language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
keras-team__keras
keras/src/layers/preprocessing/image_preprocessing/random_translation.py
{ "start": 599, "end": 14932 }
class ____(BaseImagePreprocessingLayer): """A preprocessing layer which randomly translates images during training. This layer will apply random translations to each image during training, filling empty space according to `fill_mode`. Input pixel values can be of any range (e.g. `[0., 1.)` or `[0, 255]`) and of integer or floating point dtype. By default, the layer will output floats. **Note:** This layer is safe to use inside a `tf.data` or `grain` pipeline (independently of which backend you're using). Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format, or `(..., channels, height, width)`, in `"channels_first"` format. Output shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., target_height, target_width, channels)`, or `(..., channels, target_height, target_width)`, in `"channels_first"` format. Args: height_factor: a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for shifting vertically. A negative value means shifting image up, while a positive value means shifting image down. When represented as a single positive float, this value is used for both the upper and lower bound. For instance, `height_factor=(-0.2, 0.3)` results in an output shifted by a random amount in the range `[-20%, +30%]`. `height_factor=0.2` results in an output height shifted by a random amount in the range `[-20%, +20%]`. width_factor: a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for shifting horizontally. A negative value means shifting image left, while a positive value means shifting image right. When represented as a single positive float, this value is used for both the upper and lower bound. For instance, `width_factor=(-0.2, 0.3)` results in an output shifted left by 20%, and shifted right by 30%. `width_factor=0.2` results in an output height shifted left or right by 20%. fill_mode: Points outside the boundaries of the input are filled according to the given mode. Available methods are `"constant"`, `"nearest"`, `"wrap"` and `"reflect"`. Defaults to `"constant"`. - `"reflect"`: `(d c b a | a b c d | d c b a)` The input is extended by reflecting about the edge of the last pixel. - `"constant"`: `(k k k k | a b c d | k k k k)` The input is extended by filling all values beyond the edge with the same constant value k specified by `fill_value`. - `"wrap"`: `(a b c d | a b c d | a b c d)` The input is extended by wrapping around to the opposite edge. - `"nearest"`: `(a a a a | a b c d | d d d d)` The input is extended by the nearest pixel. Note that when using torch backend, `"reflect"` is redirected to `"mirror"` `(c d c b | a b c d | c b a b)` because torch does not support `"reflect"`. Note that torch backend does not support `"wrap"`. interpolation: Interpolation mode. Supported values: `"nearest"`, `"bilinear"`. seed: Integer. Used to create a random seed. fill_value: a float represents the value to be filled outside the boundaries when `fill_mode="constant"`. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ _USE_BASE_FACTOR = False _FACTOR_VALIDATION_ERROR = ( "The `factor` argument should be a number (or a list of two numbers) " "in the range [-1.0, 1.0]. " ) _SUPPORTED_FILL_MODE = ("reflect", "wrap", "constant", "nearest") _SUPPORTED_INTERPOLATION = ("nearest", "bilinear") def __init__( self, height_factor, width_factor, fill_mode="reflect", interpolation="bilinear", seed=None, fill_value=0.0, data_format=None, **kwargs, ): super().__init__(data_format=data_format, **kwargs) self.height_factor = height_factor self.height_lower, self.height_upper = self._set_factor( height_factor, "height_factor" ) self.width_factor = width_factor self.width_lower, self.width_upper = self._set_factor( width_factor, "width_factor" ) if fill_mode not in self._SUPPORTED_FILL_MODE: raise NotImplementedError( f"Unknown `fill_mode` {fill_mode}. Expected of one " f"{self._SUPPORTED_FILL_MODE}." ) if interpolation not in self._SUPPORTED_INTERPOLATION: raise NotImplementedError( f"Unknown `interpolation` {interpolation}. Expected of one " f"{self._SUPPORTED_INTERPOLATION}." ) self.fill_mode = fill_mode self.fill_value = fill_value self.interpolation = interpolation self.seed = seed self.generator = SeedGenerator(seed) self.supports_jit = False def _set_factor(self, factor, factor_name): if isinstance(factor, (tuple, list)): if len(factor) != 2: raise ValueError( self._FACTOR_VALIDATION_ERROR + f"Received: {factor_name}={factor}" ) self._check_factor_range(factor[0]) self._check_factor_range(factor[1]) lower, upper = sorted(factor) elif isinstance(factor, (int, float)): self._check_factor_range(factor) factor = abs(factor) lower, upper = [-factor, factor] else: raise ValueError( self._FACTOR_VALIDATION_ERROR + f"Received: {factor_name}={factor}" ) return lower, upper def _check_factor_range(self, input_number): if input_number > 1.0 or input_number < -1.0: raise ValueError( self._FACTOR_VALIDATION_ERROR + f"Received: input_number={input_number}" ) def transform_images(self, images, transformation, training=True): images = self.backend.cast(images, self.compute_dtype) if training: return self._translate_inputs(images, transformation) return images def transform_labels(self, labels, transformation, training=True): return labels def get_transformed_x_y(self, x, y, transform): a0, a1, a2, b0, b1, b2, c0, c1 = self.backend.numpy.split( transform, 8, axis=-1 ) k = c0 * x + c1 * y + 1 x_transformed = (a0 * x + a1 * y + a2) / k y_transformed = (b0 * x + b1 * y + b2) / k return x_transformed, y_transformed def get_shifted_bbox(self, bounding_boxes, w_shift_factor, h_shift_factor): bboxes = bounding_boxes["boxes"] x1, x2, x3, x4 = self.backend.numpy.split(bboxes, 4, axis=-1) w_shift_factor = self.backend.convert_to_tensor( w_shift_factor, dtype=x1.dtype ) h_shift_factor = self.backend.convert_to_tensor( h_shift_factor, dtype=x1.dtype ) if len(bboxes.shape) == 3: w_shift_factor = self.backend.numpy.expand_dims(w_shift_factor, -1) h_shift_factor = self.backend.numpy.expand_dims(h_shift_factor, -1) bounding_boxes["boxes"] = self.backend.numpy.concatenate( [ x1 - w_shift_factor, x2 - h_shift_factor, x3 - w_shift_factor, x4 - h_shift_factor, ], axis=-1, ) return bounding_boxes def transform_bounding_boxes( self, bounding_boxes, transformation, training=True, ): if training: if backend_utils.in_tf_graph(): self.backend.set_backend("tensorflow") if self.data_format == "channels_first": height_axis = -2 width_axis = -1 else: height_axis = -3 width_axis = -2 input_height, input_width = ( transformation["input_shape"][height_axis], transformation["input_shape"][width_axis], ) bounding_boxes = convert_format( bounding_boxes, source=self.bounding_box_format, target="xyxy", height=input_height, width=input_width, ) translations = transformation["translations"] transform = self._get_translation_matrix(translations) w_shift_factor, h_shift_factor = self.get_transformed_x_y( 0, 0, transform ) bounding_boxes = self.get_shifted_bbox( bounding_boxes, w_shift_factor, h_shift_factor ) bounding_boxes = clip_to_image_size( bounding_boxes=bounding_boxes, height=input_height, width=input_width, bounding_box_format="xyxy", ) bounding_boxes = convert_format( bounding_boxes, source="xyxy", target=self.bounding_box_format, height=input_height, width=input_width, ) self.backend.reset() return bounding_boxes def transform_segmentation_masks( self, segmentation_masks, transformation, training=True ): return self.transform_images( segmentation_masks, transformation, training=training ) def get_random_transformation(self, data, training=True, seed=None): if not training: return None if isinstance(data, dict): images = data["images"] else: images = data images_shape = self.backend.shape(images) unbatched = len(images_shape) == 3 if unbatched: images_shape = self.backend.shape(images) batch_size = 1 else: batch_size = images_shape[0] if self.data_format == "channels_first": height = images_shape[-2] width = images_shape[-1] else: height = images_shape[-3] width = images_shape[-2] if seed is None: seed = self._get_seed_generator(self.backend._backend) height_translate = self.backend.random.uniform( minval=self.height_lower, maxval=self.height_upper, shape=[batch_size, 1], seed=seed, ) height_translate = self.backend.numpy.multiply(height_translate, height) width_translate = self.backend.random.uniform( minval=self.width_lower, maxval=self.width_upper, shape=[batch_size, 1], seed=seed, ) width_translate = self.backend.numpy.multiply(width_translate, width) translations = self.backend.cast( self.backend.numpy.concatenate( [width_translate, height_translate], axis=1 ), dtype="float32", ) return {"translations": translations, "input_shape": images_shape} def _translate_inputs(self, inputs, transformation): if transformation is None: return inputs inputs_shape = self.backend.shape(inputs) unbatched = len(inputs_shape) == 3 if unbatched: inputs = self.backend.numpy.expand_dims(inputs, axis=0) translations = transformation["translations"] outputs = self.backend.image.affine_transform( inputs, transform=self._get_translation_matrix(translations), interpolation=self.interpolation, fill_mode=self.fill_mode, fill_value=self.fill_value, data_format=self.data_format, ) if unbatched: outputs = self.backend.numpy.squeeze(outputs, axis=0) return outputs def _get_translation_matrix(self, translations): num_translations = self.backend.shape(translations)[0] # The translation matrix looks like: # [[1 0 -dx] # [0 1 -dy] # [0 0 1]] # where the last entry is implicit. # translation matrices are always float32. return self.backend.numpy.concatenate( [ self.backend.numpy.ones((num_translations, 1)), self.backend.numpy.zeros((num_translations, 1)), -translations[:, 0:1], self.backend.numpy.zeros((num_translations, 1)), self.backend.numpy.ones((num_translations, 1)), -translations[:, 1:], self.backend.numpy.zeros((num_translations, 2)), ], axis=1, ) def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "height_factor": self.height_factor, "width_factor": self.width_factor, "fill_mode": self.fill_mode, "interpolation": self.interpolation, "seed": self.seed, "fill_value": self.fill_value, "data_format": self.data_format, } return {**base_config, **config}
RandomTranslation
python
apache__airflow
airflow-core/src/airflow/api_fastapi/core_api/datamodels/event_logs.py
{ "start": 1620, "end": 1773 }
class ____(BaseModel): """Event Log Collection Response.""" event_logs: Iterable[EventLogResponse] total_entries: int
EventLogCollectionResponse
python
huggingface__transformers
src/transformers/models/oneformer/modeling_oneformer.py
{ "start": 119096, "end": 119520 }
class ____(nn.Module): def __init__(self, config: OneFormerConfig): super().__init__() self.task_mlp = OneFormerMLPPredictionHead( config.task_seq_len, config.hidden_dim, config.hidden_dim, 2, ) def forward(self, inputs: Tensor) -> Tensor: task_tokens = self.task_mlp(inputs) return task_tokens @auto_docstring
OneFormerTaskModel
python
apache__airflow
airflow-core/src/airflow/api_fastapi/auth/managers/models/base_user.py
{ "start": 856, "end": 1014 }
class ____: """User model interface.""" @abstractmethod def get_id(self) -> str: ... @abstractmethod def get_name(self) -> str: ...
BaseUser
python
great-expectations__great_expectations
tests/data_context/test_data_context_variables.py
{ "start": 2421, "end": 19327 }
class ____(_ConfigurationProvider): def __init__(self, config_values=None) -> None: self._config_values = config_values or {} super().__init__() def get_values(self): return self._config_values @pytest.fixture def ephemeral_data_context_variables( data_context_config: DataContextConfig, ) -> EphemeralDataContextVariables: return EphemeralDataContextVariables( config=data_context_config, config_provider=StubConfigurationProvider() ) @pytest.fixture def file_data_context_variables( data_context_config: DataContextConfig, empty_data_context: FileDataContext ) -> FileDataContextVariables: return FileDataContextVariables( data_context=empty_data_context, config=data_context_config, config_provider=StubConfigurationProvider(), ) @pytest.fixture def cloud_data_context_variables( data_context_config: DataContextConfig, ge_cloud_base_url: str, ge_cloud_organization_id: str, ge_cloud_workspace_id: str, ge_cloud_access_token: str, ) -> CloudDataContextVariables: return CloudDataContextVariables( ge_cloud_base_url=ge_cloud_base_url, ge_cloud_organization_id=ge_cloud_organization_id, ge_cloud_workspace_id=ge_cloud_workspace_id, ge_cloud_access_token=ge_cloud_access_token, config=data_context_config, config_provider=StubConfigurationProvider(), ) @pytest.fixture def file_data_context( tmp_path: pathlib.Path, data_context_config: DataContextConfig ) -> FileDataContext: project_path = tmp_path / "file_data_context" project_path.mkdir() context_root_dir = project_path / FileDataContext.GX_DIR context = FileDataContext(project_config=data_context_config, context_root_dir=context_root_dir) project_manager.set_project(context) return context @pytest.fixture def cloud_data_context( tmp_path: pathlib.Path, data_context_config: DataContextConfig, ge_cloud_config_e2e: GXCloudConfig, ) -> CloudDataContext: project_path = tmp_path / "cloud_data_context" project_path.mkdir() context_root_dir = project_path / FileDataContext.GX_DIR cloud_data_context = CloudDataContext( project_config=data_context_config, cloud_base_url=ge_cloud_config_e2e.base_url, cloud_access_token=ge_cloud_config_e2e.access_token, cloud_organization_id=ge_cloud_config_e2e.organization_id, context_root_dir=context_root_dir, ) project_manager.set_project(cloud_data_context) return cloud_data_context def stores() -> dict: return { "checkpoint_store": { "class_name": "CheckpointStore", "store_backend": { "class_name": "TupleFilesystemStoreBackend", "base_directory": "checkpoints/", }, }, } @pytest.fixture def data_docs_sites() -> dict: return { "local_site": { "class_name": "SiteBuilder", "show_how_to_buttons": True, "store_backend": { "class_name": "TupleFilesystemStoreBackend", "base_directory": "uncommitted/data_docs/local_site/", }, } } @pytest.fixture def progress_bars() -> ProgressBarsConfig: return ProgressBarsConfig( globally=True, ) @pytest.mark.unit @pytest.mark.parametrize( "target_attr", [ pytest.param( DataContextVariableSchema.CONFIG_VERSION, id="config_version getter", ), pytest.param( DataContextVariableSchema.CONFIG_VARIABLES_FILE_PATH, id="config_variables_file_path getter", ), pytest.param( DataContextVariableSchema.PLUGINS_DIRECTORY, id="plugins_directory getter", ), pytest.param( DataContextVariableSchema.EXPECTATIONS_STORE_NAME, id="expectations_store getter", ), pytest.param( DataContextVariableSchema.VALIDATIONS_STORE_NAME, id="validation_results_store getter", ), pytest.param( DataContextVariableSchema.CHECKPOINT_STORE_NAME, id="checkpoint_store getter", ), pytest.param(DataContextVariableSchema.STORES, id="stores getter"), pytest.param( DataContextVariableSchema.DATA_DOCS_SITES, id="data_docs_sites getter", ), pytest.param( DataContextVariableSchema.PROGRESS_BARS, id="progress_bars getter", ), ], ) @pytest.mark.slow # 1.20s def test_data_context_variables_get( ephemeral_data_context_variables: EphemeralDataContextVariables, file_data_context_variables: FileDataContextVariables, cloud_data_context_variables: CloudDataContextVariables, data_context_config: dict, target_attr: DataContextVariableSchema, ) -> None: def _test_variables_get(type_: DataContextVariables) -> None: res: Any = getattr(type_, target_attr.value) expected_value: Any = data_context_config[target_attr.value] assert res == expected_value # EphemeralDataContextVariables _test_variables_get(ephemeral_data_context_variables) # FileDataContextVariables _test_variables_get(file_data_context_variables) # CloudDataContextVariables _test_variables_get(cloud_data_context_variables) @pytest.mark.unit def test_data_context_variables_get_with_substitutions( data_context_config_dict: dict, ) -> None: env_var_name: str = "MY_CONFIG_VERSION" value_associated_with_env_var: float = 7.0 data_context_config_dict[DataContextVariableSchema.CONFIG_VERSION] = f"${env_var_name}" config: DataContextConfig = DataContextConfig(**data_context_config_dict) config_values: dict = { env_var_name: value_associated_with_env_var, } variables: DataContextVariables = EphemeralDataContextVariables( config=config, config_provider=StubConfigurationProvider(config_values=config_values), ) assert variables.config_version == value_associated_with_env_var @pytest.mark.unit @pytest.mark.parametrize( "input_value,target_attr", [ pytest.param( 5.0, DataContextVariableSchema.CONFIG_VERSION, id="config_version setter", ), pytest.param( "uncommitted/my_config_file.yml", DataContextVariableSchema.CONFIG_VARIABLES_FILE_PATH, id="config_variables_file_path setter", ), pytest.param( "other_plugins/", DataContextVariableSchema.PLUGINS_DIRECTORY, id="plugins_directory setter", ), pytest.param( "my_expectations_store", DataContextVariableSchema.EXPECTATIONS_STORE_NAME, id="expectations_store setter", ), pytest.param( "my_validation_results_store", DataContextVariableSchema.VALIDATIONS_STORE_NAME, id="validation_results_store setter", ), pytest.param( "my_checkpoint_store", DataContextVariableSchema.CHECKPOINT_STORE_NAME, id="checkpoint_store setter", ), pytest.param(stores, DataContextVariableSchema.STORES, id="stores setter"), pytest.param( data_docs_sites, DataContextVariableSchema.DATA_DOCS_SITES, id="data_docs_sites setter", ), pytest.param( progress_bars, DataContextVariableSchema.PROGRESS_BARS, id="progress_bars setter", ), ], ) @pytest.mark.slow # 1.20s def test_data_context_variables_set( ephemeral_data_context_variables: EphemeralDataContextVariables, file_data_context_variables: FileDataContextVariables, cloud_data_context_variables: CloudDataContextVariables, input_value: Any, target_attr: DataContextVariableSchema, ) -> None: def _test_variables_set(type_: DataContextVariables) -> None: setattr(type_, target_attr.value, input_value) res: Any = type_.config[target_attr.value] assert res == input_value # EphemeralDataContextVariables _test_variables_set(ephemeral_data_context_variables) # FileDataContextVariables _test_variables_set(file_data_context_variables) # CloudDataContextVariables _test_variables_set(cloud_data_context_variables) @pytest.mark.unit def test_data_context_variables_save( mocker: MockerFixture, data_context_config_dict: dict, ephemeral_data_context_variables: EphemeralDataContextVariables, file_data_context_variables: FileDataContextVariables, cloud_data_context_variables: CloudDataContextVariables, # The below GX Cloud variables were used to instantiate the above CloudDataContextVariables v1_cloud_base_url: str, ge_cloud_organization_id: str, ge_cloud_workspace_id: str, ge_cloud_access_token: str, ) -> None: # EphemeralDataContextVariables ephemeral_data_context_variables.save() key: ConfigurationIdentifier = ephemeral_data_context_variables.get_key() persisted_value: DataContextConfig = ephemeral_data_context_variables.store.get(key=key) assert persisted_value.to_json_dict() == ephemeral_data_context_variables.config.to_json_dict() # FileDataContextVariables mock_save = mocker.patch( "great_expectations.data_context.store.InlineStoreBackend._save_changes", autospec=True, ) file_data_context_variables.save() assert mock_save.call_count == 1 # CloudDataContextVariables mock_put = mocker.patch("requests.Session.put", autospec=True) type(mock_put.return_value).status_code = mocker.PropertyMock(return_value=200) cloud_data_context_variables.save() expected_config_dict = { "analytics_enabled": True, "data_context_id": "6a52bdfa-e182-455b-a825-e69f076e67d6", "config_variables_file_path": "uncommitted/config_variables.yml", "config_version": 3.0, "data_docs_sites": {}, "plugins_directory": "plugins/", "stores": { "expectations_store": { "class_name": "ExpectationsStore", "store_backend": { "class_name": "TupleFilesystemStoreBackend", "base_directory": "expectations/", }, }, "checkpoint_store": {"class_name": "CheckpointStore"}, "validation_results_store": {"class_name": "ValidationResultsStore"}, "validation_definition_store": {"class_name": "ValidationDefinitionStore"}, }, } assert mock_put.call_count == 1 url = urllib.parse.urljoin( v1_cloud_base_url, f"organizations/{ge_cloud_organization_id}/workspaces/{ge_cloud_workspace_id}/data-context-variables", ) mock_put.assert_called_with( MOCK_ANY, # requests.Session object url, json={ "data": expected_config_dict, }, ) @pytest.mark.unit def test_data_context_variables_repr_and_str_only_reveal_config( data_context_config: DataContextConfig, ) -> None: config = data_context_config variables = EphemeralDataContextVariables( config=data_context_config, config_provider=StubConfigurationProvider(), ) variables_str = str(variables) variables_repr = repr(variables) assert variables_str == str(config) assert variables_repr == repr(config) @pytest.mark.big def test_file_data_context_variables_e2e( monkeypatch, file_data_context: FileDataContext, progress_bars: ProgressBarsConfig, ) -> None: """ What does this test do and why? Tests the E2E workflow with a FileDataContextVariables instance. 1. User updates certain values and sets them as attributes. 2. User persists changes utilizing the save call defined by the Variables API. 3. Upon reading the result config from disk, we can confirm that changes were appropriately persisted. It is also important to note that in the case of $VARS syntax, we NEVER want to persist the underlying value in order to preserve sensitive information. """ # noqa: E501 # FIXME CoP # Prepare updated progress_bars to set and serialize to disk updated_progress_bars: ProgressBarsConfig = copy.deepcopy(progress_bars) updated_progress_bars.globally = False # Prepare updated plugins directory to set and serialize to disk (ensuring we hide the true value behind $VARS syntax) # noqa: E501 # FIXME CoP env_var_name: str = "MY_PLUGINS_DIRECTORY" value_associated_with_env_var: str = "foo/bar/baz" monkeypatch.setenv(env_var_name, value_associated_with_env_var) # Set attributes defined above file_data_context.variables.progress_bars = updated_progress_bars file_data_context.variables.plugins_directory = f"${env_var_name}" file_data_context.variables.save() # Review great_expectations.yml where values were written and confirm changes config_filepath = pathlib.Path(file_data_context.root_directory).joinpath( file_data_context.GX_YML ) with open(config_filepath) as f: contents: dict = yaml.load(f) config_saved_to_disk: DataContextConfig = DataContextConfig(**contents) assert config_saved_to_disk.progress_bars == updated_progress_bars.to_dict() assert file_data_context.variables.plugins_directory == value_associated_with_env_var assert config_saved_to_disk.plugins_directory == f"${env_var_name}" @pytest.mark.cloud @pytest.mark.xfail( strict=False, reason="GX Cloud E2E tests are failing due to new top-level `analytics` and `data_context_id` variables not yet being recognized by the server", # noqa: E501 # FIXME CoP ) def test_cloud_data_context_variables_successfully_hits_cloud_endpoint( cloud_data_context: CloudDataContext, data_context_config: DataContextConfig, ) -> None: """ What does this test do and why? Ensures that the endpoint responsible for the DataContextVariables resource is accessible through the Variables API. """ cloud_data_context.variables.config = data_context_config success = cloud_data_context.variables.save() assert success is True @pytest.mark.cloud @mock_patch( "great_expectations.data_context.data_context.serializable_data_context.SerializableDataContext._save_project_config" ) @pytest.mark.xfail( strict=False, reason="GX Cloud E2E tests are failing due to env vars not being consistently recognized by Docker; x-failing for purposes of 0.15.22 release", # noqa: E501 # FIXME CoP ) def test_cloud_enabled_data_context_variables_e2e( mock_save_project_config: MagicMock, data_docs_sites: dict, monkeypatch, ) -> None: """ What does this test do and why? Tests the E2E workflow with a Cloud-enabled DataContext; as the CloudDataContext does not yet have 1-to-1 feature parity with the DataContext (as v0.15.15), this is the primary mechanism by which Great Expectations Cloud interacts with variables. 1. User updates certain values and sets them as attributes. 2. User persists changes utilizing the save call defined by the Variables API. 3. Upon reading the result config from a GET request, we can confirm that changes were appropriately persisted. It is also important to note that in the case of $VARS syntax, we NEVER want to persist the underlying value in order to preserve sensitive information. """ # noqa: E501 # FIXME CoP # Prepare updated plugins directory to set and save to the Cloud backend. # As values are persisted in the Cloud DB, we want to randomize our values each time for consistent test results # noqa: E501 # FIXME CoP updated_plugins_dir = f"plugins_dir_{''.join(random.choice(string.ascii_letters + string.digits) for _ in range(8))}" # noqa: E501 # FIXME CoP updated_data_docs_sites = data_docs_sites new_site_name = f"docs_site_{''.join(random.choice(string.ascii_letters + string.digits) for _ in range(8))}" # noqa: E501 # FIXME CoP updated_data_docs_sites[new_site_name] = {} context = get_context(cloud_mode=True) assert context.variables.plugins_directory != updated_plugins_dir assert context.variables.data_docs_sites != updated_data_docs_sites context.variables.plugins_directory = updated_plugins_dir context.variables.data_docs_sites = updated_data_docs_sites assert context.variables.plugins_directory == updated_plugins_dir assert context.variables.data_docs_sites == updated_data_docs_sites context.variables.save() context = get_context(cloud_mode=True) assert context.variables.plugins_directory == updated_plugins_dir assert context.variables.data_docs_sites == updated_data_docs_sites
StubConfigurationProvider
python
facebook__pyre-check
tools/incremental_test/batch.py
{ "start": 2745, "end": 3145 }
class ____(FinishedRunnerResult): def get_status(self) -> str: return "pass" def to_json(self, dont_show_discrepancy: bool) -> Dict[str, Any]: # Don't bother include the input specification in the result if the test passes. return { "status": self.get_status(), "output": self._output.to_json(dont_show_discrepancy), }
PassedRunnerResult
python
bokeh__bokeh
src/bokeh/events.py
{ "start": 17337, "end": 17859 }
class ____(PointEvent): ''' Announce a mouse movement event over a Bokeh plot. Attributes: sx (float) : x-coordinate of the event in *screen* space sy (float) : y-coordinate of the event in *screen* space x (float) : x-coordinate of the event in *data* space y (float) : y-coordinate of the event in *data* space .. note:: This event can fire at a very high rate, potentially increasing network traffic or CPU load. ''' event_name = 'mousemove'
MouseMove
python
lepture__authlib
authlib/oauth2/rfc7523/validator.py
{ "start": 633, "end": 1668 }
class ____(BearerTokenValidator): TOKEN_TYPE = "bearer" token_cls = JWTBearerToken def __init__(self, public_key, issuer=None, realm=None, **extra_attributes): super().__init__(realm, **extra_attributes) self.public_key = public_key claims_options = { "exp": {"essential": True}, "client_id": {"essential": True}, "grant_type": {"essential": True}, } if issuer: claims_options["iss"] = {"essential": True, "value": issuer} self.claims_options = claims_options def authenticate_token(self, token_string): try: claims = jwt.decode( token_string, self.public_key, claims_options=self.claims_options, claims_cls=self.token_cls, ) claims.validate() return claims except JoseError as error: logger.debug("Authenticate token failed. %r", error) return None
JWTBearerTokenValidator
python
numba__numba
numba/testing/main.py
{ "start": 27289, "end": 31545 }
class ____(runner.TextTestRunner): """ A test runner which delegates the actual running to a pool of child processes. """ resultclass = ParallelTestResult timeout = _TIMEOUT def __init__(self, runner_cls, nprocs, useslice, **kwargs): runner.TextTestRunner.__init__(self, **kwargs) self.runner_cls = runner_cls self.nprocs = nprocs self.useslice = parse_slice(useslice) self.runner_args = kwargs self.resource_infos = [] def _run_inner(self, result): # We hijack TextTestRunner.run()'s inner logic by passing this # method as if it were a test case. child_runner = _MinimalRunner(self.runner_cls, self.runner_args) # Split the tests and recycle the worker process to tame memory usage. chunk_size = 100 splitted_tests = [self._ptests[i:i + chunk_size] for i in range(0, len(self._ptests), chunk_size)] spawnctx = multiprocessing.get_context("spawn") try: for tests in splitted_tests: pool = spawnctx.Pool(self.nprocs) try: self._run_parallel_tests(result, pool, child_runner, tests) except: # On exception, kill still active workers immediately pool.terminate() # Make sure exception is reported and not ignored raise else: # Close the pool cleanly unless asked to early out if result.shouldStop: pool.terminate() break else: pool.close() finally: # Always join the pool (this is necessary for coverage.py) pool.join() if not result.shouldStop: # Run serial tests with memory tracking stests = SerialSuite(self._stests) stests.run(result) # Add serial test resource infos to the main collection self.resource_infos.extend(stests.resource_infos) return result finally: # Always display the resource infos if memoryutils.IS_SUPPORTED: try: print("=== Resource Infos ===") for ri in self.resource_infos: print(ri) except Exception: print("ERROR: Ignored exception in priting resource infos") traceback.print_exc() finally: print("=== End Resource Infos ===") def _run_parallel_tests(self, result, pool, child_runner, tests): remaining_ids = set(t.id() for t in tests) tests.sort(key=cuda_sensitive_mtime) it = pool.imap_unordered(child_runner, tests) while True: try: child_result = it.__next__(self.timeout) except StopIteration: return except TimeoutError as e: # Diagnose the names of unfinished tests msg = ("Tests didn't finish before timeout (or crashed):\n%s" % "".join("- %r\n" % tid for tid in sorted(remaining_ids)) ) e.args = (msg,) + e.args[1:] raise e else: result.add_results(child_result) self.resource_infos.append(child_result.resource_info) remaining_ids.discard(child_result.test_id) if child_result.shouldStop: result.shouldStop = True return def run(self, test): self._ptests, self._stests = _split_nonparallel_tests(test, self.useslice) print("Parallel: %s. Serial: %s" % (len(self._ptests), len(self._stests))) # This will call self._run_inner() on the created result object, # and print out the detailed test results at the end. return super(ParallelTestRunner, self).run(self._run_inner)
ParallelTestRunner
python
tensorflow__tensorflow
third_party/xla/xla/python_api/xla_shape_test.py
{ "start": 998, "end": 4443 }
class ____(absltest.TestCase): def assertShape(self, shape, expected_dimensions, expected_element_type): self.assertEqual(shape.element_type(), expected_element_type) self.assertEqual(shape.dimensions(), expected_dimensions) def assertLayout(self, layout, expected_minor_to_major): self.assertEqual(layout.minor_to_major, expected_minor_to_major) def assertTupleShape(self, shape, expected): self.assertEqual(shape.element_type(), xla_data_pb2.TUPLE) for sub_shape, sub_message, sub_expected in zip( shape.tuple_shapes(), shape.message.tuple_shapes, expected): self.assertEqual(sub_shape.element_type(), sub_message.element_type) if sub_shape.is_tuple(): self.assertTupleShape(sub_shape, sub_expected) else: expected_dimensions, expected_element_types = sub_expected self.assertShape( sub_shape, expected_dimensions, expected_element_types) def testCreateShapeFromNumpy1D(self): shape = xla_shape.CreateShapeFromNumpy(NumpyArrayF32([1.1, 2.2])) self.assertShape(shape, [2], xla_data_pb2.F32) self.assertLayout(shape.layout(), [0]) def testCreateShapeFromNumpy2DRowMajor(self): shape = xla_shape.CreateShapeFromNumpy( NumpyArrayF32( [[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], order='C')) self.assertShape(shape, [2, 3], xla_data_pb2.F32) self.assertLayout(shape.layout(), [1, 0]) def testCreateShapeFromNumpy2DColumnMajor(self): shape = xla_shape.CreateShapeFromNumpy( NumpyArrayF32( [[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], order='F')) self.assertShape(shape, [2, 3], xla_data_pb2.F32) self.assertLayout(shape.layout(), [0, 1]) def testCreateShapeFromNumpy2DDefaultIsRowMajor(self): # The default layout in Numpy is C (row major) shape = xla_shape.CreateShapeFromNumpy( NumpyArrayF32([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]])) self.assertShape(shape, [2, 3], xla_data_pb2.F32) self.assertLayout(shape.layout(), [1, 0]) def testCreateShapeFromNumpy3DRowMajor(self): shape = xla_shape.CreateShapeFromNumpy( NumpyArrayF32( [[[1.1], [2.2], [3.3]], [[4.4], [5.5], [6.6]]], order='C')) self.assertShape(shape, [2, 3, 1], xla_data_pb2.F32) self.assertLayout(shape.layout(), [2, 1, 0]) def testCreateShapeFromNumpy3DColumnMajor(self): shape = xla_shape.CreateShapeFromNumpy( NumpyArrayF32( [[[1.1], [2.2], [3.3]], [[4.4], [5.5], [6.6]]], order='F')) self.assertShape(shape, [2, 3, 1], xla_data_pb2.F32) self.assertLayout(shape.layout(), [0, 1, 2]) def testCreateShapeFromTupleOfNumpy3D(self): inner_array = NumpyArrayF32( [[[1.1], [2.2], [3.3]], [[4.4], [5.5], [6.6]]]) inner_spec = ([2, 3, 1], xla_data_pb2.F32) shape = xla_shape.CreateShapeFromNumpy( (inner_array, inner_array, inner_array)) self.assertTupleShape( shape, (inner_spec, inner_spec, inner_spec)) def testCreateShapeFromNestedTupleOfNumpy3D(self): inner_array = NumpyArrayF32( [[[1.1], [2.2], [3.3]], [[4.4], [5.5], [6.6]]]) inner_spec = ([2, 3, 1], xla_data_pb2.F32) shape = xla_shape.CreateShapeFromNumpy( (inner_array, (inner_array, inner_array), inner_array)) self.assertTupleShape( shape, (inner_spec, (inner_spec, inner_spec), inner_spec)) if __name__ == '__main__': absltest.main()
CreateShapeFromNumpyTest
python
spyder-ide__spyder
spyder/api/widgets/menus.py
{ "start": 980, "end": 1162 }
class ____: Context = 'context_menu' Options = 'options_menu' # ---- Style # -----------------------------------------------------------------------------
PluginMainWidgetMenus
python
viewflow__viewflow
tests/json/test_json__basics.py
{ "start": 3028, "end": 3131 }
class ____(forms.ModelForm): class Meta: model = Person exclude = ["data"]
PersonForm
python
spyder-ide__spyder
spyder/plugins/preferences/widgets/configdialog.py
{ "start": 681, "end": 4517 }
class ____(SidebarDialog): """Preferences dialog.""" # Signals check_settings = Signal() sig_size_changed = Signal(QSize) sig_reset_preferences_requested = Signal() # Constants TITLE = _("Preferences") MIN_WIDTH = 940 if MAC else (875 if WIN else 920) MIN_HEIGHT = 700 if MAC else (660 if WIN else 670) def __init__(self, parent=None): self.ICON = ima.icon('configure') SidebarDialog.__init__(self, parent) # Attributes self.main = parent # Ensures that the config is present on spyder first run CONF.set('main', 'interface_language', load_lang_conf()) # ---- Public API # ------------------------------------------------------------------------- def get_index_by_name(self, name): """Return page index by CONF_SECTION name.""" for idx in range(self.pages_widget.count()): page = self.get_page(idx) # This is the case for separators if page is None: continue section = page.plugin.NAME if section == name: return idx else: return None def check_all_settings(self): """ This method is called to check all configuration page settings after configuration dialog has been shown. """ self.check_settings.emit() # ---- SidebarDialog API # ------------------------------------------------------------------------- def button_clicked(self, button): if button is self.apply_btn: # Apply button was clicked configpage = self.get_page() if not configpage.is_valid(): return configpage.apply_changes() def current_page_changed(self, index): widget = self.get_page(index) self.apply_btn.setVisible(widget.apply_callback is not None) self.apply_btn.setEnabled(widget.is_modified) def add_page(self, page, initialize=False): # Signals self.check_settings.connect(page.check_settings) page.apply_button_enabled.connect(self.apply_btn.setEnabled) super().add_page(page, initialize=initialize) def create_buttons(self): bbox = SpyderDialogButtonBox( QDialogButtonBox.Ok | QDialogButtonBox.Apply | QDialogButtonBox.Cancel ) self.apply_btn = bbox.button(QDialogButtonBox.Apply) # This is needed for our tests self.ok_btn = bbox.button(QDialogButtonBox.Ok) button_reset = QPushButton(_('Reset to defaults')) button_reset.clicked.connect(self.sig_reset_preferences_requested) bbox.addButton(button_reset, QDialogButtonBox.ResetRole) layout = QHBoxLayout() layout.addWidget(bbox) return bbox, layout # ---- Qt methods # ------------------------------------------------------------------------- @Slot() def accept(self): for index in range(self.pages_widget.count()): configpage = self.get_page(index) # This can be the case for separators, which doesn't have a config # page. if configpage is None: continue if not configpage.is_valid(): return configpage.apply_changes() QDialog.accept(self) def resizeEvent(self, event): super().resizeEvent(event) self._on_resize() # ---- Private API # ------------------------------------------------------------------------- @qdebounced(timeout=40) def _on_resize(self): """ We name this method differently from SidebarDialog._on_resize_event because we want to debounce this as well. """ self.sig_size_changed.emit(self.size())
ConfigDialog
python
getlogbook__logbook
src/logbook/queues.py
{ "start": 20897, "end": 22431 }
class ____(WrapperHandler): """This handled uses a single background thread to dispatch log records to a specific other handler using an internal queue. The idea is that if you are using a handler that requires some time to hand off the log records (such as the mail handler) and would block your request, you can let Logbook do that in a background thread. The threaded wrapper handler will automatically adopt the methods and properties of the wrapped handler. All the values will be reflected: >>> twh = ThreadedWrapperHandler(TestHandler()) >>> from logbook import WARNING >>> twh.level_name = 'WARNING' >>> twh.handler.level_name 'WARNING' """ _direct_attrs = frozenset(["handler", "queue", "controller"]) def __init__(self, handler, maxsize=0): WrapperHandler.__init__(self, handler) self.queue = ThreadQueue(maxsize) self.controller = TWHThreadController(self) self.controller.start() def close(self): self.controller.stop() self.handler.close() def emit(self, record): item = (TWHThreadController.Command.emit, record) try: self.queue.put_nowait(item) except Full: # silently drop pass def emit_batch(self, records, reason): item = (TWHThreadController.Command.emit_batch, records, reason) try: self.queue.put_nowait(item) except Full: # silently drop pass
ThreadedWrapperHandler
python
HypothesisWorks__hypothesis
hypothesis-python/src/hypothesis/strategies/_internal/strategies.py
{ "start": 31737, "end": 39286 }
class ____(SearchStrategy[Ex]): """Implements a union of strategies. Given a number of strategies this generates values which could have come from any of them. The conditional distribution draws uniformly at random from some non-empty subset of these strategies and then draws from the conditional distribution of that strategy. """ def __init__(self, strategies: Sequence[SearchStrategy[Ex]]): super().__init__() self.original_strategies = tuple(strategies) self.__element_strategies: Sequence[SearchStrategy[Ex]] | None = None self.__in_branches = False self._branches_lock = RLock() def calc_is_empty(self, recur: RecurT) -> bool: return all(recur(e) for e in self.original_strategies) def calc_has_reusable_values(self, recur: RecurT) -> bool: return all(recur(e) for e in self.original_strategies) def calc_is_cacheable(self, recur: RecurT) -> bool: return all(recur(e) for e in self.original_strategies) @property def element_strategies(self) -> Sequence[SearchStrategy[Ex]]: if self.__element_strategies is None: # While strategies are hashable, they use object.__hash__ and are # therefore distinguished only by identity. # # In principle we could "just" define a __hash__ method # (and __eq__, but that's easy in terms of type() and hash()) # to make this more powerful, but this is harder than it sounds: # # 1. Strategies are often distinguished by non-hashable attributes, # or by attributes that have the same hash value ("^.+" / b"^.+"). # 2. LazyStrategy: can't reify the wrapped strategy without breaking # laziness, so there's a hash each for the lazy and the nonlazy. # # Having made several attempts, the minor benefits of making strategies # hashable are simply not worth the engineering effort it would take. # See also issues #2291 and #2327. seen: set[SearchStrategy] = {self} strategies: list[SearchStrategy] = [] for arg in self.original_strategies: check_strategy(arg) if not arg.is_empty: for s in arg.branches: if s not in seen and not s.is_empty: seen.add(s) strategies.append(s) self.__element_strategies = strategies return self.__element_strategies def calc_label(self) -> int: return combine_labels( self.class_label, *(p.label for p in self.original_strategies) ) def do_draw(self, data: ConjectureData) -> Ex: strategy = data.draw( SampledFromStrategy(self.element_strategies).filter( lambda s: not s.is_currently_empty(data) ) ) return data.draw(strategy) def __repr__(self) -> str: return "one_of({})".format(", ".join(map(repr, self.original_strategies))) def do_validate(self) -> None: for e in self.element_strategies: e.validate() @property def branches(self) -> Sequence[SearchStrategy[Ex]]: if self.__element_strategies is not None: # common fast path which avoids the lock return self.element_strategies with self._branches_lock: if not self.__in_branches: try: self.__in_branches = True return self.element_strategies finally: self.__in_branches = False else: return [self] def filter(self, condition: Callable[[Ex], Any]) -> SearchStrategy[Ex]: return FilteredStrategy( OneOfStrategy([s.filter(condition) for s in self.original_strategies]), conditions=(), ) @overload def one_of( __args: Sequence[SearchStrategy[Ex]], ) -> SearchStrategy[Ex]: # pragma: no cover ... @overload def one_of(__a1: SearchStrategy[Ex]) -> SearchStrategy[Ex]: # pragma: no cover ... @overload def one_of( __a1: SearchStrategy[Ex], __a2: SearchStrategy[T] ) -> SearchStrategy[Ex | T]: # pragma: no cover ... @overload def one_of( __a1: SearchStrategy[Ex], __a2: SearchStrategy[T], __a3: SearchStrategy[T3] ) -> SearchStrategy[Ex | T | T3]: # pragma: no cover ... @overload def one_of( __a1: SearchStrategy[Ex], __a2: SearchStrategy[T], __a3: SearchStrategy[T3], __a4: SearchStrategy[T4], ) -> SearchStrategy[Ex | T | T3 | T4]: # pragma: no cover ... @overload def one_of( __a1: SearchStrategy[Ex], __a2: SearchStrategy[T], __a3: SearchStrategy[T3], __a4: SearchStrategy[T4], __a5: SearchStrategy[T5], ) -> SearchStrategy[Ex | T | T3 | T4 | T5]: # pragma: no cover ... @overload def one_of(*args: SearchStrategy[Any]) -> SearchStrategy[Any]: # pragma: no cover ... @defines_strategy(eager=True) def one_of( *args: Sequence[SearchStrategy[Any]] | SearchStrategy[Any], ) -> SearchStrategy[Any]: # Mypy workaround alert: Any is too loose above; the return parameter # should be the union of the input parameters. Unfortunately, Mypy <=0.600 # raises errors due to incompatible inputs instead. See #1270 for links. # v0.610 doesn't error; it gets inference wrong for 2+ arguments instead. """Return a strategy which generates values from any of the argument strategies. This may be called with one iterable argument instead of multiple strategy arguments, in which case ``one_of(x)`` and ``one_of(*x)`` are equivalent. Examples from this strategy will generally shrink to ones that come from strategies earlier in the list, then shrink according to behaviour of the strategy that produced them. In order to get good shrinking behaviour, try to put simpler strategies first. e.g. ``one_of(none(), text())`` is better than ``one_of(text(), none())``. This is especially important when using recursive strategies. e.g. ``x = st.deferred(lambda: st.none() | st.tuples(x, x))`` will shrink well, but ``x = st.deferred(lambda: st.tuples(x, x) | st.none())`` will shrink very badly indeed. """ if len(args) == 1 and not isinstance(args[0], SearchStrategy): try: args = tuple(args[0]) except TypeError: pass if len(args) == 1 and isinstance(args[0], SearchStrategy): # This special-case means that we can one_of over lists of any size # without incurring any performance overhead when there is only one # strategy, and keeps our reprs simple. return args[0] if args and not any(isinstance(a, SearchStrategy) for a in args): # And this special case is to give a more-specific error message if it # seems that the user has confused `one_of()` for `sampled_from()`; # the remaining validation is left to OneOfStrategy. See PR #2627. raise InvalidArgument( f"Did you mean st.sampled_from({list(args)!r})? st.one_of() is used " "to combine strategies, but all of the arguments were of other types." ) # we've handled the case where args is a one-element sequence [(s1, s2, ...)] # above, so we can assume it's an actual sequence of strategies. args = cast(Sequence[SearchStrategy], args) return OneOfStrategy(args)
OneOfStrategy
python
walkccc__LeetCode
solutions/1995. Count Special Quadruplets/1995.py
{ "start": 0, "end": 296 }
class ____: def countQuadruplets(self, nums: list[int]) -> int: n = len(nums) return sum(nums[a] + nums[b] + nums[c] == nums[d] for a in range(n) for b in range(a + 1, n) for c in range(b + 1, n) for d in range(c + 1, n))
Solution
python
getsentry__sentry
src/sentry/workflow_engine/migrations/0103_add_unique_constraint.py
{ "start": 230, "end": 3473 }
class ____(CheckedMigration): # This flag is used to mark that a migration shouldn't be automatically run in production. # This should only be used for operations where it's safe to run the migration after your # code has deployed. So this should not be used for most operations that alter the schema # of a table. # Here are some things that make sense to mark as post deployment: # - Large data migrations. Typically we want these to be run manually so that they can be # monitored and not block the deploy for a long period of time while they run. # - Adding indexes to large tables. Since this can take a long time, we'd generally prefer to # run this outside deployments so that we don't block them. Note that while adding an index # is a schema change, it's completely safe to run the operation after the code has deployed. # Once deployed, run these manually via: https://develop.sentry.dev/database-migrations/#migration-deployment is_post_deployment = True dependencies = [ ("sentry", "1007_cleanup_failed_safe_deletes"), ("workflow_engine", "0102_cleanup_failed_safe_deletes"), ] operations = [ migrations.SeparateDatabaseAndState( database_operations=[ # First add the unique constraint (creates a unique index) migrations.AddConstraint( model_name="workflow", constraint=models.UniqueConstraint( fields=("when_condition_group_id",), name="workflow_engine_workflow_when_condition_group_id_11d9ba05_uniq", ), ), # Then drop the old regular index (db_index=False) migrations.AlterField( model_name="workflow", name="when_condition_group", field=sentry.db.models.fields.foreignkey.FlexibleForeignKey( blank=True, db_index=False, null=True, on_delete=django.db.models.deletion.CASCADE, to="workflow_engine.dataconditiongroup", ), ), ], state_operations=[ # Update Django's state to reflect the final model state migrations.AlterField( model_name="workflow", name="when_condition_group", field=sentry.db.models.fields.foreignkey.FlexibleForeignKey( blank=True, db_index=False, null=True, on_delete=django.db.models.deletion.CASCADE, to="workflow_engine.dataconditiongroup", ), ), migrations.AddConstraint( model_name="workflow", constraint=models.UniqueConstraint( fields=("when_condition_group_id",), name="workflow_engine_workflow_when_condition_group_id_11d9ba05_uniq", ), ), ], ), ]
Migration
python
django-debug-toolbar__django-debug-toolbar
tests/panels/test_async_panel_compatibility.py
{ "start": 247, "end": 298 }
class ____(Panel): is_async = False
MockSyncPanel
python
numpy__numpy
numpy/typing/tests/data/pass/ufunc_config.py
{ "start": 245, "end": 318 }
class ____: def write(self, a: str) -> None: return None
Write1
python
huggingface__transformers
src/transformers/models/edgetam/modular_edgetam.py
{ "start": 6285, "end": 6357 }
class ____(Sam2TwoWayAttentionBlock): pass
EdgeTamTwoWayAttentionBlock
python
crytic__slither
slither/core/declarations/solidity_variables.py
{ "start": 5923, "end": 7232 }
class ____(SourceMapping): # Non standard handling of type(address). This function returns an undefined object # The type is dynamic # https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#type-information # As a result, we set return_type during the Ir conversion def __init__(self, name: str) -> None: super().__init__() assert name in SOLIDITY_FUNCTIONS self._name = name # Can be TypeInformation if type(address) is used self._return_type: List[Union[TypeInformation, ElementaryType]] = [ ElementaryType(x) for x in SOLIDITY_FUNCTIONS[self.name] ] @property def name(self) -> str: return self._name @property def full_name(self) -> str: return self.name @property def return_type(self) -> List[Union[TypeInformation, ElementaryType]]: return self._return_type @return_type.setter def return_type(self, r: List[Union[TypeInformation, ElementaryType]]) -> None: self._return_type = r def __str__(self) -> str: return self._name def __eq__(self, other: Any) -> bool: return self.__class__ == other.__class__ and self.name == other.name def __hash__(self) -> int: return hash(self.name)
SolidityFunction
python
getsentry__sentry
src/sentry/integrations/base.py
{ "start": 5683, "end": 5799 }
class ____(TypedDict): type: str external_id: str data: dict[str, str] scopes: list[str]
_UserIdentity
python
great-expectations__great_expectations
contrib/experimental/great_expectations_experimental/expectations/expect_column_skew_to_be_between.py
{ "start": 1009, "end": 5372 }
class ____(ColumnAggregateMetricProvider): """MetricProvider Class for Aggregate Mean MetricProvider""" metric_name = "column.custom.skew" value_keys = ("abs",) @column_aggregate_value(engine=PandasExecutionEngine) def _pandas(cls, column, abs=False, **kwargs): if abs: return np.abs(stats.skew(column)) return stats.skew(column) @column_aggregate_partial(engine=SparkDFExecutionEngine) def _spark(cls, column, abs=False, **kwargs): if abs: return F.abs(F.skewness(column)) return F.skewness(column) @metric_value(engine=SqlAlchemyExecutionEngine) def _sqlalchemy( cls, execution_engine: "SqlAlchemyExecutionEngine", metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): ( selectable, _compute_domain_kwargs, accessor_domain_kwargs, ) = execution_engine.get_compute_domain(metric_domain_kwargs, MetricDomainTypes.COLUMN) column_name = accessor_domain_kwargs["column"] column = sa.column(column_name) dialect = execution_engine.dialect column_mean = _get_query_result( func=sa.func.avg(column * 1.0), selectable=selectable, execution_engine=execution_engine, ) column_count = _get_query_result( func=sa.func.count(column), selectable=selectable, execution_engine=execution_engine, ) if dialect.name.lower() == "mssql": standard_deviation = sa.func.stdev(column) else: standard_deviation = sa.func.stddev_samp(column) column_std = _get_query_result( func=standard_deviation, selectable=selectable, execution_engine=execution_engine, ) column_third_moment = _get_query_result( func=sa.func.sum(sa.func.pow(column - column_mean, 3)), selectable=selectable, execution_engine=execution_engine, ) column_skew = column_third_moment / (column_std**3) / (column_count - 1) if metric_value_kwargs["abs"]: return np.abs(column_skew) else: return column_skew def _get_query_result(func, selectable, execution_engine: SqlAlchemyExecutionEngine): simple_query: sqlalchemy.Select = sa.select(func).select_from(selectable) try: result: sqlalchemy.Row = execution_engine.execute_query(simple_query).fetchone()[0] return result except sqlalchemy.ProgrammingError as pe: exception_message: str = "An SQL syntax Exception occurred." exception_traceback: str = traceback.format_exc() exception_message += f'{type(pe).__name__}: "{pe!s}". Traceback: "{exception_traceback}".' logger.error(exception_message) # noqa: TRY400 raise pe # noqa: TRY201 # @classmethod # def _get_evaluation_dependencies( # cls, # metric: MetricConfiguration, # configuration: Optional[ExpectationConfiguration] = None, # execution_engine: Optional[ExecutionEngine] = None, # runtime_configuration: Optional[dict] = None, # ): # """This should return a dictionary: # # { # "dependency_name": MetricConfiguration, # ... # } # """ # # dependencies = super()._get_evaluation_dependencies( # metric=metric, # configuration=configuration, # execution_engine=execution_engine, # runtime_configuration=runtime_configuration, # ) # # table_domain_kwargs = { # k: v for k, v in metric.metric_domain_kwargs.items() if k != "column" # } # # dependencies.update( # { # "table.row_count": MetricConfiguration( # "table.row_count", table_domain_kwargs # ) # } # ) # # if isinstance(execution_engine, SqlAlchemyExecutionEngine): # dependencies["column_values.nonnull.count"] = MetricConfiguration( # "column_values.nonnull.count", metric.metric_domain_kwargs # ) # # return dependencies
ColumnSkew
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/operators/sagemaker.py
{ "start": 78450, "end": 80520 }
class ____(SageMakerBaseOperator): """ Creates a SageMaker experiment, to be then associated to jobs etc. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:SageMakerCreateExperimentOperator` :param name: name of the experiment, must be unique within the AWS account :param description: description of the experiment, optional :param tags: tags to attach to the experiment, optional :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :returns: the ARN of the experiment created, though experiments are referred to by name """ template_fields: Sequence[str] = aws_template_fields( "name", "description", "tags", ) def __init__( self, *, name: str, description: str | None = None, tags: dict | None = None, **kwargs, ): super().__init__(config={}, **kwargs) self.name = name self.description = description self.tags = tags or {} def execute(self, context: Context) -> str: params = { "ExperimentName": self.name, "Description": self.description, "Tags": format_tags(self.tags), } ans = self.hook.conn.create_experiment(**trim_none_values(params)) arn = ans["ExperimentArn"] self.log.info("Experiment %s created successfully with ARN %s.", self.name, arn) return arn
SageMakerCreateExperimentOperator
python
joke2k__faker
tests/providers/test_date_time.py
{ "start": 41708, "end": 42064 }
class ____(unittest.TestCase): def setUp(self): self.fake = Faker("pt_PT") Faker.seed(0) def test_day(self): day = self.fake.day_of_week() assert day in PtPtProvider.DAY_NAMES.values() def test_month(self): month = self.fake.month_name() assert month in PtPtProvider.MONTH_NAMES.values()
TestPtPt
python
PyCQA__isort
scripts/mkstdlibs.py
{ "start": 564, "end": 1606 }
class ____: srcdir = "" config = FakeConfig() for version_module in VERSIONS: version_match = re.match( r"^stdlibs\.py(?P<major>\d)(?P<minor>\d+)$", version_module.__name__, ) version_info = (version_match.groupdict()["major"], version_match.groupdict()["minor"]) # Any modules we want to enforce across Python versions stdlib can be included in set init modules = {"_ast", "posixpath", "ntpath", "sre_constants", "sre_parse", "sre_compile", "sre"} modules.update( { module_name for module_name in version_module.module_names if not module_name.startswith("_") } ) path = PATH.format("".join(version_info)) with open(path, "w") as stdlib_file: docstring = DOCSTRING.format(".".join(version_info)) stdlib_file.write(f'"""{docstring}"""\n\n') stdlib_file.write("stdlib = {\n") for module in sorted(modules): stdlib_file.write(f' "{module}",\n') stdlib_file.write("}\n")
FakeApp
python
pydantic__pydantic
pydantic/v1/types.py
{ "start": 32326, "end": 34622 }
class ____(int): @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield cls.validate @classmethod def validate(cls, v: StrIntFloat) -> 'ByteSize': try: return cls(int(v)) except ValueError: pass str_match = byte_string_re.match(str(v)) if str_match is None: raise errors.InvalidByteSize() scalar, unit = str_match.groups() if unit is None: unit = 'b' try: unit_mult = BYTE_SIZES[unit.lower()] except KeyError: raise errors.InvalidByteSizeUnit(unit=unit) return cls(int(float(scalar) * unit_mult)) def human_readable(self, decimal: bool = False) -> str: if decimal: divisor = 1000 units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB'] final_unit = 'EB' else: divisor = 1024 units = ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB'] final_unit = 'EiB' num = float(self) for unit in units: if abs(num) < divisor: return f'{num:0.1f}{unit}' num /= divisor return f'{num:0.1f}{final_unit}' def to(self, unit: str) -> float: try: unit_div = BYTE_SIZES[unit.lower()] except KeyError: raise errors.InvalidByteSizeUnit(unit=unit) return self / unit_div # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DATE TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if TYPE_CHECKING: PastDate = date FutureDate = date else: class PastDate(date): @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield parse_date yield cls.validate @classmethod def validate(cls, value: date) -> date: if value >= date.today(): raise errors.DateNotInThePastError() return value class FutureDate(date): @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield parse_date yield cls.validate @classmethod def validate(cls, value: date) -> date: if value <= date.today(): raise errors.DateNotInTheFutureError() return value
ByteSize
python
PyCQA__pylint
pylint/config/callback_actions.py
{ "start": 1572, "end": 2591 }
class ____(_CallbackAction): """Action that has access to the Run object.""" def __init__( self, option_strings: Sequence[str], dest: str, nargs: None = None, const: None = None, default: None = None, type: None = None, choices: None = None, required: bool = False, help: str = "", metavar: str = "", **kwargs: Run, ) -> None: self.run = kwargs["Run"] super().__init__( option_strings, dest, 0, const, default, type, choices, required, help, metavar, ) @abc.abstractmethod def __call__( self, parser: argparse.ArgumentParser, namespace: argparse.Namespace, values: str | Sequence[Any] | None, option_string: str | None = None, ) -> None: raise NotImplementedError # pragma: no cover
_AccessRunObjectAction
python
euske__pdfminer
pdfminer/ccitt.py
{ "start": 367, "end": 1271 }
class ____: def __init__(self): self._pos = 0 return @classmethod def add(klass, root, v, bits): p = root b = None for i in range(len(bits)): if 0 < i: if p[b] is None: p[b] = [None, None] p = p[b] if bits[i] == '1': b = 1 else: b = 0 p[b] = v return def feedbytes(self, data): for b in data: for m in (128, 64, 32, 16, 8, 4, 2, 1): self._parse_bit(b & m) return def _parse_bit(self, x): if x: v = self._state[1] else: v = self._state[0] self._pos += 1 if isinstance(v, list): self._state = v else: self._state = self._accept(v) return ## CCITTG4Parser ##
BitParser
python
kamyu104__LeetCode-Solutions
Python/basic-calculator-ii.py
{ "start": 47, "end": 1373 }
class ____(object): def calculate(self, s): """ :type s: str :rtype: int """ def compute(operands, operators): right, left = operands.pop(), operands.pop() operands.append(ops[operators.pop()](left, right)) ops = {'+':operator.add, '-':operator.sub, '*':operator.mul, '/':operator.div} precedence = {'+':0, '-':0, '*':1, '/':1} operands, operators, operand = [], [], 0 for i in xrange(len(s)): if s[i].isdigit(): operand = operand*10 + int(s[i]) if i == len(s)-1 or not s[i+1].isdigit(): operands.append(operand) operand = 0 elif s[i] == '(': operators.append(s[i]) elif s[i] == ')': while operators[-1] != '(': compute(operands, operators) operators.pop() elif s[i] in precedence: while operators and operators[-1] in precedence and \ precedence[operators[-1]] >= precedence[s[i]]: compute(operands, operators) operators.append(s[i]) while operators: compute(operands, operators) return operands[-1] # Time: O(n) # Space: O(n)
Solution
python
matplotlib__matplotlib
lib/matplotlib/rcsetup.py
{ "start": 29200, "end": 52944 }
class ____(list): """A marker class indicating that a list-of-str is case-insensitive.""" def _convert_validator_spec(key, conv): if isinstance(conv, list): ignorecase = isinstance(conv, _ignorecase) return ValidateInStrings(key, conv, ignorecase=ignorecase) else: return conv # Mapping of rcParams to validators. # Converters given as lists or _ignorecase are converted to ValidateInStrings # immediately below. # The rcParams defaults are defined in lib/matplotlib/mpl-data/matplotlibrc, which # gets copied to matplotlib/mpl-data/matplotlibrc by the setup script. _validators = { "backend": validate_backend, "backend_fallback": validate_bool, "figure.hooks": validate_stringlist, "toolbar": _validate_toolbar, "interactive": validate_bool, "timezone": validate_string, "webagg.port": validate_int, "webagg.address": validate_string, "webagg.open_in_browser": validate_bool, "webagg.port_retries": validate_int, # line props "lines.linewidth": validate_float, # line width in points "lines.linestyle": _validate_linestyle, # solid line "lines.color": validate_color, # first color in color cycle "lines.marker": _validate_marker, # marker name "lines.markerfacecolor": validate_color_or_auto, # default color "lines.markeredgecolor": validate_color_or_auto, # default color "lines.markeredgewidth": validate_float, "lines.markersize": validate_float, # markersize, in points "lines.antialiased": validate_bool, # antialiased (no jaggies) "lines.dash_joinstyle": JoinStyle, "lines.solid_joinstyle": JoinStyle, "lines.dash_capstyle": CapStyle, "lines.solid_capstyle": CapStyle, "lines.dashed_pattern": validate_floatlist, "lines.dashdot_pattern": validate_floatlist, "lines.dotted_pattern": validate_floatlist, "lines.scale_dashes": validate_bool, # marker props "markers.fillstyle": validate_fillstyle, ## pcolor(mesh) props: "pcolor.shading": ["auto", "flat", "nearest", "gouraud"], "pcolormesh.snap": validate_bool, ## patch props "patch.linewidth": validate_float, # line width in points "patch.edgecolor": validate_color, "patch.force_edgecolor": validate_bool, "patch.facecolor": validate_color, # first color in cycle "patch.antialiased": validate_bool, # antialiased (no jaggies) ## hatch props "hatch.color": _validate_color_or_edge, "hatch.linewidth": validate_float, ## Histogram properties "hist.bins": validate_hist_bins, ## Boxplot properties "boxplot.notch": validate_bool, "boxplot.vertical": validate_bool, "boxplot.whiskers": validate_whiskers, "boxplot.bootstrap": validate_int_or_None, "boxplot.patchartist": validate_bool, "boxplot.showmeans": validate_bool, "boxplot.showcaps": validate_bool, "boxplot.showbox": validate_bool, "boxplot.showfliers": validate_bool, "boxplot.meanline": validate_bool, "boxplot.flierprops.color": validate_color, "boxplot.flierprops.marker": _validate_marker, "boxplot.flierprops.markerfacecolor": validate_color_or_auto, "boxplot.flierprops.markeredgecolor": validate_color, "boxplot.flierprops.markeredgewidth": validate_float, "boxplot.flierprops.markersize": validate_float, "boxplot.flierprops.linestyle": _validate_linestyle, "boxplot.flierprops.linewidth": validate_float, "boxplot.boxprops.color": validate_color, "boxplot.boxprops.linewidth": validate_float, "boxplot.boxprops.linestyle": _validate_linestyle, "boxplot.whiskerprops.color": validate_color, "boxplot.whiskerprops.linewidth": validate_float, "boxplot.whiskerprops.linestyle": _validate_linestyle, "boxplot.capprops.color": validate_color, "boxplot.capprops.linewidth": validate_float, "boxplot.capprops.linestyle": _validate_linestyle, "boxplot.medianprops.color": validate_color, "boxplot.medianprops.linewidth": validate_float, "boxplot.medianprops.linestyle": _validate_linestyle, "boxplot.meanprops.color": validate_color, "boxplot.meanprops.marker": _validate_marker, "boxplot.meanprops.markerfacecolor": validate_color, "boxplot.meanprops.markeredgecolor": validate_color, "boxplot.meanprops.markersize": validate_float, "boxplot.meanprops.linestyle": _validate_linestyle, "boxplot.meanprops.linewidth": validate_float, ## font props "font.enable_last_resort": validate_bool, "font.family": validate_stringlist, # used by text object "font.style": validate_string, "font.variant": validate_string, "font.stretch": validate_fontstretch, "font.weight": validate_fontweight, "font.size": validate_float, # Base font size in points "font.serif": validate_stringlist, "font.sans-serif": validate_stringlist, "font.cursive": validate_stringlist, "font.fantasy": validate_stringlist, "font.monospace": validate_stringlist, # text props "text.color": validate_color, "text.usetex": validate_bool, "text.latex.preamble": validate_string, "text.hinting": ["default", "no_autohint", "force_autohint", "no_hinting", "auto", "native", "either", "none"], "text.hinting_factor": validate_int, "text.kerning_factor": validate_int, "text.antialiased": validate_bool, "text.parse_math": validate_bool, "mathtext.cal": validate_font_properties, "mathtext.rm": validate_font_properties, "mathtext.tt": validate_font_properties, "mathtext.it": validate_font_properties, "mathtext.bf": validate_font_properties, "mathtext.bfit": validate_font_properties, "mathtext.sf": validate_font_properties, "mathtext.fontset": ["dejavusans", "dejavuserif", "cm", "stix", "stixsans", "custom"], "mathtext.default": ["rm", "cal", "bfit", "it", "tt", "sf", "bf", "default", "bb", "frak", "scr", "regular"], "mathtext.fallback": _validate_mathtext_fallback, "image.aspect": validate_aspect, # equal, auto, a number "image.interpolation": validate_string, "image.interpolation_stage": ["auto", "data", "rgba"], "image.cmap": _validate_cmap, # gray, jet, etc. "image.lut": validate_int, # lookup table "image.origin": ["upper", "lower"], "image.resample": validate_bool, # Specify whether vector graphics backends will combine all images on a # set of Axes into a single composite image "image.composite_image": validate_bool, # contour props "contour.negative_linestyle": _validate_linestyle, "contour.corner_mask": validate_bool, "contour.linewidth": validate_float_or_None, "contour.algorithm": ["mpl2005", "mpl2014", "serial", "threaded"], # errorbar props "errorbar.capsize": validate_float, # axis props # alignment of x/y axis title "xaxis.labellocation": ["left", "center", "right"], "yaxis.labellocation": ["bottom", "center", "top"], # Axes props "axes.axisbelow": validate_axisbelow, "axes.facecolor": validate_color, # background color "axes.edgecolor": validate_color, # edge color "axes.linewidth": validate_float, # edge linewidth "axes.spines.left": validate_bool, # Set visibility of axes spines, "axes.spines.right": validate_bool, # i.e., the lines around the chart "axes.spines.bottom": validate_bool, # denoting data boundary. "axes.spines.top": validate_bool, "axes.titlesize": validate_fontsize, # Axes title fontsize "axes.titlelocation": ["left", "center", "right"], # Axes title alignment "axes.titleweight": validate_fontweight, # Axes title font weight "axes.titlecolor": validate_color_or_auto, # Axes title font color # title location, axes units, None means auto "axes.titley": validate_float_or_None, # pad from Axes top decoration to title in points "axes.titlepad": validate_float, "axes.grid": validate_bool, # display grid or not "axes.grid.which": ["minor", "both", "major"], # which grids are drawn "axes.grid.axis": ["x", "y", "both"], # grid type "axes.labelsize": validate_fontsize, # fontsize of x & y labels "axes.labelpad": validate_float, # space between label and axis "axes.labelweight": validate_fontweight, # fontsize of x & y labels "axes.labelcolor": validate_color, # color of axis label # use scientific notation if log10 of the axis range is smaller than the # first or larger than the second "axes.formatter.limits": _listify_validator(validate_int, n=2), # use current locale to format ticks "axes.formatter.use_locale": validate_bool, "axes.formatter.use_mathtext": validate_bool, # minimum exponent to format in scientific notation "axes.formatter.min_exponent": validate_int, "axes.formatter.useoffset": validate_bool, "axes.formatter.offset_threshold": validate_int, "axes.unicode_minus": validate_bool, # This entry can be either a cycler object or a string repr of a # cycler-object, which gets eval()'ed to create the object. "axes.prop_cycle": validate_cycler, # If "data", axes limits are set close to the data. # If "round_numbers" axes limits are set to the nearest round numbers. "axes.autolimit_mode": ["data", "round_numbers"], "axes.xmargin": _validate_greaterthan_minushalf, # margin added to xaxis "axes.ymargin": _validate_greaterthan_minushalf, # margin added to yaxis "axes.zmargin": _validate_greaterthan_minushalf, # margin added to zaxis "polaraxes.grid": validate_bool, # display polar grid or not "axes3d.grid": validate_bool, # display 3d grid "axes3d.automargin": validate_bool, # automatically add margin when # manually setting 3D axis limits "axes3d.xaxis.panecolor": validate_color, # 3d background pane "axes3d.yaxis.panecolor": validate_color, # 3d background pane "axes3d.zaxis.panecolor": validate_color, # 3d background pane "axes3d.depthshade": validate_bool, # depth shade for 3D scatter plots "axes3d.depthshade_minalpha": validate_float, # min alpha value for depth shading "axes3d.mouserotationstyle": ["azel", "trackball", "sphere", "arcball"], "axes3d.trackballsize": validate_float, "axes3d.trackballborder": validate_float, # scatter props "scatter.marker": _validate_marker, "scatter.edgecolors": validate_string, "date.epoch": _validate_date, "date.autoformatter.year": validate_string, "date.autoformatter.month": validate_string, "date.autoformatter.day": validate_string, "date.autoformatter.hour": validate_string, "date.autoformatter.minute": validate_string, "date.autoformatter.second": validate_string, "date.autoformatter.microsecond": validate_string, 'date.converter': ['auto', 'concise'], # for auto date locator, choose interval_multiples 'date.interval_multiples': validate_bool, # legend properties "legend.fancybox": validate_bool, "legend.loc": _validate_legend_loc, # the number of points in the legend line "legend.numpoints": validate_int, # the number of points in the legend line for scatter "legend.scatterpoints": validate_int, "legend.fontsize": validate_fontsize, "legend.title_fontsize": validate_fontsize_None, # color of the legend "legend.labelcolor": _validate_color_or_linecolor, # the relative size of legend markers vs. original "legend.markerscale": validate_float, # using dict in rcParams not yet supported, so make sure it is bool "legend.shadow": validate_bool, # whether or not to draw a frame around legend "legend.frameon": validate_bool, # alpha value of the legend frame "legend.framealpha": validate_float_or_None, ## the following dimensions are in fraction of the font size "legend.borderpad": validate_float, # units are fontsize # the vertical space between the legend entries "legend.labelspacing": validate_float, # the length of the legend lines "legend.handlelength": validate_float, # the length of the legend lines "legend.handleheight": validate_float, # the space between the legend line and legend text "legend.handletextpad": validate_float, # the border between the Axes and legend edge "legend.borderaxespad": validate_float, # the border between the Axes and legend edge "legend.columnspacing": validate_float, "legend.facecolor": validate_color_or_inherit, "legend.edgecolor": validate_color_or_inherit, # tick properties "xtick.top": validate_bool, # draw ticks on top side "xtick.bottom": validate_bool, # draw ticks on bottom side "xtick.labeltop": validate_bool, # draw label on top "xtick.labelbottom": validate_bool, # draw label on bottom "xtick.major.size": validate_float, # major xtick size in points "xtick.minor.size": validate_float, # minor xtick size in points "xtick.major.width": validate_float, # major xtick width in points "xtick.minor.width": validate_float, # minor xtick width in points "xtick.major.pad": validate_float, # distance to label in points "xtick.minor.pad": validate_float, # distance to label in points "xtick.color": validate_color, # color of xticks "xtick.labelcolor": validate_color_or_inherit, # color of xtick labels "xtick.minor.visible": validate_bool, # visibility of minor xticks "xtick.minor.top": validate_bool, # draw top minor xticks "xtick.minor.bottom": validate_bool, # draw bottom minor xticks "xtick.major.top": validate_bool, # draw top major xticks "xtick.major.bottom": validate_bool, # draw bottom major xticks # number of minor xticks "xtick.minor.ndivs": _validate_minor_tick_ndivs, "xtick.labelsize": validate_fontsize, # fontsize of xtick labels "xtick.direction": ["out", "in", "inout"], # direction of xticks "xtick.alignment": ["center", "right", "left"], "ytick.left": validate_bool, # draw ticks on left side "ytick.right": validate_bool, # draw ticks on right side "ytick.labelleft": validate_bool, # draw tick labels on left side "ytick.labelright": validate_bool, # draw tick labels on right side "ytick.major.size": validate_float, # major ytick size in points "ytick.minor.size": validate_float, # minor ytick size in points "ytick.major.width": validate_float, # major ytick width in points "ytick.minor.width": validate_float, # minor ytick width in points "ytick.major.pad": validate_float, # distance to label in points "ytick.minor.pad": validate_float, # distance to label in points "ytick.color": validate_color, # color of yticks "ytick.labelcolor": validate_color_or_inherit, # color of ytick labels "ytick.minor.visible": validate_bool, # visibility of minor yticks "ytick.minor.left": validate_bool, # draw left minor yticks "ytick.minor.right": validate_bool, # draw right minor yticks "ytick.major.left": validate_bool, # draw left major yticks "ytick.major.right": validate_bool, # draw right major yticks # number of minor yticks "ytick.minor.ndivs": _validate_minor_tick_ndivs, "ytick.labelsize": validate_fontsize, # fontsize of ytick labels "ytick.direction": ["out", "in", "inout"], # direction of yticks "ytick.alignment": [ "center", "top", "bottom", "baseline", "center_baseline"], "grid.color": validate_color, # grid color "grid.linestyle": _validate_linestyle, # solid "grid.linewidth": validate_float, # in points "grid.alpha": validate_float, "grid.major.color": _validate_color_or_None, # grid color "grid.major.linestyle": _validate_linestyle_or_None, # solid "grid.major.linewidth": validate_float_or_None, # in points "grid.major.alpha": validate_float_or_None, "grid.minor.color": _validate_color_or_None, # grid color "grid.minor.linestyle": _validate_linestyle_or_None, # solid "grid.minor.linewidth": validate_float_or_None, # in points "grid.minor.alpha": validate_float_or_None, ## figure props # figure title "figure.titlesize": validate_fontsize, "figure.titleweight": validate_fontweight, # figure labels "figure.labelsize": validate_fontsize, "figure.labelweight": validate_fontweight, # figure size in inches: width by height "figure.figsize": _listify_validator(validate_float, n=2), "figure.dpi": validate_float, "figure.facecolor": validate_color, "figure.edgecolor": validate_color, "figure.frameon": validate_bool, "figure.autolayout": validate_bool, "figure.max_open_warning": validate_int, "figure.raise_window": validate_bool, "macosx.window_mode": ["system", "tab", "window"], "figure.subplot.left": validate_float, "figure.subplot.right": validate_float, "figure.subplot.bottom": validate_float, "figure.subplot.top": validate_float, "figure.subplot.wspace": validate_float, "figure.subplot.hspace": validate_float, "figure.constrained_layout.use": validate_bool, # run constrained_layout? # wspace and hspace are fraction of adjacent subplots to use for space. # Much smaller than above because we don't need room for the text. "figure.constrained_layout.hspace": validate_float, "figure.constrained_layout.wspace": validate_float, # buffer around the Axes, in inches. "figure.constrained_layout.h_pad": validate_float, "figure.constrained_layout.w_pad": validate_float, ## Saving figure's properties 'savefig.dpi': validate_dpi, 'savefig.facecolor': validate_color_or_auto, 'savefig.edgecolor': validate_color_or_auto, 'savefig.orientation': ['landscape', 'portrait'], "savefig.format": validate_string, "savefig.bbox": validate_bbox, # "tight", or "standard" (= None) "savefig.pad_inches": validate_float, # default directory in savefig dialog box "savefig.directory": _validate_pathlike, "savefig.transparent": validate_bool, "tk.window_focus": validate_bool, # Maintain shell focus for TkAgg # Set the papersize/type "ps.papersize": _ignorecase( ["figure", "letter", "legal", "ledger", *[f"{ab}{i}" for ab in "ab" for i in range(11)]]), "ps.useafm": validate_bool, # use ghostscript or xpdf to distill ps output "ps.usedistiller": validate_ps_distiller, "ps.distiller.res": validate_int, # dpi "ps.fonttype": validate_fonttype, # 3 (Type3) or 42 (Truetype) "pdf.compression": validate_int, # 0-9 compression level; 0 to disable "pdf.inheritcolor": validate_bool, # skip color setting commands # use only the 14 PDF core fonts embedded in every PDF viewing application "pdf.use14corefonts": validate_bool, "pdf.fonttype": validate_fonttype, # 3 (Type3) or 42 (Truetype) "pgf.texsystem": ["xelatex", "lualatex", "pdflatex"], # latex variant used "pgf.rcfonts": validate_bool, # use mpl's rc settings for font config "pgf.preamble": validate_string, # custom LaTeX preamble # write raster image data into the svg file "svg.image_inline": validate_bool, "svg.fonttype": ["none", "path"], # save text as text ("none") or "paths" "svg.hashsalt": validate_string_or_None, "svg.id": validate_string_or_None, # set this when you want to generate hardcopy docstring "docstring.hardcopy": validate_bool, "path.simplify": validate_bool, "path.simplify_threshold": _validate_greaterequal0_lessequal1, "path.snap": validate_bool, "path.sketch": validate_sketch, "path.effects": validate_anylist, "agg.path.chunksize": validate_int, # 0 to disable chunking # key-mappings (multi-character mappings should be a list/tuple) "keymap.fullscreen": validate_stringlist, "keymap.home": validate_stringlist, "keymap.back": validate_stringlist, "keymap.forward": validate_stringlist, "keymap.pan": validate_stringlist, "keymap.zoom": validate_stringlist, "keymap.save": validate_stringlist, "keymap.quit": validate_stringlist, "keymap.quit_all": validate_stringlist, # e.g.: "W", "cmd+W", "Q" "keymap.grid": validate_stringlist, "keymap.grid_minor": validate_stringlist, "keymap.yscale": validate_stringlist, "keymap.xscale": validate_stringlist, "keymap.help": validate_stringlist, "keymap.copy": validate_stringlist, # Animation settings "animation.html": ["html5", "jshtml", "none"], # Limit, in MB, of size of base64 encoded animation in HTML # (i.e. IPython notebook) "animation.embed_limit": validate_float, "animation.writer": validate_string, "animation.codec": validate_string, "animation.bitrate": validate_int, # Controls image format when frames are written to disk "animation.frame_format": ["png", "jpeg", "tiff", "raw", "rgba", "ppm", "sgi", "bmp", "pbm", "svg"], # Path to ffmpeg binary. If just binary name, subprocess uses $PATH. "animation.ffmpeg_path": _validate_pathlike, # Additional arguments for ffmpeg movie writer (using pipes) "animation.ffmpeg_args": validate_stringlist, # Path to convert binary. If just binary name, subprocess uses $PATH. "animation.convert_path": _validate_pathlike, # Additional arguments for convert movie writer (using pipes) "animation.convert_args": validate_stringlist, # Classic (pre 2.0) compatibility mode # This is used for things that are hard to make backward compatible # with a sane rcParam alone. This does *not* turn on classic mode # altogether. For that use `matplotlib.style.use("classic")`. "_internal.classic_mode": validate_bool } _hardcoded_defaults = { # Defaults not inferred from # lib/matplotlib/mpl-data/matplotlibrc... # ... because they are private: "_internal.classic_mode": False, # ... because they are deprecated: # No current deprecations. # backend is handled separately when constructing rcParamsDefault. } _validators = {k: _convert_validator_spec(k, conv) for k, conv in _validators.items()}
_ignorecase
python
crytic__slither
slither/core/declarations/solidity_import_placeholder.py
{ "start": 366, "end": 1522 }
class ____(Variable): """ Placeholder for import on top level objects See the example at https://blog.soliditylang.org/2020/09/02/solidity-0.7.1-release-announcement/ In the long term we should remove this and better integrate import aliases """ def __init__(self, import_directive: Import) -> None: super().__init__() assert import_directive.alias is not None self._import_directive = import_directive self._name = import_directive.alias self._type = ElementaryType("string") self._initialized = True self._visibility = "private" self._is_constant = True @property def type(self) -> ElementaryType: return ElementaryType("string") def __eq__(self, other: Union[Contract, SolidityVariable]) -> bool: return ( self.__class__ == other.__class__ and self._import_directive.filename == self._import_directive.filename ) @property def import_directive(self) -> Import: return self._import_directive def __hash__(self): return hash(str(self.import_directive))
SolidityImportPlaceHolder
python
django__django
tests/multiple_database/tests.py
{ "start": 79782, "end": 80167 }
class ____(TestCase): databases = {"default", "other"} def test_pickling(self): for db in self.databases: Book.objects.using(db).create( title="Dive into Python", published=datetime.date(2009, 5, 4) ) qs = Book.objects.all() self.assertEqual(qs.db, pickle.loads(pickle.dumps(qs)).db)
PickleQuerySetTestCase
python
django__django
tests/admin_views/models.py
{ "start": 7885, "end": 7989 }
class ____(Account): """A service-specific account of type Bar.""" servicename = "bar"
BarAccount
python
anthropics__anthropic-sdk-python
tests/test_legacy_response.py
{ "start": 1930, "end": 3595 }
class ____(BaseModel): foo: str bar: int def test_response_parse_custom_model(client: Anthropic) -> None: response = LegacyAPIResponse( raw=httpx.Response(200, content=json.dumps({"foo": "hello!", "bar": 2})), client=client, stream=False, stream_cls=None, cast_to=str, options=FinalRequestOptions.construct(method="get", url="/foo"), ) obj = response.parse(to=CustomModel) assert obj.foo == "hello!" assert obj.bar == 2 def test_response_basemodel_request_id(client: Anthropic) -> None: response = LegacyAPIResponse( raw=httpx.Response( 200, headers={"request-id": "my-req-id"}, content=json.dumps({"foo": "hello!", "bar": 2}), ), client=client, stream=False, stream_cls=None, cast_to=str, options=FinalRequestOptions.construct(method="get", url="/foo"), ) obj = response.parse(to=CustomModel) assert obj._request_id == "my-req-id" assert obj.foo == "hello!" assert obj.bar == 2 assert obj.to_dict() == {"foo": "hello!", "bar": 2} def test_response_parse_annotated_type(client: Anthropic) -> None: response = LegacyAPIResponse( raw=httpx.Response(200, content=json.dumps({"foo": "hello!", "bar": 2})), client=client, stream=False, stream_cls=None, cast_to=str, options=FinalRequestOptions.construct(method="get", url="/foo"), ) obj = response.parse( to=cast("type[CustomModel]", Annotated[CustomModel, "random metadata"]), ) assert obj.foo == "hello!" assert obj.bar == 2
CustomModel
python
ethereum__web3.py
web3/providers/persistent/subscription_container.py
{ "start": 137, "end": 1697 }
class ____: def __init__(self) -> None: self.subscriptions: list[EthSubscription[Any]] = [] self.subscriptions_by_id: dict[HexStr, EthSubscription[Any]] = {} self.subscriptions_by_label: dict[str, EthSubscription[Any]] = {} def __len__(self) -> int: return len(self.subscriptions) def __iter__(self) -> Iterator[EthSubscription[Any]]: return iter(self.subscriptions) def add_subscription(self, subscription: EthSubscription[Any]) -> None: self.subscriptions.append(subscription) self.subscriptions_by_id[subscription.id] = subscription self.subscriptions_by_label[subscription.label] = subscription def remove_subscription(self, subscription: EthSubscription[Any]) -> None: self.subscriptions.remove(subscription) self.subscriptions_by_id.pop(subscription.id) self.subscriptions_by_label.pop(subscription.label) def get_by_id(self, sub_id: HexStr) -> EthSubscription[Any]: return self.subscriptions_by_id.get(sub_id) def get_by_label(self, label: str) -> EthSubscription[Any]: return self.subscriptions_by_label.get(label) @property def handler_subscriptions(self) -> list[EthSubscription[Any]]: return [sub for sub in self.subscriptions if sub._handler is not None] def get_handler_subscription_by_id( self, sub_id: HexStr ) -> EthSubscription[Any] | None: sub = self.get_by_id(sub_id) if sub and sub._handler: return sub return None
SubscriptionContainer
python
django__django
tests/delete_regress/models.py
{ "start": 2746, "end": 2805 }
class ____(Image): class Meta: proxy = True
Photo
python
django__django
django/contrib/auth/migrations/0007_alter_validators_add_error_messages.py
{ "start": 86, "end": 802 }
class ____(migrations.Migration): dependencies = [ ("auth", "0006_require_contenttypes_0002"), ] operations = [ migrations.AlterField( model_name="user", name="username", field=models.CharField( error_messages={"unique": "A user with that username already exists."}, help_text=( "Required. 30 characters or fewer. Letters, digits and @/./+/-/_ " "only." ), max_length=30, unique=True, validators=[validators.UnicodeUsernameValidator()], verbose_name="username", ), ), ]
Migration
python
pytorch__pytorch
test/functorch/test_control_flow.py
{ "start": 140401, "end": 155937 }
class ____(TestCase): def setUp(self): torch._dynamo.reset() super().setUp() def _check_autograd(self, result, result_exp, autograd_param): grad_param = [p for p in autograd_param if p.requires_grad] result_flatten, _ = pytree.tree_flatten(result) result_exp_flatten, _ = pytree.tree_flatten(result_exp) result_flatten = [r for r in result_flatten if r.requires_grad] result_exp_flatten = [r for r in result_exp_flatten if r.requires_grad] # Check the result and parameter lists assert len(result_flatten) == len(result_exp_flatten), ( "The number of elements requiring gradients is different for the results and the expected results" ) grad_exp_init = [torch.ones_like(el) for el in result_exp_flatten] expected_grads = torch.autograd.grad( result_exp_flatten, grad_param, grad_exp_init ) grad_init = [torch.ones_like(el) for el in result_flatten] grads = torch.autograd.grad(result_flatten, grad_param, grad_init) self.assertEqual(grads, expected_grads, atol=6e-05, rtol=6e-06) def _run_test(self, model, model_fake, inputs, autograd_param=None): result = model(inputs) result_exp = model_fake(inputs) self.assertEqual(result, result_exp) if autograd_param is not None and any( par.requires_grad for par in autograd_param ): result_flat = pytree.tree_leaves(result) result_exp_flat = pytree.tree_leaves(result_exp) exp_grad_mask = [bool(r.requires_grad) for r in result_exp_flat] self._check_autograd( [r for r, m in zip(result_flat, exp_grad_mask) if m], [r for r, m in zip(result_exp_flat, exp_grad_mask) if m], autograd_param, ) # Return the result of the functions under test for further investigations return result def _prepare_fake_kwargs(self, original_kwargs): kwargs_fake = original_kwargs.copy() kwargs_fake["compile_mode"] = "fake" return kwargs_fake @unittest.skipIf(not SM70OrLater, "triton") @requires_cuda @parametrize("reverse", [False, True]) @parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"]) @parametrize("combine_mode", ["pointwise", "generic"]) @parametrize("device", [torch.device("cpu"), torch.device("cuda")]) @parametrize("autograd", [False, True]) # Skipping the combination of combine_mode=pointwise and device=cpu # as the current implementation of pointwise does only support CUDA device # Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape # as the current implementation does not support lifted arguments @decorateIf( unittest.skip, lambda params: ( params["combine_mode"] == "pointwise" and ( params["device"] == torch.device("cpu") or params["compile_mode"] == "compile_dynamic_shape" ) ), ) # # Skipping this combination as there is a CPP compilation failure that # # may be unrelated to associative_scan itself. There is a dedicated tests for # # this case below. # @decorateIf( # unittest.skip, # lambda params: ( # params["compile_mode"] == "compile_dynamic_shape" # and params["combine_mode"] == "generic" # and params["device"] == torch.device("cpu") # and params["autograd"] # ), # ) def test_associative_scan_compile( self, combine_mode, reverse, compile_mode, device, autograd ): x = torch.randn(3, 10, 2, device=device, requires_grad=autograd) kwargs = { "dim": 0, "reverse": reverse, "compile_mode": compile_mode, "combine_mode": combine_mode, } kwargs_fake = self._prepare_fake_kwargs(kwargs) results = self._run_test( model=AssociativeScanModels.Simple(**kwargs), model_fake=AssociativeScanModels.Simple(**kwargs_fake), inputs=x, autograd_param=None if not autograd else (x,), ) if not reverse: results_torch = [] for op_pt in [torch.cumsum, torch.cumprod]: results_torch.append(op_pt(x, 0)) self.assertEqual(results, results_torch) # Jax Examples x = torch.arange( 0, 4, device=device, dtype=torch.float32, requires_grad=autograd ) kwargs = { "dim": 0, "reverse": reverse, "compile_mode": compile_mode, "combine_fn": get_scan_combine_fn("add", True), "combine_mode": combine_mode, } kwargs_fake = self._prepare_fake_kwargs(kwargs) result = self._run_test( model=AssociativeScanModels.CombineFn(**kwargs), model_fake=AssociativeScanModels.CombineFn(**kwargs_fake), inputs=x, autograd_param=None if not autograd else (x,), ) if not reverse: results_torch = torch.tensor([0.0, 1.0, 3.0, 6.0], dtype=torch.float32) else: results_torch = torch.tensor([6.0, 6.0, 5.0, 3.0], dtype=torch.float32) self.assertEqual(result, results_torch) @unittest.skipIf(not SM70OrLater, "triton") @requires_cuda @parametrize("reverse", [False, True]) @parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"]) @parametrize("combine_mode", ["pointwise", "generic"]) @parametrize("device", [torch.device("cpu"), torch.device("cuda")]) @parametrize("autograd", [False, True]) # Skipping the combination of combine_mode=pointwise and device=cpu # as the current implementation of pointwise does only support CUDA device # Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape # as the current implementation does not support lifted arguments @decorateIf( unittest.skip, lambda params: ( params["combine_mode"] == "pointwise" and ( params["device"] == torch.device("cpu") or params["compile_mode"] == "compile_dynamic_shape" ) ), ) def test_associative_scan_dim( self, combine_mode, compile_mode, reverse, device, autograd ): import random random.seed(1234) num_dims = [random.randint(2, 5) for _ in range(4)] for num_dim in num_dims: # To avoid triggering automatic dynamic shape torch._dynamo.reset() shapes = [random.randint(1, 9) for _ in range(num_dim)] rnd_scan_dim = random.randint(0, num_dim - 1) x = torch.randn(*shapes, device=device, requires_grad=autograd) kwargs = { "dim": rnd_scan_dim, "reverse": reverse, "compile_mode": compile_mode, "combine_mode": combine_mode, } kwargs_fake = self._prepare_fake_kwargs(kwargs) results = self._run_test( model=AssociativeScanModels.Simple(**kwargs), model_fake=AssociativeScanModels.Simple(**kwargs_fake), inputs=x, autograd_param=None if not autograd else (x,), ) if not reverse: results_torch = [] for op_pt in [torch.cumsum, torch.cumprod]: results_torch.append(op_pt(x, 0)) self.assertEqual(results, results_torch) @unittest.skipIf(not SM70OrLater, "triton") @requires_cuda @unittest.expectedFailure def test_associative_scan_dim_shape_failure(self, compile_mode, combine_mode): num_dims = [2] for num_dim in num_dims: shapes = [9 for _ in range(num_dim)] rnd_scan_dim = 0 x = torch.randn(*shapes, device=torch.device("cuda")) kwargs = { "dim": rnd_scan_dim, "reverse": True, "compile_mode": "compile", "combine_mode": "generic", } kwargs_fake = self._prepare_fake_kwargs(kwargs) self._run_test( model=AssociativeScanModels.Simple(**kwargs), model_fake=AssociativeScanModels.Simple(**kwargs_fake), inputs=x, ) @unittest.skipIf(not SM70OrLater, "triton") @requires_cuda @parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"]) @parametrize("combine_mode", ["pointwise", "generic"]) @parametrize("reverse", [False, True]) @parametrize("device", [torch.device("cpu"), torch.device("cuda")]) @parametrize("autograd", [False, True]) # Skipping the combination of combine_mode=pointwise and device=cpu # as the current implementation of pointwise does only support CUDA device # Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape # as the current implementation does not support lifted arguments @decorateIf( unittest.skip, lambda params: ( params["combine_mode"] == "pointwise" and ( params["device"] == torch.device("cpu") or params["compile_mode"] == "compile_dynamic_shape" ) ), ) def test_associative_scan_tuple( self, compile_mode, combine_mode, reverse, device, autograd ): x = torch.randn(3, 2, 2, device=device, requires_grad=autograd) y = torch.randn(3, 2, 2, device=device, requires_grad=autograd) inp = (x, y) kwargs = { "dim": 0, "reverse": reverse, "compile_mode": compile_mode, "combine_fn": get_scan_combine_fn("tuple_fct", True), "combine_mode": combine_mode, } kwargs_fake = self._prepare_fake_kwargs(kwargs) self._run_test( model=AssociativeScanModels.CombineFn(**kwargs), model_fake=AssociativeScanModels.CombineFn(**kwargs_fake), inputs=inp, autograd_param=None if not autograd else inp, ) @unittest.skipIf(not SM70OrLater, "triton") @requires_cuda @parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"]) @parametrize("reverse", [False, True]) @parametrize("device", [torch.device("cpu"), torch.device("cuda")]) @parametrize("autograd", [False, True]) def test_associative_scan_expand_in_combine_fn( self, compile_mode, reverse, device, autograd ): x = torch.randn(3, 2, 2, device=device, requires_grad=autograd) def combine_fn(x, y): return x * torch.sum(y, -1).expand(x.shape) kwargs = { "dim": 0, "reverse": reverse, "compile_mode": compile_mode, "combine_fn": combine_fn, "combine_mode": "generic", } kwargs_fake = self._prepare_fake_kwargs(kwargs) self._run_test( model=AssociativeScanModels.CombineFn(**kwargs), model_fake=AssociativeScanModels.CombineFn(**kwargs_fake), inputs=x, autograd_param=None if not autograd else (x,), ) @unittest.skipIf(not SM70OrLater, "triton") @requires_cuda @parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"]) @parametrize("reverse", [False, True]) @parametrize("device", [torch.device("cpu"), torch.device("cuda")]) @parametrize("autograd", [False, True]) def test_associative_scan_non_contiguous_tensor( self, compile_mode, reverse, device, autograd ): x = ( torch.arange(30, device=device, dtype=torch.float32, requires_grad=autograd) .view(10, 3) .t() ) assert not x.is_contiguous() kwargs = { "dim": 0, "reverse": reverse, "compile_mode": compile_mode, "combine_fn": get_scan_combine_fn("add", True), "combine_mode": "generic", } kwargs_fake = self._prepare_fake_kwargs(kwargs) self._run_test( model=AssociativeScanModels.CombineFn(**kwargs), model_fake=AssociativeScanModels.CombineFn(**kwargs_fake), inputs=x, autograd_param=None if not autograd else (x,), ) @unittest.skipIf(not SM70OrLater, "triton") @requires_cuda @parametrize("compile_mode", ["none", "eager", "compile", "compile_dynamic_shape"]) @parametrize("combine_mode", ["pointwise", "generic"]) @parametrize("reverse", [False, True]) @parametrize("device", [torch.device("cpu"), torch.device("cuda")]) @parametrize("autograd", [False, True]) # Skipping the combination of combine_mode=pointwise and device=cpu # as the current implementation of pointwise does only support CUDA device # Skipping the combination of combine_mode=pointwise and compile_mode=compile_dynamic_shape # as the current implementation does not support lifted arguments @decorateIf( unittest.skip, lambda params: ( params["combine_mode"] == "pointwise" and ( params["device"] == torch.device("cpu") or params["compile_mode"] == "compile_dynamic_shape" ) ), ) def test_associative_scan_complex_pytree( self, compile_mode, combine_mode, reverse, device, autograd ): x = torch.randn(3, 2, 2, device=device, requires_grad=autograd) y = torch.randn(3, 2, 2, device=device, requires_grad=autograd) z = torch.randn(3, 2, 2, device=device, requires_grad=autograd) inp = {"i": x, "j": ([y], [{"o": z}])} kwargs = { "dim": 0, "reverse": reverse, "compile_mode": compile_mode, "combine_fn": get_scan_combine_fn("complex_pointwise", True), "combine_mode": combine_mode, } kwargs_fake = self._prepare_fake_kwargs(kwargs) self._run_test( model=AssociativeScanModels.CombineFn(**kwargs), model_fake=AssociativeScanModels.CombineFn(**kwargs_fake), inputs=inp, autograd_param=None if not autograd else (x, y, z), ) @skipIfTorchDynamo("don't test compile on compile") @skipIfNoDynamoSupport @skipIfCrossRef # Arg order changes with crossref def test_associative_scan_pytree_output(self): x = ( ( torch.randn(3, 10, 2, device=torch.device("cpu")), (torch.randn(3, 10, 2, device=torch.device("cpu")),), ), torch.randn(3, 10, 2, device=torch.device("cpu")), ) def f(fct, xs): return associative_scan( fct, xs, dim=0, reverse=True, combine_mode="generic" ) def combine_fn(x: torch.Tensor, y: torch.Tensor): a, b = (x[0][0] + y[1], x[0][1][0] - y[1]) return (a, (b,)), a - b # Check graph backend = EagerAndRecordGraphs() torch.compile(f, backend=backend)(combine_fn, x) gm = backend.graphs[0] self.assertExpectedInline( normalize_gm(gm.print_readable(print_output=False)), """\
AssociativeScanTests
python
tensorflow__tensorflow
tensorflow/compiler/mlir/quantization/tensorflow/python/integration_test/quantize_model_test.py
{ "start": 6893, "end": 13005 }
class ____(quantize_model_test_base.QuantizedModelTest): """Test cases regarding the use of QuantizationOptions proto. Run all tests cases in both the graph mode (default in TF1) and the eager mode (default in TF2) to ensure support for when TF2 is disabled. """ class SimpleModel(module.Module): def __init__(self): self.filters = np.random.uniform(low=-1.0, high=1.0, size=(4, 3)).astype( 'f4' ) @def_function.function( input_signature=[ tensor_spec.TensorSpec(shape=[1, 4], dtype=dtypes.float32) ] ) def __call__(self, input_tensor: core.Tensor) -> Mapping[str, core.Tensor]: """Performs a matrix multiplication. Args: input_tensor: Input tensor to matmul with the filter. Returns: A map of: output key -> output result. """ out = math_ops.matmul(input_tensor, self.filters) return {'output': out} def _simple_model_data_gen(self) -> repr_dataset.RepresentativeDataset: """Creates an interable of representative samples. Yields: Representative samples, which is basically a mapping of: input key -> input value. """ for _ in range(8): yield { 'input_tensor': ops.convert_to_tensor( np.random.uniform(low=0, high=150, size=(1, 4)).astype('f4') ), } def test_static_range_quantization_by_default(self): model = self.SimpleModel() saved_model_save.save(model, self._input_saved_model_path) # Use default QuantizationOptions. converted_model = quantize_model.quantize( self._input_saved_model_path, representative_dataset=self._simple_model_data_gen(), ) self.assertIsNotNone(converted_model) self.assertCountEqual( converted_model.signatures._signatures.keys(), {'serving_default'} ) # Indirectly prove that it is performing a static-range quantization # by checking that it complains about representative_dataset when it is # not provided. with self.assertRaisesRegex(ValueError, 'representative_dataset'): quantize_model.quantize(self._input_saved_model_path) def test_method_unspecified_raises_value_error(self): model = self.SimpleModel() saved_model_save.save(model, self._input_saved_model_path) options = quant_opts_pb2.QuantizationOptions( quantization_method=quant_opts_pb2.QuantizationMethod( preset_method=_PresetMethod.METHOD_UNSPECIFIED ) ) with self.assertRaises(ValueError): quantize_model.quantize( self._input_saved_model_path, quantization_options=options ) def test_predefined_method_component_spec(self): options = quant_opts_pb2.QuantizationOptions( quantization_method=quant_opts_pb2.QuantizationMethod( preset_method=_PresetMethod.METHOD_STATIC_RANGE_INT8 ) ) quantize_model._populate_quantization_component_spec( options.quantization_method ) # Quantize activation, weight and bias for static range quantization. self.assertLen(options.quantization_method.quantization_component_specs, 3) def test_invalid_spec_raise_value_error(self): options = quant_opts_pb2.QuantizationOptions( quantization_method=quant_opts_pb2.QuantizationMethod( quantization_component_specs=[ quant_opts_pb2.QuantizationComponentSpec( quantization_component=( _QuantizationComponent.COMPONENT_ACTIVATION ), tensor_type=_TensorType.TENSORTYPE_INT_4, ) ] ) ) with self.assertRaises(ValueError): # Activation 4bit is not a valid configuration. quantize_model._populate_quantization_component_spec( options.quantization_method ) def test_invalid_method_raises_value_error(self): model = self.SimpleModel() saved_model_save.save(model, self._input_saved_model_path) # Set an invalid value of -1 to QuantizationMethod.preset_method. options = quant_opts_pb2.QuantizationOptions( quantization_method=quant_opts_pb2.QuantizationMethod(preset_method=-1) ) with self.assertRaises(ValueError): quantize_model.quantize( self._input_saved_model_path, quantization_options=options ) def test_drq_per_channel_for_non_uniform_opset_raises_value_error( self, ): model = self.SimpleModel() saved_model_save.save(model, self._input_saved_model_path) options = quant_opts_pb2.QuantizationOptions( quantization_method=quant_opts_pb2.QuantizationMethod( preset_method=_PresetMethod.METHOD_DYNAMIC_RANGE_INT8 ), op_set=quant_opts_pb2.TF, enable_per_channel_quantization=True, ) with self.assertRaises(ValueError): quantize_model.quantize( self._input_saved_model_path, quantization_options=options ) def test_force_graph_mode_calibration(self): model = self.SimpleModel() saved_model_save.save(model, self._input_saved_model_path) options = quant_opts_pb2.QuantizationOptions( quantization_method=quant_opts_pb2.QuantizationMethod( preset_method=_PresetMethod.METHOD_STATIC_RANGE_INT8 ), op_set=quant_opts_pb2.TF, force_graph_mode_calibration=True, ) with self.assertLogs(level='INFO') as info_logs: # Save the logger verbosity. prev_log_level = logging.get_verbosity() logging.set_verbosity(logging.INFO) try: quantize_model.quantize( self._input_saved_model_path, quantization_options=options, representative_dataset=self._simple_model_data_gen(), ) finally: # Restore the logger verbosity. logging.set_verbosity(prev_log_level) self.assertNotEmpty(info_logs.records) self.assertTrue( self._any_log_contains( 'Calibration step is executed in graph mode.', info_logs.records, ) )
QuantizationOptionsTest
python
google__pytype
pytype/abstract/abstract_utils.py
{ "start": 2669, "end": 2815 }
class ____: def __init__(self, container): self.container = container DUMMY_CONTAINER: DummyContainer = DummyContainer(None)
DummyContainer
python
realpython__materials
bulk-file-rename-tool-python/source_code_final/rprename/rename.py
{ "start": 182, "end": 941 }
class ____(QObject): # Define custom signals progressed = pyqtSignal(int) renamedFile = pyqtSignal(Path) finished = pyqtSignal() def __init__(self, files, prefix): super().__init__() self._files = files self._prefix = prefix def renameFiles(self): for fileNumber, file in enumerate(self._files, 1): newFile = file.parent.joinpath( f"{self._prefix}{str(fileNumber)}{file.suffix}" ) file.rename(newFile) time.sleep(0.1) # Comment this line to rename files faster. self.progressed.emit(fileNumber) self.renamedFile.emit(newFile) self.progressed.emit(0) # Reset the progress self.finished.emit()
Renamer
python
bokeh__bokeh
src/bokeh/plotting/contour.py
{ "start": 2378, "end": 2562 }
class ____: ''' Coordinates for all contour lines over a whole sequence of contour levels. ''' xs: list[np.ndarray] ys: list[np.ndarray] @dataclass(frozen=True)
LineCoords
python
apache__airflow
airflow-core/src/airflow/api_fastapi/core_api/datamodels/hitl.py
{ "start": 3022, "end": 3146 }
class ____(BaseHITLDetail): """Schema for Human-in-the-loop detail.""" task_instance: TaskInstanceResponse
HITLDetail
python
pytest-dev__pytest
testing/acceptance_test.py
{ "start": 534, "end": 19961 }
class ____: def test_config_error(self, pytester: Pytester) -> None: pytester.copy_example("conftest_usageerror/conftest.py") result = pytester.runpytest(pytester.path) assert result.ret == ExitCode.USAGE_ERROR result.stderr.fnmatch_lines(["*ERROR: hello"]) result.stdout.fnmatch_lines(["*pytest_unconfigure_called"]) def test_root_conftest_syntax_error(self, pytester: Pytester) -> None: pytester.makepyfile(conftest="raise SyntaxError\n") result = pytester.runpytest() result.stderr.fnmatch_lines(["*raise SyntaxError*"]) assert result.ret != 0 def test_early_hook_error_issue38_1(self, pytester: Pytester) -> None: pytester.makeconftest( """ def pytest_sessionstart(): 0 / 0 """ ) result = pytester.runpytest(pytester.path) assert result.ret != 0 # tracestyle is native by default for hook failures result.stdout.fnmatch_lines( ["*INTERNALERROR*File*conftest.py*line 2*", "*0 / 0*"] ) result = pytester.runpytest(pytester.path, "--fulltrace") assert result.ret != 0 # tracestyle is native by default for hook failures result.stdout.fnmatch_lines( ["*INTERNALERROR*def pytest_sessionstart():*", "*INTERNALERROR*0 / 0*"] ) def test_early_hook_configure_error_issue38(self, pytester: Pytester) -> None: pytester.makeconftest( """ def pytest_configure(): 0 / 0 """ ) result = pytester.runpytest(pytester.path) assert result.ret != 0 # here we get it on stderr result.stderr.fnmatch_lines( ["*INTERNALERROR*File*conftest.py*line 2*", "*0 / 0*"] ) def test_file_not_found(self, pytester: Pytester) -> None: result = pytester.runpytest("asd") assert result.ret != 0 result.stderr.fnmatch_lines(["ERROR: file or directory not found: asd"]) def test_file_not_found_unconfigure_issue143(self, pytester: Pytester) -> None: pytester.makeconftest( """ def pytest_configure(): print("---configure") def pytest_unconfigure(): print("---unconfigure") """ ) result = pytester.runpytest("-s", "asd") assert result.ret == ExitCode.USAGE_ERROR result.stderr.fnmatch_lines(["ERROR: file or directory not found: asd"]) result.stdout.fnmatch_lines(["*---configure", "*---unconfigure"]) def test_config_preparse_plugin_option(self, pytester: Pytester) -> None: pytester.makepyfile( pytest_xyz=""" def pytest_addoption(parser): parser.addoption("--xyz", dest="xyz", action="store") """ ) pytester.makepyfile( test_one=""" def test_option(pytestconfig): assert pytestconfig.option.xyz == "123" """ ) result = pytester.runpytest("-p", "pytest_xyz", "--xyz=123", syspathinsert=True) assert result.ret == 0 result.stdout.fnmatch_lines(["*1 passed*"]) @pytest.mark.parametrize("load_cov_early", [True, False]) def test_early_load_setuptools_name( self, pytester: Pytester, monkeypatch, load_cov_early ) -> None: monkeypatch.delenv("PYTEST_DISABLE_PLUGIN_AUTOLOAD") pytester.makepyfile(mytestplugin1_module="") pytester.makepyfile(mytestplugin2_module="") pytester.makepyfile(mycov_module="") pytester.syspathinsert() loaded = [] @dataclasses.dataclass class DummyEntryPoint: name: str module: str group: str = "pytest11" def load(self): mod = importlib.import_module(self.module) loaded.append(self.name) return mod entry_points = [ DummyEntryPoint("myplugin1", "mytestplugin1_module"), DummyEntryPoint("myplugin2", "mytestplugin2_module"), DummyEntryPoint("mycov", "mycov_module"), ] @dataclasses.dataclass class DummyDist: entry_points: object files: object = () def my_dists(): return (DummyDist(entry_points),) monkeypatch.setattr(importlib.metadata, "distributions", my_dists) params = ("-p", "mycov") if load_cov_early else () pytester.runpytest_inprocess(*params) if load_cov_early: assert loaded == ["mycov", "myplugin1", "myplugin2"] else: assert loaded == ["myplugin1", "myplugin2", "mycov"] @pytest.mark.parametrize("import_mode", ["prepend", "append", "importlib"]) def test_assertion_rewrite(self, pytester: Pytester, import_mode) -> None: p = pytester.makepyfile( """ def test_this(): x = 0 assert x """ ) result = pytester.runpytest(p, f"--import-mode={import_mode}") result.stdout.fnmatch_lines(["> assert x", "E assert 0"]) assert result.ret == 1 def test_nested_import_error(self, pytester: Pytester) -> None: p = pytester.makepyfile( """ import import_fails def test_this(): assert import_fails.a == 1 """ ) pytester.makepyfile(import_fails="import does_not_work") result = pytester.runpytest(p) result.stdout.fnmatch_lines( [ "ImportError while importing test module*", "*No module named *does_not_work*", ] ) assert result.ret == 2 def test_not_collectable_arguments(self, pytester: Pytester) -> None: p1 = pytester.makepyfile("") p2 = pytester.makefile(".pyc", "123") result = pytester.runpytest(p1, p2) assert result.ret == ExitCode.USAGE_ERROR result.stderr.fnmatch_lines( [ f"ERROR: not found: {p2}", "(no match in any of *)", "", ] ) @pytest.mark.filterwarnings("default") def test_better_reporting_on_conftest_load_failure( self, pytester: Pytester ) -> None: """Show a user-friendly traceback on conftest import failures (#486, #3332)""" pytester.makepyfile("") conftest = pytester.makeconftest( """ def foo(): import qwerty foo() """ ) result = pytester.runpytest("--help") result.stdout.fnmatch_lines( """ *--version* *warning*conftest.py* """ ) result = pytester.runpytest() assert result.stdout.lines == [] assert result.stderr.lines == [ f"ImportError while loading conftest '{conftest}'.", "conftest.py:3: in <module>", " foo()", "conftest.py:2: in foo", " import qwerty", "E ModuleNotFoundError: No module named 'qwerty'", ] def test_early_skip(self, pytester: Pytester) -> None: pytester.mkdir("xyz") pytester.makeconftest( """ import pytest def pytest_collect_file(): pytest.skip("early") """ ) result = pytester.runpytest() assert result.ret == ExitCode.NO_TESTS_COLLECTED result.stdout.fnmatch_lines(["*1 skip*"]) def test_issue88_initial_file_multinodes(self, pytester: Pytester) -> None: pytester.copy_example("issue88_initial_file_multinodes") p = pytester.makepyfile("def test_hello(): pass") result = pytester.runpytest(p, "--collect-only") result.stdout.fnmatch_lines(["*MyFile*test_issue88*", "*Module*test_issue88*"]) def test_issue93_initialnode_importing_capturing(self, pytester: Pytester) -> None: pytester.makeconftest( """ import sys print("should not be seen") sys.stderr.write("stder42\\n") """ ) result = pytester.runpytest() assert result.ret == ExitCode.NO_TESTS_COLLECTED result.stdout.no_fnmatch_line("*should not be seen*") assert "stderr42" not in result.stderr.str() def test_conftest_printing_shows_if_error(self, pytester: Pytester) -> None: pytester.makeconftest( """ print("should be seen") assert 0 """ ) result = pytester.runpytest() assert result.ret != 0 assert "should be seen" in result.stdout.str() def test_issue109_sibling_conftests_not_loaded(self, pytester: Pytester) -> None: sub1 = pytester.mkdir("sub1") sub2 = pytester.mkdir("sub2") sub1.joinpath("conftest.py").write_text("assert 0", encoding="utf-8") result = pytester.runpytest(sub2) assert result.ret == ExitCode.NO_TESTS_COLLECTED sub2.joinpath("__init__.py").touch() p = sub2.joinpath("test_hello.py") p.touch() result = pytester.runpytest(p) assert result.ret == ExitCode.NO_TESTS_COLLECTED result = pytester.runpytest(sub1) assert result.ret == ExitCode.USAGE_ERROR def test_directory_skipped(self, pytester: Pytester) -> None: pytester.makeconftest( """ import pytest def pytest_ignore_collect(): pytest.skip("intentional") """ ) pytester.makepyfile("def test_hello(): pass") result = pytester.runpytest() assert result.ret == ExitCode.NO_TESTS_COLLECTED result.stdout.fnmatch_lines(["*1 skipped*"]) def test_multiple_items_per_collector_byid(self, pytester: Pytester) -> None: c = pytester.makeconftest( """ import pytest class MyItem(pytest.Item): def runtest(self): pass class MyCollector(pytest.File): def collect(self): return [MyItem.from_parent(name="xyz", parent=self)] def pytest_collect_file(file_path, parent): if file_path.name.startswith("conftest"): return MyCollector.from_parent(path=file_path, parent=parent) """ ) result = pytester.runpytest(c.name + "::" + "xyz") assert result.ret == 0 result.stdout.fnmatch_lines(["*1 pass*"]) def test_skip_on_generated_funcarg_id(self, pytester: Pytester) -> None: pytester.makeconftest( """ import pytest def pytest_generate_tests(metafunc): metafunc.parametrize('x', [3], ids=['hello-123']) def pytest_runtest_setup(item): print(item.keywords) if 'hello-123' in item.keywords: pytest.skip("hello") assert 0 """ ) p = pytester.makepyfile("""def test_func(x): pass""") res = pytester.runpytest(p) assert res.ret == 0 res.stdout.fnmatch_lines(["*1 skipped*"]) def test_direct_addressing_selects(self, pytester: Pytester) -> None: p = pytester.makepyfile( """ def pytest_generate_tests(metafunc): metafunc.parametrize('i', [1, 2], ids=["1", "2"]) def test_func(i): pass """ ) res = pytester.runpytest(p.name + "::" + "test_func[1]") assert res.ret == 0 res.stdout.fnmatch_lines(["*1 passed*"]) def test_direct_addressing_selects_duplicates(self, pytester: Pytester) -> None: p = pytester.makepyfile( """ import pytest @pytest.mark.parametrize("a", [1, 2, 10, 11, 2, 1, 12, 11]) def test_func(a): pass """ ) result = pytester.runpytest(p) result.assert_outcomes(failed=0, passed=8) def test_direct_addressing_selects_duplicates_1(self, pytester: Pytester) -> None: p = pytester.makepyfile( """ import pytest @pytest.mark.parametrize("a", [1, 2, 10, 11, 2, 1, 12, 1_1,2_1]) def test_func(a): pass """ ) result = pytester.runpytest(p) result.assert_outcomes(failed=0, passed=9) def test_direct_addressing_selects_duplicates_2(self, pytester: Pytester) -> None: p = pytester.makepyfile( """ import pytest @pytest.mark.parametrize("a", ["a","b","c","a","a1"]) def test_func(a): pass """ ) result = pytester.runpytest(p) result.assert_outcomes(failed=0, passed=5) def test_direct_addressing_notfound(self, pytester: Pytester) -> None: p = pytester.makepyfile( """ def test_func(): pass """ ) res = pytester.runpytest(p.name + "::" + "test_notfound") assert res.ret res.stderr.fnmatch_lines(["*ERROR*not found*"]) def test_docstring_on_hookspec(self) -> None: from _pytest import hookspec for name, value in vars(hookspec).items(): if name.startswith("pytest_"): assert value.__doc__, f"no docstring for {name}" def test_initialization_error_issue49(self, pytester: Pytester) -> None: pytester.makeconftest( """ def pytest_configure(): x """ ) result = pytester.runpytest() assert result.ret == 3 # internal error result.stderr.fnmatch_lines(["INTERNAL*pytest_configure*", "INTERNAL*x*"]) assert "sessionstarttime" not in result.stderr.str() @pytest.mark.parametrize("lookfor", ["test_fun.py::test_a"]) def test_issue134_report_error_when_collecting_member( self, pytester: Pytester, lookfor ) -> None: pytester.makepyfile( test_fun=""" def test_a(): pass def""" ) result = pytester.runpytest(lookfor) result.stdout.fnmatch_lines(["*SyntaxError*"]) if "::" in lookfor: result.stderr.fnmatch_lines(["*ERROR*"]) assert result.ret == 4 # usage error only if item not found def test_report_all_failed_collections_initargs(self, pytester: Pytester) -> None: pytester.makeconftest( """ from _pytest.config import ExitCode def pytest_sessionfinish(exitstatus): assert exitstatus == ExitCode.USAGE_ERROR print("pytest_sessionfinish_called") """ ) pytester.makepyfile(test_a="def", test_b="def") result = pytester.runpytest("test_a.py::a", "test_b.py::b") result.stderr.fnmatch_lines(["*ERROR*test_a.py::a*", "*ERROR*test_b.py::b*"]) result.stdout.fnmatch_lines(["pytest_sessionfinish_called"]) assert result.ret == ExitCode.USAGE_ERROR def test_namespace_import_doesnt_confuse_import_hook( self, pytester: Pytester ) -> None: """Ref #383. Python 3.3's namespace package messed with our import hooks. Importing a module that didn't exist, even if the ImportError was gracefully handled, would make our test crash. """ pytester.mkdir("not_a_package") p = pytester.makepyfile( """ try: from not_a_package import doesnt_exist except ImportError: # We handle the import error gracefully here pass def test_whatever(): pass """ ) res = pytester.runpytest(p.name) assert res.ret == 0 def test_unknown_option(self, pytester: Pytester) -> None: result = pytester.runpytest("--qwlkej") result.stderr.fnmatch_lines( """ *unrecognized* """ ) def test_getsourcelines_error_issue553( self, pytester: Pytester, monkeypatch ) -> None: monkeypatch.setattr("inspect.getsourcelines", None) p = pytester.makepyfile( """ def raise_error(obj): raise OSError('source code not available') import inspect inspect.getsourcelines = raise_error def test_foo(invalid_fixture): pass """ ) res = pytester.runpytest(p) res.stdout.fnmatch_lines( ["*source code not available*", "E*fixture 'invalid_fixture' not found"] ) def test_plugins_given_as_strings( self, pytester: Pytester, monkeypatch, _sys_snapshot ) -> None: """Test that str values passed to main() as `plugins` arg are interpreted as module names to be imported and registered (#855).""" with pytest.raises(ImportError) as excinfo: pytest.main([str(pytester.path)], plugins=["invalid.module"]) assert "invalid" in str(excinfo.value) p = pytester.path.joinpath("test_test_plugins_given_as_strings.py") p.write_text("def test_foo(): pass", encoding="utf-8") mod = types.ModuleType("myplugin") monkeypatch.setitem(sys.modules, "myplugin", mod) assert pytest.main(args=[str(pytester.path)], plugins=["myplugin"]) == 0 def test_parametrized_with_bytes_regex(self, pytester: Pytester) -> None: p = pytester.makepyfile( """ import re import pytest @pytest.mark.parametrize('r', [re.compile(b'foo')]) def test_stuff(r): pass """ ) res = pytester.runpytest(p) res.stdout.fnmatch_lines(["*1 passed*"]) def test_parametrized_with_null_bytes(self, pytester: Pytester) -> None: """Test parametrization with values that contain null bytes and unicode characters (#2644, #2957)""" p = pytester.makepyfile( """\ import pytest @pytest.mark.parametrize("data", [b"\\x00", "\\x00", 'ação']) def test_foo(data): assert data """ ) res = pytester.runpytest(p) res.assert_outcomes(passed=3) # Warning ignore because of: # https://github.com/python/cpython/issues/85308 # Can be removed once Python<3.12 support is dropped. @pytest.mark.filterwarnings("ignore:'encoding' argument not specified") def test_command_line_args_from_file( self, pytester: Pytester, tmp_path: Path ) -> None: pytester.makepyfile( test_file=""" import pytest class TestClass: @pytest.mark.parametrize("a", ["x","y"]) def test_func(self, a): pass """ ) tests = [ "test_file.py::TestClass::test_func[x]", "test_file.py::TestClass::test_func[y]", "-q", ] args_file = pytester.maketxtfile(tests="\n".join(tests)) result = pytester.runpytest(f"@{args_file}") result.assert_outcomes(failed=0, passed=2)
TestGeneralUsage
python
airbytehq__airbyte
airbyte-integrations/connectors/source-sftp-bulk/source_sftp_bulk/client.py
{ "start": 516, "end": 2838 }
class ____: _connection: paramiko.SFTPClient = None def __init__( self, host: str, username: str, password: str = None, private_key: Optional[str] = None, port: Optional[int] = None, timeout: Optional[int] = REQUEST_TIMEOUT, ): self.host = host self.username = username self.password = password self.port = int(port) or 22 self.key = paramiko.RSAKey.from_private_key(io.StringIO(private_key)) if private_key else None self.timeout = float(timeout) if timeout else REQUEST_TIMEOUT self._connect() # If connection is snapped during connect flow, retry up to a # minute for SSH connection to succeed. 2^6 + 2^5 + ... @backoff.on_exception(backoff.expo, EOFError, max_tries=6, on_backoff=handle_backoff, jitter=None, factor=2) def _connect(self): if self._connection is not None: return try: self.transport = paramiko.Transport((self.host, self.port)) self.transport.use_compression(True) self.transport.connect(username=self.username, password=self.password, hostkey=None, pkey=self.key) self._connection = paramiko.SFTPClient.from_transport(self.transport) # get 'socket' to set the timeout socket = self._connection.get_channel() # set request timeout socket.settimeout(self.timeout) except AuthenticationException as ex: raise AirbyteTracedException( failure_type=FailureType.config_error, message="SSH Authentication failed, please check username, password or private key and try again", internal_message="Authentication failed: %s" % ex, ) def __del__(self): if self._connection is not None: try: self._connection.close() self.transport.close() self._connection = None # Known paramiko issue: https://github.com/paramiko/paramiko/issues/1617 except Exception as e: if str(e) != "'NoneType' object has no attribute 'time'": raise @property def sftp_connection(self) -> paramiko.SFTPClient: return self._connection
SFTPClient
python
airbytehq__airbyte
airbyte-ci/connectors/connectors_insights/src/connectors_insights/result_backends.py
{ "start": 1402, "end": 2499 }
class ____(ResultBackend): def __init__(self, local_directory: Path): super().__init__() if not local_directory.exists(): local_directory.mkdir(parents=True) self.local_directory = local_directory def _write(self, connector: Connector, file_to_persist: FileToPersist) -> None: assert file_to_persist.file_content is not None connector_result_directory = self.local_directory / connector.technical_name / connector.version connector_result_directory.mkdir(parents=True, exist_ok=True) file_path = connector_result_directory / file_to_persist.file_name with open(file_path, "w") as f: f.write(file_to_persist.file_content) self.logger.info(f"{file_to_persist.file_name} written to {file_path}") def artifact_already_exists(self, connector: Connector, file_to_persist: FileToPersist) -> bool: connector_result_directory = self.local_directory / connector.technical_name / connector.version return (connector_result_directory / file_to_persist.file_name).exists()
LocalDir
python
getsentry__sentry
fixtures/integrations/jira/mock.py
{ "start": 160, "end": 2876 }
class ____(StubJiraApiClient, MockService): def get_projects_list(self, cached: bool = True): """ List all projects in the Jira data format. :return: list of project objects """ return [ { "self": f"http://www.example.com/jira/rest/api/2/project/{project_name}", "id": project_name, "key": project_name, "name": project_name, "projectCategory": { "self": f"http://www.example.com/jira/rest/api/2/projectCategory/{project_name}", "id": project_name, "name": project_name, "description": project_name, }, "simplified": False, } for project_name in self._get_project_names() + [DEFAULT_PROJECT_ID] ] def set_createmeta(self, project, createmeta): """ This special method lets you seed the stub data with your own metadata. # TODO validate createmeta :param project: :param createmeta: :return: """ return self._set_data(project, "createmeta", createmeta) def get_create_meta_for_project(self, project): """ Get the Jira "createmeta" for a project. :param project: String name of a Jira project :return: Object containing the "createmeta" of the project. """ self._throw_if_broken() createmeta = self._get_data(project, "createmeta") if createmeta: return createmeta # Fallback to stub data return super().get_create_meta_for_project(project) def create_issue(self, raw_form_data): """ Create a new Jira issue. Currently overwrites if the issue already exists. :param raw_form_data: Object containing issue parameters :return: Object containing the newly created ticket's "key" as a string. """ self._throw_if_broken() project = raw_form_data.get("project", {}).get("id") ticket_key = self._get_new_ticket_name(project) self._set_data(project, ticket_key, {"fields": raw_form_data}) return {"key": ticket_key} def get_issue(self, issue_key): """ Get a saved issue from Jira. :param issue_key: string :return: Object containing Jira Issue data """ project = issue_key.split("-")[0] data = self._get_data(project, issue_key) if not data: return None data.update( { "id": issue_key, "key": issue_key, } ) return data
MockJira
python
networkx__networkx
networkx/generators/tests/test_lattice.py
{ "start": 5950, "end": 7950 }
class ____: "Tests for :func:`networkx.generators.lattice.triangular_lattice_graph`" def test_lattice_points(self): """Tests that the graph is really a triangular lattice.""" for m, n in [(2, 3), (2, 2), (2, 1), (3, 3), (3, 2), (3, 4)]: G = nx.triangular_lattice_graph(m, n) N = (n + 1) // 2 assert len(G) == (m + 1) * (1 + N) - (n % 2) * ((m + 1) // 2) for i, j in G.nodes(): nbrs = G[(i, j)] if i < N: assert (i + 1, j) in nbrs if j < m: assert (i, j + 1) in nbrs if j < m and (i > 0 or j % 2) and (i < N or (j + 1) % 2): assert (i + 1, j + 1) in nbrs or (i - 1, j + 1) in nbrs def test_directed(self): """Tests for creating a directed triangular lattice.""" G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph()) H = nx.triangular_lattice_graph(3, 4, create_using=nx.DiGraph()) assert H.is_directed() for u, v in H.edges(): assert v[1] >= u[1] if v[1] == u[1]: assert v[0] > u[0] def test_multigraph(self): """Tests for creating a triangular lattice multigraph.""" G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph()) H = nx.triangular_lattice_graph(3, 4, create_using=nx.MultiGraph()) assert list(H.edges()) == list(G.edges()) def test_periodic(self): G = nx.triangular_lattice_graph(4, 6, periodic=True) assert len(G) == 12 assert G.size() == 36 # all degrees are 6 assert len([n for n, d in G.degree() if d != 6]) == 0 G = nx.triangular_lattice_graph(5, 7, periodic=True) TLG = nx.triangular_lattice_graph pytest.raises(nx.NetworkXError, TLG, 2, 4, periodic=True) pytest.raises(nx.NetworkXError, TLG, 4, 4, periodic=True) pytest.raises(nx.NetworkXError, TLG, 2, 6, periodic=True)
TestTriangularLatticeGraph
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/typeParams2.py
{ "start": 205, "end": 295 }
class ____[T, S]: ... # This should generate an error if <3.12 def func1[T, S](): ...
ClassA
python
scipy__scipy
scipy/optimize/_hessian_update_strategy.py
{ "start": 3815, "end": 10735 }
class ____(HessianUpdateStrategy): """Hessian update strategy with full dimensional internal representation. """ _syr = get_blas_funcs('syr', dtype='d') # Symmetric rank 1 update _syr2 = get_blas_funcs('syr2', dtype='d') # Symmetric rank 2 update # Symmetric matrix-vector product _symv = get_blas_funcs('symv', dtype='d') def __init__(self, init_scale='auto'): self.init_scale = init_scale # Until initialize is called we can't really use the class, # so it makes sense to set everything to None. self.first_iteration = None self.approx_type = None self.B = None self.H = None def initialize(self, n, approx_type): """Initialize internal matrix. Allocate internal memory for storing and updating the Hessian or its inverse. Parameters ---------- n : int Problem dimension. approx_type : {'hess', 'inv_hess'} Selects either the Hessian or the inverse Hessian. When set to 'hess' the Hessian will be stored and updated. When set to 'inv_hess' its inverse will be used instead. """ self.first_iteration = True self.n = n self.approx_type = approx_type if approx_type not in ('hess', 'inv_hess'): raise ValueError("`approx_type` must be 'hess' or 'inv_hess'.") # Create matrix if self.approx_type == 'hess': self.B = np.eye(n, dtype=float) else: self.H = np.eye(n, dtype=float) def _auto_scale(self, delta_x, delta_grad): # Heuristic to scale matrix at first iteration. # Described in Nocedal and Wright "Numerical Optimization" # p.143 formula (6.20). s_norm2 = np.dot(delta_x, delta_x) y_norm2 = np.dot(delta_grad, delta_grad) ys = np.abs(np.dot(delta_grad, delta_x)) if ys == 0.0 or y_norm2 == 0 or s_norm2 == 0: return 1 if self.approx_type == 'hess': return y_norm2 / ys else: return ys / y_norm2 def _update_implementation(self, delta_x, delta_grad): raise NotImplementedError("The method ``_update_implementation``" " is not implemented.") def update(self, delta_x, delta_grad): """Update internal matrix. Update Hessian matrix or its inverse (depending on how 'approx_type' is defined) using information about the last evaluated points. Parameters ---------- delta_x : ndarray The difference between two points the gradient function have been evaluated at: ``delta_x = x2 - x1``. delta_grad : ndarray The difference between the gradients: ``delta_grad = grad(x2) - grad(x1)``. """ if np.all(delta_x == 0.0): return if np.all(delta_grad == 0.0): warn('delta_grad == 0.0. Check if the approximated ' 'function is linear. If the function is linear ' 'better results can be obtained by defining the ' 'Hessian as zero instead of using quasi-Newton ' 'approximations.', UserWarning, stacklevel=2) return if self.first_iteration: # Get user specific scale if isinstance(self.init_scale, str) and self.init_scale == "auto": scale = self._auto_scale(delta_x, delta_grad) else: scale = self.init_scale # Check for complex: numpy will silently cast a complex array to # a real one but not so for scalar as it raises a TypeError. # Checking here brings a consistent behavior. replace = False if np.size(scale) == 1: # to account for the legacy behavior having the exact same cast scale = float(scale) elif np.iscomplexobj(scale): raise TypeError("init_scale contains complex elements, " "must be real.") else: # test explicitly for allowed shapes and values replace = True if self.approx_type == 'hess': shape = np.shape(self.B) dtype = self.B.dtype else: shape = np.shape(self.H) dtype = self.H.dtype # copy, will replace the original scale = np.array(scale, dtype=dtype, copy=True) # it has to match the shape of the matrix for the multiplication, # no implicit broadcasting is allowed if shape != (init_shape := np.shape(scale)): raise ValueError("If init_scale is an array, it must have the " f"dimensions of the hess/inv_hess: {shape}." f" Got {init_shape}.") if not issymmetric(scale): raise ValueError("If init_scale is an array, it must be" " symmetric (passing scipy.linalg.issymmetric)" " to be an approximation of a hess/inv_hess.") # Scale initial matrix with ``scale * np.eye(n)`` or replace # This is not ideal, we could assign the scale directly in # initialize, but we would need to if self.approx_type == 'hess': if replace: self.B = scale else: self.B *= scale else: if replace: self.H = scale else: self.H *= scale self.first_iteration = False self._update_implementation(delta_x, delta_grad) def dot(self, p): """Compute the product of the internal matrix with the given vector. Parameters ---------- p : array_like 1-D array representing a vector. Returns ------- Hp : array 1-D represents the result of multiplying the approximation matrix by vector p. """ if self.approx_type == 'hess': return self._symv(1, self.B, p) else: return self._symv(1, self.H, p) def get_matrix(self): """Return the current internal matrix. Returns ------- M : ndarray, shape (n, n) Dense matrix containing either the Hessian or its inverse (depending on how `approx_type` was defined). """ if self.approx_type == 'hess': M = np.copy(self.B) else: M = np.copy(self.H) li = np.tril_indices_from(M, k=-1) M[li] = M.T[li] return M
FullHessianUpdateStrategy
python
allegroai__clearml
clearml/backend_api/services/v2_23/tasks.py
{ "start": 84978, "end": 85632 }
class ____(dict, NonStrictDataModel): """ Task section params """ _schema = { "additionalProperties": True, "description": "Task section params", "type": "object", } def __init__(self, *args, **kwargs): self.assert_isinstance(args, "section_params", dict, is_array=True) kwargs.update(args) self.assert_isinstance( kwargs.values(), "params", (ParamsItem, dict), is_array=True ) for k, v in kwargs.items(): if isinstance(v, dict): kwargs[k] = ParamsItem(**v) super(SectionParams, self).__init__(**kwargs)
SectionParams
python
apache__airflow
providers/microsoft/azure/tests/unit/microsoft/azure/sensors/test_wasb.py
{ "start": 3163, "end": 7991 }
class ____: def get_dag_run(self, dag_id: str = "test_dag_id", run_id: str = "test_dag_id") -> DagRun: if hasattr(DagRun, "execution_date"): # for 2.x dag_run = DagRun( # type: ignore[call-arg] dag_id=dag_id, run_type="manual", execution_date=timezone.datetime(2022, 1, 1), run_id=run_id, ) else: dag_run = DagRun( dag_id=dag_id, run_type="manual", logical_date=timezone.datetime(2022, 1, 1), run_id=run_id, ) return dag_run def get_task_instance(self, task: BaseOperator) -> TaskInstance: if AIRFLOW_V_3_0_PLUS: return TaskInstance(task, run_id=timezone.datetime(2022, 1, 1), dag_version_id=mock.MagicMock()) return TaskInstance(task, timezone.datetime(2022, 1, 1)) def get_conn(self) -> Connection: return Connection( conn_id="test_conn", extra={}, ) def create_context(self, task, dag=None): if dag is None: dag = DAG(dag_id="dag", schedule=None) tzinfo = pendulum.timezone("UTC") logical_date = timezone.datetime(2022, 1, 1, 1, 0, 0, tzinfo=tzinfo) if hasattr(DagRun, "execution_date"): # for 2.x dag_run = DagRun( dag_id=dag.dag_id, execution_date=logical_date, run_id=DagRun.generate_run_id(DagRunType.MANUAL, logical_date), ) else: dag_run = DagRun( dag_id=dag.dag_id, logical_date=logical_date, run_id=DagRun.generate_run_id( run_type=DagRunType.MANUAL, logical_date=logical_date, run_after=logical_date ), ) if AIRFLOW_V_3_0_PLUS: task_instance = TaskInstance(task=task, dag_version_id=mock.MagicMock()) else: task_instance = TaskInstance(task=task) task_instance.dag_run = dag_run task_instance.xcom_push = mock.Mock() date_key = "execution_date" if hasattr(DagRun, "execution_date") else "logical_date" return { "dag": dag, "ts": logical_date.isoformat(), "task": task, "ti": task_instance, "task_instance": task_instance, "run_id": dag_run.run_id, "dag_run": dag_run, "data_interval_end": logical_date, date_key: logical_date, } SENSOR = WasbBlobSensor( task_id="wasb_blob_async_sensor", container_name=TEST_DATA_STORAGE_CONTAINER_NAME, blob_name=TEST_DATA_STORAGE_BLOB_NAME, timeout=5, deferrable=True, ) @mock.patch("airflow.providers.microsoft.azure.sensors.wasb.WasbHook") @mock.patch("airflow.providers.microsoft.azure.sensors.wasb.WasbBlobSensor.defer") def test_wasb_blob_sensor_finish_before_deferred(self, mock_defer, mock_hook): mock_hook.return_value.check_for_blob.return_value = True self.SENSOR.execute(mock.MagicMock()) assert not mock_defer.called @mock.patch("airflow.providers.microsoft.azure.sensors.wasb.WasbHook") def test_wasb_blob_sensor_async(self, mock_hook): """Assert execute method defer for wasb blob sensor""" mock_hook.return_value.check_for_blob.return_value = False with pytest.raises(TaskDeferred) as exc: self.SENSOR.execute(self.create_context(self.SENSOR)) assert isinstance(exc.value.trigger, WasbBlobSensorTrigger), "Trigger is not a WasbBlobSensorTrigger" assert exc.value.timeout == datetime.timedelta(seconds=5) @pytest.mark.parametrize( "event", [None, {"status": "success", "message": "Job completed"}], ) def test_wasb_blob_sensor_execute_complete_success(self, event): """Assert execute_complete log success message when trigger fire with target status.""" if not event: with pytest.raises(AirflowException) as exception_info: self.SENSOR.execute_complete(context=None, event=None) assert exception_info.value.args[0] == "Did not receive valid event from the triggerer" else: with mock.patch.object(self.SENSOR.log, "info") as mock_log_info: self.SENSOR.execute_complete(context={}, event=event) mock_log_info.assert_called_with(event["message"]) def test_wasb_blob_sensor_execute_complete_failure(self): """Assert execute_complete method raises an exception when the triggerer fires an error event.""" with pytest.raises(AirflowException): self.SENSOR.execute_complete(context={}, event={"status": "error", "message": ""})
TestWasbBlobAsyncSensor
python
kamyu104__LeetCode-Solutions
Python/bold-words-in-string.py
{ "start": 154, "end": 1272 }
class ____(object): def boldWords(self, words, S): """ :type words: List[str] :type S: str :rtype: str """ _trie = lambda: collections.defaultdict(_trie) trie = _trie() for i, word in enumerate(words): functools.reduce(dict.__getitem__, word, trie).setdefault("_end") lookup = [False] * len(S) for i in xrange(len(S)): curr = trie k = -1 for j in xrange(i, len(S)): if S[j] not in curr: break curr = curr[S[j]] if "_end" in curr: k = j for j in xrange(i, k+1): lookup[j] = True result = [] for i in xrange(len(S)): if lookup[i] and (i == 0 or not lookup[i-1]): result.append("<b>") result.append(S[i]) if lookup[i] and (i == len(S)-1 or not lookup[i+1]): result.append("</b>") return "".join(result) # Time: O(n * d * l), l is the average length of words # Space: O(n)
Solution
python
tensorflow__tensorflow
tensorflow/python/module/module_test.py
{ "start": 12704, "end": 13042 }
class ____(module.Module): def __init__(self, depth, trainable=True): super().__init__(name="badger") with self.name_scope: self.child = None if depth > 1: self.child = RecursiveModule(depth - 1, trainable=trainable) self.w = variables.Variable(1.0, trainable=trainable, name="mushroom")
RecursiveModule
python
walkccc__LeetCode
solutions/3040. Maximum Number of Operations With the Same Score II/3040.py
{ "start": 0, "end": 915 }
class ____: def maxOperations(self, nums: list[int]) -> int: @functools.lru_cache(None) def dp(i: int, j: int, score: int) -> int: """ Returns the maximum number of operations that can be performed for nums[i..j], s.t. all operations have the same `score`. """ if i >= j: return 0 deleteFirstTwo = (1 + dp(i + 2, j, score) if nums[i] + nums[i + 1] == score else 0) deleteLastTwo = (1 + dp(i, j - 2, score) if nums[j] + nums[j - 1] == score else 0) deleteFirstAndLast = (1 + dp(i + 1, j - 1, score) if nums[i] + nums[j] == score else 0) return max(deleteFirstTwo, deleteLastTwo, deleteFirstAndLast) n = len(nums) return max(dp(0, n - 1, nums[0] + nums[1]), dp(0, n - 1, nums[-1] + nums[-2]), dp(0, n - 1, nums[0] + nums[-1]))
Solution
python
apache__airflow
airflow-core/tests/unit/api_fastapi/core_api/routes/public/test_assets.py
{ "start": 23860, "end": 24522 }
class ____: @pytest.fixture(autouse=True) def setup(self) -> None: clear_db_assets() clear_db_runs() clear_db_dags() clear_db_dag_bundles() def teardown_method(self) -> None: clear_db_assets() clear_db_runs() clear_db_dags() clear_db_dag_bundles() @provide_session def create_asset_aliases(self, num: int = 2, *, session): _create_asset_aliases(num=num, session=session) @provide_session def create_provided_asset_alias(self, asset_alias: AssetAliasModel, session): _create_provided_asset_alias(session=session, asset_alias=asset_alias)
TestAssetAliases
python
kamyu104__LeetCode-Solutions
Python/graph-valid-tree.py
{ "start": 947, "end": 1848 }
class ____(object): # @param {integer} n # @param {integer[][]} edges # @return {boolean} def validTree(self, n, edges): # A structure to track each node's [visited_from, neighbors] visited_from = [-1] * n neighbors = collections.defaultdict(list) for u, v in edges: neighbors[u].append(v) neighbors[v].append(u) # BFS to check whether the graph is valid tree. q = collections.deque([0]) visited = set([0]) while q: i = q.popleft() for node in neighbors[i]: if node != visited_from[i]: if node in visited: return False else: visited.add(node) visited_from[node] = i q.append(node) return len(visited) == n
Solution2
python
dagster-io__dagster
scripts/gen_airbyte_classes.py
{ "start": 3928, "end": 4435 }
class ____(SchemaType): def __init__(self, inner: SchemaType): self.inner = inner def __str__(self): return f"List[{self.inner}]" def annotation( self, scope: Optional[str] = None, quote: bool = False, hide_default: bool = False ): return f"List[{self.inner.annotation(scope, quote, hide_default)}]" def get_check(self, name: str, scope: Optional[str] = None): return f"check.list_param({name}, '{name}', {self.inner.annotation(scope)})"
ListType
python
doocs__leetcode
lcof/面试题55 - II. 平衡二叉树/Solution.py
{ "start": 164, "end": 502 }
class ____: def isBalanced(self, root: TreeNode) -> bool: def dfs(root): if root is None: return 0 l, r = dfs(root.left), dfs(root.right) if l == -1 or r == -1 or abs(l - r) > 1: return -1 return 1 + max(l, r) return dfs(root) != -1
Solution
python
getsentry__sentry
src/sentry/monitors/serializers.py
{ "start": 5295, "end": 5660 }
class ____(MonitorSerializerResponseOptional): id: str name: str slug: str status: str isMuted: bool isUpserting: bool config: MonitorConfigSerializerResponse dateCreated: datetime project: ProjectSerializerResponse environments: MonitorEnvironmentSerializerResponse owner: ActorSerializerResponse
MonitorSerializerResponse
python
getsentry__sentry
src/sentry/analytics/events/comment_webhooks.py
{ "start": 365, "end": 458 }
class ____(CommentEvent): pass @analytics.eventclass("comment.deleted")
CommentUpdatedEvent
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_chart_errorbars02.py
{ "start": 315, "end": 1798 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_errorbars02.xlsx") def test_create_file(self): """Test the creation of an XlsxWriter file with error bars.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "line"}) chart.axis_ids = [63385984, 63387904] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series( { "categories": "=Sheet1!$A$1:$A$5", "values": "=Sheet1!$B$1:$B$5", "y_error_bars": { "type": "fixed", "value": 2, "end_style": 0, "direction": "minus", }, } ) chart.add_series( { "categories": "=Sheet1!$A$1:$A$5", "values": "=Sheet1!$C$1:$C$5", "y_error_bars": {"type": "percentage", "value": 5, "direction": "plus"}, } ) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
dagster-io__dagster
python_modules/libraries/dagster-cloud-cli/dagster_cloud_cli/types.py
{ "start": 1018, "end": 1822 }
class ____: @classmethod def enums(cls): attrs = [] for attr in cls.__dict__.values(): if isinstance(attr, EnumMeta): attrs.append(attr) return attrs @classmethod def contains(cls, value) -> bool: for enum in cls.enums(): with suppress(ValueError): if enum(value): return True return False @classmethod def split(cls, value: str) -> tuple[str, str]: if cls.contains(value): parts = value.split(":", 1) return (parts[0], parts[1]) raise ValueError("Invalid tag value", value) agent_strategy = AgentStrategyTags server_strategy = ServerStrategyTags source = SourceTags subcommand = SubcommandTags
CliEventTags
python
huggingface__transformers
src/transformers/models/flaubert/modeling_flaubert.py
{ "start": 18543, "end": 24476 }
class ____(nn.Module): r""" A SQuAD head inspired by XLNet. Args: config ([`FlaubertConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps` to use. """ def __init__(self, config: FlaubertConfig): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = FlaubertPoolerStartLogits(config) self.end_logits = FlaubertPoolerEndLogits(config) self.answer_class = FlaubertPoolerAnswerClass(config) @auto_docstring def forward( self, hidden_states: torch.FloatTensor, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, is_impossible: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, return_dict: bool = False, ) -> Union[FlaubertSquadHeadOutput, tuple[torch.FloatTensor]]: r""" hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`): Final hidden states of the model on the sequence tokens. start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Positions of the first token for the labeled span. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Positions of the last token for the labeled span. cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Position of the CLS token for each sentence in the batch. If `None`, takes the last token. is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Whether the question has a possible answer in the paragraph or not. p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. """ start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 return FlaubertSquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) if not return_dict: return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) else: return FlaubertSquadHeadOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, ) # Copied from transformers.models.xlm.modeling_xlm.XLMSequenceSummary with XLM->Flaubert
FlaubertSQuADHead
python
huggingface__transformers
src/transformers/models/dinov2/modeling_dinov2.py
{ "start": 11352, "end": 12399 }
class ____(nn.Module): def __init__(self, config) -> None: super().__init__() self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size)) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: return hidden_state * self.lambda1 # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath
Dinov2LayerScale
python
Textualize__textual
tests/snapshot_tests/snapshot_apps/keyline.py
{ "start": 168, "end": 980 }
class ____(App): CSS = """ Vertical { keyline: thin red; } Horizontal { keyline: heavy green; } Grid { keyline: double magenta; } Box { width: 1fr; height: 1fr; } Horizontal > Box, Vertical > Box { margin: 1; } Grid { grid-size: 2; grid-gutter: 1; } """ def compose(self) -> ComposeResult: with Vertical(): yield Box("1") yield Box("2") yield Box("3") with Horizontal(): yield Box("4") yield Box("5") yield Box("6") with Grid(): yield Box("7") yield Box("8") yield Box("9") if __name__ == "__main__": app = KeylineApp() app.run()
KeylineApp
python
numpy__numpy
benchmarks/benchmarks/bench_io.py
{ "start": 123, "end": 996 }
class ____(Benchmark): params = ["int8", "int16", "float32", "float64", "complex64", "complex128"] param_names = ['type'] def setup(self, typename): dtype = np.dtype(typename) self.d = np.arange((50 * 500), dtype=dtype).reshape((500, 50)) self.e = np.arange((50 * 500), dtype=dtype).reshape((50, 500)) self.e_d = self.e.reshape(self.d.shape) self.dflat = np.arange((50 * 500), dtype=dtype) def time_memcpy(self, typename): self.d[...] = self.e_d def time_memcpy_large_out_of_place(self, typename): l = np.ones(1024**2, dtype=np.dtype(typename)) l.copy() def time_cont_assign(self, typename): self.d[...] = 1 def time_strided_copy(self, typename): self.d[...] = self.e.T def time_strided_assign(self, typename): self.dflat[::2] = 2
Copy
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/ruff/RUF009_attrs_auto_attribs.py
{ "start": 1452, "end": 1580 }
class ____: a: str = 0 b = field() c: int = foo() d = list() @attr.s(auto_attribs=False) # auto_attribs = False
C
python
python-pillow__Pillow
src/PIL/_util.py
{ "start": 282, "end": 684 }
class ____: def __init__(self, ex: BaseException): self.ex = ex def __getattr__(self, elt: str) -> NoReturn: raise self.ex @staticmethod def new(ex: BaseException) -> Any: """ Creates an object that raises the wrapped exception ``ex`` when used, and casts it to :py:obj:`~typing.Any` type. """ return DeferredError(ex)
DeferredError
python
huggingface__transformers
src/transformers/generation/continuous_batching/cache_manager.py
{ "start": 9954, "end": 11812 }
class ____(ABC): """Abstract base class for cache managers. Cache managers keep track of per-request cache allocations, determine when a new physical block needs to be allocated and compute physical indices for reading or writing to the cache.""" _index: int block_table: dict[str, list[int]] # request_id -> list of block_ids allocated to the request @abstractmethod def allocate_blocks(self, n_blocks: int, request_id: str, block_manager: BlockManager) -> int | None: """Allocates (n_blocks) for a given (request_id) using the (block_manager). Returns the num of blocks allocated if successful and None otherwise.""" def free_blocks(self, request_id: str, block_manager: BlockManager) -> None: """Frees all blocks associated with a (request_id) using the (block_manager).""" if request_id in self.block_table: blocks_to_free = self.block_table.pop(request_id) block_manager.free_blocks(blocks_to_free) else: logger.warning( f"CacheAllocator {self._index} attempted to free blocks for non-existent request_id: {request_id}" ) @abstractmethod def get_read_indices(self, request_id: str, past_length: int, query_length: int) -> list[int]: """Returns the physical indices of where to read request_id's cache in the cache tensor.""" @abstractmethod def get_write_indices(self, request_id: str, past_length: int, query_length: int) -> list[int]: """Returns the physical indices of where to write request_id's cache in the cache tensor.""" @abstractmethod def get_seqlens_k(self, request_id: str, past_length: int, query_length: int) -> tuple[str, int]: """Returns the attention type of the cache allocator and the key sequence length for the given request_id."""
CacheAllocator
python
sympy__sympy
sympy/polys/polyoptions.py
{ "start": 7123, "end": 7889 }
class ____(Option, metaclass=OptionType): """``gens`` option to polynomial manipulation functions. """ option = 'gens' requires: list[str] = [] excludes: list[str] = [] @classmethod def default(cls): return () @classmethod def preprocess(cls, gens): if isinstance(gens, Basic): gens = (gens,) elif len(gens) == 1 and is_sequence(gens[0]): gens = gens[0] if gens == (None,): gens = () elif has_dups(gens): raise GeneratorsError("duplicated generators: %s" % str(gens)) elif any(gen.is_commutative is False for gen in gens): raise GeneratorsError("non-commutative generators: %s" % str(gens)) return tuple(gens)
Gens
python
ray-project__ray
rllib/env/wrappers/unity3d_env.py
{ "start": 453, "end": 12475 }
class ____(MultiAgentEnv): # Default base port when connecting directly to the Editor _BASE_PORT_EDITOR = 5004 # Default base port when connecting to a compiled environment _BASE_PORT_ENVIRONMENT = 5005 # The worker_id for each environment instance _WORKER_ID = 0 def __init__( self, file_name: str = None, port: Optional[int] = None, seed: int = 0, no_graphics: bool = False, timeout_wait: int = 300, episode_horizon: int = 1000, ): super().__init__() if file_name is None: print( "No game binary provided, will use a running Unity editor " "instead.\nMake sure you are pressing the Play (|>) button in " "your editor to start." ) import mlagents_envs from mlagents_envs.environment import UnityEnvironment # Try connecting to the Unity3D game instance. If a port is blocked port_ = None while True: # Sleep for random time to allow for concurrent startup of many # environments (num_env_runners >> 1). Otherwise, would lead to port # conflicts sometimes. if port_ is not None: time.sleep(random.randint(1, 10)) port_ = port or ( self._BASE_PORT_ENVIRONMENT if file_name else self._BASE_PORT_EDITOR ) # cache the worker_id and # increase it for the next environment worker_id_ = Unity3DEnv._WORKER_ID if file_name else 0 Unity3DEnv._WORKER_ID += 1 try: self.unity_env = UnityEnvironment( file_name=file_name, worker_id=worker_id_, base_port=port_, seed=seed, no_graphics=no_graphics, timeout_wait=timeout_wait, ) print("Created UnityEnvironment for port {}".format(port_ + worker_id_)) except mlagents_envs.exception.UnityWorkerInUseException: pass else: break # ML-Agents API version. self.api_version = self.unity_env.API_VERSION.split(".") self.api_version = [int(s) for s in self.api_version] # Reset entire env every this number of step calls. self.episode_horizon = episode_horizon # Keep track of how many times we have called `step` so far. self.episode_timesteps = 0 def step( self, action_dict: MultiAgentDict ) -> Tuple[ MultiAgentDict, MultiAgentDict, MultiAgentDict, MultiAgentDict, MultiAgentDict ]: from mlagents_envs.base_env import ActionTuple # Set only the required actions (from the DecisionSteps) in Unity3D. all_agents = [] for behavior_name in self.unity_env.behavior_specs: # New ML-Agents API: Set all agents actions at the same time # via an ActionTuple. Since API v1.4.0. if self.api_version[0] > 1 or ( self.api_version[0] == 1 and self.api_version[1] >= 4 ): actions = [] for agent_id in self.unity_env.get_steps(behavior_name)[0].agent_id: key = behavior_name + "_{}".format(agent_id) all_agents.append(key) actions.append(action_dict[key]) if actions: if actions[0].dtype == np.float32: action_tuple = ActionTuple(continuous=np.array(actions)) else: action_tuple = ActionTuple(discrete=np.array(actions)) self.unity_env.set_actions(behavior_name, action_tuple) # Old behavior: Do not use an ActionTuple and set each agent's # action individually. else: for agent_id in self.unity_env.get_steps(behavior_name)[ 0 ].agent_id_to_index.keys(): key = behavior_name + "_{}".format(agent_id) all_agents.append(key) self.unity_env.set_action_for_agent( behavior_name, agent_id, action_dict[key] ) # Do the step. self.unity_env.step() obs, rewards, terminateds, truncateds, infos = self._get_step_results() # Global horizon reached? -> Return __all__ truncated=True, so user # can reset. Set all agents' individual `truncated` to True as well. self.episode_timesteps += 1 if self.episode_timesteps > self.episode_horizon: return ( obs, rewards, terminateds, dict({"__all__": True}, **{agent_id: True for agent_id in all_agents}), infos, ) return obs, rewards, terminateds, truncateds, infos def reset( self, *, seed=None, options=None ) -> Tuple[MultiAgentDict, MultiAgentDict]: """Resets the entire Unity3D scene (a single multi-agent episode).""" self.episode_timesteps = 0 self.unity_env.reset() obs, _, _, _, infos = self._get_step_results() return obs, infos def _get_step_results(self): obs = {} rewards = {} infos = {} for behavior_name in self.unity_env.behavior_specs: decision_steps, terminal_steps = self.unity_env.get_steps(behavior_name) # Important: Only update those sub-envs that are currently # available within _env_state. # Loop through all envs ("agents") and fill in, whatever # information we have. for agent_id, idx in decision_steps.agent_id_to_index.items(): key = behavior_name + "_{}".format(agent_id) os = tuple(o[idx] for o in decision_steps.obs) os = os[0] if len(os) == 1 else os obs[key] = os rewards[key] = ( decision_steps.reward[idx] + decision_steps.group_reward[idx] ) for agent_id, idx in terminal_steps.agent_id_to_index.items(): key = behavior_name + "_{}".format(agent_id) # Only overwrite rewards (last reward in episode), b/c obs # here is the last obs (which doesn't matter anyways). # Unless key does not exist in obs. if key not in obs: os = tuple(o[idx] for o in terminal_steps.obs) obs[key] = os = os[0] if len(os) == 1 else os rewards[key] = ( terminal_steps.reward[idx] + terminal_steps.group_reward[idx] ) # Only use dones if all agents are done, then we should do a reset. return obs, rewards, {"__all__": False}, {"__all__": False}, infos @staticmethod def get_policy_configs_for_game( game_name: str, ) -> Tuple[dict, Callable[[AgentID], PolicyID]]: # The RLlib server must know about the Spaces that the Client will be # using inside Unity3D, up-front. obs_spaces = { # 3DBall. "3DBall": Box(float("-inf"), float("inf"), (8,)), # 3DBallHard. "3DBallHard": Box(float("-inf"), float("inf"), (45,)), # GridFoodCollector "GridFoodCollector": Box(float("-inf"), float("inf"), (40, 40, 6)), # Pyramids. "Pyramids": TupleSpace( [ Box(float("-inf"), float("inf"), (56,)), Box(float("-inf"), float("inf"), (56,)), Box(float("-inf"), float("inf"), (56,)), Box(float("-inf"), float("inf"), (4,)), ] ), # SoccerTwos. "SoccerPlayer": TupleSpace( [ Box(-1.0, 1.0, (264,)), Box(-1.0, 1.0, (72,)), ] ), # SoccerStrikersVsGoalie. "Goalie": Box(float("-inf"), float("inf"), (738,)), "Striker": TupleSpace( [ Box(float("-inf"), float("inf"), (231,)), Box(float("-inf"), float("inf"), (63,)), ] ), # Sorter. "Sorter": TupleSpace( [ Box( float("-inf"), float("inf"), ( 20, 23, ), ), Box(float("-inf"), float("inf"), (10,)), Box(float("-inf"), float("inf"), (8,)), ] ), # Tennis. "Tennis": Box(float("-inf"), float("inf"), (27,)), # VisualHallway. "VisualHallway": Box(float("-inf"), float("inf"), (84, 84, 3)), # Walker. "Walker": Box(float("-inf"), float("inf"), (212,)), # FoodCollector. "FoodCollector": TupleSpace( [ Box(float("-inf"), float("inf"), (49,)), Box(float("-inf"), float("inf"), (4,)), ] ), } action_spaces = { # 3DBall. "3DBall": Box(-1.0, 1.0, (2,), dtype=np.float32), # 3DBallHard. "3DBallHard": Box(-1.0, 1.0, (2,), dtype=np.float32), # GridFoodCollector. "GridFoodCollector": MultiDiscrete([3, 3, 3, 2]), # Pyramids. "Pyramids": MultiDiscrete([5]), # SoccerStrikersVsGoalie. "Goalie": MultiDiscrete([3, 3, 3]), "Striker": MultiDiscrete([3, 3, 3]), # SoccerTwos. "SoccerPlayer": MultiDiscrete([3, 3, 3]), # Sorter. "Sorter": MultiDiscrete([3, 3, 3]), # Tennis. "Tennis": Box(-1.0, 1.0, (3,)), # VisualHallway. "VisualHallway": MultiDiscrete([5]), # Walker. "Walker": Box(-1.0, 1.0, (39,)), # FoodCollector. "FoodCollector": MultiDiscrete([3, 3, 3, 2]), } # Policies (Unity: "behaviors") and agent-to-policy mapping fns. if game_name == "SoccerStrikersVsGoalie": policies = { "Goalie": PolicySpec( observation_space=obs_spaces["Goalie"], action_space=action_spaces["Goalie"], ), "Striker": PolicySpec( observation_space=obs_spaces["Striker"], action_space=action_spaces["Striker"], ), } def policy_mapping_fn(agent_id, episode, worker, **kwargs): return "Striker" if "Striker" in agent_id else "Goalie" elif game_name == "SoccerTwos": policies = { "PurplePlayer": PolicySpec( observation_space=obs_spaces["SoccerPlayer"], action_space=action_spaces["SoccerPlayer"], ), "BluePlayer": PolicySpec( observation_space=obs_spaces["SoccerPlayer"], action_space=action_spaces["SoccerPlayer"], ), } def policy_mapping_fn(agent_id, episode, worker, **kwargs): return "BluePlayer" if "1_" in agent_id else "PurplePlayer" else: policies = { game_name: PolicySpec( observation_space=obs_spaces[game_name], action_space=action_spaces[game_name], ), } def policy_mapping_fn(agent_id, episode, worker, **kwargs): return game_name return policies, policy_mapping_fn
Unity3DEnv
python
huggingface__transformers
src/transformers/models/mamba/modeling_mamba.py
{ "start": 33281, "end": 40027 }
class ____(MambaPreTrainedModel, GenerationMixin): _tied_weights_keys = {"lm_head.weight": "backbone.embeddings.weight"} def __init__(self, config): super().__init__(config) self.backbone = MambaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.backbone.get_input_embeddings() def set_input_embeddings(self, new_embeddings): return self.backbone.set_input_embeddings(new_embeddings) def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: dict[str, Any], num_new_tokens: int = 1, **kwargs ) -> dict[str, Any]: model_kwargs["cache_params"] = outputs.get("cache_params", None) if ( model_kwargs.get("use_cache", True) and "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None ): model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) return model_kwargs def prepare_inputs_for_generation( self, input_ids, inputs_embeds=None, use_cache=None, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **kwargs, ): # Overwritten -- uses `cache_params` as opposed to `past_key_values` model_inputs = {"input_ids": input_ids.contiguous()} if use_cache and cache_params is None: # we initialize the `cache_position` to full size of `conv_states` at prefill stage # considering padding will be applied when input length is shorter, and truncation # will be applied when it is longer, so it will be equivalent to always have it match # the length of `cache_params.conv_states`, which is `config.conv_kernel` cache_position = torch.arange(0, self.backbone.config.conv_kernel, device=input_ids.device) if inputs_embeds is not None: model_inputs = {"inputs_embeds": inputs_embeds} max_batch_size = inputs_embeds.size(0) else: max_batch_size = input_ids.size(0) cache_params = MambaCache(self.backbone.config, max_batch_size, device=self.device, dtype=self.dtype) if use_cache and cache_position[0] > 0: model_inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1).contiguous() attention_mask = None if not use_cache and inputs_embeds is not None: model_inputs = {"inputs_embeds": inputs_embeds} model_inputs.update( { "cache_params": cache_params, "use_cache": use_cache, "cache_position": cache_position, "attention_mask": attention_mask, } ) # Forward ALL kwargs that are uninitialized (e.g. `use_cache`). for key, value in kwargs.items(): if key not in model_inputs: model_inputs[key] = value return model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_params: Optional[MambaCache] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, # for now we need this for generation ) -> Union[tuple, MambaCausalLMOutput]: r""" cache_params (`MambaCache`, *optional*): If passed along, the model uses the previous state in all the blocks (which will give the output for the `input_ids` provided as if the model add `state_input_ids + input_ids` as context). labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict mamba_outputs = self.backbone( input_ids, cache_params=cache_params, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=use_cache, cache_position=cache_position, attention_mask=attention_mask, ) hidden_states = mamba_outputs[0] # Only compute necessary logits slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :].to(self.lm_head.weight.dtype)).float() loss = None if labels is not None: # move labels to correct device labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + mamba_outputs[1:] return ((loss,) + output) if loss is not None else output return MambaCausalLMOutput( loss=loss, logits=logits, cache_params=mamba_outputs.cache_params, hidden_states=mamba_outputs.hidden_states, ) __all__ = ["MambaForCausalLM", "MambaModel", "MambaPreTrainedModel", "MambaCache"]
MambaForCausalLM
python
doocs__leetcode
solution/3100-3199/3142.Check if Grid Satisfies Conditions/Solution.py
{ "start": 0, "end": 394 }
class ____: def satisfiesConditions(self, grid: List[List[int]]) -> bool: m, n = len(grid), len(grid[0]) for i, row in enumerate(grid): for j, x in enumerate(row): if i + 1 < m and x != grid[i + 1][j]: return False if j + 1 < n and x == grid[i][j + 1]: return False return True
Solution
python
google__jax
tests/distributed_test.py
{ "start": 913, "end": 2381 }
class ____(jtu.JaxTestCase): # TODO(phawkins): Enable after https://github.com/jax-ml/jax/issues/11222 # is fixed. @unittest.SkipTest def testInitializeAndShutdown(self): if not jtu.test_device_matches(["gpu"]): self.skipTest("Test only works with GPUs.") # Tests the public APIs. Since they use global state, we cannot use # concurrency to simulate multiple tasks. port = portpicker.pick_unused_port() jax.distributed.initialize( coordinator_address=f"localhost:{port}", num_processes=1, process_id=0, cluster_detection_method="deactivate", ) jax.distributed.shutdown() @parameterized.parameters([1, 2, 4]) def testConcurrentInitializeAndShutdown(self, n): if not jtu.test_device_matches(["gpu"]): self.skipTest("Test only works with GPUs.") port = portpicker.pick_unused_port() def task(i): # We can't call the public APIs directly because they use global state. state = distributed.State() state.initialize( coordinator_address=f"localhost:{port}", num_processes=n, process_id=i, cluster_detection_method="deactivate", ) state.shutdown() threads = [threading.Thread(target=task, args=(i,)) for i in range(n)] for thread in threads: thread.start() for thread in threads: thread.join() if __name__ == "__main__": absltest.main(testLoader=jtu.JaxTestLoader())
DistributedTest
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/linalg/sparse/csr_sparse_matrix_ops_test.py
{ "start": 3834, "end": 56510 }
class ____(test.TestCase, parameterized.TestCase): @classmethod def setUpClass(cls): # pylint: disable=g-missing-super-call cls._gpu_available = test_util.is_gpu_available() # TODO(ebrevdo): This will work once we find a way to get rendezvous # working for CSRSparseMatrix and can remove the HostMemory # annotations for the other ops. @test_util.run_in_graph_and_eager_modes def DISABLEDtestFromProto(self): if not self._gpu_available: return a_indices = np.array([[0, 0], [2, 3]]) a_values = np.asarray([1.0, 5.0], dtype=np.float32) a_dense_shape = np.asarray([5, 6], dtype=np.int64) a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_csr_mat = a_sparse_mat.tocsr() a_col_inds = a_csr_mat.indices a_row_ptrs = a_csr_mat.indptr # Format of SparseMatrix: # type_name == "tensorflow::CSRSparseMatrix" # metadata == b (validated) # tensors == [dense_shape, row_ptrs, col_indices, values] dense_shape_proto = tensor_util.make_tensor_proto(a_dense_shape) row_ptrs_proto = tensor_util.make_tensor_proto(a_row_ptrs) col_inds_proto = tensor_util.make_tensor_proto(a_col_inds) values_proto = tensor_util.make_tensor_proto(a_values) variant_tensor_data = tensor_pb2.VariantTensorDataProto( type_name="tensorflow::CSRSparseMatrix", metadata=np.asarray(True).tobytes(), tensors=[ dense_shape_proto, row_ptrs_proto, col_inds_proto, values_proto ]) tensor_proto = tensor_pb2.TensorProto( dtype=dtypes.variant.as_datatype_enum, tensor_shape=tensor_shape.TensorShape([]).as_proto()) tensor_proto.variant_val.extend([variant_tensor_data]) a_sm = constant_op.constant(tensor_proto) a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( a_sm, type=dtypes.float32) self.evaluate(a_rt) @test_util.run_in_graph_and_eager_modes def testSparseTensorConversion(self): a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]]) a_values = [1.0, 5.0, -1.0, -2.0] a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_csr_mat = a_sparse_mat.tocsr() # Convert 2D SparseTensor to CSR Matrix a_st = sparse_tensor.SparseTensor(a_indices, a_values, a_dense_shape) a_st = math_ops.cast(a_st, dtypes.float32) a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( a_st.indices, a_st.values, a_st.dense_shape) # Get row indices and columns for batch 0. a_sm_row_ptrs, a_sm_col_inds, a_sm_values = ( sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, 0, type=a_st.dtype)) a_sm_row_ptrs_values, a_sm_col_inds_values, a_sm_values_values = ( self.evaluate((a_sm_row_ptrs, a_sm_col_inds, a_sm_values))) self.assertAllEqual(a_csr_mat.indices, a_sm_col_inds_values) self.assertAllEqual(a_csr_mat.indptr, a_sm_row_ptrs_values) self.assertAllClose(a_values, a_sm_values_values) # Convert CSR Matrix to 2D SparseTensor a_st_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_sparse_tensor( a_sm, type=a_st.dtype) a_st_rt_value = self.evaluate(a_st_rt) self.assertAllEqual(a_indices, a_st_rt_value.indices) self.assertAllClose(a_values, a_st_rt_value.values) self.assertAllEqual(a_dense_shape, a_st_rt_value.dense_shape) def testSparseTensorConversionInvalidInputShapes(self): values = constant_op.constant(0.554979503, shape=[5], dtype=dtypes.float32) with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), "must be rank 1" ): indices = constant_op.constant(0, shape=[5, 2], dtype=dtypes.int64) dense_shape = constant_op.constant(53, shape=[], dtype=dtypes.int64) csr = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( indices=indices, values=values, dense_shape=dense_shape ) self.evaluate(csr) with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), "must be rank 2" ): indices = constant_op.constant(0, shape=[5], dtype=dtypes.int64) dense_shape = constant_op.constant(53, shape=[1], dtype=dtypes.int64) csr = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( indices=indices, values=values, dense_shape=dense_shape ) self.evaluate(csr) int32max = 2**31 - 1 with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), "batch_size must be < Int32Max", ): indices = constant_op.constant(0, shape=[5, 3], dtype=dtypes.int64) dense_shape = constant_op.constant( [int32max, 1, 1], shape=[3], dtype=dtypes.int64 ) csr = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( indices=indices, values=values, dense_shape=dense_shape ) self.evaluate(csr) with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), "csr row index size.*must be <= Int32Max", ): indices = constant_op.constant(0, shape=[5, 3], dtype=dtypes.int64) dense_shape = constant_op.constant( [(int32max // 2), 10, 1], shape=[3], dtype=dtypes.int64 ) csr = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( indices=indices, values=values, dense_shape=dense_shape ) self.evaluate(csr) with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), "Index rank .* and shape rank .* do not match", ): self.evaluate( sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( indices=[[0, 0, 0], [0, 0, 1]], values=[10.0, 20.0], dense_shape=[33, 73], ) ) # TODO(b/139491352): Add handle_data propagation to array_ops.identity. @test_util.run_deprecated_v1 def testCSRSparseMatrixResourceVariable(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] a_mats = sparsify(np.random.randn(*dense_shape)).astype(np.float32) a_sm = dense_to_csr_sparse_matrix(a_mats) with ops.device("/gpu:0"): v = variable_scope.get_variable("sm", initializer=a_sm, use_resource=True) v_id = array_ops.identity(v) self.assertEqual( sparse_csr_matrix_ops.dense_shape_and_type(v_id).shape, a_mats.shape) a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( v, type=dtypes.float32) v_reassign = state_ops.assign(v, v_id).op with self.assertRaisesOpError("uninitialized"): self.evaluate(a_rt) self.evaluate(v.initializer) a_rt_value = self.evaluate(a_rt) self.assertAllClose(a_mats, a_rt_value) self.evaluate(v_reassign) a_rt_reassigned_value = self.evaluate(a_rt) self.assertAllClose(a_mats, a_rt_reassigned_value) @test_util.run_in_graph_and_eager_modes def testBatchSparseTensorConversion(self): a_indices = np.array([[0, 0, 0], [0, 2, 3], [2, 0, 1]]) a_values = [1.0, 5.0, 6.0] a_dense_shape = [3, 5, 6] a_sparse_mats = [ sparse.coo_matrix(([1.0, 5.0], ([0, 2], [0, 3])), shape=a_dense_shape[1:]), sparse.coo_matrix(([], ([], [])), shape=a_dense_shape[1:]), sparse.coo_matrix(([6.0], ([0], [1])), shape=a_dense_shape[1:]) ] a_csr_mats = [m.tocsr() for m in a_sparse_mats] # Convert 3D SparseTensor to CSR Matrix a_st = sparse_tensor.SparseTensor(a_indices, a_values, a_dense_shape) a_st = math_ops.cast(a_st, dtypes.float32) a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( a_st.indices, a_st.values, a_st.dense_shape) # Get row indices and columns for batches. a_sm_components = [ sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, i, type=a_st.dtype) for i in range(3) ] a_sm_values = self.evaluate(a_sm_components) for i, (a_sm_val, a_csr_mat) in enumerate(zip(a_sm_values, a_csr_mats)): tf_logging.info("Comparing batch %d" % i) self.assertAllEqual(a_csr_mat.indptr, a_sm_val.row_ptrs) self.assertAllEqual(a_csr_mat.indices, a_sm_val.col_inds) self.assertAllClose(a_csr_mat.data, a_sm_val.values) # Convert CSR batched Matrix to 3D SparseTensor a_st_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_sparse_tensor( a_sm, type=a_st.dtype) a_st_rt_value = self.evaluate(a_st_rt) self.assertAllEqual(a_indices, a_st_rt_value.indices) self.assertAllClose(a_values, a_st_rt_value.values) self.assertAllEqual(a_dense_shape, a_st_rt_value.dense_shape) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseTensorConversion(self): # Test two sets of conversions to check behavior of the ops in a # concurrent environment (parallel executions of the ST -> SM ops). sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] mats = [ sparsify(np.random.randn(*dense_shape)).astype(np.float32) for _ in range(2) ] csr_mats = [list(map(sparse.csr_matrix, mat)) for mat in mats] mats_t = [ops.convert_to_tensor(mat) for mat in mats] mats_locs = [array_ops.where(mat_t > 0) for mat_t in mats_t] sparse_tensors = list() for mat_t, mat_loc in zip(mats_t, mats_locs): sparse_tensors.append( sparse_tensor.SparseTensor(mat_loc, array_ops.gather_nd(mat_t, mat_loc), dense_shape)) sparse_matrices = [ sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix( st.indices, st.values, st.dense_shape) for st in sparse_tensors ] sm_nnz = [ sparse_csr_matrix_ops.sparse_matrix_nnz(sm) for sm in sparse_matrices ] # Get row indices and columns for batches. sm_components = list() for sm in sparse_matrices: sm_components.append([ sparse_csr_matrix_ops.csr_sparse_matrix_components( sm, i, type=dtypes.float32) for i in range(dense_shape[0]) ]) sm_nnz_values, sm_values = self.evaluate((sm_nnz, sm_components)) for i, (sm_values_i, csr_mats_i) in enumerate(zip(sm_values, csr_mats)): for b, (sm_val, csr_mat) in enumerate(zip(sm_values_i, csr_mats_i)): tf_logging.info("Comparing matrix %d batch %d" % (i, b)) self.assertEqual(csr_mat.nnz, sm_nnz_values[i][b]) self.assertAllEqual(csr_mat.indptr, sm_val.row_ptrs) self.assertAllEqual(csr_mat.indices, sm_val.col_inds) self.assertAllClose(csr_mat.data, sm_val.values) # Convert CSR batched Matrix to 3D SparseTensor st_rt = [ sparse_csr_matrix_ops.csr_sparse_matrix_to_sparse_tensor( sm, type=dtypes.float32) for sm in sparse_matrices ] st_values, st_rt_values = self.evaluate((sparse_tensors, st_rt)) for (st_value, st_rt_value) in zip(st_values, st_rt_values): self.assertAllEqual(st_value.indices, st_rt_value.indices) self.assertAllClose(st_value.values, st_rt_value.values) self.assertAllEqual(dense_shape, st_rt_value.dense_shape) @test_util.run_in_graph_and_eager_modes def testDenseConversion(self): a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]]) a_values = np.array([1.0, 5.0, -1.0, -2.0]).astype(np.float32) a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_csr_mat = a_sparse_mat.tocsr() a_dense = a_sparse_mat.todense() # Convert 2D SparseTensor to CSR Matrix a_sm = dense_to_csr_sparse_matrix(a_dense) # Get row indices and columns for batch 0. a_sm_row_ptrs, a_sm_col_inds, a_sm_values = ( sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, 0, type=dtypes.float32)) a_sm_row_ptrs_values, a_sm_col_inds_values, a_sm_values_values = ( self.evaluate((a_sm_row_ptrs, a_sm_col_inds, a_sm_values))) self.assertAllEqual(a_csr_mat.indices, a_sm_col_inds_values) self.assertAllEqual(a_csr_mat.indptr, a_sm_row_ptrs_values) self.assertAllClose(a_values, a_sm_values_values) # Convert CSR Matrix to 2D dense matrix a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( a_sm, dtypes.float32) a_rt_value = self.evaluate(a_rt) self.assertAllEqual(a_dense, a_rt_value) @test_util.run_in_graph_and_eager_modes def testBatchDenseConversion(self): a_dense_shape = [4, 5, 6] a_sparse_mats = [ sparse.coo_matrix(([1.0, 5.0], ([0, 2], [0, 3])), shape=a_dense_shape[1:]), sparse.coo_matrix(([], ([], [])), shape=a_dense_shape[1:]), sparse.coo_matrix(([6.0], ([0], [1])), shape=a_dense_shape[1:]), sparse.coo_matrix(([], ([], [])), shape=a_dense_shape[1:]), ] a_csr_mats = [m.tocsr() for m in a_sparse_mats] a_dense = np.asarray([m.todense() for m in a_sparse_mats], dtype=np.float32) # Convert 3D SparseTensor to CSR Matrix a_sm = dense_to_csr_sparse_matrix(a_dense) # Get row indices and columns for batches. a_sm_components = [ sparse_csr_matrix_ops.csr_sparse_matrix_components( a_sm, i, type=dtypes.float32) for i in range(3) ] a_sm_values = self.evaluate(a_sm_components) for i, (a_sm_val, a_csr_mat) in enumerate(zip(a_sm_values, a_csr_mats)): tf_logging.info("Comparing batch %d" % i) self.assertAllEqual(a_csr_mat.indptr, a_sm_val.row_ptrs) self.assertAllEqual(a_csr_mat.indices, a_sm_val.col_inds) self.assertAllClose(a_csr_mat.data, a_sm_val.values) # Convert CSR batched Matrix to 3D SparseTensor a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( a_sm, type=dtypes.float32) a_rt_value = self.evaluate(a_rt) self.assertAllEqual(a_dense, a_rt_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchDenseConversion(self): # Test two sets of conversions to check behavior of the ops in a # concurrent environment (parallel executions of the ST -> SM # ops). sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] mats = [ sparsify(np.random.randn(*dense_shape)).astype(np.float32) for _ in range(2) ] csr_mats = [[sparse.csr_matrix(m) for m in mat] for mat in mats] mats_t = [ops.convert_to_tensor(mat) for mat in mats] mats_locs = [array_ops.where(mat_t > 0) for mat_t in mats_t] sparse_matrices = [ sparse_csr_matrix_ops.dense_to_csr_sparse_matrix(mat, mat_loc) for (mat, mat_loc) in zip(mats_t, mats_locs) ] sm_nnz = [ sparse_csr_matrix_ops.sparse_matrix_nnz(sm) for sm in sparse_matrices ] # Get row indices and columns for batches. sm_components = [] for sm in sparse_matrices: sm_components.append([ sparse_csr_matrix_ops.csr_sparse_matrix_components( sm, i, type=dtypes.float32) for i in range(dense_shape[0]) ]) sm_nnz_values, sm_values = self.evaluate((sm_nnz, sm_components)) for i, (sm_values_i, csr_mats_i) in enumerate(zip(sm_values, csr_mats)): for b, (sm_val, csr_mat) in enumerate(zip(sm_values_i, csr_mats_i)): tf_logging.info("Comparing matrix %d batch %d" % (i, b)) self.assertEqual(csr_mat.nnz, sm_nnz_values[i][b]) self.assertAllEqual(csr_mat.indptr, sm_val.row_ptrs) self.assertAllEqual(csr_mat.indices, sm_val.col_inds) self.assertAllClose(csr_mat.data, sm_val.values) # Convert CSR batched Matrix to 3D dense tensor sm_rt = [ sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( sm, type=dtypes.float32) for sm in sparse_matrices ] sm_rt_values = self.evaluate(sm_rt) for (mat, sm_rt_value) in zip(mats, sm_rt_values): self.assertAllEqual(mat, sm_rt_value) @test_util.run_in_graph_and_eager_modes def testSparseMatrixAdd(self): if not self._gpu_available: return a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0, 5.0]).astype(np.float32) a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() b_indices = np.array([[1, 0], [1, 4], [2, 3], [4, 1]]) b_values = np.array([1.0, 0.5, -5.0, 2.0]).astype(np.float32) b_dense_shape = [5, 6] b_sparse_mat = sparse.coo_matrix( (b_values, (b_indices[:, 0], b_indices[:, 1])), shape=b_dense_shape) b_dense = b_sparse_mat.todense() for (alpha, beta) in [(1.0, 1.0), (1.0, -1.0), (0.25, 0.5)]: a_sum_b_sparse_mat = alpha * a_sparse_mat + beta * b_sparse_mat # Convert 2D SparseTensor to CSR Matrix a_sm = dense_to_csr_sparse_matrix(a_dense) b_sm = dense_to_csr_sparse_matrix(b_dense) alpha = np.float32(alpha) beta = np.float32(beta) c_sm = sparse_csr_matrix_ops.sparse_matrix_add( a_sm, b_sm, alpha=alpha, beta=beta) c_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, dtypes.float32) c_dense_value = self.evaluate(c_dense) self.assertAllClose(a_sum_b_sparse_mat.todense(), c_dense_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixAdd(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] a_mats = sparsify(np.random.randn(*dense_shape)).astype(np.float32) b_mats = sparsify(np.random.randn(*dense_shape)).astype(np.float32) for (alpha, beta) in [(1.0, 1.0), (1.0, -1.0), (0.25, 0.5)]: tf_logging.info("testLargeBatchSparseMatrixAdd, comparing " "alpha, beta (%d, %d)" % (alpha, beta)) a_sm = dense_to_csr_sparse_matrix(a_mats) b_sm = dense_to_csr_sparse_matrix(b_mats) alpha = np.float32(alpha) beta = np.float32(beta) c_sm = sparse_csr_matrix_ops.sparse_matrix_add( a_sm, b_sm, alpha=alpha, beta=beta) c_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, dtypes.float32) c_dense_value = self.evaluate(c_dense) self.assertAllClose(c_dense_value, alpha * a_mats + beta * b_mats) @test_util.run_in_graph_and_eager_modes def testSparseMatrixMatMul(self): for shapes in [[(5, 6), (6, 1)], [(5, 6), (6, 2)]]: a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0, 5.0]).astype(np.float32) a_dense_shape = shapes[0] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() # Will multiply sparse a (shape=shapes[0]) by dense b (shape=shapes[1]). b = np.random.randn(*shapes[1]).astype(np.float32) a_sm = dense_to_csr_sparse_matrix(a_dense) c = sparse_csr_matrix_ops.sparse_matrix_mat_mul(a=a_sm, b=b) c_value = self.evaluate(c) expected_c_value = a_sparse_mat.dot(b) self.assertAllClose(expected_c_value, c_value) @test_util.run_in_graph_and_eager_modes def testSparseMatrixMatMulConjugateOutput(self): for shapes in [[(5, 6), (6, 1)], [(5, 6), (6, 2)]]: a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0 + 1.j, 5.0 - 2.j]).astype(np.complex64) a_dense_shape = shapes[0] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() # Will multiply sparse a (shape=shapes[0]) by dense b (shape=shapes[1]). b = np.random.randn(*shapes[1]).astype(np.complex64) a_sm = dense_to_csr_sparse_matrix(a_dense) c = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a=a_sm, b=b, conjugate_output=True) c_value = self.evaluate(c) expected_c_value = self.evaluate( math_ops.conj(test_util.matmul_without_tf32(a_dense, b))) self.assertAllClose(expected_c_value, c_value) @parameterized.product( dtype=[np.float32, np.complex64], transpose=[(False, False), (False, True), (True, False), (True, True)], adjoint=[(False, False), (False, True), (True, False), (True, True)], shapes=[([53, 127, 65], [53, 65, 1]), ([53, 127, 1], [53, 1, 65]), ([53, 127, 65], [53, 65, 127])]) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMatMul(self, dtype, transpose, adjoint, shapes): sparsify = lambda m: m * (m > 0) transpose_a, transpose_b = transpose adjoint_a, adjoint_b = adjoint if (transpose_a and adjoint_a) or (transpose_b and adjoint_b): return # Make copies so we don't update the lists inside the decorator arguments. a_dense_shape = shapes[0][:] b_dense_shape = shapes[1][:] if transpose_a or adjoint_a: _swap(a_dense_shape, -2, -1) if transpose_b or adjoint_b: _swap(b_dense_shape, -2, -1) a_mats = sparsify((np.random.randn(*a_dense_shape) + 1.j * np.random.randn(*a_dense_shape))).astype(dtype) b_mats = (np.random.randn(*b_dense_shape) + 1.j * np.random.randn(*b_dense_shape)).astype(dtype) tf_logging.info( "testLargeBatchSparseMatrixMatMul transpose_a %s transpose_b " "%s adjoint_a %s adjoint_b %s" % (transpose_a, transpose_b, adjoint_a, adjoint_b)) a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a_sm, b_mats, transpose_output=False, conjugate_output=False, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b) c_dense_t = test_util.matmul_without_tf32( a_mats, b_mats, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b) self.assertAllEqual(c_dense_t.shape, c_t.shape) c_t_value, c_dense_t_value = self.evaluate((c_t, c_dense_t)) self.assertAllClose(c_t_value, c_dense_t_value, rtol=1e-6, atol=2e-5) @parameterized.product( dtype=[np.float32, np.complex64], transpose=[(False, False), (False, True), (True, False), (True, True)], adjoint=[(False, False), (False, True), (True, False), (True, True)], shapes=[[[53, 127, 65], [53, 65, 1]], [[53, 127, 1], [53, 1, 65]], [[53, 127, 65], [53, 65, 127]]]) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMatMulTransposed(self, dtype, transpose, adjoint, shapes): sparsify = lambda m: m * (m > 0) (transpose_a, transpose_b) = transpose (adjoint_a, adjoint_b) = adjoint if (transpose_a and adjoint_a) or (transpose_b and adjoint_b): return # Make copies so we don't update the lists inside the decorator arguments. a_dense_shape = shapes[0][:] b_dense_shape = shapes[1][:] if transpose_a or adjoint_a: _swap(a_dense_shape, -2, -1) if transpose_b or adjoint_b: _swap(b_dense_shape, -2, -1) a_mats = sparsify((np.random.randn(*a_dense_shape) + 1.j * np.random.randn(*a_dense_shape))).astype(dtype) b_mats = (np.random.randn(*b_dense_shape) + 1.j * np.random.randn(*b_dense_shape)).astype(dtype) tf_logging.info( "testLargeBatchSparseMatrixMatMul transpose_a %s transpose_b " "%s adjoint_a %s adjoint_b %s" % (transpose_a, transpose_b, adjoint_a, adjoint_b)) a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a_sm, b_mats, transpose_output=True, conjugate_output=False, transpose_a=transpose_a, transpose_b=transpose_b, adjoint_a=adjoint_a, adjoint_b=adjoint_b) # Example: t(adj(a) . b) = t(b) . conj(a) c_dense_t = test_util.matmul_without_tf32( math_ops.conj(b_mats) if adjoint_b else b_mats, math_ops.conj(a_mats) if adjoint_a else a_mats, transpose_a=not (transpose_b or adjoint_b), transpose_b=not (transpose_a or adjoint_a), adjoint_a=False, adjoint_b=False) self.assertAllEqual(c_t.shape, c_dense_t.shape) c_t_value, c_dense_t_value = self.evaluate((c_t, c_dense_t)) self.assertAllClose(c_t_value, c_dense_t_value, rtol=1e-6, atol=2e-5) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMatMulConjugate(self): sparsify = lambda m: m * (m > 0) a_dense_shape = [53, 65, 127] b_dense_shape = [53, 127, 67] a_mats = sparsify( (np.random.randn(*a_dense_shape) + 1.j * np.random.randn(*a_dense_shape))).astype(np.complex64) b_mats = (np.random.randn(*b_dense_shape) + 1.j * np.random.randn(*b_dense_shape)).astype(np.complex64) a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mat_mul( a_sm, b_mats, conjugate_output=True) c_dense_t = math_ops.conj(test_util.matmul_without_tf32(a_mats, b_mats)) self.assertAllEqual(c_t.shape, c_dense_t.shape) c_t_value, c_dense_t_value = self.evaluate((c_t, c_dense_t)) self.assertAllClose(c_t_value, c_dense_t_value, atol=1e-5, rtol=1e-5) @test_util.run_in_graph_and_eager_modes def testSparseMatrixSparseMatMul(self): a_indices = np.array([[0, 0], [2, 3]]) a_values = np.array([1.0, 5.0]).astype(np.float32) a_dense_shape = [5, 6] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() b_indices = np.array([[0, 0], [3, 0], [3, 1]]) b_values = np.array([2.0, 7.0, 8.0]).astype(np.float32) b_dense_shape = [6, 7] b_sparse_mat = sparse.coo_matrix( (b_values, (b_indices[:, 0], b_indices[:, 1])), shape=b_dense_shape) b_dense = b_sparse_mat.todense() a_sm = dense_to_csr_sparse_matrix(a_dense) b_sm = dense_to_csr_sparse_matrix(b_dense) c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul( a=a_sm, b=b_sm, type=dtypes.float32) c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, dtypes.float32) c_sm_dense_value = self.evaluate(c_sm_dense) expected_c_value = a_sparse_mat.dot(b_sparse_mat).todense() self.assertAllClose(expected_c_value, c_sm_dense_value) @test_util.run_in_graph_and_eager_modes def testSparseMatrixSparseMatMul_NumericZerosNotPruned(self): # Tests that numeric zeros appearing from the sparse-sparse matrix # multiplication are not pruned from the sparse structural a_indices = np.array([[0, 0], [0, 2]]) a_values = np.array([2.0, -1.0]).astype(np.float32) a_dense_shape = [2, 3] a_sparse_mat = sparse.coo_matrix( (a_values, (a_indices[:, 0], a_indices[:, 1])), shape=a_dense_shape) a_dense = a_sparse_mat.todense() b_indices = np.array([[0, 1], [2, 1]]) b_values = np.array([3.0, 6.0]).astype(np.float32) b_dense_shape = [3, 2] b_sparse_mat = sparse.coo_matrix( (b_values, (b_indices[:, 0], b_indices[:, 1])), shape=b_dense_shape) b_dense = b_sparse_mat.todense() # Convert to CSRSparseMatrix while removing numeric zeros from the # structural representation. a_sm = dense_to_csr_sparse_matrix(a_dense) b_sm = dense_to_csr_sparse_matrix(b_dense) # Compute the matmul. c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul( a=a_sm, b=b_sm, type=dtypes.float32) c_nnz = sparse_csr_matrix_ops.sparse_matrix_nnz(c_sm) c_nnz_value = self.evaluate(c_nnz) # Expect that there is a single numeric zero at index (0, 1) if zeros are # not pruned, since 2.0 * 3.0 + (-1.0) * 6.0 = 0.0. self.assertAllClose(1, c_nnz_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixSparseMatMul(self): sparsify = lambda m: m * (m > 0) for (transpose_a, transpose_b) in ((False, False), (False, True), (True, False), (True, True)): for (adjoint_a, adjoint_b) in ((False, False), (False, True), (True, False), (True, True)): if (transpose_a and adjoint_a) or (transpose_b and adjoint_b): continue for a_batch_size in (1, 53): for b_batch_size in (1, 53): a_dense_shape = ( [a_batch_size, 127, 65] if transpose_a or adjoint_a else [a_batch_size, 65, 127] ) b_dense_shape = ( [b_batch_size, 67, 127] if transpose_b or adjoint_b else [b_batch_size, 127, 67] ) a_mats = sparsify(np.random.randn(*a_dense_shape)).astype( np.float32 ) b_mats = sparsify( np.random.randn(*b_dense_shape).astype(np.float32) ) a_sm = dense_to_csr_sparse_matrix(a_mats) b_sm = dense_to_csr_sparse_matrix(b_mats) c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul( a_sm, b_sm, type=dtypes.float32, transpose_a=transpose_a, adjoint_a=adjoint_a, transpose_b=transpose_b, adjoint_b=adjoint_b, ) c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_sm, dtypes.float32 ) c_dense_t = test_util.matmul_without_tf32( a_mats, b_mats, transpose_a=transpose_a, adjoint_a=adjoint_a, transpose_b=transpose_b, adjoint_b=adjoint_b, ) c_dense_t_value, c_sm_dense_value = self.evaluate( (c_dense_t, c_sm_dense) ) self.assertAllClose(c_sm_dense_value, c_dense_t_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchRegisteredAddN(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] matrices = [ sparsify(np.random.randn(*dense_shape)).astype(np.float32) for _ in range(16) ] sparse_matrices = [dense_to_csr_sparse_matrix(mat) for mat in matrices] sparse_matrices_sum = math_ops.add_n(sparse_matrices) sparse_matrices_sum_dense = \ sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( sparse_matrices_sum, dtypes.float32) sparse_matrices_sum_dense_value = self.evaluate(sparse_matrices_sum_dense) # Ensure that the dense (numpy) sum across all batches matches the result # of add_n converted back to dense. expected_sum = np.sum(matrices, axis=0) self.assertAllClose(expected_sum, sparse_matrices_sum_dense_value) @test_util.run_in_graph_and_eager_modes def testCSRZeros(self): if not self._gpu_available: return a_dense_shape = [65, 127] b_dense_shape = [53, 127, 67] data_types = [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] for dtype in data_types: # Check both rank-2 and rank-3 tensors. a_sm = sparse_csr_matrix_ops.sparse_matrix_zeros( a_dense_shape, type=dtype) b_sm = sparse_csr_matrix_ops.sparse_matrix_zeros( b_dense_shape, type=dtype) a_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(a_sm, type=dtype) b_rt = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(b_sm, type=dtype) a_rt_value, b_rt_value = self.evaluate((a_rt, b_rt)) self.assertAllEqual(a_rt_value, np.zeros(a_dense_shape)) self.assertAllEqual(b_rt_value, np.zeros(b_dense_shape)) @test_util.run_in_graph_and_eager_modes def testLargeBatchZerosLike(self): if not self._gpu_available: return batch_size = 53 rows = 128 cols = 67 dense_shape = [batch_size, rows, cols] data_types = [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] for dtype in data_types: sparse_matrices = sparse_csr_matrix_ops.sparse_matrix_zeros( dense_shape, type=dtype) zeros_like_sparse_matrices = array_ops.zeros_like(sparse_matrices) zeros_like_components = [ sparse_csr_matrix_ops.csr_sparse_matrix_components( zeros_like_sparse_matrices, i, type=dtype) for i in range(batch_size) ] zeros_like_components_values = self.evaluate(zeros_like_components) for component in zeros_like_components_values: self.assertAllEqual(component.row_ptrs, np.zeros(rows + 1, np.int32)) self.assertAllEqual(component.col_inds, np.empty([0], np.int32)) self.assertAllEqual(component.values, np.empty([0], dtype.as_numpy_dtype)) @test_util.run_in_graph_and_eager_modes def testTranspose(self): sparsify = lambda m: m * (m > 0) dense_shape = [127, 65] data_types = [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] for dtype in data_types: mats = sparsify( (np.random.randn(*dense_shape) + 1.j * np.random.randn(*dense_shape))).astype(dtype.as_numpy_dtype) for conjugate in False, True: expected = np.transpose(mats) if conjugate: expected = np.conj(expected) matrices = math_ops.cast(mats, dtype) sparse_matrices = dense_to_csr_sparse_matrix(matrices) transpose_sparse_matrices = \ sparse_csr_matrix_ops.sparse_matrix_transpose( sparse_matrices, conjugate=conjugate, type=dtype) dense_transposed = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( transpose_sparse_matrices, dtype) dense_transposed_values = self.evaluate(dense_transposed) self.assertAllClose(expected, dense_transposed_values) @test_util.run_in_graph_and_eager_modes def testLargeBatchTranspose(self): sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] data_types = [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] for dtype in data_types: mats = sparsify( (np.random.randn(*dense_shape) + 1.j * np.random.randn(*dense_shape))).astype(dtype.as_numpy_dtype) expected = np.transpose(mats, (0, 2, 1)) for conjugate in False, True: if conjugate: expected = np.conj(expected) matrices = math_ops.cast(mats, dtype) sparse_matrices = dense_to_csr_sparse_matrix(matrices) transpose_sparse_matrices = \ sparse_csr_matrix_ops.sparse_matrix_transpose( sparse_matrices, conjugate=conjugate, type=dtype) dense_transposed = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( transpose_sparse_matrices, dtype) dense_transposed_values = self.evaluate(dense_transposed) self.assertAllClose(expected, dense_transposed_values) @test_util.run_in_graph_and_eager_modes def testSoftmax(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [127, 65] logits = sparsify(np.random.randn(*dense_shape)) logits_with_ninf = np.copy(logits) logits_with_ninf[logits == 0] = -np.inf data_types = [dtypes.float32, dtypes.float64] for dtype in data_types: logits_t = math_ops.cast(logits, dtype) logits_t_with_ninf = math_ops.cast(logits_with_ninf, dtype) expected = nn_ops.softmax(logits_t_with_ninf) sparse_logits_t = dense_to_csr_sparse_matrix(logits_t) softmax_sparse_logits_t = sparse_csr_matrix_ops.sparse_matrix_softmax( sparse_logits_t, type=dtype) dense_softmax = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( softmax_sparse_logits_t, dtype) dense_softmax_values, expected_values = self.evaluate( (dense_softmax, expected)) self.assertAllClose(expected_values, dense_softmax_values) @test_util.run_in_graph_and_eager_modes def testLargeBatchSoftmax(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] logits = sparsify(np.random.randn(*dense_shape)) logits_with_ninf = np.copy(logits) logits_with_ninf[logits == 0] = -np.inf data_types = [dtypes.float32, dtypes.float64] for dtype in data_types: logits_t = math_ops.cast(logits, dtype) logits_t_with_ninf = math_ops.cast(logits_with_ninf, dtype) expected = nn_ops.softmax(logits_t_with_ninf) sparse_logits_t = dense_to_csr_sparse_matrix(logits_t) softmax_sparse_logits_t = sparse_csr_matrix_ops.sparse_matrix_softmax( sparse_logits_t, type=dtype) dense_softmax = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( softmax_sparse_logits_t, dtype) dense_softmax_values, expected_values = self.evaluate( (dense_softmax, expected)) self.assertAllClose(expected_values, dense_softmax_values) @test_util.run_in_graph_and_eager_modes def testLargeBatchSoftmaxEmpty(self): if not self._gpu_available: return dense_shape = [53, 65, 127] sparse_logits_t = sparse_csr_matrix_ops.sparse_matrix_zeros( dense_shape, type=dtypes.float32) softmax_sparse_logits_t = sparse_csr_matrix_ops.sparse_matrix_softmax( sparse_logits_t, type=dtypes.float32) dense_softmax = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( softmax_sparse_logits_t, dtypes.float32) dense_softmax_values = self.evaluate(dense_softmax) self.assertAllEqual( np.zeros_like(dense_softmax_values), dense_softmax_values) @test_util.run_in_graph_and_eager_modes def testSoftmaxGrad(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [127, 65] softmax = sparsify(np.random.randn(*dense_shape)) grad_softmax = sparsify(np.random.randn(*dense_shape)) expected = ( (grad_softmax - np.sum(grad_softmax * softmax, -1, keepdims=True)) * softmax) data_types = [dtypes.float32, dtypes.float64] for dtype in data_types: softmax_t = math_ops.cast(softmax, dtype) grad_softmax_t = math_ops.cast(grad_softmax, dtype) softmax_sparse = dense_to_csr_sparse_matrix(softmax_t) grad_softmax_sparse = dense_to_csr_sparse_matrix(grad_softmax_t) gradients_sparse = sparse_csr_matrix_ops.sparse_matrix_softmax_grad( softmax_sparse, grad_softmax_sparse, dtype) dense_gradients = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( gradients_sparse, dtype) dense_gradients_values = self.evaluate((dense_gradients)) self.assertAllClose(expected, dense_gradients_values) @test_util.run_in_graph_and_eager_modes def testLargeBatchSoftmaxGrad(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] softmax = sparsify(np.random.randn(*dense_shape)) grad_softmax = sparsify(np.random.randn(*dense_shape)) expected = ( (grad_softmax - np.sum(grad_softmax * softmax, -1, keepdims=True)) * softmax) data_types = [dtypes.float32, dtypes.float64] for dtype in data_types: softmax_t = math_ops.cast(softmax, dtype) grad_softmax_t = math_ops.cast(grad_softmax, dtype) softmax_sparse = dense_to_csr_sparse_matrix(softmax_t) grad_softmax_sparse = dense_to_csr_sparse_matrix(grad_softmax_t) gradients_sparse = sparse_csr_matrix_ops.sparse_matrix_softmax_grad( softmax_sparse, grad_softmax_sparse, dtype) dense_gradients = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( gradients_sparse, dtype) dense_gradients_values = self.evaluate((dense_gradients)) self.assertAllClose(expected, dense_gradients_values) @test_util.run_in_graph_and_eager_modes def testLargeBatchSoftmaxGradEmpty(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) dense_shape = [53, 65, 127] not_empty = sparsify(np.random.randn(*dense_shape)).astype(np.float32) sparse_empty = sparse_csr_matrix_ops.sparse_matrix_zeros( dense_shape, type=dtypes.float32) sparse_not_empty = dense_to_csr_sparse_matrix(not_empty) gradients_empty_softmax = sparse_csr_matrix_ops.sparse_matrix_softmax_grad( sparse_empty, sparse_not_empty, dtypes.float32) gradients_empty_grad_softmax = ( sparse_csr_matrix_ops.sparse_matrix_softmax_grad( sparse_not_empty, sparse_empty, dtypes.float32)) gradients_empty_both = sparse_csr_matrix_ops.sparse_matrix_softmax_grad( sparse_empty, sparse_empty, dtypes.float32) ges = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( gradients_empty_softmax, dtypes.float32) gegs = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( gradients_empty_grad_softmax, dtypes.float32) geb = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( gradients_empty_both, dtypes.float32) ges_v, gegs_v, geb_v = self.evaluate((ges, gegs, geb)) for v in (ges_v, gegs_v, geb_v): self.assertAllEqual(np.zeros(dense_shape), v) @test_util.run_in_graph_and_eager_modes def testLargeBatchConj(self): if not self._gpu_available: return sparsify = lambda m: m * (np.real(m) > 0) dense_shape = [53, 65, 127] matrices = ( sparsify(np.random.randn(*dense_shape)) + 1j * np.random.randn(*dense_shape)) data_types = [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] for dtype in data_types: matrices_t = matrices.astype(dtype.as_numpy_dtype) expected = np.conj(matrices_t) sparse_matrices = dense_to_csr_sparse_matrix(matrices_t) conj_sparse_matrices = math_ops.conj(sparse_matrices) dense_conj_matrices = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( conj_sparse_matrices, dtype) conj_values = self.evaluate(dense_conj_matrices) self.assertAllClose(expected, conj_values) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMulScalar(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) a_dense_shape = [53, 65, 127] a_mats = sparsify(np.random.randn(*a_dense_shape)).astype(np.float32) b = np.float32(3.5) expected = a_mats * b a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mul(a_sm, b) c_dense_t = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_t, dtypes.float32) c_dense_t_value = self.evaluate(c_dense_t) self.assertAllClose(expected, c_dense_t_value) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseMatrixMulVec(self): if not self._gpu_available: return sparsify = lambda m: m * (m > 0) a_dense_shape = [53, 65, 127] a_mats = sparsify(np.random.randn(*a_dense_shape)).astype(np.float32) b = np.random.randn(53, 1, 1).astype(np.float32) expected = a_mats * b a_sm = dense_to_csr_sparse_matrix(a_mats) c_t = sparse_csr_matrix_ops.sparse_matrix_mul(a_sm, b) c_dense_t = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( c_t, dtypes.float32) c_dense_t_value = self.evaluate(c_dense_t) self.assertAllClose(expected, c_dense_t_value) @test_util.run_in_graph_and_eager_modes def testSparseCholesky(self): dense_matrix = np.array([ [2, 0, 0, 0, 0, 0], [0, 3, 0, 0, 0, 0], [1, 1, 7, 0, 0, 0], [0, 0, 0, 4, 0, 0], [0, 0, 1, 0, 5, 0], [0, 0, 2, 0, 1, 6], ]).astype(np.complex128) data_types = [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] for dtype in data_types: with test_util.force_cpu(): if dtype.is_complex: dense_matrix += 0.5j * np.tril(dense_matrix, -1) sparse_matrix = dense_to_csr_sparse_matrix( math_ops.cast(dense_matrix, dtype)) # Obtain the Sparse Cholesky factor using AMD Ordering for reducing # fill-in. ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd( sparse_matrix) cholesky_sparse_matrices = ( sparse_csr_matrix_ops.sparse_matrix_sparse_cholesky( sparse_matrix, ordering_amd, type=dtype)) dense_cholesky = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( cholesky_sparse_matrices, dtype) # Compute L * Lh where L is the Sparse Cholesky factor. verification = test_util.matmul_without_tf32( dense_cholesky, array_ops.transpose(dense_cholesky, conjugate=True)) verification = twist_matrix(verification, ordering_amd) # Assert that input matrix A satisfies A = L * Lh. verification_values = self.evaluate(verification) full_dense_matrix = ( dense_matrix + np.conjugate(np.transpose(np.tril(dense_matrix, -1)))) self.assertAllClose(full_dense_matrix, verification_values) @test_util.run_in_graph_and_eager_modes def testBatchSparseCholesky(self): dense_mat = np.array([ # A diagonal matrix. [ [1, 0, 0, 0], # [0, 2, 0, 0], # [0, 0, 3, 0], # [0, 0, 0, 4], ], # # A tridiagonal hermitian matrix. [ [5 + 0j, 1 + 0j, 0 + 0j, 0 + 0j], # [1 + 0j, 4 + 0j, 1 + 2j, 0 + 0j], # [0 + 0j, 1 - 2j, 9 + 0j, 3 - 3j], # [0 + 0j, 0 + 0j, 3 + 3j, 7 + 0j], ], # # A diagonal matrix with a corner element; for which # OrderingAMD returns a non-identity permutation. [ [1, 0, 0, 1.], # [0, 2, 0, 0.], # [0, 0, 3, 0.], # [1, 0, 0, 4.], ] # ]).astype(np.complex128) data_types = [ dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] for dtype in data_types: sparse_matrix = dense_to_csr_sparse_matrix( math_ops.cast(dense_mat, dtype)) ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd( sparse_matrix) cholesky_sparse_matrix = ( sparse_csr_matrix_ops.sparse_matrix_sparse_cholesky( sparse_matrix, ordering_amd, type=dtype)) dense_cholesky = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( cholesky_sparse_matrix, dtype) # Compute L * Lh. verification = test_util.matmul_without_tf32( dense_cholesky, array_ops.transpose(dense_cholesky, perm=[0, 2, 1], conjugate=True)) verification = twist_matrix(verification, ordering_amd) verification_values = self.evaluate(verification) self.assertAllClose( dense_mat.astype(dtype.as_numpy_dtype), verification_values) @test_util.run_in_graph_and_eager_modes def testLargeBatchSparseCholesky(self): sparsity = 0.1 sparsify = lambda m: m * (m > 1 - sparsity) batch_size = 53 num_rows = 147 dense_shape = [batch_size, num_rows, num_rows] dense_matrix = sparsify(np.random.uniform(size=dense_shape)).astype( np.float32) # Create a "random" SPD matrix, by choosing each entry of A between # 0 and 1 at the specified density, and computing 0.5(A + At) + n*I. # This ensures diagonal dominance which implies positive-definiteness. dense_matrix = ( 0.5 * (dense_matrix + array_ops.transpose(dense_matrix, perm=[0, 2, 1])) + num_rows * linalg_ops.eye(dense_shape[-1], batch_shape=[batch_size])) # Compute the fill-in reducing permutation and use it to perform # the Sparse Cholesky factorization. sparse_matrix = dense_to_csr_sparse_matrix(dense_matrix) ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd( sparse_matrix) cholesky_sparse_matrix = \ sparse_csr_matrix_ops.sparse_matrix_sparse_cholesky( sparse_matrix, ordering_amd, type=dtypes.float32) dense_cholesky = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( cholesky_sparse_matrix, dtypes.float32) # Compute L * Lh. verification = test_util.matmul_without_tf32( dense_cholesky, array_ops.transpose(dense_cholesky, perm=[0, 2, 1])) verification = twist_matrix(verification, ordering_amd) verification_values = self.evaluate(verification) self.assertAllClose(dense_matrix, verification_values, atol=1e-5, rtol=1e-5) @test_util.run_in_graph_and_eager_modes def testSparseCholesky_InvalidMatrix(self): # Verify that non-SPD matrices result in an Invalid Argument error. invalid_matrices = [ # zero matrix. np.array([ [0., 0., 0., 0.], # [0., 0., 0., 0.], # [0., 0., 0., 0.], # [0., 0., 0., 0.] # ]), # zero diagonal entry. np.array([ [9., 0., 5., 0.], # [0., 0., 0., 1.], # [5., 0., 8., 0.], # [0., 1., 0., 7.] # ]), # not positive definite. np.array([ [2., -2., 0., 0.], # [-2., 2., 0., 0.], # [0., 0., 3., -3.], # [0., 0., -3., 3.] # ]), ] with test_util.force_cpu(): for invalid_matrix in invalid_matrices: with self.assertRaises(errors.InvalidArgumentError): sparse_matrix = dense_to_csr_sparse_matrix( invalid_matrix.astype(np.float32)) # Compute the fill-in reducing permutation and use it to perform # the Sparse Cholesky factorization. ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd( sparse_matrix) cholesky_sparse_matrices = ( sparse_csr_matrix_ops.sparse_matrix_sparse_cholesky( sparse_matrix, ordering_amd, type=dtypes.float32)) # Convert the Cholesky factor to a dense matrix to be evaluated. dense_cholesky = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense( cholesky_sparse_matrices, type=dtypes.float32) self.evaluate(dense_cholesky) @test_util.run_in_graph_and_eager_modes def testOrderingAMD(self): num_rows = 6 # An SPD matrix where AMD ordering can reduce fill-in for Cholesky factor. dense_matrix = np.array([ [7, 0, 0, 0, 0, 0], [1, 4, 0, 0, 0, 0], [1, 1, 3, 0, 0, 0], [0, 0, 0, 4, 0, 0], [2, 0, 0, 0, 5, 0], [1, 2, 2, 0, 0, 6], ]).astype(np.float32) with test_util.force_cpu(): sparse_matrix = dense_to_csr_sparse_matrix(dense_matrix) # Obtain the Sparse Cholesky factor with the identity permutation as the # fill-in reducing ordering. cholesky_without_ordering = ( sparse_csr_matrix_ops.sparse_matrix_sparse_cholesky( sparse_matrix, math_ops.range(num_rows), type=dtypes.float32)) cholesky_without_ordering_nnz = sparse_csr_matrix_ops.sparse_matrix_nnz( cholesky_without_ordering) # Obtain the Sparse Cholesky factor using AMD Ordering for reducing # fill-in. ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd( sparse_matrix) cholesky_with_amd = sparse_csr_matrix_ops.sparse_matrix_sparse_cholesky( sparse_matrix, ordering_amd, type=dtypes.float32) cholesky_with_amd_nnz = sparse_csr_matrix_ops.sparse_matrix_nnz( cholesky_with_amd) (ordering_amd_value, cholesky_with_amd_nnz_value, cholesky_without_ordering_nnz_value) = self.evaluate( [ordering_amd, cholesky_with_amd_nnz, cholesky_without_ordering_nnz]) # AMD ordering should return a valid permutation. self.assertAllClose(np.arange(num_rows), np.sort(ordering_amd_value)) # Check that cholesky with AMD ordering has a strictly lower nonzero count # for this matrix. self.assertLess(cholesky_with_amd_nnz_value, cholesky_without_ordering_nnz_value) @test_util.run_in_graph_and_eager_modes def testNoMatrixNoCrash(self): # Round-about way of creating an empty variant tensor that works in both # graph and eager modes. no_matrix = array_ops.reshape(dense_to_csr_sparse_matrix([[0.0]]), [1])[0:0] with self.assertRaisesRegex( (ValueError, errors.InvalidArgumentError), "(Invalid input matrix)|(Shape must be rank 0)"): sparse_csr_matrix_ops.sparse_matrix_nnz(no_matrix)
CSRSparseMatrixOpsTest
python
pytorch__pytorch
torch/_inductor/codegen/memory_planning.py
{ "start": 1398, "end": 2736 }
class ____: """ A collection of LiveRange regions, allowing for non-contiguous live regions. Invariant: LiveRanges.ranges is in sorted order and non-overlapping """ def __init__(self, ranges: Iterable[LiveRange]): ranges = [*sorted(ranges, key=lambda x: x.begin)] self.ranges = ranges[:1] for r in ranges[1:]: assert self.ranges[-1].begin <= r.begin if self.ranges[-1].end >= r.begin: self.ranges[-1] = LiveRange.join(self.ranges[-1], r) else: self.ranges.append(r) def overlaps(self, other: LiveRanges): """Check if any pair of ranges in self and other overlap""" left = collections.deque(self.ranges) right = collections.deque(other.ranges) while left and right: if left[0].begin > right[0].begin: left, right = right, left assert left[0].begin <= right[0].begin if left[0].end > right[0].begin: return True left.popleft() return False @property def begin(self): return self.ranges[0].begin @property def end(self): return self.ranges[-1].end def __repr__(self): return f"{self.__class__.__name__}([{', '.join(map(repr, self.ranges))}])"
LiveRanges
python
pypa__pipenv
pipenv/vendor/importlib_metadata/_itertools.py
{ "start": 2147, "end": 5351 }
class ____: """Wrap *iterable* and return an object that buckets the iterable into child iterables based on a *key* function. >>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3'] >>> s = bucket(iterable, key=lambda x: x[0]) # Bucket by 1st character >>> sorted(list(s)) # Get the keys ['a', 'b', 'c'] >>> a_iterable = s['a'] >>> next(a_iterable) 'a1' >>> next(a_iterable) 'a2' >>> list(s['b']) ['b1', 'b2', 'b3'] The original iterable will be advanced and its items will be cached until they are used by the child iterables. This may require significant storage. By default, attempting to select a bucket to which no items belong will exhaust the iterable and cache all values. If you specify a *validator* function, selected buckets will instead be checked against it. >>> from itertools import count >>> it = count(1, 2) # Infinite sequence of odd numbers >>> key = lambda x: x % 10 # Bucket by last digit >>> validator = lambda x: x in {1, 3, 5, 7, 9} # Odd digits only >>> s = bucket(it, key=key, validator=validator) >>> 2 in s False >>> list(s[2]) [] """ def __init__(self, iterable, key, validator=None): self._it = iter(iterable) self._key = key self._cache = defaultdict(deque) self._validator = validator or (lambda x: True) def __contains__(self, value): if not self._validator(value): return False try: item = next(self[value]) except StopIteration: return False else: self._cache[value].appendleft(item) return True def _get_values(self, value): """ Helper to yield items from the parent iterator that match *value*. Items that don't match are stored in the local cache as they are encountered. """ while True: # If we've cached some items that match the target value, emit # the first one and evict it from the cache. if self._cache[value]: yield self._cache[value].popleft() # Otherwise we need to advance the parent iterator to search for # a matching item, caching the rest. else: while True: try: item = next(self._it) except StopIteration: return item_value = self._key(item) if item_value == value: yield item break elif self._validator(item_value): self._cache[item_value].append(item) def __iter__(self): for item in self._it: item_value = self._key(item) if self._validator(item_value): self._cache[item_value].append(item) yield from self._cache.keys() def __getitem__(self, value): if not self._validator(value): return iter(()) return self._get_values(value)
bucket
python
pypa__pipenv
pipenv/vendor/click/shell_completion.py
{ "start": 9048, "end": 10520 }
class ____(ShellComplete): """Shell completion for Bash.""" name = "bash" source_template = _SOURCE_BASH @staticmethod def _check_version() -> None: import subprocess output = subprocess.run( ["bash", "-c", 'echo "${BASH_VERSION}"'], stdout=subprocess.PIPE ) match = re.search(r"^(\d+)\.(\d+)\.\d+", output.stdout.decode()) if match is not None: major, minor = match.groups() if major < "4" or major == "4" and minor < "4": echo( _( "Shell completion is not supported for Bash" " versions older than 4.4." ), err=True, ) else: echo( _("Couldn't detect Bash version, shell completion is not supported."), err=True, ) def source(self) -> str: self._check_version() return super().source() def get_completion_args(self) -> t.Tuple[t.List[str], str]: cwords = split_arg_string(os.environ["COMP_WORDS"]) cword = int(os.environ["COMP_CWORD"]) args = cwords[1:cword] try: incomplete = cwords[cword] except IndexError: incomplete = "" return args, incomplete def format_completion(self, item: CompletionItem) -> str: return f"{item.type},{item.value}"
BashComplete
python
openai__openai-python
src/openai/types/realtime/realtime_session_create_response.py
{ "start": 10334, "end": 12589 }
class ____(BaseModel): server_label: str """A label for this MCP server, used to identify it in tool calls.""" type: Literal["mcp"] """The type of the MCP tool. Always `mcp`.""" allowed_tools: Optional[ToolMcpToolAllowedTools] = None """List of allowed tool names or a filter object.""" authorization: Optional[str] = None """ An OAuth access token that can be used with a remote MCP server, either with a custom MCP server URL or a service connector. Your application must handle the OAuth authorization flow and provide the token here. """ connector_id: Optional[ Literal[ "connector_dropbox", "connector_gmail", "connector_googlecalendar", "connector_googledrive", "connector_microsoftteams", "connector_outlookcalendar", "connector_outlookemail", "connector_sharepoint", ] ] = None """Identifier for service connectors, like those available in ChatGPT. One of `server_url` or `connector_id` must be provided. Learn more about service connectors [here](https://platform.openai.com/docs/guides/tools-remote-mcp#connectors). Currently supported `connector_id` values are: - Dropbox: `connector_dropbox` - Gmail: `connector_gmail` - Google Calendar: `connector_googlecalendar` - Google Drive: `connector_googledrive` - Microsoft Teams: `connector_microsoftteams` - Outlook Calendar: `connector_outlookcalendar` - Outlook Email: `connector_outlookemail` - SharePoint: `connector_sharepoint` """ headers: Optional[Dict[str, str]] = None """Optional HTTP headers to send to the MCP server. Use for authentication or other purposes. """ require_approval: Optional[ToolMcpToolRequireApproval] = None """Specify which of the MCP server's tools require approval.""" server_description: Optional[str] = None """Optional description of the MCP server, used to provide more context.""" server_url: Optional[str] = None """The URL for the MCP server. One of `server_url` or `connector_id` must be provided. """ Tool: TypeAlias = Union[RealtimeFunctionTool, ToolMcpTool]
ToolMcpTool
python
tiangolo__fastapi
docs_src/dependencies/tutorial008c_an.py
{ "start": 111, "end": 707 }
class ____(Exception): pass def get_username(): try: yield "Rick" except InternalError: print("Oops, we didn't raise again, Britney 😱") @app.get("/items/{item_id}") def get_item(item_id: str, username: Annotated[str, Depends(get_username)]): if item_id == "portal-gun": raise InternalError( f"The portal gun is too dangerous to be owned by {username}" ) if item_id != "plumbus": raise HTTPException( status_code=404, detail="Item not found, there's only a plumbus here" ) return item_id
InternalError
python
django__django
django/db/models/expressions.py
{ "start": 52303, "end": 54478 }
class ____(ExpressionWrapper): """The logical negation of a conditional expression.""" def __init__(self, expression): super().__init__(expression, output_field=fields.BooleanField()) def __invert__(self): return self.expression.copy() def as_sql(self, compiler, connection): try: sql, params = super().as_sql(compiler, connection) except EmptyResultSet: features = compiler.connection.features if not features.supports_boolean_expr_in_select_clause: return "1=1", () return compiler.compile(Value(True)) ops = compiler.connection.ops # Some database backends (e.g. Oracle) don't allow EXISTS() and filters # to be compared to another expression unless they're wrapped in a CASE # WHEN. if not ops.conditional_expression_supported_in_where_clause(self.expression): return f"CASE WHEN {sql} = 0 THEN 1 ELSE 0 END", params return f"NOT {sql}", params def resolve_expression( self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False ): resolved = super().resolve_expression( query, allow_joins, reuse, summarize, for_save ) if not getattr(resolved.expression, "conditional", False): raise TypeError("Cannot negate non-conditional expressions.") return resolved def select_format(self, compiler, sql, params): # Wrap boolean expressions with a CASE WHEN expression if a database # backend (e.g. Oracle) doesn't support boolean expression in SELECT or # GROUP BY list. expression_supported_in_where_clause = ( compiler.connection.ops.conditional_expression_supported_in_where_clause ) if ( not compiler.connection.features.supports_boolean_expr_in_select_clause # Avoid double wrapping. and expression_supported_in_where_clause(self.expression) ): sql = "CASE WHEN {} THEN 1 ELSE 0 END".format(sql) return sql, params @deconstructible(path="django.db.models.When")
NegatedExpression
python
run-llama__llama_index
llama-index-integrations/embeddings/llama-index-embeddings-vertex-endpoint/llama_index/embeddings/vertex_endpoint/utils.py
{ "start": 48, "end": 681 }
class ____(metaclass=abc.ABCMeta): @classmethod def __subclasshook__(cls, subclass: type) -> bool: return ( hasattr(subclass, "serialize_input") and callable(subclass.serialize_input) and hasattr(subclass, "deserialize_output") and callable(subclass.deserialize_output) or NotImplemented ) @abc.abstractmethod def serialize_input(self, request: List[str]) -> bytes: raise NotImplementedError @abc.abstractmethod def deserialize_output(self, response: Any) -> List[List[float]]: raise NotImplementedError
BaseIOHandler
python
pennersr__django-allauth
allauth/socialaccount/providers/vimeo_oauth2/provider.py
{ "start": 308, "end": 786 }
class ____(OAuth2Provider): id = "vimeo_oauth2" name = "Vimeo" account_class = VimeoOAuth2Account oauth2_adapter_class = VimeoOAuth2Adapter def get_default_scope(self): return ["public", "private"] def extract_uid(self, data): return data.get("uri").split("/")[-1] def extract_common_fields(self, data): return { "fullname": data.get("name"), } provider_classes = [VimeoOAuth2Provider]
VimeoOAuth2Provider
python
pypa__pipenv
pipenv/patched/pip/_internal/operations/install/wheel.py
{ "start": 14127, "end": 14457 }
class ____: def __init__(self, file: "File") -> None: self._file = file self.src_record_path = self._file.src_record_path self.dest_path = self._file.dest_path self.changed = False def save(self) -> None: self._file.save() self.changed = fix_script(self.dest_path)
ScriptFile
python
astropy__astropy
astropy/table/tests/conftest.py
{ "start": 1138, "end": 1179 }
class ____(table.Column): pass
MyColumn
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_chart_data_labels26.py
{ "start": 315, "end": 1561 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_data_labels26.xlsx") def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "column"}) chart.axis_ids = [48514944, 48516480] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], [10, 20, 30, 40, 50], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) worksheet.write_column("D1", data[3]) chart.add_series( { "values": "=Sheet1!$A$1:$A$5", "data_labels": {"value": True, "custom": [{"value": 33}]}, } ) chart.add_series({"values": "=Sheet1!$B$1:$B$5"}) chart.add_series({"values": "=Sheet1!$C$1:$C$5"}) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
django-guardian__django-guardian
guardian/testapp/tests/urls.py
{ "start": 225, "end": 536 }
class ____(PermissionRequiredMixin, View): permission_required = "testapp.change_project" urlpatterns = [ path("admin/", admin.site.urls), path("accounts/login/", LoginView.as_view(template_name="blank.html")), path("permission_required/", TestClassRedirectView.as_view()), ]
TestClassRedirectView
python
prompt-toolkit__python-prompt-toolkit
src/prompt_toolkit/shortcuts/progress_bar/formatters.py
{ "start": 8458, "end": 9268 }
class ____(Formatter): """ Display the iterations per second. """ template = HTML( "<iterations-per-second>{iterations_per_second:.2f}</iterations-per-second>" ) def format( self, progress_bar: ProgressBar, progress: ProgressBarCounter[object], width: int, ) -> AnyFormattedText: value = progress.items_completed / progress.time_elapsed.total_seconds() return self.template.format(iterations_per_second=value) def get_width(self, progress_bar: ProgressBar) -> AnyDimension: all_values = [ len(f"{c.items_completed / c.time_elapsed.total_seconds():.2f}") for c in progress_bar.counters ] if all_values: return max(all_values) return 0
IterationsPerSecond
python
huggingface__transformers
src/transformers/models/vaultgemma/configuration_vaultgemma.py
{ "start": 1319, "end": 10161 }
class ____(PreTrainedConfig): r""" This is the configuration class to store the configuration of a [`VaultGemmaModel`]. It is used to instantiate an VaultGemma model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VaultGemma-7B. e.g. [google/vaultgemma-7b](https://huggingface.co/google/vaultgemma-7b) Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PreTrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the VaultGemma model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`VaultGemmaModel`] hidden_size (`int`, *optional*, defaults to 2304): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 9216): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 26): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 4): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_parameters (`RopeParameters`, *optional*): Dictionary containing the configuration parameters for the RoPE embeddings. The dictionary should contain a value for `rope_theta` and optionally parameters used for scaling in case you want to use RoPE with longer `max_position_embeddings`. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores sliding_window (`int`, *optional*, defaults to 4096): in VaultGemma, every other layer uses sliding window attention. This is the size of the sliding window. layer_types (`list`, *optional*): Attention pattern for each layer. final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits. attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores. ```python >>> from transformers import VaultGemmaModel, VaultGemmaConfig >>> # Initializing a VaultGemma vaultgemma-7b style configuration >>> configuration = VaultGemmaConfig() >>> # Initializing a model from the vaultgemma-7b style configuration >>> model = VaultGemmaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vaultgemma" keys_to_ignore_at_inference = ["past_key_values"] base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size: Optional[int] = 256000, hidden_size: Optional[int] = 2304, intermediate_size: Optional[int] = 9216, num_hidden_layers: Optional[int] = 26, num_attention_heads: Optional[int] = 8, num_key_value_heads: Optional[int] = 4, head_dim: Optional[int] = 256, hidden_activation: Optional[str] = "gelu_pytorch_tanh", max_position_embeddings: Optional[int] = 8192, initializer_range: Optional[float] = 0.02, rms_norm_eps: Optional[int] = 1e-6, use_cache: Optional[bool] = True, pad_token_id: Optional[int] = 0, eos_token_id: Optional[int] = 1, bos_token_id: Optional[int] = 2, tie_word_embeddings: Optional[bool] = True, rope_parameters: Optional[RopeParameters | dict[str, RopeParameters]] = None, attention_bias: Optional[bool] = False, attention_dropout: Optional[float] = 0.0, query_pre_attn_scalar: Optional[int] = 256, sliding_window: Optional[int] = 4096, layer_types: Optional[list[str]] = None, final_logit_softcapping: Optional[float] = 30.0, attn_logit_softcapping: Optional[float] = 50.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.hidden_activation = hidden_activation self.query_pre_attn_scalar = query_pre_attn_scalar self.sliding_window = sliding_window self.final_logit_softcapping = final_logit_softcapping self.attn_logit_softcapping = attn_logit_softcapping self.layer_types = layer_types if self.layer_types is None: self.layer_types = [ "sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers) ] layer_type_validation(self.layer_types, self.num_hidden_layers) self.rope_parameters = rope_parameters super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["VaultGemmaConfig"]
VaultGemmaConfig
python
google__jax
docs/autodidax2_part1.py
{ "start": 2931, "end": 7205 }
class ____: def interpret_op(self, op, args): assert all(isinstance(arg, float) for arg in args) match op: case Op.add: x, y = args return x + y case Op.mul: x, y = args return x * y case _: raise ValueError(f"Unrecognized primitive op: {op}") # The current interpreter is initially the evaluating interpreter. current_interpreter = EvalInterpreter() # A context manager for temporarily changing the current interpreter @contextmanager def set_interpreter(new_interpreter): global current_interpreter prev_interpreter = current_interpreter try: current_interpreter = new_interpreter yield finally: current_interpreter = prev_interpreter # The user-facing functions `mul` and `add` dispatch to the current interpreter. def add(x, y): return current_interpreter.interpret_op(Op.add, (x, y)) def mul(x, y): return current_interpreter.interpret_op(Op.mul, (x, y)) # - # At this point we can call `foo` with ordinary concrete inputs and see the # results: print(foo(2.0)) # ## Aside: forward-mode automatic differentiation # For our second interpreter we're going to try forward-mode automatic # differentiation (AD). Here's a quick introduction to forward-mode AD in case # this is the first time you've come across it. Otherwise skip ahead to the # "JVPInterprer" section. # Suppose we're interested in the derivative of `foo(x)` evaluated at `x=2.0`. # We could approximate it with finite differences: print((foo(2.00001) - foo(2.0)) / 0.00001) # The answer is close to 7.0 as expected. But computing it this way required two # evaluations of the function (not to mention the roundoff error and truncation # error). Here's a funny thing though. We can almost get the answer with a # single evaluation: print(foo(2.00001)) # The answer we're looking for, 7.0, is right there in the insignificant digits! # Here's one way to think about what's happening. The initial argument to `foo`, # `2.00001`, carries two pieces of data: a "primal" value, 2.0, and a "tangent" # value, `1.0`. The representation of this primal-tangent pair, `2.00001`, is # the sum of the two, with the tangent scaled by a small fixed epsilon, `1e-5`. # Ordinary evaluation of `foo(2.00001)` propagates this primal-tangent pair, # producing `10.0000700001` as the result. The primal and tangent components are # well separated in scale so we can visually interpret the result as the # primal-tangent pair (10.0, 7.0), ignoring the the ~1e-10 truncation error at # the end. # The idea with forward-mode differentiation is to do the same thing but exactly # and explicitly (eyeballing floats doesn't really scale). We'll represent the # primal-tangent pair as an actual pair instead of folding them both into a # single floating point number. For each primitive operation we'll have a rule # that describes how to propagate these primal tangent pairs. Let's work out the # rules for our two primitives. # Addition is easy. Consider `x + y` where `x = xp + xt * eps` and `y = yp + yt * eps` # ("p" for "primal", "t" for "tangent"): # # x + y = (xp + xt * eps) + (yp + yt * eps) # = (xp + yp) # primal component # + (xt + yt) * eps # tangent component # # The result is a first-order polynomial in `eps` and we can read off the # primal-tangent pair as (xp + yp, xt + yt). # Multiplication is more interesting: # # x * y = (xp + xt * eps) * (yp + yt * eps) # = (xp * yp) # primal component # + (xp * yt + xt * yp) * eps # tangent component # + (xt * yt) * eps * eps # quadratic component, vanishes in the eps->0 limit # # Now we have a second order polynomial. But as epsilon goes to zero the # quadratic term vanishes and our primal-tangent pair # is just `(xp * yp, xp * yt + xt * yp)` # (In our earlier example with finite `eps` this term not vanishing is # why we had the 1e-10 "truncation error"). # Putting this into code, we can write down the forward-AD rules for addition # and multiplication and express `foo` in terms of these: # + from dataclasses import dataclass # A primal-tangent pair is conventionally called a "dual number" @dataclass
EvalInterpreter
python
ethereum__web3.py
web3/exceptions.py
{ "start": 7815, "end": 7972 }
class ____(PersistentConnectionError): """ Raised when a persistent connection is closed gracefully by the server. """
PersistentConnectionClosedOK
python
HypothesisWorks__hypothesis
hypothesis-python/tests/nocover/test_type_lookup_future_annotations.py
{ "start": 671, "end": 704 }
class ____(TypedDict): a: int
A
python
Textualize__rich
rich/table.py
{ "start": 6133, "end": 40025 }
class ____(JupyterMixin): """A console renderable to draw a table. Args: *headers (Union[Column, str]): Column headers, either as a string, or :class:`~rich.table.Column` instance. title (Union[str, Text], optional): The title of the table rendered at the top. Defaults to None. caption (Union[str, Text], optional): The table caption rendered below. Defaults to None. width (int, optional): The width in characters of the table, or ``None`` to automatically fit. Defaults to None. min_width (Optional[int], optional): The minimum width of the table, or ``None`` for no minimum. Defaults to None. box (box.Box, optional): One of the constants in box.py used to draw the edges (see :ref:`appendix_box`), or ``None`` for no box lines. Defaults to box.HEAVY_HEAD. safe_box (Optional[bool], optional): Disable box characters that don't display on windows legacy terminal with *raster* fonts. Defaults to True. padding (PaddingDimensions, optional): Padding for cells (top, right, bottom, left). Defaults to (0, 1). collapse_padding (bool, optional): Enable collapsing of padding around cells. Defaults to False. pad_edge (bool, optional): Enable padding of edge cells. Defaults to True. expand (bool, optional): Expand the table to fit the available space if ``True``, otherwise the table width will be auto-calculated. Defaults to False. show_header (bool, optional): Show a header row. Defaults to True. show_footer (bool, optional): Show a footer row. Defaults to False. show_edge (bool, optional): Draw a box around the outside of the table. Defaults to True. show_lines (bool, optional): Draw lines between every row. Defaults to False. leading (int, optional): Number of blank lines between rows (precludes ``show_lines``). Defaults to 0. style (Union[str, Style], optional): Default style for the table. Defaults to "none". row_styles (List[Union, str], optional): Optional list of row styles, if more than one style is given then the styles will alternate. Defaults to None. header_style (Union[str, Style], optional): Style of the header. Defaults to "table.header". footer_style (Union[str, Style], optional): Style of the footer. Defaults to "table.footer". border_style (Union[str, Style], optional): Style of the border. Defaults to None. title_style (Union[str, Style], optional): Style of the title. Defaults to None. caption_style (Union[str, Style], optional): Style of the caption. Defaults to None. title_justify (str, optional): Justify method for title. Defaults to "center". caption_justify (str, optional): Justify method for caption. Defaults to "center". highlight (bool, optional): Highlight cell contents (if str). Defaults to False. """ columns: List[Column] rows: List[Row] def __init__( self, *headers: Union[Column, str], title: Optional[TextType] = None, caption: Optional[TextType] = None, width: Optional[int] = None, min_width: Optional[int] = None, box: Optional[box.Box] = box.HEAVY_HEAD, safe_box: Optional[bool] = None, padding: PaddingDimensions = (0, 1), collapse_padding: bool = False, pad_edge: bool = True, expand: bool = False, show_header: bool = True, show_footer: bool = False, show_edge: bool = True, show_lines: bool = False, leading: int = 0, style: StyleType = "none", row_styles: Optional[Iterable[StyleType]] = None, header_style: Optional[StyleType] = "table.header", footer_style: Optional[StyleType] = "table.footer", border_style: Optional[StyleType] = None, title_style: Optional[StyleType] = None, caption_style: Optional[StyleType] = None, title_justify: "JustifyMethod" = "center", caption_justify: "JustifyMethod" = "center", highlight: bool = False, ) -> None: self.columns: List[Column] = [] self.rows: List[Row] = [] self.title = title self.caption = caption self.width = width self.min_width = min_width self.box = box self.safe_box = safe_box self._padding = Padding.unpack(padding) self.pad_edge = pad_edge self._expand = expand self.show_header = show_header self.show_footer = show_footer self.show_edge = show_edge self.show_lines = show_lines self.leading = leading self.collapse_padding = collapse_padding self.style = style self.header_style = header_style or "" self.footer_style = footer_style or "" self.border_style = border_style self.title_style = title_style self.caption_style = caption_style self.title_justify: "JustifyMethod" = title_justify self.caption_justify: "JustifyMethod" = caption_justify self.highlight = highlight self.row_styles: Sequence[StyleType] = list(row_styles or []) append_column = self.columns.append for header in headers: if isinstance(header, str): self.add_column(header=header) else: header._index = len(self.columns) append_column(header) @classmethod def grid( cls, *headers: Union[Column, str], padding: PaddingDimensions = 0, collapse_padding: bool = True, pad_edge: bool = False, expand: bool = False, ) -> "Table": """Get a table with no lines, headers, or footer. Args: *headers (Union[Column, str]): Column headers, either as a string, or :class:`~rich.table.Column` instance. padding (PaddingDimensions, optional): Get padding around cells. Defaults to 0. collapse_padding (bool, optional): Enable collapsing of padding around cells. Defaults to True. pad_edge (bool, optional): Enable padding around edges of table. Defaults to False. expand (bool, optional): Expand the table to fit the available space if ``True``, otherwise the table width will be auto-calculated. Defaults to False. Returns: Table: A table instance. """ return cls( *headers, box=None, padding=padding, collapse_padding=collapse_padding, show_header=False, show_footer=False, show_edge=False, pad_edge=pad_edge, expand=expand, ) @property def expand(self) -> bool: """Setting a non-None self.width implies expand.""" return self._expand or self.width is not None @expand.setter def expand(self, expand: bool) -> None: """Set expand.""" self._expand = expand @property def _extra_width(self) -> int: """Get extra width to add to cell content.""" width = 0 if self.box and self.show_edge: width += 2 if self.box: width += len(self.columns) - 1 return width @property def row_count(self) -> int: """Get the current number of rows.""" return len(self.rows) def get_row_style(self, console: "Console", index: int) -> StyleType: """Get the current row style.""" style = Style.null() if self.row_styles: style += console.get_style(self.row_styles[index % len(self.row_styles)]) row_style = self.rows[index].style if row_style is not None: style += console.get_style(row_style) return style def __rich_measure__( self, console: "Console", options: "ConsoleOptions" ) -> Measurement: max_width = options.max_width if self.width is not None: max_width = self.width if max_width < 0: return Measurement(0, 0) extra_width = self._extra_width max_width = sum( self._calculate_column_widths( console, options.update_width(max_width - extra_width) ) ) _measure_column = self._measure_column measurements = [ _measure_column(console, options.update_width(max_width), column) for column in self.columns ] minimum_width = ( sum(measurement.minimum for measurement in measurements) + extra_width ) maximum_width = ( sum(measurement.maximum for measurement in measurements) + extra_width if (self.width is None) else self.width ) measurement = Measurement(minimum_width, maximum_width) measurement = measurement.clamp(self.min_width) return measurement @property def padding(self) -> Tuple[int, int, int, int]: """Get cell padding.""" return self._padding @padding.setter def padding(self, padding: PaddingDimensions) -> "Table": """Set cell padding.""" self._padding = Padding.unpack(padding) return self def add_column( self, header: "RenderableType" = "", footer: "RenderableType" = "", *, header_style: Optional[StyleType] = None, highlight: Optional[bool] = None, footer_style: Optional[StyleType] = None, style: Optional[StyleType] = None, justify: "JustifyMethod" = "left", vertical: "VerticalAlignMethod" = "top", overflow: "OverflowMethod" = "ellipsis", width: Optional[int] = None, min_width: Optional[int] = None, max_width: Optional[int] = None, ratio: Optional[int] = None, no_wrap: bool = False, ) -> None: """Add a column to the table. Args: header (RenderableType, optional): Text or renderable for the header. Defaults to "". footer (RenderableType, optional): Text or renderable for the footer. Defaults to "". header_style (Union[str, Style], optional): Style for the header, or None for default. Defaults to None. highlight (bool, optional): Whether to highlight the text. The default of None uses the value of the table (self) object. footer_style (Union[str, Style], optional): Style for the footer, or None for default. Defaults to None. style (Union[str, Style], optional): Style for the column cells, or None for default. Defaults to None. justify (JustifyMethod, optional): Alignment for cells. Defaults to "left". vertical (VerticalAlignMethod, optional): Vertical alignment, one of "top", "middle", or "bottom". Defaults to "top". overflow (OverflowMethod): Overflow method: "crop", "fold", "ellipsis". Defaults to "ellipsis". width (int, optional): Desired width of column in characters, or None to fit to contents. Defaults to None. min_width (Optional[int], optional): Minimum width of column, or ``None`` for no minimum. Defaults to None. max_width (Optional[int], optional): Maximum width of column, or ``None`` for no maximum. Defaults to None. ratio (int, optional): Flexible ratio for the column (requires ``Table.expand`` or ``Table.width``). Defaults to None. no_wrap (bool, optional): Set to ``True`` to disable wrapping of this column. """ column = Column( _index=len(self.columns), header=header, footer=footer, header_style=header_style or "", highlight=highlight if highlight is not None else self.highlight, footer_style=footer_style or "", style=style or "", justify=justify, vertical=vertical, overflow=overflow, width=width, min_width=min_width, max_width=max_width, ratio=ratio, no_wrap=no_wrap, ) self.columns.append(column) def add_row( self, *renderables: Optional["RenderableType"], style: Optional[StyleType] = None, end_section: bool = False, ) -> None: """Add a row of renderables. Args: *renderables (None or renderable): Each cell in a row must be a renderable object (including str), or ``None`` for a blank cell. style (StyleType, optional): An optional style to apply to the entire row. Defaults to None. end_section (bool, optional): End a section and draw a line. Defaults to False. Raises: errors.NotRenderableError: If you add something that can't be rendered. """ def add_cell(column: Column, renderable: "RenderableType") -> None: column._cells.append(renderable) cell_renderables: List[Optional["RenderableType"]] = list(renderables) columns = self.columns if len(cell_renderables) < len(columns): cell_renderables = [ *cell_renderables, *[None] * (len(columns) - len(cell_renderables)), ] for index, renderable in enumerate(cell_renderables): if index == len(columns): column = Column(_index=index, highlight=self.highlight) for _ in self.rows: add_cell(column, Text("")) self.columns.append(column) else: column = columns[index] if renderable is None: add_cell(column, "") elif is_renderable(renderable): add_cell(column, renderable) else: raise errors.NotRenderableError( f"unable to render {type(renderable).__name__}; a string or other renderable object is required" ) self.rows.append(Row(style=style, end_section=end_section)) def add_section(self) -> None: """Add a new section (draw a line after current row).""" if self.rows: self.rows[-1].end_section = True def __rich_console__( self, console: "Console", options: "ConsoleOptions" ) -> "RenderResult": if not self.columns: yield Segment("\n") return max_width = options.max_width if self.width is not None: max_width = self.width extra_width = self._extra_width widths = self._calculate_column_widths( console, options.update_width(max_width - extra_width) ) table_width = sum(widths) + extra_width render_options = options.update( width=table_width, highlight=self.highlight, height=None ) def render_annotation( text: TextType, style: StyleType, justify: "JustifyMethod" = "center" ) -> "RenderResult": render_text = ( console.render_str(text, style=style, highlight=False) if isinstance(text, str) else text ) return console.render( render_text, options=render_options.update(justify=justify) ) if self.title: yield from render_annotation( self.title, style=Style.pick_first(self.title_style, "table.title"), justify=self.title_justify, ) yield from self._render(console, render_options, widths) if self.caption: yield from render_annotation( self.caption, style=Style.pick_first(self.caption_style, "table.caption"), justify=self.caption_justify, ) def _calculate_column_widths( self, console: "Console", options: "ConsoleOptions" ) -> List[int]: """Calculate the widths of each column, including padding, not including borders.""" max_width = options.max_width columns = self.columns width_ranges = [ self._measure_column(console, options, column) for column in columns ] widths = [_range.maximum or 1 for _range in width_ranges] get_padding_width = self._get_padding_width extra_width = self._extra_width if self.expand: ratios = [col.ratio or 0 for col in columns if col.flexible] if any(ratios): fixed_widths = [ 0 if column.flexible else _range.maximum for _range, column in zip(width_ranges, columns) ] flex_minimum = [ (column.width or 1) + get_padding_width(column._index) for column in columns if column.flexible ] flexible_width = max_width - sum(fixed_widths) flex_widths = ratio_distribute(flexible_width, ratios, flex_minimum) iter_flex_widths = iter(flex_widths) for index, column in enumerate(columns): if column.flexible: widths[index] = fixed_widths[index] + next(iter_flex_widths) table_width = sum(widths) if table_width > max_width: widths = self._collapse_widths( widths, [(column.width is None and not column.no_wrap) for column in columns], max_width, ) table_width = sum(widths) # last resort, reduce columns evenly if table_width > max_width: excess_width = table_width - max_width widths = ratio_reduce(excess_width, [1] * len(widths), widths, widths) table_width = sum(widths) width_ranges = [ self._measure_column(console, options.update_width(width), column) for width, column in zip(widths, columns) ] widths = [_range.maximum or 0 for _range in width_ranges] if (table_width < max_width and self.expand) or ( self.min_width is not None and table_width < (self.min_width - extra_width) ): _max_width = ( max_width if self.min_width is None else min(self.min_width - extra_width, max_width) ) pad_widths = ratio_distribute(_max_width - table_width, widths) widths = [_width + pad for _width, pad in zip(widths, pad_widths)] return widths @classmethod def _collapse_widths( cls, widths: List[int], wrapable: List[bool], max_width: int ) -> List[int]: """Reduce widths so that the total is under max_width. Args: widths (List[int]): List of widths. wrapable (List[bool]): List of booleans that indicate if a column may shrink. max_width (int): Maximum width to reduce to. Returns: List[int]: A new list of widths. """ total_width = sum(widths) excess_width = total_width - max_width if any(wrapable): while total_width and excess_width > 0: max_column = max( width for width, allow_wrap in zip(widths, wrapable) if allow_wrap ) second_max_column = max( width if allow_wrap and width != max_column else 0 for width, allow_wrap in zip(widths, wrapable) ) column_difference = max_column - second_max_column ratios = [ (1 if (width == max_column and allow_wrap) else 0) for width, allow_wrap in zip(widths, wrapable) ] if not any(ratios) or not column_difference: break max_reduce = [min(excess_width, column_difference)] * len(widths) widths = ratio_reduce(excess_width, ratios, max_reduce, widths) total_width = sum(widths) excess_width = total_width - max_width return widths def _get_cells( self, console: "Console", column_index: int, column: Column ) -> Iterable[_Cell]: """Get all the cells with padding and optional header.""" collapse_padding = self.collapse_padding pad_edge = self.pad_edge padding = self.padding any_padding = any(padding) first_column = column_index == 0 last_column = column_index == len(self.columns) - 1 _padding_cache: Dict[Tuple[bool, bool], Tuple[int, int, int, int]] = {} def get_padding(first_row: bool, last_row: bool) -> Tuple[int, int, int, int]: cached = _padding_cache.get((first_row, last_row)) if cached: return cached top, right, bottom, left = padding if collapse_padding: if not first_column: left = max(0, left - right) if not last_row: bottom = max(0, top - bottom) if not pad_edge: if first_column: left = 0 if last_column: right = 0 if first_row: top = 0 if last_row: bottom = 0 _padding = (top, right, bottom, left) _padding_cache[(first_row, last_row)] = _padding return _padding raw_cells: List[Tuple[StyleType, "RenderableType"]] = [] _append = raw_cells.append get_style = console.get_style if self.show_header: header_style = get_style(self.header_style or "") + get_style( column.header_style ) _append((header_style, column.header)) cell_style = get_style(column.style or "") for cell in column.cells: _append((cell_style, cell)) if self.show_footer: footer_style = get_style(self.footer_style or "") + get_style( column.footer_style ) _append((footer_style, column.footer)) if any_padding: _Padding = Padding for first, last, (style, renderable) in loop_first_last(raw_cells): yield _Cell( style, _Padding(renderable, get_padding(first, last)), getattr(renderable, "vertical", None) or column.vertical, ) else: for style, renderable in raw_cells: yield _Cell( style, renderable, getattr(renderable, "vertical", None) or column.vertical, ) def _get_padding_width(self, column_index: int) -> int: """Get extra width from padding.""" _, pad_right, _, pad_left = self.padding if self.collapse_padding: if column_index > 0: pad_left = max(0, pad_left - pad_right) return pad_left + pad_right def _measure_column( self, console: "Console", options: "ConsoleOptions", column: Column, ) -> Measurement: """Get the minimum and maximum width of the column.""" max_width = options.max_width if max_width < 1: return Measurement(0, 0) padding_width = self._get_padding_width(column._index) if column.width is not None: # Fixed width column return Measurement( column.width + padding_width, column.width + padding_width ).with_maximum(max_width) # Flexible column, we need to measure contents min_widths: List[int] = [] max_widths: List[int] = [] append_min = min_widths.append append_max = max_widths.append get_render_width = Measurement.get for cell in self._get_cells(console, column._index, column): _min, _max = get_render_width(console, options, cell.renderable) append_min(_min) append_max(_max) measurement = Measurement( max(min_widths) if min_widths else 1, max(max_widths) if max_widths else max_width, ).with_maximum(max_width) measurement = measurement.clamp( None if column.min_width is None else column.min_width + padding_width, None if column.max_width is None else column.max_width + padding_width, ) return measurement def _render( self, console: "Console", options: "ConsoleOptions", widths: List[int] ) -> "RenderResult": table_style = console.get_style(self.style or "") border_style = table_style + console.get_style(self.border_style or "") _column_cells = ( self._get_cells(console, column_index, column) for column_index, column in enumerate(self.columns) ) row_cells: List[Tuple[_Cell, ...]] = list(zip(*_column_cells)) _box = ( self.box.substitute( options, safe=pick_bool(self.safe_box, console.safe_box) ) if self.box else None ) _box = _box.get_plain_headed_box() if _box and not self.show_header else _box new_line = Segment.line() columns = self.columns show_header = self.show_header show_footer = self.show_footer show_edge = self.show_edge show_lines = self.show_lines leading = self.leading _Segment = Segment if _box: box_segments = [ ( _Segment(_box.head_left, border_style), _Segment(_box.head_right, border_style), _Segment(_box.head_vertical, border_style), ), ( _Segment(_box.mid_left, border_style), _Segment(_box.mid_right, border_style), _Segment(_box.mid_vertical, border_style), ), ( _Segment(_box.foot_left, border_style), _Segment(_box.foot_right, border_style), _Segment(_box.foot_vertical, border_style), ), ] if show_edge: yield _Segment(_box.get_top(widths), border_style) yield new_line else: box_segments = [] get_row_style = self.get_row_style get_style = console.get_style for index, (first, last, row_cell) in enumerate(loop_first_last(row_cells)): header_row = first and show_header footer_row = last and show_footer row = ( self.rows[index - show_header] if (not header_row and not footer_row) else None ) max_height = 1 cells: List[List[List[Segment]]] = [] if header_row or footer_row: row_style = Style.null() else: row_style = get_style( get_row_style(console, index - 1 if show_header else index) ) for width, cell, column in zip(widths, row_cell, columns): render_options = options.update( width=width, justify=column.justify, no_wrap=column.no_wrap, overflow=column.overflow, height=None, highlight=column.highlight, ) lines = console.render_lines( cell.renderable, render_options, style=get_style(cell.style) + row_style, ) max_height = max(max_height, len(lines)) cells.append(lines) row_height = max(len(cell) for cell in cells) def align_cell( cell: List[List[Segment]], vertical: "VerticalAlignMethod", width: int, style: Style, ) -> List[List[Segment]]: if header_row: vertical = "bottom" elif footer_row: vertical = "top" if vertical == "top": return _Segment.align_top(cell, width, row_height, style) elif vertical == "middle": return _Segment.align_middle(cell, width, row_height, style) return _Segment.align_bottom(cell, width, row_height, style) cells[:] = [ _Segment.set_shape( align_cell( cell, _cell.vertical, width, get_style(_cell.style) + row_style, ), width, max_height, ) for width, _cell, cell, column in zip(widths, row_cell, cells, columns) ] if _box: if last and show_footer: yield _Segment( _box.get_row(widths, "foot", edge=show_edge), border_style ) yield new_line left, right, _divider = box_segments[0 if first else (2 if last else 1)] # If the column divider is whitespace also style it with the row background divider = ( _divider if _divider.text.strip() else _Segment( _divider.text, row_style.background_style + _divider.style ) ) for line_no in range(max_height): if show_edge: yield left for last_cell, rendered_cell in loop_last(cells): yield from rendered_cell[line_no] if not last_cell: yield divider if show_edge: yield right yield new_line else: for line_no in range(max_height): for rendered_cell in cells: yield from rendered_cell[line_no] yield new_line if _box and first and show_header: yield _Segment( _box.get_row(widths, "head", edge=show_edge), border_style ) yield new_line end_section = row and row.end_section if _box and (show_lines or leading or end_section): if ( not last and not (show_footer and index >= len(row_cells) - 2) and not (show_header and header_row) ): if leading: yield _Segment( _box.get_row(widths, "mid", edge=show_edge) * leading, border_style, ) else: yield _Segment( _box.get_row(widths, "row", edge=show_edge), border_style ) yield new_line if _box and show_edge: yield _Segment(_box.get_bottom(widths), border_style) yield new_line if __name__ == "__main__": # pragma: no cover from rich.console import Console from rich.highlighter import ReprHighlighter from ._timer import timer with timer("Table render"): table = Table( title="Star Wars Movies", caption="Rich example table", caption_justify="right", ) table.add_column( "Released", header_style="bright_cyan", style="cyan", no_wrap=True ) table.add_column("Title", style="magenta") table.add_column("Box Office", justify="right", style="green") table.add_row( "Dec 20, 2019", "Star Wars: The Rise of Skywalker", "$952,110,690", ) table.add_row("May 25, 2018", "Solo: A Star Wars Story", "$393,151,347") table.add_row( "Dec 15, 2017", "Star Wars Ep. V111: The Last Jedi", "$1,332,539,889", style="on black", end_section=True, ) table.add_row( "Dec 16, 2016", "Rogue One: A Star Wars Story", "$1,332,439,889", ) def header(text: str) -> None: console.print() console.rule(highlight(text)) console.print() console = Console() highlight = ReprHighlighter() header("Example Table") console.print(table, justify="center") table.expand = True header("expand=True") console.print(table) table.width = 50 header("width=50") console.print(table, justify="center") table.width = None table.expand = False table.row_styles = ["dim", "none"] header("row_styles=['dim', 'none']") console.print(table, justify="center") table.width = None table.expand = False table.row_styles = ["dim", "none"] table.leading = 1 header("leading=1, row_styles=['dim', 'none']") console.print(table, justify="center") table.width = None table.expand = False table.row_styles = ["dim", "none"] table.show_lines = True table.leading = 0 header("show_lines=True, row_styles=['dim', 'none']") console.print(table, justify="center")
Table
python
html5lib__html5lib-python
html5lib/tests/tokenizer.py
{ "start": 246, "end": 6373 }
class ____(object): def __init__(self, initialState, lastStartTag=None): self.tokenizer = HTMLTokenizer self._state = initialState self._lastStartTag = lastStartTag def parse(self, stream, encoding=None, innerHTML=False): # pylint:disable=unused-argument tokenizer = self.tokenizer(stream, encoding) self.outputTokens = [] tokenizer.state = getattr(tokenizer, self._state) if self._lastStartTag is not None: tokenizer.currentToken = {"type": "startTag", "name": self._lastStartTag} types = {v: k for k, v in constants.tokenTypes.items()} for token in tokenizer: getattr(self, 'process%s' % types[token["type"]])(token) return self.outputTokens def processDoctype(self, token): self.outputTokens.append(["DOCTYPE", token["name"], token["publicId"], token["systemId"], token["correct"]]) def processStartTag(self, token): self.outputTokens.append(["StartTag", token["name"], token["data"], token["selfClosing"]]) def processEmptyTag(self, token): if token["name"] not in constants.voidElements: self.outputTokens.append("ParseError") self.outputTokens.append(["StartTag", token["name"], dict(token["data"][::-1])]) def processEndTag(self, token): self.outputTokens.append(["EndTag", token["name"], token["selfClosing"]]) def processComment(self, token): self.outputTokens.append(["Comment", token["data"]]) def processSpaceCharacters(self, token): self.outputTokens.append(["Character", token["data"]]) self.processSpaceCharacters = self.processCharacters def processCharacters(self, token): self.outputTokens.append(["Character", token["data"]]) def processEOF(self, token): pass def processParseError(self, token): self.outputTokens.append(["ParseError", token["data"]]) def concatenateCharacterTokens(tokens): outputTokens = [] for token in tokens: if "ParseError" not in token and token[0] == "Character": if (outputTokens and "ParseError" not in outputTokens[-1] and outputTokens[-1][0] == "Character"): outputTokens[-1][1] += token[1] else: outputTokens.append(token) else: outputTokens.append(token) return outputTokens def normalizeTokens(tokens): # TODO: convert tests to reflect arrays for i, token in enumerate(tokens): if token[0] == 'ParseError': tokens[i] = token[0] return tokens def tokensMatch(expectedTokens, receivedTokens, ignoreErrorOrder, ignoreErrors=False): """Test whether the test has passed or failed If the ignoreErrorOrder flag is set to true we don't test the relative positions of parse errors and non parse errors """ checkSelfClosing = False for token in expectedTokens: if (token[0] == "StartTag" and len(token) == 4 or token[0] == "EndTag" and len(token) == 3): checkSelfClosing = True break if not checkSelfClosing: for token in receivedTokens: if token[0] == "StartTag" or token[0] == "EndTag": token.pop() if not ignoreErrorOrder and not ignoreErrors: expectedTokens = concatenateCharacterTokens(expectedTokens) return expectedTokens == receivedTokens else: # Sort the tokens into two groups; non-parse errors and parse errors tokens = {"expected": [[], []], "received": [[], []]} for tokenType, tokenList in zip(list(tokens.keys()), (expectedTokens, receivedTokens)): for token in tokenList: if token != "ParseError": tokens[tokenType][0].append(token) else: if not ignoreErrors: tokens[tokenType][1].append(token) tokens[tokenType][0] = concatenateCharacterTokens(tokens[tokenType][0]) return tokens["expected"] == tokens["received"] _surrogateRe = re.compile(r"\\u([0-9A-Fa-f]{4})(?:\\u([0-9A-Fa-f]{4}))?") def unescape(test): def decode(inp): """Decode \\uXXXX escapes This decodes \\uXXXX escapes, possibly into non-BMP characters when two surrogate character escapes are adjacent to each other. """ # This cannot be implemented using the unicode_escape codec # because that requires its input be ISO-8859-1, and we need # arbitrary unicode as input. def repl(m): if m.group(2) is not None: high = int(m.group(1), 16) low = int(m.group(2), 16) if 0xD800 <= high <= 0xDBFF and 0xDC00 <= low <= 0xDFFF: cp = ((high - 0xD800) << 10) + (low - 0xDC00) + 0x10000 return unichr(cp) else: return unichr(high) + unichr(low) else: return unichr(int(m.group(1), 16)) try: return _surrogateRe.sub(repl, inp) except ValueError: # This occurs when unichr throws ValueError, which should # only be for a lone-surrogate. if _utils.supports_lone_surrogates: raise return None test["input"] = decode(test["input"]) for token in test["output"]: if token == "ParseError": continue else: token[1] = decode(token[1]) if len(token) > 2: for key, value in token[2]: del token[2][key] token[2][decode(key)] = decode(value) return test def _doCapitalize(match): return match.group(1).upper() _capitalizeRe = re.compile(r"\W+(\w)").sub def capitalize(s): s = s.lower() s = _capitalizeRe(_doCapitalize, s) return s
TokenizerTestParser
python
numba__numba
numba/cuda/tests/cudapy/test_cuda_array_interface.py
{ "start": 449, "end": 15844 }
class ____(ContextResettingTestCase): def assertPointersEqual(self, a, b): if driver.USE_NV_BINDING: self.assertEqual(int(a.device_ctypes_pointer), int(b.device_ctypes_pointer)) def test_as_cuda_array(self): h_arr = np.arange(10) self.assertFalse(cuda.is_cuda_array(h_arr)) d_arr = cuda.to_device(h_arr) self.assertTrue(cuda.is_cuda_array(d_arr)) my_arr = ForeignArray(d_arr) self.assertTrue(cuda.is_cuda_array(my_arr)) wrapped = cuda.as_cuda_array(my_arr) self.assertTrue(cuda.is_cuda_array(wrapped)) # Their values must equal the original array np.testing.assert_array_equal(wrapped.copy_to_host(), h_arr) np.testing.assert_array_equal(d_arr.copy_to_host(), h_arr) # d_arr and wrapped must be the same buffer self.assertPointersEqual(wrapped, d_arr) def get_stream_value(self, stream): if driver.USE_NV_BINDING: return int(stream.handle) else: return stream.handle.value @skip_if_external_memmgr('Ownership not relevant with external memmgr') def test_ownership(self): # Get the deallocation queue ctx = cuda.current_context() deallocs = ctx.memory_manager.deallocations # Flush all deallocations deallocs.clear() self.assertEqual(len(deallocs), 0) # Make new device array d_arr = cuda.to_device(np.arange(100)) # Convert it cvted = cuda.as_cuda_array(d_arr) # Drop reference to the original object such that # only `cvted` has a reference to it. del d_arr # There shouldn't be any new deallocations self.assertEqual(len(deallocs), 0) # Try to access the memory and verify its content np.testing.assert_equal(cvted.copy_to_host(), np.arange(100)) # Drop last reference to the memory del cvted self.assertEqual(len(deallocs), 1) # Flush deallocs.clear() def test_kernel_arg(self): h_arr = np.arange(10) d_arr = cuda.to_device(h_arr) my_arr = ForeignArray(d_arr) wrapped = cuda.as_cuda_array(my_arr) @cuda.jit def mutate(arr, val): i = cuda.grid(1) if i >= len(arr): return arr[i] += val val = 7 mutate.forall(wrapped.size)(wrapped, val) np.testing.assert_array_equal(wrapped.copy_to_host(), h_arr + val) np.testing.assert_array_equal(d_arr.copy_to_host(), h_arr + val) def test_ufunc_arg(self): @vectorize(['f8(f8, f8)'], target='cuda') def vadd(a, b): return a + b # Case 1: use custom array as argument h_arr = np.random.random(10) arr = ForeignArray(cuda.to_device(h_arr)) val = 6 out = vadd(arr, val) np.testing.assert_array_equal(out.copy_to_host(), h_arr + val) # Case 2: use custom array as return out = ForeignArray(cuda.device_array(h_arr.shape)) returned = vadd(h_arr, val, out=out) np.testing.assert_array_equal(returned.copy_to_host(), h_arr + val) def test_gufunc_arg(self): @guvectorize(['(f8, f8, f8[:])'], '(),()->()', target='cuda') def vadd(inp, val, out): out[0] = inp + val # Case 1: use custom array as argument h_arr = np.random.random(10) arr = ForeignArray(cuda.to_device(h_arr)) val = np.float64(7) out = vadd(arr, val) np.testing.assert_array_equal(out.copy_to_host(), h_arr + val) # Case 2: use custom array as return out = ForeignArray(cuda.device_array(h_arr.shape)) returned = vadd(h_arr, val, out=out) np.testing.assert_array_equal(returned.copy_to_host(), h_arr + val) self.assertPointersEqual(returned, out._arr) def test_array_views(self): """Views created via array interface support: - Strided slices - Strided slices """ h_arr = np.random.random(10) c_arr = cuda.to_device(h_arr) arr = cuda.as_cuda_array(c_arr) # __getitem__ interface accesses expected data # Direct views np.testing.assert_array_equal(arr.copy_to_host(), h_arr) np.testing.assert_array_equal(arr[:].copy_to_host(), h_arr) # Slicing np.testing.assert_array_equal(arr[:5].copy_to_host(), h_arr[:5]) # Strided view np.testing.assert_array_equal(arr[::2].copy_to_host(), h_arr[::2]) # View of strided array arr_strided = cuda.as_cuda_array(c_arr[::2]) np.testing.assert_array_equal(arr_strided.copy_to_host(), h_arr[::2]) # A strided-view-of-array and view-of-strided-array have the same # shape, strides, itemsize, and alloc_size self.assertEqual(arr[::2].shape, arr_strided.shape) self.assertEqual(arr[::2].strides, arr_strided.strides) self.assertEqual(arr[::2].dtype.itemsize, arr_strided.dtype.itemsize) self.assertEqual(arr[::2].alloc_size, arr_strided.alloc_size) self.assertEqual(arr[::2].nbytes, arr_strided.size * arr_strided.dtype.itemsize) # __setitem__ interface propagates into external array # Writes to a slice arr[:5] = np.pi np.testing.assert_array_equal( c_arr.copy_to_host(), np.concatenate((np.full(5, np.pi), h_arr[5:])) ) # Writes to a slice from a view arr[:5] = arr[5:] np.testing.assert_array_equal( c_arr.copy_to_host(), np.concatenate((h_arr[5:], h_arr[5:])) ) # Writes through a view arr[:] = cuda.to_device(h_arr) np.testing.assert_array_equal(c_arr.copy_to_host(), h_arr) # Writes to a strided slice arr[::2] = np.pi np.testing.assert_array_equal( c_arr.copy_to_host()[::2], np.full(5, np.pi), ) np.testing.assert_array_equal( c_arr.copy_to_host()[1::2], h_arr[1::2] ) def test_negative_strided_issue(self): # issue #3705 h_arr = np.random.random(10) c_arr = cuda.to_device(h_arr) def base_offset(orig, sliced): return sliced['data'][0] - orig['data'][0] h_ai = h_arr.__array_interface__ c_ai = c_arr.__cuda_array_interface__ h_ai_sliced = h_arr[::-1].__array_interface__ c_ai_sliced = c_arr[::-1].__cuda_array_interface__ # Check data offset is correct self.assertEqual( base_offset(h_ai, h_ai_sliced), base_offset(c_ai, c_ai_sliced), ) # Check shape and strides are correct self.assertEqual(h_ai_sliced['shape'], c_ai_sliced['shape']) self.assertEqual(h_ai_sliced['strides'], c_ai_sliced['strides']) def test_negative_strided_copy_to_host(self): # issue #3705 h_arr = np.random.random(10) c_arr = cuda.to_device(h_arr) sliced = c_arr[::-1] with self.assertRaises(NotImplementedError) as raises: sliced.copy_to_host() expected_msg = 'D->H copy not implemented for negative strides' self.assertIn(expected_msg, str(raises.exception)) def test_masked_array(self): h_arr = np.random.random(10) h_mask = np.random.randint(2, size=10, dtype='bool') c_arr = cuda.to_device(h_arr) c_mask = cuda.to_device(h_mask) # Manually create a masked CUDA Array Interface dictionary masked_cuda_array_interface = c_arr.__cuda_array_interface__.copy() masked_cuda_array_interface['mask'] = c_mask with self.assertRaises(NotImplementedError) as raises: cuda.from_cuda_array_interface(masked_cuda_array_interface) expected_msg = 'Masked arrays are not supported' self.assertIn(expected_msg, str(raises.exception)) def test_zero_size_array(self): # for #4175 c_arr = cuda.device_array(0) self.assertEqual(c_arr.__cuda_array_interface__['data'][0], 0) @cuda.jit def add_one(arr): x = cuda.grid(1) N = arr.shape[0] if x < N: arr[x] += 1 d_arr = ForeignArray(c_arr) add_one[1, 10](d_arr) # this should pass def test_strides(self): # for #4175 # First, test C-contiguous array c_arr = cuda.device_array((2, 3, 4)) self.assertEqual(c_arr.__cuda_array_interface__['strides'], None) # Second, test non C-contiguous array c_arr = c_arr[:, 1, :] self.assertNotEqual(c_arr.__cuda_array_interface__['strides'], None) def test_consuming_strides(self): hostarray = np.arange(10).reshape(2, 5) devarray = cuda.to_device(hostarray) face = devarray.__cuda_array_interface__ self.assertIsNone(face['strides']) got = cuda.from_cuda_array_interface(face).copy_to_host() np.testing.assert_array_equal(got, hostarray) self.assertTrue(got.flags['C_CONTIGUOUS']) # Try non-NULL strides face['strides'] = hostarray.strides self.assertIsNotNone(face['strides']) got = cuda.from_cuda_array_interface(face).copy_to_host() np.testing.assert_array_equal(got, hostarray) self.assertTrue(got.flags['C_CONTIGUOUS']) def test_produce_no_stream(self): c_arr = cuda.device_array(10) self.assertIsNone(c_arr.__cuda_array_interface__['stream']) mapped_arr = cuda.mapped_array(10) self.assertIsNone(mapped_arr.__cuda_array_interface__['stream']) @linux_only def test_produce_managed_no_stream(self): managed_arr = cuda.managed_array(10) self.assertIsNone(managed_arr.__cuda_array_interface__['stream']) def test_produce_stream(self): s = cuda.stream() c_arr = cuda.device_array(10, stream=s) cai_stream = c_arr.__cuda_array_interface__['stream'] stream_value = self.get_stream_value(s) self.assertEqual(stream_value, cai_stream) s = cuda.stream() mapped_arr = cuda.mapped_array(10, stream=s) cai_stream = mapped_arr.__cuda_array_interface__['stream'] stream_value = self.get_stream_value(s) self.assertEqual(stream_value, cai_stream) @linux_only def test_produce_managed_stream(self): s = cuda.stream() managed_arr = cuda.managed_array(10, stream=s) cai_stream = managed_arr.__cuda_array_interface__['stream'] stream_value = self.get_stream_value(s) self.assertEqual(stream_value, cai_stream) def test_consume_no_stream(self): # Create a foreign array with no stream f_arr = ForeignArray(cuda.device_array(10)) # Ensure that the imported array has no default stream c_arr = cuda.as_cuda_array(f_arr) self.assertEqual(c_arr.stream, 0) def test_consume_stream(self): # Create a foreign array with a stream s = cuda.stream() f_arr = ForeignArray(cuda.device_array(10, stream=s)) # Ensure that an imported array has the stream as its default stream c_arr = cuda.as_cuda_array(f_arr) self.assertTrue(c_arr.stream.external) stream_value = self.get_stream_value(s) imported_stream_value = self.get_stream_value(c_arr.stream) self.assertEqual(stream_value, imported_stream_value) def test_consume_no_sync(self): # Create a foreign array with no stream f_arr = ForeignArray(cuda.device_array(10)) with patch.object(cuda.cudadrv.driver.Stream, 'synchronize', return_value=None) as mock_sync: cuda.as_cuda_array(f_arr) # Ensure the synchronize method of a stream was not called mock_sync.assert_not_called() def test_consume_sync(self): # Create a foreign array with a stream s = cuda.stream() f_arr = ForeignArray(cuda.device_array(10, stream=s)) with patch.object(cuda.cudadrv.driver.Stream, 'synchronize', return_value=None) as mock_sync: cuda.as_cuda_array(f_arr) # Ensure the synchronize method of a stream was called mock_sync.assert_called_once_with() def test_consume_sync_disabled(self): # Create a foreign array with a stream s = cuda.stream() f_arr = ForeignArray(cuda.device_array(10, stream=s)) # Set sync to false before testing. The test suite should generally be # run with sync enabled, but stash the old value just in case it is # not. with override_config('CUDA_ARRAY_INTERFACE_SYNC', False): with patch.object(cuda.cudadrv.driver.Stream, 'synchronize', return_value=None) as mock_sync: cuda.as_cuda_array(f_arr) # Ensure the synchronize method of a stream was not called mock_sync.assert_not_called() def test_launch_no_sync(self): # Create a foreign array with no stream f_arr = ForeignArray(cuda.device_array(10)) @cuda.jit def f(x): pass with patch.object(cuda.cudadrv.driver.Stream, 'synchronize', return_value=None) as mock_sync: f[1, 1](f_arr) # Ensure the synchronize method of a stream was not called mock_sync.assert_not_called() def test_launch_sync(self): # Create a foreign array with a stream s = cuda.stream() f_arr = ForeignArray(cuda.device_array(10, stream=s)) @cuda.jit def f(x): pass with patch.object(cuda.cudadrv.driver.Stream, 'synchronize', return_value=None) as mock_sync: f[1, 1](f_arr) # Ensure the synchronize method of a stream was called mock_sync.assert_called_once_with() def test_launch_sync_two_streams(self): # Create two foreign arrays with streams s1 = cuda.stream() s2 = cuda.stream() f_arr1 = ForeignArray(cuda.device_array(10, stream=s1)) f_arr2 = ForeignArray(cuda.device_array(10, stream=s2)) @cuda.jit def f(x, y): pass with patch.object(cuda.cudadrv.driver.Stream, 'synchronize', return_value=None) as mock_sync: f[1, 1](f_arr1, f_arr2) # Ensure that synchronize was called twice mock_sync.assert_has_calls([call(), call()]) def test_launch_sync_disabled(self): # Create two foreign arrays with streams s1 = cuda.stream() s2 = cuda.stream() f_arr1 = ForeignArray(cuda.device_array(10, stream=s1)) f_arr2 = ForeignArray(cuda.device_array(10, stream=s2)) with override_config('CUDA_ARRAY_INTERFACE_SYNC', False): @cuda.jit def f(x, y): pass with patch.object(cuda.cudadrv.driver.Stream, 'synchronize', return_value=None) as mock_sync: f[1, 1](f_arr1, f_arr2) # Ensure that synchronize was not called mock_sync.assert_not_called() if __name__ == "__main__": unittest.main()
TestCudaArrayInterface
python
huggingface__transformers
src/transformers/models/lxmert/modeling_lxmert.py
{ "start": 23334, "end": 26673 }
class ____(nn.Module): def __init__(self, config): super().__init__() # Obj-level image embedding layer self.visn_fc = LxmertVisualFeatureEncoder(config) self.config = config # Number of layers self.num_l_layers = config.l_layers self.num_x_layers = config.x_layers self.num_r_layers = config.r_layers # Layers # Using self.layer instead of self.l_layer to support loading BERT weights. self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)]) self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)]) self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)]) def forward( self, lang_feats, lang_attention_mask, visual_feats, visual_pos, visual_attention_mask=None, output_attentions=None, ): vision_hidden_states = () language_hidden_states = () vision_attentions = () if output_attentions or self.config.output_attentions else None language_attentions = () if output_attentions or self.config.output_attentions else None cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None visual_feats = self.visn_fc(visual_feats, visual_pos) # Run language layers for layer_module in self.layer: l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions) lang_feats = l_outputs[0] language_hidden_states = language_hidden_states + (lang_feats,) if language_attentions is not None: language_attentions = language_attentions + (l_outputs[1],) # Run relational layers for layer_module in self.r_layers: v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions) visual_feats = v_outputs[0] vision_hidden_states = vision_hidden_states + (visual_feats,) if vision_attentions is not None: vision_attentions = vision_attentions + (v_outputs[1],) # Run cross-modality layers for layer_module in self.x_layers: x_outputs = layer_module( lang_feats, lang_attention_mask, visual_feats, visual_attention_mask, output_attentions=output_attentions, ) lang_feats, visual_feats = x_outputs[:2] vision_hidden_states = vision_hidden_states + (visual_feats,) language_hidden_states = language_hidden_states + (lang_feats,) if cross_encoder_attentions is not None: cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) visual_encoder_outputs = ( vision_hidden_states, vision_attentions if output_attentions else None, ) lang_encoder_outputs = ( language_hidden_states, language_attentions if output_attentions else None, ) return ( visual_encoder_outputs, lang_encoder_outputs, cross_encoder_attentions if output_attentions else None, )
LxmertEncoder
python
plotly__plotly.py
plotly/graph_objs/surface/contours/_x.py
{ "start": 233, "end": 9979 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "surface.contours" _path_str = "surface.contours.x" _valid_props = { "color", "end", "highlight", "highlightcolor", "highlightwidth", "project", "show", "size", "start", "usecolormap", "width", } @property def color(self): """ Sets the color of the contour lines. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: see https://plotly.com/python/css-colors/ for a list Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val @property def end(self): """ Sets the end contour level value. Must be more than `contours.start` The 'end' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["end"] @end.setter def end(self, val): self["end"] = val @property def highlight(self): """ Determines whether or not contour lines about the x dimension are highlighted on hover. The 'highlight' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["highlight"] @highlight.setter def highlight(self, val): self["highlight"] = val @property def highlightcolor(self): """ Sets the color of the highlighted contour lines. The 'highlightcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: see https://plotly.com/python/css-colors/ for a list Returns ------- str """ return self["highlightcolor"] @highlightcolor.setter def highlightcolor(self, val): self["highlightcolor"] = val @property def highlightwidth(self): """ Sets the width of the highlighted contour lines. The 'highlightwidth' property is a number and may be specified as: - An int or float in the interval [1, 16] Returns ------- int|float """ return self["highlightwidth"] @highlightwidth.setter def highlightwidth(self, val): self["highlightwidth"] = val @property def project(self): """ The 'project' property is an instance of Project that may be specified as: - An instance of :class:`plotly.graph_objs.surface.contours.x.Project` - A dict of string/value properties that will be passed to the Project constructor Returns ------- plotly.graph_objs.surface.contours.x.Project """ return self["project"] @project.setter def project(self, val): self["project"] = val @property def show(self): """ Determines whether or not contour lines about the x dimension are drawn. The 'show' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["show"] @show.setter def show(self, val): self["show"] = val @property def size(self): """ Sets the step between each contour level. Must be positive. The 'size' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val @property def start(self): """ Sets the starting contour level value. Must be less than `contours.end` The 'start' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["start"] @start.setter def start(self, val): self["start"] = val @property def usecolormap(self): """ An alternate to "color". Determines whether or not the contour lines are colored using the trace "colorscale". The 'usecolormap' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["usecolormap"] @usecolormap.setter def usecolormap(self, val): self["usecolormap"] = val @property def width(self): """ Sets the width of the contour lines. The 'width' property is a number and may be specified as: - An int or float in the interval [1, 16] Returns ------- int|float """ return self["width"] @width.setter def width(self, val): self["width"] = val @property def _prop_descriptions(self): return """\ color Sets the color of the contour lines. end Sets the end contour level value. Must be more than `contours.start` highlight Determines whether or not contour lines about the x dimension are highlighted on hover. highlightcolor Sets the color of the highlighted contour lines. highlightwidth Sets the width of the highlighted contour lines. project :class:`plotly.graph_objects.surface.contours.x.Project ` instance or dict with compatible properties show Determines whether or not contour lines about the x dimension are drawn. size Sets the step between each contour level. Must be positive. start Sets the starting contour level value. Must be less than `contours.end` usecolormap An alternate to "color". Determines whether or not the contour lines are colored using the trace "colorscale". width Sets the width of the contour lines. """ def __init__( self, arg=None, color=None, end=None, highlight=None, highlightcolor=None, highlightwidth=None, project=None, show=None, size=None, start=None, usecolormap=None, width=None, **kwargs, ): """ Construct a new X object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.surface.contours.X` color Sets the color of the contour lines. end Sets the end contour level value. Must be more than `contours.start` highlight Determines whether or not contour lines about the x dimension are highlighted on hover. highlightcolor Sets the color of the highlighted contour lines. highlightwidth Sets the width of the highlighted contour lines. project :class:`plotly.graph_objects.surface.contours.x.Project ` instance or dict with compatible properties show Determines whether or not contour lines about the x dimension are drawn. size Sets the step between each contour level. Must be positive. start Sets the starting contour level value. Must be less than `contours.end` usecolormap An alternate to "color". Determines whether or not the contour lines are colored using the trace "colorscale". width Sets the width of the contour lines. Returns ------- X """ super().__init__("x") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.surface.contours.X constructor must be a dict or an instance of :class:`plotly.graph_objs.surface.contours.X`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("color", arg, color) self._set_property("end", arg, end) self._set_property("highlight", arg, highlight) self._set_property("highlightcolor", arg, highlightcolor) self._set_property("highlightwidth", arg, highlightwidth) self._set_property("project", arg, project) self._set_property("show", arg, show) self._set_property("size", arg, size) self._set_property("start", arg, start) self._set_property("usecolormap", arg, usecolormap) self._set_property("width", arg, width) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
X
python
wandb__wandb
landfill/functional_tests/lightning_fabric/pl_base.py
{ "start": 115, "end": 387 }
class ____(Dataset): def __init__(self, size, num_samples): self.len = num_samples self.data = torch.randn(num_samples, size) def __getitem__(self, index): return self.data[index] def __len__(self): return self.len
RandomDataset