language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
readthedocs__readthedocs.org
readthedocs/projects/tasks/builds.py
{ "start": 3384, "end": 4895 }
class ____: """ Object to store all data related to a Celery task execution. We use this object from inside the task to store data while we are running the task. This is to avoid using `self.` inside the task due to its limitations: it's instantiated once and that instance is re-used for all the tasks ran. This could produce sharing instance state between two different and unrelated tasks. Note that *all the data* that needs to be saved in the task to share among different task's method, should be stored in this object. Normally, under `self.data` inside the Celery task itself. See https://docs.celeryproject.org/en/master/userguide/tasks.html#instantiation .. note:: Dataclasses require type annotations, this doesn't mean we are using type hints or enforcing them in our codebase. """ # Arguments from the task. version_pk: int = None build_pk: int = None build_commit: str = None # Slumber client to interact with the API v2. api_client: API = None start_time: timezone.datetime = None environment_class: type[DockerBuildEnvironment] | type[LocalBuildEnvironment] = None build_director: BuildDirector = None config: BuildConfigV2 = None project: APIProject = None version: APIVersion = None # Dictionary returned from the API. build: dict = field(default_factory=dict) # Build data for analytics (telemetry). build_data: dict = field(default_factory=dict)
TaskData
python
huggingface__transformers
src/transformers/generation/continuous_batching/cache_manager.py
{ "start": 1814, "end": 9954 }
class ____: """A class to manage the number of free blocks and block re-use. If prefix sharing is off, the block manager is a simple FIFO structure where blocks are either free or in use. If prefix sharing is on, blocks can have 3 states: - in use: one or more requests references this block, thus it cannot be written over. The number of requests referencing this block is stored as ref_count in the Block object. - un-initialized: the block points to a space in the KV cache tensor that contains no data yet. Those blocks can be given as free blocks to new requests without any overhead. - initialized: the block is complete and was used by one or more request that are finished. It contains KV cache data and its hash is stored in the hash table. If a new request needs a block with the same hash, we increase the ref_count of the block and remove it from the list of initialized blocks, because it is now in use. Still, the block can be freed if no un-initialized blocks are left. In that case, we remove its hash from the hash table. There is no structure to keep track of the blocks in use: if a block is neither un-initialized nor initialized, it is in use. """ def __init__(self, num_blocks: int, block_size: int, use_prefix_sharing: bool) -> None: """Initializes the block manager with a given number of blocks (num_blocks) of size (block_size). Prefix sharing can be turned on with the (use_prefix_sharing) flag, which only happens if the model has only full attention layers.""" self.num_blocks = num_blocks self.block_size = block_size self._uninit_block_ids = deque(range(num_blocks)) self._init_block_ids: dict[int, None] = {} # effectively act as an ordered set self._use_prefix_sharing = use_prefix_sharing self._hash_to_id: dict[int, int] = {} self._id_to_block: dict[int, Block] = {} @property def num_free_blocks(self) -> int: """Returns the number of free blocks left. Both initialized and uninitialized blocks are considered free.""" return len(self._uninit_block_ids) + len(self._init_block_ids) def has_enough_free_blocks(self, n_blocks: int) -> bool: """Checks if there are enough free blocks to allocate the requested number of blocks (n_blocks). If there are not enough uninitialized blocks, we uninitialize the required number of initialized blocks.""" # Exit early if there are enough uninitialized blocks if len(self._uninit_block_ids) >= n_blocks: return True # Exit early if even after uninitializing all initialized blocks, there are not enough free blocks block_to_uninitialize = n_blocks - len(self._uninit_block_ids) if len(self._init_block_ids) < block_to_uninitialize: return False # Uninitialize the required amount of blocks for _ in range(block_to_uninitialize): id_to_uninitialize = self._init_block_ids.popitem()[0] block = self._id_to_block[id_to_uninitialize] self._hash_to_id.pop(block.hash) self._uninit_block_ids.append(id_to_uninitialize) return True def get_free_blocks(self, n_blocks: int, last_block_id: int | None) -> list[int] | None: """Returns a list of (n_blocks) free block and mark them as no longuer free in the internal data structures. One can also pass a (last_block_id) to indicate the last block id in the sequence, which is used to keep track of the parent block. If the manager cannot find enough free blocks, it returns None.""" if not self.has_enough_free_blocks(n_blocks): return None allocated_block_ids = [self._uninit_block_ids.popleft() for _ in range(n_blocks)] # If we use prefix caching, we keep track of the allocated blocks as partial blocks if self._use_prefix_sharing: for block_id in allocated_block_ids: block = Block(block_id, last_block_id) self._id_to_block[block_id] = block last_block_id = block_id # In both cases, we return the allocated block ids return allocated_block_ids def increase_ref_count(self, block_id: int) -> None: """Increases the reference count of a given (block_id).""" block = self._id_to_block[block_id] block.ref_count += 1 if block.ref_count == 1: self._init_block_ids.pop(block_id) def decrease_ref_count(self, block_id: int) -> None: """Decreases the reference count of a given (block_id). If the reference count reaches 0, the block is no longer in use, and becomes initialized (if it was complete) or uninitialized (if it was incomplete).""" block = self._id_to_block[block_id] block.ref_count -= 1 if block.ref_count == 0: if block.is_complete: self._init_block_ids[block_id] = None else: self._id_to_block.pop(block_id) self._uninit_block_ids.append(block_id) def free_blocks(self, blocks: list[int]) -> None: """Marks a list of (blocks) as free. If there is no prefix sharing, we simply add them to the uninitialized blocks queue. Otherwise, their new state depends on whether they are complete.""" if self._use_prefix_sharing: for block_id in blocks: self.decrease_ref_count(block_id) else: self._uninit_block_ids.extend(blocks) def mark_blocks_as_complete( self, num_complete_blocks: int, allocated_blocks: list[int], prompt_ids: list[int] ) -> None: """Among the list of (allocated_blocks), mark (num_complete_blocks) incomplete blocks as now complete. The list of (prompt_ids) is used to compute the hash of the new block.""" # Look for the first complete block, starting from the last block in the sequence parent_hash = None incomplete_blocks: list[Block] = [] for i, block_id in reverse_enumerate(allocated_blocks): block = self._id_to_block[block_id] if block.is_complete: parent_hash = block.hash break incomplete_blocks.append((i, block)) # Now go through the incomplete blocks and updated them new_parent_id = None while incomplete_blocks: i, block = incomplete_blocks.pop() # If the parent id has been updated, we apply the change if new_parent_id is not None: block.parent_id = new_parent_id new_parent_id = None # If we have set the hash for all complete blocks, we can stop if num_complete_blocks == 0: break # Otherwise, we compute the hash num_complete_blocks -= 1 tokens = prompt_ids[i * self.block_size : (i + 1) * self.block_size] block.hash = self.compute_hash(parent_hash, tokens) existing_block_id = self._hash_to_id.get(block.hash) # If the block hash is already in the hash to id mapping, we reference the existing block instead if existing_block_id is not None: logger.debug(f"Found existing block {existing_block_id} for block {block.id}") allocated_blocks[i] = existing_block_id self._id_to_block[existing_block_id].ref_count += 1 new_parent_id = existing_block_id self.free_blocks([block.id]) # Otherwise, we add the completed block to the hash table else: self._hash_to_id[block.hash] = block.id # Update loop variables parent_hash = block.hash def compute_hash(self, parent_hash: int | None, tokens: list[int]) -> int: """Computes the hash of a block containing the given (tokens) with a given (parent_hash). If the block has no parent, the parent hash is None.""" return hash((parent_hash, tuple(tokens)))
BlockManager
python
ray-project__ray
python/ray/serve/tests/test_replica_request_context.py
{ "start": 348, "end": 2480 }
class ____: def test_basic_route_prefix(self): @serve.deployment class A: def __call__(self) -> str: return _get_request_context_route() # No route prefix, should return "/" regardless of full route. serve.run(A.bind()) r = httpx.get(f"{get_application_url()}/") assert r.status_code == 200 assert r.text == "/" assert httpx.get(f"{get_application_url()}/subpath").text == "/" # Configured route prefix should be set. serve.run(A.bind(), route_prefix="/prefix") base_url = get_application_url(exclude_route_prefix=True) assert httpx.get(f"{base_url}/prefix").text == "/prefix" assert httpx.get(f"{base_url}/prefix/subpath").text == "/prefix" def test_matching_fastapi_route(self): fastapi_app = FastAPI() @serve.deployment @serve.ingress(fastapi_app) class A: @fastapi_app.get("/fastapi-path") def root(self) -> str: return PlainTextResponse(_get_request_context_route()) @fastapi_app.get("/dynamic/{user_id}") def dynamic(self) -> str: return PlainTextResponse(_get_request_context_route()) # No route prefix, should return matched fastapi route. serve.run(A.bind()) assert ( httpx.get(f"{get_application_url()}/fastapi-path").text == "/fastapi-path" ) assert ( httpx.get(f"{get_application_url()}/dynamic/abc123").text == "/dynamic/{user_id}" ) # Configured route prefix, should return matched route prefix + fastapi route. serve.run(A.bind(), route_prefix="/prefix") base_url = get_application_url(exclude_route_prefix=True) assert ( httpx.get(f"{base_url}/prefix/fastapi-path").text == "/prefix/fastapi-path" ) assert ( httpx.get(f"{base_url}/prefix/dynamic/abc123").text == "/prefix/dynamic/{user_id}" ) if __name__ == "__main__": sys.exit(pytest.main(["-v", "-s", __file__]))
TestHTTPRoute
python
django__django
tests/admin_views/models.py
{ "start": 4713, "end": 4983 }
class ____(models.Model): expected = models.BooleanField(default=False) leader = models.ForeignKey(Actor, models.CASCADE) country = models.CharField(max_length=20) def __str__(self): return "by %s from %s" % (self.leader, self.country)
Inquisition
python
pytorch__pytorch
torch/_dynamo/variables/ctx_manager.py
{ "start": 41271, "end": 43838 }
class ____(ContextWrappingVariable): _guards_singleton = Guard(GlobalStateSource(), GuardBuilder.FSDP_TRAINING_STATE) # type: ignore[arg-type] @staticmethod def create( tx: "InstructionTranslator", param_group_var: Any, target_value: Any, **kwargs: Any, ) -> "FSDPParamGroupUseTrainingStateVariable": var = FSDPParamGroupUseTrainingStateVariable( param_group_var=param_group_var, target_values=[target_value], initial_values=[param_group_var.value._training_state], **kwargs, ) return var def __init__( self, param_group_var: Any, target_values: Sequence[Any], initial_values: Optional[Sequence[Any]] = None, **kwargs: Any, ) -> None: super().__init__( target_values=target_values, initial_values=initial_values, **kwargs ) self.param_group_var = param_group_var install_guard(self._guards_singleton) def enter(self, tx: "InstructionTranslator") -> VariableTracker: self._call_func(tx, self.target_values) return variables.ConstantVariable.create(None) def exit( self, tx: "InstructionTranslator", *args: VariableTracker ) -> VariableTracker: self._call_func(tx, self.initial_values) # type: ignore[arg-type] return variables.ConstantVariable.create(None) def call_function( self, tx: "InstructionTranslator", args: Sequence[VariableTracker], kwargs: dict[str, VariableTracker], ) -> VariableTracker: # undo eager initialization self._call_func(tx, self.initial_values) # type: ignore[arg-type] return super().call_function(tx, args, kwargs) def _call_func(self, tx: "InstructionTranslator", values: Sequence[Any]) -> None: assert len(values) == 1 value = values[0] if self.param_group_var.value._training_state != value: self.param_group_var.call_method( tx, "__setattr__", ( variables.ConstantVariable.create("_training_state"), variables.EnumVariable(value), ), {}, ) self.param_group_var.value._training_state = value def module_name(self) -> str: return "torch.distributed.fsdp._fully_shard._fsdp_param_group.FSDPParamGroup" def fn_name(self) -> str: return "use_training_state"
FSDPParamGroupUseTrainingStateVariable
python
networkx__networkx
networkx/algorithms/bipartite/tests/test_matching.py
{ "start": 7698, "end": 11973 }
class ____: @classmethod def setup_class(cls): pytest.importorskip("scipy") def test_minimum_weight_full_matching_incomplete_graph(self): B = nx.Graph() B.add_nodes_from([1, 2], bipartite=0) B.add_nodes_from([3, 4], bipartite=1) B.add_edge(1, 4, weight=100) B.add_edge(2, 3, weight=100) B.add_edge(2, 4, weight=50) matching = minimum_weight_full_matching(B) assert matching == {1: 4, 2: 3, 4: 1, 3: 2} def test_minimum_weight_full_matching_with_no_full_matching(self): B = nx.Graph() B.add_nodes_from([1, 2, 3], bipartite=0) B.add_nodes_from([4, 5, 6], bipartite=1) B.add_edge(1, 4, weight=100) B.add_edge(2, 4, weight=100) B.add_edge(3, 4, weight=50) B.add_edge(3, 5, weight=50) B.add_edge(3, 6, weight=50) with pytest.raises(ValueError): minimum_weight_full_matching(B) def test_minimum_weight_full_matching_square(self): G = nx.complete_bipartite_graph(3, 3) G.add_edge(0, 3, weight=400) G.add_edge(0, 4, weight=150) G.add_edge(0, 5, weight=400) G.add_edge(1, 3, weight=400) G.add_edge(1, 4, weight=450) G.add_edge(1, 5, weight=600) G.add_edge(2, 3, weight=300) G.add_edge(2, 4, weight=225) G.add_edge(2, 5, weight=300) matching = minimum_weight_full_matching(G) assert matching == {0: 4, 1: 3, 2: 5, 4: 0, 3: 1, 5: 2} def test_minimum_weight_full_matching_smaller_left(self): G = nx.complete_bipartite_graph(3, 4) G.add_edge(0, 3, weight=400) G.add_edge(0, 4, weight=150) G.add_edge(0, 5, weight=400) G.add_edge(0, 6, weight=1) G.add_edge(1, 3, weight=400) G.add_edge(1, 4, weight=450) G.add_edge(1, 5, weight=600) G.add_edge(1, 6, weight=2) G.add_edge(2, 3, weight=300) G.add_edge(2, 4, weight=225) G.add_edge(2, 5, weight=290) G.add_edge(2, 6, weight=3) matching = minimum_weight_full_matching(G) assert matching == {0: 4, 1: 6, 2: 5, 4: 0, 5: 2, 6: 1} def test_minimum_weight_full_matching_smaller_top_nodes_right(self): G = nx.complete_bipartite_graph(3, 4) G.add_edge(0, 3, weight=400) G.add_edge(0, 4, weight=150) G.add_edge(0, 5, weight=400) G.add_edge(0, 6, weight=1) G.add_edge(1, 3, weight=400) G.add_edge(1, 4, weight=450) G.add_edge(1, 5, weight=600) G.add_edge(1, 6, weight=2) G.add_edge(2, 3, weight=300) G.add_edge(2, 4, weight=225) G.add_edge(2, 5, weight=290) G.add_edge(2, 6, weight=3) matching = minimum_weight_full_matching(G, top_nodes=[3, 4, 5, 6]) assert matching == {0: 4, 1: 6, 2: 5, 4: 0, 5: 2, 6: 1} def test_minimum_weight_full_matching_smaller_right(self): G = nx.complete_bipartite_graph(4, 3) G.add_edge(0, 4, weight=400) G.add_edge(0, 5, weight=400) G.add_edge(0, 6, weight=300) G.add_edge(1, 4, weight=150) G.add_edge(1, 5, weight=450) G.add_edge(1, 6, weight=225) G.add_edge(2, 4, weight=400) G.add_edge(2, 5, weight=600) G.add_edge(2, 6, weight=290) G.add_edge(3, 4, weight=1) G.add_edge(3, 5, weight=2) G.add_edge(3, 6, weight=3) matching = minimum_weight_full_matching(G) assert matching == {1: 4, 2: 6, 3: 5, 4: 1, 5: 3, 6: 2} def test_minimum_weight_full_matching_negative_weights(self): G = nx.complete_bipartite_graph(2, 2) G.add_edge(0, 2, weight=-2) G.add_edge(0, 3, weight=0.2) G.add_edge(1, 2, weight=-2) G.add_edge(1, 3, weight=0.3) matching = minimum_weight_full_matching(G) assert matching == {0: 3, 1: 2, 2: 1, 3: 0} def test_minimum_weight_full_matching_different_weight_key(self): G = nx.complete_bipartite_graph(2, 2) G.add_edge(0, 2, mass=2) G.add_edge(0, 3, mass=0.2) G.add_edge(1, 2, mass=1) G.add_edge(1, 3, mass=2) matching = minimum_weight_full_matching(G, weight="mass") assert matching == {0: 3, 1: 2, 2: 1, 3: 0}
TestMinimumWeightFullMatching
python
ray-project__ray
python/ray/serve/batching.py
{ "start": 19610, "end": 19759 }
class ____(Protocol, Generic[SelfType, T, R]): def __call__(self, self_: SelfType, __batch: List[T], /) -> List[R]: ...
_SyncBatchingMethod
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_quote_name04.py
{ "start": 315, "end": 1261 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("quote_name04.xlsx") def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet = workbook.add_worksheet("Sheet 1") chart = workbook.add_chart({"type": "pie"}) worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series({"values": ["Sheet 1", 0, 0, 4, 0], "name": ["Sheet 1", 0, 0]}) chart.set_title({"name": "Foo"}) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
getsentry__sentry
tests/sentry/tasks/test_post_process.py
{ "start": 26294, "end": 30533 }
class ____(BasePostProgressGroupMixin): @patch("sentry.sentry_apps.tasks.sentry_apps.process_resource_change_bound.delay") def test_processes_resource_change_task_on_new_group(self, delay: MagicMock) -> None: event = self.create_event(data={}, project_id=self.project.id) group = event.group self.call_post_process_group( is_new=True, is_regression=False, is_new_group_environment=False, event=event, ) delay.assert_called_once_with(action="created", sender="Group", instance_id=group.id) @with_feature("organizations:integrations-event-hooks") @patch("sentry.sentry_apps.tasks.sentry_apps.process_resource_change_bound.delay") def test_processes_resource_change_task_on_error_events(self, delay: MagicMock) -> None: event = self.create_event( data={ "message": "Foo bar", "exception": {"type": "Foo", "value": "oh no"}, "level": "error", "timestamp": timezone.now().isoformat(), }, project_id=self.project.id, assert_no_errors=False, ) self.create_service_hook( project=self.project, organization=self.project.organization, actor=self.user, events=["error.created"], ) self.call_post_process_group( is_new=False, is_regression=False, is_new_group_environment=False, event=event, ) delay.assert_called_once_with( action="created", sender="Error", instance_id=event.event_id, group_id=event.group_id, project_id=self.project.id, ) @with_feature("organizations:integrations-event-hooks") @patch("sentry.sentry_apps.tasks.sentry_apps.process_resource_change_bound.delay") def test_processes_resource_change_task_not_called_for_non_errors( self, delay: MagicMock ) -> None: event = self.create_event( data={ "message": "Foo bar", "level": "info", "timestamp": timezone.now().isoformat(), }, project_id=self.project.id, assert_no_errors=False, ) self.call_post_process_group( is_new=False, is_regression=False, is_new_group_environment=False, event=event, ) assert not delay.called @patch("sentry.sentry_apps.tasks.sentry_apps.process_resource_change_bound.delay") def test_processes_resource_change_task_not_called_without_feature_flag( self, delay: MagicMock ) -> None: event = self.create_event( data={ "message": "Foo bar", "level": "info", "timestamp": timezone.now().isoformat(), }, project_id=self.project.id, assert_no_errors=False, ) self.call_post_process_group( is_new=False, is_regression=False, is_new_group_environment=False, event=event, ) assert not delay.called @with_feature("organizations:integrations-event-hooks") @patch("sentry.sentry_apps.tasks.sentry_apps.process_resource_change_bound.delay") def test_processes_resource_change_task_not_called_without_error_created( self, delay: MagicMock ) -> None: event = self.create_event( data={ "message": "Foo bar", "level": "error", "exception": {"type": "Foo", "value": "oh no"}, "timestamp": timezone.now().isoformat(), }, project_id=self.project.id, assert_no_errors=False, ) self.create_service_hook( project=self.project, organization=self.project.organization, actor=self.user, events=[] ) self.call_post_process_group( is_new=False, is_regression=False, is_new_group_environment=False, event=event, ) assert not delay.called
ResourceChangeBoundsTestMixin
python
gevent__gevent
src/gevent/_imap.py
{ "start": 892, "end": 6186 }
class ____(Greenlet): # pylint:disable=undefined-variable """ At iterator of map results. """ def __init__(self, func, iterable, spawn, maxsize=None, _zipped=False): """ An iterator that. :param callable spawn: The function we use to create new greenlets. :keyword int maxsize: If given and not-None, specifies the maximum number of finished results that will be allowed to accumulated awaiting the reader; more than that number of results will cause map function greenlets to begin to block. This is most useful is there is a great disparity in the speed of the mapping code and the consumer and the results consume a great deal of resources. Using a bound is more computationally expensive than not using a bound. .. versionchanged:: 1.1b3 Added the *maxsize* parameter. """ Greenlet.__init__(self) # pylint:disable=undefined-variable self.spawn = spawn self._zipped = _zipped self.func = func self.iterable = iterable self.queue = UnboundQueue() # pylint:disable=undefined-variable if maxsize: # Bounding the queue is not enough if we want to keep from # accumulating objects; the result value will be around as # the greenlet's result, blocked on self.queue.put(), and # we'll go on to spawn another greenlet, which in turn can # create the result. So we need a semaphore to prevent a # greenlet from exiting while the queue is full so that we # don't spawn the next greenlet (assuming that self.spawn # is of course bounded). (Alternatively we could have the # greenlet itself do the insert into the pool, but that # takes some rework). # # Given the use of a semaphore at this level, sizing the queue becomes # redundant, and that lets us avoid having to use self.link() instead # of self.rawlink() to avoid having blocking methods called in the # hub greenlet. self._result_semaphore = Semaphore(maxsize) # pylint:disable=undefined-variable else: self._result_semaphore = None self._outstanding_tasks = 0 # The index (zero based) of the maximum number of # results we will have. self._max_index = -1 self.finished = False # We're iterating in a different greenlet than we're running. def __iter__(self): return self def __next__(self): if self._result_semaphore is not None: self._result_semaphore.release() value = self._inext() if isinstance(value, Failure): _raise_exc(value) return value next = __next__ # Py2 def _inext(self): return self.queue.get() def _ispawn(self, func, item, item_index): if self._result_semaphore is not None: self._result_semaphore.acquire() self._outstanding_tasks += 1 g = self.spawn(func, item) if not self._zipped else self.spawn(func, *item) g._imap_task_index = item_index g.rawlink(self._on_result) return g def _run(self): # pylint:disable=method-hidden try: func = self.func for item in self.iterable: self._max_index += 1 self._ispawn(func, item, self._max_index) self._on_finish(None) except BaseException as e: self._on_finish(e) raise finally: self.spawn = None self.func = None self.iterable = None self._result_semaphore = None def _on_result(self, greenlet): # This method will be called in the hub greenlet (we rawlink) self._outstanding_tasks -= 1 count = self._outstanding_tasks finished = self.finished ready = self.ready() put_finished = False if ready and count <= 0 and not finished: finished = self.finished = True put_finished = True if greenlet.successful(): self.queue.put(self._iqueue_value_for_success(greenlet)) else: self.queue.put(self._iqueue_value_for_failure(greenlet)) if put_finished: self.queue.put(self._iqueue_value_for_self_finished()) def _on_finish(self, exception): # Called in this greenlet. if self.finished: return if exception is not None: self.finished = True self.queue.put(self._iqueue_value_for_self_failure(exception)) return if self._outstanding_tasks <= 0: self.finished = True self.queue.put(self._iqueue_value_for_self_finished()) def _iqueue_value_for_success(self, greenlet): return greenlet.value def _iqueue_value_for_failure(self, greenlet): return Failure(greenlet.exception, getattr(greenlet, '_raise_exception')) def _iqueue_value_for_self_finished(self): return Failure(StopIteration()) def _iqueue_value_for_self_failure(self, exception): return Failure(exception, self._raise_exception)
IMapUnordered
python
weaviate__weaviate-python-client
weaviate/collections/classes/config_vectorizers.py
{ "start": 8372, "end": 8971 }
class ____(_VectorizerConfigCreate): vectorizer: Union[Vectorizers, _EnumLikeStr] = Field( default=Vectorizers.TEXT2VEC_OPENAI, frozen=True, exclude=True ) baseURL: Optional[AnyHttpUrl] resourceName: str deploymentId: str vectorizeClassName: bool dimensions: Optional[int] model: Optional[str] def _to_dict(self) -> Dict[str, Any]: ret_dict = super()._to_dict() if self.baseURL is not None: ret_dict["baseURL"] = self.baseURL.unicode_string() ret_dict["isAzure"] = True return ret_dict
_Text2VecAzureOpenAIConfig
python
langchain-ai__langchain
libs/core/langchain_core/output_parsers/openai_tools.py
{ "start": 6915, "end": 9969 }
class ____(JsonOutputToolsParser): """Parse tools from OpenAI response.""" key_name: str """The type of tools to return.""" def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a list of tool calls. Args: result: The result of the LLM call. partial: Whether to parse partial JSON. If `True`, the output will be a JSON object containing all the keys that have been returned so far. If `False`, the output will be the full JSON object. Raises: OutputParserException: If the generation is not a chat generation. Returns: The parsed tool calls. """ generation = result[0] if not isinstance(generation, ChatGeneration): msg = "This output parser can only be used with a chat generation." raise OutputParserException(msg) message = generation.message if isinstance(message, AIMessage) and message.tool_calls: parsed_tool_calls = [dict(tc) for tc in message.tool_calls] for tool_call in parsed_tool_calls: if not self.return_id: _ = tool_call.pop("id") else: try: # This exists purely for backward compatibility / cached messages # All new messages should use `message.tool_calls` raw_tool_calls = copy.deepcopy(message.additional_kwargs["tool_calls"]) except KeyError: if self.first_tool_only: return None return [] parsed_tool_calls = parse_tool_calls( raw_tool_calls, partial=partial, strict=self.strict, return_id=self.return_id, ) # For backwards compatibility for tc in parsed_tool_calls: tc["type"] = tc.pop("name") if self.first_tool_only: parsed_result = list( filter(lambda x: x["type"] == self.key_name, parsed_tool_calls) ) single_result = ( parsed_result[0] if parsed_result and parsed_result[0]["type"] == self.key_name else None ) if self.return_id: return single_result if single_result: return single_result["args"] return None return ( [res for res in parsed_tool_calls if res["type"] == self.key_name] if self.return_id else [ res["args"] for res in parsed_tool_calls if res["type"] == self.key_name ] ) # Common cause of ValidationError is truncated output due to max_tokens. _MAX_TOKENS_ERROR = ( "Output parser received a `max_tokens` stop reason. " "The output is likely incomplete—please increase `max_tokens` " "or shorten your prompt." )
JsonOutputKeyToolsParser
python
PrefectHQ__prefect
src/prefect/artifacts.py
{ "start": 10280, "end": 11057 }
class ____(Artifact): progress: float type: Optional[str] = "progress" def _format(self) -> float: # Ensure progress is between 0 and 100 min_progress = 0.0 max_progress = 100.0 if self.progress < min_progress or self.progress > max_progress: logger.warning( f"ProgressArtifact received an invalid value, Progress: {self.progress}%" ) self.progress = max(min_progress, min(self.progress, max_progress)) logger.warning(f"Interpreting as {self.progress}% progress") return self.progress async def aformat(self) -> float: return self._format() @async_dispatch(aformat) def format(self) -> float: return self._format()
ProgressArtifact
python
sqlalchemy__sqlalchemy
examples/association/dict_of_sets_with_default.py
{ "start": 1879, "end": 2388 }
class ____(Base): __tablename__ = "b" a_id: Mapped[int] = mapped_column(ForeignKey("a.id")) elements: Mapped[set[C]] = relationship("C", collection_class=set) key: Mapped[str] values: AssociationProxy[set[int]] = association_proxy("elements", "value") """Bridge the association from 'elements' over to the 'value' element of C.""" def __init__(self, key: str, values: set[int] | None = None) -> None: self.key = key if values: self.values = values
B
python
matplotlib__matplotlib
lib/matplotlib/backends/backend_pgf.py
{ "start": 34774, "end": 34840 }
class ____(_Backend): FigureCanvas = FigureCanvasPgf
_BackendPgf
python
anthropics__anthropic-sdk-python
src/anthropic/types/beta/beta_request_mcp_server_tool_configuration_param.py
{ "start": 289, "end": 441 }
class ____(TypedDict, total=False): allowed_tools: Optional[SequenceNotStr[str]] enabled: Optional[bool]
BetaRequestMCPServerToolConfigurationParam
python
pandas-dev__pandas
asv_bench/benchmarks/period.py
{ "start": 1219, "end": 1652 }
class ____: def setup(self): self.rng = period_range(start="1/1/1990", freq="s", periods=20000) self.df = DataFrame(index=range(len(self.rng))) def time_setitem_period_column(self): self.df["col"] = self.rng def time_set_index(self): # GH#21582 limited by comparisons of Period objects self.df["col2"] = self.rng self.df.set_index("col2", append=True)
DataFramePeriodColumn
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/operators/rds.py
{ "start": 1814, "end": 2479 }
class ____(AwsBaseOperator[RdsHook]): """Base operator that implements common functions for all operators.""" aws_hook_class = RdsHook ui_color = "#eeaa88" ui_fgcolor = "#ffffff" def __init__( self, *args, **kwargs, ): super().__init__(*args, **kwargs) self._await_interval = 60 # seconds def execute(self, context: Context) -> str: """Different implementations for snapshots, tasks and events.""" raise NotImplementedError def on_kill(self) -> None: """Different implementations for snapshots, tasks and events.""" raise NotImplementedError
RdsBaseOperator
python
airbytehq__airbyte
airbyte-integrations/connectors/source-appsflyer/source_appsflyer/source.py
{ "start": 13160, "end": 13465 }
class ____(AggregateDataMixin, IncrementalAppsflyerStream): def path( self, stream_state: Mapping[str, Any] = None, stream_slice: Mapping[str, Any] = None, next_page_token: Mapping[str, Any] = None ) -> str: return f"agg-data/export/app/{self.app_id}/geo_by_date_report/v5"
GeoReport
python
cython__cython
tests/run/test_tstring.py
{ "start": 1309, "end": 4037 }
class ____: def assertInterpolationEqual(self, i, exp): """Test Interpolation equality. The *i* argument must be an Interpolation instance. The *exp* argument must be a tuple of the form (value, expression, conversion, format_spec) where the final three items may be omitted and are assumed to be '', None and '' respectively. """ if len(exp) == 4: actual = (i.value, i.expression, i.conversion, i.format_spec) self.assertEqual(actual, exp) elif len(exp) == 3: self.assertEqual((i.value, i.expression, i.conversion), exp) self.assertEqual(i.format_spec, "") elif len(exp) == 2: self.assertEqual((i.value, i.expression), exp) self.assertEqual(i.conversion, None) self.assertEqual(i.format_spec, "") elif len(exp) == 1: self.assertEqual((i.value,), exp) self.assertEqual(i.expression, "") self.assertEqual(i.conversion, None) self.assertEqual(i.format_spec, "") def assertTStringEqual(self, t, strings, interpolations): """Test template string literal equality. The *strings* argument must be a tuple of strings equal to *t.strings*. The *interpolations* argument must be a sequence of tuples which are compared against *t.interpolations*. Each tuple must match the form described in the `assertInterpolationEqual` method. """ self.assertEqual(t.strings, strings) self.assertEqual(len(t.interpolations), len(interpolations)) if len(t.interpolations) != len(interpolations): # Handle Python <3.10 which doesn't have strict in zip raise ValueError(f"Lengths differ {len(t.interpolations)} {len(interpolations)}") for i, exp in zip(t.interpolations, interpolations): self.assertInterpolationEqual(i, exp) def convert(value, conversion): if conversion == "a": return ascii(value) elif conversion == "r": return repr(value) elif conversion == "s": return str(value) return value def fstring(template): parts = [] for item in template: # adapted from match/case since we don't yet support it if isinstance(item, str): parts.append(item) elif isinstance(item, Interpolation): value = item.value conversion = item.conversion format_spec = item.format_spec value = convert(value, conversion) value = format(value, format_spec) parts.append(value) return "".join(parts) ############# From Python test file ##############
TStringBaseCase
python
kamyu104__LeetCode-Solutions
Python/find-pattern-in-infinite-stream-i.py
{ "start": 33, "end": 96 }
class ____: def next(self): pass # kmp
InfiniteStream
python
rapidsai__cudf
python/cudf/cudf/core/buffer/spillable_buffer.py
{ "start": 1665, "end": 2399 }
class ____: # A wrapper that exposes the __cuda_array_interface__ of a SpillableBuffer without # actually accessing __cuda_array_interface__, which triggers spilling. _buf: SpillableBuffer def __init__(self, buf: SpillableBuffer) -> None: self._buf = buf self._spill_lock = SpillLock() @property def __cuda_array_interface__(self) -> dict: self._buf.spill_lock(self._spill_lock) # Accessing _memory_info doesn't trigger spilling ptr, size, _ = self._buf.memory_info() return { "data": (ptr, False), "shape": (size,), "strides": None, "typestr": "|u1", "version": 0, }
SpillableBufferCAIWrapper
python
pallets__werkzeug
src/werkzeug/datastructures/mixins.py
{ "start": 475, "end": 1932 }
class ____: """Makes a :class:`list` immutable. .. versionadded:: 0.5 :private: """ _hash_cache: int | None = None def __hash__(self) -> int: if self._hash_cache is not None: return self._hash_cache rv = self._hash_cache = hash(tuple(self)) # type: ignore[arg-type] return rv def __reduce_ex__(self, protocol: t.SupportsIndex) -> t.Any: return type(self), (list(self),) # type: ignore[call-overload] def __delitem__(self, key: t.Any) -> t.NoReturn: _immutable_error(self) def __iadd__(self, other: t.Any) -> t.NoReturn: _immutable_error(self) def __imul__(self, other: t.Any) -> t.NoReturn: _immutable_error(self) def __setitem__(self, key: t.Any, value: t.Any) -> t.NoReturn: _immutable_error(self) def append(self, item: t.Any) -> t.NoReturn: _immutable_error(self) def remove(self, item: t.Any) -> t.NoReturn: _immutable_error(self) def extend(self, iterable: t.Any) -> t.NoReturn: _immutable_error(self) def insert(self, pos: t.Any, value: t.Any) -> t.NoReturn: _immutable_error(self) def pop(self, index: t.Any = -1) -> t.NoReturn: _immutable_error(self) def reverse(self: t.Any) -> t.NoReturn: _immutable_error(self) def sort(self, key: t.Any = None, reverse: t.Any = False) -> t.NoReturn: _immutable_error(self)
ImmutableListMixin
python
tqdm__tqdm
tqdm/contrib/discord.py
{ "start": 638, "end": 3077 }
class ____(MonoWorker): """Non-blocking file-like IO using a Discord Bot.""" API = "https://discord.com/api/v10" UA = f"tqdm (https://tqdm.github.io, {__version__}) {default_user_agent()}" def __init__(self, token, channel_id): """Creates a new message in the given `channel_id`.""" super().__init__() self.token = token self.channel_id = channel_id self.session = Session() self.text = self.__class__.__name__ self.message_id @property def message_id(self): if hasattr(self, '_message_id'): return self._message_id try: res = self.session.post( f'{self.API}/channels/{self.channel_id}/messages', headers={'Authorization': f'Bot {self.token}', 'User-Agent': self.UA}, json={'content': f"`{self.text}`"}).json() except Exception as e: tqdm_auto.write(str(e)) else: if res.get('error_code') == 429: warn("Creation rate limit: try increasing `mininterval`.", TqdmWarning, stacklevel=2) else: self._message_id = res['id'] return self._message_id def write(self, s): """Replaces internal `message_id`'s text with `s`.""" if not s: s = "..." s = s.replace('\r', '').strip() if s == self.text: return # avoid duplicate message Bot error message_id = self.message_id if message_id is None: return self.text = s try: future = self.submit( self.session.patch, f'{self.API}/channels/{self.channel_id}/messages/{message_id}', headers={'Authorization': f'Bot {self.token}', 'User-Agent': self.UA}, json={'content': f"`{self.text}`"}) except Exception as e: tqdm_auto.write(str(e)) else: return future def delete(self): """Deletes internal `message_id`.""" try: future = self.submit( self.session.delete, f'{self.API}/channels/{self.channel_id}/messages/{self.message_id}', headers={'Authorization': f'Bot {self.token}', 'User-Agent': self.UA}) except Exception as e: tqdm_auto.write(str(e)) else: return future
DiscordIO
python
altair-viz__altair
altair/vegalite/v6/schema/core.py
{ "start": 1461031, "end": 1469700 }
class ____(TopLevelSpec): """ TopLevelHConcatSpec schema wrapper. Parameters ---------- hconcat : Sequence[dict, :class:`FacetSpec`, :class:`LayerSpec`, :class:`RepeatSpec`, :class:`FacetedUnitSpec`, :class:`LayerRepeatSpec`, :class:`NonNormalizedSpec`, :class:`NonLayerRepeatSpec`, :class:`ConcatSpecGenericSpec`, :class:`HConcatSpecGenericSpec`, :class:`VConcatSpecGenericSpec`] A list of views to be concatenated and put into a row. autosize : dict, :class:`AutosizeType`, :class:`AutoSizeParams`, Literal['pad', 'none', 'fit', 'fit-x', 'fit-y'] How the visualization size should be determined. If a string, should be one of ``"pad"``, ``"fit"`` or ``"none"``. Object values can additionally specify parameters for content sizing and automatic resizing. **Default value**: ``pad`` background : str, dict, :class:`Color`, :class:`ExprRef`, :class:`HexColor`, :class:`ColorName`, Literal['black', 'silver', 'gray', 'white', 'maroon', 'red', 'purple', 'fuchsia', 'green', 'lime', 'olive', 'yellow', 'navy', 'blue', 'teal', 'aqua', 'orange', 'aliceblue', 'antiquewhite', 'aquamarine', 'azure', 'beige', 'bisque', 'blanchedalmond', 'blueviolet', 'brown', 'burlywood', 'cadetblue', 'chartreuse', 'chocolate', 'coral', 'cornflowerblue', 'cornsilk', 'crimson', 'cyan', 'darkblue', 'darkcyan', 'darkgoldenrod', 'darkgray', 'darkgreen', 'darkgrey', 'darkkhaki', 'darkmagenta', 'darkolivegreen', 'darkorange', 'darkorchid', 'darkred', 'darksalmon', 'darkseagreen', 'darkslateblue', 'darkslategray', 'darkslategrey', 'darkturquoise', 'darkviolet', 'deeppink', 'deepskyblue', 'dimgray', 'dimgrey', 'dodgerblue', 'firebrick', 'floralwhite', 'forestgreen', 'gainsboro', 'ghostwhite', 'gold', 'goldenrod', 'greenyellow', 'grey', 'honeydew', 'hotpink', 'indianred', 'indigo', 'ivory', 'khaki', 'lavender', 'lavenderblush', 'lawngreen', 'lemonchiffon', 'lightblue', 'lightcoral', 'lightcyan', 'lightgoldenrodyellow', 'lightgray', 'lightgreen', 'lightgrey', 'lightpink', 'lightsalmon', 'lightseagreen', 'lightskyblue', 'lightslategray', 'lightslategrey', 'lightsteelblue', 'lightyellow', 'limegreen', 'linen', 'magenta', 'mediumaquamarine', 'mediumblue', 'mediumorchid', 'mediumpurple', 'mediumseagreen', 'mediumslateblue', 'mediumspringgreen', 'mediumturquoise', 'mediumvioletred', 'midnightblue', 'mintcream', 'mistyrose', 'moccasin', 'navajowhite', 'oldlace', 'olivedrab', 'orangered', 'orchid', 'palegoldenrod', 'palegreen', 'paleturquoise', 'palevioletred', 'papayawhip', 'peachpuff', 'peru', 'pink', 'plum', 'powderblue', 'rosybrown', 'royalblue', 'saddlebrown', 'salmon', 'sandybrown', 'seagreen', 'seashell', 'sienna', 'skyblue', 'slateblue', 'slategray', 'slategrey', 'snow', 'springgreen', 'steelblue', 'tan', 'thistle', 'tomato', 'turquoise', 'violet', 'wheat', 'whitesmoke', 'yellowgreen', 'rebeccapurple'] CSS color property to use as the background of the entire view. **Default value:** ``"white"`` bounds : Literal['full', 'flush'] The bounds calculation method to use for determining the extent of a sub-plot. One of ``full`` (the default) or ``flush``. * If set to ``full``, the entire calculated bounds (including axes, title, and legend) will be used. * If set to ``flush``, only the specified width and height values for the sub-view will be used. The ``flush`` setting can be useful when attempting to place sub-plots without axes or legends into a uniform grid structure. **Default value:** ``"full"`` center : bool Boolean flag indicating if subviews should be centered relative to their respective rows or columns. **Default value:** ``false`` config : dict, :class:`Config` Vega-Lite configuration object. This property can only be defined at the top-level of a specification. data : dict, :class:`Data`, :class:`UrlData`, :class:`Generator`, :class:`NamedData`, :class:`DataSource`, :class:`InlineData`, :class:`SphereGenerator`, :class:`SequenceGenerator`, :class:`GraticuleGenerator`, None An object describing the data source. Set to ``null`` to ignore the parent's data source. If no data is set, it is derived from the parent. datasets : dict, :class:`Datasets` A global data store for named datasets. This is a mapping from names to inline datasets. This can be an array of objects or primitive values or a string. Arrays of primitive values are ingested as objects with a ``data`` property. description : str Description of this mark for commenting purpose. name : str Name of the visualization for later reference. padding : dict, float, :class:`ExprRef`, :class:`Padding` The default visualization padding, in pixels, from the edge of the visualization canvas to the data rectangle. If a number, specifies padding for all sides. If an object, the value should have the format ``{"left": 5, "top": 5, "right": 5, "bottom": 5}`` to specify padding for each side of the visualization. **Default value**: ``5`` params : Sequence[dict, :class:`TopLevelParameter`, :class:`VariableParameter`, :class:`TopLevelSelectionParameter`] Dynamic variables or selections that parameterize a visualization. resolve : dict, :class:`Resolve` Scale, axis, and legend resolutions for view composition specifications. spacing : float The spacing in pixels between sub-views of the concat operator. **Default value**: ``10`` title : str, dict, :class:`Text`, Sequence[str], :class:`TitleParams` Title for the plot. transform : Sequence[dict, :class:`Transform`, :class:`BinTransform`, :class:`FoldTransform`, :class:`LoessTransform`, :class:`PivotTransform`, :class:`StackTransform`, :class:`ExtentTransform`, :class:`FilterTransform`, :class:`ImputeTransform`, :class:`LookupTransform`, :class:`SampleTransform`, :class:`WindowTransform`, :class:`DensityTransform`, :class:`FlattenTransform`, :class:`QuantileTransform`, :class:`TimeUnitTransform`, :class:`AggregateTransform`, :class:`CalculateTransform`, :class:`RegressionTransform`, :class:`JoinAggregateTransform`] An array of data transformations such as filter and new field calculation. usermeta : dict, :class:`Dict` Optional metadata that will be passed to Vega. This object is completely ignored by Vega and Vega-Lite and can be used for custom metadata. $schema : str URL to `JSON schema <http://json-schema.org/>`__ for a Vega-Lite specification. Unless you have a reason to change this, use ``https://vega.github.io/schema/vega-lite/v6.json``. Setting the ``$schema`` property allows automatic validation and autocomplete in editors that support JSON schema. """ _schema = {"$ref": "#/definitions/TopLevelHConcatSpec"} def __init__( self, hconcat: Optional[Sequence[SchemaBase | Map]] = Undefined, autosize: Optional[SchemaBase | Map | AutosizeType_T] = Undefined, background: Optional[ str | Parameter | SchemaBase | Map | ColorName_T ] = Undefined, bounds: Optional[Literal["full", "flush"]] = Undefined, center: Optional[bool] = Undefined, config: Optional[SchemaBase | Map] = Undefined, data: Optional[SchemaBase | ChartDataType | Map | None] = Undefined, datasets: Optional[SchemaBase | Map] = Undefined, description: Optional[str] = Undefined, name: Optional[str] = Undefined, padding: Optional[float | Parameter | SchemaBase | Map] = Undefined, params: Optional[Sequence[SchemaBase | Map]] = Undefined, resolve: Optional[SchemaBase | Map] = Undefined, spacing: Optional[float] = Undefined, title: Optional[str | SchemaBase | Sequence[str] | Map] = Undefined, transform: Optional[Sequence[SchemaBase | Map]] = Undefined, usermeta: Optional[SchemaBase | Map] = Undefined, **kwds, ): super().__init__( hconcat=hconcat, autosize=autosize, background=background, bounds=bounds, center=center, config=config, data=data, datasets=datasets, description=description, name=name, padding=padding, params=params, resolve=resolve, spacing=spacing, title=title, transform=transform, usermeta=usermeta, **kwds, )
TopLevelHConcatSpec
python
dagster-io__dagster
python_modules/libraries/dagster-airbyte/dagster_airbyte/managed/generated/sources.py
{ "start": 50335, "end": 51153 }
class ____(GeneratedAirbyteSource): @public def __init__( self, name: str, tickers: str, interval: Optional[str] = None, range: Optional[str] = None ): """Airbyte Source for Yahoo Finance Price. Args: name (str): The name of the destination. tickers (str): Comma-separated identifiers for the stocks to be queried. Whitespaces are allowed. interval (Optional[str]): The interval of between prices queried. range (Optional[str]): The range of prices to be queried. """ self.tickers = check.str_param(tickers, "tickers") self.interval = check.opt_str_param(interval, "interval") self.range = check.opt_str_param(range, "range") super().__init__("Yahoo Finance Price", name)
YahooFinancePriceSource
python
bokeh__bokeh
src/bokeh/models/formatters.py
{ "start": 3296, "end": 4237 }
class ____(TickFormatter): ''' Display tick values from continuous ranges as "basic numbers", using scientific notation when appropriate by default. ''' # explicit __init__ to support Init signatures def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) precision = Either(Auto, Int, help=""" How many digits of precision to display in tick labels. """) use_scientific = Bool(True, help=""" Whether to ever display scientific notation. If ``True``, then when to use scientific notation is controlled by ``power_limit_low`` and ``power_limit_high``. """) power_limit_high = Int(5, help=""" Limit the use of scientific notation to when:: log(x) >= power_limit_high """) power_limit_low = Int(-3, help=""" Limit the use of scientific notation to when:: log(x) <= power_limit_low """)
BasicTickFormatter
python
django__django
django/contrib/auth/backends.py
{ "start": 218, "end": 1700 }
class ____: def authenticate(self, request, **kwargs): return None async def aauthenticate(self, request, **kwargs): return await sync_to_async(self.authenticate)(request, **kwargs) def get_user(self, user_id): return None async def aget_user(self, user_id): return await sync_to_async(self.get_user)(user_id) def get_user_permissions(self, user_obj, obj=None): return set() async def aget_user_permissions(self, user_obj, obj=None): return await sync_to_async(self.get_user_permissions)(user_obj, obj) def get_group_permissions(self, user_obj, obj=None): return set() async def aget_group_permissions(self, user_obj, obj=None): return await sync_to_async(self.get_group_permissions)(user_obj, obj) def get_all_permissions(self, user_obj, obj=None): return { *self.get_user_permissions(user_obj, obj=obj), *self.get_group_permissions(user_obj, obj=obj), } async def aget_all_permissions(self, user_obj, obj=None): return { *await self.aget_user_permissions(user_obj, obj=obj), *await self.aget_group_permissions(user_obj, obj=obj), } def has_perm(self, user_obj, perm, obj=None): return perm in self.get_all_permissions(user_obj, obj=obj) async def ahas_perm(self, user_obj, perm, obj=None): return perm in await self.aget_all_permissions(user_obj, obj)
BaseBackend
python
paramiko__paramiko
tests/test_client.py
{ "start": 1716, "end": 3774 }
class ____(paramiko.ServerInterface): def __init__(self, *args, **kwargs): # Allow tests to enable/disable specific key types self.__allowed_keys = kwargs.pop("allowed_keys", []) # And allow them to set a (single...meh) expected public blob (cert) self.__expected_public_blob = kwargs.pop("public_blob", None) super().__init__(*args, **kwargs) def get_allowed_auths(self, username): if username == "slowdive": return "publickey,password" return "publickey" def check_auth_password(self, username, password): if (username == "slowdive") and (password == "pygmalion"): return paramiko.AUTH_SUCCESSFUL if (username == "slowdive") and (password == "unresponsive-server"): time.sleep(5) return paramiko.AUTH_SUCCESSFUL return paramiko.AUTH_FAILED def check_auth_publickey(self, username, key): try: expected = FINGERPRINTS[key.get_name()] except KeyError: return paramiko.AUTH_FAILED # Base check: allowed auth type & fingerprint matches happy = ( key.get_name() in self.__allowed_keys and key.get_fingerprint() == expected ) # Secondary check: if test wants assertions about cert data if ( self.__expected_public_blob is not None and key.public_blob != self.__expected_public_blob ): happy = False return paramiko.AUTH_SUCCESSFUL if happy else paramiko.AUTH_FAILED def check_channel_request(self, kind, chanid): return paramiko.OPEN_SUCCEEDED def check_channel_exec_request(self, channel, command): if command != b"yes": return False return True def check_channel_env_request(self, channel, name, value): if name == "INVALID_ENV": return False if not hasattr(channel, "env"): setattr(channel, "env", {}) channel.env[name] = value return True
NullServer
python
streamlit__streamlit
lib/streamlit/testing/v1/element_tree.py
{ "start": 20135, "end": 20516 }
class ____(Element): proto: MetricProto label: str delta: str color: str help: str def __init__(self, proto: MetricProto, root: ElementTree) -> None: self.proto = proto self.key = None self.root = root self.type = "metric" @property def value(self) -> str: return self.proto.body @dataclass(repr=False)
Metric
python
pytorch__pytorch
test/quantization/core/test_utils.py
{ "start": 366, "end": 8542 }
class ____(TestCase): def _test_get_fqn_to_example_inputs(self, M, example_inputs, expected_fqn_to_dim): m = M().eval() fqn_to_example_inputs = get_fqn_to_example_inputs(m, example_inputs) for fqn, expected_dims in expected_fqn_to_dim.items(): assert fqn in expected_fqn_to_dim example_inputs = fqn_to_example_inputs[fqn] for example_input, expected_dim in zip(example_inputs, expected_dims): assert example_input.dim() == expected_dim def test_get_fqn_to_example_inputs_simple(self): class Sub(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear1 = torch.nn.Linear(5, 5) self.linear2 = torch.nn.Linear(5, 5) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear1 = torch.nn.Linear(5, 5) self.linear2 = torch.nn.Linear(5, 5) self.sub = Sub() def forward(self, x): x = self.linear1(x) x = self.linear2(x) x = self.sub(x) return x expected_fqn_to_dim = { "": (2,), "linear1": (2,), "linear2": (2,), "sub": (2,), "sub.linear1": (2,), "sub.linear2": (2,) } example_inputs = (torch.rand(1, 5),) self._test_get_fqn_to_example_inputs(M, example_inputs, expected_fqn_to_dim) def test_get_fqn_to_example_inputs_default_kwargs(self): """ Test that we can get example inputs for functions with default keyword arguments """ class Sub(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear1 = torch.nn.Linear(5, 5) self.linear2 = torch.nn.Linear(5, 5) def forward(self, x, key1=torch.rand(1), key2=torch.rand(1)): x = self.linear1(x) x = self.linear2(x) return x class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear1 = torch.nn.Linear(5, 5) self.linear2 = torch.nn.Linear(5, 5) self.sub = Sub() def forward(self, x): x = self.linear1(x) x = self.linear2(x) # only override `key2`, `key1` will use default x = self.sub(x, key2=torch.rand(1, 2)) return x expected_fqn_to_dim = { "": (2,), "linear1": (2,), "linear2": (2,), # second arg is `key1`, which is using default argument # third arg is `key2`, override by callsite "sub": (2, 1, 2), "sub.linear1": (2,), "sub.linear2": (2,) } example_inputs = (torch.rand(1, 5),) self._test_get_fqn_to_example_inputs(M, example_inputs, expected_fqn_to_dim) def test_get_fqn_to_example_inputs_complex_args(self): """ Test that we can record complex example inputs such as lists and dicts """ class Sub(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear1 = torch.nn.Linear(5, 5) self.linear2 = torch.nn.Linear(5, 5) def forward(self, x, list_arg, dict_arg): x = self.linear1(x) x = self.linear2(x) return x class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear1 = torch.nn.Linear(5, 5) self.linear2 = torch.nn.Linear(5, 5) self.sub = Sub() def forward(self, x): x = self.linear1(x) x = self.linear2(x) x = self.sub(x, [x], {"3": x}) return x example_inputs = (torch.rand(1, 5),) m = M().eval() fqn_to_example_inputs = get_fqn_to_example_inputs(m, example_inputs) assert "sub" in fqn_to_example_inputs assert isinstance(fqn_to_example_inputs["sub"][1], list) assert isinstance(fqn_to_example_inputs["sub"][2], dict) and \ "3" in fqn_to_example_inputs["sub"][2] def test_quantize_weight_clamping_per_tensor(self): """ Test quant_{min, max} from per tensor observer is honored by `_quantize_weight` method """ fp_min, fp_max = -1000.0, 1000.0 q8_min, q8_max = -10, 10 float_tensor = torch.tensor([fp_min, fp_max]) observer = MovingAverageMinMaxObserver( averaging_constant=1.0, dtype=torch.qint8, quant_min=q8_min, quant_max=q8_max, qscheme=torch.per_tensor_symmetric, ) observer(float_tensor) assert observer.min_val == fp_min assert observer.max_val == fp_max quantized_tensor = _quantize_weight(float_tensor, observer) assert quantized_tensor.int_repr().max().item() == q8_max assert quantized_tensor.int_repr().min().item() == q8_min # Actual weight values can be outside than observer [min_val, max_val] for the moving average observer float_tensor *= 1.2 quantized_tensor = _quantize_weight(float_tensor, observer) assert quantized_tensor.int_repr().max().item() == q8_max assert quantized_tensor.int_repr().min().item() == q8_min def test_quantize_weight_clamping_per_channel(self): """ Test quant_{min, max} from per channel observer is honored by `_quantize_weight` method """ fp_min, fp_max = -1000.0, 1000.0 q8_min, q8_max = -10, 10 float_tensor = torch.tensor([[fp_min, fp_max]]) observer = MovingAveragePerChannelMinMaxObserver( averaging_constant=1.0, dtype=torch.qint8, quant_min=q8_min, quant_max=q8_max, qscheme=torch.per_channel_symmetric, ch_axis=0, ) observer(float_tensor) assert observer.min_val == fp_min assert observer.max_val == fp_max quantized_tensor = _quantize_weight(float_tensor, observer) assert quantized_tensor.int_repr().max().item() == q8_max assert quantized_tensor.int_repr().min().item() == q8_min # Actual weight values can be outside than observer [min_val, max_val] for the moving average observer float_tensor *= 1.2 quantized_tensor = _quantize_weight(float_tensor, observer) assert quantized_tensor.int_repr().max().item() == q8_max assert quantized_tensor.int_repr().min().item() == q8_min def test_uint4_int4_dtype(self): def up_size(size): return (*size[:-1], size[-1] * 2) for dtype in [torch.uint4, torch.int4]: class UInt4OrInt4Tensor(torch.Tensor): @staticmethod def __new__(cls, elem, **kwargs): assert elem.dtype is torch.uint8 assert not kwargs.get("requires_grad", False) kwargs["requires_grad"] = False return torch.Tensor._make_wrapper_subclass(cls, up_size(elem.shape), dtype=dtype, **kwargs) def __init__(self, elem): self.elem = elem @classmethod def __torch_dispatch__(cls, func, types, args, kwargs=None): pass # make sure it runs x = UInt4OrInt4Tensor(torch.tensor([ [0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF], [0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF], [0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF], ], dtype=torch.uint8)) assert x.dtype == dtype if __name__ == "__main__": raise_on_run_directly("test/test_quantization.py")
TestUtils
python
pexpect__pexpect
tests/test_repr.py
{ "start": 78, "end": 999 }
class ____(PexpectTestCase.PexpectTestCase): def test_str_spawnu(self): """ Exercise spawnu.__str__() """ # given, p = pexpect.spawnu('cat') # exercise, value = str(p) # verify assert isinstance(value, str) def test_str_spawn(self): """ Exercise spawn.__str__() """ # given, p = pexpect.spawn('cat') # exercise, value = str(p) # verify assert isinstance(value, str) def test_str_before_spawn(self): """ Exercise derived spawn.__str__() """ # given, child = pexpect.spawn(None, None) child.read_nonblocking = lambda size, timeout: b'' try: child.expect('alpha', timeout=0.1) except pexpect.TIMEOUT as e: str(e) # Smoketest else: assert False, 'TIMEOUT exception expected. No exception raised.'
TestCaseMisc
python
numpy__numpy
benchmarks/benchmarks/bench_polynomial.py
{ "start": 52, "end": 803 }
class ____(Benchmark): def setup(self): self.polynomial_degree2 = np.polynomial.Polynomial(np.array([1, 2])) self.array3 = np.linspace(0, 1, 3) self.array1000 = np.linspace(0, 1, 10_000) self.float64 = np.float64(1.0) def time_polynomial_evaluation_scalar(self): self.polynomial_degree2(self.float64) def time_polynomial_evaluation_python_float(self): self.polynomial_degree2(1.0) def time_polynomial_evaluation_array_3(self): self.polynomial_degree2(self.array3) def time_polynomial_evaluation_array_1000(self): self.polynomial_degree2(self.array1000) def time_polynomial_addition(self): _ = self.polynomial_degree2 + self.polynomial_degree2
Polynomial
python
huggingface__transformers
src/transformers/models/poolformer/modeling_poolformer.py
{ "start": 3777, "end": 4579 }
class ____(nn.Module): def __init__(self, config, dropout_prob, hidden_size, intermediate_size): super().__init__() self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1) self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1) self.drop = PoolFormerDropPath(dropout_prob) if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.drop(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.drop(hidden_states) return hidden_states
PoolFormerOutput
python
GoogleCloudPlatform__python-docs-samples
compute/client_library/snippets/instances/custom_machine_types/create_shared_with_helper.py
{ "start": 1200, "end": 20072 }
class ____: """ Allows to create custom machine types to be used with the VM instances. """ @unique class CPUSeries(Enum): N1 = "custom" N2 = "n2-custom" N2D = "n2d-custom" E2 = "e2-custom" E2_MICRO = "e2-custom-micro" E2_SMALL = "e2-custom-small" E2_MEDIUM = "e2-custom-medium" TypeLimits = namedtuple( "TypeLimits", [ "allowed_cores", "min_mem_per_core", "max_mem_per_core", "allow_extra_memory", "extra_memory_limit", ], ) # The limits for various CPU types are described on: # https://cloud.google.com/compute/docs/general-purpose-machines LIMITS = { CPUSeries.E2: TypeLimits(frozenset(range(2, 33, 2)), 512, 8192, False, 0), CPUSeries.E2_MICRO: TypeLimits(frozenset(), 1024, 2048, False, 0), CPUSeries.E2_SMALL: TypeLimits(frozenset(), 2048, 4096, False, 0), CPUSeries.E2_MEDIUM: TypeLimits(frozenset(), 4096, 8192, False, 0), CPUSeries.N2: TypeLimits( frozenset(range(2, 33, 2)).union(set(range(36, 129, 4))), 512, 8192, True, gb_to_mb(624), ), CPUSeries.N2D: TypeLimits( frozenset({2, 4, 8, 16, 32, 48, 64, 80, 96}), 512, 8192, True, gb_to_mb(768) ), CPUSeries.N1: TypeLimits( frozenset({1}.union(range(2, 97, 2))), 922, 6656, True, gb_to_mb(624) ), } def __init__( self, zone: str, cpu_series: CPUSeries, memory_mb: int, core_count: int = 0 ): self.zone = zone self.cpu_series = cpu_series self.limits = self.LIMITS[self.cpu_series] # Shared machine types (e2-small, e2-medium and e2-micro) always have # 2 vCPUs: https://cloud.google.com/compute/docs/general-purpose-machines#e2_limitations self.core_count = 2 if self.is_shared() else core_count self.memory_mb = memory_mb self._checked = False self._check_parameters() self.extra_memory_used = self._check_extra_memory() def is_shared(self): return self.cpu_series in ( CustomMachineType.CPUSeries.E2_SMALL, CustomMachineType.CPUSeries.E2_MICRO, CustomMachineType.CPUSeries.E2_MEDIUM, ) def _check_extra_memory(self) -> bool: if self._checked: return self.memory_mb > self.core_count * self.limits.max_mem_per_core else: raise RuntimeError( "You need to call _check_parameters() before calling _check_extra_memory()" ) def _check_parameters(self): """ Check whether the requested parameters are allowed. Find more information about limitations of custom machine types at: https://cloud.google.com/compute/docs/general-purpose-machines#custom_machine_types """ # Check the number of cores if ( self.limits.allowed_cores and self.core_count not in self.limits.allowed_cores ): raise RuntimeError( f"Invalid number of cores requested. Allowed number of cores for {self.cpu_series.name} is: {sorted(self.limits.allowed_cores)}" ) # Memory must be a multiple of 256 MB if self.memory_mb % 256 != 0: raise RuntimeError("Requested memory must be a multiple of 256 MB.") # Check if the requested memory isn't too little if self.memory_mb < self.core_count * self.limits.min_mem_per_core: raise RuntimeError( f"Requested memory is too low. Minimal memory for {self.cpu_series.name} is {self.limits.min_mem_per_core} MB per core." ) # Check if the requested memory isn't too much if self.memory_mb > self.core_count * self.limits.max_mem_per_core: if self.limits.allow_extra_memory: if self.memory_mb > self.limits.extra_memory_limit: raise RuntimeError( f"Requested memory is too large.. Maximum memory allowed for {self.cpu_series.name} is {self.limits.extra_memory_limit} MB." ) else: raise RuntimeError( f"Requested memory is too large.. Maximum memory allowed for {self.cpu_series.name} is {self.limits.max_mem_per_core} MB per core." ) self._checked = True def __str__(self) -> str: """ Return the custom machine type in form of a string acceptable by Compute Engine API. """ if self.cpu_series in { self.CPUSeries.E2_SMALL, self.CPUSeries.E2_MICRO, self.CPUSeries.E2_MEDIUM, }: return f"zones/{self.zone}/machineTypes/{self.cpu_series.value}-{self.memory_mb}" if self.extra_memory_used: return f"zones/{self.zone}/machineTypes/{self.cpu_series.value}-{self.core_count}-{self.memory_mb}-ext" return f"zones/{self.zone}/machineTypes/{self.cpu_series.value}-{self.core_count}-{self.memory_mb}" def short_type_str(self) -> str: """ Return machine type in a format without the zone. For example, n2-custom-0-10240. This format is used to create instance templates. """ return str(self).rsplit("/", maxsplit=1)[1] @classmethod def from_str(cls, machine_type: str): """ Construct a new object from a string. The string needs to be a valid custom machine type like: - https://www.googleapis.com/compute/v1/projects/diregapic-mestiv/zones/us-central1-b/machineTypes/e2-custom-4-8192 - zones/us-central1-b/machineTypes/e2-custom-4-8192 - e2-custom-4-8192 (in this case, the zone parameter will not be set) """ zone = None if machine_type.startswith("http"): machine_type = machine_type[machine_type.find("zones/") :] if machine_type.startswith("zones/"): _, zone, _, machine_type = machine_type.split("/") extra_mem = machine_type.endswith("-ext") if machine_type.startswith("custom"): cpu = cls.CPUSeries.N1 _, cores, memory = machine_type.rsplit("-", maxsplit=2) else: if extra_mem: cpu_series, _, cores, memory, _ = machine_type.split("-") else: cpu_series, _, cores, memory = machine_type.split("-") if cpu_series == "n2": cpu = cls.CPUSeries.N2 elif cpu_series == "n2d": cpu = cls.CPUSeries.N2D elif cpu_series == "e2": cpu = cls.CPUSeries.E2 if cores == "micro": cpu = cls.CPUSeries.E2_MICRO cores = 2 elif cores == "small": cpu = cls.CPUSeries.E2_SMALL cores = 2 elif cores == "medium": cpu = cls.CPUSeries.E2_MEDIUM cores = 2 else: raise RuntimeError("Unknown CPU series.") cores = int(cores) memory = int(memory) return cls(zone, cpu, memory, cores) def get_image_from_family(project: str, family: str) -> compute_v1.Image: """ Retrieve the newest image that is part of a given family in a project. Args: project: project ID or project number of the Cloud project you want to get image from. family: name of the image family you want to get image from. Returns: An Image object. """ image_client = compute_v1.ImagesClient() # List of public operating system (OS) images: https://cloud.google.com/compute/docs/images/os-details newest_image = image_client.get_from_family(project=project, family=family) return newest_image def disk_from_image( disk_type: str, disk_size_gb: int, boot: bool, source_image: str, auto_delete: bool = True, ) -> compute_v1.AttachedDisk: """ Create an AttachedDisk object to be used in VM instance creation. Uses an image as the source for the new disk. Args: disk_type: the type of disk you want to create. This value uses the following format: "zones/{zone}/diskTypes/(pd-standard|pd-ssd|pd-balanced|pd-extreme)". For example: "zones/us-west3-b/diskTypes/pd-ssd" disk_size_gb: size of the new disk in gigabytes boot: boolean flag indicating whether this disk should be used as a boot disk of an instance source_image: source image to use when creating this disk. You must have read access to this disk. This can be one of the publicly available images or an image from one of your projects. This value uses the following format: "projects/{project_name}/global/images/{image_name}" auto_delete: boolean flag indicating whether this disk should be deleted with the VM that uses it Returns: AttachedDisk object configured to be created using the specified image. """ boot_disk = compute_v1.AttachedDisk() initialize_params = compute_v1.AttachedDiskInitializeParams() initialize_params.source_image = source_image initialize_params.disk_size_gb = disk_size_gb initialize_params.disk_type = disk_type boot_disk.initialize_params = initialize_params # Remember to set auto_delete to True if you want the disk to be deleted when you delete # your VM instance. boot_disk.auto_delete = auto_delete boot_disk.boot = boot return boot_disk def wait_for_extended_operation( operation: ExtendedOperation, verbose_name: str = "operation", timeout: int = 300 ) -> Any: """ Waits for the extended (long-running) operation to complete. If the operation is successful, it will return its result. If the operation ends with an error, an exception will be raised. If there were any warnings during the execution of the operation they will be printed to sys.stderr. Args: operation: a long-running operation you want to wait on. verbose_name: (optional) a more verbose name of the operation, used only during error and warning reporting. timeout: how long (in seconds) to wait for operation to finish. If None, wait indefinitely. Returns: Whatever the operation.result() returns. Raises: This method will raise the exception received from `operation.exception()` or RuntimeError if there is no exception set, but there is an `error_code` set for the `operation`. In case of an operation taking longer than `timeout` seconds to complete, a `concurrent.futures.TimeoutError` will be raised. """ result = operation.result(timeout=timeout) if operation.error_code: print( f"Error during {verbose_name}: [Code: {operation.error_code}]: {operation.error_message}", file=sys.stderr, flush=True, ) print(f"Operation ID: {operation.name}", file=sys.stderr, flush=True) raise operation.exception() or RuntimeError(operation.error_message) if operation.warnings: print(f"Warnings during {verbose_name}:\n", file=sys.stderr, flush=True) for warning in operation.warnings: print(f" - {warning.code}: {warning.message}", file=sys.stderr, flush=True) return result def create_instance( project_id: str, zone: str, instance_name: str, disks: list[compute_v1.AttachedDisk], machine_type: str = "n1-standard-1", network_link: str = "global/networks/default", subnetwork_link: str = None, internal_ip: str = None, external_access: bool = False, external_ipv4: str = None, accelerators: list[compute_v1.AcceleratorConfig] = None, preemptible: bool = False, spot: bool = False, instance_termination_action: str = "STOP", custom_hostname: str = None, delete_protection: bool = False, ) -> compute_v1.Instance: """ Send an instance creation request to the Compute Engine API and wait for it to complete. Args: project_id: project ID or project number of the Cloud project you want to use. zone: name of the zone to create the instance in. For example: "us-west3-b" instance_name: name of the new virtual machine (VM) instance. disks: a list of compute_v1.AttachedDisk objects describing the disks you want to attach to your new instance. machine_type: machine type of the VM being created. This value uses the following format: "zones/{zone}/machineTypes/{type_name}". For example: "zones/europe-west3-c/machineTypes/f1-micro" network_link: name of the network you want the new instance to use. For example: "global/networks/default" represents the network named "default", which is created automatically for each project. subnetwork_link: name of the subnetwork you want the new instance to use. This value uses the following format: "regions/{region}/subnetworks/{subnetwork_name}" internal_ip: internal IP address you want to assign to the new instance. By default, a free address from the pool of available internal IP addresses of used subnet will be used. external_access: boolean flag indicating if the instance should have an external IPv4 address assigned. external_ipv4: external IPv4 address to be assigned to this instance. If you specify an external IP address, it must live in the same region as the zone of the instance. This setting requires `external_access` to be set to True to work. accelerators: a list of AcceleratorConfig objects describing the accelerators that will be attached to the new instance. preemptible: boolean value indicating if the new instance should be preemptible or not. Preemptible VMs have been deprecated and you should now use Spot VMs. spot: boolean value indicating if the new instance should be a Spot VM or not. instance_termination_action: What action should be taken once a Spot VM is terminated. Possible values: "STOP", "DELETE" custom_hostname: Custom hostname of the new VM instance. Custom hostnames must conform to RFC 1035 requirements for valid hostnames. delete_protection: boolean value indicating if the new virtual machine should be protected against deletion or not. Returns: Instance object. """ instance_client = compute_v1.InstancesClient() # Use the network interface provided in the network_link argument. network_interface = compute_v1.NetworkInterface() network_interface.network = network_link if subnetwork_link: network_interface.subnetwork = subnetwork_link if internal_ip: network_interface.network_i_p = internal_ip if external_access: access = compute_v1.AccessConfig() access.type_ = compute_v1.AccessConfig.Type.ONE_TO_ONE_NAT.name access.name = "External NAT" access.network_tier = access.NetworkTier.PREMIUM.name if external_ipv4: access.nat_i_p = external_ipv4 network_interface.access_configs = [access] # Collect information into the Instance object. instance = compute_v1.Instance() instance.network_interfaces = [network_interface] instance.name = instance_name instance.disks = disks if re.match(r"^zones/[a-z\d\-]+/machineTypes/[a-z\d\-]+$", machine_type): instance.machine_type = machine_type else: instance.machine_type = f"zones/{zone}/machineTypes/{machine_type}" instance.scheduling = compute_v1.Scheduling() if accelerators: instance.guest_accelerators = accelerators instance.scheduling.on_host_maintenance = ( compute_v1.Scheduling.OnHostMaintenance.TERMINATE.name ) if preemptible: # Set the preemptible setting warnings.warn( "Preemptible VMs are being replaced by Spot VMs.", DeprecationWarning ) instance.scheduling = compute_v1.Scheduling() instance.scheduling.preemptible = True if spot: # Set the Spot VM setting instance.scheduling.provisioning_model = ( compute_v1.Scheduling.ProvisioningModel.SPOT.name ) instance.scheduling.instance_termination_action = instance_termination_action if custom_hostname is not None: # Set the custom hostname for the instance instance.hostname = custom_hostname if delete_protection: # Set the delete protection bit instance.deletion_protection = True # Prepare the request to insert an instance. request = compute_v1.InsertInstanceRequest() request.zone = zone request.project = project_id request.instance_resource = instance # Wait for the create operation to complete. print(f"Creating the {instance_name} instance in {zone}...") operation = instance_client.insert(request=request) wait_for_extended_operation(operation, "instance creation") print(f"Instance {instance_name} created.") return instance_client.get(project=project_id, zone=zone, instance=instance_name) def create_custom_shared_core_instance( project_id: str, zone: str, instance_name: str, cpu_series: CustomMachineType.CPUSeries, memory: int, ) -> compute_v1.Instance: """ Create a new VM instance with a custom type using shared CPUs. Args: project_id: project ID or project number of the Cloud project you want to use. zone: name of the zone to create the instance in. For example: "us-west3-b" instance_name: name of the new virtual machine (VM) instance. cpu_series: the type of CPU you want to use. Pick one value from the CustomMachineType.CPUSeries enum. For example: CustomMachineType.CPUSeries.E2_MICRO memory: the amount of memory for the VM instance, in megabytes. Return: Instance object. """ assert cpu_series in ( CustomMachineType.CPUSeries.E2_MICRO, CustomMachineType.CPUSeries.E2_SMALL, CustomMachineType.CPUSeries.E2_MEDIUM, ) custom_type = CustomMachineType(zone, cpu_series, memory) newest_debian = get_image_from_family(project="debian-cloud", family="debian-12") disk_type = f"zones/{zone}/diskTypes/pd-standard" disks = [disk_from_image(disk_type, 10, True, newest_debian.self_link)] return create_instance(project_id, zone, instance_name, disks, str(custom_type)) # [END compute_custom_machine_type_create_shared_with_helper]
CustomMachineType
python
django__django
tests/forms_tests/tests/test_validators.py
{ "start": 2364, "end": 6829 }
class ____(TestCase): def test_value_placeholder_with_char_field(self): cases = [ (validators.validate_integer, "-42.5", "invalid"), (validators.validate_email, "a", "invalid"), (validators.validate_email, "a@b\n.com", "invalid"), (validators.validate_email, "a\n@b.com", "invalid"), (validators.validate_slug, "你 好", "invalid"), (validators.validate_unicode_slug, "你 好", "invalid"), (validators.validate_ipv4_address, "256.1.1.1", "invalid"), (validators.validate_ipv6_address, "1:2", "invalid"), (validators.validate_ipv46_address, "256.1.1.1", "invalid"), (validators.validate_comma_separated_integer_list, "a,b,c", "invalid"), (validators.int_list_validator(), "-1,2,3", "invalid"), (validators.MaxLengthValidator(10), 11 * "x", "max_length"), (validators.MinLengthValidator(10), 9 * "x", "min_length"), (validators.URLValidator(), "no_scheme", "invalid"), (validators.URLValidator(), "http://test[.com", "invalid"), (validators.URLValidator(), "http://[::1:2::3]/", "invalid"), ( validators.URLValidator(), "http://" + ".".join(["a" * 35 for _ in range(9)]), "invalid", ), (validators.RegexValidator("[0-9]+"), "xxxxxx", "invalid"), ] for validator, value, code in cases: if isinstance(validator, types.FunctionType): name = validator.__name__ else: name = type(validator).__name__ with self.subTest(name, value=value): class MyForm(forms.Form): field = forms.CharField( validators=[validator], error_messages={code: "%(value)s"}, ) form = MyForm({"field": value}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": [value]}) def test_value_placeholder_with_null_character(self): class MyForm(forms.Form): field = forms.CharField( error_messages={"null_characters_not_allowed": "%(value)s"}, ) form = MyForm({"field": "a\0b"}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": ["a\x00b"]}) def test_value_placeholder_with_integer_field(self): cases = [ (validators.MaxValueValidator(0), 1, "max_value"), (validators.MinValueValidator(0), -1, "min_value"), (validators.URLValidator(), "1", "invalid"), ] for validator, value, code in cases: with self.subTest(type(validator).__name__, value=value): class MyForm(forms.Form): field = forms.IntegerField( validators=[validator], error_messages={code: "%(value)s"}, ) form = MyForm({"field": value}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": [str(value)]}) def test_value_placeholder_with_decimal_field(self): cases = [ ("NaN", "invalid"), ("123", "max_digits"), ("0.12", "max_decimal_places"), ("12", "max_whole_digits"), ] for value, code in cases: with self.subTest(value=value): class MyForm(forms.Form): field = forms.DecimalField( max_digits=2, decimal_places=1, error_messages={code: "%(value)s"}, ) form = MyForm({"field": value}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": [value]}) def test_value_placeholder_with_file_field(self): class MyForm(forms.Form): field = forms.FileField( validators=[validators.validate_image_file_extension], error_messages={"invalid_extension": "%(value)s"}, ) form = MyForm(files={"field": SimpleUploadedFile("myfile.txt", b"abc")}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": ["myfile.txt"]})
ValidatorCustomMessageTests
python
ipython__ipython
IPython/core/historyapp.py
{ "start": 901, "end": 4518 }
class ____(BaseIPythonApplication): description = trim_hist_help backup = Bool(False, help="Keep the old history file as history.sqlite.<N>").tag( config=True ) keep = Int(1000, help="Number of recent lines to keep in the database.").tag( config=True ) flags = Dict( # type: ignore dict(backup=({"HistoryTrim": {"backup": True}}, backup.help)) ) aliases = Dict(dict(keep="HistoryTrim.keep")) # type: ignore def start(self): profile_dir = Path(self.profile_dir.location) hist_file = profile_dir / "history.sqlite" con = sqlite3.connect(hist_file) # Grab the recent history from the current database. inputs = list(con.execute('SELECT session, line, source, source_raw FROM ' 'history ORDER BY session DESC, line DESC LIMIT ?', (self.keep+1,))) if len(inputs) <= self.keep: print("There are already at most %d entries in the history database." % self.keep) print("Not doing anything. Use --keep= argument to keep fewer entries") return print("Trimming history to the most recent %d entries." % self.keep) inputs.pop() # Remove the extra element we got to check the length. inputs.reverse() if inputs: first_session = inputs[0][0] outputs = list(con.execute('SELECT session, line, output FROM ' 'output_history WHERE session >= ?', (first_session,))) sessions = list(con.execute('SELECT session, start, end, num_cmds, remark FROM ' 'sessions WHERE session >= ?', (first_session,))) con.close() # Create the new history database. new_hist_file = profile_dir / "history.sqlite.new" i = 0 while new_hist_file.exists(): # Make sure we don't interfere with an existing file. i += 1 new_hist_file = profile_dir / ("history.sqlite.new" + str(i)) new_db = sqlite3.connect(new_hist_file) new_db.execute("""CREATE TABLE IF NOT EXISTS sessions (session integer primary key autoincrement, start timestamp, end timestamp, num_cmds integer, remark text)""") new_db.execute("""CREATE TABLE IF NOT EXISTS history (session integer, line integer, source text, source_raw text, PRIMARY KEY (session, line))""") new_db.execute("""CREATE TABLE IF NOT EXISTS output_history (session integer, line integer, output text, PRIMARY KEY (session, line))""") new_db.commit() if inputs: with new_db: # Add the recent history into the new database. new_db.executemany('insert into sessions values (?,?,?,?,?)', sessions) new_db.executemany('insert into history values (?,?,?,?)', inputs) new_db.executemany('insert into output_history values (?,?,?)', outputs) new_db.close() if self.backup: i = 1 backup_hist_file = profile_dir / ("history.sqlite.old.%d" % i) while backup_hist_file.exists(): i += 1 backup_hist_file = profile_dir / ("history.sqlite.old.%d" % i) hist_file.rename(backup_hist_file) print("Backed up longer history file to", backup_hist_file) else: hist_file.unlink() new_hist_file.rename(hist_file)
HistoryTrim
python
has2k1__plotnine
plotnine/stats/stat_sina.py
{ "start": 466, "end": 9571 }
class ____(stat): """ Compute Sina plot values {usage} Parameters ---------- {common_parameters} binwidth : float, default=None The width of the bins. The default is to use bins that cover the range of the data. You should always override this value, exploring multiple widths to find the best to illustrate the stories in your data. bins : int, default=50 Number of bins. Overridden by binwidth. method : Literal["density", "counts"], default="density" Choose the method to spread the samples within the same bin along the x-axis. Available methods: "density", "counts" (can be abbreviated, e.g. "d"). See Details. maxwidth : float, default=None Control the maximum width the points can spread into. Values should be in the range (0, 1). adjust : float, default=1 Adjusts the bandwidth of the density kernel when `method="density"`. see [](`~plotnine.stats.stat_density`). bw : str | float, default="nrd0" The bandwidth to use, If a float is given, it is the bandwidth. The `str`{.py} choices are: `"nrd0", "normal_reference", "scott", "silverman"`{.py} `nrd0` is a port of `stats::bw.nrd0` in R; it is eqiuvalent to `silverman` when there is more than 1 value in a group. bin_limit : int, default=1 If the samples within the same y-axis bin are more than `bin_limit`, the samples's X coordinates will be adjusted. This parameter is effective only when `method="counts"`{.py} random_state : int | ~numpy.random.RandomState, default=None Seed or Random number generator to use. If `None`, then numpy global generator [](`numpy.random`) is used. scale : Literal["area", "count", "width"], default="area" How to scale the sina groups. - `area` - Scale by the largest density/bin among the different sinas - `count` - areas are scaled proportionally to the number of points - `width` - Only scale according to the maxwidth parameter. style : Type of sina plot to draw. The options are ```python 'full' # Regular (2 sided) 'left' # Left-sided half 'right' # Right-sided half 'left-right' # Alternate (left first) half by the group 'right-left' # Alternate (right first) half by the group ``` See Also -------- plotnine.geom_sina : The default `geom` for this `stat`. """ _aesthetics_doc = """ {aesthetics_table} **Options for computed aesthetics** ```python "quantile" # quantile "group" # group identifier ``` Calculated aesthetics are accessed using the `after_stat` function. e.g. `after_stat('quantile')`{.py}. """ REQUIRED_AES = {"x", "y"} DEFAULT_PARAMS = { "geom": "sina", "position": "dodge", "na_rm": False, "binwidth": None, "bins": None, "method": "density", "bw": "nrd0", "maxwidth": None, "adjust": 1, "bin_limit": 1, "random_state": None, "scale": "area", "style": "full", } CREATES = {"scaled"} def setup_data(self, data): if ( array_kind.continuous(data["x"]) and not has_groups(data) and (data["x"] != data["x"].iloc[0]).any() ): raise TypeError( "Continuous x aesthetic -- did you forget aes(group=...)?" ) return data def setup_params(self, data): params = self.params random_state = params["random_state"] if params["maxwidth"] is None: params["maxwidth"] = resolution(data["x"], False) * 0.9 if params["binwidth"] is None and self.params["bins"] is None: params["bins"] = 50 if random_state is None: params["random_state"] = np.random elif isinstance(random_state, int): params["random_state"] = np.random.RandomState(random_state) # Required by compute_density params["kernel"] = "gau" # It has to be a gaussian kernel params["cut"] = 0 params["gridsize"] = None params["clip"] = (-np.inf, np.inf) params["bounds"] = (-np.inf, np.inf) params["n"] = 512 def compute_panel(self, data, scales): params = self.params maxwidth = params["maxwidth"] random_state = params["random_state"] data = super().compute_panel(data, scales) if not len(data): return data if params["scale"] == "area": data["sinawidth"] = data["density"] / data["density"].max() elif params["scale"] == "count": data["sinawidth"] = ( data["density"] / data["density"].max() * data["n"] / data["n"].max() ) elif params["scale"] == "width": data["sinawidth"] = data["scaled"] else: msg = "Unknown scale value '{}'" raise PlotnineError(msg.format(params["scale"])) is_infinite = ~np.isfinite(data["sinawidth"]) if is_infinite.any(): data.loc[is_infinite, "sinawidth"] = 0 data["xmin"] = data["x"] - maxwidth / 2 data["xmax"] = data["x"] + maxwidth / 2 data["x_diff"] = ( random_state.uniform(-1, 1, len(data)) * maxwidth * data["sinawidth"] / 2 ) data["width"] = maxwidth # jitter y values if the input is integer, # but not if it is the same value y = data["y"].to_numpy() all_integers = (y == np.floor(y)).all() some_are_unique = len(np.unique(y)) > 1 if all_integers and some_are_unique: data["y"] = jitter(y, random_state=random_state) return data def compute_group(self, data, scales): binwidth = self.params["binwidth"] maxwidth = self.params["maxwidth"] bin_limit = self.params["bin_limit"] weight = None y = data["y"] if len(data) == 0: return pd.DataFrame() elif len(data) < 3: data["density"] = 0 data["scaled"] = 1 elif len(np.unique(y)) < 2: data["density"] = 1 data["scaled"] = 1 elif self.params["method"] == "density": from scipy.interpolate import interp1d # density kernel estimation range_y = y.min(), y.max() dens = compute_density(y, weight, range_y, self.params) densf = interp1d( dens["x"], dens["density"], bounds_error=False, fill_value="extrapolate", # pyright: ignore ) data["density"] = densf(y) data["scaled"] = data["density"] / dens["density"].max() else: expanded_y_range = nextafter_range(scales.y.dimension()) if binwidth is not None: bins = breaks_from_binwidth(expanded_y_range, binwidth) else: bins = breaks_from_bins(expanded_y_range, self.params["bins"]) # bin based estimation bin_index = pd.cut(y, bins, include_lowest=True, labels=False) # pyright: ignore[reportCallIssue,reportArgumentType] data["density"] = ( pd.Series(bin_index) .groupby(bin_index) .apply(len)[bin_index] .to_numpy() ) data.loc[data["density"] <= bin_limit, "density"] = 0 data["scaled"] = data["density"] / data["density"].max() # Compute width if x has multiple values if len(data["x"].unique()) > 1: width = np.ptp(data["x"]) * maxwidth else: width = maxwidth data["width"] = width data["n"] = len(data) data["x"] = np.mean([data["x"].max(), data["x"].min()]) return data def finish_layer(self, data): # Rescale x in case positions have been adjusted style = self.params["style"] x_mean = cast("FloatArray", data["x"].to_numpy()) x_mod = (data["xmax"] - data["xmin"]) / data["width"] data["x"] = data["x"] + data["x_diff"] * x_mod group = cast("IntArray", data["group"].to_numpy()) x = cast("FloatArray", data["x"].to_numpy()) even = group % 2 == 0 def mirror_x(bool_idx): """ Mirror x locations along the mean value """ data.loc[bool_idx, "x"] = 2 * x_mean[bool_idx] - x[bool_idx] match style: case "left": mirror_x(x_mean < x) case "right": mirror_x(x < x_mean) case "left-right": mirror_x(even & (x < x_mean) | ~even & (x_mean < x)) case "right-left": mirror_x(even & (x_mean < x) | ~even & (x < x_mean)) return data
stat_sina
python
Textualize__textual
docs/examples/themes/todo_app.py
{ "start": 234, "end": 2176 }
class ____(App[None]): CSS = """ Screen { align: center middle; hatch: right $foreground 10%; } #content { height: auto; width: 40; padding: 1 2; } #header { height: 1; width: auto; margin-bottom: 1; } .title { text-style: bold; padding: 0 1; width: 1fr; } #overdue { color: $text-error; background: $error-muted; padding: 0 1; width: auto; } #done { color: $text-success; background: $success-muted; padding: 0 1; margin: 0 1; } #footer { height: auto; margin-bottom: 2; } #history-header { height: 1; width: auto; } #history-done { width: auto; padding: 0 1; margin: 0 1; background: $primary-muted; color: $text-primary; } """ BINDINGS = [Binding("ctrl+t", "cycle_theme", "Cycle theme")] THEMES = cycle( ["nord", "gruvbox", "tokyo-night", "textual-dark", "solarized-light"] ) def compose(self) -> ComposeResult: yield Header() with Vertical(id="content"): with Horizontal(id="header"): yield Label("Today", classes="title") yield Label("1 overdue", id="overdue") yield Label("1 done", id="done") yield SelectionList( ("Buy milk", 0), ("Buy bread", 1), ("Go and vote", 2, True), ("Return package", 3), id="todo-list", ) with Horizontal(id="footer"): yield Input(placeholder="Add a task") with Horizontal(id="history-header"): yield Label("History", classes="title") yield Label("4 items", id="history-done") yield Footer() def on_mount(self) -> None: self.action_cycle_theme() def action_cycle_theme(self) -> None: self.theme = next(self.THEMES) app = TodoList() if __name__ == "__main__": app.run()
TodoList
python
simonw__datasette
datasette/utils/baseconv.py
{ "start": 290, "end": 1553 }
class ____(object): decimal_digits = "0123456789" def __init__(self, digits): self.digits = digits def encode(self, i): return self.convert(i, self.decimal_digits, self.digits) def decode(self, s): return int(self.convert(s, self.digits, self.decimal_digits)) def convert(number, fromdigits, todigits): # Based on http://code.activestate.com/recipes/111286/ if str(number)[0] == "-": number = str(number)[1:] neg = 1 else: neg = 0 # make an integer out of the number x = 0 for digit in str(number): x = x * len(fromdigits) + fromdigits.index(digit) # create the result in base 'len(todigits)' if x == 0: res = todigits[0] else: res = "" while x > 0: digit = x % len(todigits) res = todigits[digit] + res x = int(x / len(todigits)) if neg: res = "-" + res return res convert = staticmethod(convert) bin = BaseConverter("01") hexconv = BaseConverter("0123456789ABCDEF") base62 = BaseConverter("ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz")
BaseConverter
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/flake8_pie/PIE794.py
{ "start": 764, "end": 862 }
class ____: name: str = "Foo" name: str = name + " Bar" name: str = "Bar" # PIE794
Person
python
ray-project__ray
python/ray/serve/schema.py
{ "start": 37614, "end": 38386 }
class ____(BaseModel): """Deployment-level autoscaler observability.""" scaling_status: AutoscalingStatus = Field( ..., description="Current scaling direction or stability." ) decisions: List[ScalingDecision] = Field( default_factory=list, description="Recent scaling decisions." ) metrics: Optional[Dict[str, Any]] = Field( None, description="Aggregated metrics for this deployment." ) metrics_health: AutoscalingMetricsHealth = Field( AutoscalingMetricsHealth.HEALTHY, description="Health of metrics collection pipeline.", ) errors: List[str] = Field( default_factory=list, description="Recent errors/abnormal events." ) @PublicAPI(stability="stable")
DeploymentAutoscalingDetail
python
allegroai__clearml
clearml/backend_api/services/v2_23/queues.py
{ "start": 90646, "end": 93922 }
class ____(Request): """ Update queue information :param queue: Queue id :type queue: str :param name: Queue name Unique within the company. :type name: str :param tags: User-defined tags list :type tags: Sequence[str] :param system_tags: System tags list. This field is reserved for system use, please don't use it. :type system_tags: Sequence[str] """ _service = "queues" _action = "update" _version = "2.23" _schema = { "definitions": {}, "properties": { "name": { "description": "Queue name Unique within the company.", "type": "string", }, "queue": {"description": "Queue id", "type": "string"}, "system_tags": { "description": "System tags list. This field is reserved for system use, please don't use it.", "items": {"type": "string"}, "type": "array", }, "tags": { "description": "User-defined tags list", "items": {"type": "string"}, "type": "array", }, }, "required": ["queue"], "type": "object", } def __init__( self, queue: str, name: Optional[str] = None, tags: Optional[List[str]] = None, system_tags: Optional[List[str]] = None, **kwargs: Any ) -> None: super(UpdateRequest, self).__init__(**kwargs) self.queue = queue self.name = name self.tags = tags self.system_tags = system_tags @schema_property("queue") def queue(self) -> str: return self._property_queue @queue.setter def queue(self, value: str) -> None: if value is None: self._property_queue = None return self.assert_isinstance(value, "queue", six.string_types) self._property_queue = value @schema_property("name") def name(self) -> Optional[str]: return self._property_name @name.setter def name(self, value: Optional[str]) -> None: if value is None: self._property_name = None return self.assert_isinstance(value, "name", six.string_types) self._property_name = value @schema_property("tags") def tags(self) -> Optional[List[str]]: return self._property_tags @tags.setter def tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_tags = None return self.assert_isinstance(value, "tags", (list, tuple)) self.assert_isinstance(value, "tags", six.string_types, is_array=True) self._property_tags = value @schema_property("system_tags") def system_tags(self) -> Optional[List[str]]: return self._property_system_tags @system_tags.setter def system_tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_system_tags = None return self.assert_isinstance(value, "system_tags", (list, tuple)) self.assert_isinstance(value, "system_tags", six.string_types, is_array=True) self._property_system_tags = value
UpdateRequest
python
sympy__sympy
sympy/physics/quantum/cartesian.py
{ "start": 2237, "end": 2785 }
class ____(HermitianOperator): """ Z cartesian coordinate operator (for 3D systems) """ @classmethod def default_args(self): return ("Z",) @classmethod def _eval_hilbert_space(self, args): return L2(Interval(S.NegativeInfinity, S.Infinity)) def _apply_operator_PositionKet3D(self, ket, **options): return ket.position_z*ket #------------------------------------------------------------------------- # Momentum operators #-------------------------------------------------------------------------
ZOp
python
PyCQA__pylint
tests/functional/i/invalid/invalid_index_returned.py
{ "start": 986, "end": 1159 }
class ____: """ __index__ returns node which does not have 'value' in AST """ def __index__(self): # [invalid-index-returned] return lambda: 3
FourthBadIndex
python
py-pdf__pypdf
pypdf/constants.py
{ "start": 3418, "end": 3939 }
class ____: """ Table 3.30 Entries in a resource dictionary. Table 34 in the 2.0 reference. """ EXT_G_STATE = "/ExtGState" # dictionary, optional COLOR_SPACE = "/ColorSpace" # dictionary, optional PATTERN = "/Pattern" # dictionary, optional SHADING = "/Shading" # dictionary, optional XOBJECT = "/XObject" # dictionary, optional FONT = "/Font" # dictionary, optional PROC_SET = "/ProcSet" # array, optional PROPERTIES = "/Properties" # dictionary, optional
Resources
python
tensorflow__tensorflow
tensorflow/python/keras/legacy_tf_layers/convolutional.py
{ "start": 988, "end": 9906 }
class ____(keras_layers.Conv1D, base.Layer): """1D convolution layer (e.g. temporal convolution). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Args: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`. dilation_rate: An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, the default initializer will be used. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Conv1D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) def conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for 1D convolution layer (e.g. temporal convolution). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Args: inputs: Tensor input. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`. dilation_rate: An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, the default initializer will be used. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ warnings.warn('`tf.layers.conv1d` is deprecated and ' 'will be removed in a future version. ' 'Please Use `tf.keras.layers.Conv1D` instead.') layer = Conv1D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, _reuse=reuse, _scope=name) return layer.apply(inputs)
Conv1D
python
PrefectHQ__prefect
src/prefect/server/schemas/responses.py
{ "start": 19645, "end": 20845 }
class ____(schemas.core.Worker): status: schemas.statuses.WorkerStatus = Field( schemas.statuses.WorkerStatus.OFFLINE, description="Current status of the worker.", ) @classmethod def model_validate( cls: Type[Self], obj: Any, *, strict: Optional[bool] = None, from_attributes: Optional[bool] = None, context: Optional[dict[str, Any]] = None, ) -> Self: worker = super().model_validate( obj, strict=strict, from_attributes=from_attributes, context=context ) if from_attributes: offline_horizon = datetime.datetime.now( tz=datetime.timezone.utc ) - datetime.timedelta( seconds=( worker.heartbeat_interval_seconds or DEFAULT_HEARTBEAT_INTERVAL_SECONDS ) * INACTIVITY_HEARTBEAT_MULTIPLE ) if worker.last_heartbeat_time > offline_horizon: worker.status = schemas.statuses.WorkerStatus.ONLINE else: worker.status = schemas.statuses.WorkerStatus.OFFLINE return worker
WorkerResponse
python
django__django
django/db/migrations/exceptions.py
{ "start": 252, "end": 370 }
class ____(Exception): """There's an impossible-to-resolve circular dependency.""" pass
CircularDependencyError
python
dagster-io__dagster
python_modules/dagster/dagster/_core/remote_representation/external.py
{ "start": 25268, "end": 25477 }
class ____: job_selector: JobSubsetSelector run_config: Optional[Mapping[str, Any]] @cached_method def __hash__(self) -> int: return hash(make_hashable(self))
RemoteExecutionPlanSelector
python
Netflix__metaflow
test/test_config/helloconfig.py
{ "start": 818, "end": 1085 }
class ____(FlowMutator): def mutate(self, mutable_flow): s = mutable_flow.start s.add_decorator(environment, vars={"hello": mutable_flow.config.env_to_start}) @TitusOrNot @AddEnvToStart @project(name=config_expr("config").project_name)
AddEnvToStart
python
getsentry__sentry
tests/sentry/web/frontend/test_auth_organization_login.py
{ "start": 1281, "end": 44561 }
class ____(AuthProviderTestCase): @cached_property def organization(self) -> Organization: return self.create_organization(name="foo", owner=self.user) @cached_property def path(self) -> str: return reverse("sentry-auth-organization", args=[self.organization.slug]) def test_renders_basic(self) -> None: self.login_as(self.user) resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed(resp, "sentry/organization-login.html") assert resp.context["login_form"] with assume_test_silo_mode(SiloMode.REGION): assert resp.context["organization"] == serialize_rpc_organization(self.organization) assert "provider_key" not in resp.context assert resp.context["join_request_link"] def test_cannot_get_request_join_link_with_setting_disabled(self) -> None: with assume_test_silo_mode(SiloMode.REGION): OrganizationOption.objects.create( organization_id=self.organization.id, key="sentry:join_requests", value=False ) self.login_as(self.user) resp = self.client.get(self.path) assert resp.status_code == 200 assert resp.context["join_request_link"] is None def test_renders_session_expire_message(self) -> None: self.client.cookies["session_expired"] = "1" resp = self.client.get(self.path) assert resp.status_code == 200 self.assertTemplateUsed(resp, "sentry/organization-login.html") assert len(resp.context["messages"]) == 1 def test_flow_as_anonymous(self) -> None: auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-identity.html") assert resp.status_code == 200 frontend_events = {"event_name": "Sign Up", "event_label": "dummy"} marketing_query = urlencode({"frontend_events": json.dumps(frontend_events)}) with self.settings( TERMS_URL="https://example.com/terms", PRIVACY_URL="https://example.com/privacy" ): resp = self.client.post(path, {"op": "newuser"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login") + f"?{marketing_query}", 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) user = auth_identity.user assert user.email == "foo@example.com" assert not user.has_usable_password() assert not user.is_managed assert user.flags.newsletter_consent_prompt with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=self.organization, user_id=user.id) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_as_existing_user_with_new_account(self) -> None: auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("bar@example.com") self.login_as(user) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 resp = self.client.post(path, {"op": "confirm"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) assert user == auth_identity.user with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=self.organization, user_id=user.id) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_as_existing_user_with_new_account_member_limit(self) -> None: with self.feature({"organizations:invite-members": False}): auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("bar@example.com") self.login_as(user) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 resp = self.client.post(path, {"op": "confirm"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ("/organizations/foo/disabled-member/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) assert user == auth_identity.user with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get( organization=self.organization, user_id=user.id ) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert getattr(member.flags, "member-limit:restricted") def test_flow_as_existing_identity(self) -> None: user = self.create_user("bar@example.com") auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) AuthIdentity.objects.create( auth_provider=auth_provider, user_id=user.id, ident="foo@example.com" ) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] def test_org_redirects_to_relative_next_url(self) -> None: user = self.create_user("bar@example.com") auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) AuthIdentity.objects.create( auth_provider=auth_provider, user_id=user.id, ident="foo@example.com" ) next = f"/organizations/{self.organization.slug}/releases/" resp = self.client.post(self.path + "?next=" + next, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}, follow=True) assert resp.redirect_chain == [ (next, 302), ] @with_feature("sytem:multi-region") def test_org_redirects_to_next_url_customer_domain(self) -> None: user = self.create_user("bar@example.com") auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) AuthIdentity.objects.create( auth_provider=auth_provider, user_id=user.id, ident="foo@example.com" ) next = f"/organizations/{self.organization.slug}/releases/" resp = self.client.post( self.path + "?next=" + self.organization.absolute_url(next), {"init": True} ) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}, follow=True) assert resp.redirect_chain == [ (self.organization.absolute_url(next), 302), ] def test_org_login_doesnt_redirect_external(self) -> None: user = self.create_user("bar@example.com") auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) AuthIdentity.objects.create( auth_provider=auth_provider, user_id=user.id, ident="foo@example.com" ) next = "http://example.com" resp = self.client.post(self.path + "?next=" + urlquote(next), {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] def test_flow_as_unauthenticated_existing_matched_user_no_merge(self) -> None: auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("bar@example.com") resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": user.email}) self.assertTemplateUsed(resp, "sentry/auth-confirm-identity.html") assert resp.status_code == 200 assert resp.context["existing_user"] == user assert resp.context["login_form"] frontend_events = {"event_name": "Sign Up", "event_label": "dummy"} marketing_query = urlencode({"frontend_events": json.dumps(frontend_events)}) resp = self.client.post(path, {"op": "newuser"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login") + f"?{marketing_query}", 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) new_user = auth_identity.user assert user.email == "bar@example.com" assert new_user != user # Without settings.TERMS_URL and settings.PRIVACY_URL, this should be # unset following new user creation assert not new_user.flags.newsletter_consent_prompt with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get( organization=self.organization, user_id=new_user.id ) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_as_unauthenticated_existing_matched_user_with_merge(self) -> None: user = self.create_user("bar@example.com") user.update(is_superuser=False) org1 = self.create_organization(name="bar", owner=user) path = reverse("sentry-auth-organization", args=[org1.slug]) # create a second org that the user belongs to, ensure they are redirected to correct self.create_organization(name="zap", owner=user) auth_provider = AuthProvider.objects.create(organization_id=org1.id, provider="dummy") email = user.emails.all()[:1].get() email.is_verified = False email.save() resp = self.client.post(path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": user.email}) self.assertTemplateUsed(resp, "sentry/auth-confirm-identity.html") assert resp.status_code == 200 assert resp.context["existing_user"] == user assert resp.context["login_form"] resp = self.client.post( path, {"op": "login", "username": user.username, "password": "admin"} ) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 resp = self.client.post(path, {"op": "confirm"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), (f"/organizations/{org1.slug}/issues/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) new_user = auth_identity.user assert new_user == user with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=org1, user_id=user.id) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_as_unauthenticated_existing_matched_user_via_secondary_email(self) -> None: auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("foo@example.com") UserEmail.objects.create(user=user, email="bar@example.com", is_verified=True) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": user.email}) self.assertTemplateUsed(resp, "sentry/auth-confirm-identity.html") assert resp.status_code == 200 assert resp.context["existing_user"] == user assert resp.context["login_form"] resp = self.client.post( path, {"op": "login", "username": user.username, "password": "admin"} ) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 resp = self.client.post(path, {"op": "confirm"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) new_user = auth_identity.user assert new_user == user with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=self.organization, user_id=user.id) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") @mock.patch("sentry.auth.helper.AuthIdentityHandler.warn_about_ambiguous_email") def test_flow_as_unauthenticated_existing_matched_user_with_ambiguous_email( self, mock_warning: mock.MagicMock ) -> None: AuthProvider.objects.create(organization_id=self.organization.id, provider="dummy") secondary_email = "foo@example.com" users = {self.create_user() for _ in range(2)} for user in users: UserEmail.objects.create(user=user, email=secondary_email, is_verified=True) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": secondary_email}) assert resp.status_code == 200 assert mock_warning.called received_email, found_users, chosen_user = mock_warning.call_args.args assert received_email == secondary_email assert set(found_users) == users assert chosen_user in users def test_flow_as_unauthenticated_existing_unmatched_user_with_merge(self) -> None: auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("foo@example.com") resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "bar@example.com"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-identity.html") assert resp.status_code == 200 assert not resp.context["existing_user"] assert resp.context["login_form"] resp = self.client.post( path, {"op": "login", "username": user.username, "password": "admin"} ) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 resp = self.client.post(path, {"op": "confirm"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) new_user = auth_identity.user assert new_user == user with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=self.organization, user_id=user.id) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_as_unauthenticated_existing_matched_user_with_merge_and_existing_identity( self, ) -> None: auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("bar@example.com") auth_identity = AuthIdentity.objects.create( auth_provider=auth_provider, user=user, ident="adfadsf@example.com" ) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": user.email}) self.assertTemplateUsed(resp, "sentry/auth-confirm-identity.html") assert resp.status_code == 200 assert resp.context["existing_user"] == user assert resp.context["login_form"] resp = self.client.post( path, {"op": "login", "username": user.username, "password": "admin"} ) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 resp = self.client.post(path, {"op": "confirm"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(id=auth_identity.id) assert auth_identity.ident == user.email new_user = auth_identity.user assert new_user == user with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=self.organization, user_id=user.id) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_as_unauthenticated_existing_inactive_user_with_merge_and_existing_identity( self, ) -> None: """ Given an unauthenticated user, and an existing, inactive user account with a linked identity, this should claim that identity and create a new user account. """ auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("bar@example.com", is_active=False) auth_identity = AuthIdentity.objects.create( auth_provider=auth_provider, user_id=user.id, ident="adfadsf@example.com" ) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "adfadsf@example.com"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-identity.html") assert resp.status_code == 200 assert not resp.context["existing_user"] assert resp.context["login_form"] frontend_events = {"event_name": "Sign Up", "event_label": "dummy"} marketing_query = urlencode({"frontend_events": json.dumps(frontend_events)}) resp = self.client.post(path, {"op": "newuser"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login") + f"?{marketing_query}", 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(id=auth_identity.id) assert auth_identity.ident == "adfadsf@example.com" new_user = auth_identity.user assert new_user.id != user.id with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get( organization=self.organization, user_id=new_user.id ) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_duplicate_users_with_membership_and_verified(self) -> None: """ Given an existing authenticated user, and an updated identity (e.g. the ident changed from the SSO provider), we should be re-linking the identity automatically (without prompt) assuming the user is a member of the org. This only works when the email is mapped to an identical identity. """ auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) # setup a 'previous' identity, such as when we migrated Google from # the old idents to the new user = self.create_user("bar@example.com", is_managed=True, is_active=False) auth_identity = AuthIdentity.objects.create( auth_provider=auth_provider, user=user, ident="bar@example.com" ) # they must be a member for the auto merge to happen self.create_member(organization=self.organization, user_id=user.id) # user needs to be logged in self.login_as(user) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") # we're suggesting the identity changed (as if the Google ident was # updated to be something else) resp = self.client.post( path, {"email": "bar@example.com", "id": "123", "email_verified": "1"}, follow=True ) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ("/auth/login/foo/", 302), ] # there should be no prompt as we auto merge the identity auth_identity = AuthIdentity.objects.get(id=auth_identity.id) assert auth_identity.ident == "123" new_user = auth_identity.user assert new_user == user with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get( organization=self.organization, user_id=new_user.id ) assert getattr(member.flags, "sso:linked") assert not getattr(member.flags, "sso:invalid") assert not getattr(member.flags, "member-limit:restricted") def test_flow_duplicate_users_without_verified(self) -> None: """ Given an existing authenticated user, and an updated identity (e.g. the ident changed from the SSO provider), we should be re-linking the identity automatically (without prompt) assuming the user is a member of the org. """ auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) # setup a 'previous' identity, such as when we migrated Google from # the old idents to the new user = self.create_user("bar@example.com", is_managed=True) AuthIdentity.objects.create(auth_provider=auth_provider, user=user, ident="bar@example.com") # they must be a member for the auto merge to happen self.create_member(organization=self.organization, user_id=user.id) # user needs to be logged in self.login_as(user) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") # we're suggesting the identity changed (as if the Google ident was # updated to be something else) resp = self.client.post(path, {"email": "adfadsf@example.com"}) # there should be no prompt as we auto merge the identity assert resp.status_code == 200 def test_flow_authenticated_without_verified_without_password(self) -> None: """ Given an existing authenticated user, and an updated identity (e.g. the ident changed from the SSO provider), we should be re-linking the identity automatically as they don't have a password. This is specifically testing an unauthenticated flow. """ AuthProvider.objects.create(organization_id=self.organization.id, provider="dummy") # setup a 'previous' identity, such as when we migrated Google from # the old idents to the new user = self.create_user("bar@example.com", is_managed=False, password="") assert not user.has_usable_password() UserEmail.objects.filter(user=user, email="bar@example.com").update(is_verified=False) self.create_member(organization=self.organization, user_id=user.id) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "bar@example.com"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-account.html") assert resp.status_code == 200 assert resp.context["existing_user"] == user def test_flow_managed_duplicate_users_without_membership(self) -> None: """ Given an existing authenticated user, and an updated identity (e.g. the ident changed from the SSO provider), we should be prompting to confirm their identity as they don't have membership. """ auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) # setup a 'previous' identity, such as when we migrated Google from # the old idents to the new user = self.create_user("bar@example.com", is_managed=True) AuthIdentity.objects.create(auth_provider=auth_provider, user=user, ident="bar@example.com") # user needs to be logged in self.login_as(user) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") # we're suggesting the identity changed (as if the Google ident was # updated to be something else) resp = self.client.post(path, {"email": "adfadsf@example.com", "email_verified": "1"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 assert resp.context["existing_user"].id == user.id def test_swapped_identities(self) -> None: """ Given two existing user accounts with mismatched identities, such as: - foo SSO'd as bar@example.com - bar SSO'd as foo@example.com If bar is authenticating via SSO as bar@example.com, we should remove the existing entry attached to bar, and re-bind the entry owned by foo. """ auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) # setup a 'previous' identity, such as when we migrated Google from # the old idents to the new user = self.create_user("bar@example.com", is_managed=True, is_active=False) identity1 = AuthIdentity.objects.create( auth_provider=auth_provider, user=user, ident="bar@example.com" ) # create another identity which is used, but not by the authenticating # user user2 = self.create_user("adfadsf@example.com", is_managed=True, is_active=False) identity2 = AuthIdentity.objects.create( auth_provider=auth_provider, user=user2, ident="adfadsf@example.com" ) member2 = self.create_member(user_id=user2.id, organization=self.organization) # user needs to be logged in self.login_as(user) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") # we're suggesting the identity changed (as if the Google ident was # updated to be something else) resp = self.client.post(path, {"email": "adfadsf@example.com"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ("/auth/login/foo/", 302), ] assert not AuthIdentity.objects.filter(id=identity1.id).exists() identity2 = AuthIdentity.objects.get(id=identity2.id) assert identity2.ident == "adfadsf@example.com" assert identity2.user == user with assume_test_silo_mode(SiloMode.REGION): member1 = OrganizationMember.objects.get( user_id=user.id, organization=self.organization ) assert getattr(member1.flags, "sso:linked") assert not getattr(member1.flags, "sso:invalid") assert not getattr(member1.flags, "member-limit:restricted") with assume_test_silo_mode(SiloMode.REGION): member2 = OrganizationMember.objects.get(id=member2.id) assert not getattr(member2.flags, "sso:linked") assert getattr(member2.flags, "sso:invalid") assert not getattr(member2.flags, "member-limit:restricted") def test_flow_as_unauthenticated_existing_user_legacy_identity_migration(self) -> None: user = self.create_user("bar@example.com") auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user_ident = AuthIdentity.objects.create( auth_provider=auth_provider, user=user, ident="foo@example.com" ) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post( path, {"email": "foo@new-domain.com", "legacy_email": "foo@example.com"}, follow=True ) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] # Ensure the ident was migrated from the legacy identity updated_ident = AuthIdentity.objects.get(id=user_ident.id) assert updated_ident.ident == "foo@new-domain.com" def test_flow_as_authenticated_user_with_invite_joining(self) -> None: auth_provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) user = self.create_user("bar@example.com") member = self.create_member(email="bar@example.com", organization=self.organization) with assume_test_silo_mode(SiloMode.REGION): member.user_id = None member.save() self.login_as(user) resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 assert PLACEHOLDER_TEMPLATE in resp.content.decode("utf-8") path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "bar@example.com"}) self.assertTemplateUsed(resp, "sentry/auth-confirm-link.html") assert resp.status_code == 200 resp = self.client.post(path, {"op": "confirm"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), ("/organizations/foo/issues/", 302), ] auth_identity = AuthIdentity.objects.get(auth_provider=auth_provider) assert user == auth_identity.user with assume_test_silo_mode(SiloMode.REGION): test_member = OrganizationMember.objects.get( organization=self.organization, user_id=user.id ) assert member.id == test_member.id assert getattr(test_member.flags, "sso:linked") assert not getattr(test_member.flags, "sso:invalid") assert not getattr(test_member.flags, "member-limit:restricted") @override_settings(SENTRY_SINGLE_ORGANIZATION=True) @with_feature({"organizations:create": False}) def test_basic_auth_flow_as_not_invited_user(self) -> None: user = self.create_user("foor@example.com") self.session["_next"] = reverse( "sentry-organization-settings", args=[self.organization.slug] ) self.save_session() resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [("/auth/login/", 302)] assert resp.status_code == 403 self.assertTemplateUsed(resp, "sentry/no-organization-access.html") def test_basic_auth_flow_as_not_invited_user_not_single_org_mode(self) -> None: user = self.create_user("u2@example.com") resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [("/auth/login/", 302), ("/organizations/new/", 302)] @override_settings(SENTRY_SINGLE_ORGANIZATION=True) @with_feature({"organizations:create": False}) def test_basic_auth_flow_as_user_with_confirmed_membership(self) -> None: user = self.create_user("foor@example.com") self.create_member(organization=self.organization, user_id=user.id) self.session["_next"] = reverse( "sentry-organization-settings", args=[self.organization.slug] ) self.save_session() resp = self.client.post( self.path, {"username": user.username, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [ (reverse("sentry-organization-settings", args=[self.organization.slug]), 302), ] @override_settings(SENTRY_SINGLE_ORGANIZATION=True) @with_feature({"organizations:create": False}) def test_flow_as_user_without_any_membership(self) -> None: # not sure how this could happen on Single Org Mode user = self.create_user("foor@example.com") resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [("/auth/login/", 302)] assert resp.status_code == 403 self.assertTemplateUsed(resp, "sentry/no-organization-access.html") def test_multiorg_login_correct_redirect_basic_auth(self) -> None: user = self.create_user("bar@example.com") user.update(is_superuser=False) org1 = self.create_organization(name="bar", owner=user) path = reverse("sentry-auth-organization", args=[org1.slug]) # create a second org that the user belongs to, ensure they are redirected to correct self.create_organization(name="zap", owner=user) self.client.get(path) resp = self.client.post( path, {"username": user.username, "password": "admin", "op": "login"}, follow=True, ) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), (f"/organizations/{org1.slug}/issues/", 302), ] def test_multiorg_login_correct_redirect_sso(self) -> None: user = self.create_user("bar@example.com") user.update(is_superuser=False) org1 = self.create_organization(name="bar", owner=user) path = reverse("sentry-auth-organization", args=[org1.slug]) # create a second org that the user belongs to, ensure they are redirected to correct self.create_organization(name="zap", owner=user) auth_provider = AuthProvider.objects.create(organization_id=org1.id, provider="dummy") AuthIdentity.objects.create(auth_provider=auth_provider, user=user, ident="foo@example.com") resp = self.client.post(path, {"init": True}) path = reverse("sentry-auth-sso") resp = self.client.post(path, {"email": "foo@example.com"}, follow=True) assert resp.redirect_chain == [ (reverse("sentry-login"), 302), (f"/organizations/{org1.slug}/issues/", 302), ] @override_settings(SENTRY_SINGLE_ORGANIZATION=True) @with_feature({"organizations:create": False}) def test_correct_redirect_as_2fa_user_single_org_invited(self) -> None: user = self.create_user("foor@example.com") RecoveryCodeInterface().enroll(user) TotpInterface().enroll(user) self.create_member(organization=self.organization, user_id=user.id) with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=self.organization, user_id=user.id) member.email = "foor@example.com" member.user_id = None member.save() resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) # Users with 2FA should be redirected to 2FA dialog first, even with pending invites assert resp.redirect_chain == [("/auth/2fa/", 302)] def test_correct_redirect_as_2fa_user_invited(self) -> None: user = self.create_user("foor@example.com") RecoveryCodeInterface().enroll(user) TotpInterface().enroll(user) self.create_member(organization=self.organization, user_id=user.id) with assume_test_silo_mode(SiloMode.REGION): member = OrganizationMember.objects.get(organization=self.organization, user_id=user.id) member.email = "foor@example.com" member.user_id = None member.save() resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) # Users with 2FA should be redirected to 2FA dialog first, even with pending invites assert resp.redirect_chain == [("/auth/2fa/", 302)] @override_settings(SENTRY_SINGLE_ORGANIZATION=True) @with_feature({"organizations:create": False}) def test_correct_redirect_as_2fa_user_single_org_no_membership(self) -> None: user = self.create_user("foor@example.com") RecoveryCodeInterface().enroll(user) TotpInterface().enroll(user) resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [("/auth/2fa/", 302)] def test_correct_redirect_as_2fa_user_no_membership(self) -> None: user = self.create_user("foor@example.com") RecoveryCodeInterface().enroll(user) TotpInterface().enroll(user) resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [("/auth/2fa/", 302)] @override_settings(SENTRY_SINGLE_ORGANIZATION=True) @with_feature({"organizations:create": False}) def test_correct_redirect_as_2fa_user_single_org_member(self) -> None: user = self.create_user("foor@example.com") RecoveryCodeInterface().enroll(user) TotpInterface().enroll(user) self.create_member(organization=self.organization, user_id=user.id) resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [("/auth/2fa/", 302)] def test_correct_redirect_as_2fa_user_invited_member(self) -> None: user = self.create_user("foor@example.com") RecoveryCodeInterface().enroll(user) TotpInterface().enroll(user) self.create_member(organization=self.organization, user_id=user.id) resp = self.client.post( self.path, {"username": user, "password": "admin", "op": "login"}, follow=True ) assert resp.redirect_chain == [("/auth/2fa/", 302)] def test_anonymous_user_with_automatic_migration(self) -> None: AuthProvider.objects.create(organization_id=self.organization.id, provider="dummy") resp = self.client.post(self.path, {"init": True}) assert resp.status_code == 200 path = reverse("sentry-auth-sso") # Check that we don't call send_one_time_account_confirm_link with an AnonymousUser resp = self.client.post(path, {"email": "foo@example.com"}) assert resp.status_code == 200 def test_org_not_visible(self) -> None: with assume_test_silo_mode(SiloMode.REGION): self.organization.update(status=OrganizationStatus.DELETION_IN_PROGRESS) resp = self.client.get(self.path, follow=True) assert resp.status_code == 200 assert resp.redirect_chain == [("/auth/login/", 302)] self.assertTemplateUsed(resp, "sentry/login.html") @control_silo_test
OrganizationAuthLoginTest
python
ansible__ansible
test/lib/ansible_test/_internal/cli/parsers/__init__.py
{ "start": 8821, "end": 9015 }
class ____(PythonTargetParser): """Composite argument parser for a sanity Python target.""" def __init__(self) -> None: super().__init__(allow_venv=False)
SanityPythonTargetParser
python
spack__spack
lib/spack/spack/vendor/jinja2/nodes.py
{ "start": 11993, "end": 12133 }
class ____(Stmt): """Node for filter sections.""" fields = ("body", "filter") body: t.List[Node] filter: "Filter"
FilterBlock
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 987464, "end": 987629 }
class ____(sgqlc.types.Type, GitSignature): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ()
SmimeSignature
python
kamyu104__LeetCode-Solutions
Python/reaching-points.py
{ "start": 42, "end": 503 }
class ____(object): def reachingPoints(self, sx, sy, tx, ty): """ :type sx: int :type sy: int :type tx: int :type ty: int :rtype: bool """ while tx >= sx and ty >= sy: if tx < ty: sx, sy = sy, sx tx, ty = ty, tx if ty > sy: tx %= ty else: return (tx - sx) % ty == 0 return False
Solution
python
realpython__materials
python-maze-solver/source_code_final/src/maze_solver/view/primitives.py
{ "start": 232, "end": 451 }
class ____(NamedTuple): x: int y: int def draw(self, **attributes) -> str: return f"{self.x},{self.y}" def translate(self, x=0, y=0) -> "Point": return Point(self.x + x, self.y + y)
Point
python
Textualize__textual
tests/css/test_nested_css.py
{ "start": 1267, "end": 2008 }
class ____(App[None]): CSS = """ Label { &.foo, &.bar { background: red; } } """ def compose(self) -> ComposeResult: yield Label("one", classes="foo") yield Label("two", classes="bar") yield Label("three", classes="heh") async def test_lists_of_selectors_in_nested_css() -> None: """Regression test for https://github.com/Textualize/textual/issues/3969.""" app = ListOfNestedSelectorsApp() red = Color.parse("red") async with app.run_test(): assert app.query_one(".foo").styles.background == red assert app.query_one(".bar").styles.background == red assert app.query_one(".heh").styles.background != red
ListOfNestedSelectorsApp
python
pytorch__pytorch
torch/_inductor/template_heuristics/decompose_k.py
{ "start": 608, "end": 1265 }
class ____(TemplateConfigHeuristics): """empty heuristics to skip decompose k on anything not cuda""" # on CUDA, we don't support hip for decompose_k yet @register_template_heuristic( decompose_k_subgraph_template.uid, "cuda", register=torch.version.hip is None, op_name="mm", ) # TODO(coconutruben): enable decompose k on AMD by removing the register bool # and benchmarking it for performance and stability # TODO(coconutruben): enable decompose k on other devices (xpu, cpu, mps, mtia) # by either adding specific register_template_heuristic tags, or setting the # device to None (enabled on all devices)
EmptyDecomposeKConfigHeuristics
python
mlflow__mlflow
mlflow/gateway/base_models.py
{ "start": 57, "end": 340 }
class ____( BaseModel, # Allow extra fields for pydantic request models, e.g. to support # vendor-specific embeddings parameters extra="allow", ): """ A pydantic model representing Gateway request data, such as a chat or completions request """
RequestModel
python
plotly__plotly.py
plotly/graph_objs/isosurface/colorbar/_title.py
{ "start": 233, "end": 3992 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "isosurface.colorbar" _path_str = "isosurface.colorbar.title" _valid_props = {"font", "side", "text"} @property def font(self): """ Sets this color bar's title font. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.isosurface.colorbar.title.Font` - A dict of string/value properties that will be passed to the Font constructor Returns ------- plotly.graph_objs.isosurface.colorbar.title.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val @property def side(self): """ Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". The 'side' property is an enumeration that may be specified as: - One of the following enumeration values: ['right', 'top', 'bottom'] Returns ------- Any """ return self["side"] @side.setter def side(self, val): self["side"] = val @property def text(self): """ Sets the title of the color bar. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["text"] @text.setter def text(self, val): self["text"] = val @property def _prop_descriptions(self): return """\ font Sets this color bar's title font. side Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". text Sets the title of the color bar. """ def __init__(self, arg=None, font=None, side=None, text=None, **kwargs): """ Construct a new Title object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.isosurface.colorbar.Title` font Sets this color bar's title font. side Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". text Sets the title of the color bar. Returns ------- Title """ super().__init__("title") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.isosurface.colorbar.Title constructor must be a dict or an instance of :class:`plotly.graph_objs.isosurface.colorbar.Title`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("font", arg, font) self._set_property("side", arg, side) self._set_property("text", arg, text) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Title
python
fluentpython__example-code-2e
24-class-metaprog/hours/hours.py
{ "start": 1278, "end": 2559 }
class ____: h: int _m: int _s: float def __class_getitem__(cls, parts: Union[slice, float]) -> 'Hours': if isinstance(parts, slice): h = parts.start or 0 m = valid_base_60(parts.stop or 0, 'minutes') s = valid_base_60(parts.step or 0, 'seconds') else: h, m, s = normalize(parts * 3600) return Hours(h, m, s) def __init__(self, h: float = 0, m: float = 0, s: float = 0): if h < 0 or m < 0 or s < 0: raise ValueError('invalid negative argument') self.h, self.m, self.s = normalize(h * 3600 + m * 60 + s) def __repr__(self): h, m, s = self display_s = f'{s:06.3f}' display_s = display_s.rstrip('0').rstrip('.') if display_s == '00': return f'{h}:{m:02d}' return f'{h}:{m:02d}:{display_s}' def __float__(self): return self.h + self.m / 60 + self.s / 3600 def __eq__(self, other): return repr(self) == repr(other) def __iter__(self): yield self.h yield self.m yield self.s def __add__(self, other): if not isinstance(other, Hours): return NotImplemented return Hours(*(a + b for a, b in zip(self, other))) H = Hours
Hours
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/unnecessaryIsInstance1.py
{ "start": 182, "end": 873 }
class ____(CustomClass1): pass def func1(p1: int, p2: int | str): a = isinstance(p2, str) b = isinstance(p2, (int, float)) # This should generate an error because this is always true. c = isinstance(p2, (float, dict, int, str)) d = isinstance(p1, float) e = isinstance(p2, (float, dict, int)) # This should generate an error because this is always true. f = isinstance(p1, int) # This should not generate an error because it's within an assert. assert isinstance(p1, int) g = CustomClass2() # This should not generate an error because CustomClass2 # derives from an unknown type. g = isinstance(g, CustomClass1)
CustomClass2
python
pytorch__pytorch
test/mobile/model_test/nn_ops.py
{ "start": 9096, "end": 9565 }
class ____(torch.nn.Module): def forward(self): input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]]) input2 = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]) embedding_matrix = torch.rand(10, 3) offsets = torch.tensor([0, 4]) return len( F.embedding(input, embedding_matrix), F.embedding_bag(input2, embedding_matrix, offsets), F.one_hot(torch.arange(0, 5) % 3, num_classes=5), )
NNSparseModule
python
lxml__lxml
src/lxml/html/__init__.py
{ "start": 40005, "end": 40747 }
class ____(MutableMapping): def __init__(self, inputs): self.inputs = inputs def __getitem__(self, item): return self.inputs[item].value def __setitem__(self, item, value): self.inputs[item].value = value def __delitem__(self, item): raise KeyError( "You cannot remove keys from ElementDict") def keys(self): return self.inputs.keys() def __contains__(self, item): return item in self.inputs def __iter__(self): return iter(self.inputs.keys()) def __len__(self): return len(self.inputs) def __repr__(self): return '<%s for form %s>' % ( self.__class__.__name__, self.inputs.form._name())
FieldsDict
python
kennethreitz__tablib
src/tablib/formats/__init__.py
{ "start": 1962, "end": 2288 }
class ____(FormatDescriptorBase): def __get__(self, obj, cls, **kwargs): self.ensure_format_loaded() return self._format.export_set(obj, **kwargs) def __set__(self, obj, val): self.ensure_format_loaded() return self._format.import_set(obj, normalize_input(val))
ImportExportSetDescriptor
python
ray-project__ray
python/ray/util/multiprocessing/pool.py
{ "start": 5169, "end": 5276 }
class ____(Exception): def __init__(self, underlying): self.underlying = underlying
PoolTaskError
python
huggingface__transformers
src/transformers/models/olmo3/convert_olmo3_weights_to_hf.py
{ "start": 3492, "end": 18401 }
class ____(dist_cp.StorageReader): """ A :class:`~torch.distributed.checkpoint.StorageReader` based on :class:`~torch.distributed.checkpoint.FileSystemReader` that can read data directly from cloud storage as well as a local directory. """ def __init__( self, path: Path | str, *, thread_count: int | None = None, pre_download: bool = False, work_dir: Path | str | None = None, ): super().__init__() if thread_count is not None and thread_count <= 0: raise ValueError("thread count must be at least 1") self.path = normalize_path(path) self.thread_count = thread_count or 1 self.pre_download = pre_download self.work_dir = normalize_path(work_dir) if work_dir is not None else None self.storage_data: dict[MetadataIndex, _StorageInfo] = {} self.load_id = generate_uuid() self._metadata: Metadata | None = None def _get_bytes(self, relative_path: str, offset: int, length: int) -> bytes: full_path = f"{self.path}/{relative_path}" return get_bytes_range(full_path, offset, length) def _get_content_for_read(self, read_item: ReadItem) -> tuple[ReadItem, bytes]: sinfo = self.storage_data[read_item.storage_index] content = self._get_bytes(sinfo.relative_path, sinfo.offset, sinfo.length) return (read_item, content) def reset(self, checkpoint_id: Path | str | None = None) -> None: self.storage_data = {} if checkpoint_id: self.path = normalize_path(checkpoint_id) self.load_id = generate_uuid() def read_data(self, plan: dist_cp.LoadPlan, planner: dist_cp.LoadPlanner) -> Future[None]: with ThreadPoolExecutor(max_workers=self.thread_count) as executor: read_item_content_futures = [] for read_item in plan.items: read_item_content_futures.append(executor.submit(self._get_content_for_read, read_item)) read_item_content_results = [] for f in as_completed(read_item_content_futures): try: read_item_content_results.append(f.result()) except BaseException: # NOTE: we might get an error here that can't be pickled, which causes a different failure # later when PyTorch tries to reduce that error across ranks. So here we just make # sure we're raising a simple error type that can be pickled. raise RuntimeError(f"Original error:\n{traceback.format_exc()}") # Modified from `FileSystemReader.read_data()` for read_item, content in read_item_content_results: bytes = io.BytesIO(content) bytes.seek(0) if read_item.type == LoadItemType.BYTE_IO: planner.load_bytes(read_item, bytes) else: # NOTE: 'weights_only=False' needed to load torchao's float8 linear layer checkpoints tensor = cast(torch.Tensor, torch.load(bytes, map_location="cpu", weights_only=False)) tensor = _narrow_tensor_by_index(tensor, read_item.storage_offsets, read_item.lengths) target_tensor = planner.resolve_tensor(read_item).detach() assert target_tensor.size() == tensor.size(), ( f"req {read_item.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}" ) target_tensor.copy_(tensor) planner.commit_tensor(read_item, target_tensor) fut: Future = Future() fut.set_result(None) return fut def read_metadata(self) -> Metadata: if self._metadata is None: try: if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): raise ValueError( "This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially " "malicious. It's recommended to never unpickle data that could have come from an untrusted source, or " "that could have been tampered with. If you already verified the pickle data and decided to use it, " "you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it." ) with (Path(self.path) / ".metadata").open("rb") as metadata_file: metadata = pickle.load(metadata_file) except FileNotFoundError as exc: msg = f"'{self.path}' is not a distributed checkpoint folder." suggested_dir = os.path.join(self.path, "model_and_optim") if Path(os.path.join(suggested_dir, ".metadata")).exists(): msg += f" Did you mean to use '{suggested_dir}'?" raise FileNotFoundError(msg) from exc if getattr(metadata, "storage_meta", None) is None: metadata.storage_meta = StorageMeta() metadata.storage_meta.load_id = self.load_id self._metadata = metadata return self._metadata def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None: del is_coordinator self.storage_data = metadata.storage_data assert self.storage_data is not None def prepare_local_plan(self, plan: dist_cp.LoadPlan) -> dist_cp.LoadPlan: return plan def prepare_global_plan(self, global_plan: list[dist_cp.LoadPlan]) -> list[dist_cp.LoadPlan]: return global_plan @property def checkpoint_id(self) -> str: return self.path @classmethod def validate_checkpoint_id(cls, checkpoint_id: Path | str) -> bool: del checkpoint_id return True def load_model(model_path: str): def _load_unsharded_keys( dir: Path | str, keys: list[str], *, pre_download: bool = False, work_dir: Path | str | None = None, ) -> dict[str, Any]: from torch.distributed.checkpoint.default_planner import _EmptyStateDictLoadPlanner from torch.distributed.checkpoint.state_dict_loader import _load_state_dict state_dict: dict[str, Any] = {} _load_state_dict( state_dict, storage_reader=RemoteFileSystemReader(dir, pre_download=pre_download, work_dir=work_dir), planner=_EmptyStateDictLoadPlanner(keys=keys), no_dist=True, ) return state_dict if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): raise ValueError( "This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially " "malicious. It's recommended to never unpickle data that could have come from an untrusted source, or " "that could have been tampered with. If you already verified the pickle data and decided to use it, " "you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it." ) with (Path(model_path) / ".metadata").open("rb") as metadata_file: metadata = pickle.load(metadata_file) keys = [key for key in metadata.state_dict_metadata.keys() if key.startswith("model.")] # keys = ["model.blocks.0.attention.w_q.weight"] return _load_unsharded_keys( model_path, keys, # model_path, ["model.blocks.0.attention.w_q.weight", "model.blocks.0.attention.w_k.weight"] ) def write_model( model_path, input_base_path, include_tokenizer=True, tokenizer_id=None, safe_serialization=True, tmp_cleanup=True, ): os.makedirs(model_path, exist_ok=True) tmp_model_path = os.path.join(model_path, "tmp") os.makedirs(tmp_model_path, exist_ok=True) config_path = Path(input_base_path) / "config.json" olmo3_config = json.loads(config_path.read_text()) model_config = olmo3_config["model"] block_config = model_config["block"] attention_config = block_config["attention"] tokenizer_config = olmo3_config["dataset"]["tokenizer"] n_layers = model_config["n_layers"] n_heads = attention_config["n_heads"] dim = model_config["d_model"] dims_per_head = dim // n_heads base = attention_config["rope"]["theta"] inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) max_position_embeddings = olmo3_config["train_module"]["max_sequence_length"] if attention_config.get("n_kv_heads", None) is not None: num_key_value_heads = model_config["n_kv_heads"] # for GQA / MQA else: num_key_value_heads = n_heads print(f"Fetching all parameters from the checkpoint at {input_base_path}.") # Not sharded # (The sharded implementation would also work, but this is simpler.) loaded = load_model(os.path.join(input_base_path, "model_and_optim"))["model"] print(loaded.keys()) # loaded = torch.load(os.path.join(input_base_path, "model.pt"), map_location="cpu", weights_only=True) param_count = 0 index_dict: dict[str, Any] = {"weight_map": {}} for layer_i in range(n_layers): filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" # Unsharded state_dict = { f"model.layers.{layer_i}.self_attn.q_proj.weight": loaded[f"blocks.{layer_i}.attention.w_q.weight"], f"model.layers.{layer_i}.self_attn.k_proj.weight": loaded[f"blocks.{layer_i}.attention.w_k.weight"], f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"blocks.{layer_i}.attention.w_v.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"blocks.{layer_i}.attention.w_out.weight"], f"model.layers.{layer_i}.self_attn.q_norm.weight": loaded[f"blocks.{layer_i}.attention.q_norm.weight"], f"model.layers.{layer_i}.self_attn.k_norm.weight": loaded[f"blocks.{layer_i}.attention.k_norm.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"blocks.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"blocks.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"blocks.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[ f"blocks.{layer_i}.attention_norm.weight" ], f"model.layers.{layer_i}.post_feedforward_layernorm.weight": loaded[ f"blocks.{layer_i}.feed_forward_norm.weight" ], } state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" # Unsharded # TODO: Deal with weight-tying state_dict = { "model.embed_tokens.weight": loaded["embeddings.weight"], "model.norm.weight": loaded["lm_head.norm.weight"], "lm_head.weight": loaded["lm_head.w_out.weight"], } for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) # Write configs index_dict["metadata"] = {"total_size": param_count * 2} write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) config = Olmo3Config( vocab_size=model_config["vocab_size"], hidden_size=dim, intermediate_size=block_config["feed_forward"]["hidden_size"], num_hidden_layers=n_layers, num_attention_heads=n_heads, num_key_value_heads=num_key_value_heads, max_position_embeddings=max_position_embeddings, pad_token_id=tokenizer_config["pad_token_id"], bos_token_id=None, eos_token_id=tokenizer_config["eos_token_id"], tie_word_embeddings=False, rms_norm_eps=block_config["layer_norm"]["eps"], rope_theta=base, ) config.save_pretrained(tmp_model_path) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() if include_tokenizer: tokenizer_id = tokenizer_id or tokenizer_config["identifier"] _write_tokenizer(model_path, tokenizer_id) print("Loading the checkpoint in a Olmo 3 model.") model = Olmo3ForCausalLM.from_pretrained(tmp_model_path, dtype=torch.bfloat16) print("Resizing token embeddings to match tokenizer config.") model.resize_token_embeddings(tokenizer_config["vocab_size"]) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format.") model.save_pretrained(model_path, safe_serialization=safe_serialization) if tmp_cleanup: # Make cleanup optional; attempting to `rmtree` the `tmp_model_path` causes # errors if using NFS. shutil.rmtree(tmp_model_path) def _write_tokenizer( output_path: Path, tokenizer_id: str, ) -> None: print(f"Saving a tokenizer to {output_path}.") tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) tokenizer.save_pretrained(output_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", required=True, help="Location of Olmo 3 weights, which contains config.yaml and model.pt.", ) parser.add_argument( "--no_tokenizer", action="store_false", dest="include_tokenizer", help="If set, do not convert OLMo tokenizer to HF tokenizer.", ) parser.add_argument( "--tokenizer", type=Path, default=None, help="Location of Olmo 3 tokenizer json file. Defaults to what is set in the config file.", ) parser.add_argument( "--output_dir", required=True, help="Location to write HF model and tokenizer", ) parser.add_argument( "--no_tmp_cleanup", action="store_false", dest="tmp_cleanup", help="If passed, don't remove temp dir at end of HF conversion.", ) parser.add_argument( "--no_safe_serialization", action="store_false", dest="safe_serialization", help="Whether or not to save using `safetensors`.", ) args = parser.parse_args() write_model( model_path=args.output_dir, input_base_path=args.input_dir, safe_serialization=args.safe_serialization, include_tokenizer=args.include_tokenizer, tokenizer_id=args.tokenizer, tmp_cleanup=args.tmp_cleanup, ) if __name__ == "__main__": main()
RemoteFileSystemReader
python
huggingface__transformers
tests/models/siglip2/test_modeling_siglip2.py
{ "start": 23979, "end": 25078 }
class ____(Siglip2ModelTester): def __init__(self, parent): super().__init__(parent) self.batch_size = self.vision_model_tester.batch_size self.num_hidden_layers = self.vision_model_tester.num_hidden_layers self.hidden_size = self.vision_model_tester.hidden_size self.seq_length = self.vision_model_tester.seq_length def prepare_config_and_inputs(self): _, pixel_values, pixel_attention_mask, spatial_shapes = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config() return config, pixel_values, pixel_attention_mask, spatial_shapes def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, pixel_attention_mask, spatial_shapes = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "pixel_attention_mask": pixel_attention_mask, "spatial_shapes": spatial_shapes, } return config, inputs_dict @require_torch
Siglip2ForImageClassificationModelTester
python
apache__airflow
providers/google/src/airflow/providers/google/cloud/utils/dataproc.py
{ "start": 845, "end": 960 }
class ____(Enum): """Contains types of long running operations.""" DIAGNOSE = "DIAGNOSE"
DataprocOperationType
python
pypa__warehouse
tests/unit/admin/views/test_users.py
{ "start": 48168, "end": 57353 }
class ____: def test_user_recover_account_complete(self, db_request, monkeypatch): user = UserFactory.create( totp_secret=b"aaaaabbbbbcccccddddd", webauthn=[ WebAuthn( label="fake", credential_id="fake", public_key="extremely fake" ) ], recovery_codes=[ RecoveryCode(code="fake"), ], ) assert user.totp_secret is not None assert len(user.webauthn) == 1 assert len(user.recovery_codes.all()) == 1 db_request.matchdict["username"] = str(user.username) db_request.params = {"username": user.username} db_request.route_path = pretend.call_recorder(lambda *a, **kw: "/foobar") db_request.user = user service = pretend.stub( find_userid=pretend.call_recorder(lambda username: user.username), disable_password=pretend.call_recorder( lambda userid, request, reason: None ), ) db_request.find_service = pretend.call_recorder(lambda iface, context: service) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(views, "send_password_reset_by_admin_email", send_email) result = views.user_recover_account_complete(user, db_request) assert user.totp_secret is None assert len(user.webauthn) == 0 assert len(user.recovery_codes.all()) == 0 assert db_request.find_service.calls == [ pretend.call(IUserService, context=None) ] assert send_email.calls == [pretend.call(db_request, user)] assert service.disable_password.calls == [ pretend.call(user.id, db_request, reason=DisableReason.AdminInitiated) ] assert db_request.route_path.calls == [ pretend.call("admin.user.detail", username=user.username) ] assert result.status_code == 303 assert result.location == "/foobar" def test_user_recover_account_complete_completes_active_account_recoveries( self, db_request, monkeypatch ): admin_user = UserFactory.create() user = UserFactory.create( totp_secret=b"aaaaabbbbbcccccddddd", webauthn=[ WebAuthn( label="fake", credential_id="fake", public_key="extremely fake" ) ], recovery_codes=[ RecoveryCode(code="fake"), ], ) account_recovery0 = user.record_observation( request=db_request, kind=ObservationKind.AccountRecovery, actor=admin_user, summary="Account Recovery", payload={"completed": None}, ) account_recovery0.additional = {"status": "initiated"} account_recovery1 = user.record_observation( request=db_request, kind=ObservationKind.AccountRecovery, actor=admin_user, summary="Account Recovery", payload={"completed": None}, ) account_recovery1.additional = {"status": "initiated"} assert user.totp_secret is not None assert len(user.webauthn) == 1 assert len(user.recovery_codes.all()) == 1 db_request.matchdict["username"] = str(user.username) db_request.params = {"username": user.username} db_request.route_path = pretend.call_recorder(lambda *a, **kw: "/foobar") db_request.user = user service = pretend.stub( find_userid=pretend.call_recorder(lambda username: user.username), disable_password=pretend.call_recorder( lambda userid, request, reason: None ), ) db_request.find_service = pretend.call_recorder(lambda iface, context: service) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(views, "send_password_reset_by_admin_email", send_email) now = datetime.datetime.now(datetime.UTC) with freezegun.freeze_time(now): result = views.user_recover_account_complete(user, db_request) assert user.totp_secret is None assert len(user.webauthn) == 0 assert len(user.recovery_codes.all()) == 0 assert db_request.find_service.calls == [ pretend.call(IUserService, context=None) ] assert account_recovery0.additional["status"] == "completed" assert account_recovery0.payload["completed"] == str(now) assert account_recovery1.additional["status"] == "completed" assert account_recovery1.payload["completed"] == str(now) assert send_email.calls == [pretend.call(db_request, user)] assert service.disable_password.calls == [ pretend.call(user.id, db_request, reason=DisableReason.AdminInitiated) ] assert db_request.route_path.calls == [ pretend.call("admin.user.detail", username=user.username) ] assert result.status_code == 303 assert result.location == "/foobar" def test_user_recover_account_complete_bad_confirm(self, db_request, monkeypatch): user = UserFactory.create() db_request.matchdict["username"] = str(user.username) db_request.params = {"username": "wrong"} db_request.route_path = pretend.call_recorder(lambda *a, **kw: "/foobar") db_request.user = UserFactory.create() service = pretend.stub( find_userid=pretend.call_recorder(lambda username: user.username), disable_password=pretend.call_recorder(lambda userid, reason: None), ) db_request.find_service = pretend.call_recorder(lambda iface, context: service) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(views, "send_password_reset_by_admin_email", send_email) result = views.user_recover_account_complete(user, db_request) assert db_request.find_service.calls == [] assert send_email.calls == [] assert service.disable_password.calls == [] assert db_request.route_path.calls == [ pretend.call("admin.user.detail", username=user.username) ] assert result.status_code == 303 assert result.location == "/foobar" def test_user_recover_account_complete_redirects_actual_name(self, db_request): user = UserFactory.create(username="wu-tang") db_request.matchdict["username"] = "Wu-Tang" db_request.current_route_path = pretend.call_recorder( lambda username: "/user/the-redirect/" ) result = views.user_recover_account_complete(user, db_request) assert isinstance(result, HTTPMovedPermanently) assert result.headers["Location"] == "/user/the-redirect/" assert db_request.current_route_path.calls == [ pretend.call(username=user.username) ] def test_user_recover_account_complete_with_override_email_sets_as_primary( self, db_request, monkeypatch ): user = UserFactory.create(with_verified_primary_email=True) existing_primary_email = user.primary_email assert len(user.emails) == 1 # Create preconditions from `views.user_recover_account_initiate` override_to_email = EmailFactory.create( user=user, primary=False, verified=False ) recovery_observation = user.record_observation( request=db_request, kind=ObservationKind.AccountRecovery, actor=user, summary="Account Recovery", payload={ "initiated": "2021-01-01T00:00:00+00:00", "completed": None, "override_to_email": override_to_email.email, }, ) recovery_observation.additional = {"status": "initiated"} assert len(user.active_account_recoveries) == 1 assert len(user.emails) == 2 db_request.method = "POST" db_request.matchdict["username"] = str(user.username) db_request.params = {"username": user.username} db_request.route_path = pretend.call_recorder(lambda *a, **kw: "/foobar") db_request.user = user service = pretend.stub( find_userid=pretend.call_recorder(lambda username: user.username), disable_password=pretend.call_recorder( lambda userid, request, reason: None ), ) db_request.find_service = pretend.call_recorder(lambda iface, context: service) send_email = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(views, "send_password_reset_by_admin_email", send_email) result = views.user_recover_account_complete(user, db_request) assert isinstance(result, HTTPSeeOther) assert result.location == "/foobar" assert existing_primary_email.primary is False assert existing_primary_email.verified is True assert user.primary_email == override_to_email assert user.primary_email.verified is True
TestUserRecoverAccountComplete
python
django__django
tests/admin_views/test_nav_sidebar.py
{ "start": 814, "end": 4268 }
class ____(TestCase): @classmethod def setUpTestData(cls): cls.superuser = User.objects.create_superuser( username="super", password="secret", email="super@example.com", ) def setUp(self): self.client.force_login(self.superuser) def test_sidebar_not_on_index(self): response = self.client.get(reverse("test_with_sidebar:index")) self.assertContains(response, '<div class="main" id="main">') self.assertNotContains( response, '<nav class="sticky" id="nav-sidebar" aria-label="Sidebar">' ) def test_sidebar_disabled(self): response = self.client.get(reverse("test_without_sidebar:index")) self.assertNotContains( response, '<nav class="sticky" id="nav-sidebar" aria-label="Sidebar">' ) def test_sidebar_unauthenticated(self): self.client.logout() response = self.client.get(reverse("test_with_sidebar:login")) self.assertNotContains( response, '<nav class="sticky" id="nav-sidebar" aria-label="Sidebar">' ) def test_sidebar_aria_current_page(self): url = reverse("test_with_sidebar:auth_user_changelist") response = self.client.get(url) self.assertContains( response, '<nav class="sticky" id="nav-sidebar" aria-label="Sidebar">' ) self.assertContains( response, '<a href="%s" aria-current="page">Users</a>' % url ) @override_settings( TEMPLATES=[ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, } ] ) def test_sidebar_aria_current_page_missing_without_request_context_processor(self): url = reverse("test_with_sidebar:auth_user_changelist") response = self.client.get(url) self.assertContains( response, '<nav class="sticky" id="nav-sidebar" aria-label="Sidebar">' ) # Does not include aria-current attribute. self.assertContains(response, '<a href="%s">Users</a>' % url) @override_settings(DEBUG=True) def test_included_app_list_template_context_fully_set(self): # All context variables should be set when rendering the sidebar. url = reverse("test_with_sidebar:auth_user_changelist") with self.assertNoLogs("django.template", "DEBUG"): self.client.get(url) def test_sidebar_model_name_non_ascii(self): url = reverse("test_with_sidebar:admin_views_héllo_changelist") response = self.client.get(url) self.assertContains( response, '<div class="app-admin_views module current-app">' ) self.assertContains(response, '<tr class="model-héllo current-model">') self.assertContains( response, '<th scope="row" id="admin_views-héllo">' '<a href="/test_sidebar/admin/admin_views/h%C3%A9llo/" aria-current="page">' "Héllos</a></th>", html=True, ) @override_settings(ROOT_URLCONF="admin_views.test_nav_sidebar")
AdminSidebarTests
python
fastapi__sqlmodel
docs_src/tutorial/code_structure/tutorial001/models.py
{ "start": 88, "end": 306 }
class ____(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(index=True) headquarters: str heroes: List["Hero"] = Relationship(back_populates="team")
Team
python
pandas-dev__pandas
pandas/tests/tslibs/test_array_to_datetime.py
{ "start": 10294, "end": 10750 }
class ____(datetime): pass @pytest.mark.parametrize("klass", [SubDatetime, datetime, Timestamp]) def test_datetime_subclass(klass): # GH 25851 # ensure that subclassed datetime works with # array_to_datetime arr = np.array([klass(2000, 1, 1)], dtype=object) result, _ = tslib.array_to_datetime(arr) expected = np.array(["2000-01-01T00:00:00.000000"], dtype="M8[us]") tm.assert_numpy_array_equal(result, expected)
SubDatetime
python
numba__numba
numba/tests/test_compiler_flags.py
{ "start": 308, "end": 602 }
class ____(TestCase): def test_setting_invalid_attribute(self): flags = Flags() msg = "'Flags' object has no attribute 'this_really_does_not_exist'" with self.assertRaisesRegex(AttributeError, msg): flags.this_really_does_not_exist = True
TestCompilerFlags
python
streamlit__streamlit
lib/tests/streamlit/elements/metric_test.py
{ "start": 1159, "end": 20076 }
class ____(DeltaGeneratorTestCase): """Test ability to marshall metric protos and invalid input.""" def test_no_value(self): st.metric("label_test", None) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" # This is an em dash. Not a regular "-" assert c.body == "—" assert ( c.label_visibility.value == LabelVisibilityMessage.LabelVisibilityOptions.VISIBLE ) def test_label_and_value(self): """Test that metric can be called with label and value passed in.""" st.metric("label_test", "123") c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert c.color == MetricProto.MetricColor.GRAY assert c.direction == MetricProto.MetricDirection.NONE assert not c.show_border @parameterized.expand( [ ("visible", LabelVisibilityMessage.LabelVisibilityOptions.VISIBLE), ("hidden", LabelVisibilityMessage.LabelVisibilityOptions.HIDDEN), ("collapsed", LabelVisibilityMessage.LabelVisibilityOptions.COLLAPSED), ] ) def test_label_visibility(self, label_visibility_value, proto_value): """Test that metric can be called with label_visibility param.""" st.metric("label_test", "123", label_visibility=label_visibility_value) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert c.label_visibility.value == proto_value def test_border(self): """Test that metric can be called with border param.""" st.metric("label_test", "123", border=True) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert c.show_border def test_label_and_value_and_delta_and_delta_color(self): """Test that metric can be called with label, value, delta, and delta colors passed in.""" st.metric("label_test", "123", -321, delta_color="normal") c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert c.delta == "-321" assert c.color == MetricProto.MetricColor.RED assert c.direction == MetricProto.MetricDirection.DOWN def test_value(self): """Test that metric delta returns the correct proto value""" arg_values = ["some str", 123, -1.234, None] proto_values = [ "some str", "123", "-1.234", "—", ] for arg_value, proto_value in zip(arg_values, proto_values, strict=False): st.metric("label_test", arg_value) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert proto_value == c.body def test_delta_values(self): """Test that metric delta returns the correct proto value""" arg_values = [" -253", "+25", "26", 123, -123, 1.234, -1.5, None, ""] delta_values = ["-253", "+25", "26", "123", "-123", "1.234", "-1.5", "", ""] for arg_value, delta_value in zip(arg_values, delta_values, strict=False): st.metric("label_test", "4312", arg_value) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert delta_value == c.delta def test_delta_color(self): """Test that metric delta colors returns the correct proto value.""" arg_delta_values = ["-123", -123, -1.23, "123", 123, 1.23, None, ""] arg_delta_color_values = [ "normal", "inverse", "off", "normal", "inverse", "off", "normal", "normal", ] color_values = [ MetricProto.MetricColor.RED, MetricProto.MetricColor.GREEN, MetricProto.MetricColor.GRAY, MetricProto.MetricColor.GREEN, MetricProto.MetricColor.RED, MetricProto.MetricColor.GRAY, MetricProto.MetricColor.GRAY, MetricProto.MetricColor.GRAY, ] direction_values = [ MetricProto.MetricDirection.DOWN, MetricProto.MetricDirection.DOWN, MetricProto.MetricDirection.DOWN, MetricProto.MetricDirection.UP, MetricProto.MetricDirection.UP, MetricProto.MetricDirection.UP, MetricProto.MetricDirection.NONE, MetricProto.MetricDirection.NONE, ] for ( arg_delta_value, arg_delta_color_value, color_value, direction_value, ) in zip( arg_delta_values, arg_delta_color_values, color_values, direction_values, strict=False, ): st.metric( "label_test", "4312", arg_delta_value, delta_color=arg_delta_color_value ) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.color == color_value assert c.direction == direction_value def test_delta_arrow_default(self): """Test that metric delta arrow defaults to auto.""" st.metric("label_test", "123", 123) c = self.get_delta_from_queue().new_element.metric assert c.direction == MetricProto.MetricDirection.UP @parameterized.expand( [ ("auto", 5, MetricProto.MetricDirection.UP, MetricProto.MetricColor.GREEN), ("up", -5, MetricProto.MetricDirection.UP, MetricProto.MetricColor.RED), ( "down", 5, MetricProto.MetricDirection.DOWN, MetricProto.MetricColor.GREEN, ), ("off", 5, MetricProto.MetricDirection.NONE, MetricProto.MetricColor.GREEN), ] ) def test_delta_arrow_values( self, delta_arrow_value, delta, expected_direction, expected_color, ): """Test that metric overrides direction according to delta arrow setting.""" st.metric( "label_test", "123", delta, delta_arrow=delta_arrow_value, ) c = self.get_delta_from_queue().new_element.metric assert c.direction == expected_direction assert c.color == expected_color def test_delta_arrow_invalid(self): """Test that invalid delta arrow raises an error.""" with pytest.raises(StreamlitValueError): st.metric("label_test", "123", 5, delta_arrow="invalid") # type: ignore[arg-type] def test_metric_in_column(self): col1, col2, col3, col4, col5 = st.columns(5) with col1: st.metric("Column 1", 123, 123) with col2: st.metric("Column 2", 123, 123) with col3: st.metric("Column 3", 123, 123) col4.metric("Column 4", -123, -123) col5.metric("Column 5", "-123", 0) all_deltas = self.get_all_deltas_from_queue() # 11 elements will be created: 1 horizontal block, 5 columns, 5 widget assert len(all_deltas) == 11 metric_proto = self.get_delta_from_queue().new_element.metric assert metric_proto.label == "Column 5" def test_invalid_label(self): with pytest.raises(TypeError) as exc: st.metric(123, "-321") assert str(exc.value) == ( "'123' is of type <class 'int'>, which is not an accepted type. " "label only accepts: str. Please convert the label to an accepted type." ) def test_invalid_label_visibility(self): with pytest.raises(StreamlitAPIException) as e: st.metric("label_test", "123", label_visibility="wrong_value") assert ( str(e.value) == "Unsupported label_visibility option 'wrong_value'. Valid values are 'visible', 'hidden' or 'collapsed'." ) def test_empty_label_warning(self): """Test that a warning is logged if st.metric was called with empty label.""" with self.assertLogs(_LOGGER) as logs: st.metric(label="", value="123") assert ( "`label` got an empty value. This is discouraged for accessibility reasons" in logs.records[0].msg ) # Check that the stack trace is included in the warning message: assert logs.records[0].stack_info is not None def test_invalid_value(self): with pytest.raises(TypeError) as exc: st.metric("Testing", [1, 2, 3]) assert str(exc.value) == ( "'[1, 2, 3]' is of type <class 'list'>, which is not an accepted type. " "Please convert the value to an accepted number type." ) def test_invalid_delta(self): with pytest.raises(TypeError) as exc: st.metric("Testing", "123", [123]) assert str(exc.value) == ( "'[123]' is of type <class 'list'>, which is not an accepted type. " "Please convert the value to an accepted number type." ) def test_invalid_delta_color(self): with pytest.raises(StreamlitAPIException) as exc: st.metric("Hello World.", 123, 0, delta_color="Invalid") assert ( str(exc.value) == "'Invalid' is not an accepted value. delta_color only accepts: 'normal', 'inverse', or 'off'" ) def test_help(self): st.metric("label_test", value="500", help=" help text") c = self.get_delta_from_queue().new_element.metric assert c.help == "help text" def test_height_default(self): """Test that height defaults to content.""" st.metric("label_test", "123") c = self.get_delta_from_queue().new_element assert c.metric.label == "label_test" assert c.metric.body == "123" assert ( c.height_config.WhichOneof("height_spec") == HeightConfigFields.USE_CONTENT.value ) assert c.height_config.use_content def test_height_types(self): """Test that metric can be called with different height types.""" test_cases = [ (500, HeightConfigFields.PIXEL_HEIGHT.value, "pixel_height", 500), ("stretch", HeightConfigFields.USE_STRETCH.value, "use_stretch", True), ("content", HeightConfigFields.USE_CONTENT.value, "use_content", True), ] for height_value, expected_height_spec, field_name, field_value in test_cases: with self.subTest(height_value=height_value): st.metric("label_test", "123", height=height_value) c = self.get_delta_from_queue().new_element assert c.metric.label == "label_test" assert c.metric.body == "123" assert c.height_config.WhichOneof("height_spec") == expected_height_spec assert getattr(c.height_config, field_name) == field_value def test_invalid_height(self): """Test that metric raises an error with invalid height.""" test_cases = [ ( "invalid", "Invalid height value: 'invalid'. Height must be either an integer (pixels), 'stretch', or 'content'.", ), ( -100, "Invalid height value: -100. Height must be either an integer (pixels), 'stretch', or 'content'.", ), ( 0, "Invalid height value: 0. Height must be either an integer (pixels), 'stretch', or 'content'.", ), ( 100.5, "Invalid height value: 100.5. Height must be either an integer (pixels), 'stretch', or 'content'.", ), ] for height_value, expected_error_message in test_cases: with self.subTest(height_value=height_value): with pytest.raises(StreamlitAPIException) as exc: st.metric("label_test", "123", height=height_value) assert str(exc.value) == expected_error_message def test_width_types(self): """Test that metric can be called with different width types.""" test_cases = [ (500, WidthConfigFields.PIXEL_WIDTH.value, "pixel_width", 500), ("stretch", WidthConfigFields.USE_STRETCH.value, "use_stretch", True), ("content", WidthConfigFields.USE_CONTENT.value, "use_content", True), (None, WidthConfigFields.USE_STRETCH.value, "use_stretch", True), ] for width_value, expected_width_spec, field_name, field_value in test_cases: with self.subTest(width_value=width_value): if width_value is None: st.metric("label_test", "123") else: st.metric("label_test", "123", width=width_value) c = self.get_delta_from_queue().new_element assert c.metric.label == "label_test" assert c.metric.body == "123" assert c.width_config.WhichOneof("width_spec") == expected_width_spec assert getattr(c.width_config, field_name) == field_value def test_invalid_width(self): """Test that metric raises an error with invalid width.""" test_cases = [ ( "invalid", "Invalid width value: 'invalid'. Width must be either an integer (pixels), 'stretch', or 'content'.", ), ( -100, "Invalid width value: -100. Width must be either an integer (pixels), 'stretch', or 'content'.", ), ( 0, "Invalid width value: 0. Width must be either an integer (pixels), 'stretch', or 'content'.", ), ( 100.5, "Invalid width value: 100.5. Width must be either an integer (pixels), 'stretch', or 'content'.", ), ] for width_value, expected_error_message in test_cases: with self.subTest(width_value=width_value): with pytest.raises(StreamlitAPIException) as exc: st.metric("label_test", "123", width=width_value) assert str(exc.value) == expected_error_message def test_chart_data_none(self): """Test that metric works with default chart_data=None.""" st.metric("label_test", "123") c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert len(c.chart_data) == 0 def test_chart_data_valid_list(self): """Test that metric can be called with valid chart_data list.""" chart_data = [1, 2, 3, 4, 5] st.metric("label_test", "123", chart_data=chart_data) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert list(c.chart_data) == [1.0, 2.0, 3.0, 4.0, 5.0] def test_chart_data_valid_mixed_numeric(self): """Test that metric can be called with mixed numeric types in chart_data.""" chart_data = [1, 2.5, -3, 0, 10.7] st.metric("label_test", "123", chart_data=chart_data) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert list(c.chart_data) == [1.0, 2.5, -3.0, 0.0, 10.7] def test_chart_data_string_numbers(self): """Test that metric can convert string numbers in chart_data.""" chart_data = ["1", "2.5", "-3", "0"] st.metric("label_test", "123", chart_data=chart_data) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert list(c.chart_data) == [1.0, 2.5, -3.0, 0.0] def test_chart_data_empty_list(self): """Test that metric works with empty chart_data list.""" st.metric("label_test", "123", chart_data=[]) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert len(c.chart_data) == 0 def test_chart_data_invalid_values(self): """Test that metric raises error with invalid chart_data values.""" chart_data = [1, 2, "invalid", 4] with pytest.raises(StreamlitAPIException) as exc: st.metric("label_test", "123", chart_data=chart_data) assert "Only numeric values are supported for chart data sequence" in str( exc.value ) assert "'invalid' is of type <class 'str'>" in str(exc.value) assert "cannot be converted to float" in str(exc.value) def test_chart_data_invalid_non_sequence(self): """Test that metric raises error with invalid chart_data non-sequence values.""" chart_data = [1, 2, {"invalid": "dict"}, 4] with pytest.raises(StreamlitAPIException) as exc: st.metric("label_test", "123", chart_data=chart_data) assert "Only numeric values are supported for chart data sequence" in str( exc.value ) @parameterized.expand( [ ("line", MetricProto.ChartType.LINE), ("bar", MetricProto.ChartType.BAR), ("area", MetricProto.ChartType.AREA), ] ) def test_chart_type_valid_values(self, chart_type_value, expected_proto_value): """Test that metric can be called with valid chart_type values.""" st.metric("label_test", "123", chart_type=chart_type_value) c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert c.chart_type == expected_proto_value def test_chart_type_default(self): """Test that chart_type defaults to line.""" st.metric("label_test", "123") c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert c.chart_type == MetricProto.ChartType.LINE def test_chart_data_and_chart_type_together(self): """Test that metric can be called with both chart_data and chart_type.""" chart_data = [10, 20, 15, 25, 30] st.metric("label_test", "123", chart_data=chart_data, chart_type="bar") c = self.get_delta_from_queue().new_element.metric assert c.label == "label_test" assert c.body == "123" assert list(c.chart_data) == [10.0, 20.0, 15.0, 25.0, 30.0] assert c.chart_type == MetricProto.ChartType.BAR
MetricTest
python
dagster-io__dagster
python_modules/libraries/dagster-airbyte/dagster_airbyte/managed/generated/sources.py
{ "start": 157312, "end": 165831 }
class ____(GeneratedAirbyteSource): class Disable: @public def __init__( self, ): self.mode = "disable" class Allow: @public def __init__( self, ): self.mode = "allow" class Prefer: @public def __init__( self, ): self.mode = "prefer" class Require: @public def __init__( self, ): self.mode = "require" class VerifyCa: @public def __init__( self, ca_certificate: str, client_certificate: Optional[str] = None, client_key: Optional[str] = None, client_key_password: Optional[str] = None, ): self.mode = "verify-ca" self.ca_certificate = check.str_param(ca_certificate, "ca_certificate") self.client_certificate = check.opt_str_param(client_certificate, "client_certificate") self.client_key = check.opt_str_param(client_key, "client_key") self.client_key_password = check.opt_str_param( client_key_password, "client_key_password" ) class VerifyFull: @public def __init__( self, ca_certificate: str, client_certificate: Optional[str] = None, client_key: Optional[str] = None, client_key_password: Optional[str] = None, ): self.mode = "verify-full" self.ca_certificate = check.str_param(ca_certificate, "ca_certificate") self.client_certificate = check.opt_str_param(client_certificate, "client_certificate") self.client_key = check.opt_str_param(client_key, "client_key") self.client_key_password = check.opt_str_param( client_key_password, "client_key_password" ) class Standard: @public def __init__( self, ): self.method = "Standard" class LogicalReplicationCDC: @public def __init__( self, replication_slot: str, publication: str, plugin: Optional[str] = None, initial_waiting_seconds: Optional[int] = None, ): self.method = "CDC" self.plugin = check.opt_str_param(plugin, "plugin") self.replication_slot = check.str_param(replication_slot, "replication_slot") self.publication = check.str_param(publication, "publication") self.initial_waiting_seconds = check.opt_int_param( initial_waiting_seconds, "initial_waiting_seconds" ) class NoTunnel: @public def __init__( self, ): self.tunnel_method = "NO_TUNNEL" class SSHKeyAuthentication: @public def __init__(self, tunnel_host: str, tunnel_port: int, tunnel_user: str, ssh_key: str): self.tunnel_method = "SSH_KEY_AUTH" self.tunnel_host = check.str_param(tunnel_host, "tunnel_host") self.tunnel_port = check.int_param(tunnel_port, "tunnel_port") self.tunnel_user = check.str_param(tunnel_user, "tunnel_user") self.ssh_key = check.str_param(ssh_key, "ssh_key") class PasswordAuthentication: @public def __init__( self, tunnel_host: str, tunnel_port: int, tunnel_user: str, tunnel_user_password: str ): self.tunnel_method = "SSH_PASSWORD_AUTH" self.tunnel_host = check.str_param(tunnel_host, "tunnel_host") self.tunnel_port = check.int_param(tunnel_port, "tunnel_port") self.tunnel_user = check.str_param(tunnel_user, "tunnel_user") self.tunnel_user_password = check.str_param( tunnel_user_password, "tunnel_user_password" ) @public def __init__( self, name: str, host: str, port: int, database: str, username: str, ssl_mode: Union[ "PostgresSource.Disable", "PostgresSource.Allow", "PostgresSource.Prefer", "PostgresSource.Require", "PostgresSource.VerifyCa", "PostgresSource.VerifyFull", ], replication_method: Union[ "PostgresSource.Standard", "PostgresSource.LogicalReplicationCDC" ], tunnel_method: Union[ "PostgresSource.NoTunnel", "PostgresSource.SSHKeyAuthentication", "PostgresSource.PasswordAuthentication", ], schemas: Optional[list[str]] = None, password: Optional[str] = None, jdbc_url_params: Optional[str] = None, ssl: Optional[bool] = None, ): """Airbyte Source for Postgres. Documentation can be found at https://docs.airbyte.com/integrations/sources/postgres Args: name (str): The name of the destination. host (str): Hostname of the database. port (int): Port of the database. database (str): Name of the database. schemas (Optional[List[str]]): The list of schemas (case sensitive) to sync from. Defaults to public. username (str): Username to access the database. password (Optional[str]): Password associated with the username. jdbc_url_params (Optional[str]): Additional properties to pass to the JDBC URL string when connecting to the database formatted as 'key=value' pairs separated by the symbol '&'. (Eg. key1=value1&key2=value2&key3=value3). For more information read about JDBC URL parameters. ssl (Optional[bool]): Encrypt data using SSL. When activating SSL, please select one of the connection modes. ssl_mode (Union[PostgresSource.Disable, PostgresSource.Allow, PostgresSource.Prefer, PostgresSource.Require, PostgresSource.VerifyCa, PostgresSource.VerifyFull]): SSL connection modes. disable - Disables encryption of communication between Airbyte and source database allow - Enables encryption only when required by the source database prefer - allows unencrypted connection only if the source database does not support encryption require - Always require encryption. If the source database server does not support encryption, connection will fail verify-ca - Always require encryption and verifies that the source database server has a valid SSL certificate verify-full - This is the most secure mode. Always require encryption and verifies the identity of the source database server Read more in the docs. replication_method (Union[PostgresSource.Standard, PostgresSource.LogicalReplicationCDC]): Replication method for extracting data from the database. tunnel_method (Union[PostgresSource.NoTunnel, PostgresSource.SSHKeyAuthentication, PostgresSource.PasswordAuthentication]): Whether to initiate an SSH tunnel before connecting to the database, and if so, which kind of authentication to use. """ self.host = check.str_param(host, "host") self.port = check.int_param(port, "port") self.database = check.str_param(database, "database") self.schemas = check.opt_nullable_list_param(schemas, "schemas", str) self.username = check.str_param(username, "username") self.password = check.opt_str_param(password, "password") self.jdbc_url_params = check.opt_str_param(jdbc_url_params, "jdbc_url_params") self.ssl = check.opt_bool_param(ssl, "ssl") self.ssl_mode = check.inst_param( ssl_mode, "ssl_mode", ( PostgresSource.Disable, PostgresSource.Allow, PostgresSource.Prefer, PostgresSource.Require, PostgresSource.VerifyCa, PostgresSource.VerifyFull, ), ) self.replication_method = check.inst_param( replication_method, "replication_method", (PostgresSource.Standard, PostgresSource.LogicalReplicationCDC), ) self.tunnel_method = check.inst_param( tunnel_method, "tunnel_method", ( PostgresSource.NoTunnel, PostgresSource.SSHKeyAuthentication, PostgresSource.PasswordAuthentication, ), ) super().__init__("Postgres", name)
PostgresSource
python
ipython__ipython
IPython/core/magic.py
{ "start": 1996, "end": 10898 }
class ____: pass def on_off(tag): """Return an ON/OFF string for a 1/0 input. Simple utility function.""" return ["OFF", "ON"][tag] def compress_dhist(dh): """Compress a directory history into a new one with at most 20 entries. Return a new list made from the first and last 10 elements of dhist after removal of duplicates. """ head, tail = dh[:-10], dh[-10:] newhead = [] done = set() for h in head: if h in done: continue newhead.append(h) done.add(h) return newhead + tail def needs_local_scope(func): """Decorator to mark magic functions which need to local scope to run.""" func.needs_local_scope = True return func # ----------------------------------------------------------------------------- # Class and method decorators for registering magics # ----------------------------------------------------------------------------- def magics_class(cls): """Class decorator for all subclasses of the main Magics class. Any class that subclasses Magics *must* also apply this decorator, to ensure that all the methods that have been decorated as line/cell magics get correctly registered in the class instance. This is necessary because when method decorators run, the class does not exist yet, so they temporarily store their information into a module global. Application of this class decorator copies that global data to the class instance and clears the global. Obviously, this mechanism is not thread-safe, which means that the *creation* of subclasses of Magic should only be done in a single-thread context. Instantiation of the classes has no restrictions. Given that these classes are typically created at IPython startup time and before user application code becomes active, in practice this should not pose any problems. """ cls.registered = True cls.magics = dict(line=magics["line"], cell=magics["cell"]) magics["line"] = {} magics["cell"] = {} return cls def record_magic(dct, magic_kind, magic_name, func): """Utility function to store a function as a magic of a specific kind. Parameters ---------- dct : dict A dictionary with 'line' and 'cell' subdicts. magic_kind : str Kind of magic to be stored. magic_name : str Key to store the magic as. func : function Callable object to store. """ if magic_kind == "line_cell": dct["line"][magic_name] = dct["cell"][magic_name] = func else: dct[magic_kind][magic_name] = func def validate_type(magic_kind): """Ensure that the given magic_kind is valid. Check that the given magic_kind is one of the accepted spec types (stored in the global `magic_spec`), raise ValueError otherwise. """ if magic_kind not in magic_spec: raise ValueError( "magic_kind must be one of %s, %s given" % magic_kinds, magic_kind ) # The docstrings for the decorator below will be fairly similar for the two # types (method and function), so we generate them here once and reuse the # templates below. _docstring_template = """Decorate the given {0} as {1} magic. The decorator can be used with or without arguments, as follows. i) without arguments: it will create a {1} magic named as the {0} being decorated:: @deco def foo(...) will create a {1} magic named `foo`. ii) with one string argument: which will be used as the actual name of the resulting magic:: @deco('bar') def foo(...) will create a {1} magic named `bar`. To register a class magic use ``Interactiveshell.register_magic(class or instance)``. """ # These two are decorator factories. While they are conceptually very similar, # there are enough differences in the details that it's simpler to have them # written as completely standalone functions rather than trying to share code # and make a single one with convoluted logic. def _method_magic_marker(magic_kind): """Decorator factory for methods in Magics subclasses.""" validate_type(magic_kind) # This is a closure to capture the magic_kind. We could also use a class, # but it's overkill for just that one bit of state. def magic_deco(arg): if callable(arg): # "Naked" decorator call (just @foo, no args) func = arg name = func.__name__ retval = arg record_magic(magics, magic_kind, name, name) elif isinstance(arg, str): # Decorator called with arguments (@foo('bar')) name = arg def mark(func, *a, **kw): record_magic(magics, magic_kind, name, func.__name__) return func retval = mark else: raise TypeError("Decorator can only be called with string or function") return retval # Ensure the resulting decorator has a usable docstring magic_deco.__doc__ = _docstring_template.format("method", magic_kind) return magic_deco def _function_magic_marker(magic_kind): """Decorator factory for standalone functions.""" validate_type(magic_kind) # This is a closure to capture the magic_kind. We could also use a class, # but it's overkill for just that one bit of state. def magic_deco(arg): # Find get_ipython() in the caller's namespace caller = sys._getframe(1) for ns in ["f_locals", "f_globals", "f_builtins"]: get_ipython = getattr(caller, ns).get("get_ipython") if get_ipython is not None: break else: raise NameError( "Decorator can only run in context where `get_ipython` exists" ) ip = get_ipython() if callable(arg): # "Naked" decorator call (just @foo, no args) func = arg name = func.__name__ ip.register_magic_function(func, magic_kind, name) retval = arg elif isinstance(arg, str): # Decorator called with arguments (@foo('bar')) name = arg def mark(func, *a, **kw): ip.register_magic_function(func, magic_kind, name) return func retval = mark else: raise TypeError("Decorator can only be called with string or function") return retval # Ensure the resulting decorator has a usable docstring ds = _docstring_template.format("function", magic_kind) ds += dedent( """ Note: this decorator can only be used in a context where IPython is already active, so that the `get_ipython()` call succeeds. You can therefore use it in your startup files loaded after IPython initializes, but *not* in the IPython configuration file itself, which is executed before IPython is fully up and running. Any file located in the `startup` subdirectory of your configuration profile will be OK in this sense. """ ) magic_deco.__doc__ = ds return magic_deco MAGIC_NO_VAR_EXPAND_ATTR = "_ipython_magic_no_var_expand" MAGIC_OUTPUT_CAN_BE_SILENCED = "_ipython_magic_output_can_be_silenced" def no_var_expand(magic_func): """Mark a magic function as not needing variable expansion By default, IPython interprets `{a}` or `$a` in the line passed to magics as variables that should be interpolated from the interactive namespace before passing the line to the magic function. This is not always desirable, e.g. when the magic executes Python code (%timeit, %time, etc.). Decorate magics with `@no_var_expand` to opt-out of variable expansion. .. versionadded:: 7.3 """ setattr(magic_func, MAGIC_NO_VAR_EXPAND_ATTR, True) return magic_func def output_can_be_silenced(magic_func): """Mark a magic function so its output may be silenced. The output is silenced if the Python code used as a parameter of the magic ends in a semicolon, not counting a Python comment that can follow it. """ setattr(magic_func, MAGIC_OUTPUT_CAN_BE_SILENCED, True) return magic_func # Create the actual decorators for public use # These three are used to decorate methods in class definitions line_magic = _method_magic_marker("line") cell_magic = _method_magic_marker("cell") line_cell_magic = _method_magic_marker("line_cell") # These three decorate standalone functions and perform the decoration # immediately. They can only run where get_ipython() works register_line_magic = _function_magic_marker("line") register_cell_magic = _function_magic_marker("cell") register_line_cell_magic = _function_magic_marker("line_cell") # ----------------------------------------------------------------------------- # Core Magic classes # -----------------------------------------------------------------------------
Bunch
python
PyCQA__pyflakes
pyflakes/messages.py
{ "start": 9242, "end": 9487 }
class ____(Message): message = "'...' %% ... has unsupported format character %r" def __init__(self, filename, loc, c): Message.__init__(self, filename, loc) self.message_args = (c,)
PercentFormatUnsupportedFormatCharacter
python
realpython__materials
python-unittest/test_age.py
{ "start": 53, "end": 1605 }
class ____(unittest.TestCase): def test_child(self): """Test for 'Child'""" self.assertEqual(categorize_by_age(5), "Child") def test_adolescent(self): """Test for 'Adolescent'""" self.assertEqual(categorize_by_age(15), "Adolescent") def test_adult(self): """Test for 'Adult'""" self.assertEqual(categorize_by_age(30), "Adult") def test_golden_age(self): """Test for 'Golden age'""" self.assertEqual(categorize_by_age(70), "Golden age") def test_negative_age(self): """Test for negative age""" self.assertEqual(categorize_by_age(-1), "Invalid age: -1") def test_too_old(self): """Test for too old""" self.assertEqual(categorize_by_age(151), "Invalid age: 151") def test_boundary_child_adolescent(self): """Test for boundary between 'Child' and 'Adolescent'""" self.assertEqual(categorize_by_age(9), "Child") self.assertEqual(categorize_by_age(10), "Adolescent") def test_boundary_adolescent_adult(self): """Test for boundary between 'Adolescent' and 'Adult'""" self.assertEqual(categorize_by_age(18), "Adolescent") self.assertEqual(categorize_by_age(19), "Adult") def test_boundary_adult_golden_age(self): """Test for boundary between 'Adult' and 'Golden age'""" self.assertEqual(categorize_by_age(65), "Adult") self.assertEqual(categorize_by_age(66), "Golden age") if __name__ == "__main__": unittest.main(verbosity=2)
TestCategorizeByAge
python
google__python-fire
fire/console/console_attr.py
{ "start": 3238, "end": 3623 }
class ____(BoxLineCharacters): """unicode Box/line drawing characters (cp437 compatible unicode).""" dl = '┐' dr = '┌' h = '─' hd = '┬' hu = '┴' ul = '┘' ur = '└' v = '│' vh = '┼' vl = '┤' vr = '├' d_dl = '╗' d_dr = '╔' d_h = '═' d_hd = '╦' d_hu = '╩' d_ul = '╝' d_ur = '╚' d_v = '║' d_vh = '╬' d_vl = '╣' d_vr = '╠'
BoxLineCharactersUnicode
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/linalg/linear_operator_addition_test.py
{ "start": 1442, "end": 6853 }
class ____(test.TestCase): """Tests correctness of addition with combinations of a few Adders. Tests here are done with the _DEFAULT_ADDITION_TIERS, which means add_operators should reduce all operators resulting in one single operator. This shows that we are able to correctly combine adders using the tiered system. All Adders should be tested separately, and there is no need to test every Adder within this class. """ def test_one_operator_is_returned_unchanged(self): op_a = linalg.LinearOperatorDiag([1., 1.]) op_sum = add_operators([op_a]) self.assertEqual(1, len(op_sum)) self.assertIs(op_sum[0], op_a) def test_at_least_one_operators_required(self): with self.assertRaisesRegex(ValueError, "must contain at least one"): add_operators([]) def test_attempting_to_add_numbers_raises(self): with self.assertRaisesRegex(TypeError, "contain only LinearOperator"): add_operators([1, 2]) @test_util.run_deprecated_v1 def test_two_diag_operators(self): op_a = linalg.LinearOperatorDiag( [1., 1.], is_positive_definite=True, name="A") op_b = linalg.LinearOperatorDiag( [2., 2.], is_positive_definite=True, name="B") with self.cached_session(): op_sum = add_operators([op_a, op_b]) self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertIsInstance(op, linalg_lib.LinearOperatorDiag) self.assertAllClose([[3., 0.], [0., 3.]], op.to_dense()) # Adding positive definite operators produces positive def. self.assertTrue(op.is_positive_definite) # Real diagonal ==> self-adjoint. self.assertTrue(op.is_self_adjoint) # Positive definite ==> non-singular self.assertTrue(op.is_non_singular) # Enforce particular name for this simple case self.assertEqual("Add/B__A/", op.name) @test_util.run_deprecated_v1 def test_three_diag_operators(self): op1 = linalg.LinearOperatorDiag( [1., 1.], is_positive_definite=True, name="op1") op2 = linalg.LinearOperatorDiag( [2., 2.], is_positive_definite=True, name="op2") op3 = linalg.LinearOperatorDiag( [3., 3.], is_positive_definite=True, name="op3") with self.cached_session(): op_sum = add_operators([op1, op2, op3]) self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertTrue(isinstance(op, linalg_lib.LinearOperatorDiag)) self.assertAllClose([[6., 0.], [0., 6.]], op.to_dense()) # Adding positive definite operators produces positive def. self.assertTrue(op.is_positive_definite) # Real diagonal ==> self-adjoint. self.assertTrue(op.is_self_adjoint) # Positive definite ==> non-singular self.assertTrue(op.is_non_singular) @test_util.run_deprecated_v1 def test_diag_tril_diag(self): op1 = linalg.LinearOperatorDiag( [1., 1.], is_non_singular=True, name="diag_a") op2 = linalg.LinearOperatorLowerTriangular( [[2., 0.], [0., 2.]], is_self_adjoint=True, is_non_singular=True, name="tril") op3 = linalg.LinearOperatorDiag( [3., 3.], is_non_singular=True, name="diag_b") with self.cached_session(): op_sum = add_operators([op1, op2, op3]) self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertIsInstance(op, linalg_lib.LinearOperatorLowerTriangular) self.assertAllClose([[6., 0.], [0., 6.]], op.to_dense()) # The diag operators will be self-adjoint (because real and diagonal). # The TriL operator has the self-adjoint hint set. self.assertTrue(op.is_self_adjoint) # Even though op1/2/3 are non-singular, this does not imply op is. # Since no custom hint was provided, we default to None (unknown). self.assertEqual(None, op.is_non_singular) @test_util.run_deprecated_v1 def test_matrix_diag_tril_diag_uses_custom_name(self): op0 = linalg.LinearOperatorFullMatrix( [[-1., -1.], [-1., -1.]], name="matrix") op1 = linalg.LinearOperatorDiag([1., 1.], name="diag_a") op2 = linalg.LinearOperatorLowerTriangular( [[2., 0.], [1.5, 2.]], name="tril") op3 = linalg.LinearOperatorDiag([3., 3.], name="diag_b") with self.cached_session(): op_sum = add_operators([op0, op1, op2, op3], operator_name="my_operator") self.assertEqual(1, len(op_sum)) op = op_sum[0] self.assertIsInstance(op, linalg_lib.LinearOperatorFullMatrix) self.assertAllClose([[5., -1.], [0.5, 5.]], op.to_dense()) self.assertEqual("my_operator", op.name) def test_incompatible_domain_dimensions_raises(self): op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3)) op2 = linalg.LinearOperatorDiag(rng.rand(2, 4)) with self.assertRaisesRegex(ValueError, "must.*same `domain_dimension`"): add_operators([op1, op2]) def test_incompatible_range_dimensions_raises(self): op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3)) op2 = linalg.LinearOperatorDiag(rng.rand(3, 3)) with self.assertRaisesRegex(ValueError, "must.*same `range_dimension`"): add_operators([op1, op2]) def test_non_broadcastable_batch_shape_raises(self): op1 = linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3)) op2 = linalg.LinearOperatorDiag(rng.rand(4, 3, 3)) with self.assertRaisesRegex(ValueError, "Incompatible shapes"): add_operators([op1, op2])
LinearOperatorAdditionCorrectnessTest
python
numba__numba
numba/cuda/cudadrv/driver.py
{ "start": 81144, "end": 81662 }
class ____(Module): def get_function(self, name): handle = driver.cuModuleGetFunction(self.handle, name.encode('utf8')) return CudaPythonFunction(weakref.proxy(self), handle, name) def get_global_symbol(self, name): ptr, size = driver.cuModuleGetGlobal(self.handle, name.encode('utf8')) return MemoryPointer(self.context, ptr, size), size FuncAttr = namedtuple("FuncAttr", ["regs", "shared", "local", "const", "maxthreads"])
CudaPythonModule
python
walkccc__LeetCode
solutions/841. Keys and Rooms/841.py
{ "start": 0, "end": 281 }
class ____: def canVisitAllRooms(self, rooms: list[list[int]]) -> bool: seen = [False] * len(rooms) def dfs(node: int) -> None: seen[node] = True for child in rooms[node]: if not seen[child]: dfs(child) dfs(0) return all(seen)
Solution
python
airbytehq__airbyte
airbyte-integrations/connectors/source-orb/components.py
{ "start": 2394, "end": 5235 }
class ____(StreamSlicer): plans_stream: Stream subscriptions_stream: Stream config: Config def stream_slices(self) -> Iterable[StreamSlice]: """ This stream is sliced per `subscription_id` and day, as well as `billable_metric_id` if a grouping key is provided. This is because the API only supports a single billable_metric_id per API call when using a group_by param. """ slice_yielded = False subscriptions_stream = self.subscriptions_stream plans_stream = self.plans_stream # if using a group_by key, populate prices_by_plan_id so that each # billable metric will get its own slice if self.config.get("subscription_usage_grouping_key"): metric_ids_by_plan_id = {} for plan in plans_stream.read_records(sync_mode=SyncMode.full_refresh): # if a plan_id filter is specified, skip any plan that doesn't match if self.config.get("plan_id") and plan["id"] != self.config.get("plan_id"): continue prices = plan.get("prices", []) metric_ids_by_plan_id[plan["id"]] = [(price.get("billable_metric") or {}).get("id") for price in prices] for subscription in subscriptions_stream.read_records(sync_mode=SyncMode.full_refresh): subscription_id = subscription["id"] subscription_plan_id = subscription["plan_id"] # if filtering subscription usage by plan ID, skip any subscription that doesn't match the plan_id if self.config.get("plan_id") and subscription_plan_id != self.config.get("plan_id"): continue slice = { "subscription_id": subscription_id, } # if using a group_by key, yield one slice per billable_metric_id. # otherwise, yield slices without a billable_metric_id because # each API call will return usage broken down by billable metric # when grouping isn't used. if self.config.get("subscription_usage_grouping_key"): metric_ids = metric_ids_by_plan_id.get(subscription_plan_id) if metric_ids is not None: for metric_id in metric_ids: # self.logger.warning("stream_slices is about to yield the following slice: %s", slice) yield {**slice, "billable_metric_id": metric_id} slice_yielded = True else: # self.logger.warning("stream_slices is about to yield the following slice: %s", slice) yield slice slice_yielded = True if not slice_yielded: # yield an empty slice to checkpoint state later yield {}
SubscriptionUsagePartitionRouter
python
apache__airflow
providers/amazon/tests/unit/amazon/aws/operators/test_athena.py
{ "start": 2561, "end": 17537 }
class ____: @pytest.fixture(autouse=True) def _setup_test_cases(self): args = { "owner": "airflow", "start_date": DEFAULT_DATE, } self.dag = DAG(TEST_DAG_ID, default_args=args, schedule="@once") self.default_op_kwargs = dict( task_id="test_athena_operator", query="SELECT * FROM TEST_TABLE", database="TEST_DATABASE", client_request_token="eac427d0-1c6d-4dfb-96aa-2835d3ac6595", sleep_time=0, max_polling_attempts=3, ) self.athena = AthenaOperator( **self.default_op_kwargs, output_location="s3://test_s3_bucket/", aws_conn_id=None, dag=self.dag ) with mock.patch("airflow.providers.amazon.aws.links.athena.AthenaQueryResultsLink.persist") as m: self.mocked_athena_result_link = m yield def test_base_aws_op_attributes(self): op = AthenaOperator(**self.default_op_kwargs) assert op.hook.aws_conn_id == "aws_default" assert op.hook._region_name is None assert op.hook._verify is None assert op.hook._config is None assert op.hook.log_query is True op = AthenaOperator( **self.default_op_kwargs, aws_conn_id="aws-test-custom-conn", region_name="eu-west-1", verify=False, botocore_config={"read_timeout": 42}, log_query=False, ) assert op.hook.aws_conn_id == "aws-test-custom-conn" assert op.hook._region_name == "eu-west-1" assert op.hook._verify is False assert op.hook._config is not None assert op.hook._config.read_timeout == 42 assert op.hook.log_query is False def test_init(self): assert self.athena.task_id == MOCK_DATA["task_id"] assert self.athena.query == MOCK_DATA["query"] assert self.athena.database == MOCK_DATA["database"] assert self.athena.catalog == MOCK_DATA["catalog"] assert self.athena.client_request_token == MOCK_DATA["client_request_token"] assert self.athena.sleep_time == 0 @mock.patch.object(AthenaHook, "check_query_status", side_effect=("SUCCEEDED",)) @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_hook_run_override_catalog(self, mock_conn, mock_run_query, mock_check_query_status): query_context_catalog = {"Database": MOCK_DATA["database"], "Catalog": "MyCatalog"} self.athena.catalog = "MyCatalog" self.athena.execute({}) mock_run_query.assert_called_once_with( MOCK_DATA["query"], query_context_catalog, result_configuration, MOCK_DATA["client_request_token"], MOCK_DATA["workgroup"], ) assert mock_check_query_status.call_count == 1 @mock.patch.object(AthenaHook, "check_query_status", side_effect=("SUCCEEDED",)) @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_hook_run_small_success_query(self, mock_conn, mock_run_query, mock_check_query_status): self.athena.execute({}) mock_run_query.assert_called_once_with( MOCK_DATA["query"], query_context, result_configuration, MOCK_DATA["client_request_token"], MOCK_DATA["workgroup"], ) assert mock_check_query_status.call_count == 1 # Validate call persist Athena Query result link self.mocked_athena_result_link.assert_called_once_with( aws_partition=mock.ANY, context=mock.ANY, operator=mock.ANY, region_name=mock.ANY, query_execution_id=ATHENA_QUERY_ID, ) @mock.patch.object( AthenaHook, "check_query_status", side_effect="SUCCEEDED", ) @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_hook_run_big_success_query(self, mock_conn, mock_run_query, mock_check_query_status): self.athena.execute({}) mock_run_query.assert_called_once_with( MOCK_DATA["query"], query_context, result_configuration, MOCK_DATA["client_request_token"], MOCK_DATA["workgroup"], ) @mock.patch.object(AthenaHook, "get_state_change_reason") @mock.patch.object(AthenaHook, "check_query_status", return_value="FAILED") @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_hook_run_failure_query( self, mock_conn, mock_run_query, mock_check_query_status, mock_get_state_change_reason, ): with pytest.raises(AirflowException): self.athena.execute({}) mock_run_query.assert_called_once_with( MOCK_DATA["query"], query_context, result_configuration, MOCK_DATA["client_request_token"], MOCK_DATA["workgroup"], ) assert mock_get_state_change_reason.call_count == 1 @mock.patch.object(AthenaHook, "check_query_status", return_value="CANCELLED") @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_hook_run_cancelled_query(self, mock_conn, mock_run_query, mock_check_query_status): with pytest.raises(AirflowException): self.athena.execute({}) mock_run_query.assert_called_once_with( MOCK_DATA["query"], query_context, result_configuration, MOCK_DATA["client_request_token"], MOCK_DATA["workgroup"], ) @mock.patch.object(AthenaHook, "check_query_status", return_value="RUNNING") @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_hook_run_failed_query_with_max_tries(self, mock_conn, mock_run_query, mock_check_query_status): with pytest.raises(AirflowException): self.athena.execute({}) mock_run_query.assert_called_once_with( MOCK_DATA["query"], query_context, result_configuration, MOCK_DATA["client_request_token"], MOCK_DATA["workgroup"], ) @pytest.mark.db_test @mock.patch.object(AthenaHook, "check_query_status", side_effect=("SUCCEEDED",)) @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_return_value( self, mock_conn, mock_run_query, mock_check_query_status, session, clean_dags_dagruns_and_dagbundles, testing_dag_bundle, ): """Test we return the right value -- that will get put in to XCom by the execution engine""" if AIRFLOW_V_3_0_PLUS: from airflow.models.dag_version import DagVersion sync_dag_to_db(self.dag) dag_version = DagVersion.get_latest_version(self.dag.dag_id) ti = TaskInstance(task=self.athena, dag_version_id=dag_version.id) dag_run = DagRun( dag_id=self.dag.dag_id, logical_date=timezone.utcnow(), run_id="test", run_type=DagRunType.MANUAL, state=DagRunState.RUNNING, ) else: dag_run = DagRun( dag_id=self.dag.dag_id, execution_date=timezone.utcnow(), run_id="test", run_type=DagRunType.MANUAL, state=DagRunState.RUNNING, ) ti = TaskInstance(task=self.athena) ti.dag_run = dag_run session.add(ti) session.commit() assert self.athena.execute(ti.get_template_context()) == ATHENA_QUERY_ID @mock.patch.object(AthenaHook, "check_query_status", side_effect=("SUCCEEDED",)) @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) @mock.patch.object(AthenaHook, "get_conn") def test_optional_output_location(self, mock_conn, mock_run_query, mock_check_query_status): op = AthenaOperator(**self.default_op_kwargs, aws_conn_id=None) op.execute({}) mock_run_query.assert_called_once_with( MOCK_DATA["query"], query_context, {}, # Should be an empty dict since we do not provide output_location MOCK_DATA["client_request_token"], MOCK_DATA["workgroup"], ) @mock.patch.object(AthenaHook, "run_query", return_value=ATHENA_QUERY_ID) def test_is_deferred(self, mock_run_query): self.athena.deferrable = True with pytest.raises(TaskDeferred) as deferred: self.athena.execute(None) assert isinstance(deferred.value.trigger, AthenaTrigger) # Validate call persist Athena Query result link self.mocked_athena_result_link.assert_called_once_with( aws_partition=mock.ANY, context=mock.ANY, operator=mock.ANY, region_name=mock.ANY, query_execution_id=ATHENA_QUERY_ID, ) def test_execute_complete_reassigns_query_execution_id_after_deferring(self): """Assert that we use query_execution_id from event after deferral.""" operator = AthenaOperator( task_id="test_athena_operator", query="SELECT * FROM TEST_TABLE", database="TEST_DATABASE", deferrable=True, ) assert operator.query_execution_id is None query_execution_id = "123456" operator.execute_complete( context=None, event={"status": "success", "value": query_execution_id}, ) assert operator.query_execution_id == query_execution_id @mock.patch.object(AthenaHook, "region_name", new_callable=mock.PropertyMock) @mock.patch.object(AthenaHook, "get_conn") def test_operator_openlineage_data(self, mock_conn, mock_region_name): mock_region_name.return_value = "eu-west-1" def mock_get_table_metadata(CatalogName, DatabaseName, TableName): with open(os.path.dirname(__file__) + "/athena_metadata.json") as f: return json.load(f)[TableName] mock_conn.return_value.get_table_metadata = mock_get_table_metadata op = AthenaOperator( task_id="test_athena_openlineage", query="INSERT INTO TEST_TABLE SELECT CUSTOMER_EMAIL FROM DISCOUNTS", database="TEST_DATABASE", output_location="s3://test_s3_bucket", client_request_token="eac427d0-1c6d-4dfb-96aa-2835d3ac6595", sleep_time=0, max_polling_attempts=3, dag=self.dag, ) op.query_execution_id = "12345" # Mocking what will be available after execution expected_lineage = OperatorLineage( inputs=[ Dataset( namespace="awsathena://athena.eu-west-1.amazonaws.com", name="AwsDataCatalog.TEST_DATABASE.DISCOUNTS", facets={ "symlinks": SymlinksDatasetFacet( identifiers=[ Identifier( namespace="s3://bucket", name="/discount/data/path/", type="TABLE", ) ], ), "schema": SchemaDatasetFacet( fields=[ SchemaDatasetFacetFields( name="ID", type="int", description="from deserializer", ), SchemaDatasetFacetFields( name="AMOUNT_OFF", type="int", description="from deserializer", ), SchemaDatasetFacetFields( name="CUSTOMER_EMAIL", type="varchar", description="from deserializer", ), SchemaDatasetFacetFields( name="STARTS_ON", type="timestamp", description="from deserializer", ), SchemaDatasetFacetFields( name="ENDS_ON", type="timestamp", description=None, ), ], ), }, ) ], outputs=[ Dataset( namespace="awsathena://athena.eu-west-1.amazonaws.com", name="AwsDataCatalog.TEST_DATABASE.TEST_TABLE", facets={ "symlinks": SymlinksDatasetFacet( identifiers=[ Identifier( namespace="s3://bucket", name="/data/test_table/data/path", type="TABLE", ) ], ), "schema": SchemaDatasetFacet( fields=[ SchemaDatasetFacetFields( name="column", type="string", description="from deserializer", ) ], ), }, ), Dataset(namespace="s3://test_s3_bucket", name="/"), ], job_facets={ "sql": SQLJobFacet( query="INSERT INTO TEST_TABLE SELECT CUSTOMER_EMAIL FROM DISCOUNTS", ) }, run_facets={"externalQuery": ExternalQueryRunFacet(externalQueryId="12345", source="awsathena")}, ) assert op.get_openlineage_facets_on_complete(None) == expected_lineage def test_template_fields(self): validate_template_fields(self.athena)
TestAthenaOperator
python
keras-team__keras
keras/src/ops/numpy.py
{ "start": 103810, "end": 104543 }
class ____(Operation): def call(self, x): return backend.numpy.expm1(x) def compute_output_spec(self, x): dtype = backend.standardize_dtype(x.dtype) if "int" in dtype or dtype == "bool": dtype = backend.floatx() sparse = getattr(x, "sparse", False) return KerasTensor(x.shape, dtype=dtype, sparse=sparse) @keras_export(["keras.ops.expm1", "keras.ops.numpy.expm1"]) def expm1(x): """Calculate `exp(x) - 1` for all elements in the tensor. Args: x: Input values. Returns: Output tensor, element-wise exponential minus one. """ if any_symbolic_tensors((x,)): return Expm1().symbolic_call(x) return backend.numpy.expm1(x)
Expm1
python
apache__airflow
providers/standard/src/airflow/providers/standard/operators/latest_only.py
{ "start": 1386, "end": 5017 }
class ____(BaseBranchOperator): """ Skip tasks that are not running during the most recent schedule interval. If the task is run outside the latest schedule interval (i.e. run_type == DagRunType.MANUAL), all directly downstream tasks will be skipped. Note that downstream tasks are never skipped if the given DAG_Run is marked as externally triggered. Note that when used with timetables that produce zero-length or point-in-time data intervals (e.g., ``DeltaTriggerTimetable``), this operator assumes each run is the latest and does not skip downstream tasks. """ ui_color = "#e9ffdb" # nyanza def choose_branch(self, context: Context) -> str | Iterable[str]: # If the DAG Run is externally triggered, then return without # skipping downstream tasks dag_run: DagRun = context["dag_run"] # type: ignore[assignment] if dag_run.run_type == DagRunType.MANUAL: self.log.info("Manually triggered DAG_Run: allowing execution to proceed.") return list(self.get_direct_relative_ids(upstream=False)) dates = self._get_compare_dates(dag_run) if dates is None: self.log.info("Last scheduled execution: allowing execution to proceed.") return list(self.get_direct_relative_ids(upstream=False)) now = pendulum.now("UTC") left_window, right_window = dates self.log.info( "Checking latest only with left_window: %s right_window: %s now: %s", left_window, right_window, now, ) if not left_window < now <= right_window: self.log.info("Not latest execution, skipping downstream.") # we return an empty list, thus the parent BaseBranchOperator # won't exclude any downstream tasks from skipping. return [] self.log.info("Latest, allowing execution to proceed.") return list(self.get_direct_relative_ids(upstream=False)) def _get_compare_dates(self, dag_run: DagRun) -> tuple[DateTime, DateTime] | None: dagrun_date: DateTime if AIRFLOW_V_3_0_PLUS: dagrun_date = dag_run.logical_date or dag_run.run_after # type: ignore[assignment] else: dagrun_date = dag_run.logical_date # type: ignore[assignment] from airflow.timetables.base import DataInterval, TimeRestriction if dag_run.data_interval_start: start = pendulum.instance(dag_run.data_interval_start) else: start = dagrun_date if dag_run.data_interval_end: end = pendulum.instance(dag_run.data_interval_end) else: end = dagrun_date current_interval = DataInterval( start=start, end=end, ) time_restriction = TimeRestriction( earliest=None, latest=current_interval.end - timedelta(microseconds=1), catchup=True ) if prev_info := self.dag.timetable.next_dagrun_info( last_automated_data_interval=current_interval, restriction=time_restriction, ): left = prev_info.data_interval.end else: left = current_interval.start time_restriction = TimeRestriction(earliest=current_interval.end, latest=None, catchup=True) next_info = self.dag.timetable.next_dagrun_info( last_automated_data_interval=current_interval, restriction=time_restriction, ) if not next_info: return None return (left, next_info.data_interval.end)
LatestOnlyOperator
python
tensorflow__tensorflow
tensorflow/python/debug/lib/debug_service_pb2_grpc.py
{ "start": 1267, "end": 2466 }
class ____(object): """EventListener: Receives Event protos, e.g., from debugged TensorFlow runtime(s). """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.SendEvents = channel.stream_stream( '/tensorflow.EventListener/SendEvents', request_serializer=tensorflow_dot_core_dot_util_dot_event__pb2.Event.SerializeToString, response_deserializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.FromString, ) self.SendTracebacks = channel.unary_unary( '/tensorflow.EventListener/SendTracebacks', request_serializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.CallTraceback.SerializeToString, response_deserializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.FromString, ) self.SendSourceFiles = channel.unary_unary( '/tensorflow.EventListener/SendSourceFiles', request_serializer=tensorflow_dot_core_dot_protobuf_dot_debug__pb2.DebuggedSourceFiles.SerializeToString, response_deserializer=tensorflow_dot_core_dot_debug_dot_debug__service__pb2.EventReply.FromString, )
EventListenerStub
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 289945, "end": 290434 }
class ____(sgqlc.types.Interface): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("enterprise_resource_path", "enterprise_slug", "enterprise_url") enterprise_resource_path = sgqlc.types.Field( URI, graphql_name="enterpriseResourcePath" ) enterprise_slug = sgqlc.types.Field(String, graphql_name="enterpriseSlug") enterprise_url = sgqlc.types.Field(URI, graphql_name="enterpriseUrl")
EnterpriseAuditEntryData
python
pypa__pip
src/pip/_vendor/pkg_resources/__init__.py
{ "start": 66274, "end": 66968 }
class ____(ZipManifests): """ Memoized zipfile manifests. """ class manifest_mod(NamedTuple): manifest: dict[str, zipfile.ZipInfo] mtime: float def load(self, path: str) -> dict[str, zipfile.ZipInfo]: # type: ignore[override] # ZipManifests.load is a classmethod """ Load a manifest at path or return a suitable manifest already loaded. """ path = os.path.normpath(path) mtime = os.stat(path).st_mtime if path not in self or self[path].mtime != mtime: manifest = self.build(path) self[path] = self.manifest_mod(manifest, mtime) return self[path].manifest
MemoizedZipManifests
python
django__django
tests/template_tests/filter_tests/test_linenumbers.py
{ "start": 169, "end": 1243 }
class ____(SimpleTestCase): """ The contents of "linenumbers" is escaped according to the current autoescape setting. """ @setup({"linenumbers01": "{{ a|linenumbers }} {{ b|linenumbers }}"}) def test_linenumbers01(self): output = self.engine.render_to_string( "linenumbers01", {"a": "one\n<two>\nthree", "b": mark_safe("one\n&lt;two&gt;\nthree")}, ) self.assertEqual( output, "1. one\n2. &lt;two&gt;\n3. three 1. one\n2. &lt;two&gt;\n3. three" ) @setup( { "linenumbers02": ( "{% autoescape off %}{{ a|linenumbers }} {{ b|linenumbers }}" "{% endautoescape %}" ) } ) def test_linenumbers02(self): output = self.engine.render_to_string( "linenumbers02", {"a": "one\n<two>\nthree", "b": mark_safe("one\n&lt;two&gt;\nthree")}, ) self.assertEqual( output, "1. one\n2. <two>\n3. three 1. one\n2. &lt;two&gt;\n3. three" )
LinenumbersTests
python
scipy__scipy
scipy/odr/_odrpack.py
{ "start": 2243, "end": 5422 }
class ____(Exception): """ Exception stopping fitting. You can raise this exception in your objective function to tell `~scipy.odr.odr` to stop fitting. """ pass # Backwards compatibility odr_error = OdrError odr_stop = OdrStop __odrpack._set_exceptions(OdrError, OdrStop) def _conv(obj, dtype=None): """ Convert an object to the preferred form for input to the odr routine. """ if obj is None: return obj else: if dtype is None: obj = np.asarray(obj) else: obj = np.asarray(obj, dtype) if obj.shape == (): # Scalar. return obj.dtype.type(obj) else: return obj def _report_error(info): """ Interprets the return code of the odr routine. Parameters ---------- info : int The return code of the odr routine. Returns ------- problems : list(str) A list of messages about why the odr() routine stopped. """ stopreason = ('Blank', 'Sum of squares convergence', 'Parameter convergence', 'Both sum of squares and parameter convergence', 'Iteration limit reached')[info % 5] if info >= 5: # questionable results or fatal error I = (info//10000 % 10, info//1000 % 10, info//100 % 10, info//10 % 10, info % 10) problems = [] if I[0] == 0: if I[1] != 0: problems.append('Derivatives possibly not correct') if I[2] != 0: problems.append('Error occurred in callback') if I[3] != 0: problems.append('Problem is not full rank at solution') problems.append(stopreason) elif I[0] == 1: if I[1] != 0: problems.append('N < 1') if I[2] != 0: problems.append('M < 1') if I[3] != 0: problems.append('NP < 1 or NP > N') if I[4] != 0: problems.append('NQ < 1') elif I[0] == 2: if I[1] != 0: problems.append('LDY and/or LDX incorrect') if I[2] != 0: problems.append('LDWE, LD2WE, LDWD, and/or LD2WD incorrect') if I[3] != 0: problems.append('LDIFX, LDSTPD, and/or LDSCLD incorrect') if I[4] != 0: problems.append('LWORK and/or LIWORK too small') elif I[0] == 3: if I[1] != 0: problems.append('STPB and/or STPD incorrect') if I[2] != 0: problems.append('SCLB and/or SCLD incorrect') if I[3] != 0: problems.append('WE incorrect') if I[4] != 0: problems.append('WD incorrect') elif I[0] == 4: problems.append('Error in derivatives') elif I[0] == 5: problems.append('Error occurred in callback') elif I[0] == 6: problems.append('Numerical error detected') return problems else: return [stopreason]
OdrStop
python
openai__openai-python
src/openai/resources/evals/runs/output_items.py
{ "start": 920, "end": 5978 }
class ____(SyncAPIResource): @cached_property def with_raw_response(self) -> OutputItemsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return OutputItemsWithRawResponse(self) @cached_property def with_streaming_response(self) -> OutputItemsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return OutputItemsWithStreamingResponse(self) def retrieve( self, output_item_id: str, *, eval_id: str, run_id: str, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> OutputItemRetrieveResponse: """ Get an evaluation run output item by ID. Args: extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not eval_id: raise ValueError(f"Expected a non-empty value for `eval_id` but received {eval_id!r}") if not run_id: raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") if not output_item_id: raise ValueError(f"Expected a non-empty value for `output_item_id` but received {output_item_id!r}") return self._get( f"/evals/{eval_id}/runs/{run_id}/output_items/{output_item_id}", options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=OutputItemRetrieveResponse, ) def list( self, run_id: str, *, eval_id: str, after: str | Omit = omit, limit: int | Omit = omit, order: Literal["asc", "desc"] | Omit = omit, status: Literal["fail", "pass"] | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> SyncCursorPage[OutputItemListResponse]: """ Get a list of output items for an evaluation run. Args: after: Identifier for the last output item from the previous pagination request. limit: Number of output items to retrieve. order: Sort order for output items by timestamp. Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. status: Filter output items by status. Use `failed` to filter by failed output items or `pass` to filter by passed output items. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not eval_id: raise ValueError(f"Expected a non-empty value for `eval_id` but received {eval_id!r}") if not run_id: raise ValueError(f"Expected a non-empty value for `run_id` but received {run_id!r}") return self._get_api_list( f"/evals/{eval_id}/runs/{run_id}/output_items", page=SyncCursorPage[OutputItemListResponse], options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, query=maybe_transform( { "after": after, "limit": limit, "order": order, "status": status, }, output_item_list_params.OutputItemListParams, ), ), model=OutputItemListResponse, )
OutputItems
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pylint/invalid_return_type_length.py
{ "start": 1006, "end": 1112 }
class ____: def __len__(self): print("raise some error") raise NotImplementedError
Length6
python
pytorch__pytorch
test/test_dataloader.py
{ "start": 123247, "end": 125053 }
class ____(TestCase): def setUp(self): super().setUp() inps = torch.arange(10 * 5, dtype=torch.float32).view(10, 5) tgts = torch.arange(10 * 5, dtype=torch.float32).view(10, 5) self.dataset = TensorDataset(inps, tgts) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_custom_batch_pin(self): test_cases = [ (collate_wrapper, self_module.SimpleCustomBatch), (collate_into_packed_sequence, torch.nn.utils.rnn.PackedSequence), ( collate_into_packed_sequence_batch_first, torch.nn.utils.rnn.PackedSequence, ), ] for collate_fn, elem_cls in test_cases: loader = DataLoader( self.dataset, batch_size=2, collate_fn=collate_fn, pin_memory=True ) for sample in loader: self.assertIsInstance(sample, elem_cls) self.assertTrue(sample.is_pinned()) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_custom_batch_pin_worker(self): test_cases = [ (collate_wrapper, self_module.SimpleCustomBatch), (collate_into_packed_sequence, torch.nn.utils.rnn.PackedSequence), ( collate_into_packed_sequence_batch_first, torch.nn.utils.rnn.PackedSequence, ), ] for collate_fn, elem_cls in test_cases: loader = DataLoader( self.dataset, batch_size=2, collate_fn=collate_fn, pin_memory=True, num_workers=1, ) for sample in loader: self.assertIsInstance(sample, elem_cls) self.assertTrue(sample.is_pinned())
TestCustomPinFn
python
run-llama__llama_index
llama-index-integrations/llms/llama-index-llms-sambanovasystems/llama_index/llms/sambanovasystems/base.py
{ "start": 23309, "end": 61986 }
class ____(LLM): """ SambaStudio model. Setup: To use, you should have the environment variables: ``SAMBASTUDIO_URL`` set with your SambaStudio deployed endpoint URL. ``SAMBASTUDIO_API_KEY`` set with your SambaStudio deployed endpoint Key. https://docs.sambanova.ai/sambastudio/latest/index.html Examples: ```python SambaStudio( sambastudio_url = set with your SambaStudio deployed endpoint URL, sambastudio_api_key = set with your SambaStudio deployed endpoint Key. model = model or expert name (set for CoE endpoints), max_tokens = max number of tokens to generate, temperature = model temperature, context_window = model context window, top_p = model top p, top_k = model top k, do_sample = whether to do sample process_prompt = whether to process prompt (set for CoE generic v1 and v2 endpoints) stream_options = include usage to get generation metrics special_tokens = start, start_role, end_role, end special tokens (set for CoE generic v1 and v2 endpoints when process prompt set to false or for StandAlone v1 and v2 endpoints) model_kwargs: Optional = Extra Key word arguments to pass to the model. ) ``` Key init args — completion params: model: str The name of the model to use, e.g., Meta-Llama-3-70B-Instruct-4096 (set for CoE endpoints). streaming: bool Whether to use streaming max_tokens: inthandler when using non streaming methods max tokens to generate context_window: int model context window temperature: float model temperature top_p: float model top p top_k: int model top k do_sample: bool whether to do sample process_prompt: whether to process prompt (set for CoE generic v1 and v2 endpoints) stream_options: dict stream options, include usage to get generation metrics special_tokens: dict start, start_role, end_role and end special tokens (set for CoE generic v1 and v2 endpoints when process prompt set to false or for StandAlone v1 and v2 endpoints) default to llama3 special tokens model_kwargs: dict Extra Key word arguments to pass to the model. Key init args — client params: sambastudio_url: str SambaStudio endpoint URL sambastudio_api_key: str SambaStudio endpoint api key Instantiate: ```python from llama_index.llms.sambanova import SambaStudio llm = SambaStudio=( sambastudio_url = set with your SambaStudio deployed endpoint URL, sambastudio_api_key = set with your SambaStudio deployed endpoint Key. model = model or expert name (set for CoE endpoints), max_tokens = max number of tokens to generate, temperature = model temperature, context_window = model context window, top_p = model top p, top_k = model top k, do_sample = whether to do sample process_prompt = whether to process prompt (set for CoE generic v1 and v2 endpoints) stream_options = include usage to get generation metrics special_tokens = start, start_role, end_role, and special tokens (set for CoE generic v1 and v2 endpoints when process prompt set to false or for StandAlone v1 and v2 endpoints) model_kwargs: Optional = Extra Key word arguments to pass to the model. ) ``` Complete: ```python prompt = "Tell me about Naruto Uzumaki in one sentence" response = llm.complete(prompt) ``` Chat: ```python messages = [ ChatMessage(role=MessageRole.SYSTEM, content=("You're a helpful assistant")), ChatMessage(role=MessageRole.USER, content="Tell me about Naruto Uzumaki in one sentence") ] response = llm.chat(messages) ``` Stream: ```python prompt = "Tell me about Naruto Uzumaki in one sentence" messages = [ ChatMessage(role=MessageRole.SYSTEM, content=("You're a helpful assistant")), ChatMessage(role=MessageRole.USER, content="Tell me about Naruto Uzumaki in one sentence") ] for chunk in llm.stream_complete(prompt): print(chunk.text) for chunk in llm.stream_chat(messages): print(chunk.message.content) ``` Async: ```python prompt = "Tell me about Naruto Uzumaki in one sentence" asyncio.run(llm.acomplete(prompt)) messages = [ ChatMessage(role=MessageRole.SYSTEM, content=("You're a helpful assistant")), ChatMessage(role=MessageRole.USER, content="Tell me about Naruto Uzumaki in one sentence") ] asyncio.run(llm.achat(chat_text_msgs)) ``` Response metadata and usage ```python messages = [ ChatMessage(role=MessageRole.SYSTEM, content=("You're a helpful assistant")), ChatMessage(role=MessageRole.USER, content="Tell me about Naruto Uzumaki in one sentence") ] metadata_and_usage = llm.chat(messages).message.additional_kwargs print(metadata_and_usage) ``` """ model_config = ConfigDict( protected_namespaces=("pydantic_model_",), arbitrary_types_allowed=True ) sambastudio_url: str = Field(description="SambaStudio Url") sambastudio_api_key: SecretStr = Field(description="SambaStudio api key") base_url: str = Field( default="", exclude=True, description="SambaStudio non streaming Url" ) streaming_url: str = Field( default="", exclude=True, description="SambaStudio streaming Url" ) model: Optional[str] = Field( default=None, description="The name of the model or expert to use (for CoE endpoints)", ) streaming: bool = Field( default=False, description="Whether to use streaming handler when using non streaming methods", ) context_window: int = Field(default=4096, description="context window") max_tokens: int = Field(default=1024, description="max tokens to generate") temperature: Optional[float] = Field(default=0.7, description="model temperature") top_p: Optional[float] = Field(default=None, description="model top p") top_k: Optional[int] = Field(default=None, description="model top k") do_sample: Optional[bool] = Field( default=None, description="whether to do sampling" ) process_prompt: Optional[bool] = Field( default=True, description="whether process prompt (for CoE generic v1 and v2 endpoints)", ) stream_options: dict = Field( default_factory=lambda: {"include_usage": True}, description="stream options, include usage to get generation metrics", ) special_tokens: dict = Field( default={ "start": "<|begin_of_text|>", "start_role": "<|begin_of_text|><|start_header_id|>{role}<|end_header_id|>", "end_role": "<|eot_id|>", "end": "<|start_header_id|>assistant<|end_header_id|>\n", }, description="start, start_role, end_role and end special tokens (set for CoE generic v1 and v2 endpoints when process prompt set to false or for StandAlone v1 and v2 endpoints) default to llama3 special tokens", ) model_kwargs: Optional[Dict[str, Any]] = Field( default=None, description="Key word arguments to pass to the model." ) @classmethod def class_name(cls) -> str: return "SambaStudio" @property def metadata(self) -> LLMMetadata: return LLMMetadata( context_window=self.context_window, num_output=self.max_tokens, is_chat_model=True, model_name=self.model, ) def __init__(self, **kwargs: Any) -> None: """Init and validate environment variables.""" kwargs["sambastudio_url"] = get_from_param_or_env( "sambastudio_url", kwargs.get("sambastudio_url"), "SAMBASTUDIO_URL" ) kwargs["sambastudio_api_key"] = get_from_param_or_env( "sambastudio_api_key", kwargs.get("sambastudio_api_key"), "SAMBASTUDIO_API_KEY", ) kwargs["sambastudio_url"], kwargs["streaming_url"] = self._get_sambastudio_urls( kwargs["sambastudio_url"] ) super().__init__(**kwargs) def _messages_to_string(self, messages: Sequence[ChatMessage]) -> str: """ Convert a sequence of ChatMessages to: - dumped json string with Role / content dict structure when process_prompt is true, - string with special tokens if process_prompt is false for generic V1 and V2 endpoints. Args: messages: sequence of ChatMessages Returns: str: string to send as model input depending on process_prompt param """ if self.process_prompt: messages_dict: Dict[str, Any] = { "conversation_id": "sambaverse-conversation-id", "messages": [], } for message in messages: messages_dict["messages"].append( { "role": message.role, "content": message.content, } ) messages_string = json.dumps(messages_dict) else: messages_string = self.special_tokens["start"] for message in messages: messages_string += self.special_tokens["start_role"].format( role=self._get_role(message) ) messages_string += f" {message.content} " messages_string += self.special_tokens["end_role"] messages_string += self.special_tokens["end"] return messages_string def _get_sambastudio_urls(self, url: str) -> Tuple[str, str]: """ Get streaming and non streaming URLs from the given URL. Args: url: string with sambastudio base or streaming endpoint url Returns: base_url: string with url to do non streaming calls streaming_url: string with url to do streaming calls """ if "chat/completions" in url: base_url = url stream_url = url else: if "stream" in url: base_url = url.replace("stream/", "") stream_url = url else: base_url = url if "generic" in url: stream_url = "generic/stream".join(url.split("generic")) else: raise ValueError("Unsupported URL") return base_url, stream_url def _handle_request( self, messages: Sequence[ChatMessage], stop: Optional[List[str]] = None, streaming: Optional[bool] = False, ) -> Response: """ Performs a post request to the LLM API. Args: messages_dicts: List of role / content dicts to use as input. stop: list of stop tokens streaming: whether to do a streaming call Returns: A request Response object """ # create request payload for openai compatible API if "chat/completions" in self.sambastudio_url: messages_dicts = _create_message_dicts(messages) data = { "messages": messages_dicts, "max_tokens": self.max_tokens, "stop": stop, "model": self.model, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "stream": streaming, "stream_options": self.stream_options, } data = {key: value for key, value in data.items() if value is not None} headers = { "Authorization": f"Bearer " f"{self.sambastudio_api_key.get_secret_value()}", "Content-Type": "application/json", } # create request payload for generic v1 API elif "api/v2/predict/generic" in self.sambastudio_url: items = [{"id": "item0", "value": self._messages_to_string(messages)}] params: Dict[str, Any] = { "select_expert": self.model, "process_prompt": self.process_prompt, "max_tokens_to_generate": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, } if self.model_kwargs is not None: params = {**params, **self.model_kwargs} params = {key: value for key, value in params.items() if value is not None} data = {"items": items, "params": params} headers = {"key": self.sambastudio_api_key.get_secret_value()} # create request payload for generic v1 API elif "api/predict/generic" in self.sambastudio_url: params = { "select_expert": self.model, "process_prompt": self.process_prompt, "max_tokens_to_generate": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, } if self.model_kwargs is not None: params = {**params, **self.model_kwargs} params = { key: {"type": type(value).__name__, "value": str(value)} for key, value in params.items() if value is not None } if streaming: data = { "instance": self._messages_to_string(messages), "params": params, } else: data = { "instances": [self._messages_to_string(messages)], "params": params, } headers = {"key": self.sambastudio_api_key.get_secret_value()} else: raise ValueError( f"Unsupported URL{self.sambastudio_url}" "only openai, generic v1 and generic v2 APIs are supported" ) http_session = requests.Session() if streaming: response = http_session.post( self.streaming_url, headers=headers, json=data, stream=True ) else: response = http_session.post( self.base_url, headers=headers, json=data, stream=False ) if response.status_code != 200: raise RuntimeError( f"Sambanova /complete call failed with status code " f"{response.status_code}." f"{response.text}." ) return response async def _handle_request_async( self, messages: Sequence[ChatMessage], stop: Optional[List[str]] = None, streaming: Optional[bool] = False, ) -> Response: """ Performs an async post request to the LLM API. Args: messages_dicts: List of role / content dicts to use as input. stop: list of stop tokens streaming: whether to do a streaming call Returns: A request Response object """ # create request payload for openai compatible API if "chat/completions" in self.sambastudio_url: messages_dicts = _create_message_dicts(messages) data = { "messages": messages_dicts, "max_tokens": self.max_tokens, "stop": stop, "model": self.model, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "stream": streaming, "stream_options": self.stream_options, } data = {key: value for key, value in data.items() if value is not None} headers = { "Authorization": f"Bearer " f"{self.sambastudio_api_key.get_secret_value()}", "Content-Type": "application/json", } # create request payload for generic v1 API elif "api/v2/predict/generic" in self.sambastudio_url: items = [{"id": "item0", "value": self._messages_to_string(messages)}] params: Dict[str, Any] = { "select_expert": self.model, "process_prompt": self.process_prompt, "max_tokens_to_generate": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, } if self.model_kwargs is not None: params = {**params, **self.model_kwargs} params = {key: value for key, value in params.items() if value is not None} data = {"items": items, "params": params} headers = {"key": self.sambastudio_api_key.get_secret_value()} # create request payload for generic v1 API elif "api/predict/generic" in self.sambastudio_url: params = { "select_expert": self.model, "process_prompt": self.process_prompt, "max_tokens_to_generate": self.max_tokens, "temperature": self.temperature, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, } if self.model_kwargs is not None: params = {**params, **self.model_kwargs} params = { key: {"type": type(value).__name__, "value": str(value)} for key, value in params.items() if value is not None } if streaming: data = { "instance": self._messages_to_string(messages), "params": params, } else: data = { "instances": [self._messages_to_string(messages)], "params": params, } headers = {"key": self.sambastudio_api_key.get_secret_value()} else: raise ValueError( f"Unsupported URL{self.sambastudio_url}" "only openai, generic v1 and generic v2 APIs are supported" ) async with aiohttp.ClientSession() as session: if streaming: url = self.streaming_url else: url = self.base_url async with session.post( url, headers=headers, json=data, ) as response: if response.status != 200: raise RuntimeError( f"Sambanova /complete call failed with status code " f"{response.status}." f"{response.text}." ) response_dict = await response.json() if response_dict.get("error"): raise RuntimeError( f"Sambanova /complete call failed with status code {response.status}.", f"{response_dict}.", ) return response_dict def _process_response(self, response: Response) -> ChatMessage: """ Process a non streaming response from the api. Args: response: A request Response object Returns: generation: a ChatMessage with model generation """ # Extract json payload form response try: response_dict = response.json() except Exception as e: raise RuntimeError( f"Sambanova /complete call failed couldn't get JSON response {e}" f"response: {response.text}" ) # process response payload for openai compatible API if "chat/completions" in self.sambastudio_url: content = response_dict["choices"][0]["message"]["content"] response_metadata = { "finish_reason": response_dict["choices"][0]["finish_reason"], "usage": response_dict.get("usage"), "model_name": response_dict["model"], "system_fingerprint": response_dict["system_fingerprint"], "created": response_dict["created"], } # process response payload for generic v2 API elif "api/v2/predict/generic" in self.sambastudio_url: content = response_dict["items"][0]["value"]["completion"] response_metadata = response_dict["items"][0] # process response payload for generic v1 API elif "api/predict/generic" in self.sambastudio_url: content = response_dict["predictions"][0]["completion"] response_metadata = response_dict else: raise ValueError( f"Unsupported URL{self.sambastudio_url}" "only openai, generic v1 and generic v2 APIs are supported" ) return ChatMessage( content=content, additional_kwargs=response_metadata, role=MessageRole.ASSISTANT, ) def _process_stream_response(self, response: Response) -> Iterator[ChatMessage]: """ Process a streaming response from the api. Args: response: An iterable request Response object Yields: generation: an Iterator[ChatMessage] with model partial generation """ try: import sseclient except ImportError: raise ImportError( "could not import sseclient library" "Please install it with `pip install sseclient-py`." ) # process response payload for openai compatible API if "chat/completions" in self.sambastudio_url: finish_reason = "" content = "" client = sseclient.SSEClient(response) for event in client.events(): if event.event == "error_event": raise RuntimeError( f"Sambanova /complete call failed with status code " f"{response.status_code}." f"{event.data}." ) try: # check if the response is not a final event ("[DONE]") if event.data != "[DONE]": if isinstance(event.data, str): data = json.loads(event.data) else: raise RuntimeError( f"Sambanova /complete call failed with status code " f"{response.status_code}." f"{event.data}." ) if data.get("error"): raise RuntimeError( f"Sambanova /complete call failed with status code " f"{response.status_code}." f"{event.data}." ) if len(data["choices"]) > 0: finish_reason = data["choices"][0].get("finish_reason") content += data["choices"][0]["delta"]["content"] id = data["id"] metadata = {} else: content += "" id = data["id"] metadata = { "finish_reason": finish_reason, "usage": data.get("usage"), "model_name": data["model"], "system_fingerprint": data["system_fingerprint"], "created": data["created"], } if data.get("usage") is not None: content += "" id = data["id"] metadata = { "finish_reason": finish_reason, "usage": data.get("usage"), "model_name": data["model"], "system_fingerprint": data["system_fingerprint"], "created": data["created"], } yield ChatMessage( role=MessageRole.ASSISTANT, content=content, additional_kwargs=metadata, ) except Exception as e: raise RuntimeError( f"Error getting content chunk raw streamed response: {e}" f"data: {event.data}" ) # process response payload for generic v2 API elif "api/v2/predict/generic" in self.sambastudio_url: content = "" for line in response.iter_lines(): try: data = json.loads(line) content += data["result"]["items"][0]["value"]["stream_token"] id = data["result"]["items"][0]["id"] if data["result"]["items"][0]["value"]["is_last_response"]: metadata = { "finish_reason": data["result"]["items"][0]["value"].get( "stop_reason" ), "prompt": data["result"]["items"][0]["value"].get("prompt"), "usage": { "prompt_tokens_count": data["result"]["items"][0][ "value" ].get("prompt_tokens_count"), "completion_tokens_count": data["result"]["items"][0][ "value" ].get("completion_tokens_count"), "total_tokens_count": data["result"]["items"][0][ "value" ].get("total_tokens_count"), "start_time": data["result"]["items"][0]["value"].get( "start_time" ), "end_time": data["result"]["items"][0]["value"].get( "end_time" ), "model_execution_time": data["result"]["items"][0][ "value" ].get("model_execution_time"), "time_to_first_token": data["result"]["items"][0][ "value" ].get("time_to_first_token"), "throughput_after_first_token": data["result"]["items"][ 0 ]["value"].get("throughput_after_first_token"), "batch_size_used": data["result"]["items"][0][ "value" ].get("batch_size_used"), }, } else: metadata = {} yield ChatMessage( role=MessageRole.ASSISTANT, content=content, additional_kwargs=metadata, ) except Exception as e: raise RuntimeError( f"Error getting content chunk raw streamed response: {e}" f"line: {line}" ) # process response payload for generic v1 API elif "api/predict/generic" in self.sambastudio_url: content = "" for line in response.iter_lines(): try: data = json.loads(line) content += data["result"]["responses"][0]["stream_token"] id = None if data["result"]["responses"][0]["is_last_response"]: metadata = { "finish_reason": data["result"]["responses"][0].get( "stop_reason" ), "prompt": data["result"]["responses"][0].get("prompt"), "usage": { "prompt_tokens_count": data["result"]["responses"][ 0 ].get("prompt_tokens_count"), "completion_tokens_count": data["result"]["responses"][ 0 ].get("completion_tokens_count"), "total_tokens_count": data["result"]["responses"][ 0 ].get("total_tokens_count"), "start_time": data["result"]["responses"][0].get( "start_time" ), "end_time": data["result"]["responses"][0].get( "end_time" ), "model_execution_time": data["result"]["responses"][ 0 ].get("model_execution_time"), "time_to_first_token": data["result"]["responses"][ 0 ].get("time_to_first_token"), "throughput_after_first_token": data["result"][ "responses" ][0].get("throughput_after_first_token"), "batch_size_used": data["result"]["responses"][0].get( "batch_size_used" ), }, } else: metadata = {} yield ChatMessage( role=MessageRole.ASSISTANT, content=content, additional_kwargs=metadata, ) except Exception as e: raise RuntimeError( f"Error getting content chunk raw streamed response: {e}" f"line: {line}" ) else: raise ValueError( f"Unsupported URL{self.sambastudio_url}" "only openai, generic v1 and generic v2 APIs are supported" ) async def _process_response_async( self, response_dict: Dict[str, Any] ) -> ChatMessage: """ Process a non streaming response from the api. Args: response: A request Response object Returns: generation: a ChatMessage with model generation """ # process response payload for openai compatible API if "chat/completions" in self.sambastudio_url: content = response_dict["choices"][0]["message"]["content"] response_metadata = { "finish_reason": response_dict["choices"][0]["finish_reason"], "usage": response_dict.get("usage"), "model_name": response_dict["model"], "system_fingerprint": response_dict["system_fingerprint"], "created": response_dict["created"], } # process response payload for generic v2 API elif "api/v2/predict/generic" in self.sambastudio_url: content = response_dict["items"][0]["value"]["completion"] response_metadata = response_dict["items"][0] # process response payload for generic v1 API elif "api/predict/generic" in self.sambastudio_url: content = response_dict["predictions"][0]["completion"] response_metadata = response_dict else: raise ValueError( f"Unsupported URL{self.sambastudio_url}" "only openai, generic v1 and generic v2 APIs are supported" ) return ChatMessage( content=content, additional_kwargs=response_metadata, role=MessageRole.ASSISTANT, ) @llm_chat_callback() def chat( self, messages: Sequence[ChatMessage], stop: Optional[List[str]] = None, **kwargs: Any, ) -> ChatResponse: """ Calls the chat implementation of the SambaStudio model. Args: messages: the prompt composed of a list of messages. stop: a list of strings on which the model should stop generating. If generation stops due to a stop token, the stop token itself SHOULD BE INCLUDED as part of the output. This is not enforced across models right now, but it's a good practice to follow since it makes it much easier to parse the output of the model downstream and understand why generation stopped. Returns: ChatResponse with model generation """ # if self.streaming: # stream_iter = self._stream( # messages, stop=stop, **kwargs # ) # if stream_iter: # return generate_from_stream(stream_iter) response = self._handle_request(messages, stop, streaming=False) message = self._process_response(response) return ChatResponse(message=message) @llm_chat_callback() def stream_chat( self, messages: Sequence[ChatMessage], stop: Optional[List[str]] = None, **kwargs: Any, ) -> ChatResponseGen: """ Stream the output of the SambaStudio model. Args: messages: the prompt composed of a list of messages. stop: a list of strings on which the model should stop generating. If generation stops due to a stop token, the stop token itself SHOULD BE INCLUDED as part of the output. This is not enforced across models right now, but it's a good practice to follow since it makes it much easier to parse the output of the model downstream and understand why generation stopped. Yields: chunk: ChatResponseGen with model partial generation """ response = self._handle_request(messages, stop, streaming=True) for ai_message_chunk in self._process_stream_response(response): chunk = ChatResponse(message=ai_message_chunk) yield chunk @llm_completion_callback() def complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: complete_fn = chat_to_completion_decorator(self.chat) return complete_fn(prompt, **kwargs) @llm_completion_callback() def stream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseGen: stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat) return stream_complete_fn(prompt, **kwargs) @llm_chat_callback() async def achat( self, messages: Sequence[ChatMessage], stop: Optional[List[str]] = None, **kwargs: Any, ) -> ChatResponse: """ Calls the chat implementation of the SambaStudio model. Args: messages: the prompt composed of a list of messages. stop: a list of strings on which the model should stop generating. If generation stops due to a stop token, the stop token itself SHOULD BE INCLUDED as part of the output. This is not enforced across models right now, but it's a good practice to follow since it makes it much easier to parse the output of the model downstream and understand why generation stopped. Returns: ChatResponse with model generation """ response_dict = await self._handle_request_async( messages, stop, streaming=False ) message = await self._process_response_async(response_dict) return ChatResponse(message=message) @llm_chat_callback() async def astream_chat( self, messages: Sequence[ChatMessage], stop: Optional[List[str]] = None, **kwargs: Any, ) -> ChatResponseAsyncGen: raise NotImplementedError( "SambaStudio does not currently support async streaming." ) @llm_completion_callback() async def acomplete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: acomplete_fn = achat_to_completion_decorator(self.achat) return await acomplete_fn(prompt, **kwargs) @llm_completion_callback() def astream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseAsyncGen: raise NotImplementedError( "SambaStudio does not currently support async streaming." )
SambaStudio
python
doocs__leetcode
lcp/LCP 01. 猜数字/Solution.py
{ "start": 0, "end": 138 }
class ____: def game(self, guess: List[int], answer: List[int]) -> int: return sum(a == b for a, b in zip(guess, answer))
Solution
python
sanic-org__sanic
guide/webapp/display/page/renderer.py
{ "start": 265, "end": 2007 }
class ____(BaseRenderer): def render(self, request: Request, language: str, path: str) -> Builder: self._setup_request(request, language, path) builder = self.get_builder( full=request.headers.get("HX-Request") is None, language=language, ) self._body(request, builder, language, path) return builder def title(self) -> str: request = Request.get_current() title: str | None = None if request and ( current_page := getattr(request.ctx, "current_page", None) ): title = f"{self.base_title} - {current_page.meta.title}" return title or self.base_title def _setup_request(self, request: Request, language: str, path: str): prev_page, current_page, next_page = Page.get(language, path) request.ctx.language = ( Page.DEFAULT_LANGUAGE if language == "api" else language ) request.ctx.current_page = current_page request.ctx.previous_page = prev_page request.ctx.next_page = next_page def _body( self, request: Request, builder: Builder, language: str, path: str ): current_page = request.ctx.current_page with self._base(request, builder, current_page): if current_page is None: builder.h1("Not found") return builder(HTML(current_page.content)) @contextmanager def _base(self, request: Request, builder: Builder, page: Page | None): layout_type: type[BaseLayout] = ( page.get_layout() if page else BaseLayout ) layout = layout_type(builder) with layout(request, builder.full): yield
PageRenderer
python
apache__airflow
providers/dingding/src/airflow/providers/dingding/operators/dingding.py
{ "start": 1103, "end": 2844 }
class ____(BaseOperator): """ This operator allows to send DingTalk message using Custom Robot API. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:DingdingOperator` :param dingding_conn_id: Dingding connection id that has access token in the password field, and optional host name in host field, if host not set than default ``https://oapi.dingtalk.com`` will use. :param message_type: Message type you want to send to Dingding, support five type so far including ``text``, ``link``, ``markdown``, ``actionCard``, ``feedCard``. :param message: The message send to chat group :param at_mobiles: Remind specific users with this message :param at_all: Remind all people in group or not. If True, will overwrite ``at_mobiles`` """ template_fields: Sequence[str] = ("message",) ui_color = "#4ea4d4" # Operator icon color def __init__( self, *, dingding_conn_id: str = "dingding_default", message_type: str = "text", message: str | dict | None = None, at_mobiles: list[str] | None = None, at_all: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) self.dingding_conn_id = dingding_conn_id self.message_type = message_type self.message = message self.at_mobiles = at_mobiles self.at_all = at_all def execute(self, context: Context) -> None: self.log.info("Sending Dingding message.") hook = DingdingHook( self.dingding_conn_id, self.message_type, self.message, self.at_mobiles, self.at_all ) hook.send()
DingdingOperator