_dags(session=session) (scheduled_run,) = DagRun.find(dag_id=dag.dag_id, run_type=DagRunType.SCHEDULED, session=session) assert scheduled_run.state == State.SUCCESS def test_update_dagrun_state_for_paused_dag_not_for_backfill(self, dag_maker, session): """Test that the _update_dagrun_state_for_paused_dag does not affect backfilled dagruns""" with dag_maker("testdag") as dag: EmptyOperator(task_id="task1") # Backfill run backfill_run = dag_maker.create_dagrun(run_type=DagRunType.BACKFILL_JOB) backfill_run.last_scheduling_decision = datetime.datetime.now(timezone.utc) - timedelta(minutes=1) ti = backfill_run.get_task_instances(session=session)[0] ti.set_state(TaskInstanceState.SUCCESS, session=session) dm = DagModel.get_dagmodel(dag.dag_id, session=session) dm.is_paused = True session.flush() assert backfill_run.state == State.RUNNING scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._update_dag_run_state_for_paused_dags(session=session) session.flush() (backfill_run,) = DagRun.find(dag_id=dag.dag_id, run_type=DagRunType.BACKFILL_JOB, session=session) assert backfill_run.state == State.SUCCESS @staticmethod def _find_assets_activation(session) -> tuple[list[AssetModel], list[AssetModel]]: assets = session.execute( select(AssetModel, AssetActive) .outerjoin( AssetActive, (AssetModel.name == AssetActive.name) & (AssetModel.uri == AssetActive.uri), ) .order_by(AssetModel.uri) ).all() return [a for a, v in assets if not v], [a for a, v in assets if v] def test_asset_orphaning(self, dag_maker, session): self.job_runner = SchedulerJobRunner(job=Job()) asset1 = Asset(uri="test://asset_1", name="test_asset_1", group="test_group") asset2 = Asset(uri="test://asset_2", name="test_asset_2", group="test_group") asset3 = Asset(uri="test://asset_3", name="test_asset_3", group="test_group") asset4 = Asset(uri="test://asset_4", name="test_asset_4", group="test_group") asset5 = Asset(uri="test://asset_5", name="test_asset_5", group="test_group") with dag_maker(dag_id="assets-1", schedule=[asset1, asset2], session=session): BashOperator(task_id="task", bash_command="echo 1", outlets=[asset3, asset4]) # asset5 is not registered (since it's not used anywhere). orphaned, active = self._find_assets_activation(session) assert active == [asset1, asset2, asset3, asset4] assert orphaned == [] self.job_runner._update_asset_orphanage(session=session) session.flush() # Now remove 2 asset references and add asset5. with dag_maker(dag_id="assets-1", schedule=[asset1], session=session): BashOperator(task_id="task", bash_command="echo 1", outlets=[asset3, asset5]) # The DAG parser finds asset5. orphaned, active = self._find_assets_activation(session) assert active == [asset1, asset2, asset3, asset4, asset5] assert orphaned == [] self.job_runner._update_asset_orphanage(session=session) session.flush() # Now we get the updated result. orphaned, active = self._find_assets_activation(session) assert active == [asset1, asset3, asset5] assert orphaned == [asset2, asset4] def test_asset_orphaning_ignore_orphaned_assets(self, dag_maker, session): self.job_runner = SchedulerJobRunner(job=Job()) asset1 = Asset(uri="test://asset_1", name="test_asset_1", group="test_group") with dag_maker(dag_id="assets-1", schedule=[asset1], session=session): BashOperator(task_id="task", bash_command="echo 1") orphaned, active = self._find_assets_activation(session) assert active == [asset1] assert orphaned == [] self.job_runner._update_asset_orphanage(session=session) session.flush() # now remove asset1 reference with dag_maker(dag_id="assets-1", schedule=None, session=session): BashOperator(task_id="task", bash_command="echo 1") self.job_runner._update_asset_orphanage(session=session) session.flush() orphaned, active = self._find_assets_activation(session) assert active == [] assert orphaned == [asset1] updated_at_timestamps = [asset.updated_at for asset in orphaned] # when rerunning we should ignore the already orphaned assets and thus the updated_at timestamp # should remain the same self.job_runner._update_asset_orphanage(session=session) session.flush() orphaned, active = self._find_assets_activation(session) assert active == [] assert orphaned == [asset1] assert [asset.updated_at for asset in orphaned] == updated_at_timestamps @pytest.mark.parametrize( ("paused", "stale", "expected_classpath"), [ pytest.param( False, False, "airflow.providers.standard.triggers.temporal.DateTimeTrigger", id="active", ), pytest.param(False, True, None, id="stale"), pytest.param(True, False, None, id="paused"), pytest.param(True, False, None, id="stale-paused"), ], ) @pytest.mark.need_serialized_dag(False) def test_delete_unreferenced_triggers(self, dag_maker, session, paused, stale, expected_classpath): self.job_runner = SchedulerJobRunner(job=Job()) classpath, kwargs = DateTimeTrigger(timezone.utcnow()).serialize() asset1 = Asset( name="test_asset_1", watchers=[AssetWatcher(name="test", trigger={"classpath": classpath, "kwargs": kwargs})], ) with dag_maker(dag_id="dag", schedule=[asset1], session=session) as dag: EmptyOperator(task_id="task") dags = {"dag": LazyDeserializedDAG.from_dag(dag)} def _update_references() -> None: asset_op = AssetModelOperation.collect(dags) orm_assets = asset_op.sync_assets(session=session) session.flush() asset_op.add_dag_asset_references(orm_dags, orm_assets, session=session) asset_op.activate_assets_if_possible(orm_assets.values(), session=session) asset_op.add_asset_trigger_references(orm_assets, session=session) session.flush() # Initial setup. orm_dags = DagModelOperation({"dag": dag}, "testing", None).add_dags(session=session) _update_references() assert session.scalars(select(Trigger.classpath)).one() == classpath # Simulate dag state change. orm_dags["dag"].is_paused = paused orm_dags["dag"].is_stale = stale _update_references() assert session.scalars(select(Trigger.classpath)).one() == classpath # Unreferenced trigger should be removed. self.job_runner._remove_unreferenced_triggers(session=session) assert session.scalars(select(Trigger.classpath)).one_or_none() == expected_classpath def test_misconfigured_dags_doesnt_crash_scheduler(self, session, dag_maker, caplog): """Test that if dagrun creation throws an exception, the scheduler doesn't crash""" with dag_maker("testdag1", serialized=True): BashOperator(task_id="task", bash_command="echo 1") dm1 = dag_maker.dag_model # Here, the next_dagrun is set to None, which will cause an exception dm1.next_dagrun = None session.add(dm1) session.flush() with dag_maker("testdag2", serialized=True): BashOperator(task_id="task", bash_command="echo 1") dm2 = dag_maker.dag_model scheduler_job = Job() job_runner = SchedulerJobRunner(job=scheduler_job) # In the dagmodel list, the first dag should fail, but the second one should succeed job_runner._create_dag_runs([dm1, dm2], session) assert "Failed creating DagRun for testdag1" in caplog.text assert not DagRun.find(dag_id="testdag1", session=session) # Check if the second dagrun was created assert DagRun.find(dag_id="testdag2", session=session) def test_activate_referenced_assets_with_no_existing_warning(self, session, testing_dag_bundle): dag_warnings = session.query(DagWarning).all() assert dag_warnings == [] dag_id1 = "test_asset_dag1" asset1_name = "asset1" asset_extra = {"foo": "bar"} asset1 = Asset(name=asset1_name, uri="s3://bucket/key/1", extra=asset_extra) asset1_1 = Asset(name=asset1_name, uri="it's duplicate", extra=asset_extra) asset1_2 = Asset(name="it's also a duplicate", uri="s3://bucket/key/1", extra=asset_extra) dag1 = DAG(dag_id=dag_id1, start_date=DEFAULT_DATE, schedule=[asset1, asset1_1, asset1_2]) sync_dag_to_db(dag1, session=session) asset_models = session.scalars(select(AssetModel)).all() assert len(asset_models) == 3 SchedulerJobRunner._activate_referenced_assets(asset_models, session=session) session.flush() dag_warning = session.scalar( select(DagWarning).where( DagWarning.dag_id == dag_id1, DagWarning.warning_type == "asset conflict" ) ) assert dag_warning.message == ( 'Cannot activate asset Asset(name="asset1", uri="it\'s duplica' 'te", group="asset"); name is already associated to \'s3://buck' "et/key/1'\nCannot activate asset Asset(name=\"it's also a dup" 'licate", uri="s3://bucket/key/1", group="asset"); uri is alrea' "dy associated to 'asset1'" ) def test_activate_referenced_assets_with_existing_warnings(self, session, testing_dag_bundle): dag_ids = [f"test_asset_dag{i}" for i in range(1, 4)] asset1_name = "asset1" asset_extra = {"foo": "bar"} asset1 = Asset(name=asset1_name, uri="s3://bucket/key/1", extra=asset_extra) asset1_1 = Asset(name=asset1_name, uri="it's duplicate", extra=asset_extra) asset1_2 = Asset(name=asset1_name, uri="it's duplicate 2", extra=asset_extra) dag1 = DAG(dag_id=dag_ids[0], start_date=DEFAULT_DATE, schedule=[asset1, asset1_1]) dag2 = DAG(dag_id=dag_ids[1], start_date=DEFAULT_DATE) dag3 = DAG(dag_id=dag_ids[2], start_date=DEFAULT_DATE, schedule=[asset1_2]) sync_dags_to_db([dag1, dag2, dag3], session=session) session.add_all( DagWarning(dag_id=dag_id, warning_type="asset conflict", message="will not exist") for dag_id in dag_ids ) session.flush() asset_models = session.scalars(select(AssetModel)).all() SchedulerJobRunner._activate_referenced_assets(asset_models, session=session) session.flush() dag_warning = session.scalar( select(DagWarning).where( DagWarning.dag_id == dag_ids[0], DagWarning.warning_type == "asset conflict" ) ) assert dag_warning.message == ( 'Cannot activate asset Asset(name="asset1", uri="it\'s duplicate", group="asset"); ' "name is already associated to 's3://bucket/key/1'" ) dag_warning = session.scalar( select(DagWarning).where( DagWarning.dag_id == dag_ids[1], DagWarning.warning_type == "asset conflict" ) ) assert dag_warning is None dag_warning = session.scalar( select(DagWarning).where( DagWarning.dag_id == dag_ids[2], DagWarning.warning_type == "asset conflict" ) ) assert dag_warning.message == ( 'Cannot activate asset Asset(name="asset1", uri="it\'s duplicate 2", group="asset"); ' "name is already associated to 's3://bucket/key/1'" ) def test_activate_referenced_assets_with_multiple_conflict_asset_in_one_dag( self, session, testing_dag_bundle ): dag_id = "test_asset_dag" asset1_name = "asset1" asset_extra = {"foo": "bar"} schedule = [Asset(name=asset1_name, uri="s3://bucket/key/1", extra=asset_extra)] schedule.extend( [Asset(name=asset1_name, uri=f"it's duplicate {i}", extra=asset_extra) for i in range(100)] ) dag1 = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, schedule=schedule) sync_dag_to_db(dag1, session=session) session.add(DagWarning(dag_id=dag_id, warning_type="asset conflict", message="will not exist")) session.flush() asset_models = session.scalars(select(AssetModel)).all() SchedulerJobRunner._activate_referenced_assets(asset_models, session=session) session.flush() dag_warning = session.scalar( select(DagWarning).where(DagWarning.dag_id == dag_id, DagWarning.warning_type == "asset conflict") ) for i in range(100): assert f"it's duplicate {i}" in dag_warning.message def test_scheduler_passes_context_from_server_on_heartbeat_timeout(self, dag_maker, session): """Test that scheduler passes context_from_server when handling heartbeat timeouts.""" with dag_maker(dag_id="test_dag", session=session): EmptyOperator(task_id="test_task") dag_run = dag_maker.create_dagrun(run_id="test_run", state=DagRunState.RUNNING) mock_executor = MagicMock() scheduler_job = Job(executor=mock_executor) self.job_runner = SchedulerJobRunner(scheduler_job) # Create a task instance that appears to be running but hasn't heartbeat ti = dag_run.get_task_instance(task_id="test_task") ti.state = TaskInstanceState.RUNNING ti.queued_by_job_id = scheduler_job.id # Set last_heartbeat_at to a time that would trigger timeout ti.last_heartbeat_at = timezone.utcnow() - timedelta(seconds=600) # 10 minutes ago session.merge(ti) session.commit() # Run the heartbeat timeout check self.job_runner._find_and_purge_task_instances_without_heartbeats() # Verify TaskCallbackRequest was created with context_from_server mock_executor.send_callback.assert_called_once() callback_request = mock_executor.send_callback.call_args[0][0] assert isinstance(callback_request, TaskCallbackRequest) assert callback_request.context_from_server is not None assert callback_request.context_from_server.dag_run.logical_date == dag_run.logical_date assert callback_request.context_from_server.max_tries == ti.max_tries @pytest.mark.parametrize( ("retries", "callback_kind", "expected"), [ (1, "retry", TaskInstanceState.UP_FOR_RETRY), (0, "failure", TaskInstanceState.FAILED), ], ) def test_external_kill_sets_callback_type_param( self, dag_maker, session, retries, callback_kind, expected ): """External kill should mark callback type based on retry eligibility.""" with dag_maker(dag_id=f"ext_kill_{callback_kind}", fileloc="/test_path1/"): if callback_kind == "retry": EmptyOperator(task_id="t1", retries=retries, on_retry_callback=lambda ctx: None) else: EmptyOperator(task_id="t1", retries=retries, on_failure_callback=lambda ctx: None) dr = dag_maker.create_dagrun(state=DagRunState.RUNNING) ti = dr.get_task_instance(task_id="t1") executor = MockExecutor(do_update=False) scheduler_job = Job(executor=executor) self.job_runner = SchedulerJobRunner(scheduler_job) ti.state = State.QUEUED session.merge(ti) session.commit() # Executor reports task finished (FAILED) while TI still QUEUED -> external kill path executor.event_buffer[ti.key] = State.FAILED, None self.job_runner._process_executor_events(executor=executor, session=session) scheduler_job.executor.callback_sink.send.assert_called() request = scheduler_job.executor.callback_sink.send.call_args[0][0] assert isinstance(request, TaskCallbackRequest) assert request.task_callback_type == expected def test_scheduler_passes_context_from_server_on_task_failure(self, dag_maker, session): """Test that scheduler passes context_from_server when handling task failures.""" with dag_maker(dag_id="test_dag", session=session): EmptyOperator(task_id="test_task", on_failure_callback=lambda: print("failure")) dag_run = dag_maker.create_dagrun(run_id="test_run", state=DagRunState.RUNNING) # Create a task instance that's running ti = dag_run.get_task_instance(task_id="test_task") ti.state = TaskInstanceState.RUNNING session.merge(ti) session.commit() # Mock the executor to simulate a task failure mock_executor = MagicMock(spec=BaseExecutor) mock_executor.has_task = mock.MagicMock(return_value=False) scheduler_job = Job(executor=mock_executor) self.job_runner = SchedulerJobRunner(scheduler_job) # Simulate executor reporting task as failed executor_event = {ti.key: (TaskInstanceState.FAILED, None)} mock_executor.get_event_buffer.return_value = executor_event # Process the executor events self.job_runner._process_executor_events(mock_executor, session) # Verify TaskCallbackRequest was created with context_from_server mock_executor.send_callback.assert_called_once() callback_request = mock_executor.send_callback.call_args[0][0] assert isinstance(callback_request, TaskCallbackRequest) assert callback_request.context_from_server is not None assert callback_request.context_from_server.dag_run.logical_date == dag_run.logical_date assert callback_request.context_from_server.max_tries == ti.max_tries def test_scheduler_passes_context_from_server_on_dag_timeout(self, dag_maker, session): """Test that scheduler passes context_from_server when DAG times out.""" from airflow.callbacks.callback_requests import DagCallbackRequest, DagRunContext def on_failure_callback(context): print("DAG failed") with dag_maker( dag_id="test_dag", session=session, on_failure_callback=on_failure_callback, dagrun_timeout=timedelta(seconds=60), # 1 minute timeout ): EmptyOperator(task_id="test_task") dag_run = dag_maker.create_dagrun(run_id="test_run", state=DagRunState.RUNNING) # Set the start time to make it appear timed out dag_run.start_date = timezone.utcnow() - timedelta(seconds=120) # 2 minutes ago session.merge(dag_run) session.commit() mock_executor = MagicMock() scheduler_job = Job(executor=mock_executor) self.job_runner = SchedulerJobRunner(scheduler_job) callback_req = self.job_runner._schedule_dag_run(dag_run, session) assert isinstance(callback_req, DagCallbackRequest) assert callback_req.is_failure_callback assert callback_req.msg == "timed_out" assert callback_req.context_from_server == DagRunContext( dag_run=dag_run, last_ti=dag_run.get_task_instance(task_id="test_task"), ) @mock.patch("airflow.models.dagrun.get_listener_manager") def test_dag_start_notifies_with_started_msg(self, mock_get_listener_manager, dag_maker, session): """Test that notify_dagrun_state_changed is called with msg='started' when DAG starts.""" mock_listener_manager = MagicMock() mock_get_listener_manager.return_value = mock_listener_manager with dag_maker(dag_id="test_dag_start_notify", session=session): EmptyOperator(task_id="test_task") # Create a QUEUED dag run that will be started dag_run = dag_maker.create_dagrun(run_id="test_run", state=DagRunState.QUEUED) session.commit() mock_executor = MagicMock() scheduler_job = Job(executor=mock_executor) self.job_runner = SchedulerJobRunner(scheduler_job) self.job_runner._start_queued_dagruns(session) # Verify that the listener hook was called with msg="started" mock_listener_manager.hook.on_dag_run_running.assert_called_once() call_args = mock_listener_manager.hook.on_dag_run_running.call_args assert call_args.kwargs["msg"] == "started" assert call_args.kwargs["dag_run"].dag_id == dag_run.dag_id @mock.patch("airflow.models.dagrun.get_listener_manager") def test_dag_timeout_notifies_with_timed_out_msg(self, mock_get_listener_manager, dag_maker, session): """Test that notify_dagrun_state_changed is called with msg='timed_out' when DAG times out.""" mock_listener_manager = MagicMock() mock_get_listener_manager.return_value = mock_listener_manager with dag_maker( dag_id="test_dag_timeout_notify", session=session, dagrun_timeout=timedelta(seconds=60), ): EmptyOperator(task_id="test_task") dag_run = dag_maker.create_dagrun(run_id="test_run", state=DagRunState.RUNNING) # Set the start time to make it appear timed out dag_run.start_date = timezone.utcnow() - timedelta(seconds=120) # 2 minutes ago session.merge(dag_run) session.commit() mock_executor = MagicMock() scheduler_job = Job(executor=mock_executor) self.job_runner = SchedulerJobRunner(scheduler_job) self.job_runner._schedule_dag_run(dag_run, session) # Verify that the listener hook was called with msg="timed_out" mock_listener_manager.hook.on_dag_run_failed.assert_called_once() call_args = mock_listener_manager.hook.on_dag_run_failed.call_args assert call_args.kwargs["msg"] == "timed_out" assert call_args.kwargs["dag_run"] == dag_run @mock.patch("airflow.models.Deadline.handle_miss") def test_process_expired_deadlines(self, mock_handle_miss, session, dag_maker): """Verify all expired and unhandled deadlines (and only those) are processed by the scheduler.""" scheduler_job = Job(executor=MockExecutor()) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) past_date = timezone.utcnow() - timedelta(minutes=5) future_date = timezone.utcnow() + timedelta(minutes=5) callback_path = "classpath.notify" # Create a test Dag run for Deadline dag_id = "test_deadline_dag" with dag_maker(dag_id=dag_id): EmptyOperator(task_id="empty") dagrun_id = dag_maker.create_dagrun().id handled_deadline_async = Deadline( deadline_time=past_date, callback=AsyncCallback(callback_path), dagrun_id=dagrun_id, dag_id=dag_id, ) handled_deadline_async.missed = True handled_deadline_sync = Deadline( deadline_time=past_date, callback=SyncCallback(callback_path), dagrun_id=dagrun_id, dag_id=dag_id, ) handled_deadline_sync.missed = True expired_deadline1 = Deadline( deadline_time=past_date, callback=AsyncCallback(callback_path), dagrun_id=dagrun_id, dag_id=dag_id ) expired_deadline2 = Deadline( deadline_time=past_date, callback=SyncCallback(callback_path), dagrun_id=dagrun_id, dag_id=dag_id ) future_deadline = Deadline( deadline_time=future_date, callback=AsyncCallback(callback_path), dagrun_id=dagrun_id, dag_id=dag_id, ) session.add_all( [ expired_deadline1, expired_deadline2, future_deadline, handled_deadline_async, handled_deadline_sync, ] ) session.flush() self.job_runner._execute() # Assert that all deadlines which are both expired and unhandled get processed. assert mock_handle_miss.call_count == 2 @mock.patch("airflow.models.Deadline.handle_miss") def test_process_expired_deadlines_no_deadlines_found(self, mock_handle_miss, session): """Test handling when there are no deadlines to process.""" scheduler_job = Job(executor=MockExecutor()) self.job_runner = SchedulerJobRunner(job=scheduler_job, num_runs=1) self.job_runner._execute() # The handler should not be called, but no exceptions should be raised either.` mock_handle_miss.assert_not_called() def test_emit_running_dags_metric(self, dag_maker, monkeypatch): """Test that the running_dags metric is emitted correctly.""" with dag_maker("metric_dag") as dag: _ = dag dag_maker.create_dagrun(run_id="run_1", state=DagRunState.RUNNING, logical_date=timezone.utcnow()) dag_maker.create_dagrun( run_id="run_2", state=DagRunState.RUNNING, logical_date=timezone.utcnow() + timedelta(hours=1) ) recorded: list[tuple[str, int]] = [] def _fake_gauge(metric: str, value: int, *_, **__): recorded.append((metric, value)) monkeypatch.setattr("airflow.jobs.scheduler_job_runner.Stats.gauge", _fake_gauge, raising=True) with conf_vars({("metrics", "statsd_on"): "True"}): scheduler_job = Job() self.job_runner = SchedulerJobRunner(scheduler_job) self.job_runner._emit_running_dags_metric() assert recorded == [("scheduler.dagruns.running", 2)] # Multi-team scheduling tests def test_multi_team_get_team_names_for_dag_ids_success(self, dag_maker, session): """Test successful team name resolution for multiple DAG IDs.""" # Setup test data clear_db_teams() clear_db_dag_bundles() team1 = Team(name="team_a") team2 = Team(name="team_b") session.add_all([team1, team2]) session.flush() bundle1 = DagBundleModel(name="bundle_a") bundle2 = DagBundleModel(name="bundle_b") bundle1.teams.append(team1) bundle2.teams.append(team2) session.add_all([bundle1, bundle2]) session.flush() with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): EmptyOperator(task_id="task_a") with dag_maker(dag_id="dag_b", bundle_name="bundle_b", session=session): EmptyOperator(task_id="task_b") with dag_maker(dag_id="dag_no_team", session=session): EmptyOperator(task_id="task_no_team") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._get_team_names_for_dag_ids(["dag_a", "dag_b", "dag_no_team"], session) expected = {"dag_a": "team_a", "dag_b": "team_b", "dag_no_team": None} assert result == expected def test_multi_team_get_team_names_for_dag_ids_empty_input(self, session): """Test that empty input returns empty dict.""" scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._get_team_names_for_dag_ids([], session) assert result == {} @mock.patch("airflow.jobs.scheduler_job_runner.SchedulerJobRunner.log") def test_multi_team_get_team_names_for_dag_ids_database_error(self, mock_log, dag_maker, session): """Test graceful error handling when team resolution fails. This code should _not_ fail the scheduler.""" with dag_maker(dag_id="dag_test", session=session): EmptyOperator(task_id="task") scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # Mock session.execute to raise an exception using context manager with mock.patch.object(session, "execute", side_effect=Exception("Database error")): result = self.job_runner._get_team_names_for_dag_ids(["dag_test"], session) # Should return empty dict and log the error assert result == {} mock_log.exception.assert_called_once() def test_multi_team_get_task_team_name_success(self, dag_maker, session): """Test successful team name resolution for a single task.""" clear_db_teams() clear_db_dag_bundles() team = Team(name="team_a") session.add(team) session.flush() bundle = DagBundleModel(name="bundle_a") bundle.teams.append(team) session.add(bundle) session.flush() with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): task = EmptyOperator(task_id="task_a") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._get_task_team_name(ti, session) assert result == "team_a" def test_multi_team_get_task_team_name_no_team(self, dag_maker, session): """Test team resolution when no team is associated with the DAG.""" with dag_maker(dag_id="dag_no_team", session=session): task = EmptyOperator(task_id="task_no_team") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._get_task_team_name(ti, session) assert result is None def test_multi_team_get_task_team_name_database_error(self, dag_maker, session): """Test graceful error handling when individual task team resolution fails. This code should _not_ fail the scheduler.""" with dag_maker(dag_id="dag_test", session=session): task = EmptyOperator(task_id="task_test") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # Mock _get_team_names_for_dag_ids to return empty dict (simulates database error handling in that function) with mock.patch.object(self.job_runner, "_get_team_names_for_dag_ids", return_value={}) as mock_batch: result = self.job_runner._get_task_team_name(ti, session) mock_batch.assert_called_once_with([ti.dag_id], session) # Should return None when batch function returns empty dict assert result is None @conf_vars({("core", "multi_team"): "false"}) def test_multi_team_try_to_load_executor_multi_team_disabled(self, dag_maker, mock_executors, session): """Test executor selection when multi_team is disabled (legacy behavior).""" with dag_maker(dag_id="test_dag", session=session): task = EmptyOperator(task_id="test_task", executor="secondary_exec") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) with mock.patch.object(self.job_runner, "_get_task_team_name") as mock_team_resolve: result = self.job_runner._try_to_load_executor(ti, session) # Should not call team resolution when multi_team is disabled mock_team_resolve.assert_not_called() assert result == mock_executors[1] @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_try_to_load_executor_no_explicit_executor_no_team( self, dag_maker, mock_executors, session ): """Test executor selection when no explicit executor and no team (should use global default).""" with dag_maker(dag_id="test_dag", session=session): task = EmptyOperator(task_id="test_task") # No explicit executor dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._try_to_load_executor(ti, session) # Should return the global default executor (first executor in Job) assert result == scheduler_job.executor @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_try_to_load_executor_no_explicit_executor_with_team( self, dag_maker, mock_executors, session ): """Test executor selection when no explicit executor but team exists (should find team's default executor).""" clear_db_teams() clear_db_dag_bundles() team = Team(name="team_a") session.add(team) session.flush() bundle = DagBundleModel(name="bundle_a") bundle.teams.append(team) session.add(bundle) session.flush() # Configure one executor to be team-specific mock_executors[1].team_name = "team_a" with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): task = EmptyOperator(task_id="test_task") # No explicit executor dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._try_to_load_executor(ti, session) # Should return the team-specific default executor set above assert result == mock_executors[1] @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_try_to_load_executor_explicit_executor_matches_team( self, dag_maker, mock_executors, session ): """Test executor selection when explicit executor matches task's team.""" clear_db_teams() clear_db_dag_bundles() team = Team(name="team_a") session.add(team) session.flush() bundle = DagBundleModel(name="bundle_a") bundle.teams.append(team) session.add(bundle) session.flush() # Configure executor for the team mock_executors[1].team_name = "team_a" with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): task = EmptyOperator(task_id="test_task", executor="secondary_exec") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._try_to_load_executor(ti, session) # Should return the team-specific executor that matches the explicit executor name assert result == mock_executors[1] @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_try_to_load_executor_explicit_executor_global_fallback( self, dag_maker, mock_executors, session ): """Test executor selection when explicit executor is global (team_name=None).""" clear_db_teams() clear_db_dag_bundles() team = Team(name="team_a") session.add(team) session.flush() bundle = DagBundleModel(name="bundle_a") bundle.teams.append(team) session.add(bundle) session.flush() # Configure one executor for the team, but keep default as global mock_executors[1].team_name = "team_a" with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): task = EmptyOperator(task_id="test_task", executor="default_exec") # Global executor dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) result = self.job_runner._try_to_load_executor(ti, session) # Should return the global executor (default) even though task has a team assert result == mock_executors[0] @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_try_to_load_executor_explicit_executor_team_mismatch( self, dag_maker, mock_executors, session ): """Test executor selection when explicit executor doesn't match task's team (should return None).""" clear_db_teams() clear_db_dag_bundles() team1 = Team(name="team_a") team2 = Team(name="team_b") session.add_all([team1, team2]) session.flush() bundle = DagBundleModel(name="bundle_a") bundle.teams.append(team1) session.add(bundle) session.flush() # Configure executors for different teams mock_executors[1].team_name = "team_b" # Different team! with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): # DAG belongs to team_a task = EmptyOperator( task_id="test_task", executor="secondary_exec" ) # Executor for different team dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) with mock.patch("airflow.jobs.scheduler_job_runner.SchedulerJobRunner.log") as mock_log: result = self.job_runner._try_to_load_executor(ti, session) # Should log a warning when no executor is found mock_log.warning.assert_called_once_with( "Executor, %s, was not found but a Task was configured to use it", "secondary_exec" ) # Should return None since we failed to resolve an executor due to the mismatch. In practice, this # should never happen since we assert this at DagBag validation time. assert result is None @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_try_to_load_executor_invalid_executor_name(self, dag_maker, mock_executors, session): """Test executor selection with invalid executor name (should return None and log warning).""" with dag_maker(dag_id="test_dag", session=session): task = EmptyOperator(task_id="test_task", executor="nonexistent_executor") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) with mock.patch("airflow.jobs.scheduler_job_runner.SchedulerJobRunner.log") as mock_log: result = self.job_runner._try_to_load_executor(ti, session) assert result is None mock_log.warning.assert_called_once() @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_try_to_load_executor_team_name_pre_resolved(self, dag_maker, mock_executors, session): """Test executor selection when team_name is pre-resolved.""" clear_db_teams() clear_db_dag_bundles() team = Team(name="team_a") session.add(team) session.flush() bundle = DagBundleModel(name="bundle_a") bundle.teams.append(team) session.add(bundle) session.flush() mock_executors[1].team_name = "team_a" with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): task = EmptyOperator(task_id="test_task") dr = dag_maker.create_dagrun() ti = dr.get_task_instance(task.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # Call with pre-resolved team name (as done in the scheduling loop) with mock.patch.object(self.job_runner, "_get_task_team_name") as mock_team_resolve: result = self.job_runner._try_to_load_executor(ti, session, team_name="team_a") mock_team_resolve.assert_not_called() # We don't query for the team if it is pre-resolved assert result == mock_executors[1] @conf_vars({("core", "multi_team"): "true"}) def test_multi_team_scheduling_loop_batch_optimization(self, dag_maker, mock_executors, session): """Test that the scheduling loop uses batch team resolution optimization.""" clear_db_teams() clear_db_dag_bundles() team1 = Team(name="team_a") team2 = Team(name="team_b") session.add_all([team1, team2]) session.flush() bundle1 = DagBundleModel(name="bundle_a") bundle2 = DagBundleModel(name="bundle_b") bundle1.teams.append(team1) bundle2.teams.append(team2) session.add_all([bundle1, bundle2]) session.flush() mock_executors[0].team_name = "team_a" mock_executors[1].team_name = "team_b" with dag_maker(dag_id="dag_a", bundle_name="bundle_a", session=session): EmptyOperator(task_id="task_a") dr1 = dag_maker.create_dagrun() with dag_maker(dag_id="dag_b", bundle_name="bundle_b", session=session): EmptyOperator(task_id="task_b") dr2 = dag_maker.create_dagrun() ti1 = dr1.get_task_instance("task_a", session) ti2 = dr2.get_task_instance("task_b", session) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.flush() scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) # The scheduling loop should call batch resolution and pass resolved names with mock.patch.object(self.job_runner, "_get_team_names_for_dag_ids") as mock_batch: mock_batch.return_value = {"dag_a": "team_a", "dag_b": "team_b"} res = self.job_runner._executable_task_instances_to_queued(max_tis=32, session=session) # Verify batch method was called with unique DAG IDs mock_batch.assert_called_once_with({"dag_a", "dag_b"}, session) assert len(res) == 2 @conf_vars({("core", "multi_team"): "false"}) def test_multi_team_config_disabled_uses_legacy_behavior(self, dag_maker, mock_executors, session): """Test that when multi_team config is disabled, legacy behavior is preserved.""" with dag_maker(dag_id="test_dag", session=session): task1 = EmptyOperator(task_id="test_task1") # No explicit executor task2 = EmptyOperator(task_id="test_task2", executor="secondary_exec") dr = dag_maker.create_dagrun() ti1 = dr.get_task_instance(task1.task_id, session) ti2 = dr.get_task_instance(task2.task_id, session) scheduler_job = Job() self.job_runner = SchedulerJobRunner(job=scheduler_job) with mock.patch.object(self.job_runner, "_get_task_team_name") as mock_team_resolve: result1 = self.job_runner._try_to_load_executor(ti1, session) result2 = self.job_runner._try_to_load_executor(ti2, session) # Should use legacy logic without calling team resolution mock_team_resolve.assert_not_called() assert result1 == scheduler_job.executor # Default for no explicit executor assert result2 == mock_executors[1] # Matched by executor name @pytest.mark.need_serialized_dag def test_schedule_dag_run_with_upstream_skip(dag_maker, session): """ Test if _schedule_dag_run puts a task instance into SKIPPED state if any of its upstream tasks are skipped according to TriggerRuleDep. """ with dag_maker( dag_id="test_task_with_upstream_skip_process_task_instances", start_date=DEFAULT_DATE, session=session, ): dummy1 = EmptyOperator(task_id="dummy1") dummy2 = EmptyOperator(task_id="dummy2") dummy3 = EmptyOperator(task_id="dummy3") [dummy1, dummy2] >> dummy3 # dag_file_processor = DagFileProcessor(dag_ids=[], log=mock.MagicMock()) dr = dag_maker.create_dagrun(state=State.RUNNING) assert dr is not None tis = {ti.task_id: ti for ti in dr.get_task_instances(session=session)} # Set dummy1 to skipped and dummy2 to success. dummy3 remains as none. tis[dummy1.task_id].state = State.SKIPPED tis[dummy2.task_id].state = State.SUCCESS assert tis[dummy3.task_id].state == State.NONE session.flush() # dag_runs = DagRun.find(dag_id='test_task_with_upstream_skip_dag') # dag_file_processor._process_task_instances(dag, dag_runs=dag_runs) scheduler_job = Job() job_runner = SchedulerJobRunner(job=scheduler_job) job_runner._schedule_dag_run(dr, session) session.flush() tis = {ti.task_id: ti for ti in dr.get_task_instances(session=session)} assert tis[dummy1.task_id].state == State.SKIPPED assert tis[dummy2.task_id].state == State.SUCCESS # dummy3 should be skipped because dummy1 is skipped. assert tis[dummy3.task_id].state == State.SKIPPED def test_start_queued_dagruns_uses_latest_max_active_runs_from_dag_model(self, dag_maker, session): """ Test that _start_queued_dagruns uses max_active_runs from DagModel (via dag_run) instead of stale SerializedDAG max_active_runs. This test verifies the fix where SerializedDAG may have stale max_active_runs, but DagModel has the latest value updated by version changes(versioned bundles). The scheduler should use the latest value from DagModel to respect user updates. """ # Create a DAG with max_active_runs=1 initially with dag_maker( dag_id="test_max_active_runs_stale_serialized", max_active_runs=1, session=session, ) as dag: EmptyOperator(task_id="dummy_task") dag_model = dag_maker.dag_model assert dag_model.max_active_runs == 1 # Create a SerializedDAG (which will have max_active_runs=1) # This simulates the SerializedDAG being created/updated from the DAG file scheduler_job = Job(executor=self.null_exec) self.job_runner = SchedulerJobRunner(job=scheduler_job) self.job_runner._create_dag_runs([dag_model], session) # Verify SerializedDAG has max_active_runs=1 dag_run_1 = ( session.query(DagRun).filter(DagRun.dag_id == dag.dag_id).order_by(DagRun.logical_date).first() ) assert dag_run_1 is not None serialized_dag = self.job_runner.scheduler_dag_bag.get_dag_for_run(dag_run_1, session=session) assert serialized_dag is not None assert serialized_dag.max_active_runs == 1 # Now update DagModel.max_active_runs to 2 (simulating a versioned bundle update) # This is the latest value, but SerializedDAG still has the old value dag_model.max_active_runs = 2 session.commit() session.refresh(dag_model) # Create 1 running dag run dag_run_1.state = DagRunState.RUNNING session.commit() # Create 1 queued dag run dag_run_2 = dag_maker.create_dagrun( run_id="test_run_2", state=DagRunState.QUEUED, run_type=DagRunType.SCHEDULED, session=session, ) # Ensure dag_run_2 has the updated DagModel relationship loaded # The association proxy dag_run.max_active_runs accesses dag_model.max_active_runs # so we need to ensure the relationship is loaded session.refresh(dag_run_2) # Verify we have 1 running and 1 queued running_count = ( session.query(DagRun) .filter(DagRun.dag_id == dag.dag_id, DagRun.state == DagRunState.RUNNING) .count() ) queued_count = ( session.query(DagRun) .filter(DagRun.dag_id == dag.dag_id, DagRun.state == DagRunState.QUEUED) .count() ) assert running_count == 1 assert queued_count == 1 # The SerializedDAG still has max_active_runs=1 (stale) # But DagModel has max_active_runs=2 (latest) assert serialized_dag.max_active_runs == 1 assert dag_model.max_active_runs == 2 # Call _start_queued_dagruns # With the fix: Should start the queued run (using DagModel max_active_runs=2, active_runs=1 < 2) # Without the fix: Would block the queued run (using SerializedDAG max_active_runs=1, active_runs=1 >= 1) self.job_runner._start_queued_dagruns(session) session.flush() # Verify that the queued dag run started (proves it used DagModel.max_active_runs=2) dag_run_2 = session.get(DagRun, dag_run_2.id) assert dag_run_2.state == DagRunState.RUNNING, ( "The queued dag run should have started because DagModel.max_active_runs=2 " "allows it (active_runs=1 < 2), even though SerializedDAG.max_active_runs=1 for that dagrun serdag version " "would have blocked it." ) # Verify we now have 2 running dag runs running_count = ( session.query(DagRun) .filter(DagRun.dag_id == dag.dag_id, DagRun.state == DagRunState.RUNNING) .count() ) assert running_count == 2
TestSchedulerJob
python
wandb__wandb
wandb/vendor/pygments/lexers/c_cpp.py
{ "start": 8245, "end": 10523 }
class ____(CFamilyLexer): """ For C++ source code with preprocessor directives. """ name = 'C++' aliases = ['cpp', 'c++'] filenames = ['*.cpp', '*.hpp', '*.c++', '*.h++', '*.cc', '*.hh', '*.cxx', '*.hxx', '*.C', '*.H', '*.cp', '*.CPP'] mimetypes = ['text/x-c++hdr', 'text/x-c++src'] priority = 0.1 tokens = { 'statements': [ (words(( 'catch', 'const_cast', 'delete', 'dynamic_cast', 'explicit', 'export', 'friend', 'mutable', 'namespace', 'new', 'operator', 'private', 'protected', 'public', 'reinterpret_cast', 'restrict', 'static_cast', 'template', 'this', 'throw', 'throws', 'try', 'typeid', 'typename', 'using', 'virtual', 'constexpr', 'nullptr', 'decltype', 'thread_local', 'alignas', 'alignof', 'static_assert', 'noexcept', 'override', 'final'), suffix=r'\b'), Keyword), (r'char(16_t|32_t)\b', Keyword.Type), (r'(class)(\s+)', bygroups(Keyword, Text), 'classname'), # C++11 raw strings (r'(R)(")([^\\()\s]{,16})(\()((?:.|\n)*?)(\)\3)(")', bygroups(String.Affix, String, String.Delimiter, String.Delimiter, String, String.Delimiter, String)), # C++11 UTF-8/16/32 strings (r'(u8|u|U)(")', bygroups(String.Affix, String), 'string'), inherit, ], 'root': [ inherit, # C++ Microsoft-isms (words(('virtual_inheritance', 'uuidof', 'super', 'single_inheritance', 'multiple_inheritance', 'interface', 'event'), prefix=r'__', suffix=r'\b'), Keyword.Reserved), # Offload C++ extensions, http://offload.codeplay.com/ (r'__(offload|blockingoffload|outer)\b', Keyword.Pseudo), ], 'classname': [ (r'[a-zA-Z_]\w*', Name.Class, '#pop'), # template specification (r'\s*(?=>)', Text, '#pop'), ], } def analyse_text(text): if re.search('#include <[a-z_]+>', text): return 0.2 if re.search('using namespace ', text): return 0.4
CppLexer
python
conda__conda
conda/plugins/types.py
{ "start": 14559, "end": 15090 }
class ____(CondaPlugin): """ Return type to use when defining a post-transaction action hook. For details on how this is used, see :meth:`~conda.plugins.hookspec.CondaSpecs.conda_post_transaction_actions`. :param name: Post transaction name (this is just a label) :param action: Action class which implements plugin behavior. See :class:`~conda.core.path_actions.Action` for implementation details """ name: str action: type[Action] @dataclass
CondaPostTransactionAction
python
tensorflow__tensorflow
tensorflow/python/ops/parallel_for/control_flow_ops_test.py
{ "start": 93542, "end": 95208 }
class ____(PForTestCase, parameterized.TestCase): @parameterized.parameters( (fft_ops.fft,), (fft_ops.fft2d,), (fft_ops.fft3d,), (fft_ops.ifft,), (fft_ops.ifft2d,), (fft_ops.ifft3d,), ) def test_fft(self, op_func): shape = [2, 3, 4, 3, 4] x = np.random.uniform(size=shape) + 1j * np.random.uniform(size=shape) def loop_fn(i): x_i = array_ops.gather(x, i) return op_func(x_i) self._test_loop_fn(loop_fn, 2) @parameterized.parameters( (fft_ops.rfft,), (fft_ops.rfft2d,), (fft_ops.rfft3d,), ) def test_rfft(self, op_func): for dtype in (dtypes.float32, dtypes.float64): x = random_ops.random_uniform([2, 3, 4, 3, 4], dtype=dtype) # pylint: disable=cell-var-from-loop def loop_fn(i): x_i = array_ops.gather(x, i) return op_func(x_i) # pylint: enable=cell-var-from-loop self._test_loop_fn(loop_fn, 2) @parameterized.parameters( (fft_ops.irfft,), (fft_ops.irfft2d,), (fft_ops.irfft3d,), ) def test_irfft(self, op_func): if config.list_physical_devices("GPU"): # TODO(b/149957923): The test is flaky self.skipTest("b/149957923: irfft vectorization flaky") for dtype in (dtypes.complex64, dtypes.complex128): shape = [2, 3, 4, 3, 4] x = np.random.uniform(size=shape) + 1j * np.random.uniform(size=shape) x = math_ops.cast(x, dtype=dtype) # pylint: disable=cell-var-from-loop def loop_fn(i): x_i = array_ops.gather(x, i) return op_func(x_i) # pylint: enable=cell-var-from-loop self._test_loop_fn(loop_fn, 2)
SpectralTest
python
Lightning-AI__lightning
tests/tests_pytorch/core/test_metric_result_integration.py
{ "start": 1550, "end": 9390 }
class ____(Metric): x: Tensor def __init__(self): super().__init__() self.add_state("x", tensor(0), dist_reduce_fx="sum") def update(self, x): self.x += x def compute(self): return self.x def result_reduce_ddp_fn(strategy): rank = strategy.local_rank worldsize = strategy.num_processes tensor([1.0]) metric_a = DummyMetric() metric_b = DummyMetric() metric_c = DummyMetric() metric_a = metric_a.to(f"cuda:{rank}") metric_b = metric_b.to(f"cuda:{rank}") metric_c = metric_c.to(f"cuda:{rank}") result = _ResultCollection(True) for _ in range(3): cumulative_sum = 0 for i in range(5): metric_a(i) metric_b(i) metric_c(i) cumulative_sum += i result.log("h", "a", metric_a, on_step=True, on_epoch=True) result.log("h", "b", metric_b, on_step=False, on_epoch=True) result.log("h", "c", metric_c, on_step=True, on_epoch=False) batch_log = result.metrics(True)["log"] assert batch_log == {"a_step": i, "c": i} epoch_log = result.metrics(False)["log"] result.reset() # assert metric state reset to default values assert metric_a.x == metric_a._defaults["x"], (metric_a.x, metric_a._defaults["x"]) assert metric_b.x == metric_b._defaults["x"] assert metric_c.x == metric_c._defaults["x"] assert epoch_log == {"b": cumulative_sum * worldsize, "a_epoch": cumulative_sum * worldsize} @RunIf(min_cuda_gpus=2, skip_windows=True) def test_result_reduce_ddp(): """Make sure result logging works with DDP.""" spawn_launch(result_reduce_ddp_fn, [torch.device("cuda:0"), torch.device("cuda:1")]) def test_result_metric_integration(): metric_a = DummyMetric() metric_b = DummyMetric() metric_c = DummyMetric() result = _ResultCollection(True) for _ in range(3): cumulative_sum = 0 for i in range(5): metric_a(i) metric_b(i) metric_c(i) cumulative_sum += i result.log("h", "a", metric_a, on_step=True, on_epoch=True) result.log("h", "b", metric_b, on_step=False, on_epoch=True) result.log("h", "c", metric_c, on_step=True, on_epoch=False) batch_log = result.metrics(True)["log"] assert batch_log == {"a_step": i, "c": i} epoch_log = result.metrics(False)["log"] result.reset() # assert metric state reset to default values assert metric_a.x == metric_a._defaults["x"] assert metric_b.x == metric_b._defaults["x"] assert metric_c.x == metric_c._defaults["x"] assert epoch_log == {"b": cumulative_sum, "a_epoch": cumulative_sum} result.minimize = tensor(1.0) result.extra = {} assert str(result) == ( "_ResultCollection(" "{" "'h.a': _ResultMetric('a', value=DummyMetric()), " "'h.b': _ResultMetric('b', value=DummyMetric()), " "'h.c': _ResultMetric('c', value=DummyMetric())" "})" ) assert repr(result) == ( "{" "True, " "{'h.a': _ResultMetric('a', value=DummyMetric()), " "'h.b': _ResultMetric('b', value=DummyMetric()), " "'h.c': _ResultMetric('c', value=DummyMetric())" "}}" ) def test_result_collection_simple_loop(): result = _ResultCollection(True) current_fx_name = None batch_idx = None def lightning_log(fx, *args, **kwargs): nonlocal current_fx_name if current_fx_name != fx and batch_idx in (None, 0): result.reset(metrics=False, fx=fx) result.log(fx, *args, **kwargs) current_fx_name = fx lightning_log("a0", "a", tensor(0.0), on_step=True, on_epoch=True) lightning_log("a1", "a", tensor(0.0), on_step=True, on_epoch=True) for epoch in range(2): lightning_log("b0", "a", tensor(1.0) + epoch, on_step=True, on_epoch=True) lightning_log("b1", "a", tensor(1.0) + epoch, on_step=True, on_epoch=True) for batch_idx in range(2): lightning_log("c0", "a", tensor(2.0) + epoch, on_step=True, on_epoch=True) lightning_log("c1", "a", tensor(2.0) + epoch, on_step=True, on_epoch=True) lightning_log("c2", "a", tensor(2.0) + epoch, on_step=True, on_epoch=True) batch_idx = None lightning_log("d0", "a", tensor(3.0) + epoch, on_step=False, on_epoch=True) lightning_log("d1", "a", tensor(3.0) + epoch, on_step=False, on_epoch=True) for k in ("a0.a", "a1.a"): assert result[k].value == tensor(0.0), k assert result[k].cumulated_batch_size == tensor(1.0), k for k in ("b0.a", "b1.a"): assert result[k].value == tensor(1.0) + epoch, k assert result[k].cumulated_batch_size == tensor(1.0), k for k in ("c0.a", "c1.a", "c2.a"): assert result[k].value == tensor(4.0) + epoch * 2, k assert result[k].cumulated_batch_size == tensor(2.0), k for k in ("d0.a", "d1.a"): assert result[k].value == tensor(3.0) + epoch, k assert result[k].cumulated_batch_size == tensor(1.0), k def my_sync_dist(x, *_, **__): return x def test_result_collection_restoration(tmp_path): """This test make sure metrics are properly reloaded on failure.""" result = _ResultCollection(True) metric_a = DummyMetric() metric_b = DummyMetric() metric_c = DummyMetric() metric_d = DummyMetric() current_fx_name = None batch_idx = None def lightning_log(fx, *args, **kwargs): nonlocal current_fx_name if current_fx_name != fx and batch_idx in (None, 0): result.reset(metrics=False, fx=fx) result.log(fx, *args, **kwargs, sync_dist_fn=my_sync_dist) current_fx_name = fx for epoch in range(2): cumulative_sum = 0 for i in range(3): a = metric_a(i) b = metric_b(i) c = metric_c(i) metric_d(i) cumulative_sum += i metric = metric_a if i < 1 else metric_d lightning_log("training_step", "a", metric, on_step=True, on_epoch=True, metric_attribute="metric") lightning_log("training_step", "b", metric_b, on_step=False, on_epoch=True, metric_attribute="metric_b") lightning_log("training_step", "c", metric_c, on_step=True, on_epoch=False, metric_attribute="metric_c") lightning_log("training_step", "a_1", a, on_step=True, on_epoch=True) lightning_log("training_step", "b_1", b, on_step=False, on_epoch=True) lightning_log("training_step", "c_1", c, on_step=True, on_epoch=False) batch_log = result.metrics(on_step=True)["log"] assert set(batch_log) == {"a_step", "c", "a_1_step", "c_1"} assert len(result.result_metrics) == 6 + epoch > 0 lightning_log("train_epoch_end", "a", metric_a, on_step=False, on_epoch=True) epoch_log = result.metrics(on_step=False)["log"] assert epoch_log == { "a_1_epoch": 1, "a_epoch": cumulative_sum, "a": cumulative_sum, "b": cumulative_sum, "b_1": 1, } # make sure can be pickled pickle.loads(pickle.dumps(result)) # make sure can be torch.loaded filepath = str(tmp_path / "result") torch.save(result, filepath) torch.load(filepath, weights_only=False) # assert metric state reset to default values result.reset() assert metric_a.x == metric_a._defaults["x"] assert metric_b.x == metric_b._defaults["x"] assert metric_c.x == metric_c._defaults["x"] batch_idx = None
DummyMetric
python
great-expectations__great_expectations
great_expectations/datasource/fluent/data_asset/path/spark/csv_asset.py
{ "start": 7998, "end": 8078 }
class ____(FileDataAsset, CSVAssetBase): type: Literal["csv"] = "csv"
CSVAsset
python
PyCQA__pylint
pylint/utils/linterstats.py
{ "start": 1072, "end": 1233 }
class ____(TypedDict): """TypedDict to store counts of different types of nodes.""" function: int klass: int method: int module: int
NodeCount
python
walkccc__LeetCode
solutions/3493. Properties Graph/3493.py
{ "start": 609, "end": 972 }
class ____: def numberOfComponents(self, properties: list[list[int]], k: int) -> int: n = len(properties) uf = UnionFind(n) propertySets = [set(property) for property in properties] for i, j in itertools.combinations(range(n), 2): if len(propertySets[i] & propertySets[j]) >= k: uf.unionByRank(i, j) return uf.getCount()
Solution
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/testing/suite/test_types.py
{ "start": 22857, "end": 23258 }
class ____(_DateFixture, fixtures.TablesTest): __requires__ = ("time_timezone",) __backend__ = True datatype = Time(timezone=True) data = datetime.time(12, 57, 18, tzinfo=datetime.timezone.utc) @testing.requires.time_implicit_bound def test_select_direct(self, connection): result = connection.scalar(select(literal(self.data))) eq_(result, self.data)
TimeTZTest
python
huggingface__transformers
src/transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py
{ "start": 22786, "end": 34469 }
class ____(PreTrainedConfig): r""" This is the configuration class to store the configuration of a [`Qwen2_5OmniTalkerForConditionalGeneration`]. It is used to instantiate an Qwen2.5-Omni-Talker model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Qwen2.5-Omni-Thinker. e.g. [Qwen/Qwen2.5-Omni-7B](https://huggingface.co/Qwen/Qwen2.5-Omni-7B) Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PreTrainedConfig`] for more information. Args: audio_token_index (`int`, *optional*, defaults to 151646): The audio token index to encode the audio prompt. image_token_index (`int`, *optional*, defaults to 151655): The image token index to encode the image prompt. video_token_index (`int`, *optional*, defaults to 151656): The video token index to encode the video prompt. vocab_size (`int`, *optional*, defaults to 8448): Vocabulary size of the QwenOmni model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Qwen2VLModel`] tts_text_start_token_id (`int`, *optional*, defaults to 151860): The tts text start token index to encode the start of tts text. tts_text_end_token_id (`int`, *optional*, defaults to 151861): The tts text end token index to encode the end of tts text. tts_text_pad_token_id (`int`, *optional*, defaults to 151859): The tts text pad token index to encode the pad of tts text. tts_codec_start_token_id (`int`, *optional*, defaults to 8293): The tts codec start token index to encode the start of tts codec. tts_codec_end_token_id (`int`, *optional*, defaults to 8294): The tts codec end token index to encode the end of tts codec. tts_codec_pad_token_id (`int`, *optional*, defaults to 8292): The tts codec pad token index to encode the pad of tts codec. tts_codec_mask_token_id (`int`, *optional*, defaults to 8296): The tts codec mask token index to encode the mask of tts codec. vision_start_token_id (`int`, *optional*, defaults to 151652): The tts vision start token index to encode the start of vision. vision_end_token_id (`int`, *optional*, defaults to 151653): The tts vision end token index to encode the end of vision. embedding_size (`int`, *optional*, defaults to 3584): Dimension of the embedding representations. hidden_size (`int`, *optional*, defaults to 3584): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 18944): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 28): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 4): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 32768): The maximum sequence length that this model might ever be used with. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. head_dim (`int`, *optional*, defaults to 128): The dimension of each attention head. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. use_sliding_window (`bool`, *optional*, defaults to `False`): Whether to use sliding window attention. sliding_window (`int`, *optional*, defaults to 32768): Sliding window attention (SWA) window size. If not specified, will default to `4096`. max_window_layers (`int`, *optional*, defaults to 28): The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any additional layer afterwards will use SWA (Sliding Window Attention). attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. rope_parameters (`RopeParameters`, *optional*): Dictionary containing the configuration parameters for the RoPE embeddings. The dictionary should contain a value for `rope_theta` and optionally parameters used for scaling in case you want to use RoPE with longer `max_position_embeddings`. position_id_per_seconds (`int`, *optional*, defaults to 25): The increment of position id per second. seconds_per_chunk (`int`, *optional*, defaults to 2): The duration in seconds of the chunk of audio and video data. audio_start_token_id (`int`, *optional*, defaults to 151647): The audio start token index to encode the audio prompt. audio_end_token_id (`int`, *optional*, defaults to 151648): The audio end token index to encode the audio prompt. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. spatial_merge_size (`int`, *optional*, defaults to 2): The size used for merging spatial dimensions. layer_types (`list`, *optional*): Attention pattern for each layer. Example: ```python >>> from transformers import Qwen2_5OmniTalkerForConditionalGeneration, Qwen2_5OmniThinkerConfig, Qwen2_5OmniAudioEncoderConfig, Qwen2_5OmniVisionEncoderConfig >>> # Initializing a Qwen2_5OmniAudioEncoder config >>> audio_config = Qwen2_5OmniAudioEncoderConfig() >>> # Initializing a Qwen2 config >>> text_config = Qwen2Config() >>> # Initializing a Qwen2_5Omni configuration >>> configuration = Qwen2_5OmniThinkerConfig(audio_config, text_config) >>> # Initializing a model from the qwen2-audio style configuration >>> model = Qwen2_5OmniTalkerForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "qwen2_5_omni_talker" default_theta = 1000000.0 attribute_map = { "image_token_id": "image_token_index", "video_token_id": "video_token_index", "audio_token_id": "audio_token_index", } def __init__( self, audio_token_index=151646, image_token_index=151655, video_token_index=151656, vocab_size=8448, tts_text_start_token_id=151860, tts_text_end_token_id=151861, tts_text_pad_token_id=151859, tts_codec_start_token_id=8293, tts_codec_end_token_id=8294, tts_codec_pad_token_id=8292, tts_codec_mask_token_id=8296, vision_start_token_id=151652, vision_end_token_id=151653, embedding_size=3584, hidden_size=3584, intermediate_size=18944, num_hidden_layers=28, num_attention_heads=28, num_key_value_heads=4, hidden_act="silu", max_position_embeddings=32768, rms_norm_eps=1e-06, head_dim=128, use_cache=True, tie_word_embeddings=False, use_sliding_window=False, sliding_window=32768, max_window_layers=28, attention_dropout=0.0, rope_parameters: Optional[RopeParameters | dict[str, RopeParameters]] = None, position_id_per_seconds=25, seconds_per_chunk=2, audio_start_token_id=151647, audio_end_token_id=151648, initializer_range=0.02, spatial_merge_size=2, layer_types=None, **kwargs, ): self.audio_token_index = audio_token_index self.image_token_index = image_token_index self.video_token_index = video_token_index self.tts_text_start_token_id = tts_text_start_token_id self.tts_text_end_token_id = tts_text_end_token_id self.tts_text_pad_token_id = tts_text_pad_token_id self.tts_codec_start_token_id = tts_codec_start_token_id self.tts_codec_end_token_id = tts_codec_end_token_id self.tts_codec_pad_token_id = tts_codec_pad_token_id self.tts_codec_mask_token_id = tts_codec_mask_token_id self.vision_start_token_id = vision_start_token_id self.vision_end_token_id = vision_end_token_id self.vocab_size = vocab_size self.head_dim = head_dim self.embedding_size = embedding_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window if self.use_sliding_window else None self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.attention_dropout = attention_dropout self.position_id_per_seconds = position_id_per_seconds # zf self.seconds_per_chunk = seconds_per_chunk # zf self.audio_start_token_id = audio_start_token_id # zf self.audio_end_token_id = audio_end_token_id # zf self.initializer_range = initializer_range self.spatial_merge_size = spatial_merge_size self.layer_types = layer_types if self.layer_types is None: self.layer_types = [ "sliding_attention" if self.sliding_window is not None and i >= self.max_window_layers else "full_attention" for i in range(self.num_hidden_layers) ] layer_type_validation(self.layer_types, self.num_hidden_layers) self.rope_parameters = rope_parameters super().__init__(tie_word_embeddings=tie_word_embeddings, ignore_keys_at_rope_validation={"mrope"}, **kwargs)
Qwen2_5OmniTalkerConfig
python
ansible__ansible
test/lib/ansible_test/_util/controller/sanity/validate-modules/validate_modules/utils.py
{ "start": 1176, "end": 3121 }
class ____(TextIOWrapper): def write(self, s): super(AnsibleTextIOWrapper, self).write(to_text(s, self.encoding, errors='replace')) def find_executable(executable, cwd=None, path=None): """Finds the full path to the executable specified""" match = None real_cwd = os.getcwd() if not cwd: cwd = real_cwd if os.path.dirname(executable): target = os.path.join(cwd, executable) if os.path.exists(target) and os.access(target, os.F_OK | os.X_OK): match = executable else: path = os.environ.get('PATH', os.path.defpath) path_dirs = path.split(os.path.pathsep) seen_dirs = set() for path_dir in path_dirs: if path_dir in seen_dirs: continue seen_dirs.add(path_dir) if os.path.abspath(path_dir) == real_cwd: path_dir = cwd candidate = os.path.join(path_dir, executable) if os.path.exists(candidate) and os.access(candidate, os.F_OK | os.X_OK): match = candidate break return match def find_globals(g, tree): """Uses AST to find globals in an ast tree""" for child in tree: if hasattr(child, 'body') and isinstance(child.body, list): find_globals(g, child.body) elif isinstance(child, (ast.FunctionDef, ast.ClassDef)): g.add(child.name) continue elif isinstance(child, ast.Assign): try: g.add(child.targets[0].id) except (IndexError, AttributeError): pass elif isinstance(child, ast.Import): g.add(child.names[0].name) elif isinstance(child, ast.ImportFrom): for name in child.names: g_name = name.asname or name.name if g_name == '*': continue g.add(g_name)
AnsibleTextIOWrapper
python
aio-libs__aiohttp
tests/test_payload.py
{ "start": 4989, "end": 47363 }
class ____(AbstractStreamWriter): """Mock stream writer for testing payload writes.""" def __init__(self) -> None: self.written: list[bytes] = [] async def write( self, chunk: Union[bytes, bytearray, "memoryview[int]", "memoryview[bytes]"] ) -> None: """Store the chunk in the written list.""" self.written.append(bytes(chunk)) async def write_eof(self, chunk: bytes | None = None) -> None: """write_eof implementation - no-op for tests.""" async def drain(self) -> None: """Drain implementation - no-op for tests.""" def enable_compression( self, encoding: str = "deflate", strategy: int | None = None ) -> None: """Enable compression - no-op for tests.""" def enable_chunking(self) -> None: """Enable chunking - no-op for tests.""" async def write_headers(self, status_line: str, headers: CIMultiDict[str]) -> None: """Write headers - no-op for tests.""" def get_written_bytes(self) -> bytes: """Return all written bytes as a single bytes object.""" return b"".join(self.written) async def test_bytes_payload_write_with_length_no_limit() -> None: """Test BytesPayload writing with no content length limit.""" data = b"0123456789" p = payload.BytesPayload(data) writer = MockStreamWriter() await p.write_with_length(writer, None) assert writer.get_written_bytes() == data assert len(writer.get_written_bytes()) == 10 async def test_bytes_payload_write_with_length_exact() -> None: """Test BytesPayload writing with exact content length.""" data = b"0123456789" p = payload.BytesPayload(data) writer = MockStreamWriter() await p.write_with_length(writer, 10) assert writer.get_written_bytes() == data assert len(writer.get_written_bytes()) == 10 async def test_bytes_payload_write_with_length_truncated() -> None: """Test BytesPayload writing with truncated content length.""" data = b"0123456789" p = payload.BytesPayload(data) writer = MockStreamWriter() await p.write_with_length(writer, 5) assert writer.get_written_bytes() == b"01234" assert len(writer.get_written_bytes()) == 5 async def test_iobase_payload_write_with_length_no_limit() -> None: """Test IOBasePayload writing with no content length limit.""" data = b"0123456789" p = payload.IOBasePayload(io.BytesIO(data)) writer = MockStreamWriter() await p.write_with_length(writer, None) assert writer.get_written_bytes() == data assert len(writer.get_written_bytes()) == 10 async def test_iobase_payload_write_with_length_exact() -> None: """Test IOBasePayload writing with exact content length.""" data = b"0123456789" p = payload.IOBasePayload(io.BytesIO(data)) writer = MockStreamWriter() await p.write_with_length(writer, 10) assert writer.get_written_bytes() == data assert len(writer.get_written_bytes()) == 10 async def test_iobase_payload_write_with_length_truncated() -> None: """Test IOBasePayload writing with truncated content length.""" data = b"0123456789" p = payload.IOBasePayload(io.BytesIO(data)) writer = MockStreamWriter() await p.write_with_length(writer, 5) assert writer.get_written_bytes() == b"01234" assert len(writer.get_written_bytes()) == 5 async def test_bytesio_payload_write_with_length_no_limit() -> None: """Test BytesIOPayload writing with no content length limit.""" data = b"0123456789" p = payload.BytesIOPayload(io.BytesIO(data)) writer = MockStreamWriter() await p.write_with_length(writer, None) assert writer.get_written_bytes() == data assert len(writer.get_written_bytes()) == 10 async def test_bytesio_payload_write_with_length_exact() -> None: """Test BytesIOPayload writing with exact content length.""" data = b"0123456789" p = payload.BytesIOPayload(io.BytesIO(data)) writer = MockStreamWriter() await p.write_with_length(writer, 10) assert writer.get_written_bytes() == data assert len(writer.get_written_bytes()) == 10 async def test_bytesio_payload_write_with_length_truncated() -> None: """Test BytesIOPayload writing with truncated content length.""" data = b"0123456789" payload_bytesio = payload.BytesIOPayload(io.BytesIO(data)) writer = MockStreamWriter() await payload_bytesio.write_with_length(writer, 5) assert writer.get_written_bytes() == b"01234" assert len(writer.get_written_bytes()) == 5 async def test_bytesio_payload_write_with_length_remaining_zero() -> None: """Test BytesIOPayload with content_length smaller than first read chunk.""" data = b"0123456789" * 10 # 100 bytes bio = io.BytesIO(data) payload_bytesio = payload.BytesIOPayload(bio) writer = MockStreamWriter() # Mock the read method to return smaller chunks original_read = bio.read read_calls = 0 def mock_read(size: int | None = None) -> bytes: nonlocal read_calls read_calls += 1 if read_calls == 1: # First call: return 3 bytes (less than content_length=5) return original_read(3) else: # Subsequent calls return remaining data normally return original_read(size) with unittest.mock.patch.object(bio, "read", mock_read): await payload_bytesio.write_with_length(writer, 5) assert len(writer.get_written_bytes()) == 5 assert writer.get_written_bytes() == b"01234" async def test_bytesio_payload_large_data_multiple_chunks() -> None: """Test BytesIOPayload with large data requiring multiple read chunks.""" chunk_size = 2**16 # 64KB (READ_SIZE) data = b"x" * (chunk_size + 1000) # Slightly larger than READ_SIZE payload_bytesio = payload.BytesIOPayload(io.BytesIO(data)) writer = MockStreamWriter() await payload_bytesio.write_with_length(writer, None) assert writer.get_written_bytes() == data assert len(writer.get_written_bytes()) == chunk_size + 1000 async def test_bytesio_payload_remaining_bytes_exhausted() -> None: """Test BytesIOPayload when remaining_bytes becomes <= 0.""" data = b"0123456789abcdef" * 1000 # 16000 bytes payload_bytesio = payload.BytesIOPayload(io.BytesIO(data)) writer = MockStreamWriter() await payload_bytesio.write_with_length(writer, 8000) # Exactly half the data written = writer.get_written_bytes() assert len(written) == 8000 assert written == data[:8000] async def test_iobase_payload_exact_chunk_size_limit() -> None: """Test IOBasePayload with content length matching exactly one read chunk.""" chunk_size = 2**16 # 65536 bytes (READ_SIZE) data = b"x" * chunk_size + b"extra" # Slightly larger than one read chunk p = payload.IOBasePayload(io.BytesIO(data)) writer = MockStreamWriter() await p.write_with_length(writer, chunk_size) written = writer.get_written_bytes() assert len(written) == chunk_size assert written == data[:chunk_size] async def test_iobase_payload_reads_in_chunks() -> None: """Test IOBasePayload reads data in chunks of READ_SIZE, not all at once.""" # Create a large file that's multiple times larger than READ_SIZE large_data = b"x" * (READ_SIZE * 3 + 1000) # ~192KB + 1000 bytes # Mock the file-like object to track read calls mock_file = unittest.mock.Mock(spec=io.BytesIO) mock_file.tell.return_value = 0 mock_file.fileno.side_effect = AttributeError # Make size return None # Track the sizes of read() calls read_sizes = [] def mock_read(size: int) -> bytes: read_sizes.append(size) # Return data based on how many times read was called call_count = len(read_sizes) if call_count == 1: return large_data[:size] elif call_count == 2: return large_data[READ_SIZE : READ_SIZE + size] elif call_count == 3: return large_data[READ_SIZE * 2 : READ_SIZE * 2 + size] else: return large_data[READ_SIZE * 3 :] mock_file.read.side_effect = mock_read payload_obj = payload.IOBasePayload(mock_file) writer = MockStreamWriter() # Write with a large content_length await payload_obj.write_with_length(writer, len(large_data)) # Verify that reads were limited to READ_SIZE assert len(read_sizes) > 1 # Should have multiple reads for read_size in read_sizes: assert ( read_size <= READ_SIZE ), f"Read size {read_size} exceeds READ_SIZE {READ_SIZE}" async def test_iobase_payload_large_content_length() -> None: """Test IOBasePayload with very large content_length doesn't read all at once.""" data = b"x" * (READ_SIZE + 1000) # Create a custom file-like object that tracks read sizes class TrackingBytesIO(io.BytesIO): def __init__(self, data: bytes) -> None: super().__init__(data) self.read_sizes: list[int] = [] def read(self, size: int | None = -1) -> bytes: self.read_sizes.append(size if size is not None else -1) return super().read(size) tracking_file = TrackingBytesIO(data) payload_obj = payload.IOBasePayload(tracking_file) writer = MockStreamWriter() # Write with a very large content_length (simulating the bug scenario) large_content_length = 10 * 1024 * 1024 # 10MB await payload_obj.write_with_length(writer, large_content_length) # Verify no single read exceeded READ_SIZE for read_size in tracking_file.read_sizes: assert ( read_size <= READ_SIZE ), f"Read size {read_size} exceeds READ_SIZE {READ_SIZE}" # Verify the correct amount of data was written assert writer.get_written_bytes() == data async def test_textio_payload_reads_in_chunks() -> None: """Test TextIOPayload reads data in chunks of READ_SIZE, not all at once.""" # Create a large text file that's multiple times larger than READ_SIZE large_text = "x" * (READ_SIZE * 3 + 1000) # ~192KB + 1000 chars # Mock the file-like object to track read calls mock_file = unittest.mock.Mock(spec=io.StringIO) mock_file.tell.return_value = 0 mock_file.fileno.side_effect = AttributeError # Make size return None mock_file.encoding = "utf-8" # Track the sizes of read() calls read_sizes = [] def mock_read(size: int) -> str: read_sizes.append(size) # Return data based on how many times read was called call_count = len(read_sizes) if call_count == 1: return large_text[:size] elif call_count == 2: return large_text[READ_SIZE : READ_SIZE + size] elif call_count == 3: return large_text[READ_SIZE * 2 : READ_SIZE * 2 + size] else: return large_text[READ_SIZE * 3 :] mock_file.read.side_effect = mock_read payload_obj = payload.TextIOPayload(mock_file) writer = MockStreamWriter() # Write with a large content_length await payload_obj.write_with_length(writer, len(large_text.encode("utf-8"))) # Verify that reads were limited to READ_SIZE assert len(read_sizes) > 1 # Should have multiple reads for read_size in read_sizes: assert ( read_size <= READ_SIZE ), f"Read size {read_size} exceeds READ_SIZE {READ_SIZE}" async def test_textio_payload_large_content_length() -> None: """Test TextIOPayload with very large content_length doesn't read all at once.""" text_data = "x" * (READ_SIZE + 1000) # Create a custom file-like object that tracks read sizes class TrackingStringIO(io.StringIO): def __init__(self, data: str) -> None: super().__init__(data) self.read_sizes: list[int] = [] def read(self, size: int | None = -1) -> str: self.read_sizes.append(size if size is not None else -1) return super().read(size) tracking_file = TrackingStringIO(text_data) payload_obj = payload.TextIOPayload(tracking_file) writer = MockStreamWriter() # Write with a very large content_length (simulating the bug scenario) large_content_length = 10 * 1024 * 1024 # 10MB await payload_obj.write_with_length(writer, large_content_length) # Verify no single read exceeded READ_SIZE for read_size in tracking_file.read_sizes: assert ( read_size <= READ_SIZE ), f"Read size {read_size} exceeds READ_SIZE {READ_SIZE}" # Verify the correct amount of data was written assert writer.get_written_bytes() == text_data.encode("utf-8") async def test_async_iterable_payload_write_with_length_no_limit() -> None: """Test AsyncIterablePayload writing with no content length limit.""" async def gen() -> AsyncIterator[bytes]: yield b"0123" yield b"4567" yield b"89" p = payload.AsyncIterablePayload(gen()) writer = MockStreamWriter() await p.write_with_length(writer, None) assert writer.get_written_bytes() == b"0123456789" assert len(writer.get_written_bytes()) == 10 async def test_async_iterable_payload_write_with_length_exact() -> None: """Test AsyncIterablePayload writing with exact content length.""" async def gen() -> AsyncIterator[bytes]: yield b"0123" yield b"4567" yield b"89" p = payload.AsyncIterablePayload(gen()) writer = MockStreamWriter() await p.write_with_length(writer, 10) assert writer.get_written_bytes() == b"0123456789" assert len(writer.get_written_bytes()) == 10 async def test_async_iterable_payload_write_with_length_truncated_mid_chunk() -> None: """Test AsyncIterablePayload writing with content length truncating mid-chunk.""" async def gen() -> AsyncIterator[bytes]: yield b"0123" yield b"4567" yield b"89" # pragma: no cover p = payload.AsyncIterablePayload(gen()) writer = MockStreamWriter() await p.write_with_length(writer, 6) assert writer.get_written_bytes() == b"012345" assert len(writer.get_written_bytes()) == 6 async def test_async_iterable_payload_write_with_length_truncated_at_chunk() -> None: """Test AsyncIterablePayload writing with content length truncating at chunk boundary.""" async def gen() -> AsyncIterator[bytes]: yield b"0123" yield b"4567" # pragma: no cover yield b"89" # pragma: no cover p = payload.AsyncIterablePayload(gen()) writer = MockStreamWriter() await p.write_with_length(writer, 4) assert writer.get_written_bytes() == b"0123" assert len(writer.get_written_bytes()) == 4 async def test_bytes_payload_backwards_compatibility() -> None: """Test BytesPayload.write() backwards compatibility delegates to write_with_length().""" p = payload.BytesPayload(b"1234567890") writer = MockStreamWriter() await p.write(writer) assert writer.get_written_bytes() == b"1234567890" async def test_textio_payload_with_encoding() -> None: """Test TextIOPayload reading with encoding and size constraints.""" data = io.StringIO("hello world") p = payload.TextIOPayload(data, encoding="utf-8") writer = MockStreamWriter() await p.write_with_length(writer, 8) # Should write exactly 8 bytes: "hello wo" assert writer.get_written_bytes() == b"hello wo" async def test_textio_payload_as_bytes() -> None: """Test TextIOPayload.as_bytes method with different encodings.""" # Test with UTF-8 encoding data = io.StringIO("Hello 世界") p = payload.TextIOPayload(data, encoding="utf-8") # Test as_bytes() method result = await p.as_bytes() assert result == "Hello 世界".encode() # Test that position is restored for multiple reads result2 = await p.as_bytes() assert result2 == "Hello 世界".encode() # Test with different encoding parameter (should use instance encoding) result3 = await p.as_bytes(encoding="latin-1") assert result3 == "Hello 世界".encode() # Should still use utf-8 # Test with different encoding in payload data2 = io.StringIO("Hello World") p2 = payload.TextIOPayload(data2, encoding="latin-1") result4 = await p2.as_bytes() assert result4 == b"Hello World" # latin-1 encoding # Test with no explicit encoding (defaults to utf-8) data3 = io.StringIO("Test データ") p3 = payload.TextIOPayload(data3) result5 = await p3.as_bytes() assert result5 == "Test データ".encode() # Test with encoding errors parameter data4 = io.StringIO("Test") p4 = payload.TextIOPayload(data4, encoding="ascii") result6 = await p4.as_bytes(errors="strict") assert result6 == b"Test" async def test_bytesio_payload_backwards_compatibility() -> None: """Test BytesIOPayload.write() backwards compatibility delegates to write_with_length().""" data = io.BytesIO(b"test data") p = payload.BytesIOPayload(data) writer = MockStreamWriter() await p.write(writer) assert writer.get_written_bytes() == b"test data" async def test_async_iterable_payload_backwards_compatibility() -> None: """Test AsyncIterablePayload.write() backwards compatibility delegates to write_with_length().""" async def gen() -> AsyncIterator[bytes]: yield b"chunk1" yield b"chunk2" # pragma: no cover p = payload.AsyncIterablePayload(gen()) writer = MockStreamWriter() await p.write(writer) assert writer.get_written_bytes() == b"chunk1chunk2" async def test_async_iterable_payload_with_none_iterator() -> None: """Test AsyncIterablePayload with None iterator returns early without writing.""" async def gen() -> AsyncIterator[bytes]: yield b"test" # pragma: no cover p = payload.AsyncIterablePayload(gen()) # Manually set _iter to None to test the guard clause p._iter = None writer = MockStreamWriter() # Should return early without writing anything await p.write_with_length(writer, 10) assert writer.get_written_bytes() == b"" async def test_async_iterable_payload_caching() -> None: """Test AsyncIterablePayload caching behavior.""" async def gen() -> AsyncIterator[bytes]: yield b"Hello" yield b" " yield b"World" p = payload.AsyncIterablePayload(gen()) # First call to as_bytes should consume iterator and cache result1 = await p.as_bytes() assert result1 == b"Hello World" assert p._iter is None # Iterator exhausted assert p._cached_chunks == [b"Hello", b" ", b"World"] # Chunks cached assert p._consumed is False # Not marked as consumed to allow reuse # Second call should use cache result2 = await p.as_bytes() assert result2 == b"Hello World" assert p._cached_chunks == [b"Hello", b" ", b"World"] # Still cached # decode should work with cached chunks decoded = p.decode() assert decoded == "Hello World" # write_with_length should use cached chunks writer = MockStreamWriter() await p.write_with_length(writer, None) assert writer.get_written_bytes() == b"Hello World" # write_with_length with limit should respect it writer2 = MockStreamWriter() await p.write_with_length(writer2, 5) assert writer2.get_written_bytes() == b"Hello" async def test_async_iterable_payload_decode_without_cache() -> None: """Test AsyncIterablePayload decode raises error without cache.""" async def gen() -> AsyncIterator[bytes]: yield b"test" p = payload.AsyncIterablePayload(gen()) # decode should raise without cache with pytest.raises(TypeError) as excinfo: p.decode() assert "Unable to decode - content not cached" in str(excinfo.value) # After as_bytes, decode should work await p.as_bytes() assert p.decode() == "test" async def test_async_iterable_payload_write_then_cache() -> None: """Test AsyncIterablePayload behavior when written before caching.""" async def gen() -> AsyncIterator[bytes]: yield b"Hello" yield b"World" p = payload.AsyncIterablePayload(gen()) # First write without caching (streaming) writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == b"HelloWorld" assert p._iter is None # Iterator exhausted assert p._cached_chunks is None # No cache created assert p._consumed is True # Marked as consumed # Subsequent operations should handle exhausted iterator result = await p.as_bytes() assert result == b"" # Empty since iterator exhausted without cache # Write should also be empty writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == b"" async def test_bytes_payload_reusability() -> None: """Test that BytesPayload can be written and read multiple times.""" data = b"test payload data" p = payload.BytesPayload(data) # First write_with_length writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == data # Second write_with_length (simulating redirect) writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == data # Write with partial length writer3 = MockStreamWriter() await p.write_with_length(writer3, 5) assert writer3.get_written_bytes() == b"test " # Test as_bytes multiple times bytes1 = await p.as_bytes() bytes2 = await p.as_bytes() bytes3 = await p.as_bytes() assert bytes1 == bytes2 == bytes3 == data async def test_string_payload_reusability() -> None: """Test that StringPayload can be written and read multiple times.""" text = "test string data" expected_bytes = text.encode("utf-8") p = payload.StringPayload(text) # First write_with_length writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == expected_bytes # Second write_with_length (simulating redirect) writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == expected_bytes # Write with partial length writer3 = MockStreamWriter() await p.write_with_length(writer3, 5) assert writer3.get_written_bytes() == b"test " # Test as_bytes multiple times bytes1 = await p.as_bytes() bytes2 = await p.as_bytes() bytes3 = await p.as_bytes() assert bytes1 == bytes2 == bytes3 == expected_bytes async def test_bytes_io_payload_reusability() -> None: """Test that BytesIOPayload can be written and read multiple times.""" data = b"test bytesio payload" bytes_io = io.BytesIO(data) p = payload.BytesIOPayload(bytes_io) # First write_with_length writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == data # Second write_with_length (simulating redirect) writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == data # Write with partial length writer3 = MockStreamWriter() await p.write_with_length(writer3, 5) assert writer3.get_written_bytes() == b"test " # Test as_bytes multiple times bytes1 = await p.as_bytes() bytes2 = await p.as_bytes() bytes3 = await p.as_bytes() assert bytes1 == bytes2 == bytes3 == data async def test_string_io_payload_reusability() -> None: """Test that StringIOPayload can be written and read multiple times.""" text = "test stringio payload" expected_bytes = text.encode("utf-8") string_io = io.StringIO(text) p = payload.StringIOPayload(string_io) # Note: StringIOPayload reads all content in __init__ and becomes a StringPayload # So it should be fully reusable # First write_with_length writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == expected_bytes # Second write_with_length (simulating redirect) writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == expected_bytes # Write with partial length writer3 = MockStreamWriter() await p.write_with_length(writer3, 5) assert writer3.get_written_bytes() == b"test " # Test as_bytes multiple times bytes1 = await p.as_bytes() bytes2 = await p.as_bytes() bytes3 = await p.as_bytes() assert bytes1 == bytes2 == bytes3 == expected_bytes async def test_buffered_reader_payload_reusability() -> None: """Test that BufferedReaderPayload can be written and read multiple times.""" data = b"test buffered reader payload" buffer = io.BufferedReader(io.BytesIO(data)) p = payload.BufferedReaderPayload(buffer) # First write_with_length writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == data # Second write_with_length (simulating redirect) writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == data # Write with partial length writer3 = MockStreamWriter() await p.write_with_length(writer3, 5) assert writer3.get_written_bytes() == b"test " # Test as_bytes multiple times bytes1 = await p.as_bytes() bytes2 = await p.as_bytes() bytes3 = await p.as_bytes() assert bytes1 == bytes2 == bytes3 == data async def test_async_iterable_payload_reusability_with_cache() -> None: """Test that AsyncIterablePayload can be reused when cached via as_bytes.""" async def gen() -> AsyncIterator[bytes]: yield b"async " yield b"iterable " yield b"payload" expected_data = b"async iterable payload" p = payload.AsyncIterablePayload(gen()) # First call to as_bytes should cache the data bytes1 = await p.as_bytes() assert bytes1 == expected_data assert p._cached_chunks is not None assert p._iter is None # Iterator exhausted # Subsequent as_bytes calls should use cache bytes2 = await p.as_bytes() bytes3 = await p.as_bytes() assert bytes1 == bytes2 == bytes3 == expected_data # Now writes should also use the cached data writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == expected_data # Second write should also work writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == expected_data # Write with partial length writer3 = MockStreamWriter() await p.write_with_length(writer3, 5) assert writer3.get_written_bytes() == b"async" async def test_async_iterable_payload_no_reuse_without_cache() -> None: """Test that AsyncIterablePayload cannot be reused without caching.""" async def gen() -> AsyncIterator[bytes]: yield b"test " yield b"data" p = payload.AsyncIterablePayload(gen()) # First write exhausts the iterator writer1 = MockStreamWriter() await p.write_with_length(writer1, None) assert writer1.get_written_bytes() == b"test data" assert p._iter is None # Iterator exhausted assert p._consumed is True # Second write should produce empty result writer2 = MockStreamWriter() await p.write_with_length(writer2, None) assert writer2.get_written_bytes() == b"" async def test_bytes_io_payload_close_does_not_close_io() -> None: """Test that BytesIOPayload close() does not close the underlying BytesIO.""" bytes_io = io.BytesIO(b"data") bytes_io_payload = payload.BytesIOPayload(bytes_io) # Close the payload await bytes_io_payload.close() # BytesIO should NOT be closed assert not bytes_io.closed # Can still write after close writer = MockStreamWriter() await bytes_io_payload.write_with_length(writer, None) assert writer.get_written_bytes() == b"data" async def test_custom_payload_backwards_compat_as_bytes() -> None: """Test backwards compatibility for custom Payload that only implements decode().""" class LegacyPayload(payload.Payload): """A custom payload that only implements decode() like old code might do.""" def __init__(self, data: str) -> None: super().__init__(data, headers=CIMultiDict()) self._data = data def decode(self, encoding: str = "utf-8", errors: str = "strict") -> str: """Custom decode implementation.""" return self._data async def write(self, writer: AbstractStreamWriter) -> None: """Write implementation which is a no-op for this test.""" # Create instance with test data p = LegacyPayload("Hello, World!") # Test that as_bytes() works even though it's not explicitly implemented # The base class should call decode() and encode the result result = await p.as_bytes() assert result == b"Hello, World!" # Test with different text p2 = LegacyPayload("Test with special chars: café") result_utf8 = await p2.as_bytes(encoding="utf-8") assert result_utf8 == "Test with special chars: café".encode() # Test that decode() still works as expected assert p.decode() == "Hello, World!" assert p2.decode() == "Test with special chars: café" async def test_custom_payload_with_encoding_backwards_compat() -> None: """Test custom Payload with encoding set uses instance encoding for as_bytes().""" class EncodedPayload(payload.Payload): """A custom payload with specific encoding.""" def __init__(self, data: str, encoding: str) -> None: super().__init__(data, headers=CIMultiDict(), encoding=encoding) self._data = data def decode(self, encoding: str = "utf-8", errors: str = "strict") -> str: """Custom decode implementation.""" return self._data async def write(self, writer: AbstractStreamWriter) -> None: """Write implementation is a no-op.""" # Create instance with specific encoding p = EncodedPayload("Test data", encoding="latin-1") # as_bytes() should use the instance encoding (latin-1) not the default utf-8 result = await p.as_bytes() assert result == b"Test data" # ASCII chars are same in latin-1 # Test with non-ASCII that differs between encodings p2 = EncodedPayload("café", encoding="latin-1") result_latin1 = await p2.as_bytes() assert result_latin1 == "café".encode("latin-1") assert result_latin1 != "café".encode() # Should be different bytes async def test_iobase_payload_close_idempotent() -> None: """Test that IOBasePayload.close() is idempotent and covers the _consumed check.""" file_like = io.BytesIO(b"test data") p = payload.IOBasePayload(file_like) # First close should set _consumed to True await p.close() assert p._consumed is True # Second close should be a no-op due to _consumed check (line 621) await p.close() assert p._consumed is True def test_iobase_payload_decode() -> None: """Test IOBasePayload.decode() returns correct string.""" # Test with UTF-8 encoded text text = "Hello, 世界! 🌍" file_like = io.BytesIO(text.encode("utf-8")) p = payload.IOBasePayload(file_like) # decode() should return the original string assert p.decode() == text # Test with different encoding latin1_text = "café" file_like2 = io.BytesIO(latin1_text.encode("latin-1")) p2 = payload.IOBasePayload(file_like2) assert p2.decode("latin-1") == latin1_text # Test that file position is restored file_like3 = io.BytesIO(b"test data") file_like3.read(4) # Move position forward p3 = payload.IOBasePayload(file_like3) # decode() should read from the stored start position (4) assert p3.decode() == " data" def test_bytes_payload_size() -> None: """Test BytesPayload.size property returns correct byte length.""" # Test with bytes bp = payload.BytesPayload(b"Hello World") assert bp.size == 11 # Test with empty bytes bp_empty = payload.BytesPayload(b"") assert bp_empty.size == 0 # Test with bytearray ba = bytearray(b"Hello World") bp_array = payload.BytesPayload(ba) assert bp_array.size == 11 def test_string_payload_size() -> None: """Test StringPayload.size property with different encodings.""" # Test ASCII string with default UTF-8 encoding sp = payload.StringPayload("Hello World") assert sp.size == 11 # Test Unicode string with default UTF-8 encoding unicode_str = "Hello 世界" sp_unicode = payload.StringPayload(unicode_str) assert sp_unicode.size == len(unicode_str.encode("utf-8")) # Test with UTF-16 encoding sp_utf16 = payload.StringPayload("Hello World", encoding="utf-16") assert sp_utf16.size == len("Hello World".encode("utf-16")) # Test with latin-1 encoding sp_latin1 = payload.StringPayload("café", encoding="latin-1") assert sp_latin1.size == len("café".encode("latin-1")) def test_string_io_payload_size() -> None: """Test StringIOPayload.size property.""" # Test normal string sio = StringIO("Hello World") siop = payload.StringIOPayload(sio) assert siop.size == 11 # Test Unicode string sio_unicode = StringIO("Hello 世界") siop_unicode = payload.StringIOPayload(sio_unicode) assert siop_unicode.size == len("Hello 世界".encode()) # Test with custom encoding sio_custom = StringIO("Hello") siop_custom = payload.StringIOPayload(sio_custom, encoding="utf-16") assert siop_custom.size == len("Hello".encode("utf-16")) # Test with emoji to ensure correct byte count sio_emoji = StringIO("Hello 👋🌍") siop_emoji = payload.StringIOPayload(sio_emoji) assert siop_emoji.size == len("Hello 👋🌍".encode()) # Verify it's not the string length assert siop_emoji.size != len("Hello 👋🌍") def test_all_string_payloads_size_is_bytes() -> None: """Test that all string-like payload classes report size in bytes, not string length.""" # Test string with multibyte characters test_str = "Hello 👋 世界 🌍" # Contains emoji and Chinese characters # StringPayload sp = payload.StringPayload(test_str) assert sp.size == len(test_str.encode("utf-8")) assert sp.size != len(test_str) # Ensure it's not string length # StringIOPayload sio = StringIO(test_str) siop = payload.StringIOPayload(sio) assert siop.size == len(test_str.encode("utf-8")) assert siop.size != len(test_str) # Test with different encoding sp_utf16 = payload.StringPayload(test_str, encoding="utf-16") assert sp_utf16.size == len(test_str.encode("utf-16")) assert sp_utf16.size != sp.size # Different encoding = different size # JsonPayload (which extends BytesPayload) json_data = {"message": test_str} jp = payload.JsonPayload(json_data) # JSON escapes Unicode, so we need to check the actual encoded size json_str = json.dumps(json_data) assert jp.size == len(json_str.encode("utf-8")) # Test JsonPayload with ensure_ascii=False to get actual UTF-8 encoding jp_utf8 = payload.JsonPayload( json_data, dumps=lambda x: json.dumps(x, ensure_ascii=False) ) json_str_utf8 = json.dumps(json_data, ensure_ascii=False) assert jp_utf8.size == len(json_str_utf8.encode("utf-8")) assert jp_utf8.size != len( json_str_utf8 ) # Now it's different due to multibyte chars def test_bytes_io_payload_size() -> None: """Test BytesIOPayload.size property.""" # Test normal bytes bio = io.BytesIO(b"Hello World") biop = payload.BytesIOPayload(bio) assert biop.size == 11 # Test empty BytesIO bio_empty = io.BytesIO(b"") biop_empty = payload.BytesIOPayload(bio_empty) assert biop_empty.size == 0 # Test with position not at start bio_pos = io.BytesIO(b"Hello World") bio_pos.seek(5) biop_pos = payload.BytesIOPayload(bio_pos) assert biop_pos.size == 6 # Size should be from position to end def test_json_payload_size() -> None: """Test JsonPayload.size property.""" # Test simple dict data = {"hello": "world"} jp = payload.JsonPayload(data) expected_json = json.dumps(data) # Use actual json.dumps output assert jp.size == len(expected_json.encode("utf-8")) # Test with Unicode data_unicode = {"message": "Hello 世界"} jp_unicode = payload.JsonPayload(data_unicode) expected_unicode = json.dumps(data_unicode) assert jp_unicode.size == len(expected_unicode.encode("utf-8")) # Test with custom encoding data_custom = {"test": "data"} jp_custom = payload.JsonPayload(data_custom, encoding="utf-16") expected_custom = json.dumps(data_custom) assert jp_custom.size == len(expected_custom.encode("utf-16")) async def test_text_io_payload_size_matches_file_encoding(tmp_path: Path) -> None: """Test TextIOPayload.size when file encoding matches payload encoding.""" # Create UTF-8 file utf8_file = tmp_path / "test_utf8.txt" content = "Hello 世界" # Write file in executor loop = asyncio.get_running_loop() await loop.run_in_executor(None, utf8_file.write_text, content, "utf-8") # Open file in executor def open_file() -> TextIO: return open(utf8_file, encoding="utf-8") f = await loop.run_in_executor(None, open_file) try: tiop = payload.TextIOPayload(f) # Size should match the actual UTF-8 encoded size assert tiop.size == len(content.encode("utf-8")) finally: await loop.run_in_executor(None, f.close) async def test_text_io_payload_size_utf16(tmp_path: Path) -> None: """Test TextIOPayload.size reports correct size with utf-16.""" # Create UTF-16 file utf16_file = tmp_path / "test_utf16.txt" content = "Hello World" loop = asyncio.get_running_loop() # Write file in executor await loop.run_in_executor(None, utf16_file.write_text, content, "utf-16") # Get file size in executor utf16_file_size = await loop.run_in_executor( None, lambda: utf16_file.stat().st_size ) # Open file in executor def open_file() -> TextIO: return open(utf16_file, encoding="utf-16") f = await loop.run_in_executor(None, open_file) try: tiop = payload.TextIOPayload(f, encoding="utf-16") # Payload reports file size on disk (UTF-16) assert tiop.size == utf16_file_size # Write to a buffer to see what actually gets sent writer = BufferWriter() await tiop.write(writer) # Check that the actual written bytes match file size assert len(writer.buffer) == utf16_file_size finally: await loop.run_in_executor(None, f.close) async def test_iobase_payload_size_after_reading(tmp_path: Path) -> None: """Test that IOBasePayload.size returns correct size after file has been read. This verifies that size calculation properly accounts for the initial file position, which is critical for 307/308 redirects where the same payload instance is reused. """ # Create a test file with known content test_file = tmp_path / "test.txt" content = b"Hello, World! This is test content." await asyncio.to_thread(test_file.write_bytes, content) expected_size = len(content) # Open the file and create payload f = await asyncio.to_thread(open, test_file, "rb") try: p = payload.BufferedReaderPayload(f) # First size check - should return full file size assert p.size == expected_size # Read the file (simulating first request) writer = BufferWriter() await p.write(writer) assert len(writer.buffer) == expected_size # Second size check - should still return full file size assert p.size == expected_size # Attempting to write again should write the full content writer2 = BufferWriter() await p.write(writer2) assert len(writer2.buffer) == expected_size finally: await asyncio.to_thread(f.close) async def test_iobase_payload_size_unseekable() -> None: """Test that IOBasePayload.size returns None for unseekable files.""" class UnseekableFile: """Mock file object that doesn't support seeking.""" def __init__(self, content: bytes) -> None: self.content = content self.pos = 0 def read(self, size: int) -> bytes: result = self.content[self.pos : self.pos + size] self.pos += len(result) return result def tell(self) -> int: raise OSError("Unseekable file") content = b"Unseekable content" f = UnseekableFile(content) p = payload.IOBasePayload(f) # type: ignore[arg-type] # Size should return None for unseekable files assert p.size is None # Payload should not be consumed before writing assert p.consumed is False # Writing should still work writer = BufferWriter() await p.write(writer) assert writer.buffer == content # For unseekable files that can't tell() or seek(), # they are marked as consumed after the first write assert p.consumed is True async def test_empty_bytes_payload_is_reusable() -> None: """Test that empty BytesPayload can be safely reused across requests.""" empty_payload = payload.PAYLOAD_REGISTRY.get(b"", disposition=None) assert isinstance(empty_payload, payload.BytesPayload) assert empty_payload.size == 0 assert empty_payload.consumed is False assert empty_payload.autoclose is True initial_headers = dict(empty_payload.headers) for i in range(3): writer = BufferWriter() await empty_payload.write_with_length(writer, None) assert writer.buffer == b"" assert empty_payload.consumed is False, f"consumed flag changed on write {i+1}" assert ( dict(empty_payload.headers) == initial_headers ), f"headers mutated on write {i+1}" assert empty_payload.size == 0, f"size changed on write {i+1}" assert empty_payload.headers == CIMultiDict(initial_headers)
MockStreamWriter
python
HypothesisWorks__hypothesis
hypothesis-python/tests/nocover/test_sampled_from.py
{ "start": 2640, "end": 4156 }
class ____(enum.Flag): # Would fail under EnumCheck.NAMED_FLAGS a = 0 b = 7 def test_flag_enum_repr_uses_class_not_a_list(): lazy_repr = repr(st.sampled_from(AFlag)) assert lazy_repr == "sampled_from(tests.nocover.test_sampled_from.AFlag)" def test_exhaustive_flags(): # Generate powerset of flag combinations. There are only 2^3 of them, so # we can reasonably expect that they are all are found. unseen_flags = { functools.reduce(operator.or_, flaglist, AFlag(0)) for r in range(len(AFlag) + 1) for flaglist in itertools.combinations(AFlag, r) } @given(st.sampled_from(AFlag)) def accept(flag): unseen_flags.discard(flag) accept() assert not unseen_flags def test_flags_minimize_to_first_named_flag(): assert minimal(st.sampled_from(LargeFlag)) == LargeFlag.bit0 def test_flags_minimizes_bit_count(): assert ( minimal(st.sampled_from(LargeFlag), lambda f: bit_count(f.value) > 1) == LargeFlag.bit0 | LargeFlag.bit1 ) @pytest.mark.skipif( settings.get_current_profile_name() == "crosshair", reason="takes ~10 mins; path tree is too large", ) def test_flags_finds_all_bits_set(): assert find_any(st.sampled_from(LargeFlag), lambda f: f == ~LargeFlag(0)) def test_sample_unnamed_alias(): assert find_any(st.sampled_from(UnnamedFlag), lambda f: f == UnnamedFlag.b) def test_shrink_to_named_empty(): assert minimal(st.sampled_from(UnnamedFlag)) == UnnamedFlag(0)
UnnamedFlag
python
numba__numba
numba/core/types/npytypes.py
{ "start": 7905, "end": 8517 }
class ____(DTypeSpec, Opaque): """ Type class associated with the `np.dtype`. i.e. :code:`assert type(np.dtype('int32')) == np.dtype` np.dtype('int32') """ def __init__(self, dtype): assert isinstance(dtype, Type) self._dtype = dtype name = "dtype(%s)" % (dtype,) super(DTypeSpec, self).__init__(name) @property def key(self): return self.dtype @property def dtype(self): return self._dtype def __getitem__(self, arg): res = super(DType, self).__getitem__(arg) return res.copy(dtype=self.dtype)
DType
python
getsentry__sentry
fixtures/safe_migrations_apps/good_flow_delete_field_pending_with_not_null_m2m_app/models.py
{ "start": 123, "end": 319 }
class ____(models.Model): alert_rule = FlexibleForeignKey(OtherTable) test_table = FlexibleForeignKey( "good_flow_delete_field_pending_with_not_null_m2m_app.TestTable" )
M2MTable
python
jazzband__django-simple-history
simple_history/tests/view.py
{ "start": 2459, "end": 2592 }
class ____(CreateView): model = PollWithHistoricalIPAddress fields = ["question", "pub_date"]
PollWithHistoricalIPAddressCreate
python
tensorflow__tensorflow
tensorflow/python/tpu/tensor_tracer_report.py
{ "start": 4429, "end": 7205 }
class ____(object): """Class that is responsible from storing the trace-id of the tensors.""" def __init__(self, graph_order, traced_tensors): self.graph_order = graph_order self.traced_tensors = traced_tensors self._create_tensor_maps() def _create_tensor_maps(self): """Creates tensor to cache id maps.""" self.tensorname_to_cache_idx = {} self.cache_idx_to_tensor_idx = [] for out_tensor in self.traced_tensors: tensor_name = out_tensor.name if tensor_name in self.tensorname_to_cache_idx: raise ValueError('Tensor name {} should not be already in ' 'tensorname_to_cache_idx'.format(tensor_name)) if tensor_name not in self.graph_order.tensor_to_idx: raise ValueError( 'Tensor name {} is not in the tensor_to_idx, tensor_to_idx={} ' .format(tensor_name, self.graph_order.tensor_to_idx)) tensor_idx = self.graph_order.tensor_to_idx[tensor_name] cache_idx = len(self.tensorname_to_cache_idx) self.tensorname_to_cache_idx[tensor_name] = cache_idx self.cache_idx_to_tensor_idx.append(tensor_idx) if len(self.tensorname_to_cache_idx) != len( self.cache_idx_to_tensor_idx): raise RuntimeError( 'len(self.tensorname_to_cache_idx) must equal' 'len(self.cache_idx_to_tensor_idx), got ' 'len(self.tensorname_to_cache_idx)={}, ' 'len(self.cache_idx_to_tensor_idx)={}' .format( len(self.tensorname_to_cache_idx), len(self.cache_idx_to_tensor_idx))) def sort_tensors_and_ops(graph): """Returns a wrapper that has consistent tensor and op orders.""" graph_wrapper = collections.namedtuple('GraphWrapper', ['graph', 'operations', 'op_to_idx', 'tensors', 'tensor_to_idx', 'contains_cycle', 'topological_order_or_cycle']) contains_cycle, topological_order_or_cycle = topological_sort(graph) if not contains_cycle: operations = topological_order_or_cycle else: operations = graph.get_operations() op_to_idx = {op.name: index for index, op in enumerate(operations)} tensors = [] for op in operations: tensors.extend(op.outputs) tensor_to_idx = {tensor.name: index for index, tensor in enumerate(tensors)} return graph_wrapper(graph=graph, operations=operations, op_to_idx=op_to_idx, tensors=tensors, tensor_to_idx=tensor_to_idx, contains_cycle=contains_cycle, topological_order_or_cycle=topological_order_or_cycle)
TensorTraceOrder
python
sphinx-doc__sphinx
sphinx/domains/c/_symbol.py
{ "start": 838, "end": 1313 }
class ____: __slots__ = 'symbols', 'parent_symbol', 'ident' symbols: Iterable[Symbol] parent_symbol: Symbol ident_or_op: ASTIdentifier def __init__( self, symbols: Iterable[Symbol], parent_symbol: Symbol, ident: ASTIdentifier ) -> None: self.symbols = symbols self.parent_symbol = parent_symbol self.ident = ident @property def parentSymbol(self) -> Symbol: return self.parent_symbol
SymbolLookupResult
python
django-extensions__django-extensions
django_extensions/management/commands/validate_templates.py
{ "start": 438, "end": 4040 }
class ____(BaseCommand): args = "" help = "Validate templates on syntax and compile errors" ignores = set( [ ".DS_Store", "*.swp", "*~", ] ) def add_arguments(self, parser): super().add_arguments(parser) parser.add_argument( "--no-apps", action="store_true", dest="no_apps", default=False, help="Do not automatically include apps.", ) parser.add_argument( "--break", "-b", action="store_true", dest="break", default=False, help="Break on first error.", ) parser.add_argument( "--include", "-i", action="append", dest="includes", default=[], help="Append these paths to TEMPLATE DIRS", ) parser.add_argument( "--ignore-app", action="append", dest="ignore_apps", default=[], help="Ignore these apps", ) def ignore_filename(self, filename): filename = os.path.basename(filename) for ignore_pattern in self.ignores: if fnmatch.fnmatch(filename, ignore_pattern): return True return False @signalcommand def handle(self, *args, **options): if hasattr(settings, "VALIDATE_TEMPLATES_IGNORES"): self.ignores = getattr(settings, "VALIDATE_TEMPLATES_IGNORES") style = color_style() template_dirs = set(get_template_setting("DIRS", [])) template_dirs |= set(options["includes"]) template_dirs |= set( getattr(settings, "VALIDATE_TEMPLATES_EXTRA_TEMPLATE_DIRS", []) ) if not options["no_apps"]: ignore_apps = options["ignore_apps"] if not ignore_apps and hasattr(settings, "VALIDATE_TEMPLATES_IGNORE_APPS"): ignore_apps = getattr(settings, "VALIDATE_TEMPLATES_IGNORE_APPS") for app in apps.get_app_configs(): if app.name in ignore_apps: continue app_template_dir = os.path.join(app.path, "templates") if os.path.isdir(app_template_dir): template_dirs.add(app_template_dir) settings.TEMPLATES[0]["DIRS"] = list(template_dirs) settings.TEMPLATE_DEBUG = True verbosity = options["verbosity"] errors = 0 for template_dir in template_dirs: for root, dirs, filenames in os.walk(template_dir): for filename in filenames: if self.ignore_filename(filename): continue filepath = os.path.join(root, filename) if verbosity > 1: self.stdout.write(filepath) try: get_template(filepath) except Exception as e: errors += 1 self.stdout.write( "%s: %s" % ( filepath, style.ERROR("%s %s" % (e.__class__.__name__, str(e))), ) ) if errors and options["break"]: raise CommandError("Errors found") if errors: raise CommandError("%s errors found" % errors) self.stdout.write("%s errors found" % errors)
Command
python
ray-project__ray
python/ray/serve/_private/request_router/request_router.py
{ "start": 1427, "end": 6753 }
class ____: """Mixin for locality routing. This mixin is used to route requests to replicas that are colocated with the handle. It adds necessary attributes and methods to keep track of locality scopes and offer the helpers to apply locality routing and rank replicas based on locality. """ def __init__( self, self_node_id: Optional[str] = None, prefer_local_node_routing: bool = False, prefer_local_az_routing: bool = False, self_availability_zone: Optional[str] = None, *args, **kwargs, ): super().__init__(*args, **kwargs) self._self_node_id = self_node_id self._prefer_local_node_routing = prefer_local_node_routing self._prefer_local_az_routing = prefer_local_az_routing self._self_availability_zone = self_availability_zone # Colocated replicas (e.g. wrt node, AZ) self._colocated_replica_ids: DefaultDict[ LocalityScope, Set[ReplicaID] ] = defaultdict(set) self._replica_id_set: Set[ReplicaID] = set() def _discard_colocated_replica_ids_on_replica_actor_died( self, replica_id: ReplicaID ): """Remove the replica ID from the colocated replica IDs. This is called when a replica actor dies. """ for id_set in self._colocated_replica_ids.values(): id_set.discard(replica_id) def _update_colocated_replica_ids_with_replicas( self, replicas: List[RunningReplica] ): """Update the colocated replica IDs based on the replicas. This is called when the replicas are updated. """ new_colocated_replica_ids = defaultdict(set) for r in replicas: if self._self_node_id is not None and r.node_id == self._self_node_id: new_colocated_replica_ids[LocalityScope.NODE].add(r.replica_id) if ( self._self_availability_zone is not None and r.availability_zone == self._self_availability_zone ): new_colocated_replica_ids[LocalityScope.AVAILABILITY_ZONE].add( r.replica_id ) self._colocated_replica_ids = new_colocated_replica_ids def apply_locality_routing( self, pending_request: Optional[PendingRequest] = None, ) -> Set[ReplicaID]: """Apply locality routing to the pending request. When the reqeust is None, return all replicas. Each call will try to route the request to replicas in the priority of first on the same node, then in the same availability zone, and finally all replicas. Args: pending_request: The pending request to be routed. Returns: A set of replica IDs that are candidates based on the locality policy. """ if not pending_request: return self._replica_id_set if ( self._prefer_local_node_routing and not pending_request.routing_context.tried_same_node and len(self._colocated_replica_ids[LocalityScope.NODE]) > 0 ): # Attempt to route requests to replicas on the # same node at most once candidate_replica_ids = self._colocated_replica_ids[LocalityScope.NODE] pending_request.routing_context.tried_same_node = True pending_request.routing_context.should_backoff = False elif ( self._prefer_local_az_routing and not pending_request.routing_context.tried_same_az and len(self._colocated_replica_ids[LocalityScope.AVAILABILITY_ZONE]) > 0 ): # Attempt to route requests to replicas in the same # AZ at most once candidate_replica_ids = self._colocated_replica_ids[ LocalityScope.AVAILABILITY_ZONE ] pending_request.routing_context.tried_same_az = True pending_request.routing_context.should_backoff = False else: # On subsequent iterations or when there are no replicas on the same # node or AZ, consider all available replicas. candidate_replica_ids = self._replica_id_set pending_request.routing_context.should_backoff = True return candidate_replica_ids def rank_replicas_via_locality( self, replicas: List[RunningReplica], ) -> List[List[RunningReplica]]: """Rank the replicas based on the locality preference. Rank 0 is the list of replicas that are on the same node. Rank 1 is the list of replicas that are on the same availability zone. Rank 2 is the list of all other replicas. """ ranked_replicas = [[] for _ in range(3)] for replica in replicas: if replica.replica_id in self._colocated_replica_ids[LocalityScope.NODE]: ranked_replicas[0].append(replica) elif ( replica.replica_id in self._colocated_replica_ids[LocalityScope.AVAILABILITY_ZONE] ): ranked_replicas[1].append(replica) else: ranked_replicas[2].append(replica) return ranked_replicas @PublicAPI(stability="alpha")
LocalityMixin
python
aio-libs__aiohttp
aiohttp/web_protocol.py
{ "start": 1877, "end": 1950 }
class ____(Exception): """Payload parsing error."""
RequestPayloadError
python
pytorch__pytorch
benchmarks/gpt_fast/common.py
{ "start": 153, "end": 544 }
class ____: name: str metric: str target: float actual: float dtype: str device: str arch: str # GPU name for CUDA or CPU arch for CPU is_model: bool = False def register_experiment(name: Optional[str] = None): def decorator(func): key = name or func.__name__ all_experiments[key] = func return func return decorator
Experiment
python
viewflow__viewflow
viewflow/this_object.py
{ "start": 2555, "end": 3645 }
class ____: """ Helper for building forward references to class attributes and methods. The rationale is the ability to specify references to the class attributes and methods before they are declared. `this` acts similarly to `self`, but for class-level forward references. """ def resolve(self, instance: object, this_ref: Union[ThisObject, ThisMethod, Any]): """ Resolve a forward reference on the given instance. Args: instance (object): The instance on which to resolve the reference. this_ref (Union[ThisObject, ThisMethod, Any]): The reference to resolve. Returns: Any: The resolved reference. Raises: AttributeError: If the reference cannot be resolved. """ if isinstance(this_ref, (ThisObject, ThisMethod)): return this_ref.resolve(instance) else: return this_ref def __getattr__(self, name): return ThisObject(name) # Instantiate a global `this` object for use in class definitions. this = This()
This
python
django__django
tests/model_fields/test_uuid.py
{ "start": 7966, "end": 8963 }
class ____(SimpleTestCase): test_data = ( '[{"fields": {"field": "550e8400-e29b-41d4-a716-446655440000"}, ' '"model": "model_fields.uuidmodel", "pk": null}]' ) nullable_test_data = ( '[{"fields": {"field": null}, ' '"model": "model_fields.nullableuuidmodel", "pk": null}]' ) def test_dumping(self): instance = UUIDModel(field=uuid.UUID("550e8400e29b41d4a716446655440000")) data = serializers.serialize("json", [instance]) self.assertEqual(json.loads(data), json.loads(self.test_data)) def test_loading(self): instance = list(serializers.deserialize("json", self.test_data))[0].object self.assertEqual( instance.field, uuid.UUID("550e8400-e29b-41d4-a716-446655440000") ) def test_nullable_loading(self): instance = list(serializers.deserialize("json", self.nullable_test_data))[ 0 ].object self.assertIsNone(instance.field)
TestSerialization
python
miyuchina__mistletoe
test/base_test.py
{ "start": 108, "end": 1719 }
class ____(TestCase): """ Base class for tests of renderers. """ def setUp(self): self.maxDiff = None def markdownResultTest(self, markdown, expected): output = self.renderer.render(Document(markdown)) self.assertEqual(output, expected) def filesBasedTest(func): """ Note: Use this as a decorator on a test function with an empty body. This is a realization of the "convention over configuration" practice. You only need to define a unique ``sampleOutputExtension`` within your test case setup, in addition to the ``renderer`` under the test of course. Runs the current renderer against input parsed from a file and asserts that the renderer output is equal to content stored in another file. Both the "input" and "expected output" files need to have the same ``filename`` that is extracted from the decorated test function name. """ def wrapper(self): # take the string after the last '__' in function name filename = func.__name__ filename = filename.split('__', 1)[1] # parse input markdown, call render on it and check the output with open('test/samples/{}.md'.format(filename), 'r') as fin: output = self.renderer.render(Document(fin)) with open('test/samples/{}.{}'.format(filename, self.sampleOutputExtension), 'r') as expectedFin: expected = ''.join(expectedFin) self.assertEqual(output, expected) return wrapper
BaseRendererTest
python
PrefectHQ__prefect
tests/server/models/test_variables.py
{ "start": 6038, "end": 6667 }
class ____: async def test_count_zero_variables( self, session, ): res = await count_variables(session) assert res == 0 async def test_count_one_variables( self, session, variable, ): res = await count_variables(session) assert res == 1 async def test_count_variables_with_filter( self, session, variables, ): res = await count_variables( session, variable_filter=VariableFilter(name=VariableFilterName(like_="variable1%")), ) assert res == 2
TestCountVariables
python
airbytehq__airbyte
airbyte-integrations/connectors/destination-convex/destination_convex/writer.py
{ "start": 193, "end": 1628 }
class ____: """ Buffers messages before sending them to Convex. """ write_buffer: List[Mapping[str, Any]] = [] flush_interval = 1000 def __init__(self, client: ConvexClient): self.client = client def delete_tables(self, table_names: List[str]) -> None: """Deletes all the records belonging to the input stream""" if len(table_names) > 0: self.client.delete(table_names) def add_indexes(self, indexes: Mapping[str, List[List[str]]]) -> None: self.client.add_primary_key_indexes(indexes) self.__poll_for_indexes(indexes) def __poll_for_indexes(self, indexes: Mapping[str, List[List[str]]]) -> None: """Polls until the indexes specified are ready""" tables = list(indexes.keys()) while True: resp = self.client.primary_key_indexes_ready(tables) if resp.json()["indexesReady"]: break else: time.sleep(1) return def queue_write_operation(self, message: Mapping[str, Any]) -> None: """Adds messages to the write queue and flushes if the buffer is full""" self.write_buffer.append(message) if len(self.write_buffer) == self.flush_interval: self.flush() def flush(self) -> None: """Writes to Convex""" self.client.batch_write(self.write_buffer) self.write_buffer.clear()
ConvexWriter
python
pypa__warehouse
tests/unit/accounts/test_services.py
{ "start": 73650, "end": 79045 }
class ____: def test_device_is_known(self, user_service): user = UserFactory.create() UserUniqueLoginFactory.create( user=user, ip_address=REMOTE_ADDR, status="confirmed" ) request = pretend.stub( db=user_service.db, remote_addr=REMOTE_ADDR, find_service=lambda *a, **kw: pretend.stub(), ) assert user_service.device_is_known(user.id, request) def test_device_is_not_known(self, user_service, monkeypatch): user = UserFactory.create(with_verified_primary_email=True) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(services, "send_unrecognized_login_email", send_email) token_service = pretend.stub(dumps=lambda d: "fake_token", max_age=60) user_service.request = pretend.stub( db=user_service.db, remote_addr=REMOTE_ADDR, headers={ "User-Agent": ( "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:15.0) " "Gecko/20100101 Firefox/15.0.1" ) }, find_service=lambda *a, **kw: token_service, ) assert not user_service.device_is_known(user.id, user_service.request) unique_login = ( user_service.db.query(services.UserUniqueLogin) .filter( services.UserUniqueLogin.user_id == user.id, services.UserUniqueLogin.ip_address == REMOTE_ADDR, ) .one() ) assert unique_login.expires is not None assert send_email.calls == [ pretend.call( user_service.request, user, ip_address=REMOTE_ADDR, user_agent="Firefox (Ubuntu)", token="fake_token", ) ] def test_device_is_pending_not_expired(self, user_service, monkeypatch): user = UserFactory.create(with_verified_primary_email=True) UserUniqueLoginFactory.create( user=user, ip_address=REMOTE_ADDR, status="pending" ) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(services, "send_unrecognized_login_email", send_email) token_service = pretend.stub(dumps=lambda d: "fake_token", max_age=60) user_service.request = pretend.stub( db=user_service.db, remote_addr=REMOTE_ADDR, headers={ "User-Agent": ( "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:15.0) " "Gecko/20100101 Firefox/15.0.1" ) }, find_service=lambda *a, **kw: token_service, ) assert not user_service.device_is_known(user.id, user_service.request) assert send_email.calls == [] def test_device_is_pending_and_expired(self, user_service, monkeypatch): user = UserFactory.create(with_verified_primary_email=True) UserUniqueLoginFactory.create( user=user, ip_address=REMOTE_ADDR, status="pending", created=datetime.datetime(1970, 1, 1), expires=datetime.datetime(1970, 1, 1), ) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(services, "send_unrecognized_login_email", send_email) token_service = pretend.stub(dumps=lambda d: "fake_token", max_age=60) user_service.request = pretend.stub( db=user_service.db, remote_addr=REMOTE_ADDR, headers={ "User-Agent": ( "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:15.0) " "Gecko/20100101 Firefox/15.0.1" ) }, find_service=lambda *a, **kw: token_service, ) assert not user_service.device_is_known(user.id, user_service.request) assert send_email.calls == [ pretend.call( user_service.request, user, ip_address=REMOTE_ADDR, user_agent="Firefox (Ubuntu)", token="fake_token", ) ] @pytest.mark.parametrize("ua_string", [None, "no bueno", "Python-urllib/3.7"]) def test_device_is_not_known_bad_user_agent( self, user_service, monkeypatch, ua_string ): user = UserFactory.create(with_verified_primary_email=True) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(services, "send_unrecognized_login_email", send_email) token_service = pretend.stub(dumps=lambda d: "fake_token", max_age=60) headers = {} if ua_string: headers["User-Agent"] = ua_string user_service.request = pretend.stub( db=user_service.db, remote_addr=REMOTE_ADDR, headers=headers, find_service=lambda *a, **kw: token_service, ) assert not user_service.device_is_known(user.id, user_service.request) assert send_email.calls == [ pretend.call( user_service.request, user, ip_address=REMOTE_ADDR, user_agent=ua_string or "Unknown User-Agent", token="fake_token", ) ]
TestDeviceIsKnown
python
pytorch__pytorch
test/profiler/test_memory_profiler.py
{ "start": 11851, "end": 34208 }
class ____(TestCase): def setUp(self) -> None: super().setUp() self.maxDiff = None @staticmethod def formatSchemas( prof: torch.profiler.profile, indent: int = 12 ) -> tuple[tuple[str, tuple[bool, ...]], ...]: tree = prof.profiler.kineto_results.experimental_event_tree() out: list[tuple[str, tuple[bool, ...]]] = [] for node in _utils.traverse_dfs(tree): if node.tag == _EventType.TorchOp: e = node.extra_fields schemas = _memory_profiler.SchemaMatcher.match_schemas(e) name = node.name if len(schemas) == 1: name = f"{name}.{schemas[0].overload_name}" elif len(schemas) > 1: name = f"{name}.{{{', '.join(s.overload_name for s in schemas)}}}" out.append((name, _memory_profiler.SchemaMatcher.inputs_are_mutable(e))) return tuple(out) @staticmethod def _run_and_format_data_flow( inputs: dict[str, torch.Tensor], f: Callable[..., Optional[dict[str, torch.Tensor]]], indent: int = 12, ) -> str: with profile() as prof: outputs = f(**inputs) or {} gc.collect() memory_profile = prof._memory_profile() graph = memory_profile._data_flow_graph storage_to_id = {key.storage.ptr: key.id for key in graph._active_version} lines: list[str] = [] for name, t in it.chain(inputs.items(), outputs.items()): lines.append(f"{name + ':':<8} T{storage_to_id[t.storage().data_ptr()]}") if t.grad is not None: grad_id = storage_to_id[t.grad.storage().data_ptr()] lines.append(f"{name + '.grad:':<9} T{grad_id}") if lines: lines.append("") for node in graph.flow_nodes: destroyed = {k for k, v in node._edges.items() if v.is_deletion} inputs: list[str] = [] for key, (_, v) in node.inputs.items(): inputs.append(f"T{key.id}(v{v}{'*' if key in destroyed else ''})") outputs = [f"T{key.id}(v{v})" for key, v in node.outputs.items()] if inputs or outputs: event_name = node._event.name.replace("torch::autograd::", "") lines.append( f"{event_name:<25} {', '.join(inputs):<15} -> {', '.join(outputs)}" ) return textwrap.indent("\n".join([l.rstrip() for l in lines]), " " * indent) def test_match_schemas(self) -> None: with profile() as prof: x = torch.ones((1,)).mul(2).add_(2) _ = torch.sin(x, out=torch.empty_like(x)) self.assertEqual( self.formatSchemas(prof), ( ("aten::ones.", (False,) * 5), ("aten::empty.memory_format", (False,) * 6), # # fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!) ("aten::fill_.Scalar", (True, False)), ("aten::mul.Tensor", (False, False)), ("aten::to.dtype", (False,) * 5), ("aten::_to_copy.", (False,) * 7), ("aten::empty_strided.", (False,) * 6), # # copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!) ("aten::copy_.", (True, False, False)), # # add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!) ("aten::add_.Tensor", (True, False, False)), ("aten::to.dtype", (False,) * 5), ("aten::_to_copy.", (False,) * 7), ("aten::empty_strided.", (False,) * 6), # # copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!) ("aten::copy_.", (True, False, False)), ("aten::empty_like.", (False,) * 6), ("aten::empty_strided.", (False,) * 6), # # sin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) ("aten::sin.out", (False, True)), ), ) def test_match_schemas_backward(self) -> None: x = torch.ones((1,)) w = torch.ones((1,), requires_grad=True) with profile() as prof: torch.mul(x, w).backward() self.assertEqual( self.formatSchemas(prof), ( ("aten::mul.Tensor", (False, False)), ("aten::ones_like.", (False,) * 6), ("aten::empty_like.", (False,) * 6), ("aten::empty_strided.", (False,) * 6), # # fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!) ("aten::fill_.Scalar", (True, False)), ("autograd::engine::evaluate_function: MulBackward0", ()), ("MulBackward0", (None,)), ("aten::mul.Tensor", (False, False)), ( "autograd::engine::evaluate_function: torch::autograd::AccumulateGrad", (), ), ("torch::autograd::AccumulateGrad", (None,)), ("aten::detach.", (False,)), ("detach", (None,)), ), ) def test_match_schemas_tensorlist(self) -> None: x = torch.ones((1,)) y = torch.ones((1,)) with profile() as prof: torch.cat([x, y], axis=0) self.assertEqual( self.formatSchemas(prof), (("aten::cat.", (False, False)),), ) def test_data_flow_graph_with_annotations(self) -> None: def f(x, y): # torch._C._jit_get_schemas_for_operator will reject any name that # is missing a namespace. (denoted by the presence of "::") We want # to check that we skip both annotations which have no schema # (return empty tuple from SchemaMatcher.lookup_schemas) and # annotations which cannot have schema (return None from # SchemaMatcher.lookup_schemas). with torch.profiler.record_function("Namespaced::Annotation"): with torch.profiler.record_function("My Annotation"): x.zero_() y.zero_() return {"x0": torch.ones_like(x), "y0": torch.zeros_like(y)} inputs = {"x": torch.ones((1,)), "y": torch.ones((1,))} self.assertExpectedInline( self._run_and_format_data_flow(inputs, f), """\ x: T0 y: T1 x0: T2 y0: T3 aten::zero_ T0(v0) -> T0(v1) aten::zero_ T1(v0) -> T1(v1) aten::ones_like T0(v1) -> T2(v0) aten::zeros_like T1(v1) -> T3(v0)""", ) def test_data_flow_graph_non_op_allocations(self) -> None: def f(x): x.mul(2) # The python arg parser will convert the python scalar `2` to a Tensor # to pass to `aten::mul`. As a result there is no op that "owns" the # allocation. The Tensor deletions also do not happen in an op; they # are collected as a result of the Python objects going out of scope. self.assertExpectedInline( self._run_and_format_data_flow({"x": torch.ones((1,))}, f), """\ x: T1 [memory] -> T0(v0) aten::mul T0(v0), T1(v0) -> [memory] T0(v0*) ->""", ) def test_data_flow_graph_simple(self) -> None: inputs = {"x": torch.ones((25,)), "y": torch.ones((25,), requires_grad=True)} def f0(x, y): z = x.mul(y) return {"z": z.view_as(z)} def f1(x, y): # noqa: F841 with torch.no_grad(): return f0(x, y) self.assertExpectedInline( self._run_and_format_data_flow(inputs, f0), """\ x: T0 y: T1 z: T2 aten::mul T0(v0), T1(v0) -> T2(v0) aten::view_as T2(v0) ->""", ) # Out of place is identical regardless of Autograd. self.assertExpectedInline( self._run_and_format_data_flow(inputs, f0), """\ x: T0 y: T1 z: T2 aten::mul T0(v0), T1(v0) -> T2(v0) aten::view_as T2(v0) ->""", ) def test_data_flow_graph_simple_inplace(self) -> None: inputs = {"x": torch.ones((25,)), "y": torch.ones((25,), requires_grad=True)} def f0(x, y): x.mul_(y) def f1(x, y): with torch.no_grad(): return f0(x, y) # When Autograd is enabled a second Tensor `T2` is created to store # the values of T0(v0) which are needed for backwards. self.assertExpectedInline( self._run_and_format_data_flow(inputs, f0), """\ x: T0 y: T1 aten::mul_ T0(v0), T1(v0) -> T0(v1), T2(v0)""", ) self.assertExpectedInline( self._run_and_format_data_flow(inputs, f1), """\ x: T0 y: T1 aten::mul_ T0(v0), T1(v0) -> T0(v1)""", ) def test_data_flow_graph_simple_backward(self) -> None: inputs = { "x": torch.ones((1,)), "w": torch.ones((1,), requires_grad=True), } self.assertExpectedInline( self._run_and_format_data_flow( inputs, lambda x, w: (x * w).sin().backward() ), """\ x: T0 w: T1 w.grad: T7 aten::mul T0(v0), T1(v0) -> T2(v0) aten::sin T2(v0) -> T3(v0) aten::ones_like T3(v0) -> T4(v0) SinBackward0 T2(v0), T4(v0) -> T6(v0) [memory] T2(v0*) -> MulBackward0 T0(v0), T6(v0) -> T7(v0) [memory] T6(v0*) -> AccumulateGrad T7(v0) -> [memory] T4(v0*) -> [memory] T3(v0*) ->""", ) def test_data_flow_graph_complicated(self) -> None: def f(): x = torch.ones((25,)) y = x.mul(2).add_(2) z = torch.sin(y, out=torch.empty_like(y)) return {"x": x, "y": y, "z": z} # T1 is the `2` in `.mul(2)`. The Python arg parser automatically # converts Scalar arguments to Tensors. The same is true for `T4` # and `.add_(2)`. self.assertExpectedInline( self._run_and_format_data_flow({}, f), """\ x: T0 y: T3 z: T6 aten::ones -> T0(v0) [memory] -> T1(v0) aten::mul T0(v0), T1(v0) -> T3(v0) [memory] T1(v0*) -> [memory] -> T4(v0) aten::add_ T3(v0), T4(v0) -> T3(v1) [memory] T4(v0*) -> aten::empty_like T3(v1) -> T6(v0) aten::sin T3(v1), T6(v0) -> T6(v1)""", ) with profile() as prof: f() # `aten::mul` creates a temporary Tensor (T2), which is why the output # is has ID three rather than two. mul_node = prof._memory_profile()._data_flow_graph.flow_nodes[2] self.assertEqual(mul_node._event.name, "aten::mul") self.assertEqual(len(mul_node.intermediates), 1) self.assertEqual(mul_node.intermediates[0].id, 2) def test_data_flow_graph_stacked(self) -> None: inputs = { "x": torch.ones((25,)), "w0": torch.ones((1,), requires_grad=True), "w1": torch.ones((1,), requires_grad=True), } def f(x, w0, w1): return x.mul(w0).relu().mul(w1).relu().sum() def f_fwd(**kwargs): with torch.no_grad(): return {"loss": f(**kwargs)} def f_fwd_bwd(**kwargs): loss = f(**kwargs) loss.backward() return {"loss": loss} self.assertExpectedInline( self._run_and_format_data_flow(inputs, f_fwd), """\ x: T0 w0: T1 w1: T4 loss: T7 aten::mul T0(v0), T1(v0) -> T2(v0) aten::relu T2(v0) -> T3(v0) [memory] T2(v0*) -> aten::mul T3(v0), T4(v0) -> T5(v0) [memory] T3(v0*) -> aten::relu T5(v0) -> T6(v0) [memory] T5(v0*) -> aten::sum T6(v0) -> T7(v0) [memory] T6(v0*) ->""", ) self.assertExpectedInline( self._run_and_format_data_flow(inputs, f_fwd_bwd), """\ x: T0 w0: T1 w0.grad: T15 w1: T4 w1.grad: T12 loss: T7 aten::mul T0(v0), T1(v0) -> T2(v0) aten::relu T2(v0) -> T3(v0) [memory] T2(v0*) -> aten::mul T3(v0), T4(v0) -> T5(v0) aten::relu T5(v0) -> T6(v0) [memory] T5(v0*) -> aten::sum T6(v0) -> T7(v0) aten::ones_like T7(v0) -> T8(v0) SumBackward0 T8(v0) -> ReluBackward0 T6(v0), T8(v0) -> T9(v0) [memory] T6(v0*) -> MulBackward0 T3(v0), T4(v0), T9(v0) -> T10(v0), T11(v0) aten::sum T10(v0) -> T12(v0) [memory] T10(v0*) -> [memory] T9(v0*) -> AccumulateGrad T12(v0) -> ReluBackward0 T3(v0), T11(v0) -> T13(v0) [memory] T11(v0*) -> [memory] T3(v0*) -> MulBackward0 T0(v0), T13(v0) -> T14(v0) aten::sum T14(v0) -> T15(v0) [memory] T14(v0*) -> [memory] T13(v0*) -> AccumulateGrad T15(v0) -> [memory] T8(v0*) ->""", ) # Second time grads are already initialized. self.assertExpectedInline( self._run_and_format_data_flow(inputs, f_fwd_bwd), """\ x: T0 w0: T1 w0.grad: T17 w1: T4 w1.grad: T13 loss: T7 aten::mul T0(v0), T1(v0) -> T2(v0) aten::relu T2(v0) -> T3(v0) [memory] T2(v0*) -> aten::mul T3(v0), T4(v0) -> T5(v0) aten::relu T5(v0) -> T6(v0) [memory] T5(v0*) -> aten::sum T6(v0) -> T7(v0) aten::ones_like T7(v0) -> T8(v0) SumBackward0 T8(v0) -> ReluBackward0 T6(v0), T8(v0) -> T9(v0) [memory] T6(v0*) -> MulBackward0 T3(v0), T4(v0), T9(v0) -> T10(v0), T11(v0) aten::sum T10(v0) -> T12(v0) [memory] T10(v0*) -> [memory] T9(v0*) -> AccumulateGrad T12(v0*), T13(v0) -> T13(v1) ReluBackward0 T3(v0), T11(v0) -> T14(v0) [memory] T11(v0*) -> [memory] T3(v0*) -> MulBackward0 T0(v0), T14(v0) -> T15(v0) aten::sum T15(v0) -> T16(v0) [memory] T15(v0*) -> [memory] T14(v0*) -> AccumulateGrad T16(v0*), T17(v0) -> T17(v1) [memory] T8(v0*) ->""", ) return x = torch.ones((25,)) w0 = torch.ones((1,), requires_grad=True) w1 = torch.ones((1,), requires_grad=True) with profile() as prof_no_grad: with torch.no_grad(): x.mul(w0).relu().mul(w1).relu().sum() # TODO: one with `.logsumexp(dim=0)` self.assertExpectedInline( self._format_graph(prof_no_grad), """\ aten::mul T0(v0), T1(v0) -> T2(v0) aten::relu T2(v0) -> T3(v0) [memory] T2(v0*) -> aten::mul T3(v0), T4(v0) -> T5(v0) [memory] T3(v0*) -> aten::relu T5(v0) -> T6(v0) [memory] T5(v0*) -> aten::sum T6(v0) -> T7(v0) [memory] T6(v0*) -> [memory] T7(v0*) ->""", ) with profile() as prof_grad: loss = x.mul(w0).relu().mul(w1).relu().sum() loss.backward() self.assertExpectedInline( self._format_graph(prof_grad), """\ aten::mul T0(v0), T1(v0) -> T2(v0) aten::relu T2(v0) -> T3(v0) [memory] T2(v0*) -> aten::mul T3(v0), T4(v0) -> T5(v0) aten::relu T5(v0) -> T6(v0) [memory] T5(v0*) -> aten::sum T6(v0) -> T7(v0) aten::ones_like T7(v0) -> T8(v0) SumBackward0 T8(v0) -> T8(v1) ReluBackward0 T6(v0), T8(v1) -> T8(v2), T9(v0) [memory] T6(v0*) -> MulBackward0 T3(v0), T4(v0), T9(v0) -> T9(v1), T10(v0), T11(v0) aten::sum T10(v0) -> T12(v0) [memory] T10(v0*) -> [memory] T9(v1*) -> AccumulateGrad T12(v0) -> T12(v1) ReluBackward0 T3(v0), T11(v0) -> T11(v1), T13(v0) [memory] T11(v1*) -> [memory] T3(v0*) -> MulBackward0 T0(v0), T13(v0) -> T13(v1), T14(v0) aten::sum T14(v0) -> T15(v0) [memory] T14(v0*) -> [memory] T13(v1*) -> AccumulateGrad T15(v0) -> T15(v1) [memory] T8(v2*) ->""", ) # Second time grads are already initialized. with profile() as prof_grad: loss = x.mul(w0).relu().mul(w1).relu().sum() loss.backward() self.assertExpectedInline( self._format_graph(prof_grad), """\ aten::mul T0(v0), T1(v0) -> T2(v0) aten::relu T2(v0) -> T3(v0) [memory] T2(v0*) -> aten::mul T3(v0), T4(v0) -> T5(v0) aten::relu T5(v0) -> T6(v0) [memory] T5(v0*) -> aten::sum T6(v0) -> T7(v0) aten::ones_like T7(v0) -> T8(v0) SumBackward0 T8(v0) -> T8(v1) ReluBackward0 T6(v0), T8(v1) -> T8(v2), T9(v0) [memory] T6(v0*) -> MulBackward0 T3(v0), T4(v0), T9(v0) -> T9(v1), T10(v0), T11(v0) aten::sum T10(v0) -> T12(v0) [memory] T10(v0*) -> [memory] T9(v1*) -> AccumulateGrad T12(v0*), T13(v0) -> T13(v1) ReluBackward0 T3(v0), T11(v0) -> T11(v1), T14(v0) [memory] T11(v1*) -> [memory] T3(v0*) -> MulBackward0 T0(v0), T14(v0) -> T14(v1), T15(v0) aten::sum T15(v0) -> T16(v0) [memory] T15(v0*) -> [memory] T14(v1*) -> AccumulateGrad T16(v0*), T17(v0) -> T17(v1) [memory] T8(v2*) ->""", ) @skipIfTorchDynamo("TorchDynamo changes Python calls that memory profiling relies on.")
TestDataFlow
python
walkccc__LeetCode
solutions/2186. Minimum Number of Steps to Make Two Strings Anagram II/2186.py
{ "start": 0, "end": 188 }
class ____: def minSteps(self, s: str, t: str) -> int: count = collections.Counter(s) count.subtract(collections.Counter(t)) return sum([abs(c) for c in count.values()])
Solution
python
coleifer__peewee
tests/regressions.py
{ "start": 8090, "end": 8823 }
class ____(ModelTestCase): def setUp(self): super(TestInsertFromSQL, self).setUp() self.database.execute_sql('create table if not exists user_src ' '(name TEXT);') tbl = Table('user_src').bind(self.database) tbl.insert(name='foo').execute() def tearDown(self): super(TestInsertFromSQL, self).tearDown() self.database.execute_sql('drop table if exists user_src') @requires_models(User) def test_insert_from_sql(self): query_src = SQL('SELECT name FROM user_src') User.insert_from(query=query_src, fields=[User.username]).execute() self.assertEqual([u.username for u in User.select()], ['foo'])
TestInsertFromSQL
python
doocs__leetcode
solution/0100-0199/0152.Maximum Product Subarray/Solution.py
{ "start": 0, "end": 276 }
class ____: def maxProduct(self, nums: List[int]) -> int: ans = f = g = nums[0] for x in nums[1:]: ff, gg = f, g f = max(x, ff * x, gg * x) g = min(x, ff * x, gg * x) ans = max(ans, f) return ans
Solution
python
huggingface__transformers
src/transformers/models/cohere2/modular_cohere2.py
{ "start": 18706, "end": 18854 }
class ____(CohereForCausalLM): pass __all__ = ["Cohere2Config", "Cohere2ForCausalLM", "Cohere2Model", "Cohere2PreTrainedModel"]
Cohere2ForCausalLM
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/import7.py
{ "start": 115, "end": 267 }
class ____: # This should generate an error. from .import5 import * def func1(): # This should generate an error. from .import5 import *
A
python
apache__airflow
providers/google/tests/unit/google/cloud/hooks/test_kms_system.py
{ "start": 1599, "end": 4302 }
class ____(GoogleSystemTest): @provide_gcp_context(GCP_KMS_KEY) def test_encrypt(self): with TemporaryDirectory() as tmp_dir: kms_hook = CloudKMSHook() content = kms_hook.encrypt( key_name=( f"projects/{kms_hook.project_id}/locations/global/keyRings/" f"{GCP_KMS_KEYRING_NAME}/cryptoKeys/{GCP_KMS_KEY_NAME}" ), plaintext=b"TEST-SECRET", ) with open(f"{tmp_dir}/mysecret.txt.encrypted", "wb") as encrypted_file: encrypted_file.write(base64.b64decode(content)) self.execute_cmd( [ "gcloud", "kms", "decrypt", "--location", "global", "--keyring", GCP_KMS_KEYRING_NAME, "--key", GCP_KMS_KEY_NAME, "--ciphertext-file", f"{tmp_dir}/mysecret.txt.encrypted", "--plaintext-file", f"{tmp_dir}/mysecret.txt", ] ) with open(f"{tmp_dir}/mysecret.txt", "rb") as secret_file: secret = secret_file.read() assert secret == b"TEST-SECRET" @provide_gcp_context(GCP_KMS_KEY) def test_decrypt(self): with TemporaryDirectory() as tmp_dir: with open(f"{tmp_dir}/mysecret.txt", "w") as secret_file: secret_file.write("TEST-SECRET") self.execute_cmd( [ "gcloud", "kms", "encrypt", "--location", "global", "--keyring", GCP_KMS_KEYRING_NAME, "--key", GCP_KMS_KEY_NAME, "--plaintext-file", f"{tmp_dir}/mysecret.txt", "--ciphertext-file", f"{tmp_dir}/mysecret.txt.encrypted", ] ) with open(f"{tmp_dir}/mysecret.txt.encrypted", "rb") as encrypted_file: encrypted_secret = base64.b64encode(encrypted_file.read()).decode() kms_hook = CloudKMSHook() content = kms_hook.decrypt( key_name=( f"projects/{kms_hook.project_id}/locations/global/keyRings/" f"{GCP_KMS_KEYRING_NAME}/cryptoKeys/{GCP_KMS_KEY_NAME}" ), ciphertext=encrypted_secret, ) assert content == b"TEST-SECRET"
TestKmsHookSystem
python
RaRe-Technologies__gensim
gensim/models/phrases.py
{ "start": 31338, "end": 34068 }
class ____(_PhrasesTransformation): """Minimal state & functionality exported from a trained :class:`~gensim.models.phrases.Phrases` model. The goal of this class is to cut down memory consumption of `Phrases`, by discarding model state not strictly needed for the phrase detection task. Use this instead of `Phrases` if you do not need to update the bigram statistics with new documents any more. """ def __init__(self, phrases_model): """ Parameters ---------- phrases_model : :class:`~gensim.models.phrases.Phrases` Trained phrases instance, to extract all phrases from. Notes ----- After the one-time initialization, a :class:`~gensim.models.phrases.FrozenPhrases` will be much smaller and faster than using the full :class:`~gensim.models.phrases.Phrases` model. Examples ---------- .. sourcecode:: pycon >>> from gensim.test.utils import datapath >>> from gensim.models.word2vec import Text8Corpus >>> from gensim.models.phrases import Phrases, ENGLISH_CONNECTOR_WORDS >>> >>> # Load corpus and train a model. >>> sentences = Text8Corpus(datapath('testcorpus.txt')) >>> phrases = Phrases(sentences, min_count=1, threshold=1, connector_words=ENGLISH_CONNECTOR_WORDS) >>> >>> # Export a FrozenPhrases object that is more efficient but doesn't allow further training. >>> frozen_phrases = phrases.freeze() >>> print(frozen_phrases[sent]) [u'trees_graph', u'minors'] """ self.threshold = phrases_model.threshold self.min_count = phrases_model.min_count self.delimiter = phrases_model.delimiter self.scoring = phrases_model.scoring self.connector_words = phrases_model.connector_words logger.info('exporting phrases from %s', phrases_model) start = time.time() self.phrasegrams = phrases_model.export_phrases() self.add_lifecycle_event("created", msg=f"exported {self} from {phrases_model} in {time.time() - start:.2f}s") def __str__(self): return "%s<%i phrases, min_count=%s, threshold=%s>" % ( self.__class__.__name__, len(self.phrasegrams), self.min_count, self.threshold, ) def score_candidate(self, word_a, word_b, in_between): phrase = self.delimiter.join([word_a] + in_between + [word_b]) score = self.phrasegrams.get(phrase, NEGATIVE_INFINITY) if score > self.threshold: return phrase, score return None, None Phraser = FrozenPhrases # alias for backward compatibility
FrozenPhrases
python
walkccc__LeetCode
solutions/2203. Minimum Weighted Subgraph With the Required Paths/2203.py
{ "start": 0, "end": 1046 }
class ____: def minimumWeight( self, n: int, edges: list[list[int]], src1: int, src2: int, dest: int, ) -> int: graph = [[] for _ in range(n)] reversedGraph = [[] for _ in range(n)] for u, v, w in edges: graph[u].append((v, w)) reversedGraph[v].append((u, w)) fromSrc1 = self._dijkstra(graph, src1) fromSrc2 = self._dijkstra(graph, src2) fromDest = self._dijkstra(reversedGraph, dest) minWeight = min(a + b + c for a, b, c in zip(fromSrc1, fromSrc2, fromDest)) return -1 if minWeight == math.inf else minWeight def _dijkstra( self, graph: list[list[tuple[int, int]]], src: int, ) -> list[int]: dist = [math.inf] * len(graph) dist[src] = 0 minHeap = [(dist[src], src)] # (d, u) while minHeap: d, u = heapq.heappop(minHeap) if d > dist[u]: continue for v, w in graph[u]: if d + w < dist[v]: dist[v] = d + w heapq.heappush(minHeap, (dist[v], v)) return dist
Solution
python
tensorflow__tensorflow
tensorflow/python/keras/legacy_tf_layers/convolutional.py
{ "start": 29027, "end": 34195 }
class ____(keras_layers.SeparableConv1D, base.Layer): """Depthwise separable 1D convolution. This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output. Args: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: A single integer specifying the spatial dimensions of the filters. strides: A single integer specifying the strides of the convolution. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`. dilation_rate: A single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. depthwise_initializer: An initializer for the depthwise convolution kernel. pointwise_initializer: An initializer for the pointwise convolution kernel. bias_initializer: An initializer for the bias vector. If None, the default initializer will be used. depthwise_regularizer: Optional regularizer for the depthwise convolution kernel. pointwise_regularizer: Optional regularizer for the pointwise convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. depthwise_constraint: Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. pointwise_constraint: Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=init_ops.zeros_initializer(), depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(SeparableConv1D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, depth_multiplier=depth_multiplier, activation=activation, use_bias=use_bias, depthwise_initializer=depthwise_initializer, pointwise_initializer=pointwise_initializer, bias_initializer=bias_initializer, depthwise_regularizer=depthwise_regularizer, pointwise_regularizer=pointwise_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, depthwise_constraint=depthwise_constraint, pointwise_constraint=pointwise_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs)
SeparableConv1D
python
pytorch__pytorch
torch/_export/serde/schema.py
{ "start": 10543, "end": 11011 }
class ____: inputs: Annotated[list[Argument], 10] outputs: Annotated[list[Argument], 20] # These are serialized by calling pytree.treespec_loads # And deserialized by calling pytree.treespec_dumps in_spec: Annotated[str, 30] out_spec: Annotated[str, 40] # This field is used to prettify the graph placeholders # after we Ser/Der and retrace forward_arg_names: Annotated[Optional[list[str]], 50] = None @dataclass
ModuleCallSignature
python
airbytehq__airbyte
airbyte-integrations/connectors/source-jira/integration_tests/fixtures/data_generator/streams.py
{ "start": 6788, "end": 8373 }
class ____(IssueRemoteLinks, GeneratorMixin): """ https://developer.atlassian.com/cloud/jira/platform/rest/v3/api-group-issue-remote-links/#api-rest-api-3-issue-issueidorkey-remotelink-post """ def generate(self): issues_stream = Issues(authenticator=self._session.auth, domain=self._domain) for issue in issues_stream.read_records(sync_mode=SyncMode.full_refresh): payload = json.dumps( { "application": {"name": "My Acme Tracker", "type": "com.acme.tracker"}, "globalId": "system=https://www.mycompany.com/support&id=1", "relationship": "causes", "object": { "summary": "Customer support issue", "icon": {"url16x16": "https://www.mycompany.com/support/ticket.png", "title": "Support Ticket"}, "title": "TSTSUP-111", "url": "https://www.mycompany.com/support?id=1", "status": { "icon": { "url16x16": "https://www.mycompany.com/support/resolved.png", "link": "https://www.mycompany.com/support?id=1&details=closed", "title": "Case Closed", }, "resolved": True, }, }, } ) self.generate_record(payload, stream_slice={"key": issue["key"]})
IssueRemoteLinksGenerator
python
keon__algorithms
algorithms/tree/bst/bst.py
{ "start": 3095, "end": 3735 }
class ____(unittest.TestCase): def setUp(self): self.tree = BST() self.tree.insert(10) self.tree.insert(15) self.tree.insert(6) self.tree.insert(4) self.tree.insert(9) self.tree.insert(12) self.tree.insert(24) self.tree.insert(7) self.tree.insert(20) self.tree.insert(30) self.tree.insert(18) def test_search(self): self.assertTrue(self.tree.search(24)) self.assertFalse(self.tree.search(50)) def test_size(self): self.assertEqual(11, self.tree.size()) if __name__ == '__main__': unittest.main()
TestSuite
python
numba__numba
numba/tests/test_flow_control.py
{ "start": 3463, "end": 9023 }
class ____(TestCase): def run_test(self, pyfunc, x_operands, y_operands, flags=enable_pyobj_flags): cfunc = jit((types.intp, types.intp), **flags)(pyfunc) for x, y in itertools.product(x_operands, y_operands): pyerr = None cerr = None try: pyres = pyfunc(x, y) except Exception as e: pyerr = e try: cres = cfunc(x, y) except Exception as e: if pyerr is None: raise cerr = e self.assertEqual(type(pyerr), type(cerr)) else: if pyerr is not None: self.fail("Invalid for pure-python but numba works\n" + pyerr) self.assertEqual(pyres, cres) def test_for_loop1(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase1, [-10, 0, 10], [0], flags=flags) def test_for_loop1_npm(self): self.test_for_loop1(flags=no_pyobj_flags) def test_for_loop2(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase2, [-10, 0, 10], [-10, 0, 10], flags=flags) def test_for_loop2_npm(self): self.test_for_loop2(flags=no_pyobj_flags) def test_for_loop3(self, flags=enable_pyobj_flags): """ List requires pyobject """ self.run_test(for_loop_usecase3, [1], [2], flags=flags) def test_for_loop3_npm(self): self.test_for_loop3(flags=no_pyobj_flags) def test_for_loop4(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase4, [10], [10], flags=flags) def test_for_loop4_npm(self): self.test_for_loop4(flags=no_pyobj_flags) def test_for_loop5(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase5, [100], [50], flags=flags) def test_for_loop5_npm(self): self.test_for_loop5(flags=no_pyobj_flags) def test_for_loop6(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase6, [100], [50], flags=flags) def test_for_loop6_npm(self): self.test_for_loop6(flags=no_pyobj_flags) def test_for_loop7(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase7, [5], [0], flags=flags) def test_for_loop7_npm(self): self.test_for_loop7(flags=no_pyobj_flags) def test_for_loop8(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase8, [0, 1], [0, 2, 10], flags=flags) def test_for_loop8_npm(self): self.test_for_loop8(flags=no_pyobj_flags) def test_for_loop9(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase9, [0, 1], [0, 2, 10], flags=flags) def test_for_loop9_npm(self): self.test_for_loop9(flags=no_pyobj_flags) def test_for_loop10(self, flags=enable_pyobj_flags): self.run_test(for_loop_usecase10, [5], [2, 7], flags=flags) def test_for_loop10_npm(self): self.test_for_loop10(flags=no_pyobj_flags) def test_while_loop1(self, flags=enable_pyobj_flags): self.run_test(while_loop_usecase1, [10], [0], flags=flags) def test_while_loop1_npm(self): self.test_while_loop1(flags=no_pyobj_flags) def test_while_loop2(self, flags=enable_pyobj_flags): self.run_test(while_loop_usecase2, [10], [0], flags=flags) def test_while_loop2_npm(self): self.test_while_loop2(flags=no_pyobj_flags) def test_while_loop3(self, flags=enable_pyobj_flags): self.run_test(while_loop_usecase3, [10], [10], flags=flags) def test_while_loop3_npm(self): self.test_while_loop3(flags=no_pyobj_flags) def test_while_loop4(self, flags=enable_pyobj_flags): self.run_test(while_loop_usecase4, [10], [0], flags=flags) def test_while_loop4_npm(self): self.test_while_loop4(flags=no_pyobj_flags) def test_while_loop5(self, flags=enable_pyobj_flags): self.run_test(while_loop_usecase5, [0, 5, 10], [0, 5, 10], flags=flags) def test_while_loop5_npm(self): self.test_while_loop5(flags=no_pyobj_flags) def test_ifelse1(self, flags=enable_pyobj_flags): self.run_test(ifelse_usecase1, [-1, 0, 1], [-1, 0, 1], flags=flags) def test_ifelse1_npm(self): self.test_ifelse1(flags=no_pyobj_flags) def test_ifelse2(self, flags=enable_pyobj_flags): self.run_test(ifelse_usecase2, [-1, 0, 1], [-1, 0, 1], flags=flags) def test_ifelse2_npm(self): self.test_ifelse2(flags=no_pyobj_flags) def test_ifelse3(self, flags=enable_pyobj_flags): self.run_test(ifelse_usecase3, [-1, 0, 1], [-1, 0, 1], flags=flags) def test_ifelse3_npm(self): self.test_ifelse3(flags=no_pyobj_flags) def test_ifelse4(self, flags=enable_pyobj_flags): self.run_test(ifelse_usecase4, [-1, 0, 1], [-1, 0, 1], flags=flags) def test_ifelse4_npm(self): self.test_ifelse4(flags=no_pyobj_flags) def test_ternary_ifelse1(self, flags=enable_pyobj_flags): self.run_test(ternary_ifelse_usecase1, [-1, 0, 1], [-1, 0, 1], flags=flags) def test_ternary_ifelse1_npm(self): self.test_ternary_ifelse1(flags=no_pyobj_flags) def test_double_infinite_loop(self, flags=enable_pyobj_flags): self.run_test(double_infinite_loop, [10], [0], flags=flags) def test_double_infinite_loop_npm(self): self.test_double_infinite_loop(flags=no_pyobj_flags)
TestFlowControl
python
apache__thrift
test/py/TestClient.py
{ "start": 16872, "end": 17379 }
class ____(MultiplexedOptionalTest): def get_protocol(self, transport): wrapped_proto = make_pedantic(TJSONProtocol.TJSONProtocolFactory().getProtocol(transport)) return TMultiplexedProtocol.TMultiplexedProtocol(wrapped_proto, "ThriftTest") def get_protocol2(self, transport): wrapped_proto = make_pedantic(TJSONProtocol.TJSONProtocolFactory().getProtocol(transport)) return TMultiplexedProtocol.TMultiplexedProtocol(wrapped_proto, "SecondService")
MultiplexedJSONTest
python
pytorch__pytorch
test/test_dataloader.py
{ "start": 117363, "end": 119267 }
class ____(IterableDataset): def __init__(self, len, size): super(RandomDataset).__init__() self.len = len self.size = size def __iter__(self): return self def __next__(self): if self.len <= 0: raise StopIteration self.len -= 1 return torch.randn(self.size) try: keep_fds_alive = [] resource.setrlimit(resource.RLIMIT_NOFILE, (100, 100)) for random_t in DataLoader(RandomDataset(200, (2,2)), multiprocessing_context="fork", num_workers=1, persistent_workers=True): random_t.max(dim=0) keep_fds_alive.append(random_t) except RuntimeError as e: assert "ulimit -n" in str(e) assert "set_sharing_strategy" in str(e) """, ] ) def test_dataset_not_reset(self): dataset = DummyDataset() pin_memory_configs = [False] if TEST_CUDA: pin_memory_configs.append(True) for pin_memory in pin_memory_configs: dataloader = self._get_data_loader( dataset, num_workers=2, pin_memory=pin_memory ) dataset.start = 0 for i in range(10): for _ in dataloader: pass # Changing the start value here doesn't have any effect in the dataset # cached by the workers. since they are not recreated between epochs # and can cache values safely dataset.start = i @unittest.skipIf(IS_SANDCASTLE, "subprocess doesn't work in FB internal CI") @unittest.skipIf(IS_WINDOWS, "Needs fork") def test_early_exit(self): import subprocess proc = subprocess.check_output( [ sys.executable, "-c", """\ import torch from torch.utils.data import DataLoader, IterableDataset
RandomDataset
python
PyCQA__pylint
tests/functional/u/unsupported/unsupported_assignment_operation.py
{ "start": 1763, "end": 1894 }
class ____(LibSubscriptable): pass MaybeSubscriptable()[0] = 42 # subscriptable classes (through metaclasses)
MaybeSubscriptable
python
Lightning-AI__lightning
src/lightning/pytorch/callbacks/callback.py
{ "start": 804, "end": 11010 }
class ____: r"""Abstract base class used to build new callbacks. Subclass this class and override any of the relevant hooks """ @property def state_key(self) -> str: """Identifier for the state of the callback. Used to store and retrieve a callback's state from the checkpoint dictionary by ``checkpoint["callbacks"][state_key]``. Implementations of a callback need to provide a unique state key if 1) the callback has state and 2) it is desired to maintain the state of multiple instances of that callback. """ return self.__class__.__qualname__ @property def _legacy_state_key(self) -> type["Callback"]: """State key for checkpoints saved prior to version 1.5.0.""" return type(self) def _generate_state_key(self, **kwargs: Any) -> str: """Formats a set of key-value pairs into a state key string with the callback class name prefixed. Useful for defining a :attr:`state_key`. Args: **kwargs: A set of key-value pairs. Must be serializable to :class:`str`. """ return f"{self.__class__.__qualname__}{repr(kwargs)}" def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None: """Called when fit, validate, test, predict, or tune begins.""" def teardown(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None: """Called when fit, validate, test, predict, or tune ends.""" def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when fit begins.""" def on_fit_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when fit ends.""" def on_sanity_check_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the validation sanity check starts.""" def on_sanity_check_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the validation sanity check ends.""" def on_train_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int ) -> None: """Called when the train batch begins.""" def on_train_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int ) -> None: """Called when the train batch ends. Note: The value ``outputs["loss"]`` here will be the normalized value w.r.t ``accumulate_grad_batches`` of the loss returned from ``training_step``. """ def on_train_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train epoch begins.""" def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train epoch ends. To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the :class:`lightning.pytorch.core.LightningModule` and access them in this hook: .. code-block:: python class MyLightningModule(L.LightningModule): def __init__(self): super().__init__() self.training_step_outputs = [] def training_step(self): loss = ... self.training_step_outputs.append(loss) return loss class MyCallback(L.Callback): def on_train_epoch_end(self, trainer, pl_module): # do something with all training_step outputs, for example: epoch_mean = torch.stack(pl_module.training_step_outputs).mean() pl_module.log("training_epoch_mean", epoch_mean) # free up the memory pl_module.training_step_outputs.clear() """ def on_validation_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the val epoch begins.""" def on_validation_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the val epoch ends.""" def on_test_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the test epoch begins.""" def on_test_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the test epoch ends.""" def on_predict_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the predict epoch begins.""" def on_predict_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the predict epoch ends.""" def on_validation_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: """Called when the validation batch begins.""" def on_validation_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: """Called when the validation batch ends.""" def on_test_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: """Called when the test batch begins.""" def on_test_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: """Called when the test batch ends.""" def on_predict_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: """Called when the predict batch begins.""" def on_predict_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int = 0, ) -> None: """Called when the predict batch ends.""" def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train begins.""" def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train ends.""" def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the validation loop begins.""" def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the validation loop ends.""" def on_test_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the test begins.""" def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the test ends.""" def on_predict_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the predict begins.""" def on_predict_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when predict ends.""" def on_exception(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", exception: BaseException) -> None: """Called when any trainer execution is interrupted by an exception.""" def state_dict(self) -> dict[str, Any]: """Called when saving a checkpoint, implement to generate callback's ``state_dict``. Returns: A dictionary containing callback state. """ return {} def load_state_dict(self, state_dict: dict[str, Any]) -> None: """Called when loading a checkpoint, implement to reload callback state given callback's ``state_dict``. Args: state_dict: the callback state returned by ``state_dict``. """ pass def on_save_checkpoint( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: dict[str, Any] ) -> None: r"""Called when saving a checkpoint to give you a chance to store anything else you might want to save. Args: trainer: the current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. pl_module: the current :class:`~lightning.pytorch.core.LightningModule` instance. checkpoint: the checkpoint dictionary that will be saved. """ def on_load_checkpoint( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: dict[str, Any] ) -> None: r"""Called when loading a model checkpoint, use to reload state. Args: trainer: the current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. pl_module: the current :class:`~lightning.pytorch.core.LightningModule` instance. checkpoint: the full checkpoint dictionary that got loaded by the Trainer. """ def on_before_backward(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", loss: Tensor) -> None: """Called before ``loss.backward()``.""" def on_after_backward(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called after ``loss.backward()`` and before optimizers are stepped.""" def on_before_optimizer_step( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", optimizer: Optimizer ) -> None: """Called before ``optimizer.step()``.""" def on_before_zero_grad(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", optimizer: Optimizer) -> None: """Called before ``optimizer.zero_grad()``."""
Callback
python
pyparsing__pyparsing
examples/bf.py
{ "start": 2742, "end": 2843 }
class ____(Instruction): def execute(self, bf_engine: BFEngine): bf_engine.ptr -= 1
DecrPtr
python
davidhalter__jedi
jedi/inference/lazy_value.py
{ "start": 512, "end": 632 }
class ____(AbstractLazyValue): """data is a ValueSet.""" def infer(self): return self.data
LazyKnownValues
python
kubernetes-client__python
kubernetes/client/models/v1_subject_access_review_status.py
{ "start": 383, "end": 7409 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'allowed': 'bool', 'denied': 'bool', 'evaluation_error': 'str', 'reason': 'str' } attribute_map = { 'allowed': 'allowed', 'denied': 'denied', 'evaluation_error': 'evaluationError', 'reason': 'reason' } def __init__(self, allowed=None, denied=None, evaluation_error=None, reason=None, local_vars_configuration=None): # noqa: E501 """V1SubjectAccessReviewStatus - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._allowed = None self._denied = None self._evaluation_error = None self._reason = None self.discriminator = None self.allowed = allowed if denied is not None: self.denied = denied if evaluation_error is not None: self.evaluation_error = evaluation_error if reason is not None: self.reason = reason @property def allowed(self): """Gets the allowed of this V1SubjectAccessReviewStatus. # noqa: E501 Allowed is required. True if the action would be allowed, false otherwise. # noqa: E501 :return: The allowed of this V1SubjectAccessReviewStatus. # noqa: E501 :rtype: bool """ return self._allowed @allowed.setter def allowed(self, allowed): """Sets the allowed of this V1SubjectAccessReviewStatus. Allowed is required. True if the action would be allowed, false otherwise. # noqa: E501 :param allowed: The allowed of this V1SubjectAccessReviewStatus. # noqa: E501 :type: bool """ if self.local_vars_configuration.client_side_validation and allowed is None: # noqa: E501 raise ValueError("Invalid value for `allowed`, must not be `None`") # noqa: E501 self._allowed = allowed @property def denied(self): """Gets the denied of this V1SubjectAccessReviewStatus. # noqa: E501 Denied is optional. True if the action would be denied, otherwise false. If both allowed is false and denied is false, then the authorizer has no opinion on whether to authorize the action. Denied may not be true if Allowed is true. # noqa: E501 :return: The denied of this V1SubjectAccessReviewStatus. # noqa: E501 :rtype: bool """ return self._denied @denied.setter def denied(self, denied): """Sets the denied of this V1SubjectAccessReviewStatus. Denied is optional. True if the action would be denied, otherwise false. If both allowed is false and denied is false, then the authorizer has no opinion on whether to authorize the action. Denied may not be true if Allowed is true. # noqa: E501 :param denied: The denied of this V1SubjectAccessReviewStatus. # noqa: E501 :type: bool """ self._denied = denied @property def evaluation_error(self): """Gets the evaluation_error of this V1SubjectAccessReviewStatus. # noqa: E501 EvaluationError is an indication that some error occurred during the authorization check. It is entirely possible to get an error and be able to continue determine authorization status in spite of it. For instance, RBAC can be missing a role, but enough roles are still present and bound to reason about the request. # noqa: E501 :return: The evaluation_error of this V1SubjectAccessReviewStatus. # noqa: E501 :rtype: str """ return self._evaluation_error @evaluation_error.setter def evaluation_error(self, evaluation_error): """Sets the evaluation_error of this V1SubjectAccessReviewStatus. EvaluationError is an indication that some error occurred during the authorization check. It is entirely possible to get an error and be able to continue determine authorization status in spite of it. For instance, RBAC can be missing a role, but enough roles are still present and bound to reason about the request. # noqa: E501 :param evaluation_error: The evaluation_error of this V1SubjectAccessReviewStatus. # noqa: E501 :type: str """ self._evaluation_error = evaluation_error @property def reason(self): """Gets the reason of this V1SubjectAccessReviewStatus. # noqa: E501 Reason is optional. It indicates why a request was allowed or denied. # noqa: E501 :return: The reason of this V1SubjectAccessReviewStatus. # noqa: E501 :rtype: str """ return self._reason @reason.setter def reason(self, reason): """Sets the reason of this V1SubjectAccessReviewStatus. Reason is optional. It indicates why a request was allowed or denied. # noqa: E501 :param reason: The reason of this V1SubjectAccessReviewStatus. # noqa: E501 :type: str """ self._reason = reason def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1SubjectAccessReviewStatus): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1SubjectAccessReviewStatus): return True return self.to_dict() != other.to_dict()
V1SubjectAccessReviewStatus
python
pytorch__pytorch
test/test_decomp.py
{ "start": 42535, "end": 50699 }
class ____(TestCase): @onlyNativeDeviceTypes @skipIfCrossRef def test_contiguous_softmax(self, device): size = (2, 4, 3, 3) stride = (9, 18, 3, 1) dtype = torch.float32 x = torch.randn(size, dtype=dtype, device=device) x = torch.as_strided(x, size, stride) ref = torch.ops.aten._softmax(x, -1, False) res = torch._decomp.decompositions._softmax(x, -1, False) self.assertEqual(ref.stride(), res.stride()) @onlyNativeDeviceTypes @skipIfCrossRef def test_contiguous_log_softmax(self, device): size = (2, 4, 3, 3) stride = (9, 18, 3, 1) dtype = torch.float32 x = torch.randn(size, dtype=dtype, device=device) x = torch.as_strided(x, size, stride) ref = torch.ops.aten._log_softmax(x, -1, False) res = torch._decomp.decompositions._log_softmax(x, -1, False) self.assertEqual(ref.stride(), res.stride()) @onlyCUDA def test_exponential_non_inf(self, device): inp = torch.empty((4, 400, 256), device=device) with torch._dynamo.utils.preserve_rng_state(): exp_ref = inp.exponential_() exp = torch._refs.exponential(inp) self.assertEqual(exp, exp_ref) self.assertFalse(exp.isinf().any()) @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") @skipIfCrossRef @onlyCUDA def test_amp_batch_norm_backward(self): device = "cuda" grad_out = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device) x = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device) weight = torch.randn((2,), dtype=torch.float32, device=device) rmean = torch.randn((2,), dtype=torch.float32, device=device) rvar = torch.randn((2,), dtype=torch.float32, device=device) mean = torch.randn((0,), dtype=torch.float32, device=device) ref = torch.ops.aten.native_batch_norm_backward( grad_out, x, weight, rmean, rvar, mean, mean, False, 1e-05, [True, True, True], ) res = torch._decomp.decompositions.native_batch_norm_backward( grad_out, x, weight, rmean, rvar, mean, mean, False, 1e-05, [True, True, True], ) for a, b in zip(ref, res): self.assertEqual(a.stride(), b.stride()) self.assertEqual(a.dtype, b.dtype) @onlyNativeDeviceTypes @skipIfCrossRef def test_elu_backward(self, device): size = (2, 4, 3, 3) dtype = torch.float32 grad_out = torch.randn(size, dtype=dtype, device=device) out = torch.randn(size, dtype=dtype, device=device) ref = torch.ops.aten.elu_backward(grad_out, 1.0, 1, 1, True, out) res = torch._decomp.decompositions.elu_backward(grad_out, 1.0, 1, 1, True, out) self.assertEqual(ref, res) @onlyNativeDeviceTypes @skipIfCrossRef def test_threshold_backward_dtype(self, device): grad = torch.randint(10, (4,), device=device) input_tensor = torch.randint(10, (4,), device=device) ref = torch.ops.aten.threshold_backward(grad, input_tensor, 1) res = torch._decomp.decompositions.threshold_backward(grad, input_tensor, 1) self.assertEqual(ref.dtype, res.dtype) @onlyNativeDeviceTypes @skipIfCrossRef def test_weight_norm_interface(self, device): g = torch.randn((3, 10, 10), device=device) v = torch.randn((1, 1, 10), device=device) ref = torch.ops.aten._weight_norm_interface(g, v, 2) res = torch._decomp.decompositions._weight_norm_interface(g, v, 2) self.assertTrue(torch.allclose(ref[0], res[0])) self.assertTrue(torch.allclose(ref[1], res[1])) inp = torch.rand([30, 10], device=device) inp2 = torch.rand([30, 1], device=device) self.assertEqual( torch.ops.aten._weight_norm_interface(inp, inp2), torch._decomp.decompositions._weight_norm_interface(inp, inp2), ) @onlyCPU @skipIfCrossRef @skipOps( "DecompOneOffTests", "test_sdpa", [ xfail( "nn.functional.scaled_dot_product_attention", dtypes=[torch.half], ), ], ) @ops(_sdpa_op_info) def test_sdpa(self, device, dtype, op): # SDPA doesn't support float16, this is aligned with aten/src/ATen/native/transformers/attention.cpp. If we # add support for float16 over there we should update this test as well. query_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype) key_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype) value_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype) masks = [None, torch.ones((1, 1, 100, 100), device=device, dtype=torch.bool)] atol, rtol = dtype_precisions[dtype] for mask in masks: is_causal = mask is None decomposed_res = ( torch._decomp.decompositions.scaled_dot_product_flash_attention_for_cpu( query_layer, key_layer, value_layer, 0.0, is_causal, attn_mask=mask ) ) actual_res = decomposed_res[0] # Output has form (N, H, L, E), but should be continuous on (L, N, H, E) # in order for subsequent view(L * N, H * E) to be valid. # So permute(2, 0, 1, 3) before checking that tensor is contiguous self.assertTrue(actual_res.permute(2, 0, 1, 3).is_contiguous()) eager_res = op( query_layer, key_layer, value_layer, attn_mask=mask, dropout_p=0.0, is_causal=is_causal, ) self.assertTrue(torch.allclose(actual_res, eager_res, atol=atol, rtol=rtol)) @onlyCPU def test_native_layer_norm_cpu_decomp(self, device): def f(x, w, b): return torch.ops.aten.native_layer_norm.default(x, [1, 2, 3], w, b, eps=0.5) x = torch.randn(1, 2, 3, dtype=torch.bfloat16, device="cpu") w = torch.randn(1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu") b = torch.randn(1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu") out_ref = f(x, w, b) from torch._subclasses.fake_tensor import FakeTensorMode with enable_python_dispatcher(), FakeTensorMode(): x = torch.randn(1, 2, 3, dtype=torch.bfloat16, device="cpu") w = torch.randn( 1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu" ) b = torch.randn( 1, 2, 3, dtype=torch.bfloat16, requires_grad=True, device="cpu" ) out = f(x, w, b) for o_ref, o in zip(out_ref, out): self.assertEqual(o_ref.dtype, o.dtype) @onlyCUDA @unittest.skipIf(not SM70OrLater, "triton") def test_rms_norm_decomp_cuda(self, device): @torch.compile def rms_norm_sinh(a, b, c): output = torch.nn.functional.rms_norm(a, b, c) return torch.sinh(output) normalized_shape_arg = (3, 3, 3) input_tensor = torch.randn(3, 3, 3, device=device, requires_grad=True) weight_tensor = torch.randn(3, 3, 3, device=device, requires_grad=True) def forward_pass_fn(): return rms_norm_sinh(input_tensor, normalized_shape_arg, weight_tensor) model_output, generated_codes = torch._inductor.utils.run_fw_bw_and_get_code( forward_pass_fn ) # check RMSNorm was fused with sinh self.assertTrue("triton_per_fused__fused_rms_norm_sinh" in generated_codes[0]) self.assertTrue( "triton_per_fused__fused_rms_norm__fused_rms_norm_backward_cosh_mul" in generated_codes[1] ) instantiate_device_type_tests(DecompOneOffTests, globals())
DecompOneOffTests
python
pypa__pipenv
pipenv/vendor/zipp/compat/overlay.py
{ "start": 500, "end": 805 }
class ____(types.SimpleNamespace): def __hash__(self): return hash(tuple(vars(self))) zipfile = HashableNamespace(**vars(importlib.import_module('zipfile'))) zipfile.Path = zipp.Path zipfile._path = zipp sys.modules[__name__ + '.zipfile'] = zipfile # type: ignore[assignment]
HashableNamespace
python
realpython__materials
python-protocol/animals_v2.py
{ "start": 0, "end": 263 }
class ____: def __init__(self, name): self.name = name def eat(self): print(f"{self.name} is eating.") def drink(self): print(f"{self.name} is drinking.") def make_sound(self): print(f"{self.name} is barking.")
Dog
python
PyCQA__pylint
tests/functional/u/undefined/undefined_variable.py
{ "start": 5096, "end": 5245 }
class ____: myattr = 1 # Different base_scope scope but still applies mylambda2 = lambda: [LambdaClass2.myattr for _ in [1, 2]]
LambdaClass2
python
wandb__wandb
wandb/sdk/internal/job_builder.py
{ "start": 2449, "end": 2726 }
class ____(TypedDict, total=False): _version: str source_type: str source: Union[GitSourceDict, ArtifactSourceDict, ImageSourceDict] input_types: Dict[str, Any] output_types: Dict[str, Any] runtime: Optional[str] services: Dict[str, str]
JobSourceDict
python
apache__airflow
providers/google/tests/unit/google/marketing_platform/operators/test_campaign_manager.py
{ "start": 2958, "end": 7424 }
class ____: def setup_method(self): with create_session() as session: session.query(TI).delete() def teardown_method(self): with create_session() as session: session.query(TI).delete() @mock.patch("airflow.providers.google.marketing_platform.operators.campaign_manager.http") @mock.patch("airflow.providers.google.marketing_platform.operators.campaign_manager.tempfile") @mock.patch( "airflow.providers.google.marketing_platform.operators.campaign_manager.GoogleCampaignManagerHook" ) @mock.patch("airflow.providers.google.marketing_platform.operators.campaign_manager.GCSHook") @mock.patch("airflow.providers.google.marketing_platform.operators.campaign_manager.BaseOperator") def test_execute( self, mock_base_op, gcs_hook_mock, hook_mock, tempfile_mock, http_mock, ): http_mock.MediaIoBaseDownload.return_value.next_chunk.return_value = ( None, True, ) tempfile_mock.NamedTemporaryFile.return_value.__enter__.return_value.name = TEMP_FILE_NAME mock_context = {"task_instance": mock.Mock()} op = GoogleCampaignManagerDownloadReportOperator( profile_id=PROFILE_ID, report_id=REPORT_ID, file_id=FILE_ID, bucket_name=BUCKET_NAME, report_name=REPORT_NAME, api_version=API_VERSION, task_id="test_task", ) op.execute(context=mock_context) hook_mock.assert_called_once_with( gcp_conn_id=GCP_CONN_ID, api_version=API_VERSION, impersonation_chain=None, ) hook_mock.return_value.get_report_file.assert_called_once_with( profile_id=PROFILE_ID, report_id=REPORT_ID, file_id=FILE_ID ) gcs_hook_mock.assert_called_once_with( gcp_conn_id=GCP_CONN_ID, impersonation_chain=None, ) gcs_hook_mock.return_value.upload.assert_called_once_with( bucket_name=BUCKET_NAME, object_name=REPORT_NAME + ".gz", gzip=True, filename=TEMP_FILE_NAME, mime_type="text/csv", ) mock_context["task_instance"].xcom_push.assert_called_once_with( key="report_name", value=REPORT_NAME + ".gz" ) @pytest.mark.parametrize( "test_bucket_name", [BUCKET_NAME, f"gs://{BUCKET_NAME}", "XComArg", "{{ ti.xcom_pull(task_ids='taskflow_op') }}"], ) @mock.patch("airflow.providers.google.marketing_platform.operators.campaign_manager.http") @mock.patch("airflow.providers.google.marketing_platform.operators.campaign_manager.tempfile") @mock.patch( "airflow.providers.google.marketing_platform.operators.campaign_manager.GoogleCampaignManagerHook" ) @mock.patch("airflow.providers.google.marketing_platform.operators.campaign_manager.GCSHook") def test_set_bucket_name( self, gcs_hook_mock, hook_mock, tempfile_mock, http_mock, test_bucket_name, dag_maker, ): http_mock.MediaIoBaseDownload.return_value.next_chunk.return_value = ( None, True, ) tempfile_mock.NamedTemporaryFile.return_value.__enter__.return_value.name = TEMP_FILE_NAME with dag_maker(dag_id="test_set_bucket_name", start_date=DEFAULT_DATE) as dag: if BUCKET_NAME not in test_bucket_name: @dag.task(task_id="taskflow_op") def f(): return BUCKET_NAME taskflow_op = f() GoogleCampaignManagerDownloadReportOperator( profile_id=PROFILE_ID, report_id=REPORT_ID, file_id=FILE_ID, bucket_name=test_bucket_name if test_bucket_name != "XComArg" else taskflow_op, report_name=REPORT_NAME, api_version=API_VERSION, task_id="test_task", ) dr = dag_maker.create_dagrun() for ti in dr.get_task_instances(): ti.run() gcs_hook_mock.return_value.upload.assert_called_once_with( bucket_name=BUCKET_NAME, object_name=REPORT_NAME + ".gz", gzip=True, filename=TEMP_FILE_NAME, mime_type="text/csv", )
TestGoogleCampaignManagerDownloadReportOperator
python
pytorch__pytorch
torch/distributed/_shard/sharding_spec/api.py
{ "start": 1022, "end": 1469 }
class ____(PlacementSpec): """ Associates placement of an entity with a single device. Args: device(:class:`torch.distributed._remote_device`): The device to place the entity on. """ device: torch.distributed._remote_device def __post_init__(self): if not isinstance(self.device, torch.distributed._remote_device): self.device = torch.distributed._remote_device(self.device)
DevicePlacementSpec
python
langchain-ai__langchain
libs/core/langchain_core/prompts/few_shot_with_templates.py
{ "start": 378, "end": 7804 }
class ____(StringPromptTemplate): """Prompt template that contains few shot examples.""" examples: list[dict] | None = None """Examples to format into the prompt. Either this or example_selector should be provided.""" example_selector: Any = None """ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided.""" example_prompt: PromptTemplate """PromptTemplate used to format an individual example.""" suffix: StringPromptTemplate """A PromptTemplate to put after the examples.""" example_separator: str = "\n\n" """String separator used to join the prefix, the examples, and suffix.""" prefix: StringPromptTemplate | None = None """A PromptTemplate to put before the examples.""" template_format: PromptTemplateFormat = "f-string" """The format of the prompt template. Options are: 'f-string', 'jinja2', 'mustache'.""" validate_template: bool = False """Whether or not to try validating the template.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the LangChain object. Returns: `["langchain", "prompts", "few_shot_with_templates"]` """ return ["langchain", "prompts", "few_shot_with_templates"] @model_validator(mode="before") @classmethod def check_examples_and_selector(cls, values: dict) -> Any: """Check that one and only one of examples/example_selector are provided.""" examples = values.get("examples") example_selector = values.get("example_selector") if examples and example_selector: msg = "Only one of 'examples' and 'example_selector' should be provided" raise ValueError(msg) if examples is None and example_selector is None: msg = "One of 'examples' and 'example_selector' should be provided" raise ValueError(msg) return values @model_validator(mode="after") def template_is_valid(self) -> Self: """Check that prefix, suffix, and input variables are consistent.""" if self.validate_template: input_variables = self.input_variables expected_input_variables = set(self.suffix.input_variables) expected_input_variables |= set(self.partial_variables) if self.prefix is not None: expected_input_variables |= set(self.prefix.input_variables) missing_vars = expected_input_variables.difference(input_variables) if missing_vars: msg = ( f"Got input_variables={input_variables}, but based on " f"prefix/suffix expected {expected_input_variables}" ) raise ValueError(msg) else: self.input_variables = sorted( set(self.suffix.input_variables) | set(self.prefix.input_variables if self.prefix else []) - set(self.partial_variables) ) return self model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) def _get_examples(self, **kwargs: Any) -> list[dict]: if self.examples is not None: return self.examples if self.example_selector is not None: return self.example_selector.select_examples(kwargs) raise ValueError async def _aget_examples(self, **kwargs: Any) -> list[dict]: if self.examples is not None: return self.examples if self.example_selector is not None: return await self.example_selector.aselect_examples(kwargs) raise ValueError def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: **kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: ```python prompt.format(variable1="foo") ``` """ kwargs = self._merge_partial_and_user_variables(**kwargs) # Get the examples to use. examples = self._get_examples(**kwargs) # Format the examples. example_strings = [ self.example_prompt.format(**example) for example in examples ] # Create the overall prefix. if self.prefix is None: prefix = "" else: prefix_kwargs = { k: v for k, v in kwargs.items() if k in self.prefix.input_variables } for k in prefix_kwargs: kwargs.pop(k) prefix = self.prefix.format(**prefix_kwargs) # Create the overall suffix suffix_kwargs = { k: v for k, v in kwargs.items() if k in self.suffix.input_variables } for k in suffix_kwargs: kwargs.pop(k) suffix = self.suffix.format( **suffix_kwargs, ) pieces = [prefix, *example_strings, suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs) async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with the inputs. Args: **kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. """ kwargs = self._merge_partial_and_user_variables(**kwargs) # Get the examples to use. examples = await self._aget_examples(**kwargs) # Format the examples. example_strings = [ # We can use the sync method here as PromptTemplate doesn't block self.example_prompt.format(**example) for example in examples ] # Create the overall prefix. if self.prefix is None: prefix = "" else: prefix_kwargs = { k: v for k, v in kwargs.items() if k in self.prefix.input_variables } for k in prefix_kwargs: kwargs.pop(k) prefix = await self.prefix.aformat(**prefix_kwargs) # Create the overall suffix suffix_kwargs = { k: v for k, v in kwargs.items() if k in self.suffix.input_variables } for k in suffix_kwargs: kwargs.pop(k) suffix = await self.suffix.aformat( **suffix_kwargs, ) pieces = [prefix, *example_strings, suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs) @property def _prompt_type(self) -> str: """Return the prompt type key.""" return "few_shot_with_templates" def save(self, file_path: Path | str) -> None: """Save the prompt to a file. Args: file_path: The path to save the prompt to. Raises: ValueError: If example_selector is provided. """ if self.example_selector: msg = "Saving an example selector is not currently supported" raise ValueError(msg) return super().save(file_path)
FewShotPromptWithTemplates
python
charliermarsh__ruff
crates/ruff_python_formatter/resources/test/fixtures/ruff/docstring.py
{ "start": 1859, "end": 1942 }
class ____: b""" has leading whitespace""" first_statement = 1
ByteDocstring
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 1252429, "end": 1252677 }
class ____(sgqlc.types.Type, Node, AuditEntry, EnterpriseAuditEntryData, OrganizationAuditEntryData): """Audit log entry for a org.invite_to_business event.""" __schema__ = github_schema __field_names__ = ()
OrgInviteToBusinessAuditEntry
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 1089353, "end": 1094899 }
class ____(sgqlc.types.Type, Node): """A check suite.""" __schema__ = github_schema __field_names__ = ( "app", "branch", "check_runs", "commit", "conclusion", "created_at", "creator", "database_id", "matching_pull_requests", "push", "repository", "resource_path", "status", "updated_at", "url", "workflow_run", ) app = sgqlc.types.Field(App, graphql_name="app") """The GitHub App which created this check suite.""" branch = sgqlc.types.Field("Ref", graphql_name="branch") """The name of the branch for this check suite.""" check_runs = sgqlc.types.Field( CheckRunConnection, graphql_name="checkRuns", args=sgqlc.types.ArgDict( ( ("after", sgqlc.types.Arg(String, graphql_name="after", default=None)), ("before", sgqlc.types.Arg(String, graphql_name="before", default=None)), ("first", sgqlc.types.Arg(Int, graphql_name="first", default=None)), ("last", sgqlc.types.Arg(Int, graphql_name="last", default=None)), ("filter_by", sgqlc.types.Arg(CheckRunFilter, graphql_name="filterBy", default=None)), ) ), ) """The check runs associated with a check suite. Arguments: * `after` (`String`): Returns the elements in the list that come after the specified cursor. * `before` (`String`): Returns the elements in the list that come before the specified cursor. * `first` (`Int`): Returns the first _n_ elements from the list. * `last` (`Int`): Returns the last _n_ elements from the list. * `filter_by` (`CheckRunFilter`): Filters the check runs by this type. """ commit = sgqlc.types.Field(sgqlc.types.non_null("Commit"), graphql_name="commit") """The commit for this check suite""" conclusion = sgqlc.types.Field(CheckConclusionState, graphql_name="conclusion") """The conclusion of this check suite.""" created_at = sgqlc.types.Field(sgqlc.types.non_null(DateTime), graphql_name="createdAt") """Identifies the date and time when the object was created.""" creator = sgqlc.types.Field("User", graphql_name="creator") """The user who triggered the check suite.""" database_id = sgqlc.types.Field(Int, graphql_name="databaseId") """Identifies the primary key from the database.""" matching_pull_requests = sgqlc.types.Field( PullRequestConnection, graphql_name="matchingPullRequests", args=sgqlc.types.ArgDict( ( ( "states", sgqlc.types.Arg(sgqlc.types.list_of(sgqlc.types.non_null(PullRequestState)), graphql_name="states", default=None), ), ("labels", sgqlc.types.Arg(sgqlc.types.list_of(sgqlc.types.non_null(String)), graphql_name="labels", default=None)), ("head_ref_name", sgqlc.types.Arg(String, graphql_name="headRefName", default=None)), ("base_ref_name", sgqlc.types.Arg(String, graphql_name="baseRefName", default=None)), ("order_by", sgqlc.types.Arg(IssueOrder, graphql_name="orderBy", default=None)), ("after", sgqlc.types.Arg(String, graphql_name="after", default=None)), ("before", sgqlc.types.Arg(String, graphql_name="before", default=None)), ("first", sgqlc.types.Arg(Int, graphql_name="first", default=None)), ("last", sgqlc.types.Arg(Int, graphql_name="last", default=None)), ) ), ) """A list of open pull requests matching the check suite. Arguments: * `states` (`[PullRequestState!]`): A list of states to filter the pull requests by. * `labels` (`[String!]`): A list of label names to filter the pull requests by. * `head_ref_name` (`String`): The head ref name to filter the pull requests by. * `base_ref_name` (`String`): The base ref name to filter the pull requests by. * `order_by` (`IssueOrder`): Ordering options for pull requests returned from the connection. * `after` (`String`): Returns the elements in the list that come after the specified cursor. * `before` (`String`): Returns the elements in the list that come before the specified cursor. * `first` (`Int`): Returns the first _n_ elements from the list. * `last` (`Int`): Returns the last _n_ elements from the list. """ push = sgqlc.types.Field("Push", graphql_name="push") """The push that triggered this check suite.""" repository = sgqlc.types.Field(sgqlc.types.non_null("Repository"), graphql_name="repository") """The repository associated with this check suite.""" resource_path = sgqlc.types.Field(sgqlc.types.non_null(URI), graphql_name="resourcePath") """The HTTP path for this check suite""" status = sgqlc.types.Field(sgqlc.types.non_null(CheckStatusState), graphql_name="status") """The status of this check suite.""" updated_at = sgqlc.types.Field(sgqlc.types.non_null(DateTime), graphql_name="updatedAt") """Identifies the date and time when the object was last updated.""" url = sgqlc.types.Field(sgqlc.types.non_null(URI), graphql_name="url") """The HTTP URL for this check suite""" workflow_run = sgqlc.types.Field("WorkflowRun", graphql_name="workflowRun") """The workflow run associated with this check suite."""
CheckSuite
python
readthedocs__readthedocs.org
readthedocs/organizations/forms.py
{ "start": 4246, "end": 5664 }
class ____(OrganizationForm): """ Simple organization creation form. This trims down the number of inputs required to create a new organization. This is used on the initial organization signup, to keep signup terse. :param user: User instance, responsible for ownership of Organization :type user: django.contrib.auth.models.User """ class Meta: model = Organization fields = ["name", "slug", "email"] labels = { "name": _("Organization Name"), "email": _("Billing Email"), } help_texts = { "slug": "Used in URLs for your projects when not using a custom domain. It cannot be changed later.", } url = None def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @staticmethod def _create_default_teams(organization): organization.teams.create(name="Admins", access=ADMIN_ACCESS) organization.teams.create(name="Read Only", access=READ_ONLY_ACCESS) def save(self, commit=True): org = super().save(commit) # If not committing, we can't save M2M fields if not commit: return org # Add default teams OrganizationOwner.objects.create( owner=self.user, organization=org, ) self._create_default_teams(org) return org
OrganizationSignupFormBase
python
allegroai__clearml
clearml/backend_api/services/v2_13/auth.py
{ "start": 6683, "end": 8293 }
class ____(Request): """ Edit a users' auth data properties :param user: User ID :type user: str :param role: The new user's role within the company :type role: str """ _service = "auth" _action = "edit_user" _version = "2.13" _schema = { "definitions": {}, "properties": { "role": { "description": "The new user's role within the company", "enum": ["admin", "superuser", "user", "annotator"], "type": ["string", "null"], }, "user": {"description": "User ID", "type": ["string", "null"]}, }, "type": "object", } def __init__(self, user: Optional[str] = None, role: Optional[str] = None, **kwargs: Any) -> None: super(EditUserRequest, self).__init__(**kwargs) self.user = user self.role = role @schema_property("user") def user(self) -> Optional[str]: return self._property_user @user.setter def user(self, value: Optional[str]) -> None: if value is None: self._property_user = None return self.assert_isinstance(value, "user", six.string_types) self._property_user = value @schema_property("role") def role(self) -> Optional[str]: return self._property_role @role.setter def role(self, value: Optional[str]) -> None: if value is None: self._property_role = None return self.assert_isinstance(value, "role", six.string_types) self._property_role = value
EditUserRequest
python
django__django
tests/apps/apps.py
{ "start": 412, "end": 476 }
class ____(AppConfig): name = "there is no such app"
NoSuchApp
python
dask__dask
dask/tests/test_expr.py
{ "start": 3859, "end": 4524 }
class ____(Expr): def _layer(self) -> dict: return {"foo": DataNode("foo", 42)} def test_prohibit_reuse(): once = FooExpr() ProhibitReuse._ALLOWED_TYPES.append(FooExpr) try: dsk = _ExprSequence(once, ProhibitReuse(once)).optimize().__dask_graph__() assert len(dsk) == 2 first = dsk.pop("foo")() key, val = dsk.popitem() assert key.startswith("foo") and key != "foo" # We don't want to chain anything but actually _hide_ the task assert not val.dependencies # Task is wrapped assert val() is first finally: ProhibitReuse._ALLOWED_TYPES.remove(FooExpr)
FooExpr
python
huggingface__transformers
src/transformers/models/ministral/modeling_ministral.py
{ "start": 11622, "end": 12167 }
class ____(PreTrainedModel): config: MinistralConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MinistralDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": MinistralDecoderLayer, "attentions": MinistralAttention, }
MinistralPreTrainedModel
python
huggingface__transformers
src/transformers/convert_slow_tokenizer.py
{ "start": 14066, "end": 15178 }
class ____(Converter): def converted(self) -> Tokenizer: tokenizer_info_str = "#version:" token_suffix = "</w>" vocab = self.original_tokenizer.encoder merges = list(self.original_tokenizer.bpe_ranks.keys()) if tokenizer_info_str in merges[0][0]: merges = merges[1:] tokenizer = Tokenizer( BPE( vocab, merges, dropout=None, unk_token=self.original_tokenizer.unk_token, end_of_word_suffix=token_suffix, ) ) tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False, strip_accents=False) tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix) tokenizer.post_processor = processors.BertProcessing( sep=(self.original_tokenizer.sep_token, self.original_tokenizer.sep_token_id), cls=(self.original_tokenizer.cls_token, self.original_tokenizer.cls_token_id), ) return tokenizer
HerbertConverter
python
dagster-io__dagster
examples/docs_projects/project_mini/src/project_mini/defs/resource_caching/expensive_resource_cache.py
{ "start": 121, "end": 1045 }
class ____(dg.ConfigurableResource): @lru_cache(maxsize=128) def addition(self, num1: int, num2: int) -> int: time.sleep(5) return num1 + num2 # highlight-end @dg.asset def expensive_asset_cache( expensive_resource_cache: ExpensiveResourceCache, ) -> dg.MaterializeResult: value = expensive_resource_cache.addition(1, 2) value = expensive_resource_cache.addition(1, 2) value = expensive_resource_cache.addition(1, 2) return dg.MaterializeResult(metadata={"addition": value}) @dg.asset( deps=[expensive_asset_cache], ) def another_expensive_asset_cache( expensive_resource_cache: ExpensiveResourceCache, ) -> dg.MaterializeResult: value = expensive_resource_cache.addition(1, 2) value = expensive_resource_cache.addition(1, 2) value = expensive_resource_cache.addition(1, 2) return dg.MaterializeResult(metadata={"addition": value})
ExpensiveResourceCache
python
pennersr__django-allauth
allauth/account/adapter.py
{ "start": 1703, "end": 36568 }
class ____(BaseAdapter): """The adapter class allows you to override various functionality of the ``allauth.account`` app. To do so, point ``settings.ACCOUNT_ADAPTER`` to your own class that derives from ``DefaultAccountAdapter`` and override the behavior by altering the implementation of the methods according to your own needs. """ error_messages = { "account_inactive": _("This account is currently inactive."), "cannot_remove_primary_email": _( "You cannot remove your primary email address." ), "duplicate_email": _( "This email address is already associated with this account." ), "email_password_mismatch": _( "The email address and/or password you specified are not correct." ), "phone_password_mismatch": _( "The phone number and/or password you specified are not correct." ), "email_taken": _("A user is already registered with this email address."), "enter_current_password": _("Please type your current password."), "incorrect_code": _("Incorrect code."), "incorrect_password": _("Incorrect password."), "invalid_or_expired_key": _("Invalid or expired key."), "invalid_login": _("Invalid login."), "invalid_password_reset": _("The password reset token was invalid."), "max_email_addresses": _("You cannot add more than %d email addresses."), "phone_taken": _("A user is already registered with this phone number."), "too_many_login_attempts": _( "Too many failed login attempts. Try again later." ), "unknown_email": _("The email address is not assigned to any user account."), "unknown_phone": _("The phone number is not assigned to any user account."), "unverified_primary_email": _("Your primary email address must be verified."), "username_blacklisted": _( "Username can not be used. Please use other username." ), "username_password_mismatch": _( "The username and/or password you specified are not correct." ), "username_taken": AbstractUser._meta.get_field("username").error_messages[ "unique" ], "select_only_one": _("Please select only one."), "same_as_current": _("The new value must be different from the current one."), "rate_limited": _("Be patient, you are sending too many requests."), } def stash_verified_email(self, request, email): request.session["account_verified_email"] = email def unstash_verified_email(self, request): ret = request.session.get("account_verified_email") request.session["account_verified_email"] = None return ret def is_email_verified(self, request, email): """ Checks whether or not the email address is already verified beyond allauth scope, for example, by having accepted an invitation before signing up. """ ret = False verified_email = request.session.get("account_verified_email") if verified_email: ret = verified_email.lower() == email.lower() return ret def can_delete_email(self, email_address) -> bool: """ Returns whether or not the given email address can be deleted. """ from allauth.account.models import EmailAddress if not email_address.pk: return True has_other = ( EmailAddress.objects.filter(user_id=email_address.user_id) .exclude(pk=email_address.pk) .exists() ) login_by_email = app_settings.LOGIN_METHODS == {app_settings.LoginMethod.EMAIL} if email_address.primary: if has_other: # Don't allow, let the user mark one of the others as primary # first. return False elif login_by_email: # Last email & login is by email, prevent dangling account. return False return True elif has_other: # Account won't be dangling. return True elif login_by_email: # This is the last email. return False else: return True def format_email_subject(self, subject) -> str: """ Formats the given email subject. """ prefix = app_settings.EMAIL_SUBJECT_PREFIX if prefix is None: site = get_current_site(context.request) prefix = "[{name}] ".format(name=site.name) return prefix + force_str(subject) def get_from_email(self): """ This is a hook that can be overridden to programmatically set the 'from' email address for sending emails """ return settings.DEFAULT_FROM_EMAIL def render_mail(self, template_prefix, email, context, headers=None): """ Renders an email to `email`. `template_prefix` identifies the email that is to be sent, e.g. "account/email/email_confirmation" """ to = [email] if isinstance(email, str) else email subject = render_to_string("{0}_subject.txt".format(template_prefix), context) # remove superfluous line breaks subject = " ".join(subject.splitlines()).strip() subject = self.format_email_subject(subject) from_email = self.get_from_email() bodies = {} html_ext = app_settings.TEMPLATE_EXTENSION for ext in [html_ext, "txt"]: try: template_name = "{0}_message.{1}".format(template_prefix, ext) bodies[ext] = render_to_string( template_name, context, globals()["context"].request, ).strip() except TemplateDoesNotExist: if ext == "txt" and not bodies: # We need at least one body raise if "txt" in bodies: msg = EmailMultiAlternatives( subject, bodies["txt"], from_email, to, headers=headers ) if html_ext in bodies: msg.attach_alternative(bodies[html_ext], "text/html") else: msg = EmailMessage( subject, bodies[html_ext], from_email, to, headers=headers ) msg.content_subtype = "html" # Main content is now text/html return msg def send_mail(self, template_prefix: str, email: str, context: dict) -> None: request = globals()["context"].request ctx = { "request": request, "email": email, "current_site": get_current_site(request), } ctx.update(context) msg = self.render_mail(template_prefix, email, ctx) msg.send() def get_signup_redirect_url(self, request): """ Returns the default URL to redirect to directly after signing up. """ return resolve_url(app_settings.SIGNUP_REDIRECT_URL) def get_login_redirect_url(self, request): """ Returns the default URL to redirect to after logging in. Note that URLs passed explicitly (e.g. by passing along a `next` GET parameter) take precedence over the value returned here. """ assert request.user.is_authenticated # nosec url = getattr(settings, "LOGIN_REDIRECT_URLNAME", None) if url: warnings.warn( "LOGIN_REDIRECT_URLNAME is deprecated, simply" " use LOGIN_REDIRECT_URL with a URL name", DeprecationWarning, ) else: url = settings.LOGIN_REDIRECT_URL return resolve_url(url) def get_logout_redirect_url(self, request): """ Returns the URL to redirect to after the user logs out. Note that this method is also invoked if you attempt to log out while no users is logged in. Therefore, request.user is not guaranteed to be an authenticated user. """ return resolve_url(app_settings.LOGOUT_REDIRECT_URL) def get_email_verification_redirect_url(self, email_address): """ The URL to return to after email verification. """ get_url = getattr(self, "get_email_confirmation_redirect_url", None) if get_url: # Deprecated. return get_url(self.request) if self.request.user.is_authenticated: if app_settings.EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL: return app_settings.EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL else: return self.get_login_redirect_url(self.request) else: return app_settings.EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL def get_password_change_redirect_url(self, request): """ The URL to redirect to after a successful password change/set. NOTE: Not called during the password reset flow. """ return reverse("account_change_password") def is_open_for_signup(self, request): """ Checks whether or not the site is open for signups. Next to simply returning True/False you can also intervene the regular flow by raising an ImmediateHttpResponse """ return True def new_user(self, request): """ Instantiates a new User instance. """ user = get_user_model()() return user def populate_username(self, request, user): """ Fills in a valid username, if required and missing. If the username is already present it is assumed to be valid (unique). """ from .utils import user_email, user_field, user_username first_name = user_field(user, "first_name") last_name = user_field(user, "last_name") email = user_email(user) username = user_username(user) if app_settings.USER_MODEL_USERNAME_FIELD: user_username( user, username or self.generate_unique_username( [first_name, last_name, email, username, "user"] ), ) def generate_unique_username(self, txts, regex=None): return generate_unique_username(txts, regex) def save_user(self, request, user, form, commit=True): """ Saves a new `User` instance using information provided in the signup form. """ from .utils import user_email, user_field, user_username data = form.cleaned_data first_name = data.get("first_name") last_name = data.get("last_name") email = data.get("email") username = data.get("username") user_email(user, email) user_username(user, username) if first_name: user_field(user, "first_name", first_name) if last_name: user_field(user, "last_name", last_name) if "password1" in data: password = data["password1"] elif "password" in data: password = data["password"] else: password = None if password: user.set_password(password) else: user.set_unusable_password() self.populate_username(request, user) if commit: user.save() if getattr(form, "_has_phone_field", False): phone = form.cleaned_data.get("phone") if phone: self.set_phone(user, phone, False) return user def clean_username(self, username, shallow=False): """ Validates the username. You can hook into this if you want to (dynamically) restrict what usernames can be chosen. """ for validator in app_settings.USERNAME_VALIDATORS: validator(username) # TODO: Add regexp support to USERNAME_BLACKLIST username_blacklist_lower = [ ub.lower() for ub in app_settings.USERNAME_BLACKLIST ] if username.lower() in username_blacklist_lower: raise self.validation_error("username_blacklisted") # Skipping database lookups when shallow is True, needed for unique # username generation. if not shallow: from .utils import filter_users_by_username if filter_users_by_username(username).exists(): raise self.validation_error("username_taken") return username def clean_email(self, email: str) -> str: """ Validates an email value. You can hook into this if you want to (dynamically) restrict what email addresses can be chosen. """ return email def clean_password(self, password, user=None): """ Validates a password. You can hook into this if you want to restric the allowed password choices. """ min_length = app_settings.PASSWORD_MIN_LENGTH if min_length: MinimumLengthValidator(min_length).validate(password) validate_password(password, user) return password def clean_phone(self, phone: str) -> str: """ Validates a phone number. You can hook into this if you want to (dynamically) restrict what phone numbers can be chosen. """ return phone def validate_unique_email(self, email): return email def add_message( self, request, level, message_template=None, message_context=None, extra_tags="", message=None, ): """ Wrapper of `django.contrib.messages.add_message`, that reads the message text from a template. """ if is_headless_request(request): return if "django.contrib.messages" in settings.INSTALLED_APPS: if message: messages.add_message(request, level, message, extra_tags=extra_tags) return try: if message_context is None: message_context = {} escaped_message = render_to_string( message_template, message_context, context.request, ).strip() if escaped_message: message = html.unescape(escaped_message) messages.add_message(request, level, message, extra_tags=extra_tags) except TemplateDoesNotExist: pass def ajax_response(self, request, response, redirect_to=None, form=None, data=None): resp = {} status = response.status_code if redirect_to: status = HTTPStatus.OK resp["location"] = redirect_to if form: if request.method == "POST": if form.is_valid(): status = HTTPStatus.OK else: status = HTTPStatus.BAD_REQUEST else: status = HTTPStatus.OK resp["form"] = self.ajax_response_form(form) if hasattr(response, "render"): response.render() resp["html"] = response.content.decode("utf8") if data is not None: resp["data"] = data return HttpResponse( json.dumps(resp), status=status, content_type="application/json" ) def ajax_response_form(self, form): form_spec = { "fields": {}, "field_order": [], "errors": form.non_field_errors(), } for field in form: field_spec = { "label": force_str(field.label), "value": field.value(), "help_text": force_str(field.help_text), "errors": [force_str(e) for e in field.errors], "widget": { "attrs": { k: force_str(v) for k, v in field.field.widget.attrs.items() } }, } form_spec["fields"][field.html_name] = field_spec form_spec["field_order"].append(field.html_name) return form_spec def pre_login( self, request, user, *, email_verification, signal_kwargs, email, signup, redirect_url, ): if not user.is_active: return self.respond_user_inactive(request, user) def post_login( self, request, user, *, email_verification, signal_kwargs, email, signup, redirect_url, ): from .utils import get_login_redirect_url if is_headless_request(request): from allauth.headless.base.response import AuthenticationResponse response = AuthenticationResponse(request) else: response = HttpResponseRedirect( get_login_redirect_url(request, redirect_url, signup=signup) ) if signal_kwargs is None: signal_kwargs = {} signals.user_logged_in.send( sender=user.__class__, request=request, response=response, user=user, **signal_kwargs, ) self.add_message( request, messages.SUCCESS, "account/messages/logged_in.txt", {"user": user}, ) return response def login(self, request, user): # HACK: This is not nice. The proper Django way is to use an # authentication backend if not hasattr(user, "backend"): from .auth_backends import AuthenticationBackend backends = get_backends() backend = None for b in backends: if isinstance(b, AuthenticationBackend): # prefer our own backend backend = b break elif not backend and hasattr(b, "get_user"): # Pick the first valid one backend = b backend_path = ".".join([backend.__module__, backend.__class__.__name__]) user.backend = backend_path django_login(request, user) def logout(self, request): django_logout(request) def confirm_email(self, request, email_address): """ Marks the email address as confirmed on the db """ from allauth.account.internal.flows import email_verification return email_verification.verify_email(request, email_address) def set_password(self, user, password) -> None: """ Sets the password for the user. """ user.set_password(password) user.save() def get_user_search_fields(self): ret = [] User = get_user_model() candidates = [ app_settings.USER_MODEL_USERNAME_FIELD, "first_name", "last_name", "email", ] for candidate in candidates: try: User._meta.get_field(candidate) ret.append(candidate) except FieldDoesNotExist: pass return ret def is_safe_url(self, url): from django.utils.http import url_has_allowed_host_and_scheme # get_host already validates the given host, so no need to check it again allowed_hosts = {context.request.get_host()} | set(settings.ALLOWED_HOSTS) # Include hosts derived from CSRF_TRUSTED_ORIGINS trusted_hosts = { urlparse(origin).netloc for origin in settings.CSRF_TRUSTED_ORIGINS } allowed_hosts.update(trusted_hosts) # ALLOWED_HOSTS supports wildcards, and subdomains using a '.' prefix. # But, `url_has_allowed_host_and_scheme()` doesn't support that. So, # let's check the domain using the ALLOWED_HOSTS logic, and if valid, # add it as allowed so that we can then call # `url_has_allowed_host_and_scheme()`. parsed_host = urlparse(url).netloc if parsed_host: if validate_host(parsed_host, allowed_hosts): allowed_hosts.add(parsed_host) return url_has_allowed_host_and_scheme(url, allowed_hosts=allowed_hosts) def send_password_reset_mail(self, user, email, context): """ Method intended to be overridden in case you need to customize the logic used to determine whether a user is permitted to request a password reset. For example, if you are enforcing something like "social only" authentication in your app, you may want to intervene here by checking `user.has_usable_password` """ return self.send_mail("account/email/password_reset_key", email, context) def get_reset_password_from_key_url(self, key): """ Method intended to be overridden in case the password reset email needs to be adjusted. """ from allauth.account.internal import flows return flows.password_reset.get_reset_password_from_key_url(self.request, key) def get_email_confirmation_url(self, request, emailconfirmation): """Constructs the email confirmation (activation) url. Note that if you have architected your system such that email confirmations are sent outside of the request context `request` can be `None` here. """ from allauth.account.internal import flows return flows.email_verification.get_email_verification_url( request, emailconfirmation ) def should_send_confirmation_mail(self, request, email_address, signup) -> bool: return True def send_account_already_exists_mail(self, email: str) -> None: from allauth.account.internal import flows signup_url = flows.signup.get_signup_url(context.request) password_reset_url = flows.password_reset.get_reset_password_url( context.request ) ctx = { "signup_url": signup_url, "password_reset_url": password_reset_url, } self.send_mail("account/email/account_already_exists", email, ctx) def send_confirmation_mail(self, request, emailconfirmation, signup): ctx = { "user": emailconfirmation.email_address.user, } if app_settings.EMAIL_VERIFICATION_BY_CODE_ENABLED: ctx.update({"code": emailconfirmation.key}) else: ctx.update( { "key": emailconfirmation.key, "activate_url": self.get_email_confirmation_url( request, emailconfirmation ), } ) if signup: email_template = "account/email/email_confirmation_signup" else: email_template = "account/email/email_confirmation" self.send_mail(email_template, emailconfirmation.email_address.email, ctx) def respond_user_inactive(self, request, user): return headed_redirect_response("account_inactive") def respond_email_verification_sent(self, request, user): return headed_redirect_response("account_email_verification_sent") def _get_login_attempts_cache_key(self, request, **credentials): site = get_current_site(request) login = credentials.get("email", credentials.get("username", "")).lower() return "{site}:{login}".format(site=site.domain, login=login) def _delete_login_attempts_cached_email(self, request, **credentials): cache_key = self._get_login_attempts_cache_key(request, **credentials) # Here, we wipe the login failed rate limit, completely. This is safe, # as we only do this on a succesful password reset, which is rate limited # on itself (e.g. sending of email etc.). ratelimit.clear( request, config=app_settings.RATE_LIMITS, action="login_failed", key=cache_key, ) def _rollback_login_failed_rl_usage(self) -> None: usage = getattr(self, "_login_failed_rl_usage", None) if usage: usage.rollback() def pre_authenticate(self, request, **credentials): cache_key = self._get_login_attempts_cache_key(request, **credentials) self._login_failed_rl_usage = ratelimit.consume( request, config=app_settings.RATE_LIMITS, action="login_failed", key=cache_key, ) if not self._login_failed_rl_usage: raise self.validation_error("too_many_login_attempts") def authenticate(self, request, **credentials): """Only authenticates, does not actually login. See `login`""" from allauth.account.auth_backends import AuthenticationBackend self.pre_authenticate(request, **credentials) AuthenticationBackend.unstash_authenticated_user() user = authenticate(request, **credentials) alt_user = AuthenticationBackend.unstash_authenticated_user() user = user or alt_user if user: # On a succesful login, we cannot just wipe the login failed rate # limit. That consists of 2 parts, a per IP limit, and, a per # key(email) limit. Wiping it completely would allow an attacker to # insert periodic successful logins during a brute force # process. So instead, we are rolling back our consumption. self._rollback_login_failed_rl_usage() else: self.authentication_failed(request, **credentials) return user def authentication_failed(self, request, **credentials): pass def reauthenticate(self, user, password): from allauth.account.models import EmailAddress from allauth.account.utils import user_username credentials = {"password": password} username = user_username(user) if username: credentials["username"] = username email = EmailAddress.objects.get_primary_email(user) if email: credentials["email"] = email if app_settings.LoginMethod.PHONE in app_settings.LOGIN_METHODS: phone_verified = self.get_phone(user) if phone_verified: credentials["phone"] = phone_verified[0] reauth_user = self.authenticate(context.request, **credentials) return reauth_user is not None and reauth_user.pk == user.pk def is_ajax(self, request): return any( [ request.META.get("HTTP_X_REQUESTED_WITH") == "XMLHttpRequest", request.content_type == "application/json", request.META.get("HTTP_ACCEPT") == "application/json", ] ) def get_client_ip(self, request) -> str: x_forwarded_for = request.META.get("HTTP_X_FORWARDED_FOR") if x_forwarded_for: ip_value = x_forwarded_for.split(",")[0] else: ip_value = request.META["REMOTE_ADDR"] # Try to parse the value as an IP address to make sure it's a valid one. try: ip_addr = ipaddress.ip_address(ip_value) except ValueError: raise PermissionDenied(f"Invalid IP address: {ip_value!r}") else: return str(ip_addr) def get_http_user_agent(self, request: HttpRequest) -> str: return request.META.get("HTTP_USER_AGENT", "Unspecified") def generate_emailconfirmation_key(self, email): key = get_random_string(64).lower() return key def get_login_stages(self): ret = [] ret.append("allauth.account.stages.LoginByCodeStage") ret.append("allauth.account.stages.PhoneVerificationStage") ret.append("allauth.account.stages.EmailVerificationStage") if allauth_app_settings.MFA_ENABLED: from allauth.mfa import app_settings as mfa_settings ret.append("allauth.mfa.stages.AuthenticateStage") if mfa_settings._TRUST_STAGE_ENABLED: ret.append("allauth.mfa.stages.TrustStage") if mfa_settings.PASSKEY_SIGNUP_ENABLED: ret.append("allauth.mfa.webauthn.stages.PasskeySignupStage") return ret def get_reauthentication_methods(self, user): """The order of the methods returned matters. The first method is the default when using the `@reauthentication_required` decorator. """ from allauth.account.internal.flows.reauthentication import ( get_reauthentication_flows, ) flow_by_id = {f["id"]: f for f in get_reauthentication_flows(user)} ret = [] if "reauthenticate" in flow_by_id: entry = { "id": "reauthenticate", "description": _("Use your password"), "url": reverse("account_reauthenticate"), } ret.append(entry) if "mfa_reauthenticate" in flow_by_id: types = flow_by_id["mfa_reauthenticate"]["types"] if "recovery_codes" in types or "totp" in types: entry = { "id": "mfa_reauthenticate", "description": _("Use authenticator app or code"), "url": reverse("mfa_reauthenticate"), } ret.append(entry) if "webauthn" in types: entry = { "id": "mfa_reauthenticate:webauthn", "description": _("Use a security key"), "url": reverse("mfa_reauthenticate_webauthn"), } ret.append(entry) return ret def send_notification_mail(self, template_prefix, user, context=None, email=None): from allauth.account.models import EmailAddress if not app_settings.EMAIL_NOTIFICATIONS: return if not email: email = EmailAddress.objects.get_primary_email(user) if not email: return ctx = { "timestamp": timezone.now(), "ip": self.get_client_ip(self.request), "user_agent": self.get_http_user_agent(self.request)[ :HTTP_USER_AGENT_MAX_LENGTH ], } if context: ctx.update(context) self.send_mail(template_prefix, email, ctx) def generate_login_code(self) -> str: """ Generates a new login code. """ return generate_user_code() def generate_password_reset_code(self) -> str: """ Generates a new password reset code. """ return generate_user_code(length=8) def generate_email_verification_code(self) -> str: """ Generates a new email verification code. """ return generate_user_code() def generate_phone_verification_code(self, *, user, phone: str) -> str: """ Generates a new phone verification code. """ return generate_user_code() def _generate_phone_verification_code_compat(self, *, user, phone: str) -> str: sig = inspect.signature(self.generate_phone_verification_code) if len(sig.parameters) == 0: warnings.warn( "generate_phone_verification_code(self) is deprecated, use generate_phone_verification_code(self, *, user, phone)", DeprecationWarning, ) return self.generate_phone_verification_code() # type: ignore[call-arg] return self.generate_phone_verification_code(user=user, phone=phone) def is_login_by_code_required(self, login) -> bool: """ Returns whether or not login-by-code is required for the given login. """ from allauth.account import authentication method = None records = authentication.get_authentication_records(self.request) if records: method = records[-1]["method"] if method == "code": return False value = app_settings.LOGIN_BY_CODE_REQUIRED if isinstance(value, bool): return value if not value: return False return method is None or method in value def phone_form_field(self, **kwargs): """ Returns a form field used to input phone numbers. """ from allauth.account.fields import PhoneField return PhoneField(**kwargs) def send_unknown_account_sms(self, phone: str, **kwargs) -> None: """ In case enumeration prevention is enabled, and, a verification code is requested for an unlisted phone number, this method is invoked to send a text explaining that no account is on file. """ pass def send_account_already_exists_sms(self, phone: str) -> None: pass def send_verification_code_sms(self, user, phone: str, code: str, **kwargs): """ Sends a verification code. """ raise NotImplementedError @property def _has_phone_impl(self) -> bool: """ Checks whether the phone number adapter is fully implemented. """ methods = ( "send_verification_code_sms", "set_phone", "get_phone", "set_phone_verified", "get_user_by_phone", ) return all( getattr(self.__class__, method) != getattr(DefaultAccountAdapter, method) for method in methods ) def set_phone(self, user, phone: str, verified: bool): """ Sets the phone number (and verified status) for the given user. """ raise NotImplementedError def get_phone(self, user) -> typing.Optional[typing.Tuple[str, bool]]: """ Returns the phone number stored for the given user. A tuple of the phone number itself, and whether or not the phone number was verified is returned. """ raise NotImplementedError def set_phone_verified(self, user, phone: str): """ Marks the specified phone number for the given user as verified. Note that the user is already expected to have the phone number attached to the account. """ raise NotImplementedError def get_user_by_phone(self, phone: str): """ Looks up a user given the specified phone number. Returns ``None`` if no user was found. """ raise NotImplementedError def get_adapter(request=None) -> DefaultAccountAdapter: return import_attribute(app_settings.ADAPTER)(request)
DefaultAccountAdapter
python
python-pillow__Pillow
src/PIL/TiffImagePlugin.py
{ "start": 74172, "end": 85002 }
class ____(io.BytesIO): fieldSizes = [ 0, # None 1, # byte 1, # ascii 2, # short 4, # long 8, # rational 1, # sbyte 1, # undefined 2, # sshort 4, # slong 8, # srational 4, # float 8, # double 4, # ifd 2, # unicode 4, # complex 8, # long8 ] Tags = { 273, # StripOffsets 288, # FreeOffsets 324, # TileOffsets 519, # JPEGQTables 520, # JPEGDCTables 521, # JPEGACTables } def __init__(self, fn: StrOrBytesPath | IO[bytes], new: bool = False) -> None: self.f: IO[bytes] if is_path(fn): self.name = fn self.close_fp = True try: self.f = open(fn, "w+b" if new else "r+b") except OSError: self.f = open(fn, "w+b") else: self.f = cast(IO[bytes], fn) self.close_fp = False self.beginning = self.f.tell() self.setup() def setup(self) -> None: # Reset everything. self.f.seek(self.beginning, os.SEEK_SET) self.whereToWriteNewIFDOffset: int | None = None self.offsetOfNewPage = 0 self.IIMM = iimm = self.f.read(4) self._bigtiff = b"\x2b" in iimm if not iimm: # empty file - first page self.isFirst = True return self.isFirst = False if iimm not in PREFIXES: msg = "Invalid TIFF file header" raise RuntimeError(msg) self.setEndian("<" if iimm.startswith(II) else ">") if self._bigtiff: self.f.seek(4, os.SEEK_CUR) self.skipIFDs() self.goToEnd() def finalize(self) -> None: if self.isFirst: return # fix offsets self.f.seek(self.offsetOfNewPage) iimm = self.f.read(4) if not iimm: # Make it easy to finish a frame without committing to a new one. return if iimm != self.IIMM: msg = "IIMM of new page doesn't match IIMM of first page" raise RuntimeError(msg) if self._bigtiff: self.f.seek(4, os.SEEK_CUR) ifd_offset = self._read(8 if self._bigtiff else 4) ifd_offset += self.offsetOfNewPage assert self.whereToWriteNewIFDOffset is not None self.f.seek(self.whereToWriteNewIFDOffset) self._write(ifd_offset, 8 if self._bigtiff else 4) self.f.seek(ifd_offset) self.fixIFD() def newFrame(self) -> None: # Call this to finish a frame. self.finalize() self.setup() def __enter__(self) -> AppendingTiffWriter: return self def __exit__(self, *args: object) -> None: if self.close_fp: self.close() def tell(self) -> int: return self.f.tell() - self.offsetOfNewPage def seek(self, offset: int, whence: int = io.SEEK_SET) -> int: """ :param offset: Distance to seek. :param whence: Whether the distance is relative to the start, end or current position. :returns: The resulting position, relative to the start. """ if whence == os.SEEK_SET: offset += self.offsetOfNewPage self.f.seek(offset, whence) return self.tell() def goToEnd(self) -> None: self.f.seek(0, os.SEEK_END) pos = self.f.tell() # pad to 16 byte boundary pad_bytes = 16 - pos % 16 if 0 < pad_bytes < 16: self.f.write(bytes(pad_bytes)) self.offsetOfNewPage = self.f.tell() def setEndian(self, endian: str) -> None: self.endian = endian self.longFmt = f"{self.endian}L" self.shortFmt = f"{self.endian}H" self.tagFormat = f"{self.endian}HH" + ("Q" if self._bigtiff else "L") def skipIFDs(self) -> None: while True: ifd_offset = self._read(8 if self._bigtiff else 4) if ifd_offset == 0: self.whereToWriteNewIFDOffset = self.f.tell() - ( 8 if self._bigtiff else 4 ) break self.f.seek(ifd_offset) num_tags = self._read(8 if self._bigtiff else 2) self.f.seek(num_tags * (20 if self._bigtiff else 12), os.SEEK_CUR) def write(self, data: Buffer, /) -> int: return self.f.write(data) def _fmt(self, field_size: int) -> str: try: return {2: "H", 4: "L", 8: "Q"}[field_size] except KeyError: msg = "offset is not supported" raise RuntimeError(msg) def _read(self, field_size: int) -> int: (value,) = struct.unpack( self.endian + self._fmt(field_size), self.f.read(field_size) ) return value def readShort(self) -> int: return self._read(2) def readLong(self) -> int: return self._read(4) @staticmethod def _verify_bytes_written(bytes_written: int | None, expected: int) -> None: if bytes_written is not None and bytes_written != expected: msg = f"wrote only {bytes_written} bytes but wanted {expected}" raise RuntimeError(msg) def _rewriteLast( self, value: int, field_size: int, new_field_size: int = 0 ) -> None: self.f.seek(-field_size, os.SEEK_CUR) if not new_field_size: new_field_size = field_size bytes_written = self.f.write( struct.pack(self.endian + self._fmt(new_field_size), value) ) self._verify_bytes_written(bytes_written, new_field_size) def rewriteLastShortToLong(self, value: int) -> None: self._rewriteLast(value, 2, 4) def rewriteLastShort(self, value: int) -> None: return self._rewriteLast(value, 2) def rewriteLastLong(self, value: int) -> None: return self._rewriteLast(value, 4) def _write(self, value: int, field_size: int) -> None: bytes_written = self.f.write( struct.pack(self.endian + self._fmt(field_size), value) ) self._verify_bytes_written(bytes_written, field_size) def writeShort(self, value: int) -> None: self._write(value, 2) def writeLong(self, value: int) -> None: self._write(value, 4) def close(self) -> None: self.finalize() if self.close_fp: self.f.close() def fixIFD(self) -> None: num_tags = self._read(8 if self._bigtiff else 2) for i in range(num_tags): tag, field_type, count = struct.unpack( self.tagFormat, self.f.read(12 if self._bigtiff else 8) ) field_size = self.fieldSizes[field_type] total_size = field_size * count fmt_size = 8 if self._bigtiff else 4 is_local = total_size <= fmt_size if not is_local: offset = self._read(fmt_size) + self.offsetOfNewPage self._rewriteLast(offset, fmt_size) if tag in self.Tags: cur_pos = self.f.tell() logger.debug( "fixIFD: %s (%d) - type: %s (%d) - type size: %d - count: %d", TiffTags.lookup(tag).name, tag, TYPES.get(field_type, "unknown"), field_type, field_size, count, ) if is_local: self._fixOffsets(count, field_size) self.f.seek(cur_pos + fmt_size) else: self.f.seek(offset) self._fixOffsets(count, field_size) self.f.seek(cur_pos) elif is_local: # skip the locally stored value that is not an offset self.f.seek(fmt_size, os.SEEK_CUR) def _fixOffsets(self, count: int, field_size: int) -> None: for i in range(count): offset = self._read(field_size) offset += self.offsetOfNewPage new_field_size = 0 if self._bigtiff and field_size in (2, 4) and offset >= 2**32: # offset is now too large - we must convert long to long8 new_field_size = 8 elif field_size == 2 and offset >= 2**16: # offset is now too large - we must convert short to long new_field_size = 4 if new_field_size: if count != 1: msg = "not implemented" raise RuntimeError(msg) # XXX TODO # simple case - the offset is just one and therefore it is # local (not referenced with another offset) self._rewriteLast(offset, field_size, new_field_size) # Move back past the new offset, past 'count', and before 'field_type' rewind = -new_field_size - 4 - 2 self.f.seek(rewind, os.SEEK_CUR) self.writeShort(new_field_size) # rewrite the type self.f.seek(2 - rewind, os.SEEK_CUR) else: self._rewriteLast(offset, field_size) def fixOffsets( self, count: int, isShort: bool = False, isLong: bool = False ) -> None: if isShort: field_size = 2 elif isLong: field_size = 4 else: field_size = 0 return self._fixOffsets(count, field_size) def _save_all(im: Image.Image, fp: IO[bytes], filename: str | bytes) -> None: append_images = list(im.encoderinfo.get("append_images", [])) if not hasattr(im, "n_frames") and not append_images: return _save(im, fp, filename) cur_idx = im.tell() try: with AppendingTiffWriter(fp) as tf: for ims in [im] + append_images: encoderinfo = ims._attach_default_encoderinfo(im) if not hasattr(ims, "encoderconfig"): ims.encoderconfig = () nfr = getattr(ims, "n_frames", 1) for idx in range(nfr): ims.seek(idx) ims.load() _save(ims, tf, filename) tf.newFrame() ims.encoderinfo = encoderinfo finally: im.seek(cur_idx) # # -------------------------------------------------------------------- # Register Image.register_open(TiffImageFile.format, TiffImageFile, _accept) Image.register_save(TiffImageFile.format, _save) Image.register_save_all(TiffImageFile.format, _save_all) Image.register_extensions(TiffImageFile.format, [".tif", ".tiff"]) Image.register_mime(TiffImageFile.format, "image/tiff")
AppendingTiffWriter
python
apache__airflow
providers/google/tests/unit/google/cloud/hooks/vertex_ai/test_experiment_service.py
{ "start": 6948, "end": 8768 }
class ____: def setup_method(self): with mock.patch( BASE_STRING.format("GoogleBaseHook.__init__"), new=mock_base_gcp_hook_no_default_project_id ): self.hook = ExperimentRunHook(gcp_conn_id=TEST_GCP_CONN_ID) @mock.patch(EXPERIMENT_SERVICE_STRING.format("aiplatform.ExperimentRun")) def test_create_experiment_run(self, mock_experiment_run) -> None: self.hook.create_experiment_run( project_id=TEST_PROJECT_ID, location=TEST_REGION, experiment_name=TEST_EXPERIMENT_NAME, experiment_run_name=TEST_EXPERIMENT_RUN_NAME, experiment_run_tensorboard=TEST_TENSORBOARD, ) mock_experiment_run.create.assert_called_with( project=TEST_PROJECT_ID, location=TEST_REGION, experiment=TEST_EXPERIMENT_NAME, run_name=TEST_EXPERIMENT_RUN_NAME, state=aiplatform.gapic.Execution.State.NEW, tensorboard=TEST_TENSORBOARD, ) @mock.patch(EXPERIMENT_SERVICE_STRING.format("aiplatform.ExperimentRun")) def test_delete_experiment_run(self, mock_experiment_run) -> None: self.hook.delete_experiment_run( project_id=TEST_PROJECT_ID, location=TEST_REGION, experiment_name=TEST_EXPERIMENT_NAME, experiment_run_name=TEST_EXPERIMENT_RUN_NAME, ) mock_experiment_run.assert_called_with( project=TEST_PROJECT_ID, location=TEST_REGION, experiment=TEST_EXPERIMENT_NAME, run_name=TEST_EXPERIMENT_RUN_NAME, ) mock_experiment_run.return_value.delete.assert_called_with( delete_backing_tensorboard_run=TEST_DELETE_BACKING_TENSORBOARD_RUNS )
TestExperimentRunWithoutDefaultProjectIdHook
python
apache__airflow
providers/standard/src/airflow/providers/standard/sensors/external_task.py
{ "start": 2404, "end": 3655 }
class ____(BaseOperatorLink): """ Operator link for ExternalTaskSensor and ExternalTaskMarker. It allows users to access DAG waited with ExternalTaskSensor or cleared by ExternalTaskMarker. """ name = "External DAG" def get_link(self, operator: BaseOperator, *, ti_key: TaskInstanceKey) -> str: if TYPE_CHECKING: assert isinstance(operator, (ExternalTaskMarker, ExternalTaskSensor)) external_dag_id = operator.external_dag_id if not AIRFLOW_V_3_0_PLUS: from airflow.models.renderedtifields import RenderedTaskInstanceFields if template_fields := RenderedTaskInstanceFields.get_templated_fields(ti_key): external_dag_id: str = template_fields.get("external_dag_id", operator.external_dag_id) # type: ignore[no-redef] if AIRFLOW_V_3_0_PLUS: from airflow.utils.helpers import build_airflow_dagrun_url return build_airflow_dagrun_url(dag_id=external_dag_id, run_id=ti_key.run_id) from airflow.utils.helpers import build_airflow_url_with_query # type:ignore[attr-defined] query = {"dag_id": external_dag_id, "run_id": ti_key.run_id} return build_airflow_url_with_query(query)
ExternalDagLink
python
psf__black
tests/data/cases/form_feeds.py
{ "start": 696, "end": 1657 }
class ____: def __init__(self): pass def something(self): pass # pass pass # a = 1 # pass a = 1 a = [ ] # as internal whitespace of a comment is allowed but why "form feed literal in a string is okay " # form feeds at the very end get removed. # output # Warning! This file contains form feeds (ASCII 0x0C, often represented by \f or ^L). # These may be invisible in your editor: ensure you can see them before making changes here. # There's one at the start that'll get stripped # Comment and statement processing is different enough that we'll test variations of both # contexts here # # # # # # # # # # # pass pass pass pass pass pass pass pass pass pass pass # form feed after a dedent def foo(): pass pass # form feeds are prohibited inside blocks, or on a line with nonwhitespace def bar(a=1, b: bool = False): pass
Baz
python
fluentpython__example-code
14-it-generator/sentence_iter.py
{ "start": 525, "end": 1498 }
class ____: def __init__(self, words): self.words = words # <3> self.index = 0 # <4> def __next__(self): try: word = self.words[self.index] # <5> except IndexError: raise StopIteration() # <6> self.index += 1 # <7> return word # <8> def __iter__(self): # <9> return self # END SENTENCE_ITER def main(): import sys import warnings try: filename = sys.argv[1] word_number = int(sys.argv[2]) except (IndexError, ValueError): print('Usage: %s <file-name> <word-number>' % sys.argv[0]) sys.exit(1) with open(filename, 'rt', encoding='utf-8') as text_file: s = Sentence(text_file.read()) for n, word in enumerate(s, 1): if n == word_number: print(word) break else: warnings.warn('last word is #%d, "%s"' % (n, word)) if __name__ == '__main__': main()
SentenceIterator
python
pydata__xarray
xarray/core/types.py
{ "start": 11708, "end": 11905 }
class ____(Protocol): def acquire(self, *args, **kwargs) -> Any: ... def release(self) -> None: ... def __enter__(self) -> Any: ... def __exit__(self, *args, **kwargs) -> None: ...
Lock
python
python-excel__xlwt
xlwt/BIFFRecords.py
{ "start": 67533, "end": 68087 }
class ____(BiffRecord): """ This record is part of the Calculation Settings Block. It specifies the maximum number of times the formulas should be iteratively calculated. This is a fail-safe against mutually recursive formulas locking up a spreadsheet application. Record CALCCOUNT, BIFF2-BIFF8: Offset Size Contents 0 2 Maximum number of iterations allowed in circular references """ _REC_ID = 0x000C def __init__(self, calc_count): self._rec_data = pack('<H', calc_count)
CalcCountRecord
python
urllib3__urllib3
src/urllib3/response.py
{ "start": 6282, "end": 8440 }
class ____: """Memory-efficient bytes buffer To return decoded data in read() and still follow the BufferedIOBase API, we need a buffer to always return the correct amount of bytes. This buffer should be filled using calls to put() Our maximum memory usage is determined by the sum of the size of: * self.buffer, which contains the full data * the largest chunk that we will copy in get() The worst case scenario is a single chunk, in which case we'll make a full copy of the data inside get(). """ def __init__(self) -> None: self.buffer: typing.Deque[bytes] = collections.deque() self._size: int = 0 def __len__(self) -> int: return self._size def put(self, data: bytes) -> None: self.buffer.append(data) self._size += len(data) def get(self, n: int) -> bytes: if n == 0: return b"" elif not self.buffer: raise RuntimeError("buffer is empty") elif n < 0: raise ValueError("n should be > 0") fetched = 0 ret = io.BytesIO() while fetched < n: remaining = n - fetched chunk = self.buffer.popleft() chunk_length = len(chunk) if remaining < chunk_length: left_chunk, right_chunk = chunk[:remaining], chunk[remaining:] ret.write(left_chunk) self.buffer.appendleft(right_chunk) self._size -= remaining break else: ret.write(chunk) self._size -= chunk_length fetched += chunk_length if not self.buffer: break return ret.getvalue() def get_all(self) -> bytes: buffer = self.buffer if not buffer: assert self._size == 0 return b"" if len(buffer) == 1: result = buffer.pop() else: ret = io.BytesIO() ret.writelines(buffer.popleft() for _ in range(len(buffer))) result = ret.getvalue() self._size = 0 return result
BytesQueueBuffer
python
tensorflow__tensorflow
tensorflow/python/compiler/xla/experimental/xla_sharding.py
{ "start": 1032, "end": 23389 }
class ____(object): """A class to support adding sharding attributes to Ops. Use the factory constructors and then call apply_to_tensor: Sharding.replicate().apply_to_tensor(tensor) """ def __init__(self, proto=None): """Do not use this constructor; use the factory functions below.""" self._proto = proto @classmethod def replicate(cls): """Returns a replicated sharding attribute. This causes an op to be computed in its entirety independently on all cores in the XLA device. """ return Sharding( proto=xla_data_pb2.OpSharding(type=xla_data_pb2.OpSharding.REPLICATED)) @classmethod def manual(cls): """Returns a manuall sharding attribute. This means the op is manually partitioned by the user and XLA will not change the shapes. """ return Sharding( proto=xla_data_pb2.OpSharding(type=xla_data_pb2.OpSharding.MANUAL)) @classmethod def assign_device(cls, core): """Returns an AssignDevice sharding attribute. This causes an op to be computed in its entirety only on one core in the XLA device. Args: core: The core to assign this Op to. """ return Sharding( proto=xla_data_pb2.OpSharding( type=xla_data_pb2.OpSharding.MAXIMAL, tile_assignment_dimensions=[1], tile_assignment_devices=[core])) @classmethod def tile(cls, tile_assignment): """Returns a Tiled sharding attribute. This causes an op to be partially computed on multiple cores in the XLA device. Args: tile_assignment: An np.ndarray describing the topology of the tiling and which device will compute which part of the topology. Raises: TypeError: tile_assignment was not of np.array type. TODO(jmolloy): This concept is nefarious and is not something we really want to expose to users (especially as the contract for tile_assignment is very strict). """ if not isinstance(tile_assignment, _np.ndarray): raise TypeError('Tile assignment must be of type np.ndarray') dims = list(tile_assignment.shape) flattened_devices = tile_assignment.reshape(-1, order='C') return Sharding( proto=xla_data_pb2.OpSharding( type=xla_data_pb2.OpSharding.OTHER, tile_assignment_dimensions=dims, tile_assignment_devices=list(flattened_devices))) @classmethod def subgroup_tile(cls, tile_assignment, subgroup_modes): """Returns a subgroup manual sharding attribute. This is similar to tile(), but tile_assignment has one or more dimension than the tensor, and subgroup_modes define the sharding types in the last dimensions of tile_assignment. Args: tile_assignment: An np.ndarray describing the topology of the tiling and which device will compute which part of the topology. subgroup_modes: sharding types for the dimension more than the tensor shape rank. Raises: TypeError: tile_assignment was not of np.array type or subgroup_modes has unsupported sharding type. """ if not isinstance(tile_assignment, _np.ndarray): raise TypeError('SubgroupTile assignment must be of type np.ndarray') if not isinstance(subgroup_modes, list): raise TypeError('subgroup_modes in subgroup manual must be of type list') if len(tile_assignment.shape) < len(subgroup_modes): raise TypeError('SubgroupTile assignment must have rank larger than' ' length of subgroup_modes') for sharding_type in subgroup_modes: if sharding_type not in [ xla_data_pb2.OpSharding.REPLICATED, xla_data_pb2.OpSharding.MANUAL ]: raise TypeError( 'Each sharding_type in subgroup_modes in subgroup manual must ' 'be of type xla_data_pb2.OpSharding.REPLICATED' ' or xla_data_pb2.OpSharding.MANUAL') dims = list(tile_assignment.shape) flattened_devices = tile_assignment.reshape(-1, order='C') return Sharding( proto=xla_data_pb2.OpSharding( type=xla_data_pb2.OpSharding.OTHER, tile_assignment_dimensions=dims, tile_assignment_devices=list(flattened_devices), last_tile_dims=list(subgroup_modes))) @classmethod def partial_tile(cls, tile_assignment): """Returns a partially tiled sharding attribute. This is similar to tile(), but tile_assignment has one more dimension than the tensor, and tiles in the last dimension of tile_assignment are replicated. Args: tile_assignment: An np.ndarray describing the topology of the tiling and which device will compute which part of the topology. Raises: TypeError: tile_assignment was not of np.array type. """ if not isinstance(tile_assignment, _np.ndarray): raise TypeError('PartialTile assignment must be of type np.ndarray') dims = list(tile_assignment.shape) flattened_devices = tile_assignment.reshape(-1, order='C') return Sharding( proto=xla_data_pb2.OpSharding( type=xla_data_pb2.OpSharding.OTHER, tile_assignment_dimensions=dims, tile_assignment_devices=list(flattened_devices), replicate_on_last_tile_dim=True)) @classmethod def split(cls, tensor, split_dimension, num_devices, input_shape=None): """Returns a Sharding that splits a tensor across a dimension. This creates a Tiled attribute, similar to tile(), but easier to use for the common case of tiling a tensor N ways in one dimension. Args: tensor: A tf.Tensor to split. split_dimension: The dimension number to split. num_devices: The number of cores to split `tensor` over. input_shape: The shape of the original tensor. Raises: ValueError: The tensor to split was smaller in the split dimension than the number of devices to split over. """ if input_shape: shape = input_shape else: shape = tensor.shape.as_list() if (shape[split_dimension] is not None and shape[split_dimension] < num_devices): raise ValueError('Split dimension was smaller than the required number ' 'of splits: shape=%r, dimension=%r, num_devices=%r' % (shape, split_dimension, num_devices)) tile_assignment_dims = [1] * len(shape) tile_assignment_dims[split_dimension] = num_devices return Sharding( proto=xla_data_pb2.OpSharding( type=xla_data_pb2.OpSharding.OTHER, tile_assignment_dimensions=tile_assignment_dims, tile_assignment_devices=range(num_devices))) def apply_to_tensor( self, tensor, assign_tuple_sharding=False, use_sharding_op=False, unspecified_dims=None, sharding_v2_proto=None, ): """Applies this Sharding attribute to `tensor`. Args: tensor: A tf.Tensor to split. assign_tuple_sharding: If the sharding type should be a tuple. use_sharding_op: Whether to create a sharding op on `tensor`. unspecified_dims: An optional list of dimensions unspecified. sharding_v2_proto: The v2 sharding proto to use. Returns: The tensor with Sharding attribute. """ if unspecified_dims: assert use_sharding_op and not assign_tuple_sharding proto = self._proto # If passed a tf.BaseResourceVariable instead of a tf.Tensor, simply store # the sharding proto on the tf.BaseResourceVariable object. An XlaShardingOp # will be created down the line whenever a ReadVariableOp is created by the # tf.BaseResourceVariable. if ( isinstance(tensor, resource_variable_ops.BaseResourceVariable) and context.xla_sharding_for_resource_variables_enabled() ): if assign_tuple_sharding: proto = self._create_tuple_proto(num_outputs=1) # pylint: disable=protected-access tensor._set_xla_sharding(proto) return tensor if use_sharding_op: if assign_tuple_sharding: proto = self._create_tuple_proto(num_outputs=1) tensor = tf2xla.sharding(tensor, sharding=proto.SerializeToString()) else: tensor = tf2xla.sharding( tensor, sharding=proto.SerializeToString(), unspecified_dims=unspecified_dims or [], ) elif assign_tuple_sharding or len(tensor.op.outputs) > 1: proto = self._get_or_create_tuple_proto(tensor.op) # We can't mutate an element of old_proto.tuple_shardings, so create # a new proto. tuple_shardings = list(proto.tuple_shardings) tuple_shardings[tensor.value_index] = self._proto proto = xla_data_pb2.OpSharding( type=xla_data_pb2.OpSharding.TUPLE, tuple_shardings=tuple_shardings) # TODO(jmolloy): This need to be seriously revisited before declaring this # API available for public use. # pylint: disable=protected-access tensor.op._set_attr('_XlaSharding', attr_value_pb2.AttrValue(s=proto.SerializeToString())) if sharding_v2_proto: tensor.op._set_attr( '_XlaShardingV2', attr_value_pb2.AttrValue(s=sharding_v2_proto.SerializeToString()), ) return tensor def apply_to_operation(self, operation): """Applies this Sharding attribute to `operation`. Args: operation: A tf.Operation to add sharding annotation. """ attr_value = attr_value_pb2.AttrValue(s=self._proto.SerializeToString()) # pylint: disable=protected-access operation._set_attr('_XlaSharding', attr_value) @property def proto(self): """Return the sharding protobuf of type xla_data_pb2.OpSharding.""" return self._proto def _get_or_create_tuple_proto(self, op): try: attr = op.get_attr('_XlaSharding') proto = xla_data_pb2.OpSharding() proto.ParseFromString(attr) return proto except ValueError: return self._create_tuple_proto(len(op.outputs)) def _create_tuple_proto(self, num_outputs): shardings = [ xla_data_pb2.OpSharding(type=xla_data_pb2.OpSharding.REPLICATED) ] * num_outputs return xla_data_pb2.OpSharding( type=xla_data_pb2.OpSharding.TUPLE, tuple_shardings=shardings) def copy_sharding(from_tensor, to_tensor, use_sharding_op=False): """Copies the a tensor's sharding to another. Args: from_tensor: Source tensor. Must be the sole output of an op. to_tensor: the tensor the annotate with the copy. use_sharding_op: whether to create a sharding op on `to_tensor`. Returns: A tensor with sharding annotation copied from `from_tensor`. """ sharding = get_tensor_sharding(from_tensor) if sharding is None: return to_tensor # If passed a tf.BaseResourceVariable instead of a tf.Tensor, simply store the # sharding proto on the tf.BaseResourceVariable object. An XlaShardingOp # will be created down the line whenever a ReadVariableOp is created by the # tf.BaseResourceVariable. if ( isinstance(to_tensor, resource_variable_ops.BaseResourceVariable) and context.xla_sharding_for_resource_variables_enabled() ): proto = xla_data_pb2.OpSharding() proto.ParseFromString(sharding) # pylint: disable=protected-access to_tensor._set_xla_sharding(proto) return to_tensor if use_sharding_op: to_tensor = tf2xla.sharding(to_tensor, sharding=sharding) attr_value = attr_value_pb2.AttrValue(s=sharding) # pylint: disable=protected-access to_tensor.op._set_attr('_XlaSharding', attr_value) return to_tensor # Helpers for the above factory functions that allow easy application of # shardings, for example: # tensor = xla_sharding.replicate(tensor) def replicate(tensor, assign_tuple_sharding=False, use_sharding_op=False): return Sharding.replicate().apply_to_tensor( tensor, assign_tuple_sharding=assign_tuple_sharding, use_sharding_op=use_sharding_op) def assign_device(tensor, device, assign_tuple_sharding=False, use_sharding_op=False): """Returns a tensor that has AssignDevice sharding attribute.""" return Sharding.assign_device(device).apply_to_tensor( tensor, assign_tuple_sharding=assign_tuple_sharding, use_sharding_op=use_sharding_op) def tile(tensor, tile_assignment, assign_tuple_sharding=False, use_sharding_op=False, unspecified_dims=None): """Returns a tensor that has tiled sharding. Args: tensor: A tf.Tensor to shard. tile_assignment: An np.ndarray describing the topology of the tiling and which device will compute which part of the topology. assign_tuple_sharding: If the sharding type should be a tuple. use_sharding_op: If true, adds a sharding op to set the sharding. unspecified_dims: An optional list of dimensions unspecified. """ return Sharding.tile(tile_assignment).apply_to_tensor( tensor, assign_tuple_sharding=assign_tuple_sharding, use_sharding_op=use_sharding_op, unspecified_dims=unspecified_dims or []) def split(tensor, split_dimension, num_devices, assign_tuple_sharding=False, use_sharding_op=False, input_shape=None): """Returns a tensor that is split along the given dimension. Args: tensor: A tf.Tensor to split. split_dimension: The dimension to split. num_devices: The number of devices to partition the dimension. assign_tuple_sharding: If the sharding type should be a tuple. use_sharding_op: If true, adds a sharding op to set the sharding. input_shape: The full shape of the input tensor. """ return Sharding.split(tensor, split_dimension, num_devices, input_shape).apply_to_tensor( tensor, assign_tuple_sharding=assign_tuple_sharding, use_sharding_op=use_sharding_op) def partial_tile(tensor, tile_assignment, use_sharding_op=False, unspecified_dims=None): """Returns a tensor that has tiled sharding. Args: tensor: A tf.Tensor to shard. tile_assignment: An np.ndarray describing the topology of the tiling and which device will compute which part of the topology. It must have one more dimension than tensor, and the last dimension represents partially replicated tiles. use_sharding_op: If true, adds a sharding op to set the sharding. unspecified_dims: An optional list of dimensions unspecified. """ return Sharding.partial_tile(tile_assignment).apply_to_tensor( tensor, use_sharding_op=use_sharding_op, unspecified_dims=unspecified_dims or []) def get_op_sharding(op): """Returns sharding attribute of an op. Args: op: a TensorFlow op. Returns: The attribute representing XLA sharding on this op. """ try: return op.get_attr('_XlaSharding') except ValueError: return None except AttributeError: # AttributeError: 'DistributedVarOp' object has no attribute 'get_attr'. return None def get_tensor_sharding(tensor): """Returns sharding attribute of a Tensor. Args: tensor: a Tensor. Returns: The attribute representing XLA sharding on tensor's op. """ # If passed a tf.BaseResourceVariable instead of a tf.Tensor, simply get the # sharding proto set on the _xla_sharding field of the tf.BaseResourceVariable # object. if ( isinstance(tensor, resource_variable_ops.BaseResourceVariable) and context.xla_sharding_for_resource_variables_enabled() ): # pylint: disable=protected-access sharding = tensor._get_xla_sharding() if sharding is None: return None else: return sharding.SerializeToString() try: return get_op_sharding(tensor.op) except AttributeError: # AttributeError: Tensor.op is meaningless when eager execution is enabled. return None def get_sharding_tile_shape(sharding): """Returns the tile assignment shape for a sharded Tensor. Args: sharding: a serialized OpSharding message describing the layout of a sharded Tensor. Returns: A list, for each dimension of the sharded Tensor, of the number of shards into which it has been split. Returns None if the input indicates no tile assignments. """ if sharding is None: return None sharding_message = xla_data_pb2.OpSharding() sharding_message.ParseFromString(sharding) if sharding_message.tile_assignment_dimensions: return sharding_message.tile_assignment_dimensions else: return None def auto_to_manual_spmd_partition(tensor, manual_sharding, single_dim=-1, unspecified_dims=None): """Switches from automatic SPMD partitioning to manual partitioning. Converts a full-shaped tensor (to be automatically partitioned by SPMD partitioner) to a shard-shaped tensor to be consumed by manually partitioned ops. Args: tensor: A tf.Tensor in full shape. manual_sharding: A serialized string of OpSharding to be used in manual partitioning. single_dim: If >= 0, the conversion will happen only on this dim in subgroups. unspecified_dims: An optional list of dimensions unspecified. Returns: A shard-shaped tensor to be consumed by manually partitioned ops. """ return tf2xla.spmd_full_to_shard_shape( tensor, manual_sharding=manual_sharding, dim=single_dim, unspecified_dims=unspecified_dims or []) def manual_to_auto_spmd_partition(tensor, manual_sharding, full_shape, single_dim=-1, unspecified_dims=None): """Switches from manual partitioning to automatic SPMD partitioning. Converts a shard-shaped tensor (manually partitioned in SPMD-style) to a full-shaped tensor to be partitioned automatically by the SPMD partitioner. Args: tensor: A tf.Tensor in shard shape. manual_sharding: a serialized string of OpSharding to be used in manual partitioning. full_shape: the shape of tensor before partitioning. single_dim: If >= 0, the conversion will happen only on this dim in subgroups. unspecified_dims: An optional list of dimensions unspecified. Returns: A full-shaped tensor to be partitioned automatically by the SPMD partitioner. """ return tf2xla.spmd_shard_to_full_shape( tensor, manual_sharding=manual_sharding, full_shape=full_shape, dim=single_dim, unspecified_dims=unspecified_dims or []) def mesh_split_sharding(device_mesh, tensor_split_dims_mapping, manual_mesh_dims=None): """Returns a Sharding object representing sharding along multiple dimensions. Args: device_mesh: An np.ndarray describing the topology of the device mesh and each element is the ID of the device in the topology. tensor_split_dims_mapping: A list of integers that map each tensor axis to the device mesh axis along which it is sharded. Its length is the tensor rank, and tensor_split_dims_mapping[i] is device mesh axis for tensor dimension i. Use -1 for tensor dimensions that are not sharded. manual_mesh_dims: An optional list of mesh dims for manual subgroups. Raises: ValueError: The number of tensor split dimensions is larger than device mesh rank. """ manual_mesh_dims = manual_mesh_dims or [] permutation = [d for d in tensor_split_dims_mapping if d >= 0 ] + manual_mesh_dims if len(permutation) > len(device_mesh.shape): raise ValueError( 'Number of tensor split dimensions (%r) is larger than device mesh ' 'rank (%r). tensor_split_dims_mapping: %r, device_mesh.shape: %r' % (len(permutation), len( device_mesh.shape), tensor_split_dims_mapping, device_mesh.shape)) # Append replicated dimensions to the end. transpose_permutation = permutation + [ d for d in range(len(device_mesh.shape)) if d not in permutation ] tile_assignment = _np.transpose(device_mesh, transpose_permutation) tile_shape = [ 1 if d < 0 else device_mesh.shape[d] for d in (tensor_split_dims_mapping + manual_mesh_dims) ] subgroup_modes = [xla_data_pb2.OpSharding.MANUAL] * len(manual_mesh_dims) partial = len(permutation) < len(device_mesh.shape) if partial: tile_shape.append(_np.prod(device_mesh.shape) // _np.prod(tile_shape)) subgroup_modes.append(xla_data_pb2.OpSharding.REPLICATED) tile_assignment = _np.reshape(tile_assignment, tile_shape) if manual_mesh_dims: return Sharding.subgroup_tile(tile_assignment, subgroup_modes) if partial: return Sharding.partial_tile(tile_assignment) return Sharding.tile(tile_assignment) def mesh_split(tensor, device_mesh, tensor_split_dims_mapping, use_sharding_op=False, manual_mesh_dims=None, unspecified_dims=None): """Returns a tensor that is split along multiple dimensions in a device mesh. Args: tensor: A tf.Tensor to split. device_mesh: An np.ndarray describing the topology of the device mesh and each element is the ID of the device in the topology. tensor_split_dims_mapping: A list of integers that map each tensor axis to the device mesh axis along which it is sharded. Its length is the tensor rank, and tensor_split_dims_mapping[i] is device mesh axis for tensor dimension i. Use -1 for tensor dimensions that are not sharded. use_sharding_op: If true, adds a sharding op to set the sharding. manual_mesh_dims: An optional list of mesh dims for manual subgroups. unspecified_dims: An optional list of dimensions unspecified. Raises: ValueError: The number of tensor split dimensions is larger than device mesh rank. """ sharding = mesh_split_sharding(device_mesh, tensor_split_dims_mapping, manual_mesh_dims) return sharding.apply_to_tensor( tensor, use_sharding_op=use_sharding_op, unspecified_dims=unspecified_dims or [])
Sharding
python
Lightning-AI__lightning
tests/tests_pytorch/trainer/optimization/test_multiple_optimizers.py
{ "start": 786, "end": 3004 }
class ____(BoringModel): def configure_optimizers(self): opt_a = torch.optim.SGD(self.layer.parameters(), lr=0.001) opt_b = torch.optim.SGD(self.layer.parameters(), lr=0.001) return opt_a, opt_b def test_multiple_optimizers_automatic_optimization_raises(): """Test that multiple optimizers in automatic optimization is not allowed.""" class TestModel(BoringModel): def training_step(self, batch, batch_idx, optimizer_idx): return super().training_step(batch, batch_idx) model = TestModel() model.automatic_optimization = True trainer = pl.Trainer(logger=False, enable_checkpointing=False) with pytest.raises(RuntimeError, match="Remove the `optimizer_idx` argument from `training_step`"): trainer.fit(model) class TestModel(BoringModel): def configure_optimizers(self): return torch.optim.Adam(self.parameters()), torch.optim.Adam(self.parameters()) model = TestModel() model.automatic_optimization = True trainer = pl.Trainer(logger=False, enable_checkpointing=False) with pytest.raises(RuntimeError, match="multiple optimizers is only supported with manual optimization"): trainer.fit(model) def test_multiple_optimizers_manual(tmp_path): class TestModel(MultiOptModel): def __init__(self): super().__init__() self.automatic_optimization = False def training_step(self, batch, batch_idx): self.training_step_called = True # manual optimization opt_a, opt_b = self.optimizers() loss_1 = self.step(batch[0]) # fake generator self.manual_backward(loss_1) opt_a.step() opt_a.zero_grad() # fake discriminator loss_2 = self.step(batch[0]) self.manual_backward(loss_2) opt_b.step() opt_b.zero_grad() model = TestModel() model.val_dataloader = None trainer = pl.Trainer( default_root_dir=tmp_path, limit_train_batches=2, max_epochs=1, log_every_n_steps=1, enable_model_summary=False ) trainer.fit(model) assert model.training_step_called
MultiOptModel
python
HypothesisWorks__hypothesis
hypothesis-python/src/hypothesis/internal/conjecture/shrinking/integer.py
{ "start": 624, "end": 2218 }
class ____(Shrinker): """Attempts to find a smaller integer. Guaranteed things to try ``0``, ``1``, ``initial - 1``, ``initial - 2``. Plenty of optimisations beyond that but those are the guaranteed ones. """ def short_circuit(self): for i in range(2): if self.consider(i): return True self.mask_high_bits() if self.size > 8: # see if we can squeeze the integer into a single byte. self.consider(self.current >> (self.size - 8)) self.consider(self.current & 0xFF) return self.current == 2 def check_invariants(self, value): assert value >= 0 def left_is_better(self, left, right): return left < right def run_step(self): self.shift_right() self.shrink_by_multiples(2) self.shrink_by_multiples(1) def shift_right(self): base = self.current find_integer(lambda k: k <= self.size and self.consider(base >> k)) def mask_high_bits(self): base = self.current n = base.bit_length() @find_integer def try_mask(k): if k >= n: return False mask = (1 << (n - k)) - 1 return self.consider(mask & base) @property def size(self) -> int: return self.current.bit_length() def shrink_by_multiples(self, k): base = self.current @find_integer def shrunk(n): attempt = base - n * k return attempt >= 0 and self.consider(attempt) return shrunk > 0
Integer
python
tensorflow__tensorflow
tensorflow/python/data/experimental/kernel_tests/optimization/map_and_filter_fusion_test.py
{ "start": 2593, "end": 4581 }
class ____(test_base.DatasetTestBase, parameterized.TestCase): def _testDataset(self, dataset, function, predicate): expected_output = [] for x in range(10): r = function(x) if isinstance(r, tuple): b = predicate(*r) # Pass tuple as multiple arguments. else: b = predicate(r) if self.evaluate(b): expected_output.append(r) self.assertDatasetProduces(dataset, expected_output=expected_output) @combinations.generate( combinations.times(test_base.default_test_combinations(), _test_combinations())) def testMapAndFilterFusion(self, function, predicate): dataset = dataset_ops.Dataset.range(10).apply( testing.assert_next(["Map", "Filter", "Map"])).map(function).filter(predicate) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False options.experimental_optimization.map_and_filter_fusion = True dataset = dataset.with_options(options) self._testDataset(dataset, function, predicate) @combinations.generate(test_base.default_test_combinations()) def testCapturedInputs(self): a = constant_op.constant(3, dtype=dtypes.int64) b = constant_op.constant(4, dtype=dtypes.int64) some_tensor = math_ops.mul(a, b) function = lambda x: x * x def predicate(y): return math_ops.less(math_ops.cast(y, dtypes.int64), some_tensor) # We currently do not support functions with captured inputs. dataset = dataset_ops.Dataset.range(10).apply( testing.assert_next(["Map", "Filter"])).map(function).filter(predicate) options = options_lib.Options() options.experimental_optimization.apply_default_optimizations = False options.experimental_optimization.map_and_filter_fusion = True dataset = dataset.with_options(options) self._testDataset(dataset, function, predicate) if __name__ == "__main__": test.main()
MapAndFilterFusionTest
python
ray-project__ray
python/ray/data/_internal/datasource/image_datasink.py
{ "start": 125, "end": 705 }
class ____(RowBasedFileDatasink): def __init__( self, path: str, column: str, file_format: str, **file_datasink_kwargs ): super().__init__(path, file_format=file_format, **file_datasink_kwargs) self.column = column self.file_format = file_format def write_row_to_file(self, row: Dict[str, Any], file: "pyarrow.NativeFile"): from PIL import Image image = Image.fromarray(row[self.column]) buffer = io.BytesIO() image.save(buffer, format=self.file_format) file.write(buffer.getvalue())
ImageDatasink
python
Textualize__rich
tests/test_protocol.py
{ "start": 361, "end": 1861 }
class ____: def __getattr__(self, name): return 12 def __repr__(self) -> str: return "Fake()" def test_rich_cast_fake(): fake = Fake() console = Console(file=io.StringIO()) console.print(fake) assert console.file.getvalue() == "Fake()\n" def test_rich_cast_container(): foo = Foo() console = Console(file=io.StringIO(), legacy_windows=False) console.print(Panel.fit(foo, padding=0)) assert console.file.getvalue() == "╭───╮\n│Foo│\n╰───╯\n" def test_abc(): foo = Foo() assert isinstance(foo, RichRenderable) assert isinstance(Text("hello"), RichRenderable) assert isinstance(Panel("hello"), RichRenderable) assert not isinstance(foo, str) assert not isinstance("foo", RichRenderable) assert not isinstance([], RichRenderable) def test_cast_deep(): class B: def __rich__(self) -> Foo: return Foo() class A: def __rich__(self) -> B: return B() console = Console(file=io.StringIO()) console.print(A()) assert console.file.getvalue() == "Foo\n" def test_cast_recursive(): class B: def __rich__(self) -> "A": return A() def __repr__(self) -> str: return "<B>" class A: def __rich__(self) -> B: return B() def __repr__(self) -> str: return "<A>" console = Console(file=io.StringIO()) console.print(A()) assert console.file.getvalue() == "<B>\n"
Fake
python
getsentry__sentry
src/sentry/users/services/usersocialauth/impl.py
{ "start": 899, "end": 4048 }
class ____(UserSocialAuthService): def get_many(self, *, filter: UserSocialAuthFilterArgs) -> list[RpcUserSocialAuth]: return self._FQ.get_many(filter=filter) def get_one_or_none(self, *, filter: UserSocialAuthFilterArgs) -> RpcUserSocialAuth | None: auths = self.get_many(filter=filter) if len(auths) == 0: return None return auths[0] def revoke_token( self, *, filter: UserSocialAuthFilterArgs, drop_token: bool = True ) -> list[RpcUserSocialAuth]: """ Calls UserSocialAuth.revoke_token() on all matching results, returning the modified RpcUserSocialAuths. """ db_auths = self._FQ.query_many(filter=filter) for db_auth in db_auths: db_auth.revoke_token(drop_token=drop_token) return self.get_many(filter=filter) def refresh_token(self, *, filter: UserSocialAuthFilterArgs) -> list[RpcUserSocialAuth]: """ Calls UserSocialAuth.refresh_token() on all matching results, returning the modified RpcUserSocialAuths. """ db_auths = self._FQ.query_many(filter=filter) for db_auth in db_auths: db_auth.refresh_token() return self.get_many(filter=filter) def link_auth(self, *, usa: RpcUserSocialAuth, organization: RpcOrganization) -> bool: try: integration, _created = Integration.objects.get_or_create( provider=usa.provider, external_id=usa.uid ) integration.add_organization(organization, None, default_auth_id=usa.id) except Exception as error: sentry_sdk.capture_exception(error=error) return False return True class _UserSocialAuthFilterQuery( FilterQueryDatabaseImpl[UserSocialAuth, UserSocialAuthFilterArgs, RpcUserSocialAuth, None] ): def apply_filters( self, query: QuerySet[UserSocialAuth], filters: UserSocialAuthFilterArgs ) -> QuerySet[UserSocialAuth]: if "id" in filters: query = query.filter(id=filters["id"]) if "user_id" in filters: query = query.filter(user_id=filters["user_id"]) if "provider" in filters: query = query.filter(provider=filters["provider"]) if "uid" in filters: query = query.filter(uid=filters["uid"]) return query def base_query(self, select_related: bool = True) -> QuerySet[UserSocialAuth]: return UserSocialAuth.objects.filter() def filter_arg_validator(self) -> Callable[[UserSocialAuthFilterArgs], str | None]: return self._filter_has_any_key_validator( *UserSocialAuthFilterArgs.__annotations__.keys() ) def serialize_api(self, serializer: None) -> Serializer: raise NotImplementedError("API Serialization not supported for UserSocialAuthService") def serialize_rpc(self, auth: UserSocialAuth) -> RpcUserSocialAuth: return serialize_usersocialauth(auth=auth) _FQ = _UserSocialAuthFilterQuery()
DatabaseBackedUserSocialAuthService
python
facebookresearch__faiss
faiss/python/extra_wrappers.py
{ "start": 12936, "end": 20493 }
class ____: """Object that performs k-means clustering and manages the centroids. The `Kmeans` class is essentially a wrapper around the C++ `Clustering` object. Parameters ---------- d : int dimension of the vectors to cluster k : int number of clusters gpu: bool or int, optional False: don't use GPU True: use all GPUs number: use this many GPUs progressive_dim_steps: use a progressive dimension clustering (with that number of steps) Subsequent parameters are fields of the Clustring object. The most important are: niter: int, optional clustering iterations nredo: int, optional redo clustering this many times and keep best verbose: bool, optional spherical: bool, optional do we want normalized centroids? int_centroids: bool, optional round centroids coordinates to integer seed: int, optional seed for the random number generator """ def __init__(self, d, k, **kwargs): """d: input dimension, k: nb of centroids. Additional parameters are passed on the ClusteringParameters object, including niter=25, verbose=False, spherical = False """ self.d = d self.reset(k) self.gpu = False if "progressive_dim_steps" in kwargs: self.cp = ProgressiveDimClusteringParameters() else: self.cp = ClusteringParameters() for k, v in kwargs.items(): if k == 'gpu': if v == True or v == -1: v = get_num_gpus() self.gpu = v else: # if this raises an exception, it means that it is a non-existent field getattr(self.cp, k) setattr(self.cp, k, v) self.set_index() def set_index(self): d = self.d if self.cp.__class__ == ClusteringParameters: if self.cp.spherical: self.index = IndexFlatIP(d) else: self.index = IndexFlatL2(d) if self.gpu: self.index = faiss.index_cpu_to_all_gpus(self.index, ngpu=self.gpu) else: if self.gpu: fac = GpuProgressiveDimIndexFactory(ngpu=self.gpu) else: fac = ProgressiveDimIndexFactory() self.fac = fac def reset(self, k=None): """ prepare k-means object to perform a new clustering, possibly with another number of centroids """ if k is not None: self.k = int(k) self.centroids = None self.obj = None self.iteration_stats = None def train(self, x, weights=None, init_centroids=None): """ Perform k-means clustering. On output of the function call: - the centroids are in the centroids field of size (`k`, `d`). - the objective value at each iteration is in the array obj (size `niter`) - detailed optimization statistics are in the array iteration_stats. Parameters ---------- x : array_like Training vectors, shape (n, d), `dtype` must be float32 and n should be larger than the number of clusters `k`. weights : array_like weight associated to each vector, shape `n` init_centroids : array_like initial set of centroids, shape (n, d) Returns ------- final_obj: float final optimization objective """ x = np.ascontiguousarray(x, dtype='float32') n, d = x.shape assert d == self.d if self.cp.__class__ == ClusteringParameters: # regular clustering clus = Clustering(d, self.k, self.cp) if init_centroids is not None: nc, d2 = init_centroids.shape assert d2 == d faiss.copy_array_to_vector(init_centroids.ravel(), clus.centroids) clus.train(x, self.index, weights) else: # not supported for progressive dim assert weights is None assert init_centroids is None assert not self.cp.spherical clus = ProgressiveDimClustering(d, self.k, self.cp) clus.train(n, swig_ptr(x), self.fac) centroids = faiss.vector_float_to_array(clus.centroids) self.centroids = centroids.reshape(self.k, d) stats = clus.iteration_stats stats = [stats.at(i) for i in range(stats.size())] self.obj = np.array([st.obj for st in stats]) # copy all the iteration_stats objects to a python array stat_fields = 'obj time time_search imbalance_factor nsplit'.split() self.iteration_stats = [ {field: getattr(st, field) for field in stat_fields} for st in stats ] return self.obj[-1] if self.obj.size > 0 else 0.0 def assign(self, x): x = np.ascontiguousarray(x, dtype='float32') assert self.centroids is not None, "should train before assigning" self.index.reset() self.index.add(self.centroids) D, I = self.index.search(x, 1) return D.ravel(), I.ravel() ########################################### # Packing and unpacking bitstrings ########################################### def is_sequence(x): return isinstance(x, collections.abc.Sequence) pack_bitstrings_c = pack_bitstrings def pack_bitstrings(a, nbit): """ Pack a set integers (i, j) where i=0:n and j=0:M into n bitstrings. Output is an uint8 array of size (n, code_size), where code_size is such that at most 7 bits per code are wasted. If nbit is an integer: all entries takes nbit bits. If nbit is an array: entry (i, j) takes nbit[j] bits. """ n, M = a.shape a = np.ascontiguousarray(a, dtype='int32') if is_sequence(nbit): nbit = np.ascontiguousarray(nbit, dtype='int32') assert nbit.shape == (M,) code_size = int((nbit.sum() + 7) // 8) b = np.empty((n, code_size), dtype='uint8') pack_bitstrings_c( n, M, swig_ptr(nbit), swig_ptr(a), swig_ptr(b), code_size) else: code_size = (M * nbit + 7) // 8 b = np.empty((n, code_size), dtype='uint8') pack_bitstrings_c(n, M, nbit, swig_ptr(a), swig_ptr(b), code_size) return b unpack_bitstrings_c = unpack_bitstrings def unpack_bitstrings(b, M_or_nbits, nbit=None): """ Unpack a set integers (i, j) where i=0:n and j=0:M from n bitstrings (encoded as uint8s). Input is an uint8 array of size (n, code_size), where code_size is such that at most 7 bits per code are wasted. Two forms: - when called with (array, M, nbit): there are M entries of size nbit per row - when called with (array, nbits): element (i, j) is encoded in nbits[j] bits """ n, code_size = b.shape if nbit is None: nbit = np.ascontiguousarray(M_or_nbits, dtype='int32') M = len(nbit) min_code_size = int((nbit.sum() + 7) // 8) assert code_size >= min_code_size a = np.empty((n, M), dtype='int32') unpack_bitstrings_c( n, M, swig_ptr(nbit), swig_ptr(b), code_size, swig_ptr(a)) else: M = M_or_nbits min_code_size = (M * nbit + 7) // 8 assert code_size >= min_code_size a = np.empty((n, M), dtype='int32') unpack_bitstrings_c( n, M, nbit, swig_ptr(b), code_size, swig_ptr(a)) return a
Kmeans
python
falconry__falcon
tests/test_inspect.py
{ "start": 12428, "end": 13293 }
class ____: def test_inspect_visitor(self): iv = inspect.InspectVisitor() with pytest.raises(RuntimeError, match='This visitor does not support'): iv.process(123) with pytest.raises(RuntimeError, match='This visitor does not support'): iv.process(inspect.RouteInfo('f', 'o', 'o', [])) def test_process(self): class FooVisitor(inspect.InspectVisitor): def visit_route(self, route): return 'foo' assert FooVisitor().process(inspect.RouteInfo('f', 'o', 'o', [])) == 'foo' def test_string_visitor_class(): assert issubclass(inspect.StringVisitor, inspect.InspectVisitor) sv = inspect.StringVisitor() assert sv.verbose is False assert sv.internal is False assert sv.name == '' @pytest.mark.parametrize('internal', (True, False))
TestInspectVisitor
python
wandb__wandb
wandb/vendor/pygments/lexers/templates.py
{ "start": 24994, "end": 25405 }
class ____(Lexer): """ Lexer for handling Cheetah's special $ tokens in Python syntax. """ def get_tokens_unprocessed(self, text): pylexer = PythonLexer(**self.options) for pos, type_, value in pylexer.get_tokens_unprocessed(text): if type_ == Token.Error and value == '$': type_ = Comment.Preproc yield pos, type_, value
CheetahPythonLexer
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/dataclassTransform2.py
{ "start": 1167, "end": 1942 }
class ____(ModelBase, order=True): id: int name: str = model_field(default="None") c1_1 = Customer1(id=3, name="Sue", other_name="Susan") # This should generate an error because the class is frozen. c1_1.id = 4 # This should generate an error because the class is kw_only. c1_2 = Customer1(3, "Sue") # This should generate an error because other_name is missing. c1_3 = Customer1(id=3, name="John") # This should generate an error because comparison methods are # not synthesized. v1 = c1_1 < c1_2 c2_1 = Customer2(id=0, name="John") c2_2 = Customer2(id=1) v2 = c2_1 < c2_2 # This should generate an error because Customer2 supports # keyword-only parameters for its constructor. c2_3 = Customer2(0, "John") @dataclass_transform(frozen_default=True)
Customer2
python
falconry__falcon
falcon/_typing.py
{ "start": 6123, "end": 6409 }
class ____(Protocol[_ReqT, _RespT]): """WSGI Middleware with resource handler.""" def process_resource( self, req: _ReqT, resp: _RespT, resource: Resource | None, params: dict[str, Any], ) -> None: ...
WsgiMiddlewareWithProcessResource
python
airbytehq__airbyte
airbyte-integrations/connectors/source-shopify/source_shopify/shopify_graphql/bulk/job.py
{ "start": 1111, "end": 28673 }
class ____: http_client: HttpClient base_url: str query: ShopifyBulkQuery job_termination_threshold: float job_size: float job_checkpoint_interval: int parent_stream_name: Optional[str] = None parent_stream_cursor: Optional[str] = None # 10Mb chunk size to save the file _retrieve_chunk_size: Final[int] = 1024 * 1024 * 10 _job_max_retries: Final[int] = 6 _job_backoff_time: int = 5 # running job logger constrain, every 100-ish message will be printed _log_job_msg_frequency: Final[int] = 100 # running job log counter _log_job_msg_count: int = field(init=False, default=0) # attempt counter _concurrent_attempt: int = field(init=False, default=0) # sleep time per creation attempt _concurrent_interval: Final[int] = 30 # max attempts for job creation _concurrent_max_retry: Final[int] = 120 # currents: _job_id, _job_state, _job_created_at, _job_self_canceled _job_id: Optional[str] = field(init=False, default=None) _job_state: str | None = field(init=False, default=None) # this string is based on ShopifyBulkJobStatus # completed and saved Bulk Job result filename _job_result_filename: Optional[str] = field(init=False, default=None) # date-time when the Bulk Job was created on the server _job_created_at: Optional[str] = field(init=False, default=None) # indicated whether or not we manually force-cancel the current job _job_self_canceled: bool = field(init=False, default=False) # time between job status checks _job_check_interval: Final[int] = 3 # 0.1 ~= P2H, default value, lower boundary for slice size _job_size_min: Final[float] = 0.1 # last running job object count _job_last_rec_count: int = field(init=False, default=0) # the flag to adjust the next slice from the checkpointed cursor vaue _job_adjust_slice_from_checkpoint: bool = field(init=False, default=False) # keeps the last checkpointed cursor value for supported streams _job_last_checkpoint_cursor_value: str | None = field(init=False, default=None) # expand slice factor _job_size_expand_factor: int = field(init=False, default=2) # reduce slice factor _job_size_reduce_factor: int = field(init=False, default=2) # whether or not the slicer should revert the previous start value _job_should_revert_slice: bool = field(init=False, default=False) # 2 sec is set as default value to cover the case with the empty-fast-completed jobs _job_last_elapsed_time: float = field(init=False, default=2.0) def __post_init__(self) -> None: self._job_size = self.job_size # The upper boundary for slice size is limited by the value from the config, default value is `P30D` self._job_size_max = self.job_size # Each job ideally should be executed within the specified time (in sec), # to maximize the performance for multi-connection syncs and control the bulk job size within +- 1 hours (3600 sec), # Ideally the source will balance on it's own rate, based on the time taken to return the data for the slice. # This behaviour could be overidden by providing the `BULK Job termination threshold` option in the `config`. self._job_max_elapsed_time = self.job_termination_threshold # how many records should be collected before we use the checkpoining self._job_checkpoint_interval = self.job_checkpoint_interval # define Record Producer instance self.record_producer: ShopifyBulkRecord = ShopifyBulkRecord(self.query, self.parent_stream_name, self.parent_stream_cursor) @property def _tools(self) -> BulkTools: return BulkTools() @property def _job_state_to_fn_map(self) -> Mapping[str, Any]: return { ShopifyBulkJobStatus.CREATED.value: self._on_created_job, ShopifyBulkJobStatus.CANCELING.value: self._on_canceling_job, ShopifyBulkJobStatus.CANCELED.value: self._on_canceled_job, ShopifyBulkJobStatus.COMPLETED.value: self._on_completed_job, ShopifyBulkJobStatus.RUNNING.value: self._on_running_job, ShopifyBulkJobStatus.TIMEOUT.value: self._on_timeout_job, ShopifyBulkJobStatus.FAILED.value: self._on_failed_job, ShopifyBulkJobStatus.ACCESS_DENIED.value: self._on_access_denied_job, } @property def _job_size_adjusted_expand_factor(self, coef: float = 0.5) -> float: """ The Job Size expand factor is calculated using EMA (Expotentional Moving Average): coef - the expantion coefficient previous_expand_factor - previous factor value Formula: expand_factor = coef * previous_expand_factor + (1 - coef) """ return coef * self._job_size_expand_factor + (1 - coef) @property def _job_size_adjusted_reduce_factor(self) -> float: """ The Job Size reduce factor is 2, by default. """ return self._job_size_reduce_factor @property def _job_elapsed_time_in_state(self) -> int: """ Returns the elapsed time taken while Job is in certain status/state. """ return (pdm.now() - pdm.parse(self._job_created_at)).in_seconds() if self._job_created_at else 0 @property def _is_long_running_job(self) -> bool: if self._job_elapsed_time_in_state: if self._job_elapsed_time_in_state > self._job_max_elapsed_time: # set the slicer to revert mode self._job_should_revert_slice = True return True # reset slicer to normal mode self._job_should_revert_slice = False return False @property def _supports_checkpointing(self) -> bool: """ The flag to determine whether or not the BULK Stream supports the `BULK checkpointing`. """ return self.query.supports_checkpointing @property def _job_should_checkpoint(self) -> bool: return self._supports_checkpointing and self._job_last_rec_count >= self._job_checkpoint_interval @property def _job_any_lines_collected(self) -> bool: return self._job_last_rec_count > 0 def _expand_job_size(self) -> None: self._job_size += self._job_size_adjusted_expand_factor def _reduce_job_size(self) -> None: self._job_size /= self._job_size_adjusted_reduce_factor def _job_size_reduce_next(self) -> None: # revert the flag self._job_should_revert_slice = False self._reduce_job_size() def __adjust_job_size(self, job_current_elapsed_time: float) -> None: if self._job_should_revert_slice: pass else: if job_current_elapsed_time < 1 or job_current_elapsed_time < self._job_last_elapsed_time: self._expand_job_size() elif job_current_elapsed_time > self._job_last_elapsed_time < self._job_max_elapsed_time: pass # set the last job time self._job_last_elapsed_time = job_current_elapsed_time # check the job size slice interval are acceptable self._job_size = max(self._job_size_min, min(self._job_size, self._job_size_max)) def __reset_state(self) -> None: # reset the job state to default self._job_state = None # reset the filename to default self._job_result_filename = None # setting self-cancelation to default self._job_self_canceled = False # set the running job message counter to default self._log_job_msg_count = 0 # set the running job object count to default self._job_last_rec_count = 0 def _set_checkpointing(self) -> None: # set the flag to adjust the next slice from the checkpointed cursor value self._job_adjust_slice_from_checkpoint = True def _reset_checkpointing(self) -> None: # reseting the checkpoint flag, if bulk job has completed normally self._job_adjust_slice_from_checkpoint = False def _set_last_checkpoint_cursor_value(self, checkpointed_cursor: str) -> None: """ Sets the last checkpoint cursor value. Args: checkpointed_cursor (str): The cursor value to set as the last checkpoint. Defaults to None. """ self._job_last_checkpoint_cursor_value = checkpointed_cursor def _checkpoint_cursor_has_collision(self, checkpointed_cursor: str) -> bool: """ Checks if the provided checkpointed cursor collides with the last checkpointed cursor value. Args: checkpointed_cursor (str): The cursor value to check for collision. Defaults to None. Returns: bool: True if the provided cursor collides with the last checkpointed cursor value, False otherwise. """ return self._job_last_checkpoint_cursor_value == checkpointed_cursor def _job_completed(self) -> bool: return self._job_state == ShopifyBulkJobStatus.COMPLETED.value def _job_canceled(self) -> bool: return self._job_state == ShopifyBulkJobStatus.CANCELED.value def _job_failed(self) -> bool: return self._job_state == ShopifyBulkJobStatus.FAILED.value def _job_cancel(self) -> None: _, canceled_response = self.http_client.send_request( http_method="POST", url=self.base_url, json={"query": ShopifyBulkTemplates.cancel(self._job_id)}, request_kwargs={}, ) # mark the job was self-canceled self._job_self_canceled = True # check CANCELED Job health self._job_healthcheck(canceled_response) # sleep to ensure the cancelation sleep(self._job_check_interval) def _log_job_state_with_count(self) -> None: """ Print the status/state Job info message every N request, to minimize the noise in the logs. """ if self._log_job_msg_count < self._log_job_msg_frequency: self._log_job_msg_count += 1 else: message = f"Elapsed time: {self._job_elapsed_time_in_state} sec" if self._job_last_rec_count > 0: count_message = f". Rows collected: {self._job_last_rec_count}" message = message + count_message self._log_state(message) self._log_job_msg_count = 0 def _log_state(self, message: Optional[str] = None) -> None: pattern = f"Stream: `{self.http_client.name}`, the BULK Job: `{self._job_id}` is {self._job_state}" if message: LOGGER.info(f"{pattern}. {message}.") else: LOGGER.info(pattern) def _job_get_result(self, response: Optional[requests.Response] = None) -> Optional[str]: parsed_response = response.json().get("data", {}).get("node", {}) if response else None # get `complete` or `partial` result from collected Bulk Job results full_result_url = parsed_response.get("url") if parsed_response else None partial_result_url = parsed_response.get("partialDataUrl") if parsed_response else None job_result_url = full_result_url if full_result_url else partial_result_url if job_result_url: # save to local file using chunks to avoid OOM filename = self._tools.filename_from_url(job_result_url) _, response = self.http_client.send_request(http_method="GET", url=job_result_url, request_kwargs={"stream": True}) response.raise_for_status() with open(filename, "wb") as file: for chunk in response.iter_content(chunk_size=self._retrieve_chunk_size): file.write(chunk) # add `<end_of_file>` line to the bottom of the saved data for easy parsing file.write(END_OF_FILE.encode()) return filename def _job_get_checkpointed_result(self, response: Optional[requests.Response]) -> None: if self._job_any_lines_collected or self._job_should_checkpoint: # set the flag to adjust the next slice from the checkpointed cursor value self._set_checkpointing() # fetch the collected records from CANCELED Job on checkpointing self._job_result_filename = self._job_get_result(response) def _job_update_state(self, response: Optional[requests.Response] = None) -> None: if response: self._job_state = response.json().get("data", {}).get("node", {}).get("status") self._job_last_rec_count = int(response.json().get("data", {}).get("node", {}).get("objectCount", 0)) if self._job_state == ShopifyBulkJobStatus.RUNNING.value: self._log_job_state_with_count() elif self._job_state in [ShopifyBulkJobStatus.CANCELED.value, ShopifyBulkJobStatus.CANCELING.value]: # do not emit `CANCELED / CANCELING` Bulk Job status, while checkpointing if not self._job_should_checkpoint: self._log_job_state_with_count() else: self._log_state() def _on_created_job(self, **kwargs) -> None: pass def _on_canceled_job(self, response: requests.Response) -> Optional[AirbyteTracedException]: if not self._job_self_canceled: raise ShopifyBulkExceptions.BulkJobCanceled( f"The BULK Job: `{self._job_id}` exited with {self._job_state}, details: {response.text}" ) else: self._job_get_checkpointed_result(response) def _on_canceling_job(self, **kwargs) -> None: sleep(self._job_check_interval) def _cancel_on_long_running_job(self) -> None: LOGGER.info( f"Stream: `{self.http_client.name}` the BULK Job: {self._job_id} runs longer than expected ({self._job_max_elapsed_time} sec). Retry with the reduced `Slice Size` after self-cancelation." ) self._job_cancel() def _cancel_on_checkpointing(self) -> None: LOGGER.info(f"Stream: `{self.http_client.name}`, checkpointing after >= `{self._job_checkpoint_interval}` rows collected.") # set the flag to adjust the next slice from the checkpointed cursor value self._job_cancel() def _on_running_job(self, **kwargs) -> None: if self._is_long_running_job: self._cancel_on_long_running_job() elif self._job_should_checkpoint: self._cancel_on_checkpointing() else: sleep(self._job_check_interval) def _on_completed_job(self, response: Optional[requests.Response] = None) -> None: self._job_result_filename = self._job_get_result(response) def _on_failed_job(self, response: requests.Response) -> AirbyteTracedException | None: if not self._supports_checkpointing: raise ShopifyBulkExceptions.BulkJobFailed( f"The BULK Job: `{self._job_id}` exited with {self._job_state}, details: {response.text}", ) else: # when the Bulk Job fails, usually there is a `partialDataUrl` available, # we leverage the checkpointing in this case. self._job_get_checkpointed_result(response) def _on_timeout_job(self, **kwargs) -> AirbyteTracedException: raise ShopifyBulkExceptions.BulkJobTimout( f"The BULK Job: `{self._job_id}` exited with {self._job_state}, please reduce the `GraphQL BULK Date Range in Days` in SOURCES > Your Shopify Source > SETTINGS.", ) def _on_access_denied_job(self, **kwagrs) -> AirbyteTracedException: raise ShopifyBulkExceptions.BulkJobAccessDenied( f"The BULK Job: `{self._job_id}` exited with {self._job_state}, please check your PERMISSION to fetch the data for this stream.", ) def _on_job_with_errors(self, errors: List[Mapping[str, Any]]) -> AirbyteTracedException: raise ShopifyBulkExceptions.BulkJobError(f"Could not validate the status of the BULK Job `{self._job_id}`. Errors: {errors}.") def _on_non_handable_job_error(self, errors: List[Mapping[str, Any]]) -> AirbyteTracedException: raise ShopifyBulkExceptions.BulkJobNonHandableError(f"The Stream: `{self.http_client.name}`, Non-handable error occured: {errors}") def _get_server_errors(self, response: requests.Response) -> List[Optional[Mapping[str, Any]]]: server_errors = response.json().get("errors", []) return [server_errors] if isinstance(server_errors, str) else server_errors def _get_user_errors(self, response: requests.Response) -> List[Optional[Mapping[str, Any]]]: user_errors = response.json().get("data", {}).get("bulkOperationRunQuery", {}).get("userErrors", []) return [user_errors] if isinstance(user_errors, str) else user_errors def _collect_bulk_errors(self, response: requests.Response) -> List[Optional[Mapping[str, Any]]]: try: return self._get_server_errors(response) + self._get_user_errors(response) except (Exception, JSONDecodeError) as e: raise ShopifyBulkExceptions.BulkJobBadResponse( f"Couldn't check the `response` for `errors`, status: {response.status_code}, response: `{response.text}`. Trace: {repr(e)}." ) def _job_healthcheck(self, response: requests.Response) -> Optional[Exception]: errors = self._collect_bulk_errors(response) if self._job_state and errors: self._on_job_with_errors(errors) def _job_track_running(self) -> None: _, response = self.http_client.send_request( http_method="POST", url=self.base_url, json={"query": ShopifyBulkTemplates.status(self._job_id)}, request_kwargs={}, ) self._job_healthcheck(response) self._job_update_state(response) self._job_state_to_fn_map.get(self._job_state)(response=response) def _has_running_concurrent_job(self, errors: Optional[Iterable[Mapping[str, Any]]] = None) -> bool: """ When concurrent BULK Job is already running for the same SHOP we receive: Error example: [ { 'code': 'OPERATION_IN_PROGRESS', 'field': None, 'message': 'A bulk query operation for this app and shop is already in progress: gid://shopify/BulkOperation/4039184154813.', } ] """ # the errors are handled in `job_job_check_for_errors` if errors: for error in errors: error_code = error.get("code", "") if isinstance(error, dict) else "" if error_code == BulkOperationUserErrorCode.OPERATION_IN_PROGRESS.value: return True return False def _has_reached_max_concurrency(self) -> bool: return self._concurrent_attempt == self._concurrent_max_retry def _should_switch_shop_name(self, response: requests.Response) -> bool: """ Sometimes the API returns the redirected response that points to the same Store but with different Name: >> case: -- The user inputs the `shop name` as "A": while attempting to place the BULK Job -- The response contains the redirected results to the `shop name` as "B", like: response.url == "https://B.myshopify.com" This redirection is related to: 1) `aliased` or `hidden` store names from being exposed 2) `migrated` store data to the `new store`, but referenced within the old one stil reference issue: https://github.com/airbytehq/oncall/issues/5866 """ if self.base_url != response.url: self.base_url = response.url return True return False @bulk_retry_on_exception() def _job_check_state(self) -> None: while not self._job_completed(): if self._job_canceled(): break elif self._job_failed(): break else: self._job_track_running() @bulk_retry_on_exception() def create_job(self, stream_slice: Mapping[str, str], filter_field: str) -> None: if stream_slice: query = self.query.get(filter_field, stream_slice["start"], stream_slice["end"]) else: query = self.query.get() _, response = self.http_client.send_request( http_method="POST", url=self.base_url, json={"query": ShopifyBulkTemplates.prepare(query)}, request_kwargs={}, ) errors = self._collect_bulk_errors(response) if self._has_running_concurrent_job(errors): # when the concurrent job takes place, another job could not be created # we typically need to wait and retry, but no longer than 10 min. (see retry in `bulk_retry_on_exception`) raise ShopifyBulkExceptions.BulkJobCreationFailedConcurrentError(f"Failed to create job for stream {self.http_client.name}") elif self._should_switch_shop_name(response): # assign new shop name, since the one that specified in `config` was redirected to the different one. raise ShopifyBulkExceptions.BulkJobRedirectToOtherShopError(f"Switching the `store` name, redirected to: {response.url}") else: # There were no concurrent error for this job so even if there were other errors, we can reset this self._concurrent_attempt = 0 if errors: self._on_non_handable_job_error(errors) self._job_process_created(response) def _job_process_created(self, response: requests.Response) -> None: """ The Bulk Job with CREATED status, should be processed, before we move forward with Job Status Checks. """ bulk_response = response.json().get("data", {}).get("bulkOperationRunQuery", {}).get("bulkOperation", {}) if response else None if bulk_response and bulk_response.get("status") == ShopifyBulkJobStatus.CREATED.value: self._job_id = bulk_response.get("id") self._job_created_at = bulk_response.get("createdAt") self._job_state = ShopifyBulkJobStatus.CREATED.value LOGGER.info(f"Stream: `{self.http_client.name}`, the BULK Job: `{self._job_id}` is {ShopifyBulkJobStatus.CREATED.value}") def job_size_normalize(self, start: datetime, end: datetime) -> None: # adjust slice size when it's bigger than the loop point when it should end, # to preserve correct job size adjustments when this is the only job we need to run, based on STATE provided requested_slice_size = (end - start).total_days() self._job_size = requested_slice_size if requested_slice_size < self._job_size else self._job_size def get_adjusted_job_start(self, slice_start: datetime) -> datetime: step = self._job_size if self._job_size else self._job_size_min return slice_start.add(days=step) def _adjust_slice_end( self, slice_end: datetime, checkpointed_cursor: Optional[str] = None, filter_checkpointed_cursor: Optional[str] = None ) -> datetime: """ Choose between the existing `slice_end` value or `checkpointed_cursor` value or `filter_checkpointed_cursor` value, if provided. Optionally: raises the `transient` error if the checkpoint collision occurs. Note: filter_checkpointed_cursor is only used when cursor field is ID for streams like Customer Address etc. This method should return a datetime from last checkpointed value to adjust slice end, when cursor value is ID (int type) method gets end datetime from filter_checkpointed_cursor, which is value from filter field from last record. See https://github.com/airbytehq/oncall/issues/9052 for more details. """ if checkpointed_cursor: if self._checkpoint_cursor_has_collision(checkpointed_cursor): raise ShopifyBulkExceptions.BulkJobCheckpointCollisionError( f"The stream: `{self.http_client.name}` checkpoint collision is detected. Try to increase the `BULK Job checkpoint (rows collected)` to the bigger value. The stream will be synced again during the next sync attempt." ) # set the checkpointed cursor value self._set_last_checkpoint_cursor_value(checkpointed_cursor) if isinstance(checkpointed_cursor, str): return pdm.parse(checkpointed_cursor) if isinstance(checkpointed_cursor, int): return pdm.parse(filter_checkpointed_cursor) return slice_end def get_adjusted_job_end( self, slice_start: datetime, slice_end: datetime, checkpointed_cursor: Optional[str] = None, filter_checkpointed_cursor: Optional[str] = None, ) -> datetime: if self._job_adjust_slice_from_checkpoint: # set the checkpointing to default, before the next slice is emitted, to avoid inf.loop self._reset_checkpointing() return self._adjust_slice_end(slice_end, checkpointed_cursor, filter_checkpointed_cursor) if self._is_long_running_job: self._job_size_reduce_next() return slice_start return slice_end def _emit_final_job_message(self, job_current_elapsed_time: int) -> None: final_message = f"Stream: `{self.http_client.name}`, the BULK Job: `{self._job_id}` time elapsed: {job_current_elapsed_time} sec." if self._job_any_lines_collected: lines_collected_message = f" Rows collected: {self._job_last_rec_count} --> records: `{self.record_producer.record_composed}`." final_message = final_message + lines_collected_message # emit final Bulk job status message LOGGER.info(f"{final_message}") def _process_bulk_results(self) -> Iterable[Mapping[str, Any]]: if self._job_result_filename: # produce records from saved bulk job result yield from self.record_producer.read_file(self._job_result_filename) else: yield from [] @limiter.balance_rate_limit(api_type=ApiTypeEnum.graphql.value) def job_get_results(self) -> Optional[Iterable[Mapping[str, Any]]]: """ This method checks the status for the `CREATED` Shopify BULK Job, using it's `ID`. The time spent for the Job execution is tracked to understand the effort. """ job_started = time() try: # track created job until it's COMPLETED self._job_check_state() yield from self._process_bulk_results() except ( ShopifyBulkExceptions.BulkJobFailed, ShopifyBulkExceptions.BulkJobTimout, ShopifyBulkExceptions.BulkJobAccessDenied, # when the job is canceled by non-source actions, # we should raise the system_error ShopifyBulkExceptions.BulkJobCanceled, ) as bulk_job_error: raise bulk_job_error finally: job_current_elapsed_time = round((time() - job_started), 3) # emit the final Bulk Job log message self._emit_final_job_message(job_current_elapsed_time) # check whether or not we should expand or reduce the size of the slice self.__adjust_job_size(job_current_elapsed_time) # reset the state for COMPLETED job self.__reset_state()
ShopifyBulkManager
python
ray-project__ray
python/ray/serve/tests/unit/test_schema.py
{ "start": 29342, "end": 36839 }
class ____: def test_parse_dict(self): schema = LoggingConfig.parse_obj( { "log_level": logging.DEBUG, "encoding": "JSON", "logs_dir": "/my_dir", "enable_access_log": True, } ) assert schema.log_level == "DEBUG" assert schema.encoding == "JSON" assert schema.logs_dir == "/my_dir" assert schema.enable_access_log assert schema.additional_log_standard_attrs == [] # Test string values for log_level. schema = LoggingConfig.parse_obj( { "log_level": "DEBUG", } ) assert schema.log_level == "DEBUG" def test_wrong_encoding_type(self): with pytest.raises(ValidationError): LoggingConfig.parse_obj( { "logging_level": logging.INFO, "encoding": "NOT_EXIST", "logs_dir": "/my_dir", "enable_access_log": True, } ) def test_default_values(self): schema = LoggingConfig.parse_obj({}) assert schema.log_level == "INFO" assert schema.encoding == "TEXT" assert schema.logs_dir is None assert schema.enable_access_log assert schema.additional_log_standard_attrs == [] def test_additional_log_standard_attrs_type(self): schema = LoggingConfig.parse_obj({"additional_log_standard_attrs": ["name"]}) assert isinstance(schema.additional_log_standard_attrs, list) assert schema.additional_log_standard_attrs == ["name"] def test_additional_log_standard_attrs_type_error(self): with pytest.raises(ValidationError): LoggingConfig.parse_obj({"additional_log_standard_attrs": "name"}) def test_additional_log_standard_attrs_deduplicate(self): schema = LoggingConfig.parse_obj( {"additional_log_standard_attrs": ["name", "name"]} ) assert schema.additional_log_standard_attrs == ["name"] # This function is defined globally to be accessible via import path def global_f(): return "Hello world!" def test_deployment_to_schema_to_deployment(): @serve.deployment( num_replicas=3, ray_actor_options={ "runtime_env": { "working_dir": TEST_MODULE_PINNED_URI, "py_modules": [TEST_DEPLOY_GROUP_PINNED_URI], } }, ) def f(): # The body of this function doesn't matter. It gets replaced by # global_f() when the import path in f._func_or_class is overwritten. # This function is used as a convenience to apply the @serve.deployment # decorator without converting global_f() into a Deployment object. pass deployment = schema_to_deployment(deployment_to_schema(f)) deployment = deployment.options( func_or_class="ray.serve.tests.test_schema.global_f" ) assert deployment.num_replicas == 3 assert ( deployment.ray_actor_options["runtime_env"]["working_dir"] == TEST_MODULE_PINNED_URI ) assert deployment.ray_actor_options["runtime_env"]["py_modules"] == [ TEST_DEPLOY_GROUP_PINNED_URI, ] def test_unset_fields_schema_to_deployment_ray_actor_options(): # Ensure unset fields are excluded from ray_actor_options @serve.deployment( num_replicas=3, ray_actor_options={}, ) def f(): pass deployment = schema_to_deployment(deployment_to_schema(f)) deployment = deployment.options( func_or_class="ray.serve.tests.test_schema.global_f" ) # Serve will set num_cpus to 1 if it's not set. assert len(deployment.ray_actor_options) == 1 assert deployment.ray_actor_options["num_cpus"] == 1 def test_serve_instance_details_is_json_serializable(): """Test that ServeInstanceDetails is json serializable.""" serialized_policy_def = ( b"\x80\x05\x95L\x00\x00\x00\x00\x00\x00\x00\x8c\x1cray." b"serve.autoscaling_policy\x94\x8c'replica_queue_length_" b"autoscaling_policy\x94\x93\x94." ) details = ServeInstanceDetails( controller_info={"node_id": "fake_node_id"}, proxy_location="EveryNode", proxies={"node1": {"status": "HEALTHY"}}, applications={ "app1": { "name": "app1", "route_prefix": "/app1", "docs_path": "/docs/app1", "status": "RUNNING", "message": "fake_message", "last_deployed_time_s": 123, "source": "imperative", "deployments": { "deployment1": { "name": "deployment1", "status": "HEALTHY", "status_trigger": "AUTOSCALING", "message": "fake_message", "deployment_config": { "name": "deployment1", "autoscaling_config": { # Byte object will cause json serializable error "_serialized_policy_def": serialized_policy_def }, }, "target_num_replicas": 0, "required_resources": {"CPU": 1}, "replicas": [], } }, "external_scaler_enabled": False, } }, )._get_user_facing_json_serializable_dict(exclude_unset=True) details_json = json.dumps(details) expected_json = json.dumps( { "controller_info": {"node_id": "fake_node_id"}, "proxy_location": "EveryNode", "proxies": {"node1": {"status": "HEALTHY"}}, "applications": { "app1": { "name": "app1", "route_prefix": "/app1", "docs_path": "/docs/app1", "status": "RUNNING", "message": "fake_message", "last_deployed_time_s": 123.0, "source": "imperative", "deployments": { "deployment1": { "name": "deployment1", "status": "HEALTHY", "status_trigger": "AUTOSCALING", "message": "fake_message", "deployment_config": { "name": "deployment1", "autoscaling_config": {}, }, "target_num_replicas": 0, "required_resources": {"CPU": 1}, "replicas": [], } }, "external_scaler_enabled": False, } }, } ) assert details_json == expected_json # ensure internal field, serialized_policy_def, is not exposed application = details["applications"]["app1"] deployment = application["deployments"]["deployment1"] autoscaling_config = deployment["deployment_config"]["autoscaling_config"] assert "_serialized_policy_def" not in autoscaling_config if __name__ == "__main__": sys.exit(pytest.main(["-v", __file__]))
TestLoggingConfig
python
apache__airflow
providers/standard/src/airflow/providers/standard/decorators/branch_external_python.py
{ "start": 1217, "end": 2403 }
class ____(_PythonDecoratedOperator, BranchExternalPythonOperator): """Wraps a Python callable and captures args/kwargs when called for execution.""" template_fields = BranchExternalPythonOperator.template_fields custom_operator_name: str = "@task.branch_external_python" def branch_external_python_task( python_callable: Callable | None = None, multiple_outputs: bool | None = None, **kwargs ) -> TaskDecorator: """ Wrap a python function into a BranchExternalPythonOperator. For more information on how to use this operator, take a look at the guide: :ref:`concepts:branching` Accepts kwargs for operator kwarg. Can be reused in a single DAG. :param python_callable: Function to decorate :param multiple_outputs: if set, function return value will be unrolled to multiple XCom values. Dict will unroll to xcom values with keys as XCom keys. Defaults to False. """ return task_decorator_factory( python_callable=python_callable, multiple_outputs=multiple_outputs, decorated_operator_class=_BranchExternalPythonDecoratedOperator, **kwargs, )
_BranchExternalPythonDecoratedOperator
python
google__jax
jax/experimental/jax2tf/tests/flax_models/bilstm_classifier.py
{ "start": 3350, "end": 5533 }
class ____(nn.Module): """Embeds batches of token IDs into feature space. Attributes: vocab_size: The size of the vocabulary (i.e., the number of embeddings). embedding_size: The dimensionality of the embeddings. embedding_init: The initializer used to initialize the embeddings. frozen: Freezes the embeddings table, keeping it fixed at initial values. dropout_rate: Percentage of units to drop after embedding the inputs. word_dropout_rate: Percentage of input words to replace with unk_idx. unk_idx: The index (integer) to use to replace inputs for word dropout. """ vocab_size: int embedding_size: int embedding_init: Callable[..., Array] = nn.initializers.normal(stddev=0.1) frozen: bool = False dropout_rate: float = 0. word_dropout_rate: float = 0. unk_idx: int | None = None deterministic: bool | None = None dtype: jnp.dtype = jnp.dtype('float32') def setup(self): self.embedding = self.param( 'embedding', self.embedding_init, (self.vocab_size, self.embedding_size), self.dtype) self.dropout_layer = nn.Dropout(rate=self.dropout_rate) self.word_dropout_layer = WordDropout( dropout_rate=self.word_dropout_rate, unk_idx=self.unk_idx) def __call__(self, inputs: Array, deterministic: bool | None = None) -> Array: """Embeds the input sequences and applies word dropout and dropout. Args: inputs: Batch of input token ID sequences <int64>[batch_size, seq_length]. deterministic: Disables dropout when set to True. Returns: The embedded inputs, shape: <float32>[batch_size, seq_length, embedding_size]. """ deterministic = nn.module.merge_param( 'deterministic', self.deterministic, deterministic) inputs = self.word_dropout_layer(inputs, deterministic=deterministic) embedded_inputs = self.embedding[inputs] # Keep the embeddings fixed at initial (e.g. pretrained) values. if self.frozen: embedded_inputs = jax.lax.stop_gradient(embedded_inputs) return self.dropout_layer(embedded_inputs, deterministic=deterministic)
Embedder
python
ansible__ansible
test/lib/ansible_test/_internal/cli/argparsing/parsers.py
{ "start": 972, "end": 1129 }
class ____(Completion): """Argument completion unavailable.""" message: str = 'No completions available.' @dataclasses.dataclass
CompletionUnavailable
python
huggingface__transformers
tests/models/vision_encoder_decoder/test_modeling_vision_encoder_decoder.py
{ "start": 27294, "end": 31222 }
class ____(EncoderDecoderMixin, unittest.TestCase): def get_encoder_decoder_model(self, config, decoder_config): encoder_model = SwinModel(config).eval() decoder_model = BartForCausalLM(decoder_config).eval() return encoder_model, decoder_model def prepare_config_and_inputs(self): model_tester_encoder = SwinModelTester(self, batch_size=13, embed_dim=32) model_tester_decoder = BartModelTester(self, batch_size=13, hidden_size=32, max_position_embeddings=512) encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs() decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs() config, pixel_values, _ = encoder_config_and_inputs decoder_config, decoder_inputs_dict = decoder_config_and_inputs decoder_inputs_dict["labels"] = decoder_inputs_dict["decoder_input_ids"] # make sure that cross attention layers are added decoder_config.add_cross_attention = True # disable cache for now decoder_config.use_cache = False return { "config": config, "pixel_values": pixel_values, "decoder_config": decoder_config, **decoder_inputs_dict, } def check_encoder_decoder_model_output_attentions( self, config, decoder_config, decoder_input_ids, decoder_attention_mask, labels=None, pixel_values=None, **kwargs, ): # force eager attention to support output attentions config._attn_implementation = "eager" decoder_config._attn_implementation = "eager" # make the decoder inputs a different shape from the encoder inputs to harden the test decoder_input_ids = decoder_input_ids[:, :-1] decoder_attention_mask = decoder_attention_mask[:, :-1] encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config) enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model) enc_dec_model.to(torch_device) outputs_encoder_decoder = enc_dec_model( pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_attentions=True, ) encoder_attentions = outputs_encoder_decoder["encoder_attentions"] self.assertEqual(len(encoder_attentions), config.num_hidden_layers) # in Swin, the seq_len equals: seq_len = encoder_model.config.window_size**2 self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads[0], seq_len, seq_len)) decoder_attentions = outputs_encoder_decoder["decoder_attentions"] num_decoder_layers = ( decoder_config.num_decoder_layers if hasattr(decoder_config, "num_decoder_layers") else decoder_config.num_hidden_layers ) self.assertEqual(len(decoder_attentions), num_decoder_layers) self.assertEqual( decoder_attentions[0].shape[-3:], (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]), ) cross_attentions = outputs_encoder_decoder["cross_attentions"] self.assertEqual(len(cross_attentions), num_decoder_layers) encoder_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) cross_attention_input_seq_len = decoder_input_ids.shape[-1] self.assertEqual( cross_attentions[0].shape[-3:], (decoder_config.num_attention_heads, cross_attention_input_seq_len, encoder_seq_len), ) @unittest.skip(reason="There are no published pretrained BART-causal checkpoints for now") def test_real_model_save_load_from_pretrained(self): pass @require_torch
Swin2BartModelTest
python
facebook__pyre-check
client/configuration/tests/scheduler_policies_test.py
{ "start": 383, "end": 4697 }
class ____(testslide.TestCase): def test_policy_from_and_to_json(self) -> None: def assert_parsed(input: object, expected: SchedulerPolicy) -> None: self.assertEqual(SchedulerPolicy.from_json(input, "<unknown>"), expected) self.assertEqual(input, expected.to_json()) def assert_not_parsed(input: object) -> None: with self.assertRaises(InvalidConfiguration): SchedulerPolicy.from_json(input, "<unknown>") assert_not_parsed("") assert_not_parsed("derp") assert_not_parsed({}) assert_not_parsed({"kind": 1}) assert_not_parsed({"kind": "unknown"}) assert_not_parsed({"kind": "fixed_chunk_size"}) assert_not_parsed( {"kind": "fixed_chunk_size", "minimum_chunk_size": "not_integer"} ) assert_not_parsed({"kind": "fixed_chunk_size", "minimum_chunk_size": 1}) assert_not_parsed( { "kind": "fixed_chunk_size", "minimum_chunk_size": 1, "minimum_chunks_per_worker": 10, "preferred_chunk_size": -1, } ) assert_parsed( { "kind": "fixed_chunk_size", "minimum_chunk_size": 1, "minimum_chunks_per_worker": 10, "preferred_chunk_size": 100, }, SchedulerPolicy( value=FixedChunkSize( minimum_chunk_size=1, minimum_chunks_per_worker=10, preferred_chunk_size=100, ) ), ) assert_parsed( { "kind": "fixed_chunk_size", "minimum_chunks_per_worker": 10, "preferred_chunk_size": 100, }, SchedulerPolicy( value=FixedChunkSize( minimum_chunk_size=None, minimum_chunks_per_worker=10, preferred_chunk_size=100, ) ), ) assert_parsed( { "kind": "fixed_chunk_count", "minimum_chunks_per_worker": 1, "minimum_chunk_size": 10, "preferred_chunks_per_worker": 100, }, SchedulerPolicy( value=FixedChunkCount( minimum_chunks_per_worker=1, minimum_chunk_size=10, preferred_chunks_per_worker=100, ) ), ) assert_parsed( { "kind": "fixed_chunk_count", "minimum_chunk_size": 10, "preferred_chunks_per_worker": 100, }, SchedulerPolicy( value=FixedChunkCount( minimum_chunks_per_worker=None, minimum_chunk_size=10, preferred_chunks_per_worker=100, ) ), ) def test_policies_from_and_to_json(self) -> None: def assert_parsed(input: object, expected: SchedulerPolicies) -> None: self.assertEqual(SchedulerPolicies.from_json(input), expected) self.assertEqual(input, expected.to_json()) def assert_not_parsed(input: object) -> None: with self.assertRaises(InvalidConfiguration): SchedulerPolicies.from_json(input) assert_not_parsed("") assert_not_parsed({"taint_fixpoint": "foo"}) assert_not_parsed({"taint_fixpoint": {}}) assert_parsed( { "taint_fixpoint": { "kind": "fixed_chunk_size", "minimum_chunk_size": 1, "minimum_chunks_per_worker": 10, "preferred_chunk_size": 100, } }, SchedulerPolicies( policies={ "taint_fixpoint": SchedulerPolicy( value=FixedChunkSize( minimum_chunk_size=1, minimum_chunks_per_worker=10, preferred_chunk_size=100, ) ) } ), )
SchedulerPoliciesTest