language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
getsentry__sentry
src/sentry/rules/history/endpoints/project_rule_stats.py
{ "start": 979, "end": 1317 }
class ____(Serializer): def serialize( self, obj: TimeSeriesValue, attrs: Mapping[Any, Any], user: Any, **kwargs: Any ) -> TimeSeriesValueResponse: return { "date": obj.bucket, "count": obj.count, } @extend_schema(tags=["issue_alerts"]) @region_silo_endpoint
TimeSeriesValueSerializer
python
run-llama__llama_index
llama-index-core/llama_index/core/evaluation/base.py
{ "start": 341, "end": 1523 }
class ____(BaseModel): """ Evaluation result. Output of an BaseEvaluator. """ query: Optional[str] = Field(default=None, description="Query string") contexts: Optional[Sequence[str]] = Field( default=None, description="Context strings" ) response: Optional[str] = Field(default=None, description="Response string") passing: Optional[bool] = Field( default=None, description="Binary evaluation result (passing or not)" ) feedback: Optional[str] = Field( default=None, description="Feedback or reasoning for the response" ) score: Optional[float] = Field(default=None, description="Score for the response") pairwise_source: Optional[str] = Field( default=None, description=( "Used only for pairwise and specifies whether it is from original order of" " presented answers or flipped order" ), ) invalid_result: bool = Field( default=False, description="Whether the evaluation result is an invalid one." ) invalid_reason: Optional[str] = Field( default=None, description="Reason for invalid evaluation." )
EvaluationResult
python
pytorch__pytorch
test/test_datapipe.py
{ "start": 147278, "end": 147630 }
class ____(IterDataPipe): def __init__(self) -> None: self.n = 10 self.iter = iter(range(self.n)) def __iter__(self): return self def __next__(self): return next(self.iter) def reset(self): self.iter = iter(range(self.n)) def __len__(self): return self.n
_CustomSelfNextTestDataPipe
python
django-compressor__django-compressor
compressor/tests/test_offline.py
{ "start": 15211, "end": 15846 }
class ____( SuperMixin, OfflineTestCaseMixin, TestCase ): templates_dir = "test_block_super_extra" def _test_offline(self, engine, verbosity=0): count, result = CompressCommand().handle_inner( engines=[engine], verbosity=verbosity ) self.assertEqual(2, count) self.assertEqual( [self._render_script("bfcec76e0f28"), self._render_script("817b5defb197")], result, ) rendered_template = self._render_template(engine) self.assertEqual(rendered_template, self._render_result(result, ""))
OfflineCompressBlockSuperTestCaseWithExtraContent
python
keras-team__keras
keras/src/layers/rnn/bidirectional_test.py
{ "start": 130, "end": 10040 }
class ____(testing.TestCase): @pytest.mark.requires_trainable_backend def test_basics(self): self.run_layer_test( layers.Bidirectional, init_kwargs={"layer": layers.SimpleRNN(4)}, input_shape=(3, 2, 4), expected_output_shape=(3, 8), expected_num_trainable_weights=6, expected_num_non_trainable_weights=0, supports_masking=True, ) self.run_layer_test( layers.Bidirectional, init_kwargs={ "layer": layers.SimpleRNN(4), "backward_layer": layers.SimpleRNN(4, go_backwards=True), "merge_mode": "sum", }, input_shape=(3, 2, 4), expected_output_shape=(3, 4), expected_num_trainable_weights=6, expected_num_non_trainable_weights=0, supports_masking=True, ) def test_correctness(self): sequence = np.arange(24).reshape((2, 3, 4)).astype("float32") forward_layer = layers.SimpleRNN( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), ) layer = layers.Bidirectional( layer=forward_layer, ) output = layer(sequence) self.assertAllClose( np.array( [ [0.39687276, 0.39687276, 0.10004295, 0.10004295], [0.7237238, 0.7237238, 0.53391594, 0.53391594], ] ), output, ) layer = layers.Bidirectional(layer=forward_layer, merge_mode="ave") output = layer(sequence) self.assertAllClose( np.array([[0.24845785, 0.24845785], [0.6288199, 0.6288199]]), output, ) layer = layers.Bidirectional(layer=forward_layer, merge_mode=None) output1, output2 = layer(sequence) self.assertAllClose( np.array([[0.39687276, 0.39687276], [0.7237238, 0.7237238]]), output1, ) self.assertAllClose( np.array([[0.10004295, 0.10004295], [0.53391594, 0.53391594]]), output2, ) backward_layer = layers.SimpleRNN( 2, kernel_initializer=initializers.Constant(0.03), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.01), go_backwards=True, ) layer = layers.Bidirectional( layer=forward_layer, backward_layer=backward_layer, merge_mode="mul" ) output = layer(sequence) self.assertAllClose( np.array([[0.08374989, 0.08374989], [0.6740834, 0.6740834]]), output, ) forward_layer = layers.GRU( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), return_sequences=True, ) layer = layers.Bidirectional(layer=forward_layer, merge_mode="sum") output = layer(sequence) self.assertAllClose( np.array( [ [ [0.20937867, 0.20937867], [0.34462988, 0.34462988], [0.40290534, 0.40290534], ], [ [0.59829646, 0.59829646], [0.6734641, 0.6734641], [0.6479671, 0.6479671], ], ] ), output, ) def test_statefulness(self): sequence = np.arange(24).reshape((2, 4, 3)).astype("float32") forward_layer = layers.LSTM( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), stateful=True, ) layer = layers.Bidirectional(layer=forward_layer) layer(sequence) output = layer(sequence) self.assertAllClose( np.array( [ [0.26234663, 0.26234663, 0.16959146, 0.16959146], [0.6137073, 0.6137073, 0.5381646, 0.5381646], ] ), output, ) layer.reset_state() layer(sequence) output = layer(sequence) self.assertAllClose( np.array( [ [0.26234663, 0.26234663, 0.16959146, 0.16959146], [0.6137073, 0.6137073, 0.5381646, 0.5381646], ] ), output, ) def test_pass_initial_state(self): sequence = np.arange(24).reshape((2, 4, 3)).astype("float32") initial_state = [ np.arange(4).reshape((2, 2)).astype("float32") * 1, np.arange(4).reshape((2, 2)).astype("float32") * 2, np.arange(4).reshape((2, 2)).astype("float32") * 3, np.arange(4).reshape((2, 2)).astype("float32") * 4, ] forward_layer = layers.LSTM( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), ) layer = layers.Bidirectional( layer=forward_layer, ) output = layer(sequence, initial_state=initial_state) self.assertAllClose( np.array( [ [0.20794602, 0.4577124, 0.14046375, 0.48191673], [0.6682636, 0.6711909, 0.60943645, 0.60950446], ] ), output, ) def test_masking(self): sequence = np.arange(24).reshape((2, 4, 3)).astype("float32") forward_layer = layers.GRU( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), ) layer = layers.Bidirectional(layer=forward_layer) mask = np.array([[True, True, False, True], [True, False, False, True]]) output = layer(sequence, mask=mask) self.assertAllClose( np.array( [ [0.19393763, 0.19393763, 0.11669192, 0.11669192], [0.30818558, 0.30818558, 0.28380975, 0.28380975], ] ), output, ) def test_return_state(self): sequence = np.arange(24).reshape((2, 4, 3)).astype("float32") forward_layer = layers.LSTM( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), return_state=True, ) layer = layers.Bidirectional(layer=forward_layer) output, h1, c1, h2, c2 = layer(sequence) self.assertAllClose( np.array( [ [0.1990008, 0.1990008, 0.12659755, 0.12659755], [0.52335435, 0.52335435, 0.44717982, 0.44717982], ] ), output, ) self.assertAllClose( np.array([[0.1990008, 0.1990008], [0.52335435, 0.52335435]]), h1, ) self.assertAllClose( np.array([[0.35567185, 0.35567185], [1.0492687, 1.0492687]]), c1, ) self.assertAllClose( np.array([[0.12659755, 0.12659755], [0.44717982, 0.44717982]]), h2, ) self.assertAllClose( np.array([[0.2501858, 0.2501858], [0.941473, 0.941473]]), c2, ) @pytest.mark.requires_trainable_backend def test_output_shape(self): x = np.array([[[101, 202], [303, 404]]]) for merge_mode in ["ave", "concat", "mul", "sum", None]: sub_layer = layers.LSTM(2, return_state=True) layer = layers.Bidirectional(sub_layer, merge_mode=merge_mode) output = layer(x) output_shape = layer.compute_output_shape(x.shape) for out, shape in zip(output, output_shape): self.assertEqual(out.shape, shape) for merge_mode in ["concat", "ave", "mul", "sum"]: sub_layer = layers.LSTM(2, return_state=False) layer = layers.Bidirectional(sub_layer, merge_mode=merge_mode) output = layer(x) output_shape = layer.compute_output_shape(x.shape) self.assertEqual(output.shape, output_shape) # return_state=False & merge_mode=None sub_layer = layers.LSTM(2, return_state=False) layer = layers.Bidirectional(sub_layer, merge_mode=None) output = layer(x) output_shape = layer.compute_output_shape(x.shape) for out, shape in zip(output, output_shape): self.assertEqual(out.shape, shape) def test_keeps_use_cudnn(self): # keep use_cudnn if the layer has it for rnn_class in [layers.GRU, layers.LSTM]: for use_cudnn in [True, False, "auto"]: rnn = rnn_class(1, use_cudnn=use_cudnn) bidi = layers.Bidirectional(rnn) self.assertEqual(bidi.forward_layer.use_cudnn, use_cudnn) self.assertEqual(bidi.backward_layer.use_cudnn, use_cudnn) # otherwise ignore it rnn = layers.SimpleRNN(1) bidi = layers.Bidirectional(rnn) self.assertFalse(hasattr(bidi.forward_layer, "use_cudnn")) self.assertFalse(hasattr(bidi.backward_layer, "use_cudnn"))
SimpleRNNTest
python
Pylons__pyramid
tests/test_config/test_assets.py
{ "start": 18844, "end": 30536 }
class ____(unittest.TestCase): def _getTargetClass(self): from pyramid.config.assets import PackageOverrides return PackageOverrides def _makeOne(self, package=None, pkg_resources=None): if package is None: package = DummyPackage('package') klass = self._getTargetClass() if pkg_resources is None: pkg_resources = DummyPkgResources() return klass(package, pkg_resources=pkg_resources) def test_class_conforms_to_IPackageOverrides(self): from zope.interface.verify import verifyClass from pyramid.interfaces import IPackageOverrides verifyClass(IPackageOverrides, self._getTargetClass()) def test_instance_conforms_to_IPackageOverrides(self): from zope.interface.verify import verifyObject from pyramid.interfaces import IPackageOverrides verifyObject(IPackageOverrides, self._makeOne()) def test_class_conforms_to_IPEP302Loader(self): from zope.interface.verify import verifyClass from pyramid.interfaces import IPEP302Loader verifyClass(IPEP302Loader, self._getTargetClass()) def test_instance_conforms_to_IPEP302Loader(self): from zope.interface.verify import verifyObject from pyramid.interfaces import IPEP302Loader verifyObject(IPEP302Loader, self._makeOne()) def test_ctor_package_already_has_loader_of_different_type(self): package = DummyPackage('package') loader = package.__loader__ = DummyLoader() po = self._makeOne(package) self.assertTrue(package.__loader__ is po) self.assertTrue(po.real_loader is loader) def test_ctor_package_already_has_loader_of_same_type(self): package = DummyPackage('package') package.__loader__ = self._makeOne(package) po = self._makeOne(package) self.assertEqual(package.__loader__, po) def test_ctor_sets_loader(self): package = DummyPackage('package') po = self._makeOne(package) self.assertEqual(package.__loader__, po) def test_ctor_registers_loader_type(self): from pyramid.config.assets import OverrideProvider dummy_pkg_resources = DummyPkgResources() package = DummyPackage('package') po = self._makeOne(package, dummy_pkg_resources) self.assertEqual( dummy_pkg_resources.registered, [(po.__class__, OverrideProvider)] ) def test_ctor_sets_local_state(self): package = DummyPackage('package') po = self._makeOne(package) self.assertEqual(po.overrides, []) self.assertEqual(po.overridden_package_name, 'package') def test_insert_directory(self): from pyramid.config.assets import DirectoryOverride package = DummyPackage('package') po = self._makeOne(package) po.overrides = [None] po.insert('foo/', DummyAssetSource()) self.assertEqual(len(po.overrides), 2) override = po.overrides[0] self.assertEqual(override.__class__, DirectoryOverride) def test_insert_file(self): from pyramid.config.assets import FileOverride package = DummyPackage('package') po = self._makeOne(package) po.overrides = [None] po.insert('foo.pt', DummyAssetSource()) self.assertEqual(len(po.overrides), 2) override = po.overrides[0] self.assertEqual(override.__class__, FileOverride) def test_insert_emptystring(self): # XXX is this a valid case for a directory? from pyramid.config.assets import DirectoryOverride package = DummyPackage('package') po = self._makeOne(package) po.overrides = [None] source = DummyAssetSource() po.insert('', source) self.assertEqual(len(po.overrides), 2) override = po.overrides[0] self.assertEqual(override.__class__, DirectoryOverride) def test_filtered_sources(self): overrides = [DummyOverride(None), DummyOverride('foo')] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(list(po.filtered_sources('whatever')), ['foo']) def test_get_filename(self): source = DummyAssetSource(filename='foo.pt') overrides = [DummyOverride(None), DummyOverride((source, ''))] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides result = po.get_filename('whatever') self.assertEqual(result, 'foo.pt') self.assertEqual(source.resource_name, '') def test_get_filename_file_doesnt_exist(self): source = DummyAssetSource(filename=None) overrides = [ DummyOverride(None), DummyOverride((source, 'wont_exist')), ] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.get_filename('whatever'), None) self.assertEqual(source.resource_name, 'wont_exist') def test_get_stream(self): source = DummyAssetSource(stream='a stream?') overrides = [DummyOverride(None), DummyOverride((source, 'foo.pt'))] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.get_stream('whatever'), 'a stream?') self.assertEqual(source.resource_name, 'foo.pt') def test_get_stream_file_doesnt_exist(self): source = DummyAssetSource(stream=None) overrides = [ DummyOverride(None), DummyOverride((source, 'wont_exist')), ] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.get_stream('whatever'), None) self.assertEqual(source.resource_name, 'wont_exist') def test_get_string(self): source = DummyAssetSource(string='a string') overrides = [DummyOverride(None), DummyOverride((source, 'foo.pt'))] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.get_string('whatever'), 'a string') self.assertEqual(source.resource_name, 'foo.pt') def test_get_string_file_doesnt_exist(self): source = DummyAssetSource(string=None) overrides = [ DummyOverride(None), DummyOverride((source, 'wont_exist')), ] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.get_string('whatever'), None) self.assertEqual(source.resource_name, 'wont_exist') def test_has_resource(self): source = DummyAssetSource(exists=True) overrides = [DummyOverride(None), DummyOverride((source, 'foo.pt'))] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.has_resource('whatever'), True) self.assertEqual(source.resource_name, 'foo.pt') def test_has_resource_file_doesnt_exist(self): source = DummyAssetSource(exists=None) overrides = [ DummyOverride(None), DummyOverride((source, 'wont_exist')), ] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.has_resource('whatever'), None) self.assertEqual(source.resource_name, 'wont_exist') def test_isdir_false(self): source = DummyAssetSource(isdir=False) overrides = [DummyOverride(None), DummyOverride((source, 'foo.pt'))] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.isdir('whatever'), False) self.assertEqual(source.resource_name, 'foo.pt') def test_isdir_true(self): source = DummyAssetSource(isdir=True) overrides = [DummyOverride(None), DummyOverride((source, 'foo.pt'))] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.isdir('whatever'), True) self.assertEqual(source.resource_name, 'foo.pt') def test_isdir_doesnt_exist(self): source = DummyAssetSource(isdir=None) overrides = [ DummyOverride(None), DummyOverride((source, 'wont_exist')), ] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.isdir('whatever'), None) self.assertEqual(source.resource_name, 'wont_exist') def test_listdir(self): source = DummyAssetSource(listdir=True) overrides = [DummyOverride(None), DummyOverride((source, 'foo.pt'))] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.listdir('whatever'), True) self.assertEqual(source.resource_name, 'foo.pt') def test_listdir_doesnt_exist(self): source = DummyAssetSource(listdir=None) overrides = [ DummyOverride(None), DummyOverride((source, 'wont_exist')), ] package = DummyPackage('package') po = self._makeOne(package) po.overrides = overrides self.assertEqual(po.listdir('whatever'), None) self.assertEqual(source.resource_name, 'wont_exist') # PEP 302 __loader__ extensions: use the "real" __loader__, if present. def test_get_data_pkg_has_no___loader__(self): package = DummyPackage('package') po = self._makeOne(package) self.assertRaises(NotImplementedError, po.get_data, 'whatever') def test_get_data_pkg_has___loader__(self): package = DummyPackage('package') loader = package.__loader__ = DummyLoader() po = self._makeOne(package) self.assertEqual(po.get_data('whatever'), b'DEADBEEF') self.assertEqual(loader._got_data, 'whatever') def test_is_package_pkg_has_no___loader__(self): package = DummyPackage('package') po = self._makeOne(package) self.assertRaises(NotImplementedError, po.is_package, 'whatever') def test_is_package_pkg_has___loader__(self): package = DummyPackage('package') loader = package.__loader__ = DummyLoader() po = self._makeOne(package) self.assertTrue(po.is_package('whatever')) self.assertEqual(loader._is_package, 'whatever') def test_get_code_pkg_has_no___loader__(self): package = DummyPackage('package') po = self._makeOne(package) self.assertRaises(NotImplementedError, po.get_code, 'whatever') def test_get_code_pkg_has___loader__(self): package = DummyPackage('package') loader = package.__loader__ = DummyLoader() po = self._makeOne(package) self.assertEqual(po.get_code('whatever'), b'DEADBEEF') self.assertEqual(loader._got_code, 'whatever') def test_get_source_pkg_has_no___loader__(self): package = DummyPackage('package') po = self._makeOne(package) self.assertRaises(NotImplementedError, po.get_source, 'whatever') def test_get_source_pkg_has___loader__(self): package = DummyPackage('package') loader = package.__loader__ = DummyLoader() po = self._makeOne(package) self.assertEqual(po.get_source('whatever'), 'def foo():\n pass') self.assertEqual(loader._got_source, 'whatever')
TestPackageOverrides
python
pytest-dev__pytest
src/_pytest/capture.py
{ "start": 6323, "end": 6618 }
class ____(io.TextIOWrapper): def __init__(self) -> None: super().__init__(io.BytesIO(), encoding="UTF-8", newline="", write_through=True) def getvalue(self) -> str: assert isinstance(self.buffer, io.BytesIO) return self.buffer.getvalue().decode("UTF-8")
CaptureIO
python
facelessuser__pymdown-extensions
pymdownx/fancylists.py
{ "start": 17084, "end": 17401 }
class ____(Treeprocessor): """Clean up fancy list metadata.""" def run(self, root): """Remove intermediate fancy list type metadata.""" for ol in root.iter('ol'): if '__fancylist' in ol.attrib: del ol.attrib['__fancylist'] return root
FancyListTreeprocessor
python
pallets__flask
src/flask/cli.py
{ "start": 793, "end": 8628 }
class ____(click.UsageError): """Raised if an application cannot be found or loaded.""" def find_best_app(module: ModuleType) -> Flask: """Given a module instance this tries to find the best possible application in the module or raises an exception. """ from . import Flask # Search for the most common names first. for attr_name in ("app", "application"): app = getattr(module, attr_name, None) if isinstance(app, Flask): return app # Otherwise find the only object that is a Flask instance. matches = [v for v in module.__dict__.values() if isinstance(v, Flask)] if len(matches) == 1: return matches[0] elif len(matches) > 1: raise NoAppException( "Detected multiple Flask applications in module" f" '{module.__name__}'. Use '{module.__name__}:name'" " to specify the correct one." ) # Search for app factory functions. for attr_name in ("create_app", "make_app"): app_factory = getattr(module, attr_name, None) if inspect.isfunction(app_factory): try: app = app_factory() if isinstance(app, Flask): return app except TypeError as e: if not _called_with_wrong_args(app_factory): raise raise NoAppException( f"Detected factory '{attr_name}' in module '{module.__name__}'," " but could not call it without arguments. Use" f" '{module.__name__}:{attr_name}(args)'" " to specify arguments." ) from e raise NoAppException( "Failed to find Flask application or factory in module" f" '{module.__name__}'. Use '{module.__name__}:name'" " to specify one." ) def _called_with_wrong_args(f: t.Callable[..., Flask]) -> bool: """Check whether calling a function raised a ``TypeError`` because the call failed or because something in the factory raised the error. :param f: The function that was called. :return: ``True`` if the call failed. """ tb = sys.exc_info()[2] try: while tb is not None: if tb.tb_frame.f_code is f.__code__: # In the function, it was called successfully. return False tb = tb.tb_next # Didn't reach the function. return True finally: # Delete tb to break a circular reference. # https://docs.python.org/2/library/sys.html#sys.exc_info del tb def find_app_by_string(module: ModuleType, app_name: str) -> Flask: """Check if the given string is a variable name or a function. Call a function to get the app instance, or return the variable directly. """ from . import Flask # Parse app_name as a single expression to determine if it's a valid # attribute name or function call. try: expr = ast.parse(app_name.strip(), mode="eval").body except SyntaxError: raise NoAppException( f"Failed to parse {app_name!r} as an attribute name or function call." ) from None if isinstance(expr, ast.Name): name = expr.id args = [] kwargs = {} elif isinstance(expr, ast.Call): # Ensure the function name is an attribute name only. if not isinstance(expr.func, ast.Name): raise NoAppException( f"Function reference must be a simple name: {app_name!r}." ) name = expr.func.id # Parse the positional and keyword arguments as literals. try: args = [ast.literal_eval(arg) for arg in expr.args] kwargs = { kw.arg: ast.literal_eval(kw.value) for kw in expr.keywords if kw.arg is not None } except ValueError: # literal_eval gives cryptic error messages, show a generic # message with the full expression instead. raise NoAppException( f"Failed to parse arguments as literal values: {app_name!r}." ) from None else: raise NoAppException( f"Failed to parse {app_name!r} as an attribute name or function call." ) try: attr = getattr(module, name) except AttributeError as e: raise NoAppException( f"Failed to find attribute {name!r} in {module.__name__!r}." ) from e # If the attribute is a function, call it with any args and kwargs # to get the real application. if inspect.isfunction(attr): try: app = attr(*args, **kwargs) except TypeError as e: if not _called_with_wrong_args(attr): raise raise NoAppException( f"The factory {app_name!r} in module" f" {module.__name__!r} could not be called with the" " specified arguments." ) from e else: app = attr if isinstance(app, Flask): return app raise NoAppException( "A valid Flask application was not obtained from" f" '{module.__name__}:{app_name}'." ) def prepare_import(path: str) -> str: """Given a filename this will try to calculate the python path, add it to the search path and return the actual module name that is expected. """ path = os.path.realpath(path) fname, ext = os.path.splitext(path) if ext == ".py": path = fname if os.path.basename(path) == "__init__": path = os.path.dirname(path) module_name = [] # move up until outside package structure (no __init__.py) while True: path, name = os.path.split(path) module_name.append(name) if not os.path.exists(os.path.join(path, "__init__.py")): break if sys.path[0] != path: sys.path.insert(0, path) return ".".join(module_name[::-1]) @t.overload def locate_app( module_name: str, app_name: str | None, raise_if_not_found: t.Literal[True] = True ) -> Flask: ... @t.overload def locate_app( module_name: str, app_name: str | None, raise_if_not_found: t.Literal[False] = ... ) -> Flask | None: ... def locate_app( module_name: str, app_name: str | None, raise_if_not_found: bool = True ) -> Flask | None: try: __import__(module_name) except ImportError: # Reraise the ImportError if it occurred within the imported module. # Determine this by checking whether the trace has a depth > 1. if sys.exc_info()[2].tb_next: # type: ignore[union-attr] raise NoAppException( f"While importing {module_name!r}, an ImportError was" f" raised:\n\n{traceback.format_exc()}" ) from None elif raise_if_not_found: raise NoAppException(f"Could not import {module_name!r}.") from None else: return None module = sys.modules[module_name] if app_name is None: return find_best_app(module) else: return find_app_by_string(module, app_name) def get_version(ctx: click.Context, param: click.Parameter, value: t.Any) -> None: if not value or ctx.resilient_parsing: return flask_version = importlib.metadata.version("flask") werkzeug_version = importlib.metadata.version("werkzeug") click.echo( f"Python {platform.python_version()}\n" f"Flask {flask_version}\n" f"Werkzeug {werkzeug_version}", color=ctx.color, ) ctx.exit() version_option = click.Option( ["--version"], help="Show the Flask version.", expose_value=False, callback=get_version, is_flag=True, is_eager=True, )
NoAppException
python
pypa__pip
src/pip/_vendor/urllib3/contrib/ntlmpool.py
{ "start": 731, "end": 4528 }
class ____(HTTPSConnectionPool): """ Implements an NTLM authentication version of an urllib3 connection pool """ scheme = "https" def __init__(self, user, pw, authurl, *args, **kwargs): """ authurl is a random URL on the server that is protected by NTLM. user is the Windows user, probably in the DOMAIN\\username format. pw is the password for the user. """ super(NTLMConnectionPool, self).__init__(*args, **kwargs) self.authurl = authurl self.rawuser = user user_parts = user.split("\\", 1) self.domain = user_parts[0].upper() self.user = user_parts[1] self.pw = pw def _new_conn(self): # Performs the NTLM handshake that secures the connection. The socket # must be kept open while requests are performed. self.num_connections += 1 log.debug( "Starting NTLM HTTPS connection no. %d: https://%s%s", self.num_connections, self.host, self.authurl, ) headers = {"Connection": "Keep-Alive"} req_header = "Authorization" resp_header = "www-authenticate" conn = HTTPSConnection(host=self.host, port=self.port) # Send negotiation message headers[req_header] = "NTLM %s" % ntlm.create_NTLM_NEGOTIATE_MESSAGE( self.rawuser ) log.debug("Request headers: %s", headers) conn.request("GET", self.authurl, None, headers) res = conn.getresponse() reshdr = dict(res.headers) log.debug("Response status: %s %s", res.status, res.reason) log.debug("Response headers: %s", reshdr) log.debug("Response data: %s [...]", res.read(100)) # Remove the reference to the socket, so that it can not be closed by # the response object (we want to keep the socket open) res.fp = None # Server should respond with a challenge message auth_header_values = reshdr[resp_header].split(", ") auth_header_value = None for s in auth_header_values: if s[:5] == "NTLM ": auth_header_value = s[5:] if auth_header_value is None: raise Exception( "Unexpected %s response header: %s" % (resp_header, reshdr[resp_header]) ) # Send authentication message ServerChallenge, NegotiateFlags = ntlm.parse_NTLM_CHALLENGE_MESSAGE( auth_header_value ) auth_msg = ntlm.create_NTLM_AUTHENTICATE_MESSAGE( ServerChallenge, self.user, self.domain, self.pw, NegotiateFlags ) headers[req_header] = "NTLM %s" % auth_msg log.debug("Request headers: %s", headers) conn.request("GET", self.authurl, None, headers) res = conn.getresponse() log.debug("Response status: %s %s", res.status, res.reason) log.debug("Response headers: %s", dict(res.headers)) log.debug("Response data: %s [...]", res.read()[:100]) if res.status != 200: if res.status == 401: raise Exception("Server rejected request: wrong username or password") raise Exception("Wrong server response: %s %s" % (res.status, res.reason)) res.fp = None log.debug("Connection established") return conn def urlopen( self, method, url, body=None, headers=None, retries=3, redirect=True, assert_same_host=True, ): if headers is None: headers = {} headers["Connection"] = "Keep-Alive" return super(NTLMConnectionPool, self).urlopen( method, url, body, headers, retries, redirect, assert_same_host )
NTLMConnectionPool
python
scipy__scipy
benchmarks/benchmarks/go_benchmark_functions/go_funcs_R.py
{ "start": 7584, "end": 8729 }
class ____(Benchmark): r""" Rosenbrock objective function. This class defines the Rosenbrock [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Rosenbrock}}(x) = \sum_{i=1}^{n-1} [100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2] Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-5, 10]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 1` for :math:`i = 1, ..., n` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ change_dimensionality = True def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-30.] * self.N, [30.0] * self.N)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [[1 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return rosen(x)
Rosenbrock
python
huggingface__transformers
tests/utils/import_structures/import_structure_register_with_duplicates.py
{ "start": 713, "end": 882 }
class ____: def __init__(self): pass @requires(backends=("torch", "torch")) def c0(): pass @requires(backends=("torch", "torch")) # That's a statement
C0
python
bokeh__bokeh
src/bokeh/core/property/visual.py
{ "start": 4264, "end": 4757 }
class ____(Either): """ Accept built-in fill hatching specifications. Accepts either "long" names, e.g. "horizontal-wave" or the single letter abbreviations, e.g. "v" """ def __init__(self, default=[], *, help: str | None = None) -> None: types = Enum(enums.HatchPattern), Enum(enums.HatchPatternAbbreviation), String super().__init__(*types, default=default, help=help) def __str__(self) -> str: return self.__class__.__name__
HatchPatternType
python
cherrypy__cherrypy
cherrypy/test/test_conn.py
{ "start": 2885, "end": 9270 }
class ____(helper.CPWebCase): setup_server = staticmethod(setup_server) def test_HTTP11(self): if cherrypy.server.protocol_version != 'HTTP/1.1': return self.skip() self.PROTOCOL = 'HTTP/1.1' self.persistent = True # Make the first request and assert there's no "Connection: close". self.getPage('/') self.assertStatus('200 OK') self.assertBody(pov) self.assertNoHeader('Connection') # Make another request on the same connection. self.getPage('/page1') self.assertStatus('200 OK') self.assertBody(pov) self.assertNoHeader('Connection') # Test client-side close. self.getPage('/page2', headers=[('Connection', 'close')]) self.assertStatus('200 OK') self.assertBody(pov) self.assertHeader('Connection', 'close') # Make another request on the same connection, which should error. self.assertRaises(NotConnected, self.getPage, '/') def test_Streaming_no_len(self): try: self._streaming(set_cl=False) finally: try: self.HTTP_CONN.close() except (TypeError, AttributeError): pass def test_Streaming_with_len(self): try: self._streaming(set_cl=True) finally: try: self.HTTP_CONN.close() except (TypeError, AttributeError): pass def _streaming(self, set_cl): if cherrypy.server.protocol_version == 'HTTP/1.1': self.PROTOCOL = 'HTTP/1.1' self.persistent = True # Make the first request and assert there's no "Connection: close". self.getPage('/') self.assertStatus('200 OK') self.assertBody(pov) self.assertNoHeader('Connection') # Make another, streamed request on the same connection. if set_cl: # When a Content-Length is provided, the content should stream # without closing the connection. self.getPage('/stream?set_cl=Yes') self.assertHeader('Content-Length') self.assertNoHeader('Connection', 'close') self.assertNoHeader('Transfer-Encoding') self.assertStatus('200 OK') self.assertBody('0123456789') else: # When no Content-Length response header is provided, # streamed output will either close the connection, or use # chunked encoding, to determine transfer-length. self.getPage('/stream') self.assertNoHeader('Content-Length') self.assertStatus('200 OK') self.assertBody('0123456789') chunked_response = False for k, v in self.headers: if k.lower() == 'transfer-encoding': if str(v) == 'chunked': chunked_response = True if chunked_response: self.assertNoHeader('Connection', 'close') else: self.assertHeader('Connection', 'close') # Make another request on the same connection, which should # error. self.assertRaises(NotConnected, self.getPage, '/') # Try HEAD. See # https://github.com/cherrypy/cherrypy/issues/864. self.getPage('/stream', method='HEAD') self.assertStatus('200 OK') self.assertBody('') self.assertNoHeader('Transfer-Encoding') else: self.PROTOCOL = 'HTTP/1.0' self.persistent = True # Make the first request and assert Keep-Alive. self.getPage('/', headers=[('Connection', 'Keep-Alive')]) self.assertStatus('200 OK') self.assertBody(pov) self.assertHeader('Connection', 'Keep-Alive') # Make another, streamed request on the same connection. if set_cl: # When a Content-Length is provided, the content should # stream without closing the connection. self.getPage( '/stream?set_cl=Yes', headers=[('Connection', 'Keep-Alive')], ) self.assertHeader('Content-Length') self.assertHeader('Connection', 'Keep-Alive') self.assertNoHeader('Transfer-Encoding') self.assertStatus('200 OK') self.assertBody('0123456789') else: # When a Content-Length is not provided, # the server should close the connection. self.getPage('/stream', headers=[('Connection', 'Keep-Alive')]) self.assertStatus('200 OK') self.assertBody('0123456789') self.assertNoHeader('Content-Length') self.assertNoHeader('Connection', 'Keep-Alive') self.assertNoHeader('Transfer-Encoding') # Make another request on the same connection, which should # error. self.assertRaises(NotConnected, self.getPage, '/') def test_HTTP10_KeepAlive(self): self.PROTOCOL = 'HTTP/1.0' if self.scheme == 'https': self.HTTP_CONN = HTTPSConnection else: self.HTTP_CONN = HTTPConnection # Test a normal HTTP/1.0 request. self.getPage('/page2') self.assertStatus('200 OK') self.assertBody(pov) # Apache, for example, may emit a Connection header even for HTTP/1.0 # self.assertNoHeader("Connection") # Test a keep-alive HTTP/1.0 request. self.persistent = True self.getPage('/page3', headers=[('Connection', 'Keep-Alive')]) self.assertStatus('200 OK') self.assertBody(pov) self.assertHeader('Connection', 'Keep-Alive') # Remove the keep-alive header again. self.getPage('/page3') self.assertStatus('200 OK') self.assertBody(pov) # Apache, for example, may emit a Connection header even for HTTP/1.0 # self.assertNoHeader("Connection")
ConnectionCloseTests
python
pydata__xarray
xarray/tests/test_datatree.py
{ "start": 61422, "end": 63642 }
class ____: def test_drop_nodes(self) -> None: sue = DataTree.from_dict({"Mary": None, "Kate": None, "Ashley": None}) # test drop just one node dropped_one = sue.drop_nodes(names="Mary") assert "Mary" not in dropped_one.children # test drop multiple nodes dropped = sue.drop_nodes(names=["Mary", "Kate"]) assert not {"Mary", "Kate"}.intersection(set(dropped.children)) assert "Ashley" in dropped.children # test raise with pytest.raises(KeyError, match=r"nodes {'Mary'} not present"): dropped.drop_nodes(names=["Mary", "Ashley"]) # test ignore childless = dropped.drop_nodes(names=["Mary", "Ashley"], errors="ignore") assert childless.children == {} def test_assign(self) -> None: dt = DataTree() expected = DataTree.from_dict({"/": xr.Dataset({"foo": 0}), "/a": None}) # kwargs form result = dt.assign(foo=xr.DataArray(0), a=DataTree()) assert_equal(result, expected) # dict form result = dt.assign({"foo": xr.DataArray(0), "a": DataTree()}) assert_equal(result, expected) def test_filter_like(self) -> None: flower_tree = DataTree.from_dict( {"root": None, "trunk": None, "leaves": None, "flowers": None} ) fruit_tree = DataTree.from_dict( {"root": None, "trunk": None, "leaves": None, "fruit": None} ) barren_tree = DataTree.from_dict({"root": None, "trunk": None}) # test filter_like tree filtered_tree = flower_tree.filter_like(barren_tree) assert filtered_tree.equals(barren_tree) assert "flowers" not in filtered_tree.children # test symmetrical pruning results in isomorphic trees assert flower_tree.filter_like(fruit_tree).isomorphic( fruit_tree.filter_like(flower_tree) ) # test "deep" pruning dt = DataTree.from_dict( {"/a/A": None, "/a/B": None, "/b/A": None, "/b/B": None} ) other = DataTree.from_dict({"/a/A": None, "/b/A": None}) filtered = dt.filter_like(other) assert filtered.equals(other)
TestRestructuring
python
readthedocs__readthedocs.org
readthedocs/api/v3/permissions.py
{ "start": 1014, "end": 1269 }
class ____(BasePermission): """Grant permission if user is the same as the one being accessed.""" def has_permission(self, request, view): user = view._get_parent_user() if user == request.user: return True
IsCurrentUser
python
apache__airflow
airflow-core/src/airflow/utils/context.py
{ "start": 3021, "end": 3644 }
class ____(ConnectionAccessorSDK): """Wrapper to access Connection entries in template.""" def __getattr__(self, conn_id: str) -> Any: from airflow.models.connection import Connection return Connection.get_connection_from_secrets(conn_id) def get(self, conn_id: str, default_conn: Any = None) -> Any: from airflow.exceptions import AirflowNotFoundException from airflow.models.connection import Connection try: return Connection.get_connection_from_secrets(conn_id) except AirflowNotFoundException: return default_conn
ConnectionAccessor
python
pytorch__pytorch
torch/ao/nn/quantized/modules/rnn.py
{ "start": 67, "end": 1898 }
class ____(torch.ao.nn.quantizable.LSTM): r"""A quantized long short-term memory (LSTM). For the description and the argument types, please, refer to :class:`~torch.nn.LSTM` Attributes: layers : instances of the `_LSTMLayer` .. note:: To access the weights and biases, you need to access them per layer. See examples in :class:`~torch.ao.nn.quantizable.LSTM` Examples:: >>> # xdoctest: +SKIP >>> custom_module_config = { ... 'float_to_observed_custom_module_class': { ... nn.LSTM: nn.quantizable.LSTM, ... }, ... 'observed_to_quantized_custom_module_class': { ... nn.quantizable.LSTM: nn.quantized.LSTM, ... } ... } >>> tq.prepare(model, prepare_custom_module_class=custom_module_config) >>> tq.convert(model, convert_custom_module_class=custom_module_config) """ _FLOAT_MODULE = torch.ao.nn.quantizable.LSTM # type: ignore[assignment] def _get_name(self) -> str: return "QuantizedLSTM" @classmethod def from_float(cls, *args: Any, **kwargs: Any) -> None: # The whole flow is float -> observed -> quantized # This class does observed -> quantized only raise NotImplementedError( "It looks like you are trying to convert a " "non-observed LSTM module. Please, see " "the examples on quantizable LSTMs." ) @classmethod def from_observed(cls: type["LSTM"], other: torch.ao.nn.quantizable.LSTM) -> "LSTM": assert isinstance(other, cls._FLOAT_MODULE) # type: ignore[has-type] converted = torch.ao.quantization.convert( other, inplace=False, remove_qconfig=True ) converted.__class__ = cls return converted
LSTM
python
openai__openai-python
src/openai/types/responses/tool_choice_types_param.py
{ "start": 220, "end": 838 }
class ____(TypedDict, total=False): type: Required[ Literal[ "file_search", "web_search_preview", "computer_use_preview", "web_search_preview_2025_03_11", "image_generation", "code_interpreter", ] ] """The type of hosted tool the model should to use. Learn more about [built-in tools](https://platform.openai.com/docs/guides/tools). Allowed values are: - `file_search` - `web_search_preview` - `computer_use_preview` - `code_interpreter` - `image_generation` """
ToolChoiceTypesParam
python
python-pillow__Pillow
src/PIL/ImageFilter.py
{ "start": 8782, "end": 8969 }
class ____(BuiltinFilter): name = "Find Edges" # fmt: off filterargs = (3, 3), 1, 0, ( -1, -1, -1, -1, 8, -1, -1, -1, -1, ) # fmt: on
FIND_EDGES
python
scikit-learn__scikit-learn
sklearn/linear_model/tests/test_sgd.py
{ "start": 1631, "end": 2173 }
class ____(linear_model.SGDRegressor): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return linear_model.SGDRegressor.fit(self, X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return linear_model.SGDRegressor.partial_fit(self, X, y, *args, **kw) def decision_function(self, X, *args, **kw): # XXX untested as of v0.22 X = sp.csr_matrix(X) return linear_model.SGDRegressor.decision_function(self, X, *args, **kw)
_SparseSGDRegressor
python
django__django
django/db/models/fields/json.py
{ "start": 10733, "end": 10933 }
class ____(HasKeyLookup): lookup_name = "has_keys" postgres_operator = "?&" logical_operator = " AND " def get_prep_lookup(self): return [str(item) for item in self.rhs]
HasKeys
python
pytorch__pytorch
test/dynamo/test_tree_map.py
{ "start": 2917, "end": 11601 }
class ____(TestCase): def setUp(self): super().setUp() torch._dynamo.reset() def _run_tree_map(self, tree_map_impl, kwargs): lhs = _build_tree(0) rhs = _build_tree(7) def fn(a, b): return tree_map_impl(_combine_leaves, a, b, **kwargs) compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(lhs, rhs) result = compiled(lhs, rhs) _assert_trees_allclose(self, expected, result) @parametrize("tree_map_name,tree_map_impl", TREE_MAP_IMPLEMENTATIONS) @parametrize("kwargs_name,kwargs,allowed_impls", KWARG_CASES) def test_tree_map_variants( self, tree_map_name: str, tree_map_impl, kwargs_name: str, kwargs: dict, allowed_impls, ) -> None: if tree_map_name == "pytree_cxx" and cxx_pytree is None: self.skipTest("torch.utils._cxx_pytree is unavailable") if allowed_impls is not None and tree_map_name not in allowed_impls: self.skipTest("kwargs unsupported for implementation") self._run_tree_map(tree_map_impl, kwargs) def test_tree_map_rejects_mismatched_container_types(self) -> None: def fn(a, b): return pytree.tree_map(lambda u, v: u + v, a, b) lhs = [torch.ones(2), torch.ones(2)] rhs = (torch.ones(2), torch.ones(2)) with self.assertRaises(ValueError): fn(lhs, rhs) compiled = torch.compile(fn, backend="eager", fullgraph=True) with self.assertRaisesRegex( (ValueError, torch._dynamo.exc.Unsupported), "Node type mismatch", ): compiled(lhs, rhs) def test_tree_map_is_leaf_handles_tensor_nodes(self) -> None: def fn(tree): return pytree.tree_map( lambda pair: torch.stack(pair).sum(dim=0), tree, is_leaf=lambda node: isinstance(node, tuple), ) tree = [(torch.ones(2), torch.ones(2) * 4)] compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree) result = compiled(tree) _assert_trees_allclose(self, expected, result) def test_tree_map_only_applies_to_tensor_nodes(self) -> None: tree = {"tensor": torch.ones(2), "int": 3} def mapper(node): if not isinstance(node, torch.Tensor): raise AssertionError("mapper should only see tensors") return node + 2 def fn(arg): return pytree.tree_map_only(torch.Tensor, mapper, arg) compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree) result = compiled(tree) _assert_trees_allclose(self, expected, result) def test_tree_map_only_multiple_trees_falls_back(self) -> None: lhs = {"a": torch.ones(2), "b": torch.ones(2) * 2} rhs = {"a": torch.ones(2) * 3, "b": torch.ones(2) * 4} def fn(a, b): return pytree.tree_map_only(torch.Tensor, lambda x, y: x + y, a, b) with self.assertRaisesRegex(TypeError, "callable"): fn(lhs, rhs) compiled = torch.compile(fn, backend="eager", fullgraph=True) with self.assertRaisesRegex( (TypeError, torch._dynamo.exc.Unsupported), r"(callable|Unsupported function call)", ): compiled(lhs, rhs) def test_tree_map_only_handles_multiple_types(self) -> None: tree = {"int": 7, "tuple": (1, 2), "tensor": torch.ones(2)} def mapper(node): if isinstance(node, int): return node + 1 if isinstance(node, tuple): return tuple(val + 10 for val in node) raise AssertionError("unexpected node passed to mapper") def fn(arg): return pytree.tree_map_only((int, tuple), mapper, arg) compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree) result = compiled(tree) _assert_trees_allclose(self, expected, result) def test_tree_map_is_leaf_non_constant_fallback(self) -> None: tree = {"a": torch.arange(2.0), "b": torch.arange(2.0) + 1} def is_leaf(node): if isinstance(node, torch.Tensor): # Depends on runtime tensor value; cannot be folded to a constant. return (node.sum() > 1).item() return False def mapper(node): return node * 2 if isinstance(node, torch.Tensor) else node def fn(arg): return pytree.tree_map(mapper, arg, is_leaf=is_leaf) compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree) result = compiled(tree) _assert_trees_allclose(self, expected, result) def test_tree_map_only_predicate_selector_skips_fastpath(self) -> None: tree = {"keep": torch.ones(2), "other": (1, 2)} def selector(node): return isinstance(node, torch.Tensor) and node.shape == (2,) def mapper(node): return node + 5 if isinstance(node, torch.Tensor) else node def fn(arg): return pytree.tree_map_only(selector, mapper, arg) compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree) result = compiled(tree) _assert_trees_allclose(self, expected, result) def test_tree_map_none_nodes_reject_mismatched_siblings(self) -> None: _require_optree(self) def fn(a, b): return optree.tree_map(lambda u, v: (u, v), a, b) lhs = {"k": None} rhs = {"k": torch.ones(2)} with self.assertRaisesRegex(ValueError, "Expected None"): fn(lhs, rhs) compiled = torch.compile(fn, backend="eager", fullgraph=True) with self.assertRaisesRegex( (ValueError, torch._dynamo.exc.Unsupported), r"(Expected None|expected <class 'NoneType'>)", ): compiled(lhs, rhs) @parametrize("tree_map_name,tree_map_impl", TREE_MAP_IMPLEMENTATIONS) def test_tree_map_none_nodes_default_behavior( self, tree_map_name: str, tree_map_impl ) -> None: if tree_map_name == "optree": self.skipTest("optree treats None as an internal node by default") def fn(a, b): return tree_map_impl(lambda u, v: (u, v), a, b) tree = {"k": None} compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree, tree) result = compiled(tree, tree) self.assertEqual(result["k"], (None, None)) self.assertEqual(result, expected) def test_constantvariable_handles_none_is_leaf_kwarg(self) -> None: _require_optree(self) tree = {"none": None} def run_case(none_is_leaf_flag): def fn(arg): def mapper(node): if node is None: return "visited" return node kwargs = {} if none_is_leaf_flag is not _NONE_IS_LEAF_UNSET: kwargs["none_is_leaf"] = none_is_leaf_flag return optree.tree_map(mapper, arg, **kwargs) compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree) result = compiled(tree) self.assertEqual(result, expected) return result["none"] self.assertEqual(run_case(_NONE_IS_LEAF_UNSET), None) self.assertEqual(run_case(False), None) self.assertEqual(run_case(True), "visited") def test_constantvariable_handles_python_and_dtype_leaves(self) -> None: _require_optree(self) tree = { "int": 7, "nested": {"string": "foo", "dtype": torch.float32}, } def fn(arg): def mapper(node): if isinstance(node, int): return node + 1 if isinstance(node, str): return node.upper() if isinstance(node, torch.dtype): return torch.float64 return node return optree.tree_map(mapper, arg) compiled = torch.compile(fn, backend="eager", fullgraph=True) expected = fn(tree) result = compiled(tree) self.assertEqual(result["int"], 8) self.assertEqual(result["nested"]["string"], "FOO") self.assertIs(result["nested"]["dtype"], torch.float64) self.assertEqual(result, expected) if __name__ == "__main__": # pragma: no cover run_tests()
TreeMapCompileTests
python
numba__numba
numba/cuda/stubs.py
{ "start": 6030, "end": 6342 }
class ____(Stub): ''' lanemask_lt() Returns a 32-bit integer mask of all lanes (including inactive ones) with ID less than the current lane. ''' _description_ = '<lanemask_lt()>' # ------------------------------------------------------------------------------- # memory fences
lanemask_lt
python
ijl__orjson
test/test_transform.py
{ "start": 248, "end": 3750 }
class ____: def _pass_transform(self, filename, reference=None): data = _read_file(filename) assert orjson.dumps(orjson.loads(data)) == (reference or data) def _fail_transform(self, filename): data = _read_file(filename) with pytest.raises(orjson.JSONDecodeError): orjson.loads(data) def test_number_1(self): """ number_1.0.json """ self._pass_transform("number_1.0.json") def test_number_1e6(self): """ number_1e6.json """ self._pass_transform("number_1e6.json", b"[1000000.0]") def test_number_1e_999(self): """ number_1e-999.json """ self._pass_transform("number_1e-999.json", b"[0.0]") def test_number_10000000000000000999(self): """ number_10000000000000000999.json """ # cannot serialize due to range assert orjson.loads(_read_file("number_10000000000000000999.json")) == [ 10000000000000000999, ] def test_number_1000000000000000(self): """ number_1000000000000000.json """ self._pass_transform("number_1000000000000000.json") def test_object_key_nfc_nfd(self): """ object_key_nfc_nfd.json """ self._pass_transform("object_key_nfc_nfd.json") def test_object_key_nfd_nfc(self): """ object_key_nfd_nfc.json """ self._pass_transform("object_key_nfd_nfc.json") def test_object_same_key_different_values(self): """ object_same_key_different_values.json """ self._pass_transform("object_same_key_different_values.json", b'{"a":2}') def test_object_same_key_same_value(self): """ object_same_key_same_value.json """ self._pass_transform("object_same_key_same_value.json", b'{"a":1}') def test_object_same_key_unclear_values(self): """ object_same_key_unclear_values.json """ data = _read_file("object_same_key_unclear_values.json") # varies by backend assert data in (b'{"a":-0.0}', b'{"a":0, "a":-0}') def test_string_1_escaped_invalid_codepoint(self): """ string_1_escaped_invalid_codepoint.json """ self._fail_transform("string_1_escaped_invalid_codepoint.json") def test_string_1_invalid_codepoint(self): """ string_1_invalid_codepoint.json """ self._fail_transform("string_1_invalid_codepoint.json") def test_string_2_escaped_invalid_codepoints(self): """ string_2_escaped_invalid_codepoints.json """ self._fail_transform("string_2_escaped_invalid_codepoints.json") def test_string_2_invalid_codepoints(self): """ string_2_invalid_codepoints.json """ self._fail_transform("string_2_invalid_codepoints.json") def test_string_3_escaped_invalid_codepoints(self): """ string_3_escaped_invalid_codepoints.json """ self._fail_transform("string_3_escaped_invalid_codepoints.json") def test_string_3_invalid_codepoints(self): """ string_3_invalid_codepoints.json """ self._fail_transform("string_3_invalid_codepoints.json") def test_string_with_escaped_NULL(self): """ string_with_escaped_NULL.json """ self._pass_transform("string_with_escaped_NULL.json")
TestJSONTestSuiteTransform
python
django__django
tests/model_forms/models.py
{ "start": 9495, "end": 9619 }
class ____(models.Model): biggie = models.BigIntegerField() def __str__(self): return str(self.biggie)
BigInt
python
pydantic__pydantic
pydantic-core/tests/serializers/test_any.py
{ "start": 29143, "end": 29256 }
class ____(ipaddress.IPv4Network): def __str__(self): return super().__str__() + '_subclassed'
SubNetV4
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/vertex_ai/test_feature_store.py
{ "start": 12123, "end": 13770 }
class ____: @mock.patch(VERTEX_AI_PATH.format("feature_store.FeatureStoreHook")) def test_execute(self, mock_hook_class): # Create the mock hook and set up its return value mock_hook = mock.MagicMock() mock_hook_class.return_value = mock_hook # Set up the return value for get_feature_online_store to match the hook implementation SAMPLE_RESPONSE = { "etag": "", "labels": {}, "name": FEATURE_ONLINE_STORE_ID, "satisfies_pzi": False, "satisfies_pzs": False, "state": 0, } mock_hook.get_feature_online_store.return_value = FeatureOnlineStore(SAMPLE_RESPONSE) common_kwargs = { "project_id": GCP_PROJECT, "location": GCP_LOCATION, "feature_online_store_id": FEATURE_ONLINE_STORE_ID, "metadata": (), "timeout": 100, "retry": None, } op = GetFeatureOnlineStoreOperator( task_id=TASK_ID, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, **common_kwargs, ) response = op.execute(context={"ti": mock.MagicMock()}) # Verify hook initialization mock_hook_class.assert_called_once_with( gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) # Verify hook method call mock_hook.get_feature_online_store.assert_called_once_with(**common_kwargs) # Verify response matches expected value assert response == SAMPLE_RESPONSE
TestGetFeatureOnlineStoreOperator
python
scikit-learn__scikit-learn
sklearn/gaussian_process/kernels.py
{ "start": 17778, "end": 23303 }
class ____(Kernel): """Kernel which is composed of a set of other kernels. .. versionadded:: 0.18 Parameters ---------- kernels : list of Kernels The other kernels Examples -------- >>> from sklearn.gaussian_process.kernels import WhiteKernel >>> from sklearn.gaussian_process.kernels import RBF >>> from sklearn.gaussian_process.kernels import CompoundKernel >>> kernel = CompoundKernel( ... [WhiteKernel(noise_level=3.0), RBF(length_scale=2.0)]) >>> print(kernel.bounds) [[-11.51292546 11.51292546] [-11.51292546 11.51292546]] >>> print(kernel.n_dims) 2 >>> print(kernel.theta) [1.09861229 0.69314718] """ def __init__(self, kernels): self.kernels = kernels def get_params(self, deep=True): """Get parameters of this kernel. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values. """ return dict(kernels=self.kernels) @property def theta(self): """Returns the (flattened, log-transformed) non-fixed hyperparameters. Note that theta are typically the log-transformed values of the kernel's hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale. Returns ------- theta : ndarray of shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ return np.hstack([kernel.theta for kernel in self.kernels]) @theta.setter def theta(self, theta): """Sets the (flattened, log-transformed) non-fixed hyperparameters. Parameters ---------- theta : array of shape (n_dims,) The non-fixed, log-transformed hyperparameters of the kernel """ k_dims = self.k1.n_dims for i, kernel in enumerate(self.kernels): kernel.theta = theta[i * k_dims : (i + 1) * k_dims] @property def bounds(self): """Returns the log-transformed bounds on the theta. Returns ------- bounds : array of shape (n_dims, 2) The log-transformed bounds on the kernel's hyperparameters theta """ return np.vstack([kernel.bounds for kernel in self.kernels]) def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Note that this compound kernel returns the results of all simple kernel stacked along an additional axis. Parameters ---------- X : array-like of shape (n_samples_X, n_features) or list of object, \ default=None Left argument of the returned kernel k(X, Y) Y : array-like of shape (n_samples_X, n_features) or list of object, \ default=None Right argument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead. eval_gradient : bool, default=False Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Returns ------- K : ndarray of shape (n_samples_X, n_samples_Y, n_kernels) Kernel k(X, Y) K_gradient : ndarray of shape \ (n_samples_X, n_samples_X, n_dims, n_kernels), optional The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when `eval_gradient` is True. """ if eval_gradient: K = [] K_grad = [] for kernel in self.kernels: K_single, K_grad_single = kernel(X, Y, eval_gradient) K.append(K_single) K_grad.append(K_grad_single[..., np.newaxis]) return np.dstack(K), np.concatenate(K_grad, 3) else: return np.dstack([kernel(X, Y, eval_gradient) for kernel in self.kernels]) def __eq__(self, b): if type(self) != type(b) or len(self.kernels) != len(b.kernels): return False return np.all( [self.kernels[i] == b.kernels[i] for i in range(len(self.kernels))] ) def is_stationary(self): """Returns whether the kernel is stationary.""" return np.all([kernel.is_stationary() for kernel in self.kernels]) @property def requires_vector_input(self): """Returns whether the kernel is defined on discrete structures.""" return np.any([kernel.requires_vector_input for kernel in self.kernels]) def diag(self, X): """Returns the diagonal of the kernel k(X, X). The result of this method is identical to `np.diag(self(X))`; however, it can be evaluated more efficiently since only the diagonal is evaluated. Parameters ---------- X : array-like of shape (n_samples_X, n_features) or list of object Argument to the kernel. Returns ------- K_diag : ndarray of shape (n_samples_X, n_kernels) Diagonal of kernel k(X, X) """ return np.vstack([kernel.diag(X) for kernel in self.kernels]).T
CompoundKernel
python
pytorch__pytorch
test/higher_order_ops/test_invoke_subgraph.py
{ "start": 57246, "end": 58315 }
class ____(torch.nn.Module): def forward(self, primals_1: "f32[8, 8]"): partitioned_fw_subgraph_0_0 = self.partitioned_fw_subgraph_0_0 invoke_subgraph_2 = torch.ops.higher_order.invoke_subgraph(partitioned_fw_subgraph_0_0, 'partitioned_fw_subgraph_0_0', primals_1); partitioned_fw_subgraph_0_0 = primals_1 = None getitem: "f32[8, 8]" = invoke_subgraph_2[0] getitem_1: "f32[8, 8]" = invoke_subgraph_2[1]; invoke_subgraph_2 = None add: "f32[8, 8]" = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None return (add,) class partitioned_fw_subgraph_0_0(torch.nn.Module): def forward(self, primals_0: "f32[8, 8]"): mul: "f32[8, 8]" = torch.ops.aten.mul.Tensor(primals_0, 2) mul_1: "f32[8, 8]" = torch.ops.aten.mul.Tensor(primals_0, 3); primals_0 = None return (mul, mul_1) """, ) self.assertExpectedInline( normalize_gm(backend.bw_graphs[0].print_readable(print_output=False)), """\
GraphModule
python
patrick-kidger__equinox
equinox/_errors.py
{ "start": 2577, "end": 14002 }
class ____(RuntimeError): pass @filter_custom_jvp def _error(x, pred, index, *, msgs, on_error, stack): if on_error == "raise": def raises(_index): # Sneakily smuggle out the information about the error. Inspired by # `sys.last_value`. msg = msgs[_index.item()] _jit.last_error_info = (msg, stack) raise _EquinoxRuntimeError( f"{msg}\n\n\n" "--------------------\n" "An error occurred during the runtime of your JAX program! " "Unfortunately you do not appear to be using `equinox.filter_jit` " "(perhaps you are using `jax.jit` instead?) and so further information " "about the error cannot be displayed. (Probably you are seeing a very " "large but uninformative error message right now.) Please wrap your " "program with `equinox.filter_jit`.\n" "--------------------\n" ) def tpu_msg(_out, _index): msg = msgs[_index.item()] # `print` doesn't work; nor does `jax.debug.print`. # But both `input` and `jax.debug.breakpoint` do. The former allows us to # actually display something to the user. input(msg + _tpu_msg) # We do the tree_map inside the pure_callback, not outside, so that `out` # has a data dependency and doesn't get optimised out. return jtu.tree_map(_nan_like, _out) def handle_error(): # pyright: ignore out = jax.pure_callback(raises, struct, index) # If we make it this far then we're on the TPU, which squelches runtime # errors and returns dummy values instead. # Fortunately, we're able to outsmart it! return jax.pure_callback(tpu_msg, struct, out, index) struct = jax.eval_shape(lambda: x) return lax.cond(pred, handle_error, lambda: x) elif on_error == "breakpoint": def display_msg(_index): print(_frames_msg) print("equinox.EquinoxRuntimeError: " + msgs[_index.item()]) return _index def to_nan(_index): del _index return jtu.tree_map(_nan_like, struct) def handle_error(): index_struct = jax.eval_shape(lambda: index) _index = jax.pure_callback(display_msg, index_struct, index) _index = jax.debug.breakpoint( token=_index, num_frames=EQX_ON_ERROR_BREAKPOINT_FRAMES ) _index = unvmap_max(cast(Any, _index)) return jax.pure_callback(to_nan, struct, _index) struct = jax.eval_shape(lambda: x) return lax.cond(pred, handle_error, lambda: x) elif on_error == "nan": return lax.cond(pred, ft.partial(jtu.tree_map, _nan_like), lambda y: y, x) else: assert False # Use a custom_jvp to put the lax.cond outside of AD. # This is needed as (a) lax.cond will unnecessarily promote symbolic # zeros to non-symbolic-zeros, and we'd really like to avoid that, and (b) we need to # wrap our pure_callbacks in custom JVP rules. @_error.def_jvp def _error_jvp(primals, tangents, *, msgs, on_error, stack): x, pred, index = primals tx, _, _ = tangents return _error(x, pred, index, msgs=msgs, on_error=on_error, stack=stack), tx if EQX_ON_ERROR == "breakpoint": # TODO: remove this branch once JAX issue #16732 is fixed. _old_jit = jax.jit @ft.wraps(jax.jit) def fixed_jit(fun, *args, **kwargs): jit_fun = _old_jit(fun, *args, **kwargs) def fixed_jit_impl(*args2, **kwargs2): if currently_jitting(): warnings.warn( "Ignoring intermediate `jax.jit` decorator, to work around JAX " "issue #16732, as `EQX_ON_ERROR=breakpoint` is set." ) return fun(*args2, **kwargs2) else: return jit_fun(*args2, **kwargs2) return fixed_jit_impl jax.jit = fixed_jit # Remove the `on_error` argument from the public API for now. If you pass # `on_error="breakpoint"` -- rather than setting `EQX_ON_ERROR=breakpoint` -- then our # fix for JAX issue #16732 -- above -- can't kick in. So in practice this # argument probably won't work. @doc_remove_args("on_error") def error_if( x: PyTree, pred: Bool[ArrayLike, "..."], msg: str, *, on_error: Literal["default", "raise", "breakpoint", "nan"] = "default", ) -> PyTree: """Throws an error based on runtime values. Works even under JIT. **Arguments:** - `x`: will be returned unchanged. This is used to determine where the error check happens in the overall computation: it will happen after `x` is computed and before the return value is used. `x` can be any PyTree, and it must contain at least one array. - `pred`: a boolean for whether to raise an error. Can be an array of bools; an error will be raised if any of them are `True`. If vmap'd then an error will be raised if any batch element has `True`. - `msg`: the string to display as an error message. In addition, the `EQX_ON_ERROR` environment variable is checked for how any runtime errors should be handled. Possible values are: - `EQX_ON_ERROR=raise` will raise a runtime error. - `EQX_ON_ERROR=nan` will return `NaN` instead of `x`, and then continue the computation. - `EQX_ON_ERROR=breakpoint` will open a debugger. - Note that this option may prevent certain compiler optimisations, so permanently fixing this value is not recommended. - You will need to also pass the `-s` flag to `pytest`, if you are also using that. - By default this only allows you to see a single frame in the debugger. This is to work around JAX bug [#16732](https://github.com/google/jax/issues/16732). (Bugs whilst debugging bugs, eek!) In practice you may like to set the `EQX_ON_ERROR_BREAKPOINT_FRAMES` environment variable to a small integer, which specifies how many frames upwards the debugger should capture. The JAX bug is triggered when taking too many frames. After changing an environment variable, the Python process must be restarted. **Returns:** The original argument `x` unchanged. **If this return value is unused then the error check will not be performed.** (It will be removed as part of dead code elimination.) !!! Example ```python @jax.jit def f(x): x = error_if(x, x < 0, "x must be >= 0") # ...use x in your computation... return x f(jax.numpy.array(-1)) ``` """ return branched_error_if(x, pred, 0, [msg], on_error=on_error) @doc_remove_args("on_error") def branched_error_if( x: PyTree, pred: Bool[ArrayLike, "..."], index: Int[ArrayLike, "..."], msgs: Sequence[str], *, on_error: Literal["default", "raise", "breakpoint", "nan"] = "default", ) -> PyTree: """As [`equinox.error_if`][], but will raise one of several `msgs` depending on the value of `index`. If `index` is vmap'd, then the error message from the largest value (across the whole batch) will be used. """ leaves = jtu.tree_leaves((x, pred, index)) # This carefully does not perform any JAX operations if `pred` and `index` are # a bool and an int. # This ensures we can use `error_if` before init_google. if any(is_array(leaf) for leaf in leaves): return branched_error_if_impl_jit(x, pred, index, msgs, on_error=on_error) else: return branched_error_if_impl(x, pred, index, msgs, on_error=on_error) def branched_error_if_impl( x: PyTree, pred: Bool[ArrayLike, "..."], index: Int[ArrayLike, "..."], msgs: Sequence[str], *, on_error: Literal["default", "raise", "breakpoint", "nan"], ) -> PyTree: if on_error == "default": on_error = EQX_ON_ERROR elif on_error not in ("raise", "breakpoint", "nan"): raise RuntimeError("Unrecognised value for `on_error`.") with jax.ensure_compile_time_eval(): # This carefully does not perform any JAX operations if `pred` and `index` are # a bool and an int. # This ensures we can use `error_if` before init_google. if not isinstance(pred, bool): pred = unvmap_any(pred) if not isinstance(index, int): index = unvmap_max(index) if not isinstance(pred, jax.core.Tracer): if isinstance(pred, Array): pred = pred.item() assert type(pred) is bool if pred: if not isinstance(index, jax.core.Tracer): if isinstance(index, Array): index = index.item() assert type(index) is int if on_error == "raise": raise EquinoxTracetimeError(msgs[index]) elif on_error == "breakpoint": print(msgs[index]) breakpoint() elif on_error == "nan": warnings.warn( "Resolving error at trace time (because the predicate is " "statically resolvable), by substituting NaNs (because " "`on_error='nan'`)." ) return jtu.tree_map(_nan_like, x) else: assert False # else defer error to runtime, when the index is known. else: return x stack: list[bytes | str] = [] for frame, lineno in traceback.walk_stack(None): frame_id = frame.f_locals.get("__equinox_jit_id__", None) if type(frame_id) is bytes: stack.append(frame_id) if traceback_util.include_frame(frame): # This seems to be the simplest way to format a single frame? frame_str: str = "".join( traceback.format_tb( types.TracebackType(None, frame, frame.f_lasti, lineno) ) ) stack.append(frame_str) dynamic_x, static_x = partition(x, is_array) flat = jtu.tree_leaves(dynamic_x) if len(flat) == 0: raise ValueError("No arrays to thread error on to.") dynamic_x = _error( dynamic_x, pred, index, msgs=msgs, on_error=on_error, stack=stack ) return combine(dynamic_x, static_x) # filter_jit does some work to produce nicer runtime error messages. # We also place it here to ensure a consistent experience when using JAX in eager mode. branched_error_if_impl_jit = _jit.filter_jit(branched_error_if_impl) def assert_dce( x: PyTree, msg: str, *, on_error: Literal["default", "raise", "breakpoint", "nan"] = "default", ) -> PyTree: """Asserts that a particular array (or PyTree of arrays) is DCE'd.""" if currently_jitting(): pred = jnp.invert(False) # Prevent the trace-time error-raising from running. return error_if(x, pred, msg, on_error=on_error) else: # Don't run if not JIT'ing, as without the compiler nothing will be DCE'd. return x
EquinoxTracetimeError
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/orm/mapper.py
{ "start": 4981, "end": 156646 }
class ____( ORMFromClauseRole, ORMEntityColumnsClauseRole[_O], MemoizedHasCacheKey, InspectionAttr, log.Identified, inspection.Inspectable["Mapper[_O]"], EventTarget, Generic[_O], ): """Defines an association between a Python class and a database table or other relational structure, so that ORM operations against the class may proceed. The :class:`_orm.Mapper` object is instantiated using mapping methods present on the :class:`_orm.registry` object. For information about instantiating new :class:`_orm.Mapper` objects, see :ref:`orm_mapping_classes_toplevel`. """ dispatch: dispatcher[Mapper[_O]] _dispose_called = False _configure_failed: Any = False _ready_for_configure = False def __init__( self, class_: Type[_O], local_table: Optional[FromClause] = None, properties: Optional[Mapping[str, MapperProperty[Any]]] = None, primary_key: Optional[Iterable[_ORMColumnExprArgument[Any]]] = None, inherits: Optional[Union[Mapper[Any], Type[Any]]] = None, inherit_condition: Optional[_ColumnExpressionArgument[bool]] = None, inherit_foreign_keys: Optional[ Sequence[_ORMColumnExprArgument[Any]] ] = None, always_refresh: bool = False, version_id_col: Optional[_ORMColumnExprArgument[Any]] = None, version_id_generator: Optional[ Union[Literal[False], Callable[[Any], Any]] ] = None, polymorphic_on: Optional[ Union[_ORMColumnExprArgument[Any], str, MapperProperty[Any]] ] = None, _polymorphic_map: Optional[Dict[Any, Mapper[Any]]] = None, polymorphic_identity: Optional[Any] = None, concrete: bool = False, with_polymorphic: Optional[_WithPolymorphicArg] = None, polymorphic_abstract: bool = False, polymorphic_load: Optional[Literal["selectin", "inline"]] = None, allow_partial_pks: bool = True, batch: bool = True, column_prefix: Optional[str] = None, include_properties: Optional[Sequence[str]] = None, exclude_properties: Optional[Sequence[str]] = None, passive_updates: bool = True, passive_deletes: bool = False, confirm_deleted_rows: bool = True, eager_defaults: Literal[True, False, "auto"] = "auto", legacy_is_orphan: bool = False, _compiled_cache_size: int = 100, ): r"""Direct constructor for a new :class:`_orm.Mapper` object. The :class:`_orm.Mapper` constructor is not called directly, and is normally invoked through the use of the :class:`_orm.registry` object through either the :ref:`Declarative <orm_declarative_mapping>` or :ref:`Imperative <orm_imperative_mapping>` mapping styles. .. versionchanged:: 2.0 The public facing ``mapper()`` function is removed; for a classical mapping configuration, use the :meth:`_orm.registry.map_imperatively` method. Parameters documented below may be passed to either the :meth:`_orm.registry.map_imperatively` method, or may be passed in the ``__mapper_args__`` declarative class attribute described at :ref:`orm_declarative_mapper_options`. :param class\_: The class to be mapped. When using Declarative, this argument is automatically passed as the declared class itself. :param local_table: The :class:`_schema.Table` or other :class:`_sql.FromClause` (i.e. selectable) to which the class is mapped. May be ``None`` if this mapper inherits from another mapper using single-table inheritance. When using Declarative, this argument is automatically passed by the extension, based on what is configured via the :attr:`_orm.DeclarativeBase.__table__` attribute or via the :class:`_schema.Table` produced as a result of the :attr:`_orm.DeclarativeBase.__tablename__` attribute being present. :param polymorphic_abstract: Indicates this class will be mapped in a polymorphic hierarchy, but not directly instantiated. The class is mapped normally, except that it has no requirement for a :paramref:`_orm.Mapper.polymorphic_identity` within an inheritance hierarchy. The class however must be part of a polymorphic inheritance scheme which uses :paramref:`_orm.Mapper.polymorphic_on` at the base. .. versionadded:: 2.0 .. seealso:: :ref:`orm_inheritance_abstract_poly` :param always_refresh: If True, all query operations for this mapped class will overwrite all data within object instances that already exist within the session, erasing any in-memory changes with whatever information was loaded from the database. Usage of this flag is highly discouraged; as an alternative, see the method :meth:`_query.Query.populate_existing`. :param allow_partial_pks: Defaults to True. Indicates that a composite primary key with some NULL values should be considered as possibly existing within the database. This affects whether a mapper will assign an incoming row to an existing identity, as well as if :meth:`.Session.merge` will check the database first for a particular primary key value. A "partial primary key" can occur if one has mapped to an OUTER JOIN, for example. The :paramref:`.orm.Mapper.allow_partial_pks` parameter also indicates to the ORM relationship lazy loader, when loading a many-to-one related object, if a composite primary key that has partial NULL values should result in an attempt to load from the database, or if a load attempt is not necessary. .. versionadded:: 2.0.36 :paramref:`.orm.Mapper.allow_partial_pks` is consulted by the relationship lazy loader strategy, such that when set to False, a SELECT for a composite primary key that has partial NULL values will not be emitted. :param batch: Defaults to ``True``, indicating that save operations of multiple entities can be batched together for efficiency. Setting to False indicates that an instance will be fully saved before saving the next instance. This is used in the extremely rare case that a :class:`.MapperEvents` listener requires being called in between individual row persistence operations. :param column_prefix: A string which will be prepended to the mapped attribute name when :class:`_schema.Column` objects are automatically assigned as attributes to the mapped class. Does not affect :class:`.Column` objects that are mapped explicitly in the :paramref:`.Mapper.properties` dictionary. This parameter is typically useful with imperative mappings that keep the :class:`.Table` object separate. Below, assuming the ``user_table`` :class:`.Table` object has columns named ``user_id``, ``user_name``, and ``password``:: class User(Base): __table__ = user_table __mapper_args__ = {"column_prefix": "_"} The above mapping will assign the ``user_id``, ``user_name``, and ``password`` columns to attributes named ``_user_id``, ``_user_name``, and ``_password`` on the mapped ``User`` class. The :paramref:`.Mapper.column_prefix` parameter is uncommon in modern use. For dealing with reflected tables, a more flexible approach to automating a naming scheme is to intercept the :class:`.Column` objects as they are reflected; see the section :ref:`mapper_automated_reflection_schemes` for notes on this usage pattern. :param concrete: If True, indicates this mapper should use concrete table inheritance with its parent mapper. See the section :ref:`concrete_inheritance` for an example. :param confirm_deleted_rows: defaults to True; when a DELETE occurs of one more rows based on specific primary keys, a warning is emitted when the number of rows matched does not equal the number of rows expected. This parameter may be set to False to handle the case where database ON DELETE CASCADE rules may be deleting some of those rows automatically. The warning may be changed to an exception in a future release. :param eager_defaults: if True, the ORM will immediately fetch the value of server-generated default values after an INSERT or UPDATE, rather than leaving them as expired to be fetched on next access. This can be used for event schemes where the server-generated values are needed immediately before the flush completes. The fetch of values occurs either by using ``RETURNING`` inline with the ``INSERT`` or ``UPDATE`` statement, or by adding an additional ``SELECT`` statement subsequent to the ``INSERT`` or ``UPDATE``, if the backend does not support ``RETURNING``. The use of ``RETURNING`` is extremely performant in particular for ``INSERT`` statements where SQLAlchemy can take advantage of :ref:`insertmanyvalues <engine_insertmanyvalues>`, whereas the use of an additional ``SELECT`` is relatively poor performing, adding additional SQL round trips which would be unnecessary if these new attributes are not to be accessed in any case. For this reason, :paramref:`.Mapper.eager_defaults` defaults to the string value ``"auto"``, which indicates that server defaults for INSERT should be fetched using ``RETURNING`` if the backing database supports it and if the dialect in use supports "insertmanyreturning" for an INSERT statement. If the backing database does not support ``RETURNING`` or "insertmanyreturning" is not available, server defaults will not be fetched. .. versionchanged:: 2.0.0rc1 added the "auto" option for :paramref:`.Mapper.eager_defaults` .. seealso:: :ref:`orm_server_defaults` .. versionchanged:: 2.0.0 RETURNING now works with multiple rows INSERTed at once using the :ref:`insertmanyvalues <engine_insertmanyvalues>` feature, which among other things allows the :paramref:`.Mapper.eager_defaults` feature to be very performant on supporting backends. :param exclude_properties: A list or set of string column names to be excluded from mapping. .. seealso:: :ref:`include_exclude_cols` :param include_properties: An inclusive list or set of string column names to map. .. seealso:: :ref:`include_exclude_cols` :param inherits: A mapped class or the corresponding :class:`_orm.Mapper` of one indicating a superclass to which this :class:`_orm.Mapper` should *inherit* from. The mapped class here must be a subclass of the other mapper's class. When using Declarative, this argument is passed automatically as a result of the natural class hierarchy of the declared classes. .. seealso:: :ref:`inheritance_toplevel` :param inherit_condition: For joined table inheritance, a SQL expression which will define how the two tables are joined; defaults to a natural join between the two tables. :param inherit_foreign_keys: When ``inherit_condition`` is used and the columns present are missing a :class:`_schema.ForeignKey` configuration, this parameter can be used to specify which columns are "foreign". In most cases can be left as ``None``. :param legacy_is_orphan: Boolean, defaults to ``False``. When ``True``, specifies that "legacy" orphan consideration is to be applied to objects mapped by this mapper, which means that a pending (that is, not persistent) object is auto-expunged from an owning :class:`.Session` only when it is de-associated from *all* parents that specify a ``delete-orphan`` cascade towards this mapper. The new default behavior is that the object is auto-expunged when it is de-associated with *any* of its parents that specify ``delete-orphan`` cascade. This behavior is more consistent with that of a persistent object, and allows behavior to be consistent in more scenarios independently of whether or not an orphan object has been flushed yet or not. See the change note and example at :ref:`legacy_is_orphan_addition` for more detail on this change. :param passive_deletes: Indicates DELETE behavior of foreign key columns when a joined-table inheritance entity is being deleted. Defaults to ``False`` for a base mapper; for an inheriting mapper, defaults to ``False`` unless the value is set to ``True`` on the superclass mapper. When ``True``, it is assumed that ON DELETE CASCADE is configured on the foreign key relationships that link this mapper's table to its superclass table, so that when the unit of work attempts to delete the entity, it need only emit a DELETE statement for the superclass table, and not this table. When ``False``, a DELETE statement is emitted for this mapper's table individually. If the primary key attributes local to this table are unloaded, then a SELECT must be emitted in order to validate these attributes; note that the primary key columns of a joined-table subclass are not part of the "primary key" of the object as a whole. Note that a value of ``True`` is **always** forced onto the subclass mappers; that is, it's not possible for a superclass to specify passive_deletes without this taking effect for all subclass mappers. .. seealso:: :ref:`passive_deletes` - description of similar feature as used with :func:`_orm.relationship` :paramref:`.mapper.passive_updates` - supporting ON UPDATE CASCADE for joined-table inheritance mappers :param passive_updates: Indicates UPDATE behavior of foreign key columns when a primary key column changes on a joined-table inheritance mapping. Defaults to ``True``. When True, it is assumed that ON UPDATE CASCADE is configured on the foreign key in the database, and that the database will handle propagation of an UPDATE from a source column to dependent columns on joined-table rows. When False, it is assumed that the database does not enforce referential integrity and will not be issuing its own CASCADE operation for an update. The unit of work process will emit an UPDATE statement for the dependent columns during a primary key change. .. seealso:: :ref:`passive_updates` - description of a similar feature as used with :func:`_orm.relationship` :paramref:`.mapper.passive_deletes` - supporting ON DELETE CASCADE for joined-table inheritance mappers :param polymorphic_load: Specifies "polymorphic loading" behavior for a subclass in an inheritance hierarchy (joined and single table inheritance only). Valid values are: * "'inline'" - specifies this class should be part of the "with_polymorphic" mappers, e.g. its columns will be included in a SELECT query against the base. * "'selectin'" - specifies that when instances of this class are loaded, an additional SELECT will be emitted to retrieve the columns specific to this subclass. The SELECT uses IN to fetch multiple subclasses at once. .. seealso:: :ref:`with_polymorphic_mapper_config` :ref:`polymorphic_selectin` :param polymorphic_on: Specifies the column, attribute, or SQL expression used to determine the target class for an incoming row, when inheriting classes are present. May be specified as a string attribute name, or as a SQL expression such as a :class:`_schema.Column` or in a Declarative mapping a :func:`_orm.mapped_column` object. It is typically expected that the SQL expression corresponds to a column in the base-most mapped :class:`.Table`:: class Employee(Base): __tablename__ = "employee" id: Mapped[int] = mapped_column(primary_key=True) discriminator: Mapped[str] = mapped_column(String(50)) __mapper_args__ = { "polymorphic_on": discriminator, "polymorphic_identity": "employee", } It may also be specified as a SQL expression, as in this example where we use the :func:`.case` construct to provide a conditional approach:: class Employee(Base): __tablename__ = "employee" id: Mapped[int] = mapped_column(primary_key=True) discriminator: Mapped[str] = mapped_column(String(50)) __mapper_args__ = { "polymorphic_on": case( (discriminator == "EN", "engineer"), (discriminator == "MA", "manager"), else_="employee", ), "polymorphic_identity": "employee", } It may also refer to any attribute using its string name, which is of particular use when using annotated column configurations:: class Employee(Base): __tablename__ = "employee" id: Mapped[int] = mapped_column(primary_key=True) discriminator: Mapped[str] __mapper_args__ = { "polymorphic_on": "discriminator", "polymorphic_identity": "employee", } When setting ``polymorphic_on`` to reference an attribute or expression that's not present in the locally mapped :class:`_schema.Table`, yet the value of the discriminator should be persisted to the database, the value of the discriminator is not automatically set on new instances; this must be handled by the user, either through manual means or via event listeners. A typical approach to establishing such a listener looks like:: from sqlalchemy import event from sqlalchemy.orm import object_mapper @event.listens_for(Employee, "init", propagate=True) def set_identity(instance, *arg, **kw): mapper = object_mapper(instance) instance.discriminator = mapper.polymorphic_identity Where above, we assign the value of ``polymorphic_identity`` for the mapped class to the ``discriminator`` attribute, thus persisting the value to the ``discriminator`` column in the database. .. warning:: Currently, **only one discriminator column may be set**, typically on the base-most class in the hierarchy. "Cascading" polymorphic columns are not yet supported. .. seealso:: :ref:`inheritance_toplevel` :param polymorphic_identity: Specifies the value which identifies this particular class as returned by the column expression referred to by the :paramref:`_orm.Mapper.polymorphic_on` setting. As rows are received, the value corresponding to the :paramref:`_orm.Mapper.polymorphic_on` column expression is compared to this value, indicating which subclass should be used for the newly reconstructed object. .. seealso:: :ref:`inheritance_toplevel` :param properties: A dictionary mapping the string names of object attributes to :class:`.MapperProperty` instances, which define the persistence behavior of that attribute. Note that :class:`_schema.Column` objects present in the mapped :class:`_schema.Table` are automatically placed into ``ColumnProperty`` instances upon mapping, unless overridden. When using Declarative, this argument is passed automatically, based on all those :class:`.MapperProperty` instances declared in the declared class body. .. seealso:: :ref:`orm_mapping_properties` - in the :ref:`orm_mapping_classes_toplevel` :param primary_key: A list of :class:`_schema.Column` objects, or alternatively string names of attribute names which refer to :class:`_schema.Column`, which define the primary key to be used against this mapper's selectable unit. This is normally simply the primary key of the ``local_table``, but can be overridden here. .. versionchanged:: 2.0.2 :paramref:`_orm.Mapper.primary_key` arguments may be indicated as string attribute names as well. .. seealso:: :ref:`mapper_primary_key` - background and example use :param version_id_col: A :class:`_schema.Column` that will be used to keep a running version id of rows in the table. This is used to detect concurrent updates or the presence of stale data in a flush. The methodology is to detect if an UPDATE statement does not match the last known version id, a :class:`~sqlalchemy.orm.exc.StaleDataError` exception is thrown. By default, the column must be of :class:`.Integer` type, unless ``version_id_generator`` specifies an alternative version generator. .. seealso:: :ref:`mapper_version_counter` - discussion of version counting and rationale. :param version_id_generator: Define how new version ids should be generated. Defaults to ``None``, which indicates that a simple integer counting scheme be employed. To provide a custom versioning scheme, provide a callable function of the form:: def generate_version(version): return next_version Alternatively, server-side versioning functions such as triggers, or programmatic versioning schemes outside of the version id generator may be used, by specifying the value ``False``. Please see :ref:`server_side_version_counter` for a discussion of important points when using this option. .. seealso:: :ref:`custom_version_counter` :ref:`server_side_version_counter` :param with_polymorphic: A tuple in the form ``(<classes>, <selectable>)`` indicating the default style of "polymorphic" loading, that is, which tables are queried at once. <classes> is any single or list of mappers and/or classes indicating the inherited classes that should be loaded at once. The special value ``'*'`` may be used to indicate all descending classes should be loaded immediately. The second tuple argument <selectable> indicates a selectable that will be used to query for multiple classes. The :paramref:`_orm.Mapper.polymorphic_load` parameter may be preferable over the use of :paramref:`_orm.Mapper.with_polymorphic` in modern mappings to indicate a per-subclass technique of indicating polymorphic loading styles. .. seealso:: :ref:`with_polymorphic_mapper_config` """ self.class_ = util.assert_arg_type(class_, type, "class_") self._sort_key = "%s.%s" % ( self.class_.__module__, self.class_.__name__, ) self._primary_key_argument = util.to_list(primary_key) self.always_refresh = always_refresh if isinstance(version_id_col, MapperProperty): self.version_id_prop = version_id_col self.version_id_col = None else: self.version_id_col = ( coercions.expect( roles.ColumnArgumentOrKeyRole, version_id_col, argname="version_id_col", ) if version_id_col is not None else None ) if version_id_generator is False: self.version_id_generator = False elif version_id_generator is None: self.version_id_generator = lambda x: (x or 0) + 1 else: self.version_id_generator = version_id_generator self.concrete = concrete self.single = False if inherits is not None: self.inherits = _parse_mapper_argument(inherits) else: self.inherits = None if local_table is not None: self.local_table = coercions.expect( roles.FromClauseRole, local_table, disable_inspection=True, argname="local_table", ) elif self.inherits: # note this is a new flow as of 2.0 so that # .local_table need not be Optional self.local_table = self.inherits.local_table self.single = True else: raise sa_exc.ArgumentError( f"Mapper[{self.class_.__name__}(None)] has None for a " "primary table argument and does not specify 'inherits'" ) if inherit_condition is not None: self.inherit_condition = coercions.expect( roles.OnClauseRole, inherit_condition ) else: self.inherit_condition = None self.inherit_foreign_keys = inherit_foreign_keys self._init_properties = dict(properties) if properties else {} self._delete_orphans = [] self.batch = batch self.eager_defaults = eager_defaults self.column_prefix = column_prefix # interim - polymorphic_on is further refined in # _configure_polymorphic_setter self.polymorphic_on = ( coercions.expect( # type: ignore roles.ColumnArgumentOrKeyRole, polymorphic_on, argname="polymorphic_on", ) if polymorphic_on is not None else None ) self.polymorphic_abstract = polymorphic_abstract self._dependency_processors = [] self.validators = util.EMPTY_DICT self.passive_updates = passive_updates self.passive_deletes = passive_deletes self.legacy_is_orphan = legacy_is_orphan self._clause_adapter = None self._requires_row_aliasing = False self._inherits_equated_pairs = None self._memoized_values = {} self._compiled_cache_size = _compiled_cache_size self._reconstructor = None self.allow_partial_pks = allow_partial_pks if self.inherits and not self.concrete: self.confirm_deleted_rows = False else: self.confirm_deleted_rows = confirm_deleted_rows self._set_with_polymorphic(with_polymorphic) self.polymorphic_load = polymorphic_load # our 'polymorphic identity', a string name that when located in a # result set row indicates this Mapper should be used to construct # the object instance for that row. self.polymorphic_identity = polymorphic_identity # a dictionary of 'polymorphic identity' names, associating those # names with Mappers that will be used to construct object instances # upon a select operation. if _polymorphic_map is None: self.polymorphic_map = {} else: self.polymorphic_map = _polymorphic_map if include_properties is not None: self.include_properties = util.to_set(include_properties) else: self.include_properties = None if exclude_properties: self.exclude_properties = util.to_set(exclude_properties) else: self.exclude_properties = None # prevent this mapper from being constructed # while a configure_mappers() is occurring (and defer a # configure_mappers() until construction succeeds) with _CONFIGURE_MUTEX: cast("MapperEvents", self.dispatch._events)._new_mapper_instance( class_, self ) self._configure_inheritance() self._configure_class_instrumentation() self._configure_properties() self._configure_polymorphic_setter() self._configure_pks() self.registry._flag_new_mapper(self) self._log("constructed") self._expire_memoizations() self.dispatch.after_mapper_constructed(self, self.class_) def _prefer_eager_defaults(self, dialect, table): if self.eager_defaults == "auto": if not table.implicit_returning: return False return ( table in self._server_default_col_keys and dialect.insert_executemany_returning ) else: return self.eager_defaults def _gen_cache_key(self, anon_map, bindparams): return (self,) # ### BEGIN # ATTRIBUTE DECLARATIONS START HERE is_mapper = True """Part of the inspection API.""" represents_outer_join = False registry: _RegistryType @property def mapper(self) -> Mapper[_O]: """Part of the inspection API. Returns self. """ return self @property def entity(self): r"""Part of the inspection API. Returns self.class\_. """ return self.class_ class_: Type[_O] """The class to which this :class:`_orm.Mapper` is mapped.""" _identity_class: Type[_O] _delete_orphans: List[Tuple[str, Type[Any]]] _dependency_processors: List[_DependencyProcessor] _memoized_values: Dict[Any, Callable[[], Any]] _inheriting_mappers: util.WeakSequence[Mapper[Any]] _all_tables: Set[TableClause] _polymorphic_attr_key: Optional[str] _pks_by_table: Dict[FromClause, OrderedSet[ColumnClause[Any]]] _cols_by_table: Dict[FromClause, OrderedSet[ColumnElement[Any]]] _props: util.OrderedDict[str, MapperProperty[Any]] _init_properties: Dict[str, MapperProperty[Any]] _columntoproperty: _ColumnMapping _set_polymorphic_identity: Optional[Callable[[InstanceState[_O]], None]] _validate_polymorphic_identity: Optional[ Callable[[Mapper[_O], InstanceState[_O], _InstanceDict], None] ] tables: Sequence[TableClause] """A sequence containing the collection of :class:`_schema.Table` or :class:`_schema.TableClause` objects which this :class:`_orm.Mapper` is aware of. If the mapper is mapped to a :class:`_expression.Join`, or an :class:`_expression.Alias` representing a :class:`_expression.Select`, the individual :class:`_schema.Table` objects that comprise the full construct will be represented here. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ validators: util.immutabledict[str, Tuple[str, Dict[str, Any]]] """An immutable dictionary of attributes which have been decorated using the :func:`_orm.validates` decorator. The dictionary contains string attribute names as keys mapped to the actual validation method. """ always_refresh: bool allow_partial_pks: bool version_id_col: Optional[ColumnElement[Any]] with_polymorphic: Optional[ Tuple[ Union[Literal["*"], Sequence[Union[Mapper[Any], Type[Any]]]], Optional[FromClause], ] ] version_id_generator: Optional[Union[Literal[False], Callable[[Any], Any]]] local_table: FromClause """The immediate :class:`_expression.FromClause` to which this :class:`_orm.Mapper` refers. Typically is an instance of :class:`_schema.Table`, may be any :class:`.FromClause`. The "local" table is the selectable that the :class:`_orm.Mapper` is directly responsible for managing from an attribute access and flush perspective. For non-inheriting mappers, :attr:`.Mapper.local_table` will be the same as :attr:`.Mapper.persist_selectable`. For inheriting mappers, :attr:`.Mapper.local_table` refers to the specific portion of :attr:`.Mapper.persist_selectable` that includes the columns to which this :class:`.Mapper` is loading/persisting, such as a particular :class:`.Table` within a join. .. seealso:: :attr:`_orm.Mapper.persist_selectable`. :attr:`_orm.Mapper.selectable`. """ persist_selectable: FromClause """The :class:`_expression.FromClause` to which this :class:`_orm.Mapper` is mapped. Typically is an instance of :class:`_schema.Table`, may be any :class:`.FromClause`. The :attr:`_orm.Mapper.persist_selectable` is similar to :attr:`.Mapper.local_table`, but represents the :class:`.FromClause` that represents the inheriting class hierarchy overall in an inheritance scenario. :attr.`.Mapper.persist_selectable` is also separate from the :attr:`.Mapper.selectable` attribute, the latter of which may be an alternate subquery used for selecting columns. :attr.`.Mapper.persist_selectable` is oriented towards columns that will be written on a persist operation. .. seealso:: :attr:`_orm.Mapper.selectable`. :attr:`_orm.Mapper.local_table`. """ inherits: Optional[Mapper[Any]] """References the :class:`_orm.Mapper` which this :class:`_orm.Mapper` inherits from, if any. """ inherit_condition: Optional[ColumnElement[bool]] configured: bool = False """Represent ``True`` if this :class:`_orm.Mapper` has been configured. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. .. seealso:: :func:`.configure_mappers`. """ concrete: bool """Represent ``True`` if this :class:`_orm.Mapper` is a concrete inheritance mapper. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ primary_key: Tuple[ColumnElement[Any], ...] """An iterable containing the collection of :class:`_schema.Column` objects which comprise the 'primary key' of the mapped table, from the perspective of this :class:`_orm.Mapper`. This list is against the selectable in :attr:`_orm.Mapper.persist_selectable`. In the case of inheriting mappers, some columns may be managed by a superclass mapper. For example, in the case of a :class:`_expression.Join`, the primary key is determined by all of the primary key columns across all tables referenced by the :class:`_expression.Join`. The list is also not necessarily the same as the primary key column collection associated with the underlying tables; the :class:`_orm.Mapper` features a ``primary_key`` argument that can override what the :class:`_orm.Mapper` considers as primary key columns. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ class_manager: ClassManager[_O] """The :class:`.ClassManager` which maintains event listeners and class-bound descriptors for this :class:`_orm.Mapper`. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ single: bool """Represent ``True`` if this :class:`_orm.Mapper` is a single table inheritance mapper. :attr:`_orm.Mapper.local_table` will be ``None`` if this flag is set. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ polymorphic_on: Optional[KeyedColumnElement[Any]] """The :class:`_schema.Column` or SQL expression specified as the ``polymorphic_on`` argument for this :class:`_orm.Mapper`, within an inheritance scenario. This attribute is normally a :class:`_schema.Column` instance but may also be an expression, such as one derived from :func:`.cast`. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ polymorphic_map: Dict[Any, Mapper[Any]] """A mapping of "polymorphic identity" identifiers mapped to :class:`_orm.Mapper` instances, within an inheritance scenario. The identifiers can be of any type which is comparable to the type of column represented by :attr:`_orm.Mapper.polymorphic_on`. An inheritance chain of mappers will all reference the same polymorphic map object. The object is used to correlate incoming result rows to target mappers. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ polymorphic_identity: Optional[Any] """Represent an identifier which is matched against the :attr:`_orm.Mapper.polymorphic_on` column during result row loading. Used only with inheritance, this object can be of any type which is comparable to the type of column represented by :attr:`_orm.Mapper.polymorphic_on`. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ base_mapper: Mapper[Any] """The base-most :class:`_orm.Mapper` in an inheritance chain. In a non-inheriting scenario, this attribute will always be this :class:`_orm.Mapper`. In an inheritance scenario, it references the :class:`_orm.Mapper` which is parent to all other :class:`_orm.Mapper` objects in the inheritance chain. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ columns: ReadOnlyColumnCollection[str, Column[Any]] """A collection of :class:`_schema.Column` or other scalar expression objects maintained by this :class:`_orm.Mapper`. The collection behaves the same as that of the ``c`` attribute on any :class:`_schema.Table` object, except that only those columns included in this mapping are present, and are keyed based on the attribute name defined in the mapping, not necessarily the ``key`` attribute of the :class:`_schema.Column` itself. Additionally, scalar expressions mapped by :func:`.column_property` are also present here. This is a *read only* attribute determined during mapper construction. Behavior is undefined if directly modified. """ c: ReadOnlyColumnCollection[str, Column[Any]] """A synonym for :attr:`_orm.Mapper.columns`.""" @util.memoized_property def _path_registry(self) -> _CachingEntityRegistry: return PathRegistry.per_mapper(self) def _configure_inheritance(self): """Configure settings related to inheriting and/or inherited mappers being present.""" # a set of all mappers which inherit from this one. self._inheriting_mappers = util.WeakSequence() if self.inherits: if not issubclass(self.class_, self.inherits.class_): raise sa_exc.ArgumentError( "Class '%s' does not inherit from '%s'" % (self.class_.__name__, self.inherits.class_.__name__) ) self.dispatch._update(self.inherits.dispatch) if self.single: self.persist_selectable = self.inherits.persist_selectable elif self.local_table is not self.inherits.local_table: if self.concrete: self.persist_selectable = self.local_table for mapper in self.iterate_to_root(): if mapper.polymorphic_on is not None: mapper._requires_row_aliasing = True else: if self.inherit_condition is None: # figure out inherit condition from our table to the # immediate table of the inherited mapper, not its # full table which could pull in other stuff we don't # want (allows test/inheritance.InheritTest4 to pass) try: self.inherit_condition = sql_util.join_condition( self.inherits.local_table, self.local_table ) except sa_exc.NoForeignKeysError as nfe: assert self.inherits.local_table is not None assert self.local_table is not None raise sa_exc.NoForeignKeysError( "Can't determine the inherit condition " "between inherited table '%s' and " "inheriting " "table '%s'; tables have no " "foreign key relationships established. " "Please ensure the inheriting table has " "a foreign key relationship to the " "inherited " "table, or provide an " "'on clause' using " "the 'inherit_condition' mapper argument." % ( self.inherits.local_table.description, self.local_table.description, ) ) from nfe except sa_exc.AmbiguousForeignKeysError as afe: assert self.inherits.local_table is not None assert self.local_table is not None raise sa_exc.AmbiguousForeignKeysError( "Can't determine the inherit condition " "between inherited table '%s' and " "inheriting " "table '%s'; tables have more than one " "foreign key relationship established. " "Please specify the 'on clause' using " "the 'inherit_condition' mapper argument." % ( self.inherits.local_table.description, self.local_table.description, ) ) from afe assert self.inherits.persist_selectable is not None self.persist_selectable = sql.join( self.inherits.persist_selectable, self.local_table, self.inherit_condition, ) fks = util.to_set(self.inherit_foreign_keys) self._inherits_equated_pairs = sql_util.criterion_as_pairs( self.persist_selectable.onclause, consider_as_foreign_keys=fks, ) else: self.persist_selectable = self.local_table if self.polymorphic_identity is None: self._identity_class = self.class_ if ( not self.polymorphic_abstract and self.inherits.base_mapper.polymorphic_on is not None ): util.warn( f"{self} does not indicate a 'polymorphic_identity', " "yet is part of an inheritance hierarchy that has a " f"'polymorphic_on' column of " f"'{self.inherits.base_mapper.polymorphic_on}'. " "If this is an intermediary class that should not be " "instantiated, the class may either be left unmapped, " "or may include the 'polymorphic_abstract=True' " "parameter in its Mapper arguments. To leave the " "class unmapped when using Declarative, set the " "'__abstract__ = True' attribute on the class." ) elif self.concrete: self._identity_class = self.class_ else: self._identity_class = self.inherits._identity_class if self.version_id_col is None: self.version_id_col = self.inherits.version_id_col self.version_id_generator = self.inherits.version_id_generator elif ( self.inherits.version_id_col is not None and self.version_id_col is not self.inherits.version_id_col ): util.warn( "Inheriting version_id_col '%s' does not match inherited " "version_id_col '%s' and will not automatically populate " "the inherited versioning column. " "version_id_col should only be specified on " "the base-most mapper that includes versioning." % ( self.version_id_col.description, self.inherits.version_id_col.description, ) ) self.polymorphic_map = self.inherits.polymorphic_map self.batch = self.inherits.batch self.inherits._inheriting_mappers.append(self) self.base_mapper = self.inherits.base_mapper self.passive_updates = self.inherits.passive_updates self.passive_deletes = ( self.inherits.passive_deletes or self.passive_deletes ) self._all_tables = self.inherits._all_tables if self.polymorphic_identity is not None: if self.polymorphic_identity in self.polymorphic_map: util.warn( "Reassigning polymorphic association for identity %r " "from %r to %r: Check for duplicate use of %r as " "value for polymorphic_identity." % ( self.polymorphic_identity, self.polymorphic_map[self.polymorphic_identity], self, self.polymorphic_identity, ) ) self.polymorphic_map[self.polymorphic_identity] = self if self.polymorphic_load and self.concrete: raise sa_exc.ArgumentError( "polymorphic_load is not currently supported " "with concrete table inheritance" ) if self.polymorphic_load == "inline": self.inherits._add_with_polymorphic_subclass(self) elif self.polymorphic_load == "selectin": pass elif self.polymorphic_load is not None: raise sa_exc.ArgumentError( "unknown argument for polymorphic_load: %r" % self.polymorphic_load ) else: self._all_tables = set() self.base_mapper = self assert self.local_table is not None self.persist_selectable = self.local_table if self.polymorphic_identity is not None: self.polymorphic_map[self.polymorphic_identity] = self self._identity_class = self.class_ if self.persist_selectable is None: raise sa_exc.ArgumentError( "Mapper '%s' does not have a persist_selectable specified." % self ) def _set_with_polymorphic( self, with_polymorphic: Optional[_WithPolymorphicArg] ) -> None: if with_polymorphic == "*": self.with_polymorphic = ("*", None) elif isinstance(with_polymorphic, (tuple, list)): if isinstance(with_polymorphic[0], (str, tuple, list)): self.with_polymorphic = cast( """Tuple[ Union[ Literal["*"], Sequence[Union["Mapper[Any]", Type[Any]]], ], Optional["FromClause"], ]""", with_polymorphic, ) else: self.with_polymorphic = (with_polymorphic, None) elif with_polymorphic is not None: raise sa_exc.ArgumentError( f"Invalid setting for with_polymorphic: {with_polymorphic!r}" ) else: self.with_polymorphic = None if self.with_polymorphic and self.with_polymorphic[1] is not None: self.with_polymorphic = ( self.with_polymorphic[0], coercions.expect( roles.FromClauseRole, self.with_polymorphic[1], ), ) if self.configured: self._expire_memoizations() def _add_with_polymorphic_subclass(self, mapper): subcl = mapper.class_ if self.with_polymorphic is None: self._set_with_polymorphic((subcl,)) elif self.with_polymorphic[0] != "*": assert isinstance(self.with_polymorphic[0], tuple) self._set_with_polymorphic( (self.with_polymorphic[0] + (subcl,), self.with_polymorphic[1]) ) def _set_concrete_base(self, mapper): """Set the given :class:`_orm.Mapper` as the 'inherits' for this :class:`_orm.Mapper`, assuming this :class:`_orm.Mapper` is concrete and does not already have an inherits.""" assert self.concrete assert not self.inherits assert isinstance(mapper, Mapper) self.inherits = mapper self.inherits.polymorphic_map.update(self.polymorphic_map) self.polymorphic_map = self.inherits.polymorphic_map for mapper in self.iterate_to_root(): if mapper.polymorphic_on is not None: mapper._requires_row_aliasing = True self.batch = self.inherits.batch for mp in self.self_and_descendants: mp.base_mapper = self.inherits.base_mapper self.inherits._inheriting_mappers.append(self) self.passive_updates = self.inherits.passive_updates self._all_tables = self.inherits._all_tables for key, prop in mapper._props.items(): if key not in self._props and not self._should_exclude( key, key, local=False, column=None ): self._adapt_inherited_property(key, prop, False) def _set_polymorphic_on(self, polymorphic_on): self.polymorphic_on = polymorphic_on self._configure_polymorphic_setter(True) def _configure_class_instrumentation(self): """Associate this Mapper with the given class and entity name. Subsequent calls to ``class_mapper()`` for the ``class_`` / ``entity`` name combination will return this mapper. Also decorate the `__init__` method on the mapped class to include optional auto-session attachment logic. """ # we expect that declarative has applied the class manager # already and set up a registry. if this is None, # this raises as of 2.0. manager = attributes.opt_manager_of_class(self.class_) if manager is None or not manager.registry: raise sa_exc.InvalidRequestError( "The _mapper() function and Mapper() constructor may not be " "invoked directly outside of a declarative registry." " Please use the sqlalchemy.orm.registry.map_imperatively() " "function for a classical mapping." ) self.dispatch.instrument_class(self, self.class_) # this invokes the class_instrument event and sets up # the __init__ method. documented behavior is that this must # occur after the instrument_class event above. # yes two events with the same two words reversed and different APIs. # :( manager = instrumentation.register_class( self.class_, mapper=self, expired_attribute_loader=util.partial( loading._load_scalar_attributes, self ), # finalize flag means instrument the __init__ method # and call the class_instrument event finalize=True, ) self.class_manager = manager assert manager.registry is not None self.registry = manager.registry # The remaining members can be added by any mapper, # e_name None or not. if manager.mapper is None: return event.listen(manager, "init", _event_on_init, raw=True) for key, method in util.iterate_attributes(self.class_): if key == "__init__" and hasattr(method, "_sa_original_init"): method = method._sa_original_init if hasattr(method, "__func__"): method = method.__func__ if callable(method): if hasattr(method, "__sa_reconstructor__"): self._reconstructor = method event.listen(manager, "load", _event_on_load, raw=True) elif hasattr(method, "__sa_validators__"): validation_opts = method.__sa_validation_opts__ for name in method.__sa_validators__: if name in self.validators: raise sa_exc.InvalidRequestError( "A validation function for mapped " "attribute %r on mapper %s already exists." % (name, self) ) self.validators = self.validators.union( {name: (method, validation_opts)} ) def _set_dispose_flags(self) -> None: self.configured = True self._ready_for_configure = True self._dispose_called = True self.__dict__.pop("_configure_failed", None) def _str_arg_to_mapped_col(self, argname: str, key: str) -> Column[Any]: try: prop = self._props[key] except KeyError as err: raise sa_exc.ArgumentError( f"Can't determine {argname} column '{key}' - " "no attribute is mapped to this name." ) from err try: expr = prop.expression except AttributeError as ae: raise sa_exc.ArgumentError( f"Can't determine {argname} column '{key}'; " "property does not refer to a single mapped Column" ) from ae if not isinstance(expr, Column): raise sa_exc.ArgumentError( f"Can't determine {argname} column '{key}'; " "property does not refer to a single " "mapped Column" ) return expr def _configure_pks(self) -> None: self.tables = sql_util.find_tables(self.persist_selectable) self._all_tables.update(t for t in self.tables) self._pks_by_table = {} self._cols_by_table = {} all_cols = util.column_set( chain(*[col.proxy_set for col in self._columntoproperty]) ) pk_cols = util.column_set(c for c in all_cols if c.primary_key) # identify primary key columns which are also mapped by this mapper. for fc in set(self.tables).union([self.persist_selectable]): if fc.primary_key and pk_cols.issuperset(fc.primary_key): # ordering is important since it determines the ordering of # mapper.primary_key (and therefore query.get()) self._pks_by_table[fc] = util.ordered_column_set( # type: ignore # noqa: E501 fc.primary_key ).intersection( pk_cols ) self._cols_by_table[fc] = util.ordered_column_set(fc.c).intersection( # type: ignore # noqa: E501 all_cols ) if self._primary_key_argument: coerced_pk_arg = [ ( self._str_arg_to_mapped_col("primary_key", c) if isinstance(c, str) else c ) for c in ( coercions.expect( roles.DDLConstraintColumnRole, coerce_pk, argname="primary_key", ) for coerce_pk in self._primary_key_argument ) ] else: coerced_pk_arg = None # if explicit PK argument sent, add those columns to the # primary key mappings if coerced_pk_arg: for k in coerced_pk_arg: if k.table not in self._pks_by_table: self._pks_by_table[k.table] = util.OrderedSet() self._pks_by_table[k.table].add(k) # otherwise, see that we got a full PK for the mapped table elif ( self.persist_selectable not in self._pks_by_table or len(self._pks_by_table[self.persist_selectable]) == 0 ): raise sa_exc.ArgumentError( "Mapper %s could not assemble any primary " "key columns for mapped table '%s'" % (self, self.persist_selectable.description) ) elif self.local_table not in self._pks_by_table and isinstance( self.local_table, schema.Table ): util.warn( "Could not assemble any primary " "keys for locally mapped table '%s' - " "no rows will be persisted in this Table." % self.local_table.description ) if ( self.inherits and not self.concrete and not self._primary_key_argument ): # if inheriting, the "primary key" for this mapper is # that of the inheriting (unless concrete or explicit) self.primary_key = self.inherits.primary_key else: # determine primary key from argument or persist_selectable pks primary_key: Collection[ColumnElement[Any]] if coerced_pk_arg: primary_key = [ cc if cc is not None else c for cc, c in ( (self.persist_selectable.corresponding_column(c), c) for c in coerced_pk_arg ) ] else: # if heuristically determined PKs, reduce to the minimal set # of columns by eliminating FK->PK pairs for a multi-table # expression. May over-reduce for some kinds of UNIONs # / CTEs; use explicit PK argument for these special cases primary_key = sql_util.reduce_columns( self._pks_by_table[self.persist_selectable], ignore_nonexistent_tables=True, ) if len(primary_key) == 0: raise sa_exc.ArgumentError( "Mapper %s could not assemble any primary " "key columns for mapped table '%s'" % (self, self.persist_selectable.description) ) self.primary_key = tuple(primary_key) self._log("Identified primary key columns: %s", primary_key) # determine cols that aren't expressed within our tables; mark these # as "read only" properties which are refreshed upon INSERT/UPDATE self._readonly_props = { self._columntoproperty[col] for col in self._columntoproperty if self._columntoproperty[col] not in self._identity_key_props and ( not hasattr(col, "table") or col.table not in self._cols_by_table ) } def _configure_properties(self) -> None: self.columns = self.c = sql_base.ColumnCollection() # type: ignore # object attribute names mapped to MapperProperty objects self._props = util.OrderedDict() # table columns mapped to MapperProperty self._columntoproperty = _ColumnMapping(self) explicit_col_props_by_column: Dict[ KeyedColumnElement[Any], Tuple[str, ColumnProperty[Any]] ] = {} explicit_col_props_by_key: Dict[str, ColumnProperty[Any]] = {} # step 1: go through properties that were explicitly passed # in the properties dictionary. For Columns that are local, put them # aside in a separate collection we will reconcile with the Table # that's given. For other properties, set them up in _props now. if self._init_properties: for key, prop_arg in self._init_properties.items(): if not isinstance(prop_arg, MapperProperty): possible_col_prop = self._make_prop_from_column( key, prop_arg ) else: possible_col_prop = prop_arg # issue #8705. if the explicit property is actually a # Column that is local to the local Table, don't set it up # in ._props yet, integrate it into the order given within # the Table. _map_as_property_now = True if isinstance(possible_col_prop, properties.ColumnProperty): for given_col in possible_col_prop.columns: if self.local_table.c.contains_column(given_col): _map_as_property_now = False explicit_col_props_by_key[key] = possible_col_prop explicit_col_props_by_column[given_col] = ( key, possible_col_prop, ) if _map_as_property_now: self._configure_property( key, possible_col_prop, init=False, ) # step 2: pull properties from the inherited mapper. reconcile # columns with those which are explicit above. for properties that # are only in the inheriting mapper, set them up as local props if self.inherits: for key, inherited_prop in self.inherits._props.items(): if self._should_exclude(key, key, local=False, column=None): continue incoming_prop = explicit_col_props_by_key.get(key) if incoming_prop: new_prop = self._reconcile_prop_with_incoming_columns( key, inherited_prop, warn_only=False, incoming_prop=incoming_prop, ) explicit_col_props_by_key[key] = new_prop for inc_col in incoming_prop.columns: explicit_col_props_by_column[inc_col] = ( key, new_prop, ) elif key not in self._props: self._adapt_inherited_property(key, inherited_prop, False) # step 3. Iterate through all columns in the persist selectable. # this includes not only columns in the local table / fromclause, # but also those columns in the superclass table if we are joined # inh or single inh mapper. map these columns as well. additional # reconciliation against inherited columns occurs here also. for column in self.persist_selectable.columns: if column in explicit_col_props_by_column: # column was explicitly passed to properties; configure # it now in the order in which it corresponds to the # Table / selectable key, prop = explicit_col_props_by_column[column] self._configure_property(key, prop, init=False) continue elif column in self._columntoproperty: continue column_key = (self.column_prefix or "") + column.key if self._should_exclude( column.key, column_key, local=self.local_table.c.contains_column(column), column=column, ): continue # adjust the "key" used for this column to that # of the inheriting mapper for mapper in self.iterate_to_root(): if column in mapper._columntoproperty: column_key = mapper._columntoproperty[column].key self._configure_property( column_key, column, init=False, setparent=True, ) def _configure_polymorphic_setter(self, init=False): """Configure an attribute on the mapper representing the 'polymorphic_on' column, if applicable, and not already generated by _configure_properties (which is typical). Also create a setter function which will assign this attribute to the value of the 'polymorphic_identity' upon instance construction, also if applicable. This routine will run when an instance is created. """ setter = False polymorphic_key: Optional[str] = None if self.polymorphic_on is not None: setter = True if isinstance(self.polymorphic_on, str): # polymorphic_on specified as a string - link # it to mapped ColumnProperty try: self.polymorphic_on = self._props[self.polymorphic_on] except KeyError as err: raise sa_exc.ArgumentError( "Can't determine polymorphic_on " "value '%s' - no attribute is " "mapped to this name." % self.polymorphic_on ) from err if self.polymorphic_on in self._columntoproperty: # polymorphic_on is a column that is already mapped # to a ColumnProperty prop = self._columntoproperty[self.polymorphic_on] elif isinstance(self.polymorphic_on, MapperProperty): # polymorphic_on is directly a MapperProperty, # ensure it's a ColumnProperty if not isinstance( self.polymorphic_on, properties.ColumnProperty ): raise sa_exc.ArgumentError( "Only direct column-mapped " "property or SQL expression " "can be passed for polymorphic_on" ) prop = self.polymorphic_on else: # polymorphic_on is a Column or SQL expression and # doesn't appear to be mapped. this means it can be 1. # only present in the with_polymorphic selectable or # 2. a totally standalone SQL expression which we'd # hope is compatible with this mapper's persist_selectable col = self.persist_selectable.corresponding_column( self.polymorphic_on ) if col is None: # polymorphic_on doesn't derive from any # column/expression isn't present in the mapped # table. we will make a "hidden" ColumnProperty # for it. Just check that if it's directly a # schema.Column and we have with_polymorphic, it's # likely a user error if the schema.Column isn't # represented somehow in either persist_selectable or # with_polymorphic. Otherwise as of 0.7.4 we # just go with it and assume the user wants it # that way (i.e. a CASE statement) setter = False instrument = False col = self.polymorphic_on if isinstance(col, schema.Column) and ( self.with_polymorphic is None or self.with_polymorphic[1] is None or self.with_polymorphic[1].corresponding_column(col) is None ): raise sa_exc.InvalidRequestError( "Could not map polymorphic_on column " "'%s' to the mapped table - polymorphic " "loads will not function properly" % col.description ) else: # column/expression that polymorphic_on derives from # is present in our mapped table # and is probably mapped, but polymorphic_on itself # is not. This happens when # the polymorphic_on is only directly present in the # with_polymorphic selectable, as when use # polymorphic_union. # we'll make a separate ColumnProperty for it. instrument = True key = getattr(col, "key", None) if key: if self._should_exclude(key, key, False, col): raise sa_exc.InvalidRequestError( "Cannot exclude or override the " "discriminator column %r" % key ) else: self.polymorphic_on = col = col.label("_sa_polymorphic_on") key = col.key prop = properties.ColumnProperty(col, _instrument=instrument) self._configure_property(key, prop, init=init, setparent=True) # the actual polymorphic_on should be the first public-facing # column in the property self.polymorphic_on = prop.columns[0] polymorphic_key = prop.key else: # no polymorphic_on was set. # check inheriting mappers for one. for mapper in self.iterate_to_root(): # determine if polymorphic_on of the parent # should be propagated here. If the col # is present in our mapped table, or if our mapped # table is the same as the parent (i.e. single table # inheritance), we can use it if mapper.polymorphic_on is not None: if self.persist_selectable is mapper.persist_selectable: self.polymorphic_on = mapper.polymorphic_on else: self.polymorphic_on = ( self.persist_selectable ).corresponding_column(mapper.polymorphic_on) # we can use the parent mapper's _set_polymorphic_identity # directly; it ensures the polymorphic_identity of the # instance's mapper is used so is portable to subclasses. if self.polymorphic_on is not None: self._set_polymorphic_identity = ( mapper._set_polymorphic_identity ) self._polymorphic_attr_key = ( mapper._polymorphic_attr_key ) self._validate_polymorphic_identity = ( mapper._validate_polymorphic_identity ) else: self._set_polymorphic_identity = None self._polymorphic_attr_key = None return if self.polymorphic_abstract and self.polymorphic_on is None: raise sa_exc.InvalidRequestError( "The Mapper.polymorphic_abstract parameter may only be used " "on a mapper hierarchy which includes the " "Mapper.polymorphic_on parameter at the base of the hierarchy." ) if setter: def _set_polymorphic_identity(state): dict_ = state.dict # TODO: what happens if polymorphic_on column attribute name # does not match .key? polymorphic_identity = ( state.manager.mapper.polymorphic_identity ) if ( polymorphic_identity is None and state.manager.mapper.polymorphic_abstract ): raise sa_exc.InvalidRequestError( f"Can't instantiate class for {state.manager.mapper}; " "mapper is marked polymorphic_abstract=True" ) state.get_impl(polymorphic_key).set( state, dict_, polymorphic_identity, None, ) self._polymorphic_attr_key = polymorphic_key def _validate_polymorphic_identity(mapper, state, dict_): if ( polymorphic_key in dict_ and dict_[polymorphic_key] not in mapper._acceptable_polymorphic_identities ): util.warn_limited( "Flushing object %s with " "incompatible polymorphic identity %r; the " "object may not refresh and/or load correctly", (state_str(state), dict_[polymorphic_key]), ) self._set_polymorphic_identity = _set_polymorphic_identity self._validate_polymorphic_identity = ( _validate_polymorphic_identity ) else: self._polymorphic_attr_key = None self._set_polymorphic_identity = None _validate_polymorphic_identity = None @HasMemoized.memoized_attribute def _version_id_prop(self): if self.version_id_col is not None: return self._columntoproperty[self.version_id_col] else: return None @HasMemoized.memoized_attribute def _acceptable_polymorphic_identities(self): identities = set() stack = deque([self]) while stack: item = stack.popleft() if item.persist_selectable is self.persist_selectable: identities.add(item.polymorphic_identity) stack.extend(item._inheriting_mappers) return identities @HasMemoized.memoized_attribute def _prop_set(self): return frozenset(self._props.values()) @util.preload_module("sqlalchemy.orm.descriptor_props") def _adapt_inherited_property(self, key, prop, init): descriptor_props = util.preloaded.orm_descriptor_props if not self.concrete: self._configure_property(key, prop, init=False, setparent=False) elif key not in self._props: # determine if the class implements this attribute; if not, # or if it is implemented by the attribute that is handling the # given superclass-mapped property, then we need to report that we # can't use this at the instance level since we are a concrete # mapper and we don't map this. don't trip user-defined # descriptors that might have side effects when invoked. implementing_attribute = self.class_manager._get_class_attr_mro( key, prop ) if implementing_attribute is prop or ( isinstance( implementing_attribute, attributes.InstrumentedAttribute ) and implementing_attribute._parententity is prop.parent ): self._configure_property( key, descriptor_props.ConcreteInheritedProperty(), init=init, setparent=True, ) @util.preload_module("sqlalchemy.orm.descriptor_props") def _configure_property( self, key: str, prop_arg: Union[KeyedColumnElement[Any], MapperProperty[Any]], *, init: bool = True, setparent: bool = True, warn_for_existing: bool = False, ) -> MapperProperty[Any]: descriptor_props = util.preloaded.orm_descriptor_props self._log( "_configure_property(%s, %s)", key, prop_arg.__class__.__name__ ) if not isinstance(prop_arg, MapperProperty): prop: MapperProperty[Any] = self._property_from_column( key, prop_arg ) else: prop = prop_arg if isinstance(prop, properties.ColumnProperty): col = self.persist_selectable.corresponding_column(prop.columns[0]) # if the column is not present in the mapped table, # test if a column has been added after the fact to the # parent table (or their parent, etc.) [ticket:1570] if col is None and self.inherits: path = [self] for m in self.inherits.iterate_to_root(): col = m.local_table.corresponding_column(prop.columns[0]) if col is not None: for m2 in path: m2.persist_selectable._refresh_for_new_column(col) col = self.persist_selectable.corresponding_column( prop.columns[0] ) break path.append(m) # subquery expression, column not present in the mapped # selectable. if col is None: col = prop.columns[0] # column is coming in after _readonly_props was # initialized; check for 'readonly' if hasattr(self, "_readonly_props") and ( not hasattr(col, "table") or col.table not in self._cols_by_table ): self._readonly_props.add(prop) else: # if column is coming in after _cols_by_table was # initialized, ensure the col is in the right set if ( hasattr(self, "_cols_by_table") and col.table in self._cols_by_table and col not in self._cols_by_table[col.table] ): self._cols_by_table[col.table].add(col) # if this properties.ColumnProperty represents the "polymorphic # discriminator" column, mark it. We'll need this when rendering # columns in SELECT statements. if not hasattr(prop, "_is_polymorphic_discriminator"): prop._is_polymorphic_discriminator = ( col is self.polymorphic_on or prop.columns[0] is self.polymorphic_on ) if isinstance(col, expression.Label): # new in 1.4, get column property against expressions # to be addressable in subqueries col.key = col._tq_key_label = key self.columns.add(col, key) for col in prop.columns: for proxy_col in col.proxy_set: self._columntoproperty[proxy_col] = prop if getattr(prop, "key", key) != key: util.warn( f"ORM mapped property {self.class_.__name__}.{prop.key} being " "assigned to attribute " f"{key!r} is already associated with " f"attribute {prop.key!r}. The attribute will be de-associated " f"from {prop.key!r}." ) prop.key = key if setparent: prop.set_parent(self, init) if key in self._props and getattr( self._props[key], "_mapped_by_synonym", False ): syn = self._props[key]._mapped_by_synonym raise sa_exc.ArgumentError( "Can't call map_column=True for synonym %r=%r, " "a ColumnProperty already exists keyed to the name " "%r for column %r" % (syn, key, key, syn) ) # replacement cases # case one: prop is replacing a prop that we have mapped. this is # independent of whatever might be in the actual class dictionary if ( key in self._props and not isinstance( self._props[key], descriptor_props.ConcreteInheritedProperty ) and not isinstance(prop, descriptor_props.SynonymProperty) ): if warn_for_existing: util.warn_deprecated( f"User-placed attribute {self.class_.__name__}.{key} on " f"{self} is replacing an existing ORM-mapped attribute. " "Behavior is not fully defined in this case. This " "use is deprecated and will raise an error in a future " "release", "2.0", ) oldprop = self._props[key] self._path_registry.pop(oldprop, None) # case two: prop is replacing an attribute on the class of some kind. # we have to be more careful here since it's normal when using # Declarative that all the "declared attributes" on the class # get replaced. elif ( warn_for_existing and self.class_.__dict__.get(key, None) is not None and not isinstance(prop, descriptor_props.SynonymProperty) and not isinstance( self._props.get(key, None), descriptor_props.ConcreteInheritedProperty, ) ): util.warn_deprecated( f"User-placed attribute {self.class_.__name__}.{key} on " f"{self} is replacing an existing class-bound " "attribute of the same name. " "Behavior is not fully defined in this case. This " "use is deprecated and will raise an error in a future " "release", "2.0", ) self._props[key] = prop prop.instrument_class(self) for mapper in self._inheriting_mappers: mapper._adapt_inherited_property(key, prop, init) if init: prop.init() prop.post_instrument_class(self) if self.configured: self._expire_memoizations() return prop def _make_prop_from_column( self, key: str, column: Union[ Sequence[KeyedColumnElement[Any]], KeyedColumnElement[Any] ], ) -> ColumnProperty[Any]: columns = util.to_list(column) mapped_column = [] for c in columns: mc = self.persist_selectable.corresponding_column(c) if mc is None: mc = self.local_table.corresponding_column(c) if mc is not None: # if the column is in the local table but not the # mapped table, this corresponds to adding a # column after the fact to the local table. # [ticket:1523] self.persist_selectable._refresh_for_new_column(mc) mc = self.persist_selectable.corresponding_column(c) if mc is None: raise sa_exc.ArgumentError( "When configuring property '%s' on %s, " "column '%s' is not represented in the mapper's " "table. Use the `column_property()` function to " "force this column to be mapped as a read-only " "attribute." % (key, self, c) ) mapped_column.append(mc) return properties.ColumnProperty(*mapped_column) def _reconcile_prop_with_incoming_columns( self, key: str, existing_prop: MapperProperty[Any], warn_only: bool, incoming_prop: Optional[ColumnProperty[Any]] = None, single_column: Optional[KeyedColumnElement[Any]] = None, ) -> ColumnProperty[Any]: if incoming_prop and ( self.concrete or not isinstance(existing_prop, properties.ColumnProperty) ): return incoming_prop existing_column = existing_prop.columns[0] if incoming_prop and existing_column in incoming_prop.columns: return incoming_prop if incoming_prop is None: assert single_column is not None incoming_column = single_column equated_pair_key = (existing_prop.columns[0], incoming_column) else: assert single_column is None incoming_column = incoming_prop.columns[0] equated_pair_key = (incoming_column, existing_prop.columns[0]) if ( ( not self._inherits_equated_pairs or (equated_pair_key not in self._inherits_equated_pairs) ) and not existing_column.shares_lineage(incoming_column) and existing_column is not self.version_id_col and incoming_column is not self.version_id_col ): msg = ( "Implicitly combining column %s with column " "%s under attribute '%s'. Please configure one " "or more attributes for these same-named columns " "explicitly." % ( existing_prop.columns[-1], incoming_column, key, ) ) if warn_only: util.warn(msg) else: raise sa_exc.InvalidRequestError(msg) # existing properties.ColumnProperty from an inheriting # mapper. make a copy and append our column to it new_prop = existing_prop.copy() new_prop.columns.insert(0, incoming_column) self._log( "inserting column to existing list " "in properties.ColumnProperty %s", key, ) return new_prop # type: ignore @util.preload_module("sqlalchemy.orm.descriptor_props") def _property_from_column( self, key: str, column: KeyedColumnElement[Any], ) -> ColumnProperty[Any]: """generate/update a :class:`.ColumnProperty` given a :class:`_schema.Column` or other SQL expression object.""" descriptor_props = util.preloaded.orm_descriptor_props prop = self._props.get(key) if isinstance(prop, properties.ColumnProperty): return self._reconcile_prop_with_incoming_columns( key, prop, single_column=column, warn_only=prop.parent is not self, ) elif prop is None or isinstance( prop, descriptor_props.ConcreteInheritedProperty ): return self._make_prop_from_column(key, column) else: raise sa_exc.ArgumentError( "WARNING: when configuring property '%s' on %s, " "column '%s' conflicts with property '%r'. " "To resolve this, map the column to the class under a " "different name in the 'properties' dictionary. Or, " "to remove all awareness of the column entirely " "(including its availability as a foreign key), " "use the 'include_properties' or 'exclude_properties' " "mapper arguments to control specifically which table " "columns get mapped." % (key, self, column.key, prop) ) @util.langhelpers.tag_method_for_warnings( "This warning originated from the `configure_mappers()` process, " "which was invoked automatically in response to a user-initiated " "operation.", sa_exc.SAWarning, ) def _check_configure(self) -> None: if self.registry._new_mappers: _configure_registries({self.registry}, cascade=True) def _post_configure_properties(self) -> None: """Call the ``init()`` method on all ``MapperProperties`` attached to this mapper. This is a deferred configuration step which is intended to execute once all mappers have been constructed. """ self._log("_post_configure_properties() started") l = [(key, prop) for key, prop in self._props.items()] for key, prop in l: self._log("initialize prop %s", key) if prop.parent is self and not prop._configure_started: prop.init() if prop._configure_finished: prop.post_instrument_class(self) self._log("_post_configure_properties() complete") self.configured = True def add_properties(self, dict_of_properties): """Add the given dictionary of properties to this mapper, using `add_property`. """ for key, value in dict_of_properties.items(): self.add_property(key, value) def add_property( self, key: str, prop: Union[Column[Any], MapperProperty[Any]] ) -> None: """Add an individual MapperProperty to this mapper. If the mapper has not been configured yet, just adds the property to the initial properties dictionary sent to the constructor. If this Mapper has already been configured, then the given MapperProperty is configured immediately. """ prop = self._configure_property( key, prop, init=self.configured, warn_for_existing=True ) assert isinstance(prop, MapperProperty) self._init_properties[key] = prop def _expire_memoizations(self) -> None: for mapper in self.iterate_to_root(): mapper._reset_memoizations() @property def _log_desc(self) -> str: return ( "(" + self.class_.__name__ + "|" + ( self.local_table is not None and self.local_table.description or str(self.local_table) ) + ")" ) def _log(self, msg: str, *args: Any) -> None: self.logger.info("%s " + msg, *((self._log_desc,) + args)) def _log_debug(self, msg: str, *args: Any) -> None: self.logger.debug("%s " + msg, *((self._log_desc,) + args)) def __repr__(self) -> str: return "<Mapper at 0x%x; %s>" % (id(self), self.class_.__name__) def __str__(self) -> str: return "Mapper[%s(%s)]" % ( self.class_.__name__, ( self.local_table.description if self.local_table is not None else self.persist_selectable.description ), ) def _is_orphan(self, state: InstanceState[_O]) -> bool: orphan_possible = False for mapper in self.iterate_to_root(): for key, cls in mapper._delete_orphans: orphan_possible = True has_parent = attributes.manager_of_class(cls).has_parent( state, key, optimistic=state.has_identity ) if self.legacy_is_orphan and has_parent: return False elif not self.legacy_is_orphan and not has_parent: return True if self.legacy_is_orphan: return orphan_possible else: return False def has_property(self, key: str) -> bool: return key in self._props def get_property( self, key: str, _configure_mappers: bool = False ) -> MapperProperty[Any]: """return a MapperProperty associated with the given key.""" if _configure_mappers: self._check_configure() try: return self._props[key] except KeyError as err: raise sa_exc.InvalidRequestError( f"Mapper '{self}' has no property '{key}'. If this property " "was indicated from other mappers or configure events, ensure " "registry.configure() has been called." ) from err def get_property_by_column( self, column: ColumnElement[_T] ) -> MapperProperty[_T]: """Given a :class:`_schema.Column` object, return the :class:`.MapperProperty` which maps this column.""" return self._columntoproperty[column] @property def iterate_properties(self): """return an iterator of all MapperProperty objects.""" return iter(self._props.values()) def _mappers_from_spec( self, spec: Any, selectable: Optional[FromClause] ) -> Sequence[Mapper[Any]]: """given a with_polymorphic() argument, return the set of mappers it represents. Trims the list of mappers to just those represented within the given selectable, if present. This helps some more legacy-ish mappings. """ if spec == "*": mappers = list(self.self_and_descendants) elif spec: mapper_set: Set[Mapper[Any]] = set() for m in util.to_list(spec): m = _class_to_mapper(m) if not m.isa(self): raise sa_exc.InvalidRequestError( "%r does not inherit from %r" % (m, self) ) if selectable is None: mapper_set.update(m.iterate_to_root()) else: mapper_set.add(m) mappers = [m for m in self.self_and_descendants if m in mapper_set] else: mappers = [] if selectable is not None: tables = set( sql_util.find_tables(selectable, include_aliases=True) ) mappers = [m for m in mappers if m.local_table in tables] return mappers def _selectable_from_mappers( self, mappers: Iterable[Mapper[Any]], innerjoin: bool ) -> FromClause: """given a list of mappers (assumed to be within this mapper's inheritance hierarchy), construct an outerjoin amongst those mapper's mapped tables. """ from_obj = self.persist_selectable for m in mappers: if m is self: continue if m.concrete: raise sa_exc.InvalidRequestError( "'with_polymorphic()' requires 'selectable' argument " "when concrete-inheriting mappers are used." ) elif not m.single: if innerjoin: from_obj = from_obj.join( m.local_table, m.inherit_condition ) else: from_obj = from_obj.outerjoin( m.local_table, m.inherit_condition ) return from_obj @HasMemoized.memoized_attribute def _version_id_has_server_side_value(self) -> bool: vid_col = self.version_id_col if vid_col is None: return False elif not isinstance(vid_col, Column): return True else: return vid_col.server_default is not None or ( vid_col.default is not None and ( not vid_col.default.is_scalar and not vid_col.default.is_callable ) ) @HasMemoized.memoized_attribute def _single_table_criteria_component(self): if self.single and self.inherits and self.polymorphic_on is not None: hierarchy = tuple( m.polymorphic_identity for m in self.self_and_descendants if not m.polymorphic_abstract ) return ( self.polymorphic_on._annotate( {"parententity": self, "parentmapper": self} ), hierarchy, ) else: return None @HasMemoized.memoized_attribute def _single_table_criterion(self): component = self._single_table_criteria_component if component is not None: return component[0].in_(component[1]) else: return None @HasMemoized.memoized_attribute def _has_aliased_polymorphic_fromclause(self): """return True if with_polymorphic[1] is an aliased fromclause, like a subquery. As of #8168, polymorphic adaption with ORMAdapter is used only if this is present. """ return self.with_polymorphic and isinstance( self.with_polymorphic[1], expression.AliasedReturnsRows, ) @HasMemoized.memoized_attribute def _should_select_with_poly_adapter(self): """determine if _MapperEntity or _ORMColumnEntity will need to use polymorphic adaption when setting up a SELECT as well as fetching rows for mapped classes and subclasses against this Mapper. moved here from context.py for #8456 to generalize the ruleset for this condition. """ # this has been simplified as of #8456. # rule is: if we have a with_polymorphic or a concrete-style # polymorphic selectable, *or* if the base mapper has either of those, # we turn on the adaption thing. if not, we do *no* adaption. # # (UPDATE for #8168: the above comment was not accurate, as we were # still saying "do polymorphic" if we were using an auto-generated # flattened JOIN for with_polymorphic.) # # this splits the behavior among the "regular" joined inheritance # and single inheritance mappers, vs. the "weird / difficult" # concrete and joined inh mappings that use a with_polymorphic of # some kind or polymorphic_union. # # note we have some tests in test_polymorphic_rel that query against # a subclass, then refer to the superclass that has a with_polymorphic # on it (such as test_join_from_polymorphic_explicit_aliased_three). # these tests actually adapt the polymorphic selectable (like, the # UNION or the SELECT subquery with JOIN in it) to be just the simple # subclass table. Hence even if we are a "plain" inheriting mapper # but our base has a wpoly on it, we turn on adaption. This is a # legacy case we should probably disable. # # # UPDATE: simplified way more as of #8168. polymorphic adaption # is turned off even if with_polymorphic is set, as long as there # is no user-defined aliased selectable / subquery configured. # this scales back the use of polymorphic adaption in practice # to basically no cases except for concrete inheritance with a # polymorphic base class. # return ( self._has_aliased_polymorphic_fromclause or self._requires_row_aliasing or (self.base_mapper._has_aliased_polymorphic_fromclause) or self.base_mapper._requires_row_aliasing ) @HasMemoized.memoized_attribute def _with_polymorphic_mappers(self) -> Sequence[Mapper[Any]]: self._check_configure() if not self.with_polymorphic: return [] return self._mappers_from_spec(*self.with_polymorphic) @HasMemoized.memoized_attribute def _post_inspect(self): """This hook is invoked by attribute inspection. E.g. when Query calls: coercions.expect(roles.ColumnsClauseRole, ent, keep_inspect=True) This allows the inspection process run a configure mappers hook. """ self._check_configure() @HasMemoized_ro_memoized_attribute def _with_polymorphic_selectable(self) -> FromClause: if not self.with_polymorphic: return self.persist_selectable spec, selectable = self.with_polymorphic if selectable is not None: return selectable else: return self._selectable_from_mappers( self._mappers_from_spec(spec, selectable), False ) with_polymorphic_mappers = _with_polymorphic_mappers """The list of :class:`_orm.Mapper` objects included in the default "polymorphic" query. """ @HasMemoized_ro_memoized_attribute def _insert_cols_evaluating_none(self): return { table: frozenset( col for col in columns if col.type.should_evaluate_none ) for table, columns in self._cols_by_table.items() } @HasMemoized.memoized_attribute def _insert_cols_as_none(self): return { table: frozenset( col.key for col in columns if not col.primary_key and not col.server_default and not col.default and not col.type.should_evaluate_none ) for table, columns in self._cols_by_table.items() } @HasMemoized.memoized_attribute def _propkey_to_col(self): return { table: {self._columntoproperty[col].key: col for col in columns} for table, columns in self._cols_by_table.items() } @HasMemoized.memoized_attribute def _pk_keys_by_table(self): return { table: frozenset([col.key for col in pks]) for table, pks in self._pks_by_table.items() } @HasMemoized.memoized_attribute def _pk_attr_keys_by_table(self): return { table: frozenset([self._columntoproperty[col].key for col in pks]) for table, pks in self._pks_by_table.items() } @HasMemoized.memoized_attribute def _server_default_cols( self, ) -> Mapping[FromClause, FrozenSet[Column[Any]]]: return { table: frozenset( [ col for col in cast("Iterable[Column[Any]]", columns) if col.server_default is not None or ( col.default is not None and col.default.is_clause_element ) ] ) for table, columns in self._cols_by_table.items() } @HasMemoized.memoized_attribute def _server_onupdate_default_cols( self, ) -> Mapping[FromClause, FrozenSet[Column[Any]]]: return { table: frozenset( [ col for col in cast("Iterable[Column[Any]]", columns) if col.server_onupdate is not None or ( col.onupdate is not None and col.onupdate.is_clause_element ) ] ) for table, columns in self._cols_by_table.items() } @HasMemoized.memoized_attribute def _server_default_col_keys(self) -> Mapping[FromClause, FrozenSet[str]]: return { table: frozenset(col.key for col in cols if col.key is not None) for table, cols in self._server_default_cols.items() } @HasMemoized.memoized_attribute def _server_onupdate_default_col_keys( self, ) -> Mapping[FromClause, FrozenSet[str]]: return { table: frozenset(col.key for col in cols if col.key is not None) for table, cols in self._server_onupdate_default_cols.items() } @HasMemoized.memoized_attribute def _server_default_plus_onupdate_propkeys(self) -> Set[str]: result: Set[str] = set() col_to_property = self._columntoproperty for table, columns in self._server_default_cols.items(): result.update( col_to_property[col].key for col in columns.intersection(col_to_property) ) for table, columns in self._server_onupdate_default_cols.items(): result.update( col_to_property[col].key for col in columns.intersection(col_to_property) ) return result @HasMemoized.memoized_instancemethod def __clause_element__(self): annotations: Dict[str, Any] = { "entity_namespace": self, "parententity": self, "parentmapper": self, } if self.persist_selectable is not self.local_table: # joined table inheritance, with polymorphic selectable, # etc. annotations["dml_table"] = self.local_table._annotate( { "entity_namespace": self, "parententity": self, "parentmapper": self, } )._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) return self.selectable._annotate(annotations)._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) @util.memoized_property def select_identity_token(self): return ( expression.null() ._annotate( { "entity_namespace": self, "parententity": self, "parentmapper": self, "identity_token": True, } ) ._set_propagate_attrs( {"compile_state_plugin": "orm", "plugin_subject": self} ) ) @property def selectable(self) -> FromClause: """The :class:`_schema.FromClause` construct this :class:`_orm.Mapper` selects from by default. Normally, this is equivalent to :attr:`.persist_selectable`, unless the ``with_polymorphic`` feature is in use, in which case the full "polymorphic" selectable is returned. """ return self._with_polymorphic_selectable def _with_polymorphic_args( self, spec: Any = None, selectable: Union[Literal[False, None], FromClause] = False, innerjoin: bool = False, ) -> Tuple[Sequence[Mapper[Any]], FromClause]: if selectable not in (None, False): selectable = coercions.expect( roles.FromClauseRole, selectable, ) if self.with_polymorphic: if not spec: spec = self.with_polymorphic[0] if selectable is False: selectable = self.with_polymorphic[1] elif selectable is False: selectable = None mappers = self._mappers_from_spec(spec, selectable) if selectable is not None: return mappers, selectable else: return mappers, self._selectable_from_mappers(mappers, innerjoin) @HasMemoized.memoized_attribute def _polymorphic_properties(self): return list( self._iterate_polymorphic_properties( self._with_polymorphic_mappers ) ) @property def _all_column_expressions(self): poly_properties = self._polymorphic_properties adapter = self._polymorphic_adapter return [ adapter.columns[c] if adapter else c for prop in poly_properties if isinstance(prop, properties.ColumnProperty) and prop._renders_in_subqueries for c in prop.columns ] def _columns_plus_keys(self, polymorphic_mappers=()): if polymorphic_mappers: poly_properties = self._iterate_polymorphic_properties( polymorphic_mappers ) else: poly_properties = self._polymorphic_properties return [ (prop.key, prop.columns[0]) for prop in poly_properties if isinstance(prop, properties.ColumnProperty) ] @HasMemoized.memoized_attribute def _polymorphic_adapter(self) -> Optional[orm_util.ORMAdapter]: if self._has_aliased_polymorphic_fromclause: return orm_util.ORMAdapter( orm_util._TraceAdaptRole.MAPPER_POLYMORPHIC_ADAPTER, self, selectable=self.selectable, equivalents=self._equivalent_columns, limit_on_entity=False, ) else: return None def _iterate_polymorphic_properties(self, mappers=None): """Return an iterator of MapperProperty objects which will render into a SELECT.""" if mappers is None: mappers = self._with_polymorphic_mappers if not mappers: for c in self.iterate_properties: yield c else: # in the polymorphic case, filter out discriminator columns # from other mappers, as these are sometimes dependent on that # mapper's polymorphic selectable (which we don't want rendered) for c in util.unique_list( chain( *[ list(mapper.iterate_properties) for mapper in [self] + mappers ] ) ): if getattr(c, "_is_polymorphic_discriminator", False) and ( self.polymorphic_on is None or c.columns[0] is not self.polymorphic_on ): continue yield c @HasMemoized.memoized_attribute def attrs(self) -> util.ReadOnlyProperties[MapperProperty[Any]]: """A namespace of all :class:`.MapperProperty` objects associated this mapper. This is an object that provides each property based on its key name. For instance, the mapper for a ``User`` class which has ``User.name`` attribute would provide ``mapper.attrs.name``, which would be the :class:`.ColumnProperty` representing the ``name`` column. The namespace object can also be iterated, which would yield each :class:`.MapperProperty`. :class:`_orm.Mapper` has several pre-filtered views of this attribute which limit the types of properties returned, including :attr:`.synonyms`, :attr:`.column_attrs`, :attr:`.relationships`, and :attr:`.composites`. .. warning:: The :attr:`_orm.Mapper.attrs` accessor namespace is an instance of :class:`.OrderedProperties`. This is a dictionary-like object which includes a small number of named methods such as :meth:`.OrderedProperties.items` and :meth:`.OrderedProperties.values`. When accessing attributes dynamically, favor using the dict-access scheme, e.g. ``mapper.attrs[somename]`` over ``getattr(mapper.attrs, somename)`` to avoid name collisions. .. seealso:: :attr:`_orm.Mapper.all_orm_descriptors` """ self._check_configure() return util.ReadOnlyProperties(self._props) @HasMemoized.memoized_attribute def all_orm_descriptors(self) -> util.ReadOnlyProperties[InspectionAttr]: """A namespace of all :class:`.InspectionAttr` attributes associated with the mapped class. These attributes are in all cases Python :term:`descriptors` associated with the mapped class or its superclasses. This namespace includes attributes that are mapped to the class as well as attributes declared by extension modules. It includes any Python descriptor type that inherits from :class:`.InspectionAttr`. This includes :class:`.QueryableAttribute`, as well as extension types such as :class:`.hybrid_property`, :class:`.hybrid_method` and :class:`.AssociationProxy`. To distinguish between mapped attributes and extension attributes, the attribute :attr:`.InspectionAttr.extension_type` will refer to a constant that distinguishes between different extension types. The sorting of the attributes is based on the following rules: 1. Iterate through the class and its superclasses in order from subclass to superclass (i.e. iterate through ``cls.__mro__``) 2. For each class, yield the attributes in the order in which they appear in ``__dict__``, with the exception of those in step 3 below. The order will be the same as that of the class' construction, with the exception of attributes that were added after the fact by the application or the mapper. 3. If a certain attribute key is also in the superclass ``__dict__``, then it's included in the iteration for that class, and not the class in which it first appeared. The above process produces an ordering that is deterministic in terms of the order in which attributes were assigned to the class. When dealing with a :class:`.QueryableAttribute`, the :attr:`.QueryableAttribute.property` attribute refers to the :class:`.MapperProperty` property, which is what you get when referring to the collection of mapped properties via :attr:`_orm.Mapper.attrs`. .. warning:: The :attr:`_orm.Mapper.all_orm_descriptors` accessor namespace is an instance of :class:`.OrderedProperties`. This is a dictionary-like object which includes a small number of named methods such as :meth:`.OrderedProperties.items` and :meth:`.OrderedProperties.values`. When accessing attributes dynamically, favor using the dict-access scheme, e.g. ``mapper.all_orm_descriptors[somename]`` over ``getattr(mapper.all_orm_descriptors, somename)`` to avoid name collisions. .. seealso:: :attr:`_orm.Mapper.attrs` """ return util.ReadOnlyProperties( dict(self.class_manager._all_sqla_attributes()) ) @HasMemoized.memoized_attribute @util.preload_module("sqlalchemy.orm.descriptor_props") def _pk_synonyms(self) -> Dict[str, str]: """return a dictionary of {syn_attribute_name: pk_attr_name} for all synonyms that refer to primary key columns """ descriptor_props = util.preloaded.orm_descriptor_props pk_keys = {prop.key for prop in self._identity_key_props} return { syn.key: syn.name for k, syn in self._props.items() if isinstance(syn, descriptor_props.SynonymProperty) and syn.name in pk_keys } @HasMemoized.memoized_attribute @util.preload_module("sqlalchemy.orm.descriptor_props") def synonyms(self) -> util.ReadOnlyProperties[SynonymProperty[Any]]: """Return a namespace of all :class:`.Synonym` properties maintained by this :class:`_orm.Mapper`. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ descriptor_props = util.preloaded.orm_descriptor_props return self._filter_properties(descriptor_props.SynonymProperty) @util.ro_non_memoized_property def entity_namespace(self) -> _EntityNamespace: return self.class_ # type: ignore[return-value] @HasMemoized.memoized_attribute def column_attrs(self) -> util.ReadOnlyProperties[ColumnProperty[Any]]: """Return a namespace of all :class:`.ColumnProperty` properties maintained by this :class:`_orm.Mapper`. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ return self._filter_properties(properties.ColumnProperty) @HasMemoized.memoized_attribute @util.preload_module("sqlalchemy.orm.relationships") def relationships( self, ) -> util.ReadOnlyProperties[RelationshipProperty[Any]]: """A namespace of all :class:`.Relationship` properties maintained by this :class:`_orm.Mapper`. .. warning:: the :attr:`_orm.Mapper.relationships` accessor namespace is an instance of :class:`.OrderedProperties`. This is a dictionary-like object which includes a small number of named methods such as :meth:`.OrderedProperties.items` and :meth:`.OrderedProperties.values`. When accessing attributes dynamically, favor using the dict-access scheme, e.g. ``mapper.relationships[somename]`` over ``getattr(mapper.relationships, somename)`` to avoid name collisions. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ return self._filter_properties( util.preloaded.orm_relationships.RelationshipProperty ) @HasMemoized.memoized_attribute @util.preload_module("sqlalchemy.orm.descriptor_props") def composites(self) -> util.ReadOnlyProperties[CompositeProperty[Any]]: """Return a namespace of all :class:`.Composite` properties maintained by this :class:`_orm.Mapper`. .. seealso:: :attr:`_orm.Mapper.attrs` - namespace of all :class:`.MapperProperty` objects. """ return self._filter_properties( util.preloaded.orm_descriptor_props.CompositeProperty ) def _filter_properties( self, type_: Type[_MP] ) -> util.ReadOnlyProperties[_MP]: self._check_configure() return util.ReadOnlyProperties( util.OrderedDict( (k, v) for k, v in self._props.items() if isinstance(v, type_) ) ) @HasMemoized.memoized_attribute def _get_clause(self): """create a "get clause" based on the primary key. this is used by query.get() and many-to-one lazyloads to load this item by primary key. """ params = [ ( primary_key, sql.bindparam("pk_%d" % idx, type_=primary_key.type), ) for idx, primary_key in enumerate(self.primary_key, 1) ] return ( sql.and_(*[k == v for (k, v) in params]), util.column_dict(params), ) @HasMemoized.memoized_attribute def _equivalent_columns(self) -> _EquivalentColumnMap: """Create a map of all equivalent columns, based on the determination of column pairs that are equated to one another based on inherit condition. This is designed to work with the queries that util.polymorphic_union comes up with, which often don't include the columns from the base table directly (including the subclass table columns only). The resulting structure is a dictionary of columns mapped to lists of equivalent columns, e.g.:: {tablea.col1: {tableb.col1, tablec.col1}, tablea.col2: {tabled.col2}} """ # noqa: E501 result: _EquivalentColumnMap = {} def visit_binary(binary): if binary.operator == operators.eq: if binary.left in result: result[binary.left].add(binary.right) else: result[binary.left] = {binary.right} if binary.right in result: result[binary.right].add(binary.left) else: result[binary.right] = {binary.left} for mapper in self.base_mapper.self_and_descendants: if mapper.inherit_condition is not None: visitors.traverse( mapper.inherit_condition, {}, {"binary": visit_binary} ) return result def _is_userland_descriptor(self, assigned_name: str, obj: Any) -> bool: if isinstance( obj, ( _MappedAttribute, instrumentation.ClassManager, expression.ColumnElement, ), ): return False else: return assigned_name not in self._dataclass_fields @HasMemoized.memoized_attribute def _dataclass_fields(self): return [f.name for f in util.dataclass_fields(self.class_)] def _should_exclude(self, name, assigned_name, local, column): """determine whether a particular property should be implicitly present on the class. This occurs when properties are propagated from an inherited class, or are applied from the columns present in the mapped table. """ if column is not None and sql_base._never_select_column(column): return True # check for class-bound attributes and/or descriptors, # either local or from an inherited class # ignore dataclass field default values if local: if self.class_.__dict__.get( assigned_name, None ) is not None and self._is_userland_descriptor( assigned_name, self.class_.__dict__[assigned_name] ): return True else: attr = self.class_manager._get_class_attr_mro(assigned_name, None) if attr is not None and self._is_userland_descriptor( assigned_name, attr ): return True if ( self.include_properties is not None and name not in self.include_properties and (column is None or column not in self.include_properties) ): self._log("not including property %s" % (name)) return True if self.exclude_properties is not None and ( name in self.exclude_properties or (column is not None and column in self.exclude_properties) ): self._log("excluding property %s" % (name)) return True return False def common_parent(self, other: Mapper[Any]) -> bool: """Return true if the given mapper shares a common inherited parent as this mapper.""" return self.base_mapper is other.base_mapper def is_sibling(self, other: Mapper[Any]) -> bool: """return true if the other mapper is an inheriting sibling to this one. common parent but different branch """ return ( self.base_mapper is other.base_mapper and not self.isa(other) and not other.isa(self) ) def _canload( self, state: InstanceState[Any], allow_subtypes: bool ) -> bool: s = self.primary_mapper() if self.polymorphic_on is not None or allow_subtypes: return _state_mapper(state).isa(s) else: return _state_mapper(state) is s def isa(self, other: Mapper[Any]) -> bool: """Return True if the this mapper inherits from the given mapper.""" m: Optional[Mapper[Any]] = self while m and m is not other: m = m.inherits return bool(m) def iterate_to_root(self) -> Iterator[Mapper[Any]]: m: Optional[Mapper[Any]] = self while m: yield m m = m.inherits @HasMemoized.memoized_attribute def self_and_descendants(self) -> Sequence[Mapper[Any]]: """The collection including this mapper and all descendant mappers. This includes not just the immediately inheriting mappers but all their inheriting mappers as well. """ descendants = [] stack = deque([self]) while stack: item = stack.popleft() descendants.append(item) stack.extend(item._inheriting_mappers) return util.WeakSequence(descendants) def polymorphic_iterator(self) -> Iterator[Mapper[Any]]: """Iterate through the collection including this mapper and all descendant mappers. This includes not just the immediately inheriting mappers but all their inheriting mappers as well. To iterate through an entire hierarchy, use ``mapper.base_mapper.polymorphic_iterator()``. """ return iter(self.self_and_descendants) def primary_mapper(self) -> Mapper[Any]: """Return the primary mapper corresponding to this mapper's class key (class).""" return self.class_manager.mapper @property def primary_base_mapper(self) -> Mapper[Any]: return self.class_manager.mapper.base_mapper def _result_has_identity_key(self, result, adapter=None): pk_cols: Sequence[ColumnElement[Any]] if adapter is not None: pk_cols = [adapter.columns[c] for c in self.primary_key] else: pk_cols = self.primary_key rk = result.keys() for col in pk_cols: if col not in rk: return False else: return True def identity_key_from_row( self, row: Union[Row[Unpack[TupleAny]], RowMapping], identity_token: Optional[Any] = None, adapter: Optional[ORMAdapter] = None, ) -> _IdentityKeyType[_O]: """Return an identity-map key for use in storing/retrieving an item from the identity map. :param row: A :class:`.Row` or :class:`.RowMapping` produced from a result set that selected from the ORM mapped primary key columns. .. versionchanged:: 2.0 :class:`.Row` or :class:`.RowMapping` are accepted for the "row" argument """ pk_cols: Sequence[ColumnElement[Any]] if adapter is not None: pk_cols = [adapter.columns[c] for c in self.primary_key] else: pk_cols = self.primary_key mapping: RowMapping if hasattr(row, "_mapping"): mapping = row._mapping else: mapping = row # type: ignore[assignment] return ( self._identity_class, tuple(mapping[column] for column in pk_cols), identity_token, ) def identity_key_from_primary_key( self, primary_key: Tuple[Any, ...], identity_token: Optional[Any] = None, ) -> _IdentityKeyType[_O]: """Return an identity-map key for use in storing/retrieving an item from an identity map. :param primary_key: A list of values indicating the identifier. """ return ( self._identity_class, tuple(primary_key), identity_token, ) def identity_key_from_instance(self, instance: _O) -> _IdentityKeyType[_O]: """Return the identity key for the given instance, based on its primary key attributes. If the instance's state is expired, calling this method will result in a database check to see if the object has been deleted. If the row no longer exists, :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. This value is typically also found on the instance state under the attribute name `key`. """ state = attributes.instance_state(instance) return self._identity_key_from_state(state, PassiveFlag.PASSIVE_OFF) def _identity_key_from_state( self, state: InstanceState[_O], passive: PassiveFlag = PassiveFlag.PASSIVE_RETURN_NO_VALUE, ) -> _IdentityKeyType[_O]: dict_ = state.dict manager = state.manager return ( self._identity_class, tuple( [ manager[prop.key].impl.get(state, dict_, passive) for prop in self._identity_key_props ] ), state.identity_token, ) def primary_key_from_instance(self, instance: _O) -> Tuple[Any, ...]: """Return the list of primary key values for the given instance. If the instance's state is expired, calling this method will result in a database check to see if the object has been deleted. If the row no longer exists, :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. """ state = attributes.instance_state(instance) identity_key = self._identity_key_from_state( state, PassiveFlag.PASSIVE_OFF ) return identity_key[1] @HasMemoized.memoized_attribute def _persistent_sortkey_fn(self): key_fns = [col.type.sort_key_function for col in self.primary_key] if set(key_fns).difference([None]): def key(state): return tuple( key_fn(val) if key_fn is not None else val for key_fn, val in zip(key_fns, state.key[1]) ) else: def key(state): return state.key[1] return key @HasMemoized.memoized_attribute def _identity_key_props(self): return [self._columntoproperty[col] for col in self.primary_key] @HasMemoized.memoized_attribute def _all_pk_cols(self): collection: Set[ColumnClause[Any]] = set() for table in self.tables: collection.update(self._pks_by_table[table]) return collection @HasMemoized.memoized_attribute def _should_undefer_in_wildcard(self): cols: Set[ColumnElement[Any]] = set(self.primary_key) if self.polymorphic_on is not None: cols.add(self.polymorphic_on) return cols @HasMemoized.memoized_attribute def _primary_key_propkeys(self): return {self._columntoproperty[col].key for col in self._all_pk_cols} def _get_state_attr_by_column( self, state: InstanceState[_O], dict_: _InstanceDict, column: ColumnElement[Any], passive: PassiveFlag = PassiveFlag.PASSIVE_RETURN_NO_VALUE, ) -> Any: prop = self._columntoproperty[column] return state.manager[prop.key].impl.get(state, dict_, passive=passive) def _set_committed_state_attr_by_column(self, state, dict_, column, value): prop = self._columntoproperty[column] state.manager[prop.key].impl.set_committed_value(state, dict_, value) def _set_state_attr_by_column(self, state, dict_, column, value): prop = self._columntoproperty[column] state.manager[prop.key].impl.set(state, dict_, value, None) def _get_committed_attr_by_column(self, obj, column): state = attributes.instance_state(obj) dict_ = attributes.instance_dict(obj) return self._get_committed_state_attr_by_column( state, dict_, column, passive=PassiveFlag.PASSIVE_OFF ) def _get_committed_state_attr_by_column( self, state, dict_, column, passive=PassiveFlag.PASSIVE_RETURN_NO_VALUE ): prop = self._columntoproperty[column] return state.manager[prop.key].impl.get_committed_value( state, dict_, passive=passive ) def _optimized_get_statement(self, state, attribute_names): """assemble a WHERE clause which retrieves a given state by primary key, using a minimized set of tables. Applies to a joined-table inheritance mapper where the requested attribute names are only present on joined tables, not the base table. The WHERE clause attempts to include only those tables to minimize joins. """ props = self._props col_attribute_names = set(attribute_names).intersection( state.mapper.column_attrs.keys() ) tables: Set[FromClause] = set( chain( *[ sql_util.find_tables(c, check_columns=True) for key in col_attribute_names for c in props[key].columns ] ) ) if self.base_mapper.local_table in tables: return None def visit_binary(binary): leftcol = binary.left rightcol = binary.right if leftcol is None or rightcol is None: return if leftcol.table not in tables: leftval = self._get_committed_state_attr_by_column( state, state.dict, leftcol, passive=PassiveFlag.PASSIVE_NO_INITIALIZE, ) if leftval in orm_util._none_set: raise _OptGetColumnsNotAvailable() binary.left = sql.bindparam( None, leftval, type_=binary.right.type ) elif rightcol.table not in tables: rightval = self._get_committed_state_attr_by_column( state, state.dict, rightcol, passive=PassiveFlag.PASSIVE_NO_INITIALIZE, ) if rightval in orm_util._none_set: raise _OptGetColumnsNotAvailable() binary.right = sql.bindparam( None, rightval, type_=binary.right.type ) allconds: List[ColumnElement[bool]] = [] start = False # as of #7507, from the lowest base table on upwards, # we include all intermediary tables. for mapper in reversed(list(self.iterate_to_root())): if mapper.local_table in tables: start = True elif not isinstance(mapper.local_table, expression.TableClause): return None if start and not mapper.single: assert mapper.inherits assert not mapper.concrete assert mapper.inherit_condition is not None allconds.append(mapper.inherit_condition) tables.add(mapper.local_table) # only the bottom table needs its criteria to be altered to fit # the primary key ident - the rest of the tables upwards to the # descendant-most class should all be present and joined to each # other. try: _traversed = visitors.cloned_traverse( allconds[0], {}, {"binary": visit_binary} ) except _OptGetColumnsNotAvailable: return None else: allconds[0] = _traversed cond = sql.and_(*allconds) cols = [] for key in col_attribute_names: cols.extend(props[key].columns) return ( sql.select(*cols) .where(cond) .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) ) def _iterate_to_target_viawpoly(self, mapper): if self.isa(mapper): prev = self for m in self.iterate_to_root(): yield m if m is not prev and prev not in m._with_polymorphic_mappers: break prev = m if m is mapper: break @HasMemoized.memoized_attribute def _would_selectinload_combinations_cache(self): return {} def _would_selectin_load_only_from_given_mapper(self, super_mapper): """return True if this mapper would "selectin" polymorphic load based on the given super mapper, and not from a setting from a subclass. given:: class A: ... class B(A): __mapper_args__ = {"polymorphic_load": "selectin"} class C(B): ... class D(B): __mapper_args__ = {"polymorphic_load": "selectin"} ``inspect(C)._would_selectin_load_only_from_given_mapper(inspect(B))`` returns True, because C does selectin loading because of B's setting. OTOH, ``inspect(D) ._would_selectin_load_only_from_given_mapper(inspect(B))`` returns False, because D does selectin loading because of its own setting; when we are doing a selectin poly load from B, we want to filter out D because it would already have its own selectin poly load set up separately. Added as part of #9373. """ cache = self._would_selectinload_combinations_cache try: return cache[super_mapper] except KeyError: pass # assert that given object is a supermapper, meaning we already # strong reference it directly or indirectly. this allows us # to not worry that we are creating new strongrefs to unrelated # mappers or other objects. assert self.isa(super_mapper) mapper = super_mapper for m in self._iterate_to_target_viawpoly(mapper): if m.polymorphic_load == "selectin": retval = m is super_mapper break else: retval = False cache[super_mapper] = retval return retval def _should_selectin_load(self, enabled_via_opt, polymorphic_from): if not enabled_via_opt: # common case, takes place for all polymorphic loads mapper = polymorphic_from for m in self._iterate_to_target_viawpoly(mapper): if m.polymorphic_load == "selectin": return m else: # uncommon case, selectin load options were used enabled_via_opt = set(enabled_via_opt) enabled_via_opt_mappers = {e.mapper: e for e in enabled_via_opt} for entity in enabled_via_opt.union([polymorphic_from]): mapper = entity.mapper for m in self._iterate_to_target_viawpoly(mapper): if ( m.polymorphic_load == "selectin" or m in enabled_via_opt_mappers ): return enabled_via_opt_mappers.get(m, m) return None @util.preload_module("sqlalchemy.orm.strategy_options") def _subclass_load_via_in(self, entity, polymorphic_from): """Assemble a that can load the columns local to this subclass as a SELECT with IN. """ strategy_options = util.preloaded.orm_strategy_options assert self.inherits if self.polymorphic_on is not None: polymorphic_prop = self._columntoproperty[self.polymorphic_on] keep_props = set([polymorphic_prop] + self._identity_key_props) else: keep_props = set(self._identity_key_props) disable_opt = strategy_options.Load(entity) enable_opt = strategy_options.Load(entity) classes_to_include = {self} m: Optional[Mapper[Any]] = self.inherits while ( m is not None and m is not polymorphic_from and m.polymorphic_load == "selectin" ): classes_to_include.add(m) m = m.inherits for prop in self.column_attrs + self.relationships: # skip prop keys that are not instrumented on the mapped class. # this is primarily the "_sa_polymorphic_on" property that gets # created for an ad-hoc polymorphic_on SQL expression, issue #8704 if prop.key not in self.class_manager: continue if prop.parent in classes_to_include or prop in keep_props: # "enable" options, to turn on the properties that we want to # load by default (subject to options from the query) if not isinstance(prop, StrategizedProperty): continue enable_opt = enable_opt._set_generic_strategy( # convert string name to an attribute before passing # to loader strategy. note this must be in terms # of given entity, such as AliasedClass, etc. (getattr(entity.entity_namespace, prop.key),), dict(prop.strategy_key), _reconcile_to_other=True, ) else: # "disable" options, to turn off the properties from the # superclass that we *don't* want to load, applied after # the options from the query to override them disable_opt = disable_opt._set_generic_strategy( # convert string name to an attribute before passing # to loader strategy. note this must be in terms # of given entity, such as AliasedClass, etc. (getattr(entity.entity_namespace, prop.key),), {"do_nothing": True}, _reconcile_to_other=False, ) primary_key = list(self.primary_key) in_expr: ColumnElement[Any] if len(primary_key) > 1: in_expr = sql.tuple_(*primary_key) else: in_expr = primary_key[0] if entity.is_aliased_class: assert entity.mapper is self q = sql.select(entity).set_label_style( LABEL_STYLE_TABLENAME_PLUS_COL ) in_expr = entity._adapter.traverse(in_expr) primary_key = [entity._adapter.traverse(k) for k in primary_key] q = q.where( in_expr.in_(sql.bindparam("primary_keys", expanding=True)) ).order_by(*primary_key) else: q = sql.select(self).set_label_style( LABEL_STYLE_TABLENAME_PLUS_COL ) q = q.where( in_expr.in_(sql.bindparam("primary_keys", expanding=True)) ).order_by(*primary_key) return q, enable_opt, disable_opt @HasMemoized.memoized_attribute def _subclass_load_via_in_mapper(self): # the default is loading this mapper against the basemost mapper return self._subclass_load_via_in(self, self.base_mapper) def cascade_iterator( self, type_: str, state: InstanceState[_O], halt_on: Optional[Callable[[InstanceState[Any]], bool]] = None, ) -> Iterator[ Tuple[object, Mapper[Any], InstanceState[Any], _InstanceDict] ]: r"""Iterate each element and its mapper in an object graph, for all relationships that meet the given cascade rule. :param type\_: The name of the cascade rule (i.e. ``"save-update"``, ``"delete"``, etc.). .. note:: the ``"all"`` cascade is not accepted here. For a generic object traversal function, see :ref:`faq_walk_objects`. :param state: The lead InstanceState. child items will be processed per the relationships defined for this object's mapper. :return: the method yields individual object instances. .. seealso:: :ref:`unitofwork_cascades` :ref:`faq_walk_objects` - illustrates a generic function to traverse all objects without relying on cascades. """ visited_states: Set[InstanceState[Any]] = set() prp, mpp = object(), object() assert state.mapper.isa(self) # this is actually a recursive structure, fully typing it seems # a little too difficult for what it's worth here visitables: Deque[ Tuple[ Deque[Any], object, Optional[InstanceState[Any]], Optional[_InstanceDict], ] ] visitables = deque( [(deque(state.mapper._props.values()), prp, state, state.dict)] ) while visitables: iterator, item_type, parent_state, parent_dict = visitables[-1] if not iterator: visitables.pop() continue if item_type is prp: prop = iterator.popleft() if not prop.cascade or type_ not in prop.cascade: continue assert parent_state is not None assert parent_dict is not None queue = deque( prop.cascade_iterator( type_, parent_state, parent_dict, visited_states, halt_on, ) ) if queue: visitables.append((queue, mpp, None, None)) elif item_type is mpp: ( instance, instance_mapper, corresponding_state, corresponding_dict, ) = iterator.popleft() yield ( instance, instance_mapper, corresponding_state, corresponding_dict, ) visitables.append( ( deque(instance_mapper._props.values()), prp, corresponding_state, corresponding_dict, ) ) @HasMemoized.memoized_attribute def _compiled_cache(self): return util.LRUCache(self._compiled_cache_size) @HasMemoized.memoized_attribute def _multiple_persistence_tables(self): return len(self.tables) > 1 @HasMemoized.memoized_attribute def _sorted_tables(self): table_to_mapper: Dict[TableClause, Mapper[Any]] = {} for mapper in self.base_mapper.self_and_descendants: for t in mapper.tables: table_to_mapper.setdefault(t, mapper) extra_dependencies = [] for table, mapper in table_to_mapper.items(): super_ = mapper.inherits if super_: extra_dependencies.extend( [(super_table, table) for super_table in super_.tables] ) def skip(fk): # attempt to skip dependencies that are not # significant to the inheritance chain # for two tables that are related by inheritance. # while that dependency may be important, it's technically # not what we mean to sort on here. parent = table_to_mapper.get(fk.parent.table) dep = table_to_mapper.get(fk.column.table) if ( parent is not None and dep is not None and dep is not parent and dep.inherit_condition is not None ): cols = set(sql_util._find_columns(dep.inherit_condition)) if parent.inherit_condition is not None: cols = cols.union( sql_util._find_columns(parent.inherit_condition) ) return fk.parent not in cols and fk.column not in cols else: return fk.parent not in cols return False sorted_ = sql_util.sort_tables( table_to_mapper, skip_fn=skip, extra_dependencies=extra_dependencies, ) ret = util.OrderedDict() for t in sorted_: ret[t] = table_to_mapper[t] return ret def _memo(self, key: Any, callable_: Callable[[], _T]) -> _T: if key in self._memoized_values: return cast(_T, self._memoized_values[key]) else: self._memoized_values[key] = value = callable_() return value @util.memoized_property def _table_to_equated(self): """memoized map of tables to collections of columns to be synchronized upwards to the base mapper.""" result: util.defaultdict[ Table, List[ Tuple[ Mapper[Any], List[Tuple[ColumnElement[Any], ColumnElement[Any]]], ] ], ] = util.defaultdict(list) def set_union(x, y): return x.union(y) for table in self._sorted_tables: cols = set(table.c) for m in self.iterate_to_root(): if m._inherits_equated_pairs and cols.intersection( reduce( set_union, [l.proxy_set for l, r in m._inherits_equated_pairs], ) ): result[table].append((m, m._inherits_equated_pairs)) return result
Mapper
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pycodestyle/E30.py
{ "start": 6545, "end": 7294 }
class ____: ... # end # E302 @overload def fn(a: int) -> int: ... @overload def fn(a: str) -> str: ... def fn(a: int | str) -> int | str: ... # end # E303 def fn(): _ = None # arbitrary comment def inner(): # E306 not expected (pycodestyle detects E306) pass # end # E303 def fn(): _ = None # arbitrary comment def inner(): # E306 not expected (pycodestyle detects E306) pass # end # E303 print() print() # end # E303:5:1 print() # comment print() # end # E303:5:5 E303:8:5 def a(): print() # comment # another comment print() # end # E303 #!python """This class docstring comes on line 5. It gives error E303: too many blank lines (3) """ # end # E303
B
python
facebook__pyre-check
source/interprocedural_analyses/taint/test/integration/string_conversion.py
{ "start": 3003, "end": 3777 }
class ____(float): def __str__(self): x = _test_source() return f"{x}" # __str__ method may introduce sources def base_exception(e: Exception): return f"{type(e)}" def function_call_target_1(error_type: Union[str, Type[Exception]]): f"{error_type}" # Resolved as an implicit call to a function def function_call_target_2(x: Union[B, C]): f"{x.__class__}" # Resolved as an implicit call to a function def multiple_callees_same_location(): s = StrIsTainted() # The call to str() and the attribute access to str.__add__ have the same location in the AST. return str(s) + "hello" def optional_str(condition: bool): s: Optional[StrIsTainted] = None if condition: s = StrIsTainted() eval(str(s))
OverrideStr
python
airbytehq__airbyte
airbyte-ci/connectors/pipelines/pipelines/airbyte_ci/connectors/migrate_to_inline_schemas/pipeline.py
{ "start": 4378, "end": 7332 }
class ____(Step): context: ConnectorContext title = "Migrate connector to inline schemas." def __init__(self, context: PipelineContext) -> None: super().__init__(context) async def _run(self) -> StepResult: connector = self.context.connector connector_path = connector.code_directory manifest_path = connector.manifest_path python_path = connector.python_source_dir_path logger = self.logger json_streams = _parse_json_streams(python_path) if len(json_streams) == 0: return StepResult(step=self, status=StepStatus.SKIPPED, stderr="No JSON streams found.") data = read_yaml(manifest_path) if "streams" not in data: return StepResult( step=self, status=StepStatus.SKIPPED, stderr="No manifest streams found.", ) # find the explit ones and remove or udpate json_loaders = _find_json_loaders(data, []) for loader in json_loaders: logger.info(f" JSON loader ref: {loader.ref} -> {loader.file_path}") _update_json_loaders(connector_path, data, json_streams, json_loaders) # go through the declared streams and update the inline schemas for stream in data["streams"]: if isinstance(stream, str): # see if reference if stream.startswith("#"): yaml_stream = _load_reference(data, stream) if not yaml_stream: logger.info(f" Stream reference not found: {stream}") continue if not _get_stream_name(yaml_stream): logger.info(f" Stream reference name not found: {stream}") continue else: logger.info(f" Stream reference unknown: {stream}") continue else: yaml_stream = stream if not yaml_stream: logger.info(f" !! Yaml stream not found: {stream}") continue stream_name = _get_stream_name(yaml_stream) if not stream_name: logger.info(f" !! Stream name not found: {stream}") continue if yaml_stream.get("schema_loader") and yaml_stream["schema_loader"].get("type") == "InlineSchemaLoader": continue yaml_stream["schema_loader"] = {} schema_loader = yaml_stream["schema_loader"] _update_inline_schema(schema_loader, json_streams, stream_name) write_yaml(data, manifest_path) # await format_prettier([manifest_path], logger=logger) for json_stream in json_streams.values(): logger.info(f" !! JSON schema not found: {json_stream.name}") return StepResult(step=self, status=StepStatus.SUCCESS)
InlineSchemas
python
PrefectHQ__prefect
tests/test_tasks.py
{ "start": 174341, "end": 177285 }
class ____: @pytest.mark.parametrize( "args, kwargs", [ ((42, 42), {}), ([42, 42], {}), ((), {"x": 42, "y": 42}), ([42], {"y": 42}), ], ) async def test_delay_with_args_kwargs(self, args, kwargs): @task def multiply(x, y): return x * y future = multiply.delay(*args, **kwargs) assert await get_background_task_run_parameters( multiply, future.state.state_details.task_parameters_id ) == {"parameters": {"x": 42, "y": 42}, "context": ANY} def test_delay_with_duplicate_values(self): @task def add(x, y): return x + y with pytest.raises( ParameterBindError, match="multiple values for argument 'x'" ): add.delay(42, x=42) def test_delay_missing_values(self): @task def add(x, y): return x + y with pytest.raises( ParameterBindError, match="missing a required argument: 'y'" ): add.delay(42) async def test_delay_handles_default_values(self): @task def add(x, y=42): return x + y future = add.delay(42) assert await get_background_task_run_parameters( add, future.state.state_details.task_parameters_id ) == {"parameters": {"x": 42, "y": 42}, "context": ANY} async def test_delay_overrides_defaults(self): @task def add(x, y=42): return x + y future = add.delay(42, y=100) assert await get_background_task_run_parameters( add, future.state.state_details.task_parameters_id ) == {"parameters": {"x": 42, "y": 100}, "context": ANY} async def test_delay_with_variadic_args(self): @task def add_em_up(*args): return sum(args) future = add_em_up.delay(42, 42) assert await get_background_task_run_parameters( add_em_up, future.state.state_details.task_parameters_id ) == {"parameters": {"args": (42, 42)}, "context": ANY} async def test_delay_with_variadic_kwargs(self): @task def add_em_up(**kwargs): return sum(kwargs.values()) future = add_em_up.delay(x=42, y=42) assert await get_background_task_run_parameters( add_em_up, future.state.state_details.task_parameters_id ) == {"parameters": {"kwargs": {"x": 42, "y": 42}}, "context": ANY} async def test_delay_with_variadic_args_and_kwargs(self): @task def add_em_up(*args, **kwargs): return sum(args) + sum(kwargs.values()) future = add_em_up.delay(42, y=42) assert await get_background_task_run_parameters( add_em_up, future.state.state_details.task_parameters_id ) == {"parameters": {"args": (42,), "kwargs": {"y": 42}}, "context": ANY}
TestDelay
python
google__jax
tests/pallas/tpu_pallas_test.py
{ "start": 114610, "end": 137157 }
class ____(PallasBaseTest): """Tests for reported bugs. Only pass in interpret mode unless fixed.""" def test_casting_bool_to_i8(self): if not jtu.is_device_tpu_at_least(5): self.skipTest("Operation not supported on this TPU version.") if not jtu.if_cloud_tpu_at_least(2025, 9, 12): self.skipTest("Needs a newer libtpu") def greater_than(x: jax.Array, y: jax.Array): def kernel(x_ref, y_ref, out_ref): cmp = (x_ref[...] > y_ref[...]).astype(jnp.int8) out_ref[:] = cmp in_specs = [ pl.BlockSpec(memory_space=pltpu.VMEM), pl.BlockSpec(memory_space=pltpu.VMEM), ] out_specs = pl.BlockSpec(memory_space=pltpu.VMEM) return self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct(x.shape, jnp.int8), in_specs=in_specs, out_specs=out_specs, )(x, y) key = jax.random.key(0) x_key, y_key = jax.random.split(key) x = jax.random.normal(x_key, (128, 16), dtype=jnp.float32) y = jax.random.normal(y_key, (128, 16), dtype=jnp.float32) out = jax.jit(greater_than)(x, y) expected = (x > y).astype(jnp.int8) np.testing.assert_array_equal(out, expected) def test_float32_stack(self): x = np.arange(128, dtype=jnp.float32).reshape(1, 128) y = x + 128 def kernel(x_ref, y_ref, out_ref): out_ref[...] = jnp.stack([x_ref[...], y_ref[...]], axis=1) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((1, 2, 128), jnp.float32) )(x, y) np.testing.assert_array_equal(out, np.stack([x, y], axis=1)) def test_lane_to_chunk_reshape_bf16(self): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if not jtu.is_device_tpu_at_least(4): self.skipTest('Operation not supported on this TPU version.') x = np.arange(256 * 1024, dtype=jnp.bfloat16).reshape(1, 256, 1024) def kernel(x_ref, out_ref): out_ref[...] = jnp.reshape(x_ref[...], (1, 256, 8, 128)) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((1, 256, 8, 128), jnp.bfloat16) )(x) np.testing.assert_array_equal(out, np.reshape(x, (1, 256, 8, 128))) def test_lane_to_chunk_broadcast_fp32(self): x = np.arange(256 * 128, dtype=jnp.float32).reshape(1, 256, 128) def kernel(x_ref, out_ref): out_ref[...] = jnp.broadcast_to( jnp.expand_dims(x_ref[...], 2), (1, 256, 8, 128) ) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((1, 256, 8, 128), jnp.float32) )(x) np.testing.assert_array_equal( out, np.broadcast_to(np.expand_dims(x, 2), (1, 256, 8, 128)) ) @only_passes_in_interpret() def test_lane_dynamic_slice(self): """b/346849973""" x = np.arange(128, dtype=jnp.float32) def kernel(x_ref, out_ref): out_ref[...] = lax.dynamic_slice_in_dim(x_ref[...], 64, 1, 0) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((1,), jnp.float32) )(x) np.testing.assert_array_equal(out, x[64:65]) def test_lane_broadcast_bf16(self): x = np.arange(256, dtype=jnp.bfloat16).reshape(256, 1) def kernel(x_ref, out_ref): out_ref[...] = jnp.broadcast_to(x_ref[...], (256, 512)) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((256, 512), jnp.bfloat16) )(x) np.testing.assert_array_equal(out, np.broadcast_to(x, (256, 512))) def test_bfloat16_to_uint32_bitcast(self): x = np.arange(16 * 2 * 256, dtype=jnp.bfloat16).reshape(16, 2, 256) def kernel(x_ref, out_ref): out_ref[...] = pltpu.bitcast(x_ref[...], jnp.uint32) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((16, 1, 256), jnp.uint32) )(x) np.testing.assert_array_equal(out, state_utils.bitcast(x, jnp.uint32)) @parameterized.product( shape=((128, 64), (15, 256), (16, 256)), shift=(2, 3), axis=(0, 1), ) def test_roll_partial_with_static_shift( self, shape: tuple[int, int], shift: int, axis: int ): if ( not jtu.if_cloud_tpu_at_least(2025, 7, 19) and shape[0] % 8 and axis == 0 ): self.skipTest('Needs a newer libtpu for non-sublane-aligned shape') x = np.arange(math.prod(shape), dtype=jnp.float32).reshape(shape) def kernel(x_ref, out_ref): out_ref[...] = pltpu.roll(x_ref[...], shift=shift, axis=axis) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct(shape, jnp.float32) )(x) np.testing.assert_array_equal(out, np.roll(x, shift, axis)) @parameterized.product( shape_and_axis=(((128, 64), 1), ((63, 256), 0)), ) def test_roll_partial_with_dynamic_shift( self, shape_and_axis: tuple[tuple[int, int], int] ): if self.INTERPRET: self.skipTest('Test only applies to non-interpret mode.') shape, axis = shape_and_axis x = np.arange(math.prod(shape), dtype=jnp.float32).reshape(shape) def kernel(x_ref, out_ref): amount = x_ref[0, 0].astype(jnp.int32) out_ref[...] = pltpu.roll(x_ref[...], amount, axis=axis) with self.assertRaisesRegex(Exception, 'unsupported unaligned shape'): _ = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct(shape, jnp.float32) )(x) def test_retiling1(self): if not jtu.if_cloud_tpu_at_least(2025, 7, 2): self.skipTest('Needs a newer libtpu') x = np.arange(1024, dtype=jnp.bfloat16).reshape(1024) def kernel(x_ref, out_ref): out_ref[:, :] = jnp.reshape(x_ref[:].astype(jnp.float32), (8, 128)) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((8, 128), jnp.float32), )(x) np.testing.assert_array_equal(out, np.reshape(x, (8, 128))) def test_retiling2(self): x = np.arange(1 * 8 * 1024, dtype=jnp.bfloat16).reshape(1, 8, 1024) def kernel(x_ref, out_ref): out_ref[:, :, :] = jnp.reshape( x_ref[:, 7, :].astype(jnp.float32), (1, 8, 128) ) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((1, 8, 128), jnp.float32), )(x) np.testing.assert_array_equal(out, np.reshape(x[:, 7, :], (1, 8, 128))) def test_sublane_adding_shape_cast_f32(self): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') x = np.arange(8 * 128, dtype=jnp.float32).reshape(8, 128) def kernel(x_ref, out_ref): out_ref[:, 0, :] = x_ref[:, :] out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((8, 1, 128), jnp.float32) )(x) np.testing.assert_array_equal(out, np.reshape(x, (8, 1, 128))) def test_sublane_adding_shape_cast_bf16(self): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if not jtu.is_device_tpu_at_least(4): self.skipTest('Operation not supported on this TPU version.') x = np.arange(8 * 128, dtype=jnp.bfloat16).reshape(8, 128) def kernel(x_ref, out_ref): out_ref[:, 0, :] = x_ref[:, :] out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((8, 1, 128), jnp.bfloat16) )(x) np.testing.assert_array_equal(out, np.reshape(x, (8, 1, 128))) def test_mixed_strides(self): x = np.full((8, 128), 1.0, dtype=jnp.float32) y = np.full((8, 2, 128), 2.0, dtype=jnp.bfloat16) def kernel(x_ref, y_ref, out_ref): out_ref[:, :] = x_ref[:, :] + y_ref[:, 1, :].astype(jnp.float32) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((8, 128), jnp.float32), )(x, y) np.testing.assert_array_equal( out, np.full((8, 128), 3.0, dtype=jnp.float32) ) def test_sum(self): x = np.zeros((8, 2, 8, 128), dtype=jnp.float32) def kernel(x_ref, out_ref): out_ref[:, :, :] = jnp.sum(x_ref[:, :, :, :], 2) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((8, 2, 128), jnp.float32) )(x) np.testing.assert_array_equal(out, np.zeros((8, 2, 128), dtype=jnp.float32)) def test_transpose(self): if not jtu.if_cloud_tpu_at_least(2025, 9, 19): self.skipTest('Needs a newer libTPU') x = np.zeros((8, 2, 8, 128), dtype=jnp.float32) def kernel(x_ref, out_ref): out_ref[:, :, :, :] = jnp.transpose(x_ref[:, :, :, :], (0, 2, 1, 3)) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((8, 8, 2, 128), jnp.float32) )(x) np.testing.assert_array_equal( out, np.zeros((8, 8, 2, 128), dtype=jnp.float32) ) # (q, m, n) -> (q, m * n) where n % 128 == 0 @parameterized.parameters( (q, m, n, dtype) for (q, m, n), dtype in itertools.product( [ (32, 16, 512), (20, 19, 512), (5, 3, 256), (9, 15, 256), (3, 2, 256), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_two_minor_dims_to_R2(self, q, m, n, dtype): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape( x_ref.shape[0], x_ref.shape[1] * x_ref.shape[2] ) x = np.arange(q * m * n, dtype=dtype).reshape(q, m, n) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q, m * n), dtype), )(x) jax.numpy.set_printoptions(threshold=jax.numpy.inf) expected = x.reshape([q, m * n]) np.testing.assert_array_equal(out, x.reshape([q, m * n])) # (q, m, n, k) -> (q, m, n * k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (3, 8, 17, 512), (1, 8, 9, 256), (1, 8, 3, 256), (10, 1, 4, 256), (1, 2, 2, 256), (1, 9, 3, 256), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_two_minor_dims_to_R3(self, q, m, n, k, dtype): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape( x_ref.shape[0], x_ref.shape[1], x_ref.shape[2] * x_ref.shape[3] ) x = np.arange(q * m * n * k, dtype=dtype).reshape(q, m, n, k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q, m, n * k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q, m, n * k])) # (p, q, m, n, k) -> (p, q * m * n * k) where k % 128 == 0 @parameterized.parameters( (p, q, m, n, k, dtype) for (p, q, m, n, k), dtype in itertools.product( [ (5, 3, 8, 17, 512), (6, 1, 8, 9, 256), (16, 1, 8, 3, 256), (3, 2, 1, 4, 256), (1, 7, 2, 2, 256), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_four_minor_dims_to_R2(self, p, q, m, n, k, dtype): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape( x_ref.shape[0], x_ref.shape[1] * x_ref.shape[2] * x_ref.shape[3] * x_ref.shape[4], ) x = np.arange(p * q * m * n * k, dtype=dtype).reshape(p, q, m, n, k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((p, q * m * n * k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([p, q * m * n * k])) # (q, m, n, k) -> (q, m, 1, n * k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (10, 1, 4, 256), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_two_minor_dims_preserve_rank(self, q, m, n, k, dtype): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = ( x_ref[...] .reshape( x_ref.shape[0], x_ref.shape[1], x_ref.shape[2] * x_ref.shape[3] ) .reshape( x_ref.shape[0], 1, x_ref.shape[1], x_ref.shape[2] * x_ref.shape[3] ) ) q, m, n, k = 10, 1, 4, 256 x = np.arange(q * m * n * k, dtype=dtype).reshape(q, m, n, k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q, m, 1, n * k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q, m, 1, n * k])) # (q, m, n, k) -> (q * m, n * k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (3, 9, 17, 512), (1, 8, 9, 256), (1, 8, 3, 384), (10, 1, 4, 256), (1, 2, 2, 256), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_fold_two_leading_dims_and_two_minor_dims_R4_to_R2( self, q, m, n, k, dtype ): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape( x_ref.shape[0] * x_ref.shape[1], x_ref.shape[2] * x_ref.shape[3] ) x = np.arange(q * m * n * k, dtype=dtype).reshape(q, m, n, k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q * m, n * k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q * m, n * k])) # (q * m, n, k) -> (q, m, n * k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (2, 2, 17, 512), (3, 2, 3, 256), (1, 5, 4, 384), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_unfold_leading_dim_and_fold_two_minor_dims_R3_to_R3( self, q, m, n, k, dtype ): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape( q, m, x_ref.shape[1] * x_ref.shape[2], ) x = np.arange(q * m * n * k, dtype=dtype).reshape(q * m, n, k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q, m, n * k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q, m, n * k])) # (q * m, n * k) -> (q, m, n, k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (2, 2, 17, 512), (3, 2, 3, 256), (1, 5, 4, 384), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_unfold_leading_and_minor_dims_R2_to_R4( self, q, m, n, k, dtype ): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape(q, m, n, k) x = np.arange(q * m * n * k, dtype=dtype).reshape(q * m, n * k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q, m, n, k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q, m, n, k])) # (q, m, n * k) -> (q * m, n, k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (2, 2, 17, 512), (3, 2, 8, 256), (1, 5, 4, 384), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_fold_leading_dims_and_unfold_minor_dim( self, q, m, n, k, dtype ): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape(q * m, n, k) x = np.arange(q * m * n * k, dtype=dtype).reshape(q, m, n * k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q * m, n, k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q * m, n, k])) # (q, m, n, k) -> (q, m * n, k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (2, 2, 17, 512), (3, 2, 8, 256), (1, 5, 4, 384), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_fold_middle_dims(self, q, m, n, k, dtype): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape(q, m * n, k) x = np.arange(q * m * n * k, dtype=dtype).reshape(q, m, n, k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q, m * n, k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q, m * n, k])) # (q, m * n, k) -> (q, m, n, k) where k % 128 == 0 @parameterized.parameters( (q, m, n, k, dtype) for (q, m, n, k), dtype in itertools.product( [ (2, 2, 17, 512), (3, 2, 8, 256), (9, 5, 4, 384), ], [jnp.float32, jnp.uint32, jnp.bfloat16, jnp.int8], ) ) def test_reshape_unfold_middle_dims(self, q, m, n, k, dtype): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape(q, m, n, k) x = np.arange(q * m * n * k, dtype=dtype).reshape(q, m * n, k) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q, m, n, k), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q, m, n, k])) @parameterized.parameters([jnp.int8, jnp.bfloat16, jnp.float32]) def test_reshape_shift_factor_from_minor_to_major(self, dtype): if not jtu.if_cloud_tpu_at_least(2025, 7, 12): self.skipTest('Needs a newer libTPU') if (dtype == jnp.bfloat16 and not jtu.is_device_tpu_at_least(4)) or ( dtype == jnp.int8 and not jtu.is_device_tpu_at_least(5) ): self.skipTest('Operation not supported on this TPU version.') q0, m0, n0 = 1, 3, 7680 q1, m1, n1 = 3, 10, 768 def kernel(x_ref, y_ref): y_ref[...] = x_ref[...].reshape(q1, m1, n1) x = np.arange(q0 * m0 * n0, dtype=dtype).reshape(q0, m0, n0) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct((q1, m1, n1), dtype), )(x) np.testing.assert_array_equal(out, x.reshape([q1, m1, n1])) @parameterized.product( dtype=[jnp.float32, jnp.bfloat16, jnp.float8_e4m3fn], ) def test_reshape_fold_minormost_dim(self, dtype): if not jtu.if_cloud_tpu_at_least(2025, 10, 22): self.skipTest('Needs a newer libTPU') packing = 32 // (8 * np.dtype(dtype).itemsize) in_shape = (8 * packing, 128) out_shape = (1, math.prod(in_shape)) def kernel(x_ref, y_ref): x = x_ref[...] y_ref[...] = x.reshape(out_shape) x = np.random.randn(*in_shape).astype(dtype) out = self.pallas_call( kernel, out_shape=jax.ShapeDtypeStruct(out_shape, dtype), )(x) np.testing.assert_array_equal(out, x.reshape(out_shape)) def test_dynamic_grid_with_smem_output(self): if self.INTERPRET: self.skipTest('Fail on interpreter.') if not jtu.if_cloud_tpu_at_least(2025, 11, 3): self.skipTest('Needs a newer libTPU') def body(_, o_ref): o_ref[0] = lax.cond( pl.program_id(0) == 0, lambda: 1, lambda: o_ref[0] + 1 ) def wrapper_dynamic(n): return self.pallas_call( body, out_shape=pltpu.SMEM((1,), dtype=jnp.int32), grid_spec=pl.GridSpec( grid=(n,), in_specs=[pl.BlockSpec(memory_space=pltpu.SMEM)], out_specs=pl.BlockSpec(memory_space=pltpu.SMEM), ), )(n) n = jax.random.randint(jax.random.key(0), (1,), 1, 10, dtype=jnp.int32) compiled_kernel = jax.jit(wrapper_dynamic).lower(n).compile() np.testing.assert_array_equal(compiled_kernel(n), n)
MiscellaneousTest
python
weaviate__weaviate-python-client
weaviate/collections/classes/config_vectors.py
{ "start": 12720, "end": 76417 }
class ____: @staticmethod def self_provided( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ): """Create a vector using no vectorizer. You will need to provide the vectors yourself. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default """ return _VectorConfigCreate( name=name, vectorizer=_VectorizerConfigCreate(vectorizer=Vectorizers.NONE), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def custom( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, module_name: str, module_config: Optional[Dict[str, Any]] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using a custom module that is not currently supported by the SDK. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. module_name: The name of the custom module to use. module_config: The configuration of the custom module to use. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_VectorizerCustomConfig( vectorizer=_EnumLikeStr(module_name), module_config=module_config ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_cohere( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, model: Optional[Union[CohereModel, str]] = None, dimensions: Optional[int] = None, truncate: Optional[CohereTruncation] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-cohere` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/cohere/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. dimensions: Number of output dimensions. Defaults to `None`, which uses the server-defined default. truncate: The truncation strategy to use. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. Raises: pydantic.ValidationError: If `model` is not a valid value from the `CohereModel` type or if `truncate` is not a valid value from the `CohereTruncation` type. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecCohereConfig( baseURL=base_url, model=model, dimensions=dimensions, truncate=truncate, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_cohere( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, model: Optional[Union[CohereMultimodalModel, str]] = None, dimensions: Optional[int] = None, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, truncate: Optional[CohereTruncation] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec_cohere` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/cohere/embeddings-multimodal) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. image_fields: The image fields to use in vectorization. model: The model to use. Defaults to `None`, which uses the server-defined default. dimensions: Number of output dimensions. Defaults to `None`, which uses the server-defined default. text_fields: The text fields to use in vectorization. truncate: The truncation strategy to use. Defaults to `None`, which uses the server-defined default. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default Raises: pydantic.ValidationError: If `model` is not a valid value from the `CohereMultimodalModel` type or if `truncate` is not a valid value from the `CohereTruncation` type. """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecCohereConfig( baseURL=base_url, model=model, dimensions=dimensions, truncate=truncate, imageFields=_map_multi2vec_fields(image_fields), textFields=_map_multi2vec_fields(text_fields), ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod @typing_deprecated( "The contextionary model is old and not recommended for use. If you are looking for a local, lightweight model try the new text2vec-model2vec module instead." ) def text2vec_contextionary( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec_contextionary` module. See the [documentation](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-contextionary) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecContextionaryConfig( vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_model2vec( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, inference_url: Optional[str] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec_model2vec` module. See the [documentation](https://docs.weaviate.io/weaviate/model-providers/model2vec) for detailed usage. Args: name: The name of the vector. inference_url: The inferenceUrl to use where API requests should go. Defaults to `None`, which uses the server-defined default. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecModel2VecConfig( vectorizeClassName=vectorize_collection_name, inferenceUrl=inference_url, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_databricks( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, endpoint: str, instruction: Optional[str] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-databricks` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/databricks/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. endpoint: The endpoint to use. instruction: The instruction strategy to use. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecDatabricksConfig( endpoint=endpoint, instruction=instruction, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_mistral( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, model: Optional[str] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-mistral` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/mistral/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecMistralConfig( baseURL=base_url, model=model, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_morph( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, model: Optional[str] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-morph` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/morph/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecMorphConfig( baseURL=base_url, model=model, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_ollama( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, api_endpoint: Optional[str] = None, model: Optional[str] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-ollama` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/ollama/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. api_endpoint: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. Docker users may need to specify an alias, such as `http://host.docker.internal:11434` so that the container can access the host machine. model: The model to use. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecOllamaConfig( apiEndpoint=api_endpoint, model=model, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_openai( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, dimensions: Optional[int] = None, model: Optional[Union[OpenAIModel, str]] = None, model_version: Optional[str] = None, type_: Optional[OpenAIType] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-openai` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/openai/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. dimensions: Number of dimensions. Applicable to v3 OpenAI models only. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. model_version: The model version to use. Defaults to `None`, which uses the server-defined default. type_: The type of model to use. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. Raises: pydantic.ValidationError: If `type_` is not a valid value from the `OpenAIType` type. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecOpenAIConfig( baseURL=base_url, model=model, modelVersion=model_version, type_=type_, vectorizeClassName=vectorize_collection_name, dimensions=dimensions, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_aws( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, endpoint: Optional[str] = None, model: Optional[Union[AWSModel, str]], region: str, service: Union[AWSService, str] = "bedrock", source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-aws` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/aws/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. endpoint: The endpoint to use. Defaults to `None`, which uses the server-defined default. model: The model to use, REQUIRED. region: The AWS region to run the model from, REQUIRED. service: The AWS service to use. Defaults to `bedrock`. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecAWSConfig( model=model, endpoint=endpoint, region=region, service=service, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_aws( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, dimensions: Optional[int] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, model: Optional[str] = None, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, region: Optional[str] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec-aws` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/aws/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. dimensions: The number of dimensions to use. Defaults to `None`, which uses the server-defined default. image_fields: The image fields to use in vectorization. model: The model to use. Defaults to `None`, which uses the server-defined default. text_fields: The text fields to use in vectorization. region: The AWS region to run the model from. Defaults to `None`, which uses the server-defined defau vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default Raises: pydantic.ValidationError: If `model` is not a valid value from the `JinaMultimodalModel` type. """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecAWSConfig( region=region, model=model, dimensions=dimensions, imageFields=_map_multi2vec_fields(image_fields), textFields=_map_multi2vec_fields(text_fields), ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def img2vec_neural( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, image_fields: List[str], vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `img2vec-neural` module. See the [documentation](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/img2vec-neural) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. image_fields: The image fields to use. This is a required field and must match the property fields of the collection that are defined as `DataType.BLOB`. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default Raises: pydantic.ValidationError: If `image_fields` is not a `list`. """ return _VectorConfigCreate( name=name, vectorizer=_Img2VecNeuralConfig(imageFields=image_fields), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_clip( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, inference_url: Optional[str] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec-clip` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/transformers/embeddings-multimodal) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. inference_url: The inference url to use where API requests should go. Defaults to `None`, which uses the server-defined default. image_fields: The image fields to use in vectorization. text_fields: The text fields to use in vectorization. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecClipConfig( imageFields=_map_multi2vec_fields(image_fields), textFields=_map_multi2vec_fields(text_fields), inferenceUrl=inference_url, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_google( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, dimensions: Optional[int] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, location: str, model: Optional[str] = None, project_id: str, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, video_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, video_interval_seconds: Optional[int] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec-google` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/google/embeddings-multimodal) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. dimensions: The number of dimensions to use. Defaults to `None`, which uses the server-defined default. image_fields: The image fields to use in vectorization. location: Where the model runs. REQUIRED. model: The model to use. Defaults to `None`, which uses the server-defined default. project_id: The project ID to use, REQUIRED. text_fields: The text fields to use in vectorization. video_fields: The video fields to use in vectorization. video_interval_seconds: Length of a video interval. Defaults to `None`, which uses the server-defined default. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecGoogleConfig( projectId=project_id, location=location, imageFields=_map_multi2vec_fields(image_fields), textFields=_map_multi2vec_fields(text_fields), videoFields=_map_multi2vec_fields(video_fields), dimensions=dimensions, modelId=model, videoIntervalSeconds=video_interval_seconds, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_bind( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, audio_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, depth_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, imu_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, thermal_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, video_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec-bind` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/imagebind/embeddings-multimodal) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. audio_fields: The audio fields to use in vectorization. depth_fields: The depth fields to use in vectorization. image_fields: The image fields to use in vectorization. imu_fields: The IMU fields to use in vectorization. text_fields: The text fields to use in vectorization. thermal_fields: The thermal fields to use in vectorization. video_fields: The video fields to use in vectorization. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecBindConfig( audioFields=_map_multi2vec_fields(audio_fields), depthFields=_map_multi2vec_fields(depth_fields), imageFields=_map_multi2vec_fields(image_fields), IMUFields=_map_multi2vec_fields(imu_fields), textFields=_map_multi2vec_fields(text_fields), thermalFields=_map_multi2vec_fields(thermal_fields), videoFields=_map_multi2vec_fields(video_fields), ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_voyageai( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, model: Optional[Union[VoyageMultimodalModel, str]] = None, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, truncation: Optional[bool] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec-voyageai` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/voyageai/embeddings-multimodal) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. image_fields: The image fields to use in vectorization. model: The model to use. Defaults to `None`, which uses the server-defined default. output_encoding: The output encoding to use. Defaults to `None`, which uses the server-defined default. text_fields: The text fields to use in vectorization. truncation: The truncation strategy to use. Defaults to `None`, which uses the server-defined default. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default Raises: pydantic.ValidationError: If `model` is not a valid value from the `VoyageaiMultimodalModel` type. """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecVoyageaiConfig( baseURL=base_url, model=model, truncation=truncation, imageFields=_map_multi2vec_fields(image_fields), textFields=_map_multi2vec_fields(text_fields), ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_nvidia( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, model: Optional[str] = None, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, truncation: Optional[bool] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec-nvidia` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/nvidia/embeddings-multimodal) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. image_fields: The image fields to use in vectorization. model: The model to use. Defaults to `None`, which uses the server-defined default. text_fields: The text fields to use in vectorization. truncation: The truncation strategy to use. Defaults to `None`, which uses the server-defined default. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default Raises: pydantic.ValidationError: If `model` is not a valid value from the `NvidiaMultimodalModel` type. """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecNvidiaConfig( baseURL=base_url, model=model, truncation=truncation, imageFields=_map_multi2vec_fields(image_fields), textFields=_map_multi2vec_fields(text_fields), ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def ref2vec_centroid( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, method: Literal["mean"] = "mean", reference_properties: List[str], vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `ref2vec-centroid` module. See the [documentation](https://weaviate.io/developers/weaviate/modules/retriever-vectorizer-modules/text2vec-gpt4all) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. method: The method to use. Defaults to `mean`. reference_properties: The reference properties to use in vectorization, REQUIRED. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default """ return _VectorConfigCreate( name=name, vectorizer=_Ref2VecCentroidConfig( referenceProperties=reference_properties, method=method, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_azure_openai( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, deployment_id: str, dimensions: Optional[int] = None, model: Optional[str] = None, resource_name: str, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-openai` module running with Azure. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/openai-azure/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. deployment_id: The deployment ID to use, REQUIRED. dimensions: The dimensionality of the vectors. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. resource_name: The resource name to use, REQUIRED. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecAzureOpenAIConfig( baseURL=base_url, dimensions=dimensions, model=model, resourceName=resource_name, deploymentId=deployment_id, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod @typing_deprecated( "The `text2vec-gpt4all` vectorizer is deprecated and will be removed in a future release. See the docs (https://docs.weaviate.io/weaviate/model-providers) for alternatives." ) def text2vec_gpt4all( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-gpt4all` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/gpt4all/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecGPT4AllConfig( vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_huggingface( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, endpoint_url: Optional[AnyHttpUrl] = None, model: Optional[str] = None, passage_model: Optional[str] = None, query_model: Optional[str] = None, wait_for_model: Optional[bool] = None, use_gpu: Optional[bool] = None, use_cache: Optional[bool] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-huggingface` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/huggingface/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. endpoint_url: The endpoint URL to use. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. passage_model: The passage model to use. Defaults to `None`, which uses the server-defined default. query_model: The query model to use. Defaults to `None`, which uses the server-defined default. wait_for_model: Whether to wait for the model to be loaded. Defaults to `None`, which uses the server-defined default. use_gpu: Whether to use the GPU. Defaults to `None`, which uses the server-defined default. use_cache: Whether to use the cache. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. Raises: pydantic.ValidationError: If the arguments passed to the function are invalid. It is important to note that some of these variables are mutually exclusive. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/huggingface/embeddings#vectorizer-parameters) for more details. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecHuggingFaceConfig( model=model, passageModel=passage_model, queryModel=query_model, endpointURL=endpoint_url, waitForModel=wait_for_model, useGPU=use_gpu, useCache=use_cache, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_google( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, api_endpoint: Optional[str] = None, dimensions: Optional[int] = None, model: Optional[str] = None, project_id: str, title_property: Optional[str] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-google` model. See the [documentation]https://weaviate.io/developers/weaviate/model-providers/google/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. api_endpoint: The API endpoint to use without a leading scheme such as `http://`. Defaults to `None`, which uses the server-defined default. dimensions: The dimensionality of the vectors. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. project_id: The project ID to use, REQUIRED. title_property: The Weaviate property name for the `gecko-002` or `gecko-003` model to use as the title. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default. vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. Raises: pydantic.ValidationError: If `api_endpoint` is not a valid URL. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecGoogleConfig( projectId=project_id, apiEndpoint=api_endpoint, dimensions=dimensions, modelId=model, vectorizeClassName=vectorize_collection_name, titleProperty=title_property, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_google_aistudio( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, dimensions: Optional[int] = None, model: Optional[str] = None, title_property: Optional[str] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-google` model. See the [documentation]https://weaviate.io/developers/weaviate/model-providers/google/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. dimenions: The dimensionality of the vectors. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. title_property: The Weaviate property name for the `gecko-002` or `gecko-003` model to use as the title. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. Raises: pydantic.ValidationError: If `api_endpoint` is not a valid URL. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecGoogleConfig( projectId=None, apiEndpoint="generativelanguage.googleapis.com", dimensions=dimensions, modelId=model, vectorizeClassName=vectorize_collection_name, titleProperty=title_property, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_transformers( *, name: Optional[str] = None, dimensions: Optional[int] = None, quantizer: Optional[_QuantizerConfigCreate] = None, inference_url: Optional[str] = None, passage_inference_url: Optional[str] = None, pooling_strategy: Literal["masked_mean", "cls"] = "masked_mean", query_inference_url: Optional[str] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-transformers` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/transformers/embeddings) for detailed usage. Args: name: The name of the vector. dimensions: The number of dimensions for the generated embeddings. Defaults to `None`, which uses the server-defined default. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. inference_url: The inferenceUrl to use where API requests should go. You can use either this OR passage/query_inference_url. Defaults to `None`, which uses the server-defined default. passage_inference_url: The inferenceUrl to use where passage API requests should go. You can use either this and query_inference_url OR inference_url. Defaults to `None`, which uses the server-defined default. pooling_strategy: The pooling strategy to use. Defaults to `masked_mean`. query_inference_url: The inferenceUrl to use where query API requests should go. You can use either this and passage_inference_url OR inference_url. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecTransformersConfig( poolingStrategy=pooling_strategy, dimensions=dimensions, vectorizeClassName=vectorize_collection_name, inferenceUrl=inference_url, passageInferenceUrl=passage_inference_url, queryInferenceUrl=query_inference_url, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_jinaai( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[str] = None, dimensions: Optional[int] = None, model: Optional[Union[JinaModel, str]] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-jinaai` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/jinaai/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to send the vectorization requests to. Defaults to `None`, which uses the server-defined default. dimensions: The number of dimensions for the generated embeddings. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecJinaConfig( baseURL=base_url, dimensions=dimensions, model=model, vectorizeClassName=vectorize_collection_name, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def multi2vec_jinaai( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[AnyHttpUrl] = None, dimensions: Optional[int] = None, image_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, model: Optional[Union[JinaMultimodalModel, str]] = None, text_fields: Optional[Union[List[str], List[Multi2VecField]]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, ) -> _VectorConfigCreate: """Create a vector using the `multi2vec-jinaai` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/jinaai/embeddings-multimodal) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. dimensions: The number of dimensions for the generated embeddings (only available for some models). Defaults to `None`, which uses the server-defined default. image_fields: The image fields to use in vectorization. model: The model to use. Defaults to `None`, which uses the server-defined default. text_fields: The text fields to use in vectorization. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default Raises: pydantic.ValidationError: If `model` is not a valid value from the `JinaMultimodalModel` type. """ return _VectorConfigCreate( name=name, vectorizer=_Multi2VecJinaConfig( baseURL=base_url, model=model, dimensions=dimensions, imageFields=_map_multi2vec_fields(image_fields), textFields=_map_multi2vec_fields(text_fields), ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_voyageai( *, name: Optional[str] = None, base_url: Optional[str] = None, dimensions: Optional[int] = None, model: Optional[Union[VoyageModel, str]] = None, quantizer: Optional[_QuantizerConfigCreate] = None, source_properties: Optional[List[str]] = None, truncate: Optional[bool] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-voyageai` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/voyageai/embeddings) for detailed usage. Args: name: The name of the vector. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. dimensions: The number of dimensions for the generated embeddings. Defaults to `None`, which uses the server-defined default. model: The model to use. Defaults to `None`, which uses the server-defined default. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/voyageai/embeddings#available-models) for more details. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. source_properties: Which properties should be included when vectorizing. By default all text properties are included. truncate: Whether to truncate the input texts to fit within the context length. Defaults to `None`, which uses the server-defined default. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecVoyageConfig( model=model, vectorizeClassName=vectorize_collection_name, baseURL=base_url, truncate=truncate, dimensions=dimensions, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_weaviate( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[str] = None, dimensions: Optional[int] = None, model: Optional[Union[WeaviateModel, str]] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecWeaviateConfig( model=model, vectorizeClassName=vectorize_collection_name, baseURL=base_url, dimensions=dimensions, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), ) @staticmethod def text2vec_nvidia( *, name: Optional[str] = None, quantizer: Optional[_QuantizerConfigCreate] = None, base_url: Optional[str] = None, model: Optional[str] = None, truncate: Optional[bool] = None, source_properties: Optional[List[str]] = None, vector_index_config: Optional[_VectorIndexConfigCreate] = None, vectorize_collection_name: bool = True, ) -> _VectorConfigCreate: """Create a vector using the `text2vec-nvidia` module. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/nvidia/embeddings) for detailed usage. Args: name: The name of the vector. quantizer: The quantizer to use for the vector index. If not provided, no quantization will be applied. base_url: The base URL to use where API requests should go. Defaults to `None`, which uses the server-defined default. source_properties: Which properties should be included when vectorizing. By default all text properties are included. vector_index_config: The configuration for Weaviate's vector index. Use `wvc.config.Configure.VectorIndex` to create a vector index configuration. None by default vectorize_collection_name: Whether to vectorize the collection name. Defaults to `True`. model: The model to use. Defaults to `None`, which uses the server-defined default. See the [documentation](https://weaviate.io/developers/weaviate/model-providers/nvidia/embeddings#available-models) for more details. truncate: Whether to truncate the input texts to fit within the context length. Defaults to `None`, which uses the server-defined default. """ return _VectorConfigCreate( name=name, source_properties=source_properties, vectorizer=_Text2VecNvidiaConfig( model=model, vectorizeClassName=vectorize_collection_name, baseURL=base_url, truncate=truncate, ), vector_index_config=_IndexWrappers.single(vector_index_config, quantizer), )
_Vectors
python
run-llama__llama_index
llama-index-integrations/embeddings/llama-index-embeddings-vertex-endpoint/llama_index/embeddings/vertex_endpoint/utils.py
{ "start": 681, "end": 1056 }
class ____(BaseIOHandler): """Handles serialization of input and deserialization of output.""" def serialize_input(self, request: List[str]) -> List[Dict[str, Any]]: return [{"inputs": text} for text in request] def deserialize_output(self, response: Any) -> List[List[float]]: return [prediction[0] for prediction in response.predictions]
IOHandler
python
scipy__scipy
benchmarks/benchmarks/stats_sampling.py
{ "start": 1886, "end": 2526 }
class ____: def __init__(self): self.mode = 0 def pdf(self, x): return 0.05 + 0.45 * (1 + np.sin(2*np.pi*x)) def dpdf(self, x): return 0.2 * 0.45 * (2*np.pi) * np.cos(2*np.pi*x) def cdf(self, x): return (0.05*(x + 1) + 0.9*(1. + 2.*np.pi*(1 + x) - np.cos(2.*np.pi*x)) / (4.*np.pi)) def support(self): return -1, 1 def __repr__(self): return 'sin2' # Sin 10 distribution # / 0.05 + 0.45*(1 +sin(2 Pi x)) if |x| <= 5 # f(x) = < # \ 0 otherwise # Taken from UNU.RAN test suite (from file t_pinv.c)
contdist4
python
allegroai__clearml
clearml/backend_api/services/v2_23/queues.py
{ "start": 77250, "end": 79613 }
class ____(Request): """ Moves a task entry one step forward towards the top of the queue. :param queue: Queue id :type queue: str :param task: Task id :type task: str :param count: Number of positions in the queue to move the task forward relative to the current position. Optional, the default value is 1. :type count: int """ _service = "queues" _action = "move_task_forward" _version = "2.23" _schema = { "definitions": {}, "properties": { "count": { "description": "Number of positions in the queue to move the task forward relative to the current position. Optional, the default value is 1.", "type": "integer", }, "queue": {"description": "Queue id", "type": "string"}, "task": {"description": "Task id", "type": "string"}, }, "required": ["queue", "task"], "type": "object", } def __init__(self, queue: str, task: str, count: Optional[int] = None, **kwargs: Any) -> None: super(MoveTaskForwardRequest, self).__init__(**kwargs) self.queue = queue self.task = task self.count = count @schema_property("queue") def queue(self) -> str: return self._property_queue @queue.setter def queue(self, value: str) -> None: if value is None: self._property_queue = None return self.assert_isinstance(value, "queue", six.string_types) self._property_queue = value @schema_property("task") def task(self) -> str: return self._property_task @task.setter def task(self, value: str) -> None: if value is None: self._property_task = None return self.assert_isinstance(value, "task", six.string_types) self._property_task = value @schema_property("count") def count(self) -> Optional[int]: return self._property_count @count.setter def count(self, value: Optional[int]) -> None: if value is None: self._property_count = None return if isinstance(value, float) and value.is_integer(): value = int(value) self.assert_isinstance(value, "count", six.integer_types) self._property_count = value
MoveTaskForwardRequest
python
kamyu104__LeetCode-Solutions
Python/maximize-sum-of-squares-of-digits.py
{ "start": 38, "end": 428 }
class ____(object): def maxSumOfSquares(self, num, sum): """ :type num: int :type sum: int :rtype: str """ if num*9 < sum: return "" q, r = divmod(sum, 9) result = ['0']*num for i in xrange(q): result[i] = '9' if r: result[q] = str(r) return "".join(result)
Solution
python
facebook__pyre-check
tools/generate_taint_models/generator_specifications.py
{ "start": 1451, "end": 1968 }
class ____(ParameterAnnotation): def __init__( self, parameter_taint: str, parameter_kind: str, ) -> None: self.parameter_taint = parameter_taint self.parameter_kind = parameter_kind def get(self, parameter: "Parameter") -> Optional[str]: sanitized_parameter_name = re.compile('[^a-zA-Z_0-9]').sub("",parameter.name) return f"{self.parameter_kind}[{self.parameter_taint}[{sanitized_parameter_name}]]"
AllParametersAnnotationWithParameterNameAsSubKind
python
scrapy__scrapy
tests/test_selector.py
{ "start": 307, "end": 3923 }
class ____: def test_simple_selection(self): """Simple selector tests""" body = b"<p><input name='a'value='1'/><input name='b'value='2'/></p>" response = TextResponse(url="http://example.com", body=body, encoding="utf-8") sel = Selector(response) xl = sel.xpath("//input") assert len(xl) == 2 for x in xl: assert isinstance(x, Selector) assert sel.xpath("//input").getall() == [x.get() for x in sel.xpath("//input")] assert [x.get() for x in sel.xpath("//input[@name='a']/@name")] == ["a"] assert [ x.get() for x in sel.xpath( "number(concat(//input[@name='a']/@value, //input[@name='b']/@value))" ) ] == ["12.0"] assert sel.xpath("concat('xpath', 'rules')").getall() == ["xpathrules"] assert [ x.get() for x in sel.xpath( "concat(//input[@name='a']/@value, //input[@name='b']/@value)" ) ] == ["12"] def test_root_base_url(self): body = b'<html><form action="/path"><input name="a" /></form></html>' url = "http://example.com" response = TextResponse(url=url, body=body, encoding="utf-8") sel = Selector(response) assert url == sel.root.base def test_flavor_detection(self): text = b'<div><img src="a.jpg"><p>Hello</div>' sel = Selector(XmlResponse("http://example.com", body=text, encoding="utf-8")) assert sel.type == "xml" assert sel.xpath("//div").getall() == [ '<div><img src="a.jpg"><p>Hello</p></img></div>' ] sel = Selector(HtmlResponse("http://example.com", body=text, encoding="utf-8")) assert sel.type == "html" assert sel.xpath("//div").getall() == [ '<div><img src="a.jpg"><p>Hello</p></div>' ] def test_http_header_encoding_precedence(self): # '\xa3' = pound symbol in unicode # '\xc2\xa3' = pound symbol in utf-8 # '\xa3' = pound symbol in latin-1 (iso-8859-1) meta = ( '<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">' ) head = f"<head>{meta}</head>" body_content = '<span id="blank">\xa3</span>' body = f"<body>{body_content}</body>" html = f"<html>{head}{body}</html>" encoding = "utf-8" html_utf8 = html.encode(encoding) headers = {"Content-Type": ["text/html; charset=utf-8"]} response = HtmlResponse( url="http://example.com", headers=headers, body=html_utf8 ) x = Selector(response) assert x.xpath("//span[@id='blank']/text()").getall() == ["\xa3"] def test_badly_encoded_body(self): # \xe9 alone isn't valid utf8 sequence r1 = TextResponse( "http://www.example.com", body=b"<html><p>an Jos\xe9 de</p><html>", encoding="utf-8", ) Selector(r1).xpath("//text()").getall() def test_weakref_slots(self): """Check that classes are using slots and are weak-referenceable""" x = Selector(text="") weakref.ref(x) assert not hasattr(x, "__dict__"), ( f"{x.__class__.__name__} does not use __slots__" ) def test_selector_bad_args(self): with pytest.raises(ValueError, match="received both response and text"): Selector(TextResponse(url="http://example.com", body=b""), text="") @pytest.mark.skipif(not PARSEL_18_PLUS, reason="parsel < 1.8 doesn't support jmespath")
TestSelector
python
PrefectHQ__prefect
src/integrations/prefect-databricks/prefect_databricks/models/jobs.py
{ "start": 92029, "end": 92814 }
class ____(BaseModel): """ See source code for the fields' description. """ model_config = ConfigDict(extra="allow", frozen=True) output_link: Optional[str] = Field( None, description="The link to find the output results." ) query_text: Optional[str] = Field( None, description=( "The text of the SQL query. Can Run permission of the SQL query associated" " with the SQL alert is required to view this field." ), ) sql_statements: Optional[SqlStatementOutput] = Field( None, description="Information about SQL statements executed in the run." ) warehouse_id: Optional[str] = Field( None, description="The canonical identifier of the SQL warehouse." )
SqlAlertOutput
python
kamyu104__LeetCode-Solutions
Python/minimum-edge-weight-equilibrium-queries-in-a-tree.py
{ "start": 2773, "end": 3901 }
class ____(object): def minOperationsQueries(self, n, edges, queries): """ :type n: int :type edges: List[List[int]] :type queries: List[List[int]] :rtype: List[int] """ adj = [[] for _ in xrange(n)] for u, v, w in edges: w -= 1 adj[u].append((v, w)) adj[v].append((u, w)) pairs = collections.defaultdict(set) for a, b in queries: pairs[a].add(b), pairs[b].add(a) tree_infos = TreeInfos(adj, pairs) result = [0]*len(queries) for i, (a, b) in enumerate(queries): lca = tree_infos.lca[min(a, b), max(a, b)] result[i] = (tree_infos.D[a]+tree_infos.D[b]-2*tree_infos.D[lca])-max(tree_infos.CNT[a][w]+tree_infos.CNT[b][w]-2*tree_infos.CNT[lca][w] for w in xrange(MAX_W)) return result # Time: O(r * (n + q) + nlogn + qlogn), r = max(w for _, _, w in edges) # Space: O(r * n + nlogn) import collections from functools import partial # Template: # https://github.com/kamyu104/GoogleKickStart-2021/blob/main/Round%20H/dependent_events2.py
Solution
python
astropy__astropy
astropy/time/tests/test_custom_formats.py
{ "start": 260, "end": 7496 }
class ____(ValueError): pass @pytest.fixture def custom_format_name(): for i in count(): if not i: custom = "custom_format_name" else: custom = f"custom_format_name_{i}" if custom not in Time.FORMATS: break yield custom Time.FORMATS.pop(custom, None) def test_custom_time_format_set_jds_exception(custom_format_name): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): raise SpecificException try: Time(7.0, format=custom_format_name) except ValueError as e: assert hasattr(e, "__cause__") and isinstance(e.__cause__, SpecificException) def test_custom_time_format_val_type_exception(custom_format_name): class Custom(TimeFormat): name = custom_format_name def _check_val_type(self, val, val2): raise SpecificException try: Time(7.0, format=custom_format_name) except ValueError as e: assert hasattr(e, "__cause__") and isinstance(e.__cause__, SpecificException) def test_custom_time_format_value_exception(custom_format_name): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): self.jd1, self.jd2 = val, val2 @property def value(self): raise SpecificException t = Time.now() with pytest.raises(SpecificException): getattr(t, custom_format_name) def test_custom_time_format_fine(custom_format_name): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): self.jd1, self.jd2 = val, val2 @property def value(self): return self.jd1 + self.jd2 t = Time.now() getattr(t, custom_format_name) t2 = Time(7, 9, format=custom_format_name) getattr(t2, custom_format_name) def test_custom_time_format_forgot_property(custom_format_name): with pytest.raises(ValueError): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): self.jd1, self.jd2 = val, val2 def value(self): return self.jd1, self.jd2 def test_custom_time_format_problematic_name(): assert "sort" not in Time.FORMATS, "problematic name in default FORMATS!" assert hasattr(Time, "sort") try: class Custom(TimeFormat): name = "sort" _dtype = np.dtype([("jd1", "f8"), ("jd2", "f8")]) def set_jds(self, val, val2): self.jd1, self.jd2 = val, val2 @property def value(self): result = np.empty(self.jd1.shape, self._dtype) result["jd1"] = self.jd1 result["jd2"] = self.jd2 return result t = Time.now() assert t.sort() == t, "bogus time format clobbers everyone's Time objects" t.format = "sort" assert t.value.dtype == Custom._dtype t2 = Time(7, 9, format="sort") assert t2.value == np.array((7, 9), Custom._dtype) finally: Time.FORMATS.pop("sort", None) def test_mjd_longdouble_preserves_precision(custom_format_name): class CustomMJD(TimeFormat): name = custom_format_name def _check_val_type(self, val, val2): val = np.longdouble(val) if val2 is not None: raise ValueError("Only one value permitted") return val, 0 def set_jds(self, val, val2): mjd1 = np.float64(np.floor(val)) mjd2 = np.float64(val - mjd1) self.jd1, self.jd2 = day_frac(mjd1 + DJM0, mjd2) @property def value(self): mjd1, mjd2 = day_frac(self.jd1 - DJM0, self.jd2) return np.longdouble(mjd1) + np.longdouble(mjd2) m = 58000.0 t = Time(m, format=custom_format_name) # Pick a different long double (ensuring it will give a different jd2 # even when long doubles are more precise than Time, as on arm64). m2 = np.longdouble(m) + max( 2.0 * m * np.finfo(np.longdouble).eps, np.finfo(float).eps ) assert m2 != m, "long double is weird!" t2 = Time(m2, format=custom_format_name) assert t != t2 assert isinstance(getattr(t, custom_format_name), np.longdouble) assert getattr(t, custom_format_name) != getattr(t2, custom_format_name) @pytest.mark.parametrize( "jd1, jd2", [ ("foo", None), (np.arange(3), np.arange(4)), ("foo", "bar"), (1j, 2j), pytest.param( np.longdouble(3), np.longdouble(5), marks=pytest.mark.skipif( np.longdouble().itemsize == np.dtype(float).itemsize, reason="long double == double on this platform", ), ), ({1: 2}, {3: 4}), ({1, 2}, {3, 4}), ([1, 2], [3, 4]), (lambda: 4, lambda: 7), ], ) def test_custom_format_cannot_make_bogus_jd1(custom_format_name, jd1, jd2): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): self.jd1, self.jd2 = jd1, jd2 @property def value(self): return self.jd1 + self.jd2 with pytest.raises((ValueError, TypeError)): Time(5, format=custom_format_name) def test_custom_format_scalar_jd1_jd2_okay(custom_format_name): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): self.jd1, self.jd2 = 7.0, 3.0 @property def value(self): return self.jd1 + self.jd2 getattr(Time(5, format=custom_format_name), custom_format_name) @pytest.mark.parametrize( "thing", [ 1, 1.0, np.longdouble(1), 1.0j, "foo", b"foo", Time(5, format="mjd"), lambda: 7, np.datetime64("2005-02-25"), date(2006, 2, 25), ], ) def test_custom_format_can_return_any_scalar(custom_format_name, thing): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): self.jd1, self.jd2 = 2.0, 0.0 @property def value(self): return np.array(thing) assert type( getattr(Time(5, format=custom_format_name), custom_format_name) ) == type(thing) assert np.all( getattr(Time(5, format=custom_format_name), custom_format_name) == thing ) @pytest.mark.parametrize( "thing", [ (1, 2), [1, 2], np.array([2, 3]), np.array([2, 3, 5, 7]), {6: 7}, {1, 2}, ], ) def test_custom_format_can_return_any_iterable(custom_format_name, thing): class Custom(TimeFormat): name = custom_format_name def set_jds(self, val, val2): self.jd1, self.jd2 = 2.0, 0.0 @property def value(self): return thing assert type( getattr(Time(5, format=custom_format_name), custom_format_name) ) == type(thing) assert np.all( getattr(Time(5, format=custom_format_name), custom_format_name) == thing )
SpecificException
python
has2k1__plotnine
plotnine/scales/scale_color.py
{ "start": 14755, "end": 14820 }
class ____(scale_color_brewer): pass @alias
scale_colour_brewer
python
facebookresearch__faiss
contrib/datasets.py
{ "start": 4470, "end": 5418 }
class ____(Dataset): """ The original dataset is available at: http://corpus-texmex.irisa.fr/ (ANN_SIFT1M) """ def __init__(self): Dataset.__init__(self) self.d, self.nt, self.nb, self.nq = 128, 100000, 1000000, 10000 self.basedir = dataset_basedir + 'sift1M/' def get_queries(self): return fvecs_read(self.basedir + "sift_query.fvecs") def get_train(self, maxtrain=None): maxtrain = maxtrain if maxtrain is not None else self.nt return fvecs_read(self.basedir + "sift_learn.fvecs")[:maxtrain] def get_database(self): return fvecs_read(self.basedir + "sift_base.fvecs") def get_groundtruth(self, k=None): gt = ivecs_read(self.basedir + "sift_groundtruth.ivecs") if k is not None: assert k <= 100 gt = gt[:, :k] return gt def sanitize(x): return np.ascontiguousarray(x, dtype='float32')
DatasetSIFT1M
python
airbytehq__airbyte
airbyte-integrations/connectors/source-google-sheets/components.py
{ "start": 18766, "end": 23337 }
class ____(DefaultErrorHandler): """ Custom error handler for handling 500 errors with grid data requests. This handler extends the DefaultErrorHandler by adding special handling for 500 errors when includeGridData=true. When a 500 error occurs, it immediately tests if the sheet can be fetched without grid data. If successful, the sheet is skipped (IGNORE). If it still fails (either with another non-200 status or a network/HTTP error), the error is retried using the default backoff strategy (RETRY). """ def interpret_response(self, response_or_exception: Optional[Union[requests.Response, Exception]]) -> ErrorResolution: """ Interpret the response and determine the appropriate action. Handles 500 errors when includeGridData=true by testing if the sheet can be fetched without grid data to determine if the error is due to corrupt grid data (skip the sheet) or a genuine server error (retry with backoff). For all other responses/exceptions, delegates to the parent DefaultErrorHandler. """ # Only handle Response objects (not exceptions) with our custom logic # For exceptions, delegate to parent immediately if not isinstance(response_or_exception, requests.Response): return super().interpret_response(response_or_exception) response = response_or_exception url = response.request.url # Special handling for 500 errors with includeGridData=true if response.status_code == 500 and "includeGridData=true" in url: # Immediately test without grid data to determine if this is a corrupt grid data issue # or a genuine server error sheet_match = re.search(r"ranges=([^!&]+)", url) sheet_name = sheet_match.group(1) if sheet_match else "unknown" logger.info(f"500 error encountered for sheet '{sheet_name}' - testing without grid data...") # Test the same request but without grid data alt_url = url.replace("includeGridData=true", "includeGridData=false") try: # Copy headers from original request headers = dict(response.request.headers) # Make test request without grid data alt_response = requests.get(alt_url, headers=headers, timeout=30) # If the test succeeds (200 OK), the sheet exists but has bad grid data - skip it if alt_response.status_code == 200: logger.warning( f"Sheet '{sheet_name}' has corrupt or incompatible grid data and will be skipped. " f"This usually happens with sheets containing complex formatting or data types " f"that the Google Sheets API cannot process with includeGridData=true." ) return ErrorResolution( response_action=ResponseAction.IGNORE, failure_type=None, error_message=f"Skipping sheet '{sheet_name}' due to corrupt grid data", ) else: # Test also failed - this is a genuine server error, retry with backoff logger.info( f"Sheet '{sheet_name}' test without grid data also failed with status {alt_response.status_code}. " f"This appears to be a genuine server error. Retrying with backoff..." ) return ErrorResolution( response_action=ResponseAction.RETRY, failure_type=FailureType.transient_error, error_message="Internal server error encountered. Retrying with backoff.", ) except requests.RequestException as e: # If test request fails with a network/HTTP error, treat it as a transient server error - retry with backoff logger.info(f"Test request for sheet '{sheet_name}' failed with network error: {e}. Retrying with backoff...") return ErrorResolution( response_action=ResponseAction.RETRY, failure_type=FailureType.transient_error, error_message=f"Internal server error encountered: {str(e)}. Retrying with backoff.", ) # Return None to pass response to next handler in the composite chain (DefaultErrorHandler) return None
GridDataErrorHandler
python
kamyu104__LeetCode-Solutions
Python/string-transformation.py
{ "start": 3071, "end": 4519 }
class ____(object): def numberOfWays(self, s, t, k): """ :type s: str :type t: str :type k: int :rtype: int """ MOD = 10**9+7 def matrix_mult(A, B): ZB = zip(*B) return [[sum(a*b % MOD for a, b in itertools.izip(row, col)) % MOD for col in ZB] for row in A] def matrix_expo(A, K): result = [[int(i == j) for j in xrange(len(A))] for i in xrange(len(A))] while K: if K % 2: result = matrix_mult(result, A) A = matrix_mult(A, A) K /= 2 return result # Template: https://cp-algorithms.com/string/z-function.html def z_function(s): # Time: O(n), Space: O(n) z = [0]*len(s) l, r = 0, 0 for i in xrange(1, len(z)): if i <= r: z[i] = min(r-i+1, z[i-l]) while i+z[i] < len(z) and s[z[i]] == s[i+z[i]]: z[i] += 1 if i+z[i]-1 > r: l, r = i, i+z[i]-1 return z n = len(s) T = [[0, 1], [n-1, (n-1)-1]] dp = [1, 0] dp = matrix_mult([dp], matrix_expo(T, k))[0] # [dp[0], dp[1]] * T^k z = z_function(t+s+s[:-1]) return reduce(lambda a, b: (a+b)%MOD, (dp[int(i != 0)] for i in xrange(n) if z[i+len(t)] >= len(t)), 0)
Solution3
python
spack__spack
lib/spack/spack/test/error_messages.py
{ "start": 2059, "end": 2315 }
class ____(Package): version("2.1") version("2.0") variant("v2", default=True, when="@2.1:") """, ) # Cluster of packages that includes requirements - goal is to "chain" # the requirements like other constraints. _pkgw4 = ( "w4", """\
Z3
python
pyca__cryptography
tests/hazmat/primitives/test_pkcs7.py
{ "start": 54868, "end": 55128 }
class ____: def test_pkcs7_decrypt_unsupported(self, backend): cert, key = _load_rsa_cert_key() with raises_unsupported_algorithm(_Reasons.UNSUPPORTED_PADDING): pkcs7.pkcs7_decrypt_der(b"", cert, key, [])
TestPKCS7DecryptUnsupported
python
pyca__cryptography
src/cryptography/hazmat/primitives/hashes.py
{ "start": 4725, "end": 5100 }
class ____(HashAlgorithm): name = "blake2s" block_size = 64 _max_digest_size = 32 _min_digest_size = 1 def __init__(self, digest_size: int): if digest_size != 32: raise ValueError("Digest size must be 32") self._digest_size = digest_size @property def digest_size(self) -> int: return self._digest_size
BLAKE2s
python
automl__auto-sklearn
autosklearn/evaluation/test_evaluator.py
{ "start": 558, "end": 4640 }
class ____(AbstractEvaluator): def __init__( self, backend: Backend, queue: multiprocessing.Queue, metrics: Sequence[Scorer], additional_components: Dict[str, ThirdPartyComponents], port: Optional[int], configuration: Optional[Union[int, Configuration]] = None, scoring_functions: Optional[List[Scorer]] = None, seed: int = 1, include: Optional[List[str]] = None, exclude: Optional[List[str]] = None, disable_file_output: bool = False, init_params: Optional[Dict[str, Any]] = None, ): super(TestEvaluator, self).__init__( backend=backend, queue=queue, port=port, configuration=configuration, metrics=metrics, additional_components=additional_components, scoring_functions=scoring_functions, seed=seed, output_y_hat_optimization=False, num_run=-1, include=include, exclude=exclude, disable_file_output=disable_file_output, init_params=init_params, ) self.configuration = configuration self.X_train = self.datamanager.data["X_train"] self.Y_train = self.datamanager.data["Y_train"] self.X_test = self.datamanager.data.get("X_test") self.Y_test = self.datamanager.data.get("Y_test") self.model = self._get_model(self.feat_type) def fit_predict_and_loss(self) -> None: _fit_and_suppress_warnings(self.logger, self.model, self.X_train, self.Y_train) loss, Y_pred, _, _ = self.predict_and_loss() self.finish_up( loss=loss, train_loss=None, opt_pred=Y_pred, test_pred=None, file_output=False, final_call=True, additional_run_info=None, status=StatusType.SUCCESS, ) def predict_and_loss( self, train: bool = False ) -> Tuple[Union[Dict[str, float], float], np.array, Any, Any]: if train: Y_pred = self.predict_function( self.X_train, self.model, self.task_type, self.Y_train ) err = calculate_losses( solution=self.Y_train, prediction=Y_pred, task_type=self.task_type, metrics=self.metrics, scoring_functions=self.scoring_functions, ) else: Y_pred = self.predict_function( self.X_test, self.model, self.task_type, self.Y_train ) err = calculate_losses( solution=self.Y_test, prediction=Y_pred, task_type=self.task_type, metrics=self.metrics, scoring_functions=self.scoring_functions, ) return err, Y_pred, None, None # create closure for evaluating an algorithm # Has a stupid name so pytest doesn't regard it as a test def eval_t( queue: multiprocessing.Queue, config: Union[int, Configuration], backend: Backend, metrics: Sequence[Scorer], seed: int, num_run: int, instance: Dict[str, Any], scoring_functions: Optional[List[Scorer]], output_y_hat_optimization: bool, include: Optional[List[str]], exclude: Optional[List[str]], disable_file_output: bool, port: Optional[int], additional_components: Dict[str, ThirdPartyComponents], init_params: Optional[Dict[str, Any]] = None, budget: Optional[float] = None, budget_type: Optional[str] = None, ) -> None: evaluator = TestEvaluator( configuration=config, backend=backend, metrics=metrics, seed=seed, port=port, queue=queue, scoring_functions=scoring_functions, include=include, exclude=exclude, disable_file_output=disable_file_output, additional_components=additional_components, init_params=init_params, ) evaluator.fit_predict_and_loss()
TestEvaluator
python
matplotlib__matplotlib
lib/matplotlib/dates.py
{ "start": 42120, "end": 52317 }
class ____(DateLocator): """ On autoscale, this class picks the best `DateLocator` to set the view limits and the tick locations. Attributes ---------- intervald : dict Mapping of tick frequencies to multiples allowed for that ticking. The default is :: self.intervald = { YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY : [1, 2, 3, 4, 6], DAILY : [1, 2, 3, 7, 14, 21], HOURLY : [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000], } where the keys are defined in `dateutil.rrule`. The interval is used to specify multiples that are appropriate for the frequency of ticking. For instance, every 7 days is sensible for daily ticks, but for minutes/seconds, 15 or 30 make sense. When customizing, you should only modify the values for the existing keys. You should not add or delete entries. Example for forcing ticks every 3 hours:: locator = AutoDateLocator() locator.intervald[HOURLY] = [3] # only show every 3 hours """ def __init__(self, tz=None, minticks=5, maxticks=None, interval_multiples=True): """ Parameters ---------- tz : str or `~datetime.tzinfo`, default: :rc:`timezone` Ticks timezone. If a string, *tz* is passed to `dateutil.tz`. minticks : int The minimum number of ticks desired; controls whether ticks occur yearly, monthly, etc. maxticks : int The maximum number of ticks desired; controls the interval between ticks (ticking every other, every 3, etc.). For fine-grained control, this can be a dictionary mapping individual rrule frequency constants (YEARLY, MONTHLY, etc.) to their own maximum number of ticks. This can be used to keep the number of ticks appropriate to the format chosen in `AutoDateFormatter`. Any frequency not specified in this dictionary is given a default value. interval_multiples : bool, default: True Whether ticks should be chosen to be multiple of the interval, locking them to 'nicer' locations. For example, this will force the ticks to be at hours 0, 6, 12, 18 when hourly ticking is done at 6 hour intervals. """ super().__init__(tz=tz) self._freq = YEARLY self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, SECONDLY, MICROSECONDLY] self.minticks = minticks self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12, MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8} if maxticks is not None: try: self.maxticks.update(maxticks) except TypeError: # Assume we were given an integer. Use this as the maximum # number of ticks for every frequency and create a # dictionary for this self.maxticks = dict.fromkeys(self._freqs, maxticks) self.interval_multiples = interval_multiples self.intervald = { YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY: [1, 2, 3, 4, 6], DAILY: [1, 2, 3, 7, 14, 21], HOURLY: [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000], } if interval_multiples: # Swap "3" for "4" in the DAILY list; If we use 3 we get bad # tick loc for months w/ 31 days: 1, 4, ..., 28, 31, 1 # If we use 4 then we get: 1, 5, ... 25, 29, 1 self.intervald[DAILY] = [1, 2, 4, 7, 14] self._byranges = [None, range(1, 13), range(1, 32), range(0, 24), range(0, 60), range(0, 60), None] def __call__(self): # docstring inherited dmin, dmax = self.viewlim_to_dt() locator = self.get_locator(dmin, dmax) return locator() def tick_values(self, vmin, vmax): return self.get_locator(vmin, vmax).tick_values(vmin, vmax) def nonsingular(self, vmin, vmax): # whatever is thrown at us, we can scale the unit. # But default nonsingular date plots at an ~4 year period. if not np.isfinite(vmin) or not np.isfinite(vmax): # Except if there is no data, then use 1970 as default. return (date2num(datetime.date(1970, 1, 1)), date2num(datetime.date(1970, 1, 2))) if vmax < vmin: vmin, vmax = vmax, vmin if vmin == vmax: vmin = vmin - DAYS_PER_YEAR * 2 vmax = vmax + DAYS_PER_YEAR * 2 return vmin, vmax def _get_unit(self): if self._freq in [MICROSECONDLY]: return 1. / MUSECONDS_PER_DAY else: return RRuleLocator.get_unit_generic(self._freq) def get_locator(self, dmin, dmax): """Pick the best locator based on a distance.""" delta = relativedelta(dmax, dmin) tdelta = dmax - dmin # take absolute difference if dmin > dmax: delta = -delta tdelta = -tdelta # The following uses a mix of calls to relativedelta and timedelta # methods because there is incomplete overlap in the functionality of # these similar functions, and it's best to avoid doing our own math # whenever possible. numYears = float(delta.years) numMonths = numYears * MONTHS_PER_YEAR + delta.months numDays = tdelta.days # Avoids estimates of days/month, days/year. numHours = numDays * HOURS_PER_DAY + delta.hours numMinutes = numHours * MIN_PER_HOUR + delta.minutes numSeconds = np.floor(tdelta.total_seconds()) numMicroseconds = np.floor(tdelta.total_seconds() * 1e6) nums = [numYears, numMonths, numDays, numHours, numMinutes, numSeconds, numMicroseconds] use_rrule_locator = [True] * 6 + [False] # Default setting of bymonth, etc. to pass to rrule # [unused (for year), bymonth, bymonthday, byhour, byminute, # bysecond, unused (for microseconds)] byranges = [None, 1, 1, 0, 0, 0, None] # Loop over all the frequencies and try to find one that gives at # least a minticks tick positions. Once this is found, look for # an interval from a list specific to that frequency that gives no # more than maxticks tick positions. Also, set up some ranges # (bymonth, etc.) as appropriate to be passed to rrulewrapper. for i, (freq, num) in enumerate(zip(self._freqs, nums)): # If this particular frequency doesn't give enough ticks, continue if num < self.minticks: # Since we're not using this particular frequency, set # the corresponding by_ to None so the rrule can act as # appropriate byranges[i] = None continue # Find the first available interval that doesn't give too many # ticks for interval in self.intervald[freq]: if num <= interval * (self.maxticks[freq] - 1): break else: if not (self.interval_multiples and freq == DAILY): _api.warn_external( f"AutoDateLocator was unable to pick an appropriate " f"interval for this date range. It may be necessary " f"to add an interval value to the AutoDateLocator's " f"intervald dictionary. Defaulting to {interval}.") # Set some parameters as appropriate self._freq = freq if self._byranges[i] and self.interval_multiples: byranges[i] = self._byranges[i][::interval] if i in (DAILY, WEEKLY): if interval == 14: # just make first and 15th. Avoids 30th. byranges[i] = [1, 15] elif interval == 7: byranges[i] = [1, 8, 15, 22] interval = 1 else: byranges[i] = self._byranges[i] break else: interval = 1 if (freq == YEARLY) and self.interval_multiples: locator = YearLocator(interval, tz=self.tz) elif use_rrule_locator[i]: _, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges rrule = rrulewrapper(self._freq, interval=interval, dtstart=dmin, until=dmax, bymonth=bymonth, bymonthday=bymonthday, byhour=byhour, byminute=byminute, bysecond=bysecond) locator = RRuleLocator(rrule, tz=self.tz) else: locator = MicrosecondLocator(interval, tz=self.tz) if date2num(dmin) > 70 * 365 and interval < 1000: _api.warn_external( 'Plotting microsecond time intervals for dates far from ' f'the epoch (time origin: {get_epoch()}) is not well-' 'supported. See matplotlib.dates.set_epoch to change the ' 'epoch.') locator.set_axis(self.axis) return locator
AutoDateLocator
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pylint/invalid_return_type_index.py
{ "start": 920, "end": 973 }
class ____: def __index__(self): ...
Index3
python
wandb__wandb
wandb/sdk/artifacts/_generated/registry_team_members.py
{ "start": 265, "end": 355 }
class ____(GQLResult): project: Optional[RegistryTeamMembersProject]
RegistryTeamMembers
python
django__django
tests/postgres_tests/array_default_migrations/0001_initial.py
{ "start": 81, "end": 799 }
class ____(migrations.Migration): dependencies = [] operations = [ migrations.CreateModel( name="IntegerArrayDefaultModel", fields=[ ( "id", models.BigAutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ( "field", django.contrib.postgres.fields.ArrayField(models.IntegerField()), ), ], options={}, bases=(models.Model,), ), ]
Migration
python
plotly__plotly.py
_plotly_utils/basevalidators.py
{ "start": 53076, "end": 55276 }
class ____(BaseValidator): """ "subplotid": { "description": "An id string of a subplot type (given by dflt), optionally followed by an integer >1. e.g. if dflt='geo', we can have 'geo', 'geo2', 'geo3', ...", "requiredOpts": [ "dflt" ], "otherOpts": [ "regex" ] } """ def __init__(self, plotly_name, parent_name, dflt=None, regex=None, **kwargs): if dflt is None and regex is None: raise ValueError("One or both of regex and deflt must be specified") super(SubplotidValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) if dflt is not None: self.base = dflt else: # e.g. regex == '/^y([2-9]|[1-9][0-9]+)?$/' self.base = re.match(r"/\^(\w+)", regex).group(1) self.regex = self.base + r"(\d*)" def description(self): desc = """\ The '{plotly_name}' property is an identifier of a particular subplot, of type '{base}', that may be specified as the string '{base}' optionally followed by an integer >= 1 (e.g. '{base}', '{base}1', '{base}2', '{base}3', etc.) """.format(plotly_name=self.plotly_name, base=self.base) return desc def validate_coerce(self, v): if v is None: pass elif not isinstance(v, str): self.raise_invalid_val(v) else: # match = re.fullmatch(self.regex, v) match = fullmatch(self.regex, v) if not match: is_valid = False else: digit_str = match.group(1) if len(digit_str) > 0 and int(digit_str) == 0: is_valid = False elif len(digit_str) > 0 and int(digit_str) == 1: # Remove 1 suffix (e.g. x1 -> x) v = self.base is_valid = True else: is_valid = True if not is_valid: self.raise_invalid_val(v) return v
SubplotidValidator
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 1003519, "end": 1004148 }
class ____(sgqlc.types.Type): """Represents a single highlight in a search result match.""" __schema__ = github_schema __field_names__ = ("begin_indice", "end_indice", "text") begin_indice = sgqlc.types.Field(sgqlc.types.non_null(Int), graphql_name="beginIndice") """The indice in the fragment where the matched text begins.""" end_indice = sgqlc.types.Field(sgqlc.types.non_null(Int), graphql_name="endIndice") """The indice in the fragment where the matched text ends.""" text = sgqlc.types.Field(sgqlc.types.non_null(String), graphql_name="text") """The text matched."""
TextMatchHighlight
python
huggingface__transformers
src/transformers/models/bart/modeling_bart.py
{ "start": 10612, "end": 13619 }
class ____(GradientCheckpointingLayer): def __init__(self, config: BartConfig, layer_idx: Optional[int] = None): super().__init__() self.embed_dim = config.d_model self.self_attn = BartAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, layer_idx=layer_idx, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
BartEncoderLayer
python
pandas-dev__pandas
pandas/io/formats/format.py
{ "start": 51028, "end": 55458 }
class ____(_GenericArrayFormatter): values: ExtensionArray def _format_strings(self) -> list[str]: values = self.values formatter = self.formatter fallback_formatter = None if formatter is None: fallback_formatter = values._formatter(boxed=True) if isinstance(values, Categorical): # Categorical is special for now, so that we can preserve tzinfo array = values._internal_get_values() else: array = np.asarray(values, dtype=object) fmt_values = format_array( array, formatter, float_format=self.float_format, na_rep=self.na_rep, digits=self.digits, space=self.space, justify=self.justify, decimal=self.decimal, leading_space=self.leading_space, quoting=self.quoting, fallback_formatter=fallback_formatter, ) return fmt_values def format_percentiles( percentiles: np.ndarray | Sequence[float], ) -> list[str]: """ Outputs rounded and formatted percentiles. Parameters ---------- percentiles : list-like, containing floats from interval [0,1] Returns ------- formatted : list of strings Notes ----- Rounding precision is chosen so that: (1) if any two elements of ``percentiles`` differ, they remain different after rounding (2) no entry is *rounded* to 0% or 100%. Any non-integer is always rounded to at least 1 decimal place. Examples -------- Keeps all entries different after rounding: >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999]) ['1.999%', '2.001%', '50%', '66.667%', '99.99%'] No element is rounded to 0% or 100% (unless already equal to it). Duplicates are allowed: >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999]) ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%'] """ if len(percentiles) == 0: return [] percentiles = np.asarray(percentiles) # It checks for np.nan as well if ( not is_numeric_dtype(percentiles) or not np.all(percentiles >= 0) or not np.all(percentiles <= 1) ): raise ValueError("percentiles should all be in the interval [0,1]") percentiles = 100 * percentiles prec = get_precision(percentiles) percentiles_round_type = percentiles.round(prec).astype(int) int_idx = np.isclose(percentiles_round_type, percentiles) if np.all(int_idx): out = percentiles_round_type.astype(str) return [i + "%" for i in out] unique_pcts = np.unique(percentiles) prec = get_precision(unique_pcts) out = np.empty_like(percentiles, dtype=object) out[int_idx] = percentiles[int_idx].round().astype(int).astype(str) out[~int_idx] = percentiles[~int_idx].round(prec).astype(str) return [i + "%" for i in out] def get_precision(array: np.ndarray | Sequence[float]) -> int: to_begin = array[0] if array[0] > 0 else None to_end = 100 - array[-1] if array[-1] < 100 else None diff = np.ediff1d(array, to_begin=to_begin, to_end=to_end) diff = abs(diff) prec = -np.floor(np.log10(np.min(diff))).astype(int) prec = max(1, prec) return prec def _format_datetime64(x: NaTType | Timestamp, nat_rep: str = "NaT") -> str: if x is NaT: return nat_rep # Timestamp.__str__ falls back to datetime.datetime.__str__ = isoformat(sep=' ') # so it already uses string formatting rather than strftime (faster). return str(x) def _format_datetime64_dateonly( x: NaTType | Timestamp, nat_rep: str = "NaT", date_format: str | None = None, ) -> str: if isinstance(x, NaTType): return nat_rep if date_format: return x.strftime(date_format) else: # Timestamp._date_repr relies on string formatting (faster than strftime) return x._date_repr def get_format_datetime64( is_dates_only: bool, nat_rep: str = "NaT", date_format: str | None = None ) -> Callable: """Return a formatter callable taking a datetime64 as input and providing a string as output""" if is_dates_only: return lambda x: _format_datetime64_dateonly( x, nat_rep=nat_rep, date_format=date_format ) else: return lambda x: _format_datetime64(x, nat_rep=nat_rep)
_ExtensionArrayFormatter
python
pytorch__pytorch
torch/_vendor/packaging/version.py
{ "start": 1727, "end": 4491 }
class ____: _key: Tuple[Any, ...] def __hash__(self) -> int: return hash(self._key) # Please keep the duplicated `isinstance` check # in the six comparisons hereunder # unless you find a way to avoid adding overhead function calls. def __lt__(self, other: "_BaseVersion") -> bool: if not isinstance(other, _BaseVersion): return NotImplemented return self._key < other._key def __le__(self, other: "_BaseVersion") -> bool: if not isinstance(other, _BaseVersion): return NotImplemented return self._key <= other._key def __eq__(self, other: object) -> bool: if not isinstance(other, _BaseVersion): return NotImplemented return self._key == other._key def __ge__(self, other: "_BaseVersion") -> bool: if not isinstance(other, _BaseVersion): return NotImplemented return self._key >= other._key def __gt__(self, other: "_BaseVersion") -> bool: if not isinstance(other, _BaseVersion): return NotImplemented return self._key > other._key def __ne__(self, other: object) -> bool: if not isinstance(other, _BaseVersion): return NotImplemented return self._key != other._key # Deliberately not anchored to the start and end of the string, to make it # easier for 3rd party code to reuse _VERSION_PATTERN = r""" v? (?: (?:(?P<epoch>[0-9]+)!)? # epoch (?P<release>[0-9]+(?:\.[0-9]+)*) # release segment (?P<pre> # pre-release [-_\.]? (?P<pre_l>alpha|a|beta|b|preview|pre|c|rc) [-_\.]? (?P<pre_n>[0-9]+)? )? (?P<post> # post release (?:-(?P<post_n1>[0-9]+)) | (?: [-_\.]? (?P<post_l>post|rev|r) [-_\.]? (?P<post_n2>[0-9]+)? ) )? (?P<dev> # dev release [-_\.]? (?P<dev_l>dev) [-_\.]? (?P<dev_n>[0-9]+)? )? ) (?:\+(?P<local>[a-z0-9]+(?:[-_\.][a-z0-9]+)*))? # local version """ VERSION_PATTERN = _VERSION_PATTERN """ A string containing the regular expression used to match a valid version. The pattern is not anchored at either end, and is intended for embedding in larger expressions (for example, matching a version number as part of a file name). The regular expression should be compiled with the ``re.VERBOSE`` and ``re.IGNORECASE`` flags set. :meta hide-value: """
_BaseVersion
python
gevent__gevent
src/greentest/3.10/test_socket.py
{ "start": 163434, "end": 163991 }
class ____(SendrecvmsgDgramFlagsBase, SendrecvmsgConnectionlessBase, ThreadedSocketTestMixin, UDP6TestBase): def checkRecvmsgAddress(self, addr1, addr2): # Called to compare the received address with the address of # the peer, ignoring scope ID self.assertEqual(addr1[:-1], addr2[:-1]) @requireAttrs(socket.socket, "sendmsg") @unittest.skipUnless(socket_helper.IPV6_ENABLED, 'IPv6 required for this test.') @requireSocket("AF_INET6", "SOCK_DGRAM")
SendrecvmsgUDP6TestBase
python
django__django
tests/composite_pk/models/tenant.py
{ "start": 705, "end": 742 }
class ____(AbstractUser): pass
User
python
python-markdown__markdown
markdown/extensions/toc.py
{ "start": 15510, "end": 18330 }
class ____(Extension): TreeProcessorClass = TocTreeprocessor def __init__(self, **kwargs): self.config = { 'marker': [ '[TOC]', 'Text to find and replace with Table of Contents. Set to an empty string to disable. ' 'Default: `[TOC]`.' ], 'title': [ '', 'Title to insert into TOC `<div>`. Default: an empty string.' ], 'title_class': [ 'toctitle', 'CSS class used for the title. Default: `toctitle`.' ], 'toc_class': [ 'toc', 'CSS class(es) used for the link. Default: `toclink`.' ], 'anchorlink': [ False, 'True if header should be a self link. Default: `False`.' ], 'anchorlink_class': [ 'toclink', 'CSS class(es) used for the link. Defaults: `toclink`.' ], 'permalink': [ 0, 'True or link text if a Sphinx-style permalink should be added. Default: `False`.' ], 'permalink_class': [ 'headerlink', 'CSS class(es) used for the link. Default: `headerlink`.' ], 'permalink_title': [ 'Permanent link', 'Title attribute of the permalink. Default: `Permanent link`.' ], 'permalink_leading': [ False, 'True if permalinks should be placed at start of the header, rather than end. Default: False.' ], 'baselevel': ['1', 'Base level for headers. Default: `1`.'], 'slugify': [ slugify, 'Function to generate anchors based on header text. Default: `slugify`.' ], 'separator': ['-', 'Word separator. Default: `-`.'], 'toc_depth': [ 6, 'Define the range of section levels to include in the Table of Contents. A single integer ' '(b) defines the bottom section level (<h1>..<hb>) only. A string consisting of two digits ' 'separated by a hyphen in between (`2-5`) defines the top (t) and the bottom (b) (<ht>..<hb>). ' 'Default: `6` (bottom).' ], } """ Default configuration options. """ super().__init__(**kwargs) def extendMarkdown(self, md): """ Add TOC tree processor to Markdown. """ md.registerExtension(self) self.md = md self.reset() tocext = self.TreeProcessorClass(md, self.getConfigs()) md.treeprocessors.register(tocext, 'toc', 5) def reset(self) -> None: self.md.toc = '' self.md.toc_tokens = [] def makeExtension(**kwargs): # pragma: no cover return TocExtension(**kwargs)
TocExtension
python
Textualize__textual
docs/examples/guide/layout/grid_layout3_row_col_adjust.py
{ "start": 80, "end": 536 }
class ____(App): CSS_PATH = "grid_layout3_row_col_adjust.tcss" def compose(self) -> ComposeResult: yield Static("One", classes="box") yield Static("Two", classes="box") yield Static("Three", classes="box") yield Static("Four", classes="box") yield Static("Five", classes="box") yield Static("Six", classes="box") if __name__ == "__main__": app = GridLayoutExample() app.run()
GridLayoutExample
python
getsentry__sentry
src/sentry/api/serializers/models/user_social_auth.py
{ "start": 273, "end": 520 }
class ____(Serializer): def serialize(self, obj, attrs, user, **kwargs): return { "id": str(obj.id), "provider": obj.provider, "providerLabel": get_provider_label(obj), }
UserSocialAuthSerializer
python
mwaskom__seaborn
seaborn/matrix.py
{ "start": 2739, "end": 17203 }
class ____: """Draw a heatmap plot of a matrix with nice labels and colormaps.""" def __init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels=True, yticklabels=True, mask=None): """Initialize the plotting object.""" # We always want to have a DataFrame with semantic information # and an ndarray to pass to matplotlib if isinstance(data, pd.DataFrame): plot_data = data.values else: plot_data = np.asarray(data) data = pd.DataFrame(plot_data) # Validate the mask and convert to DataFrame mask = _matrix_mask(data, mask) plot_data = np.ma.masked_where(np.asarray(mask), plot_data) # Get good names for the rows and columns xtickevery = 1 if isinstance(xticklabels, int): xtickevery = xticklabels xticklabels = _index_to_ticklabels(data.columns) elif xticklabels is True: xticklabels = _index_to_ticklabels(data.columns) elif xticklabels is False: xticklabels = [] ytickevery = 1 if isinstance(yticklabels, int): ytickevery = yticklabels yticklabels = _index_to_ticklabels(data.index) elif yticklabels is True: yticklabels = _index_to_ticklabels(data.index) elif yticklabels is False: yticklabels = [] if not len(xticklabels): self.xticks = [] self.xticklabels = [] elif isinstance(xticklabels, str) and xticklabels == "auto": self.xticks = "auto" self.xticklabels = _index_to_ticklabels(data.columns) else: self.xticks, self.xticklabels = self._skip_ticks(xticklabels, xtickevery) if not len(yticklabels): self.yticks = [] self.yticklabels = [] elif isinstance(yticklabels, str) and yticklabels == "auto": self.yticks = "auto" self.yticklabels = _index_to_ticklabels(data.index) else: self.yticks, self.yticklabels = self._skip_ticks(yticklabels, ytickevery) # Get good names for the axis labels xlabel = _index_to_label(data.columns) ylabel = _index_to_label(data.index) self.xlabel = xlabel if xlabel is not None else "" self.ylabel = ylabel if ylabel is not None else "" # Determine good default values for the colormapping self._determine_cmap_params(plot_data, vmin, vmax, cmap, center, robust) # Sort out the annotations if annot is None or annot is False: annot = False annot_data = None else: if isinstance(annot, bool): annot_data = plot_data else: annot_data = np.asarray(annot) if annot_data.shape != plot_data.shape: err = "`data` and `annot` must have same shape." raise ValueError(err) annot = True # Save other attributes to the object self.data = data self.plot_data = plot_data self.annot = annot self.annot_data = annot_data self.fmt = fmt self.annot_kws = {} if annot_kws is None else annot_kws.copy() self.cbar = cbar self.cbar_kws = {} if cbar_kws is None else cbar_kws.copy() def _determine_cmap_params(self, plot_data, vmin, vmax, cmap, center, robust): """Use some heuristics to set good defaults for colorbar and range.""" # plot_data is a np.ma.array instance calc_data = plot_data.astype(float).filled(np.nan) if vmin is None: if robust: vmin = np.nanpercentile(calc_data, 2) else: vmin = np.nanmin(calc_data) if vmax is None: if robust: vmax = np.nanpercentile(calc_data, 98) else: vmax = np.nanmax(calc_data) self.vmin, self.vmax = vmin, vmax # Choose default colormaps if not provided if cmap is None: if center is None: self.cmap = cm.rocket else: self.cmap = cm.icefire elif isinstance(cmap, str): self.cmap = get_colormap(cmap) elif isinstance(cmap, list): self.cmap = mpl.colors.ListedColormap(cmap) else: self.cmap = cmap # Recenter a divergent colormap if center is not None: # Copy bad values # in mpl<3.2 only masked values are honored with "bad" color spec # (see https://github.com/matplotlib/matplotlib/pull/14257) bad = self.cmap(np.ma.masked_invalid([np.nan]))[0] # under/over values are set for sure when cmap extremes # do not map to the same color as +-inf under = self.cmap(-np.inf) over = self.cmap(np.inf) under_set = under != self.cmap(0) over_set = over != self.cmap(self.cmap.N - 1) vrange = max(vmax - center, center - vmin) normlize = mpl.colors.Normalize(center - vrange, center + vrange) cmin, cmax = normlize([vmin, vmax]) cc = np.linspace(cmin, cmax, 256) self.cmap = mpl.colors.ListedColormap(self.cmap(cc)) self.cmap.set_bad(bad) if under_set: self.cmap.set_under(under) if over_set: self.cmap.set_over(over) def _annotate_heatmap(self, ax, mesh): """Add textual labels with the value in each cell.""" mesh.update_scalarmappable() height, width = self.annot_data.shape xpos, ypos = np.meshgrid(np.arange(width) + .5, np.arange(height) + .5) for x, y, m, color, val in zip(xpos.flat, ypos.flat, mesh.get_array().flat, mesh.get_facecolors(), self.annot_data.flat): if m is not np.ma.masked: lum = relative_luminance(color) text_color = ".15" if lum > .408 else "w" annotation = ("{:" + self.fmt + "}").format(val) text_kwargs = dict(color=text_color, ha="center", va="center") text_kwargs.update(self.annot_kws) ax.text(x, y, annotation, **text_kwargs) def _skip_ticks(self, labels, tickevery): """Return ticks and labels at evenly spaced intervals.""" n = len(labels) if tickevery == 0: ticks, labels = [], [] elif tickevery == 1: ticks, labels = np.arange(n) + .5, labels else: start, end, step = 0, n, tickevery ticks = np.arange(start, end, step) + .5 labels = labels[start:end:step] return ticks, labels def _auto_ticks(self, ax, labels, axis): """Determine ticks and ticklabels that minimize overlap.""" transform = ax.figure.dpi_scale_trans.inverted() bbox = ax.get_window_extent().transformed(transform) size = [bbox.width, bbox.height][axis] axis = [ax.xaxis, ax.yaxis][axis] tick, = axis.set_ticks([0]) fontsize = tick.label1.get_size() max_ticks = int(size // (fontsize / 72)) if max_ticks < 1: return [], [] tick_every = len(labels) // max_ticks + 1 tick_every = 1 if tick_every == 0 else tick_every ticks, labels = self._skip_ticks(labels, tick_every) return ticks, labels def plot(self, ax, cax, kws): """Draw the heatmap on the provided Axes.""" # Remove all the Axes spines despine(ax=ax, left=True, bottom=True) # setting vmin/vmax in addition to norm is deprecated # so avoid setting if norm is set if kws.get("norm") is None: kws.setdefault("vmin", self.vmin) kws.setdefault("vmax", self.vmax) # Draw the heatmap mesh = ax.pcolormesh(self.plot_data, cmap=self.cmap, **kws) # Set the axis limits ax.set(xlim=(0, self.data.shape[1]), ylim=(0, self.data.shape[0])) # Invert the y axis to show the plot in matrix form ax.invert_yaxis() # Possibly add a colorbar if self.cbar: cb = ax.figure.colorbar(mesh, cax, ax, **self.cbar_kws) cb.outline.set_linewidth(0) # If rasterized is passed to pcolormesh, also rasterize the # colorbar to avoid white lines on the PDF rendering if kws.get('rasterized', False): cb.solids.set_rasterized(True) # Add row and column labels if isinstance(self.xticks, str) and self.xticks == "auto": xticks, xticklabels = self._auto_ticks(ax, self.xticklabels, 0) else: xticks, xticklabels = self.xticks, self.xticklabels if isinstance(self.yticks, str) and self.yticks == "auto": yticks, yticklabels = self._auto_ticks(ax, self.yticklabels, 1) else: yticks, yticklabels = self.yticks, self.yticklabels ax.set(xticks=xticks, yticks=yticks) xtl = ax.set_xticklabels(xticklabels) ytl = ax.set_yticklabels(yticklabels, rotation="vertical") plt.setp(ytl, va="center") # GH2484 # Possibly rotate them if they overlap _draw_figure(ax.figure) if axis_ticklabels_overlap(xtl): plt.setp(xtl, rotation="vertical") if axis_ticklabels_overlap(ytl): plt.setp(ytl, rotation="horizontal") # Add the axis labels ax.set(xlabel=self.xlabel, ylabel=self.ylabel) # Annotate the cells with the formatted values if self.annot: self._annotate_heatmap(ax, mesh) def heatmap( data, *, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt=".2g", annot_kws=None, linewidths=0, linecolor="white", cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels="auto", yticklabels="auto", mask=None, ax=None, **kwargs ): """Plot rectangular data as a color-encoded matrix. This is an Axes-level function and will draw the heatmap into the currently-active Axes if none is provided to the ``ax`` argument. Part of this Axes space will be taken and used to plot a colormap, unless ``cbar`` is False or a separate Axes is provided to ``cbar_ax``. Parameters ---------- data : rectangular dataset 2D dataset that can be coerced into an ndarray. If a Pandas DataFrame is provided, the index/column information will be used to label the columns and rows. vmin, vmax : floats, optional Values to anchor the colormap, otherwise they are inferred from the data and other keyword arguments. cmap : matplotlib colormap name or object, or list of colors, optional The mapping from data values to color space. If not provided, the default will depend on whether ``center`` is set. center : float, optional The value at which to center the colormap when plotting divergent data. Using this parameter will change the default ``cmap`` if none is specified. robust : bool, optional If True and ``vmin`` or ``vmax`` are absent, the colormap range is computed with robust quantiles instead of the extreme values. annot : bool or rectangular dataset, optional If True, write the data value in each cell. If an array-like with the same shape as ``data``, then use this to annotate the heatmap instead of the data. Note that DataFrames will match on position, not index. fmt : str, optional String formatting code to use when adding annotations. annot_kws : dict of key, value mappings, optional Keyword arguments for :meth:`matplotlib.axes.Axes.text` when ``annot`` is True. linewidths : float, optional Width of the lines that will divide each cell. linecolor : color, optional Color of the lines that will divide each cell. cbar : bool, optional Whether to draw a colorbar. cbar_kws : dict of key, value mappings, optional Keyword arguments for :meth:`matplotlib.figure.Figure.colorbar`. cbar_ax : matplotlib Axes, optional Axes in which to draw the colorbar, otherwise take space from the main Axes. square : bool, optional If True, set the Axes aspect to "equal" so each cell will be square-shaped. xticklabels, yticklabels : "auto", bool, list-like, or int, optional If True, plot the column names of the dataframe. If False, don't plot the column names. If list-like, plot these alternate labels as the xticklabels. If an integer, use the column names but plot only every n label. If "auto", try to densely plot non-overlapping labels. mask : bool array or DataFrame, optional If passed, data will not be shown in cells where ``mask`` is True. Cells with missing values are automatically masked. ax : matplotlib Axes, optional Axes in which to draw the plot, otherwise use the currently-active Axes. kwargs : other keyword arguments All other keyword arguments are passed to :meth:`matplotlib.axes.Axes.pcolormesh`. Returns ------- ax : matplotlib Axes Axes object with the heatmap. See Also -------- clustermap : Plot a matrix using hierarchical clustering to arrange the rows and columns. Examples -------- .. include:: ../docstrings/heatmap.rst """ # Initialize the plotter object plotter = _HeatMapper(data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels, yticklabels, mask) # Add the pcolormesh kwargs here kwargs["linewidths"] = linewidths kwargs["edgecolor"] = linecolor # Draw the plot and return the Axes if ax is None: ax = plt.gca() if square: ax.set_aspect("equal") plotter.plot(ax, cbar_ax, kwargs) return ax
_HeatMapper
python
run-llama__llama_index
llama-index-integrations/embeddings/llama-index-embeddings-ibm/tests/test_ibm.py
{ "start": 141, "end": 3537 }
class ____: TEST_URL = "https://us-south.ml.cloud.ibm.com" TEST_APIKEY = "apikey" TEST_PROJECT_ID = "project_id" TEST_MODEL = "test_model" def mock_embed_query(self) -> List[float]: return [-0.053358648, -0.009175377, -0.025022397] def mock_embed_texts(self) -> List[List[float]]: return [ [-0.053358648, -0.009175377, -0.025022397], [-0.053358648, -0.009175377, -0.025022397], ] def test_initialization(self) -> None: with pytest.raises(ValueError, match=r"^Did not find"): _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, project_id=self.TEST_PROJECT_ID ) # Cloud scenario with pytest.raises(ValueError, match=r"^Did not find 'apikey' or 'token',"): _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, project_id=self.TEST_PROJECT_ID, ) # CPD scenario with password and missing username with pytest.raises(ValueError, match=r"^Did not find username"): _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, password="123", url="cpd-instance", project_id=self.TEST_PROJECT_ID, ) # CPD scenario with apikey and missing username with pytest.raises(ValueError, match=r"^Did not find username"): _ = WatsonxEmbeddings( model_id=self.TEST_MODEL, apikey="123", url="cpd-instance", project_id=self.TEST_PROJECT_ID, ) @patch("llama_index.embeddings.ibm.base.Embeddings") def test_get_query_embedding(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_query.return_value = self.mock_embed_query() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) assert embed.get_query_embedding(query="TEST") == self.mock_embed_query() @patch("llama_index.embeddings.ibm.base.Embeddings") def test_get_texts_embedding(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_documents.return_value = self.mock_embed_texts() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) assert ( embed.get_text_embedding_batch(texts=["TEST1", "TEST2"]) == self.mock_embed_texts() ) @pytest.mark.asyncio @patch("llama_index.embeddings.ibm.base.Embeddings") async def test_get_query_embedding_async(self, MockEmbedding: MagicMock) -> None: mock_instance = MockEmbedding.return_value mock_instance.embed_query.return_value = self.mock_embed_query() embed = WatsonxEmbeddings( model_id=self.TEST_MODEL, url=self.TEST_URL, apikey=self.TEST_APIKEY, project_id=self.TEST_PROJECT_ID, ) response = await embed.aget_text_embedding("TEST1") assert response == self.mock_embed_query()
TestWasonxLLMInference
python
python__mypy
mypy/patterns.py
{ "start": 2457, "end": 2857 }
class ____(Pattern): # None corresponds to *_ in a list pattern. It will match multiple items but won't bind them to # a name. capture: NameExpr | None def __init__(self, capture: NameExpr | None) -> None: super().__init__() self.capture = capture def accept(self, visitor: PatternVisitor[T]) -> T: return visitor.visit_starred_pattern(self)
StarredPattern
python
google__pytype
pytype/tests/test_paramspec.py
{ "start": 7468, "end": 15560 }
class ____(test_base.BaseTest): """Tests for ParamSpec imported from pyi files.""" def test_decorator(self): with self.DepTree([("foo.pyi", _DECORATOR_PYI)]): ty, _ = self.InferWithErrors(""" import foo class A: pass @foo.decorator def h(a: A, b: str) -> int: return 10 p = h(A(), b='2') q = h(1, 2) # wrong-arg-types """) self.assertTypesMatchPytd( ty, """ import foo from typing import List, Any p: List[int] q: Any class A: ... def h(a: A, b: str) -> List[int]: ... """, ) def test_method_decoration(self): with self.DepTree([("foo.pyi", _DECORATOR_PYI)]): ty = self.Infer(""" import foo class A: pass class B: @foo.decorator def h(a: 'B', b: str) -> int: return 10 """) self.assertTypesMatchPytd( ty, """ import foo from typing import List, Any class A: ... class B: def h(a: B, b: str) -> List[int]: ... """, ) def test_multiple_decorators(self): """Check that we don't cache the decorator type params.""" with self.DepTree([("foo.pyi", _DECORATOR_PYI)]): self.Check(""" import foo @foo.decorator def f(x) -> str: return "a" @foo.decorator def g() -> int: return 42 def h() -> list[str]: return f(10) def k() -> list[int]: return g() """) def test_imported_paramspec(self): with self.DepTree([("foo.pyi", _DECORATOR_PYI)]): ty, _ = self.InferWithErrors(""" from foo import decorator class A: pass @decorator def h(a: A, b: str) -> int: return 10 p = h(A(), b='2') q = h(1, 2) # wrong-arg-types """) self.assertTypesMatchPytd( ty, """ from typing import Callable, List, ParamSpec, TypeVar, Any p: List[int] q: Any P = ParamSpec('P') T = TypeVar('T') class A: ... def decorator(fn: Callable[P, T]) -> Callable[P, List[T]]: ... def h(a: A, b: str) -> List[int]: ... """, ) def test_concatenate(self): # TODO(b/217789659): # - Should change_arg preserve the name of the posarg? # - Should paramspecs in error messages be changed to ...? with self.DepTree([( "foo.pyi", """ from typing import TypeVar, ParamSpec, Concatenate, Callable T = TypeVar("T") P = ParamSpec("P") def change_arg(fn: Callable[Concatenate[int, P], T]) -> Callable[Concatenate[str, P], T]: ... def drop_arg(fn: Callable[Concatenate[int, P], T]) -> Callable[P, T]: ... def add_arg(fn: Callable[P, T]) -> Callable[Concatenate[int, P], T]: ... def mismatched(fn: Callable[Concatenate[str, P], T]) -> Callable[Concatenate[str, P], T]: ... """, )]): ty, err = self.InferWithErrors(""" import foo @foo.change_arg def f(a: int, b: str) -> int: return 10 @foo.drop_arg def g(a: int, b: str) -> int: return 10 @foo.add_arg def h(a: int, b: str) -> int: return 10 @foo.mismatched # wrong-arg-types[e]>=3.11 def k(a: int, b: str) -> int: # wrong-arg-types[e]<3.11 return 10 """) self.assertTypesMatchPytd( ty, """ import foo from typing import Any k: Any def f(_0: str, b: str) -> int: ... def g(b: str) -> int: ... def h(_0: int, /, a: int, b: str) -> int: ... """, ) self.assertErrorSequences( err, { "e": [ "Expected", "fn: Callable[Concatenate[str, P], Any]", "Actual", "fn: Callable[[int, str], int]", ] }, ) def test_overloaded_argument(self): with self.DepTree([( "foo.pyi", """ from typing import TypeVar, ParamSpec, Callable, List T = TypeVar("T") P = ParamSpec("P") def decorator(fn: Callable[P, T]) -> Callable[P, List[T]]: ... @overload def f(x: str) -> int: ... @overload def f(x: str, *, y: int = 0) -> int: ... """, )]): ty = self.Infer(""" import foo f = foo.decorator(foo.f) """) self.assertTypesMatchPytd( ty, """ import foo from typing import List, overload @overload def f(x: str) -> List[int]: ... @overload def f(x: str, *, y: int = ...) -> List[int]: ... """, ) def test_starargs(self): with self.DepTree([("foo.pyi", _DECORATOR_PYI)]): ty = self.Infer(""" import foo class A: pass class B: @foo.decorator def h(a: 'B', b: str, *args, **kwargs) -> int: return 10 @foo.decorator def s(*args) -> int: return 10 @foo.decorator def k(**kwargs) -> int: return 10 """) self.assertTypesMatchPytd( ty, """ import foo from typing import List, Any class A: ... class B: def h(a: B, b: str, *args, **kwargs) -> List[int]: ... def s(*args) -> List[int]: ... def k(**kwargs) -> List[int]: ... """, ) def test_callable(self): with self.DepTree([( "foo.pyi", """ from typing import TypeVar, ParamSpec, Concatenate, Callable T = TypeVar("T") P = ParamSpec("P") def add_arg(fn: Callable[P, T]) -> Callable[Concatenate[int, P], T]: ... """, )]): self.Check(""" import foo from typing import Callable, List def f(method: Callable[[int, str], bool]): a = foo.add_arg(method) b = a(1, 2, '3') assert_type(b, bool) """) def test_match_callable(self): with self.DepTree([( "foo.pyi", """ from typing import Any, Callable, ParamSpec P = ParamSpec('P') def f(x: Callable[P, Any]) -> Callable[P, Any]: ... """, )]): self.Check(""" import foo # Any function should match `Callable[P, Any]`. def f0(): pass def f1(x): pass def f2(x1, x2): pass foo.f(f0) foo.f(f1) foo.f(f2) class C0: def __call__(self): pass class C1: def __call__(self, x1): pass class C2: def __call__(self, x1, x2): pass # Any class object should match. foo.f(C0) # Any class instance with a `__call__` method should match. foo.f(C0()) foo.f(C1()) foo.f(C2()) """) def test_callable_class_inference(self): with self.DepTree([( "foo.pyi", """ from typing import Any, Callable, ParamSpec P = ParamSpec('P') def f(x: Callable[P, Any]) -> Callable[P, Any]: ... """, )]): ty = self.Infer(""" import foo class C: def __call__(self, x: int, y) -> str: return str(x) f = foo.f(C()) """) self.assertTypesMatchPytd( ty, """ import foo from typing import Any class C: def __call__(self, x: int, y) -> str: ... def f(x: int, y) -> Any: ... """, ) def test_paramspec_in_callable_as_param_not_fail(self): self.Check(""" from typing import ParamSpec, Callable _P = ParamSpec("_P") CallbleWithParamSpec = Callable[_P, None] class A: def __init__(self, callable_1: CallbleWithParamSpec, callable_2: CallbleWithParamSpec): pass class B(A): def __init__(self, callable_1: CallbleWithParamSpec, callable_2: CallbleWithParamSpec): super().__init__( callable_1, callable_2, ) """)
PyiParamSpecTest
python
astropy__astropy
astropy/extern/configobj/validate.py
{ "start": 14149, "end": 14553 }
class ____(VdtValueError): """The value supplied was of the correct type, but was too long.""" def __init__(self, value): """ >>> raise VdtValueTooLongError('jedie') Traceback (most recent call last): VdtValueTooLongError: the value "jedie" is too long. """ ValidateError.__init__(self, 'the value "%s" is too long.' % (value,))
VdtValueTooLongError
python
run-llama__llama_index
llama-index-integrations/readers/llama-index-readers-web/llama_index/readers/web/agentql_web/base.py
{ "start": 369, "end": 3021 }
class ____(BasePydanticReader): """ Scrape a URL with or without a agentql query and returns document in json format. Args: api_key (str): The AgentQL API key, get one at https://dev.agentql.com params (dict): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. """ api_key: str params: Optional[dict] def __init__( self, api_key: str, params: Optional[dict] = None, ) -> None: super().__init__(api_key=api_key, params=params) def load_data( self, url: str, query: Optional[str] = None, prompt: Optional[str] = None ) -> List[Document]: """ Load data from the input directory. Args: url (str): URL to scrape or crawl. query (Optional[str]): AgentQL query used to specify the scraped data. prompt (Optional[str]): Natural language description of the data you want to scrape. Either query or prompt must be provided. params (Optional[dict]): Additional parameters to pass to the AgentQL API. Visit https://docs.agentql.com/rest-api/api-reference for details. Returns: List[Document]: List of documents. """ payload = {"url": url, "query": query, "prompt": prompt, "params": self.params} headers = { "X-API-Key": f"{self.api_key}", "Content-Type": "application/json", "X-TF-Request-Origin": REQUEST_ORIGIN, } try: response = httpx.post( QUERY_DATA_ENDPOINT, headers=headers, json=payload, timeout=API_TIMEOUT_SECONDS, ) response.raise_for_status() except httpx.HTTPStatusError as e: response = e.response if response.status_code in [401, 403]: raise ValueError( "Please, provide a valid API Key. You can create one at https://dev.agentql.com." ) from e else: try: error_json = response.json() msg = ( error_json["error_info"] if "error_info" in error_json else error_json["detail"] ) except (ValueError, TypeError): msg = f"HTTP {e}." raise ValueError(msg) from e else: json = response.json() return [Document(text=str(json["data"]), metadata=json["metadata"])]
AgentQLWebReader
python
allegroai__clearml
clearml/utilities/gpu/pynvml.py
{ "start": 41187, "end": 41901 }
class ____(_PrintableStructure): _fields_ = [ # Moved to the new busId location below ('busIdLegacy', c_char * NVML_DEVICE_PCI_BUS_ID_BUFFER_V2_SIZE), ('domain', c_uint), ('bus', c_uint), ('device', c_uint), ('pciDeviceId', c_uint), # Added in 2.285 ('pciSubSystemId', c_uint), # New busId replaced the long deprecated and reserved fields with a # field of the same size in 9.0 ('busId', c_char * NVML_DEVICE_PCI_BUS_ID_BUFFER_SIZE), ] _fmt_ = { 'domain': "0x%08X", 'bus': "0x%02X", 'device': "0x%02X", 'pciDeviceId': "0x%08X", 'pciSubSystemId': "0x%08X", }
nvmlPciInfo_t
python
walkccc__LeetCode
solutions/673. Number of Longest Increasing Subsequence/673.py
{ "start": 0, "end": 794 }
class ____: def findNumberOfLIS(self, nums: list[int]) -> int: ans = 0 maxLength = 0 # length[i] := the length of the LIS ending in nums[i] length = [1] * len(nums) # count[i] := the number of LIS's ending in nums[i] count = [1] * len(nums) # Calculate the `length` and `count` arrays. for i, num in enumerate(nums): for j in range(i): if nums[j] < num: if length[i] < length[j] + 1: length[i] = length[j] + 1 count[i] = count[j] elif length[i] == length[j] + 1: count[i] += count[j] # Get the number of LIS. for i, l in enumerate(length): if l > maxLength: maxLength = l ans = count[i] elif l == maxLength: ans += count[i] return ans
Solution
python
apache__airflow
providers/google/tests/unit/google/cloud/sensors/test_dataflow.py
{ "start": 14054, "end": 20993 }
class ____: @pytest.mark.parametrize( ("job_current_state", "fail_on_terminal_state"), [ (DataflowJobStatus.JOB_STATE_RUNNING, True), (DataflowJobStatus.JOB_STATE_RUNNING, False), (DataflowJobStatus.JOB_STATE_DONE, False), ], ) @mock.patch("airflow.providers.google.cloud.sensors.dataflow.DataflowHook") def test_poke(self, mock_hook, job_current_state, fail_on_terminal_state): mock_get_job = mock_hook.return_value.get_job mock_fetch_job_messages_by_id = mock_hook.return_value.fetch_job_messages_by_id callback = mock.MagicMock() task = DataflowJobMessagesSensor( task_id=TEST_TASK_ID, job_id=TEST_JOB_ID, callback=callback, fail_on_terminal_state=fail_on_terminal_state, location=TEST_LOCATION, project_id=TEST_PROJECT_ID, gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, ) mock_get_job.return_value = {"id": TEST_JOB_ID, "currentState": job_current_state} results = task.poke(mock.MagicMock()) assert callback.return_value == results.xcom_value mock_hook.assert_called_once_with( gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, ) mock_fetch_job_messages_by_id.assert_called_once_with( job_id=TEST_JOB_ID, project_id=TEST_PROJECT_ID, location=TEST_LOCATION ) callback.assert_called_once_with(mock_fetch_job_messages_by_id.return_value) @mock.patch("airflow.providers.google.cloud.sensors.dataflow.DataflowHook") def test_poke_raise_exception(self, mock_hook): mock_get_job = mock_hook.return_value.get_job mock_fetch_job_messages_by_id = mock_hook.return_value.fetch_job_messages_by_id callback = mock.MagicMock() task = DataflowJobMessagesSensor( task_id=TEST_TASK_ID, job_id=TEST_JOB_ID, callback=callback, fail_on_terminal_state=True, location=TEST_LOCATION, project_id=TEST_PROJECT_ID, gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, ) mock_get_job.return_value = {"id": TEST_JOB_ID, "currentState": DataflowJobStatus.JOB_STATE_DONE} with pytest.raises( AirflowException, match=f"Job with id '{TEST_JOB_ID}' is already in terminal state: " f"{DataflowJobStatus.JOB_STATE_DONE}", ): task.poke(mock.MagicMock()) mock_hook.assert_called_once_with( gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, ) mock_fetch_job_messages_by_id.assert_not_called() callback.assert_not_called() @mock.patch("airflow.providers.google.cloud.hooks.dataflow.AsyncDataflowHook") def test_execute_enters_deferred_state(self, mock_hook): """ Tests that DataflowJobMessagesTrigger will be fired when the DataflowJobMessagesSensor is executed and deferrable is set to True. """ task = DataflowJobMessagesSensor( task_id=TEST_TASK_ID, job_id=TEST_JOB_ID, fail_on_terminal_state=False, location=TEST_LOCATION, project_id=TEST_PROJECT_ID, gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, deferrable=True, callback=None, ) mock_hook.return_value.exists.return_value = False with pytest.raises(TaskDeferred) as exc: task.execute(None) assert isinstance(exc.value.trigger, DataflowJobMessagesTrigger), ( "Trigger is not a DataflowJobMessagesTrigger" ) def test_execute_complete_success_without_callback_function(self): """Tests that the trigger event contains expected values if no callback function is provided.""" expected_result = [] task = DataflowJobMessagesSensor( task_id=TEST_TASK_ID, job_id=TEST_JOB_ID, fail_on_terminal_state=False, location=TEST_LOCATION, project_id=TEST_PROJECT_ID, gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, deferrable=True, callback=None, ) actual_message = task.execute_complete( context=None, event={ "status": "success", "message": f"Detected 2 job messages for job '{TEST_JOB_ID}'", "result": [], }, ) assert actual_message == expected_result def test_execute_complete_success_with_callback_function(self): """Tests that the trigger event contains expected values if the callback function is provided.""" expected_result = [ { "id": "1707695235850", "time": "2024-02-06T23:47:15.850Z", "message_text": "msg.", "message_importance": 5, }, { "id": "1707695635401", "time": "2024-02-06T23:53:55.401Z", "message_text": "msg.", "message_importance": 5, }, ] task = DataflowJobMessagesSensor( task_id=TEST_TASK_ID, job_id=TEST_JOB_ID, callback=lambda res: res, fail_on_terminal_state=False, location=TEST_LOCATION, project_id=TEST_PROJECT_ID, gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, deferrable=True, ) actual_result = task.execute_complete( context=None, event={ "status": "success", "message": f"Detected 2 job messages for job '{TEST_JOB_ID}'", "result": expected_result, }, ) assert actual_result == expected_result def test_execute_complete_not_success_status_raises_exception(self): """Tests that AirflowException or AirflowSkipException is raised if the trigger event contains an error.""" task = DataflowJobMessagesSensor( task_id=TEST_TASK_ID, job_id=TEST_JOB_ID, callback=None, fail_on_terminal_state=False, location=TEST_LOCATION, project_id=TEST_PROJECT_ID, gcp_conn_id=TEST_GCP_CONN_ID, impersonation_chain=TEST_IMPERSONATION_CHAIN, deferrable=True, ) with pytest.raises(AirflowException): task.execute_complete( context=None, event={"status": "error", "message": "test error message", "result": None} )
TestDataflowJobMessagesSensor
python
pytorch__pytorch
torch/nn/modules/pooling.py
{ "start": 1773, "end": 4963 }
class ____(_MaxPoolNd): r"""Applies a 1D max pooling over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size :math:`(N, C, L)` and output :math:`(N, C, L_{out})` can be precisely described as: .. math:: out(N_i, C_j, k) = \max_{m=0, \ldots, \text{kernel\_size} - 1} input(N_i, C_j, stride \times k + m) If :attr:`padding` is non-zero, then the input is implicitly padded with negative infinity on both sides for :attr:`padding` number of points. :attr:`dilation` is the stride between the elements within the sliding window. This `link`_ has a nice visualization of the pooling parameters. Note: When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored. Args: kernel_size: The size of the sliding window, must be > 0. stride: The stride of the sliding window, must be > 0. Default value is :attr:`kernel_size`. padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. dilation: The stride between elements within a sliding window, must be > 0. return_indices: If ``True``, will return the argmax along with the max values. Useful for :class:`torch.nn.MaxUnpool1d` later ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This ensures that every element in the input tensor is covered by a sliding window. Shape: - Input: :math:`(N, C, L_{in})` or :math:`(C, L_{in})`. - Output: :math:`(N, C, L_{out})` or :math:`(C, L_{out})`, where ``ceil_mode = False`` .. math:: L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel\_size} - 1) - 1}{\text{stride}}\right\rfloor + 1 where ``ceil_mode = True`` .. math:: L_{out} = \left\lceil \frac{L_{in} + 2 \times \text{padding} - \text{dilation} \times (\text{kernel\_size} - 1) - 1 + (stride - 1)}{\text{stride}}\right\rceil + 1 - Ensure that the last pooling starts inside the image, make :math:`L_{out} = L_{out} - 1` when :math:`(L_{out} - 1) * \text{stride} >= L_{in} + \text{padding}`. Examples:: >>> # pool of size=3, stride=2 >>> m = nn.MaxPool1d(3, stride=2) >>> input = torch.randn(20, 16, 50) >>> output = m(input) .. _link: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md """ kernel_size: _size_1_t stride: _size_1_t padding: _size_1_t dilation: _size_1_t def forward(self, input: Tensor): """Runs the forward pass.""" return F.max_pool1d( input, self.kernel_size, self.stride, self.padding, self.dilation, ceil_mode=self.ceil_mode, return_indices=self.return_indices, )
MaxPool1d
python
gevent__gevent
src/greentest/3.10/test_socket.py
{ "start": 22414, "end": 22527 }
class ____(InetTestBase): """Base class for IPv6 socket tests.""" host = socket_helper.HOSTv6
Inet6TestBase
python
apache__airflow
airflow-core/src/airflow/example_dags/example_dynamic_task_mapping_with_no_taskflow_operators.py
{ "start": 1255, "end": 2017 }
class ____(BaseOperator): """A custom operator that sums the input.""" template_fields = ("values",) def __init__(self, values, **kwargs): super().__init__(**kwargs) self.values = values def execute(self, context): total = sum(self.values) print(f"Total was {total}") return total with DAG( dag_id="example_dynamic_task_mapping_with_no_taskflow_operators", schedule=None, start_date=datetime(2022, 3, 4), catchup=False, ): # map the task to a list of values add_one_task = AddOneOperator.partial(task_id="add_one").expand(value=[1, 2, 3]) # aggregate (reduce) the mapped tasks results sum_it_task = SumItOperator(task_id="sum_it", values=add_one_task.output)
SumItOperator
python
nedbat__coveragepy
coverage/multiproc.py
{ "start": 702, "end": 2198 }
class ____(OriginalProcess): # pylint: disable=abstract-method """A replacement for multiprocess.Process that starts coverage.""" def _bootstrap(self, *args, **kwargs): # type: ignore[no-untyped-def] """Wrapper around _bootstrap to start coverage.""" debug: DebugControl | None = None try: from coverage import Coverage # avoid circular import cov = Coverage(data_suffix=True, auto_data=True) cov._warn_preimported_source = False cov.start() _debug = cov._debug assert _debug is not None if _debug.should("multiproc"): debug = _debug if debug: debug.write("Calling multiprocessing bootstrap") except Exception: print("Exception during multiprocessing bootstrap init:", file=sys.stderr) traceback.print_exc(file=sys.stderr) sys.stderr.flush() raise try: return original_bootstrap(self, *args, **kwargs) finally: if debug: debug.write("Finished multiprocessing bootstrap") try: cov.stop() cov.save() except Exception as exc: if debug: debug.write("Exception during multiprocessing bootstrap cleanup", exc=exc) raise if debug: debug.write("Saved multiprocessing data")
ProcessWithCoverage
python
PrefectHQ__prefect
src/prefect/events/filters.py
{ "start": 5922, "end": 7120 }
class ____(EventDataFilter): id: Optional[list[str]] = Field( default=None, description="Only include events for resources with these IDs" ) id_prefix: Optional[list[str]] = Field( default=None, description=( "Only include events for resources with IDs starting with these prefixes" ), ) labels: Optional[ResourceSpecification] = Field( default=None, description="Only include events for related resources with these labels", ) def includes(self, event: Event) -> bool: resources = [event.resource] + event.related if not any(self._includes(resource) for resource in resources): return False return True def _includes(self, resource: Resource) -> bool: if self.id: if not any(resource.id == resource_id for resource_id in self.id): return False if self.id_prefix: if not any(resource.id.startswith(prefix) for prefix in self.id_prefix): return False if self.labels: if not self.labels.matches(resource): return False return True
EventAnyResourceFilter
python
python__mypy
mypy/test/teststubtest.py
{ "start": 3096, "end": 3324 }
class ____(Sequence[T]): ... def property(f: T) -> T: ... def classmethod(f: T) -> T: ... def staticmethod(f: T) -> T: ... """ stubtest_enum_stub = """ import sys from typing import Any, TypeVar, Iterator _T = TypeVar('_T')
list
python
pennersr__django-allauth
allauth/headless/account/response.py
{ "start": 283, "end": 515 }
class ____(APIResponse): def __init__(self, request, verification_sent): super().__init__( request, status=HTTPStatus.OK if verification_sent else HTTPStatus.FORBIDDEN )
RequestEmailVerificationResponse
python
allegroai__clearml
clearml/backend_api/services/v2_9/workers.py
{ "start": 74405, "end": 74643 }
class ____(Response): """ Response of workers.register endpoint. """ _service = "workers" _action = "register" _version = "2.9" _schema = {"definitions": {}, "properties": {}, "type": "object"}
RegisterResponse
python
davidhalter__jedi
test/completion/stdlib.py
{ "start": 4987, "end": 5847 }
class ____(enum.Enum): attr_x = 3 attr_y = 2.0 #? ['mro'] X.mro #? ['attr_x', 'attr_y'] X.attr_ #? str() X.attr_x.name #? int() X.attr_x.value #? str() X.attr_y.name #? float() X.attr_y.value #? str() X().name #? float() X().attr_x.attr_y.value # ----------------- # functools # ----------------- import functools basetwo = functools.partial(int, base=2) #? int() basetwo() def function(a, b): return a, b a = functools.partial(function, 0) #? int() a('')[0] #? str() a('')[1] kw = functools.partial(function, b=1.0) tup = kw(1) #? int() tup[0] #? float() tup[1] def my_decorator(f): @functools.wraps(f) def wrapper(*args, **kwds): return f(*args, **kwds) return wrapper @my_decorator def example(a): return a #? str() example('') # From GH #1574 #? float() functools.wraps(functools.partial(str, 1))(lambda: 1.0)()
X
python
django__django
tests/m2m_through_regress/models.py
{ "start": 351, "end": 615 }
class ____(models.Model): id = models.AutoField(db_column="usermembership_id", primary_key=True) user = models.ForeignKey(User, models.CASCADE) group = models.ForeignKey("Group", models.CASCADE) price = models.IntegerField(default=100)
UserMembership
python
dagster-io__dagster
python_modules/dagster/dagster/_core/storage/compute_log_manager.py
{ "start": 5555, "end": 15103 }
class ____(ABC, MayHaveInstanceWeakref[T_DagsterInstance]): """Abstract base class for capturing the unstructured logs (stdout/stderr) in the current process, stored / retrieved with a provided log_key. """ @abstractmethod @contextmanager def capture_logs(self, log_key: Sequence[str]) -> Generator[CapturedLogContext, None, None]: """Context manager for capturing the stdout/stderr within the current process, and persisting it under the given log key. Args: log_key (List[String]): The log key identifying the captured logs """ @abstractmethod @contextmanager def open_log_stream( self, log_key: Sequence[str], io_type: ComputeIOType ) -> Iterator[Optional[IO[bytes]]]: """Context manager for providing an IO stream that enables the caller to write to a log stream managed by the captured log manager, to be read later using the given log key. Args: log_key (List[String]): The log key identifying the captured logs """ @abstractmethod def is_capture_complete(self, log_key: Sequence[str]) -> bool: """Flag indicating when the log capture for a given log key has completed. Args: log_key (List[String]): The log key identifying the captured logs Returns: Boolean """ @abstractmethod def get_log_data_for_type( self, log_key: Sequence[str], io_type: ComputeIOType, offset: int, max_bytes: Optional[int], ) -> tuple[Optional[bytes], int]: """Returns a chunk of the captured io_type logs for a given log key. Args: log_key (List[String]): The log key identifying the captured logs io_type (ComputeIOType): stderr or stdout offset (Optional[int]): An offset in to the log to start from max_bytes (Optional[int]): A limit on the size of the log chunk to fetch Returns: Tuple[Optional[bytes], int]: The content read and offset in to the file """ @abstractmethod def get_log_metadata(self, log_key: Sequence[str]) -> CapturedLogMetadata: """Returns the metadata of the captured logs for a given log key, including displayable information on where the logs are persisted. Args: log_key (List[String]): The log key identifying the captured logs Returns: CapturedLogMetadata """ @abstractmethod def delete_logs( self, log_key: Optional[Sequence[str]] = None, prefix: Optional[Sequence[str]] = None, ) -> None: """Deletes the captured logs for a given log key. Args: log_key(Optional[List[String]]): The log key of the logs to delete prefix(Optional[List[String]]): The prefix of the log keys to delete """ @abstractmethod def subscribe( self, log_key: Sequence[str], cursor: Optional[str] = None ) -> CapturedLogSubscription: """Registers an observable object for log data. Args: log_key (List[String]): The log key identifying the captured logs cursor (Optional[String]): The string cursor marking the position within the log stream Returns: CapturedLogSubscription """ def unsubscribe(self, subscription: CapturedLogSubscription) -> None: """Deregisters an observable object from receiving log updates. Args: subscription (CapturedLogSubscription): subscription object which manages when to send back data to the subscriber """ pass def dispose(self): pass def parse_cursor(self, cursor: Optional[str] = None) -> tuple[int, int]: # Translates a string cursor into a set of byte offsets for stdout, stderr if not cursor: return 0, 0 parts = cursor.split(":") if not parts or len(parts) != 2: return 0, 0 stdout, stderr = [int(_) for _ in parts] return stdout, stderr def build_cursor(self, stdout_offset: int, stderr_offset: int) -> str: return f"{stdout_offset}:{stderr_offset}" def get_log_data( self, log_key: Sequence[str], cursor: Optional[str] = None, max_bytes: Optional[int] = None, ) -> CapturedLogData: stdout_offset, stderr_offset = self.parse_cursor(cursor) stdout, new_stdout_offset = self.get_log_data_for_type( log_key, ComputeIOType.STDOUT, stdout_offset, max_bytes, ) stderr, new_stderr_offset = self.get_log_data_for_type( log_key, ComputeIOType.STDERR, stderr_offset, max_bytes, ) return CapturedLogData( log_key=log_key, stdout=stdout, stderr=stderr, cursor=self.build_cursor(new_stdout_offset, new_stderr_offset), ) def build_log_key_for_run(self, run_id: str, step_key: str) -> Sequence[str]: """Legacy adapter to translate run_id/key to captured log manager-based log_key.""" return [run_id, "compute_logs", step_key] def get_log_keys_for_log_key_prefix( self, log_key_prefix: Sequence[str], io_type: ComputeIOType ) -> Sequence[Sequence[str]]: """Returns the logs keys for a given log key prefix. This is determined by looking at the directory defined by the log key prefix and creating a log_key for each file in the directory. """ raise NotImplementedError("Must implement get_log_keys_for_log_key_prefix") def _get_log_lines_for_log_key( self, log_key: Sequence[str], io_type: ComputeIOType, ) -> Sequence[str]: """For a log key, gets the corresponding file, and splits the file into lines.""" log_data, _ = self.get_log_data_for_type( log_key, io_type, offset=0, max_bytes=None, ) raw_logs = log_data.decode("utf-8") if log_data else "" log_lines = raw_logs.split("\n") return log_lines def read_log_lines_for_log_key_prefix( self, log_key_prefix: Sequence[str], cursor: Optional[str], io_type: ComputeIOType, ) -> tuple[Sequence[str], Optional[LogLineCursor]]: """For a given directory defined by log_key_prefix that contains files, read the logs from the files as if they are a single continuous file. Reads env var DAGSTER_CAPTURED_LOG_CHUNK_SIZE lines at a time. Returns the lines read and the next cursor. Note that the has_more_now attribute of the cursor indicates if there are more logs that can be read immediately. If has_more_now if False, the process producing logs could still be running and dump more logs into the directory at a later time. """ num_lines = int(os.getenv("DAGSTER_CAPTURED_LOG_CHUNK_SIZE", "1000")) # find all of the log_keys to read from and sort them in the order to be read log_keys = sorted( self.get_log_keys_for_log_key_prefix(log_key_prefix, io_type=io_type), key=lambda x: "/".join(x), ) if len(log_keys) == 0: return [], None log_cursor = LogLineCursor.parse(cursor) if cursor else None if log_cursor is None: log_key_to_fetch_idx = 0 line_cursor = 0 else: log_key_to_fetch_idx = log_keys.index(log_cursor.log_key) line_cursor = log_cursor.line if line_cursor == -1: # line_cursor for -1 means the entirety of the file has been read, but the next file # didn't exist yet. So we see if a new file has been added. # if the next file doesn't exist yet, return if log_key_to_fetch_idx + 1 >= len(log_keys): return [], log_cursor log_key_to_fetch_idx += 1 line_cursor = 0 log_lines = self._get_log_lines_for_log_key(log_keys[log_key_to_fetch_idx], io_type=io_type) records = [] has_more = True while len(records) < num_lines: remaining_log_lines = log_lines[line_cursor:] remaining_lines_to_fetch = num_lines - len(records) if remaining_lines_to_fetch < len(remaining_log_lines): records.extend(remaining_log_lines[:remaining_lines_to_fetch]) line_cursor += remaining_lines_to_fetch else: records.extend(remaining_log_lines) line_cursor = -1 if line_cursor == -1: # we've read the entirety of the file, update the cursor if log_key_to_fetch_idx + 1 >= len(log_keys): # no more files to process has_more = False break log_key_to_fetch_idx += 1 line_cursor = 0 if len(records) < num_lines: # we still need more records, so fetch the next file log_lines = self._get_log_lines_for_log_key( log_keys[log_key_to_fetch_idx], io_type=io_type ) new_cursor = LogLineCursor( log_key=log_keys[log_key_to_fetch_idx], line=line_cursor, has_more_now=has_more, ) return records, new_cursor
ComputeLogManager
python
sqlalchemy__sqlalchemy
examples/space_invaders/space_invaders.py
{ "start": 7030, "end": 7327 }
class ____(EnemyGlyph): """Describe the enemy saucer flying overhead.""" __mapper_args__ = {"polymorphic_identity": "saucer"} def glyph_for_state(self, coord, state): if state["flip"] == 0: return self.alt_data else: return self.data
SaucerGlyph
python
chroma-core__chroma
chromadb/test/property/test_collections_with_database_tenant.py
{ "start": 523, "end": 6047 }
class ____(CollectionStateMachine): """A collection state machine test that includes tenant and database information, and switches between them.""" tenants: Bundle # [str] databases: Bundle # [Tuple[str, str]] # database to tenant it belongs to tenant_to_database_to_model: Dict[ str, Dict[str, Dict[str, Optional[types.CollectionMetadata]]] ] admin_client: AdminAPI curr_tenant: str curr_database: str tenants = Bundle("tenants") databases = Bundle("databases") def __init__(self, client_factories: ClientFactories): client = client_factories.create_client() super().__init__(client) self.client = client self.admin_client = client_factories.create_admin_client_from_system() @initialize() def initialize(self) -> None: self.client.reset() self.tenant_to_database_to_model = {} self.curr_tenant = DEFAULT_TENANT self.curr_database = DEFAULT_DATABASE self.client.set_tenant(DEFAULT_TENANT, DEFAULT_DATABASE) self.set_tenant_model(self.curr_tenant, {}) self.set_database_model_for_tenant(self.curr_tenant, self.curr_database, {}) @rule(target=tenants, name=strategies.tenant_database_name) def create_tenant(self, name: str) -> MultipleResults: # [str]: tenant = self.overwrite_tenant(name) # Check if tenant already exists if self.has_tenant(tenant): with pytest.raises(Exception): self.admin_client.create_tenant(tenant) return multiple() self.admin_client.create_tenant(tenant) # When we create a tenant, create a default database for it just for testing # since the state machine could call collection operations before creating a # database self.admin_client.create_database(DEFAULT_DATABASE, tenant=tenant) self.set_tenant_model(tenant, {}) self.set_database_model_for_tenant(tenant, DEFAULT_DATABASE, {}) return multiple(tenant) @rule(target=databases, name=strategies.tenant_database_name) def create_database(self, name: str) -> MultipleResults: # [Tuple[str, str]]: database = self.overwrite_database(name) tenant = self.overwrite_tenant(self.curr_tenant) # If database already exists in current tenant, raise an error if self.has_database_for_tenant(tenant, database): with pytest.raises(Exception): self.admin_client.create_database(name=database, tenant=tenant) return multiple() self.admin_client.create_database(name=database, tenant=tenant) self.set_database_model_for_tenant( tenant=tenant, database=database, database_model={} ) return multiple((database, tenant)) @rule(database=databases) def set_database_and_tenant(self, database: Tuple[str, str]) -> None: # Get a database and switch to the database and the tenant it belongs to database_name = database[0] tenant_name = database[1] self.set_api_tenant_database(tenant_name, database_name) self.curr_database = database_name self.curr_tenant = tenant_name @rule(tenant=tenants) def set_tenant(self, tenant: str) -> None: self.set_api_tenant_database(tenant, DEFAULT_DATABASE) self.curr_tenant = tenant self.curr_database = DEFAULT_DATABASE # These methods allow other tests, namely # test_collections_with_database_tenant_override.py, to swap out the model # without needing to do a bunch of pythonic cleverness to fake a dict which # preteds to have every key. def set_api_tenant_database(self, tenant: str, database: str) -> None: self.client.set_tenant(tenant, database) # For calls to create_database, and create_tenant we may want to override the tenant and database # This is a leaky abstraction that exists soley for the purpose of # test_collections_with_database_tenant_override.py def overwrite_tenant(self, tenant: str) -> str: return tenant def overwrite_database(self, database: str) -> str: return database def has_tenant(self, tenant: str) -> bool: return tenant in self.tenant_to_database_to_model def get_tenant_model( self, tenant: str ) -> Dict[str, Dict[str, Optional[types.CollectionMetadata]]]: return self.tenant_to_database_to_model[tenant] def set_tenant_model( self, tenant: str, model: Dict[str, Dict[str, Optional[types.CollectionMetadata]]], ) -> None: self.tenant_to_database_to_model[tenant] = model def has_database_for_tenant(self, tenant: str, database: str) -> bool: return database in self.tenant_to_database_to_model[tenant] def set_database_model_for_tenant( self, tenant: str, database: str, database_model: Dict[str, Optional[types.CollectionMetadata]], ) -> None: self.tenant_to_database_to_model[tenant][database] = database_model @property def model(self) -> Dict[str, Optional[types.CollectionMetadata]]: return self.tenant_to_database_to_model[self.curr_tenant][self.curr_database] def test_collections( caplog: pytest.LogCaptureFixture, client_factories: ClientFactories ) -> None: caplog.set_level(logging.ERROR) run_state_machine_as_test(lambda: TenantDatabaseCollectionStateMachine(client_factories)) # type: ignore
TenantDatabaseCollectionStateMachine
python
PrefectHQ__prefect
src/prefect/events/actions.py
{ "start": 2823, "end": 2964 }
class ____(DeploymentAction): """Pauses the given Deployment""" type: Literal["pause-deployment"] = "pause-deployment"
PauseDeployment
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/paramSpec4.py
{ "start": 2836, "end": 3405 }
class ____(Generic[R, P]): f: Callable[P, str] prop: R def __init__(self, f: Callable[P, str], prop: R) -> None: self.f = f self.prop = prop def func10(q: int, /) -> str: ... y1 = A(func10, 1) assert_type(y1, A[int, [int]]) reveal_type(y1, expected_text="A[int, (q: int, /)]") # This should generate an error because Concatenate is not # allowed in this context. def func11(func: Concatenate[int, ...]) -> None: # This should generate an error because Concatenate is not # allowed in this context. x: Concatenate[int, ...]
A
python
miyuchina__mistletoe
mistletoe/span_token.py
{ "start": 6504, "end": 7079 }
class ____(SpanToken): """ Escape sequence token. ("\\\\*") This is an inline token with a single child of type RawText. Attributes: children (iterator): a single RawText node containing the escaped character. """ pattern = re.compile(r"\\([!\"#$%&'()*+,-./:;<=>?@\[\\\]^_`{|}~])") parse_inner = False precedence = 2 def __init__(self, match): self.children = (RawText(match.group(self.parse_group)),) @classmethod def strip(cls, string): return html.unescape(cls.pattern.sub(r'\1', string))
EscapeSequence
python
docker__docker-py
docker/types/networks.py
{ "start": 1738, "end": 1901 }
class ____(dict): def __init__(self, endpoints_config=None): if endpoints_config: self["EndpointsConfig"] = endpoints_config
NetworkingConfig
python
huggingface__transformers
tests/models/layoutlm/test_modeling_layoutlm.py
{ "start": 8812, "end": 13837 }
class ____(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( LayoutLMModel, LayoutLMForMaskedLM, LayoutLMForSequenceClassification, LayoutLMForTokenClassification, LayoutLMForQuestionAnswering, ) if is_torch_available() else None ) pipeline_model_mapping = ( { "document-question-answering": LayoutLMForQuestionAnswering, "feature-extraction": LayoutLMModel, "fill-mask": LayoutLMForMaskedLM, "text-classification": LayoutLMForSequenceClassification, "token-classification": LayoutLMForTokenClassification, "zero-shot": LayoutLMForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = LayoutLMModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def prepare_layoutlm_batch_inputs(): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off input_ids = torch.tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]],device=torch_device) # noqa: E231 attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],],device=torch_device) # noqa: E231 bbox = torch.tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]],device=torch_device) # noqa: E231 token_type_ids = torch.tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],device=torch_device) # noqa: E231 # these are sequence labels (i.e. at the token level) labels = torch.tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]],device=torch_device) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_torch
LayoutLMModelTest
python
tensorflow__tensorflow
tensorflow/python/ops/weak_tensor_np_math_ops_test.py
{ "start": 1889, "end": 8143 }
class ____(test_util.TensorFlowTestCase, parameterized.TestCase): def setUp(self): super(MathTest, self).setUp() self.array_transforms = [ lambda x: x, # Identity, _get_weak_tensor, np_array_ops.array, ] self.types = [np.int32, np.int64, np.float32, np.float64] def _testUnaryOp(self, math_fun, np_fun, name, weak_result): def run_test(a): for fn in self.array_transforms: arg1 = fn(a) if weak_result and flexible_dtypes.result_type(arg1)[1]: self.assertIsInstance(math_fun(arg1), weak_tensor.WeakTensor) else: self.assertIsInstance(math_fun(arg1), np_arrays.ndarray) self.match( math_fun(arg1), np_fun(arg1), msg='{}({})'.format(name, arg1)) run_test(5) run_test([2, 3]) run_test([[2, -3], [-6, 7]]) def testLog(self): self._testUnaryOp(np_math_ops.log, np.log, 'log', True) def testExp(self): self._testUnaryOp(np_math_ops.exp, np.exp, 'exp', True) def testTanh(self): self._testUnaryOp(np_math_ops.tanh, np.tanh, 'tanh', True) def testSqrt(self): self._testUnaryOp(np_math_ops.sqrt, np.sqrt, 'sqrt', True) def match(self, actual, expected, msg='', check_dtype=True): if check_dtype: self.assertEqual( actual.dtype, _NP_to_TF_result_inferred_types[expected.dtype], 'Dtype mismatch.\nActual: {}\nExpected: {}\n{}'.format( actual.dtype.as_numpy_dtype, _NP_to_TF_result_inferred_types[expected.dtype], msg, ), ) self.assertEqual( actual.shape, expected.shape, 'Shape mismatch.\nActual: {}\nExpected: {}\n{}'.format( actual.shape, expected.shape, msg)) np.testing.assert_allclose(actual.tolist(), expected.tolist(), rtol=1e-6) def testArgsort(self): self._testUnaryOp(np_math_ops.argsort, np.argsort, 'argsort', False) # Test stability r = np.arange(100) a = np.zeros(100) np.testing.assert_equal(np_math_ops.argsort(a, kind='stable'), r) def testArgMaxArgMin(self): data = [ 0, 5, [1], [1, 2, 3], [[1, 2, 3]], [[4, 6], [7, 8]], [[[4, 6], [9, 10]], [[7, 8], [12, 34]]], ] for fn, d in itertools.product(self.array_transforms, data): arr = fn(d) # argmax and argmin returns indices (int64 type). self.match(np_math_ops.argmax(arr), np.argmax(arr), check_dtype=False) self.match(np_math_ops.argmin(arr), np.argmin(arr), check_dtype=False) if hasattr(arr, 'shape'): ndims = len(arr.shape) else: ndims = np_array_ops.array(arr, copy=False).ndim if ndims == 0: # Numpy flattens the scalar ndarray and treats it as a 1-d array of # size 1. ndims = 1 for axis in range(-ndims, ndims): self.match( np_math_ops.argmax(arr, axis=axis), np.argmax(arr, axis=axis), check_dtype=False, ) self.match( np_math_ops.argmin(arr, axis=axis), np.argmin(arr, axis=axis), check_dtype=False, ) def testAverageWrongShape(self): with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, r''): np_math_ops.average(np.ones([2, 3]), weights=np.ones([2, 4])) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, r''): np_math_ops.average(np.ones([2, 3]), axis=0, weights=np.ones([2, 4])) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, r''): np_math_ops.average(np.ones([2, 3]), axis=0, weights=np.ones([])) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, r''): np_math_ops.average(np.ones([2, 3]), axis=0, weights=np.ones([5])) def testPtp(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_math_ops.ptp(arg, *args, **kwargs), np.ptp(arg, *args, **kwargs), check_dtype=False, ) run_test([1, 2, 3]) run_test([1., 2., 3.]) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2) # Test that enable_numpy_methods() gets called when weak_tensor_ops is # imported. @parameterized.parameters([ 'T', 'ndim', 'size', 'data', '__pos__', '__round__', 'tolist', 'flatten', 'transpose', 'reshape', 'ravel', 'clip', 'astype', 'max', 'mean', 'min']) def testNumpyMethodsOnTensor(self, np_method): a = ops.convert_to_tensor([1, 2]) self.assertTrue(hasattr(a, np_method)) def testFlatten(self): a1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) a2 = _get_weak_tensor(a1) self.assertAllEqual(a1.flatten('C'), a2.flatten('C')) self.assertAllEqual(a1.flatten('F'), a2.flatten('F')) self.assertAllEqual(a1.flatten('C'), a2.flatten('A')) self.assertAllEqual(a1.flatten('C'), a2.flatten('K')) with self.assertRaises(ValueError): a2.flatten('invalid') def testIsInf(self): x1 = _get_weak_tensor(-2147483648) x2 = _get_weak_tensor(2147483647) self.assertFalse(np_math_ops.isinf(x1)) self.assertFalse(np_math_ops.isinf(x2)) self.assertFalse(np_math_ops.isposinf(x1)) self.assertFalse(np_math_ops.isposinf(x2)) self.assertFalse(np_math_ops.isneginf(x1)) self.assertFalse(np_math_ops.isneginf(x2)) def testRandomOpsReturnFloat32(self): x = np_random.rand(2, 50) np_x = np.random.rand(2, 50) self.assertEqual(x.dtype, dtypes.float32) self.assertEqual(np_x.shape, x.shape) x = np_random.standard_normal(50) np_x = np.random.standard_normal(50) self.assertEqual(x.dtype, dtypes.float32) self.assertEqual(np_x.shape, x.shape) x = np_random.uniform(low=-1, high=0, size=(50, 50)) np_x = np.random.uniform(low=-1, high=0, size=(50, 50)) self.assertEqual(x.dtype, dtypes.float32) self.assertEqual(np_x.shape, x.shape) if __name__ == '__main__': tensor.enable_tensor_equality() np_math_ops.enable_numpy_methods_on_tensor() ops.enable_eager_execution() ops.set_dtype_conversion_mode('all') googletest.main()
MathTest
python
ray-project__ray
python/ray/util/client/dataclient.py
{ "start": 4292, "end": 7522 }
class ____: """ This object collects chunks from async get requests via __call__, and calls the underlying callback when the object is fully received, or if an exception while retrieving the object occurs. This is not used in synchronous gets (synchronous gets interact with the raylet servicer directly, not through the datapath). __call__ returns true once the underlying call back has been called. """ def __init__(self, callback: ResponseCallable, request: ray_client_pb2.DataRequest): # Bytearray containing data received so far self.data = bytearray() # The callback that will be called once all data is received self.callback = callback # The id of the last chunk we've received, or -1 if haven't seen any yet self.last_seen_chunk = -1 # The GetRequest that initiated the transfer. start_chunk_id will be # updated as chunks are received to avoid re-requesting chunks that # we've already received. self.request = request def __call__(self, response: Union[ray_client_pb2.DataResponse, Exception]) -> bool: if isinstance(response, Exception): self.callback(response) return True get_resp = response.get if not get_resp.valid: self.callback(response) return True if get_resp.total_size > OBJECT_TRANSFER_WARNING_SIZE and log_once( "client_object_transfer_size_warning" ): size_gb = get_resp.total_size / 2**30 warnings.warn( "Ray Client is attempting to retrieve a " f"{size_gb:.2f} GiB object over the network, which may " "be slow. Consider serializing the object to a file and " "using rsync or S3 instead.", UserWarning, ) chunk_data = get_resp.data chunk_id = get_resp.chunk_id if chunk_id == self.last_seen_chunk + 1: self.data.extend(chunk_data) self.last_seen_chunk = chunk_id # If we disconnect partway through, restart the get request # at the first chunk we haven't seen self.request.get.start_chunk_id = self.last_seen_chunk + 1 elif chunk_id > self.last_seen_chunk + 1: # A chunk was skipped. This shouldn't happen in practice since # grpc guarantees that chunks will arrive in order. msg = ( f"Received chunk {chunk_id} when we expected " f"{self.last_seen_chunk + 1} for request {response.req_id}" ) logger.warning(msg) self.callback(RuntimeError(msg)) return True else: # We received a chunk that've already seen before. Ignore, since # it should already be appended to self.data. logger.debug( f"Received a repeated chunk {chunk_id} " f"from request {response.req_id}." ) if get_resp.chunk_id == get_resp.total_chunks - 1: self.callback(self.data) return True else: # Not done yet return False
ChunkCollector
python
fastai__fastai
fastai/data/load.py
{ "start": 2537, "end": 3781 }
class ____(Exception): "Raised to notify `DataLoader` to skip an item" pass # %% ../../nbs/02_data.load.ipynb 15 def collate_error(e:Exception, batch): "Raises error when the batch could not collate, stating what items in the batch are different sizes and their types" err = f'Error when trying to collate the data into batches with fa_collate, at least two tensors in the batch are not the same size.\n\n' # we need to iterate through the entire batch and find a mismatch length = len(batch[0]) for idx in range(length): # for each type in the batch for i, item in enumerate(batch): if i == 0: shape_a, type_a = item[idx].shape, item[idx].__class__.__name__ elif item[idx].shape != shape_a: shape_b = item[idx].shape if shape_a != shape_b: err += f'Mismatch found on axis {idx} of the batch and is of type `{type_a}`:\n\tItem at index 0 has shape: {shape_a}\n\tItem at index {i} has shape: {shape_b}\n\nPlease include a transform in `after_item` that ensures all data of type {type_a} is the same size' e.args = [err] raise # %% ../../nbs/02_data.load.ipynb 18 @funcs_kwargs
SkipItemException
python
sympy__sympy
sympy/physics/quantum/gate.py
{ "start": 30464, "end": 42588 }
class ____(TwoQubitGate): """Two qubit SWAP gate. This gate swap the values of the two qubits. Parameters ---------- label : tuple A tuple of the form (target1, target2). Examples ======== """ is_hermitian = True gate_name = 'SWAP' gate_name_latex = r'\text{SWAP}' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('SWAP', format) def decompose(self, **options): """Decompose the SWAP gate into CNOT gates.""" i, j = self.targets[0], self.targets[1] g1 = CNotGate(i, j) g2 = CNotGate(j, i) return g1*g2*g1 def plot_gate(self, circ_plot, gate_idx): min_wire = int(_min(self.targets)) max_wire = int(_max(self.targets)) circ_plot.control_line(gate_idx, min_wire, max_wire) circ_plot.swap_point(gate_idx, min_wire) circ_plot.swap_point(gate_idx, max_wire) def _represent_ZGate(self, basis, **options): """Represent the SWAP gate in the computational basis. The following representation is used to compute this: SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0| """ format = options.get('format', 'sympy') targets = [int(t) for t in self.targets] min_target = _min(targets) max_target = _max(targets) nqubits = options.get('nqubits', self.min_qubits) op01 = matrix_cache.get_matrix('op01', format) op10 = matrix_cache.get_matrix('op10', format) op11 = matrix_cache.get_matrix('op11', format) op00 = matrix_cache.get_matrix('op00', format) eye2 = matrix_cache.get_matrix('eye2', format) result = None for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)): product = nqubits*[eye2] product[nqubits - min_target - 1] = i product[nqubits - max_target - 1] = j new_result = matrix_tensor_product(*product) if result is None: result = new_result else: result = result + new_result return result # Aliases for gate names. CNOT = CNotGate SWAP = SwapGate def CPHASE(a,b): return CGateS((a,),Z(b)) #----------------------------------------------------------------------------- # Represent #----------------------------------------------------------------------------- def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'): """Represent a gate with controls, targets and target_matrix. This function does the low-level work of representing gates as matrices in the standard computational basis (ZGate). Currently, we support two main cases: 1. One target qubit and no control qubits. 2. One target qubits and multiple control qubits. For the base of multiple controls, we use the following expression [1]: 1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2}) Parameters ---------- controls : list, tuple A sequence of control qubits. targets : list, tuple A sequence of target qubits. target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse The matrix form of the transformation to be performed on the target qubits. The format of this matrix must match that passed into the `format` argument. nqubits : int The total number of qubits used for the representation. format : str The format of the final matrix ('sympy', 'numpy', 'scipy.sparse'). Examples ======== References ---------- [1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html. """ controls = [int(x) for x in controls] targets = [int(x) for x in targets] nqubits = int(nqubits) # This checks for the format as well. op11 = matrix_cache.get_matrix('op11', format) eye2 = matrix_cache.get_matrix('eye2', format) # Plain single qubit case if len(controls) == 0 and len(targets) == 1: product = [] bit = targets[0] # Fill product with [I1,Gate,I2] such that the unitaries, # I, cause the gate to be applied to the correct Qubit if bit != nqubits - 1: product.append(matrix_eye(2**(nqubits - bit - 1), format=format)) product.append(target_matrix) if bit != 0: product.append(matrix_eye(2**bit, format=format)) return matrix_tensor_product(*product) # Single target, multiple controls. elif len(targets) == 1 and len(controls) >= 1: target = targets[0] # Build the non-trivial part. product2 = [] for i in range(nqubits): product2.append(matrix_eye(2, format=format)) for control in controls: product2[nqubits - 1 - control] = op11 product2[nqubits - 1 - target] = target_matrix - eye2 return matrix_eye(2**nqubits, format=format) + \ matrix_tensor_product(*product2) # Multi-target, multi-control is not yet implemented. else: raise NotImplementedError( 'The representation of multi-target, multi-control gates ' 'is not implemented.' ) #----------------------------------------------------------------------------- # Gate manipulation functions. #----------------------------------------------------------------------------- def gate_simp(circuit): """Simplifies gates symbolically It first sorts gates using gate_sort. It then applies basic simplification rules to the circuit, e.g., XGate**2 = Identity """ # Bubble sort out gates that commute. circuit = gate_sort(circuit) # Do simplifications by subing a simplification into the first element # which can be simplified. We recursively call gate_simp with new circuit # as input more simplifications exist. if isinstance(circuit, Add): return sum(gate_simp(t) for t in circuit.args) elif isinstance(circuit, Mul): circuit_args = circuit.args elif isinstance(circuit, Pow): b, e = circuit.as_base_exp() circuit_args = (gate_simp(b)**e,) else: return circuit # Iterate through each element in circuit, simplify if possible. for i in range(len(circuit_args)): # H,X,Y or Z squared is 1. # T**2 = S, S**2 = Z if isinstance(circuit_args[i], Pow): if isinstance(circuit_args[i].base, (HadamardGate, XGate, YGate, ZGate)) \ and isinstance(circuit_args[i].exp, Number): # Build a new circuit taking replacing the # H,X,Y,Z squared with one. newargs = (circuit_args[:i] + (circuit_args[i].base**(circuit_args[i].exp % 2),) + circuit_args[i + 1:]) # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break elif isinstance(circuit_args[i].base, PhaseGate): # Build a new circuit taking old circuit but splicing # in simplification. newargs = circuit_args[:i] # Replace PhaseGate**2 with ZGate. newargs = newargs + (ZGate(circuit_args[i].base.args[0])** (Integer(circuit_args[i].exp/2)), circuit_args[i].base** (circuit_args[i].exp % 2)) # Append the last elements. newargs = newargs + circuit_args[i + 1:] # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break elif isinstance(circuit_args[i].base, TGate): # Build a new circuit taking all the old elements. newargs = circuit_args[:i] # Put an Phasegate in place of any TGate**2. newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])** Integer(circuit_args[i].exp/2), circuit_args[i].base** (circuit_args[i].exp % 2)) # Append the last elements. newargs = newargs + circuit_args[i + 1:] # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break return circuit def gate_sort(circuit): """Sorts the gates while keeping track of commutation relations This function uses a bubble sort to rearrange the order of gate application. Keeps track of Quantum computations special commutation relations (e.g. things that apply to the same Qubit do not commute with each other) circuit is the Mul of gates that are to be sorted. """ # Make sure we have an Add or Mul. if isinstance(circuit, Add): return sum(gate_sort(t) for t in circuit.args) if isinstance(circuit, Pow): return gate_sort(circuit.base)**circuit.exp elif isinstance(circuit, Gate): return circuit if not isinstance(circuit, Mul): return circuit changes = True while changes: changes = False circ_array = circuit.args for i in range(len(circ_array) - 1): # Go through each element and switch ones that are in wrong order if isinstance(circ_array[i], (Gate, Pow)) and \ isinstance(circ_array[i + 1], (Gate, Pow)): # If we have a Pow object, look at only the base first_base, first_exp = circ_array[i].as_base_exp() second_base, second_exp = circ_array[i + 1].as_base_exp() # Use SymPy's hash based sorting. This is not mathematical # sorting, but is rather based on comparing hashes of objects. # See Basic.compare for details. if first_base.compare(second_base) > 0: if Commutator(first_base, second_base).doit() == 0: new_args = (circuit.args[:i] + (circuit.args[i + 1],) + (circuit.args[i],) + circuit.args[i + 2:]) circuit = Mul(*new_args) changes = True break if AntiCommutator(first_base, second_base).doit() == 0: new_args = (circuit.args[:i] + (circuit.args[i + 1],) + (circuit.args[i],) + circuit.args[i + 2:]) sign = _S.NegativeOne**(first_exp*second_exp) circuit = sign*Mul(*new_args) changes = True break return circuit #----------------------------------------------------------------------------- # Utility functions #----------------------------------------------------------------------------- def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)): """Return a random circuit of ngates and nqubits. This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates. Parameters ---------- ngates : int The number of gates in the circuit. nqubits : int The number of qubits in the circuit. gate_space : tuple A tuple of the gate classes that will be used in the circuit. Repeating gate classes multiple times in this tuple will increase the frequency they appear in the random circuit. """ qubit_space = range(nqubits) result = [] for i in range(ngates): g = random.choice(gate_space) if g == CNotGate or g == SwapGate: qubits = random.sample(qubit_space, 2) g = g(*qubits) else: qubit = random.choice(qubit_space) g = g(qubit) result.append(g) return Mul(*result) def zx_basis_transform(self, format='sympy'): """Transformation matrix from Z to X basis.""" return matrix_cache.get_matrix('ZX', format) def zy_basis_transform(self, format='sympy'): """Transformation matrix from Z to Y basis.""" return matrix_cache.get_matrix('ZY', format)
SwapGate