language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
aimacode__aima-python
utils.py
{ "start": 19555, "end": 21732 }
class ____: """A Queue in which the minimum (or maximum) element (as determined by f and order) is returned first. If order is 'min', the item with minimum f(x) is returned first; if order is 'max', then it is the item with maximum f(x). Also supports dict-like lookup.""" def __init__(self, order='min', f=lambda x: x): self.heap = [] if order == 'min': self.f = f elif order == 'max': # now item with max f(x) self.f = lambda x: -f(x) # will be popped first else: raise ValueError("Order must be either 'min' or 'max'.") def append(self, item): """Insert item at its correct position.""" heapq.heappush(self.heap, (self.f(item), item)) def extend(self, items): """Insert each item in items at its correct position.""" for item in items: self.append(item) def pop(self): """Pop and return the item (with min or max f(x) value) depending on the order.""" if self.heap: return heapq.heappop(self.heap)[1] else: raise Exception('Trying to pop from empty PriorityQueue.') def __len__(self): """Return current capacity of PriorityQueue.""" return len(self.heap) def __contains__(self, key): """Return True if the key is in PriorityQueue.""" return any([item == key for _, item in self.heap]) def __getitem__(self, key): """Returns the first value associated with key in PriorityQueue. Raises KeyError if key is not present.""" for value, item in self.heap: if item == key: return value raise KeyError(str(key) + " is not in the priority queue") def __delitem__(self, key): """Delete the first occurrence of key.""" try: del self.heap[[item == key for _, item in self.heap].index(True)] except ValueError: raise KeyError(str(key) + " is not in the priority queue") heapq.heapify(self.heap) # ______________________________________________________________________________ # Useful Shorthands
PriorityQueue
python
kamyu104__LeetCode-Solutions
Python/maximum-number-of-upgradable-servers.py
{ "start": 55, "end": 564 }
class ____(object): def maxUpgrades(self, count, upgrade, sell, money): """ :type count: List[int] :type upgrade: List[int] :type sell: List[int] :type money: List[int] :rtype: List[int] """ # let x be the number of sold servers # (c-x)*u <= m+(x*s) # -x <= (m-c*u)//(u+s) <= 0 # c-x <= c+(m-c*u)//(u+s) <= c return [min(c+(m-c*u)//(u+s), c) for c, u, s, m in itertools.izip(count, upgrade, sell, money)]
Solution
python
pyca__cryptography
src/cryptography/hazmat/primitives/_cipheralgorithm.py
{ "start": 356, "end": 882 }
class ____(metaclass=abc.ABCMeta): @property @abc.abstractmethod def name(self) -> str: """ A string naming this mode (e.g. "AES", "Camellia"). """ @property @abc.abstractmethod def key_sizes(self) -> frozenset[int]: """ Valid key sizes for this algorithm in bits """ @property @abc.abstractmethod def key_size(self) -> int: """ The size of the key being used as an integer in bits (e.g. 128, 256). """
CipherAlgorithm
python
PyCQA__pylint
doc/data/messages/t/too-many-public-methods/good.py
{ "start": 229, "end": 281 }
class ____: def launch(self): pass
Missile
python
getsentry__sentry
src/sentry/workflow_engine/handlers/condition/event_frequency_query_handlers.py
{ "start": 1960, "end": 11293 }
class ____(ABC): intervals: ClassVar[dict[str, tuple[str, timedelta]]] = STANDARD_INTERVALS def get_query_window(self, end: datetime, duration: timedelta) -> tuple[datetime, datetime]: """ Calculate the start and end times for the query. "duration" is the length of the window we're querying over. """ start = end - duration return (start, end) def disable_consistent_snuba_mode( self, duration: timedelta ) -> contextlib.AbstractContextManager[object]: """For conditions with interval >= 1 hour we don't need to worry about read or writes consistency. Disable it so that we can scale to more nodes. """ option_override_cm: contextlib.AbstractContextManager[object] = contextlib.nullcontext() if duration >= timedelta(hours=1): option_override_cm = options_override({"consistent": False}) return option_override_cm def get_snuba_query_result( self, tsdb_function: TSDBFunction, keys: list[int], group_id: int, organization_id: int, model: TSDBModel, start: datetime, end: datetime, environment_id: int | None, referrer_suffix: str, conditions: list[SnubaCondition] | None = None, group_on_time: bool = False, project_ids: list[int] | None = None, ) -> Mapping[int, int]: result: Mapping[int, int] = tsdb_function( model=model, keys=keys, start=start, end=end, environment_id=environment_id, use_cache=True, jitter_value=group_id, tenant_ids={"organization_id": organization_id}, referrer_suffix=referrer_suffix, conditions=conditions, group_on_time=group_on_time, project_ids=project_ids, ) return result def get_chunked_result( self, tsdb_function: TSDBFunction, model: TSDBModel, group_ids: list[int], organization_id: int, start: datetime, end: datetime, environment_id: int | None, referrer_suffix: str, filters: list[QueryFilter] | None = None, group_on_time: bool = False, project_ids: list[int] | None = None, ) -> dict[int, int]: batch_totals: dict[int, int] = defaultdict(int) group_id = group_ids[0] conditions = self.get_extra_snuba_conditions(model, filters) if filters else [] for group_chunk in chunked(group_ids, SNUBA_LIMIT): result = self.get_snuba_query_result( tsdb_function=tsdb_function, model=model, keys=[group_id for group_id in group_chunk], group_id=group_id, organization_id=organization_id, start=start, end=end, environment_id=environment_id, referrer_suffix=referrer_suffix, conditions=conditions, group_on_time=group_on_time, project_ids=project_ids, ) batch_totals.update(result) return batch_totals def get_group_ids_by_category( self, groups: list[GroupValues], ) -> dict[GroupCategory, list[int]]: """ Separate group ids into error group ids and generic group ids """ category_group_ids: dict[GroupCategory, list[int]] = defaultdict(list) for group in groups: issue_type = get_group_type_by_type_id(group["type"]) category = GroupCategory(issue_type.category) category_group_ids[category].append(group["id"]) return category_group_ids def get_value_from_groups( self, groups: list[GroupValues], value: Literal["id", "project_id", "project__organization_id"], ) -> int | None: result = None if groups: group = groups[0] result = group.get(value) return result def get_extra_snuba_conditions( self, category: TSDBModel, filters: list[QueryFilter] ) -> list[SnubaCondition]: conditions = [] for filter in filters: snuba_condition = self.convert_filter_to_snuba_condition(filter, category) if snuba_condition: conditions.append(snuba_condition) return conditions @staticmethod def convert_filter_to_snuba_condition( condition: dict[str, Any], tsdb_model: TSDBModel ) -> SnubaCondition | None: # condition can be TaggedEventFilter (key) or EventAttributeFilter (attribute) key = condition.get("key") attribute = condition.get("attribute") if not key and not attribute: return None lhs: str | None = None if key: lhs = f"tags[{condition['key']}]" elif attribute: column = ATTR_CHOICES.get(attribute) if column is None: return None lhs = get_dataset_column_name(tsdb_model, column.value.alias) if lhs is None: # Some attribute columns are only available for errors. # Raise and catch to return 0 events that meet the filters for other issue types raise InvalidFilter rhs = ( condition["value"] if condition["match"] not in (MatchType.IS_SET, MatchType.NOT_SET) else None ) if attribute == "error.unhandled": # flip values, since the queried column is "error.handled" rhs = not condition["value"] match condition["match"]: case MatchType.EQUAL: operator = Op.EQ case MatchType.NOT_EQUAL: operator = Op.NEQ case MatchType.STARTS_WITH: operator = Op.LIKE rhs = f"{rhs}%" case MatchType.NOT_STARTS_WITH: operator = Op.NOT_LIKE rhs = f"{rhs}%" case MatchType.ENDS_WITH: operator = Op.LIKE rhs = f"%{rhs}" case MatchType.NOT_ENDS_WITH: operator = Op.NOT_LIKE rhs = f"%{rhs}" case MatchType.CONTAINS: operator = Op.LIKE rhs = f"%{rhs}%" case MatchType.NOT_CONTAINS: operator = Op.NOT_LIKE rhs = f"%{rhs}%" case MatchType.IS_SET: operator = Op.IS_NOT_NULL rhs = None case MatchType.NOT_SET: operator = Op.IS_NULL rhs = None case MatchType.IS_IN: operator = Op.IN if not isinstance(rhs, str): raise ValueError(f"Unsupported value type for {condition['match']}") rhs = rhs.split(",") case MatchType.NOT_IN: operator = Op.NOT_IN if not isinstance(rhs, str): raise ValueError(f"Unsupported value type for {condition['match']}") rhs = rhs.split(",") case _: raise ValueError(f"Unsupported match type: {condition['match']}") return (lhs, operator.value, rhs) @abstractmethod def batch_query( self, groups: list[GroupValues], start: datetime, end: datetime, environment_id: int | None, filters: list[QueryFilter] | None = None, ) -> QueryResult: """ Abstract method that specifies how to query Snuba for multiple groups depending on the condition. Must be implemented by subclasses. """ raise NotImplementedError def get_rate_bulk( self, duration: timedelta, groups: list[GroupValues], environment_id: int | None, current_time: datetime, comparison_interval: timedelta | None, filters: list[QueryFilter] | None, ) -> QueryResult: """ Make a batch query for multiple groups. The return value is a dictionary of group_id to the result for that group. If comparison_interval is not None, we're making the second query in a percent comparison condition. For example, if the condition is: - num of issues is {}% higher in 1 hr compared to 5 min ago The second query would be querying for num of events from: - 5 min ago to 1 hr 5 min ago """ if comparison_interval: current_time -= comparison_interval start, end = self.get_query_window(end=current_time, duration=duration) with self.disable_consistent_snuba_mode(duration): result = self.batch_query( groups=groups, start=start, end=end, environment_id=environment_id, filters=filters, ) return result slow_condition_query_handler_registry = Registry[type[BaseEventFrequencyQueryHandler]]( enable_reverse_lookup=False ) @slow_condition_query_handler_registry.register(Condition.EVENT_FREQUENCY_COUNT) @slow_condition_query_handler_registry.register(Condition.EVENT_FREQUENCY_PERCENT)
BaseEventFrequencyQueryHandler
python
dagster-io__dagster
python_modules/dagster/dagster/_core/definitions/declarative_automation/serialized_objects.py
{ "start": 8335, "end": 12131 }
class ____(Generic[T_EntityKey]): """Incremental state calculated during the evaluation of a AutomationCondition. This may be used on the subsequent evaluation to make the computation more efficient. Args: previous_requested_subset: The subset that was requested for this asset on the previous tick. effective_timestamp: The timestamp at which the evaluation was performed. last_event_id: The maximum storage ID over all events used in this evaluation. node_cursors_by_unique_id: A mapping from the unique ID of each condition in the evaluation tree to any incremental state calculated for it. result_hash: A unique hash of the result for this tick. Used to determine if anything has changed since the last time this was evaluated. """ previous_requested_subset: SerializableEntitySubset effective_timestamp: float last_event_id: Optional[int] node_cursors_by_unique_id: Mapping[str, AutomationConditionNodeCursor] result_value_hash: str @staticmethod def backcompat_from_evaluation_state( evaluation_state: "AutomationConditionEvaluationState", ) -> "AutomationConditionCursor": """Serves as a temporary method to convert from old representation to the new representation.""" def _get_node_cursors( evaluation: AutomationConditionEvaluation, ) -> Mapping[str, AutomationConditionNodeCursor]: node_cursors = { evaluation.condition_snapshot.unique_id: AutomationConditionNodeCursor( true_subset=evaluation.true_subset, candidate_subset=evaluation.candidate_subset, subsets_with_metadata=evaluation.subsets_with_metadata, extra_state=evaluation_state.extra_state_by_unique_id.get( evaluation.condition_snapshot.unique_id ), ) } for child in evaluation.child_evaluations: node_cursors.update(_get_node_cursors(child)) return node_cursors return AutomationConditionCursor( previous_requested_subset=evaluation_state.previous_evaluation.true_subset, effective_timestamp=evaluation_state.previous_tick_evaluation_timestamp or 0, last_event_id=evaluation_state.max_storage_id, node_cursors_by_unique_id=_get_node_cursors(evaluation_state.previous_evaluation), result_value_hash="", ) @staticmethod def from_result( context: "AutomationContext", result: "AutomationResult", result_hash: str ) -> "AutomationConditionCursor": def _gather_node_cursors(r: "AutomationResult"): node_cursors = {r.condition_unique_id: r.node_cursor} if r.node_cursor else {} for rr in r.child_results: node_cursors.update(_gather_node_cursors(rr)) return node_cursors return AutomationConditionCursor( previous_requested_subset=result.true_subset.convert_to_serializable_subset(), effective_timestamp=context.evaluation_time.timestamp(), last_event_id=context.max_storage_id, node_cursors_by_unique_id=_gather_node_cursors(result), result_value_hash=result_hash, ) @property def key(self) -> T_EntityKey: return self.previous_requested_subset.key @property def temporal_context(self) -> TemporalContext: return TemporalContext( effective_dt=datetime_from_timestamp(self.effective_timestamp), last_event_id=self.last_event_id, ) @whitelist_for_serdes(storage_name="AssetConditionEvaluationState") @dataclass(frozen=True)
AutomationConditionCursor
python
airbytehq__airbyte
airbyte-integrations/connectors/source-google-search-console/components.py
{ "start": 2994, "end": 4624 }
class ____(RecordTransformation): """ A record transformation that remaps each value in the keys array back to its associated dimension. The reason this is a custom component is because we're unable to use list comprehension and and enumerate() is not a valid function in our Jinja contact so can't iterate over the dimensions defined in the config to create each field transformation on the stream_template for each custom report. If we were able to, the actual ComponentMappingDefinition would look like this: type: ComponentMappingDefinition field_path: - transformations - "1" - fields value: "{{ [{'path': [dimension], 'value': '{{ record['keys'][index]} for index, dimension in enumerate(components_values['dimensions'])] }}" or type: ComponentMappingDefinition field_path: - transformations - "1" - fields value: > {% for index, dimension in enumerate(components_values["dimensions"]) %} - type: AddFields fields: - path: [ {{ dimension }} ] value: "{{ record['keys'][index] }}" {% endfor %} """ dimensions: List[str] = field(default_factory=lambda: []) def transform( self, record: Dict[str, Any], config: Optional[Config] = None, stream_state: Optional[StreamState] = None, stream_slice: Optional[StreamSlice] = None, ) -> None: for dimension in self.dimensions: record[dimension] = record["keys"].pop(0) record.pop("keys") @dataclass
CustomReportExtractDimensionsFromKeys
python
sphinx-doc__sphinx
tests/roots/test-ext-inheritance_diagram/test.py
{ "start": 91, "end": 132 }
class ____(DocSubDir1): pass
DocSubDir2
python
Textualize__textual
tests/snapshot_tests/snapshot_apps/zero_scrollbar_size.py
{ "start": 80, "end": 314 }
class ____(App): DEFAULT_CSS = """ Screen { scrollbar-size: 0 0; } """ def compose(self) -> ComposeResult: yield Static("Hello, world!\n" * 100) if __name__ == "__main__": TestApp().run()
TestApp
python
doocs__leetcode
solution/1500-1599/1568.Minimum Number of Days to Disconnect Island/Solution.py
{ "start": 0, "end": 1050 }
class ____: def minDays(self, grid: List[List[int]]) -> int: if self.count(grid) != 1: return 0 m, n = len(grid), len(grid[0]) for i in range(m): for j in range(n): if grid[i][j] == 1: grid[i][j] = 0 if self.count(grid) != 1: return 1 grid[i][j] = 1 return 2 def count(self, grid): def dfs(i, j): grid[i][j] = 2 for a, b in [[0, -1], [0, 1], [1, 0], [-1, 0]]: x, y = i + a, j + b if 0 <= x < m and 0 <= y < n and grid[x][y] == 1: dfs(x, y) m, n = len(grid), len(grid[0]) cnt = 0 for i in range(m): for j in range(n): if grid[i][j] == 1: dfs(i, j) cnt += 1 for i in range(m): for j in range(n): if grid[i][j] == 2: grid[i][j] = 1 return cnt
Solution
python
bottlepy__bottle
test/test_multipart.py
{ "start": 2410, "end": 7812 }
class ____(BaseMultipartTest): def assertIterline(self, data, *expected, **options): self.assertEqual( list(bottle._MultipartParser(BytesIO(bottle.tob(data)), 'foo', **options)._lineiter()), [(bottle.tob(l), bottle.tob(nl)) for l,nl in expected]) def test_iterlines(self): self.assertIterline('abc\ndef\r\nghi', ('abc\ndef','\r\n'), ('ghi', '')) def test_iterlines_limit(self): self.assertIterline('abc\ndef\r\nghi', ('abc\ndef','\r\n'), ('g', ''), content_length=10) self.assertIterline('abc\ndef\r\nghi', ('abc\ndef\r',''), content_length=8) def test_fuzzy_lineiter(self): """ Test all possible buffer sizes """ minbuflen = 9 # boundary size of '--foo--\r\n' data = b'data\rdata\ndata\r\ndata\n\rdata\r\n'.replace(b'data', b'X'*minbuflen*2) lines = data.split(b"\r\n")[:-1] for tail in (b"", b"tail"): for buffer_size in range(minbuflen, len(data+tail)+1): splits = list(bottle._MultipartParser( BytesIO(data+tail), 'foo', buffer_size=buffer_size)._lineiter()) partial = b"" merged = [] for part, nl in splits: self.assertTrue(nl in (b"", b"\r\n")) self.assertTrue(len(part) >= buffer_size or nl or part == tail) partial += part if nl: merged.append(partial) partial = b"" self.assertEqual(merged, lines) self.assertEqual(tail, partial) def test_big_file(self): ''' If the size of an uploaded part exceeds memfile_limit, it is written to disk. ''' test_file = 'abc'*1024 boundary = '---------------------------186454651713519341951581030105' request = BytesIO(bottle.tob('\r\n').join(map(bottle.tob,[ '--' + boundary, 'Content-Disposition: form-data; name="file1"; filename="random.png"', 'Content-Type: image/png', '', test_file, '--' + boundary, 'Content-Disposition: form-data; name="file2"; filename="random.png"', 'Content-Type: image/png', '', test_file + 'a', '--' + boundary, 'Content-Disposition: form-data; name="file3"; filename="random.png"', 'Content-Type: image/png', '', test_file*2, '--'+boundary+'--','']))) parts = list(bottle._MultipartParser(request, boundary, memfile_limit=len(test_file)).parse()) p = {p.name: p for p in parts} try: self.assertEqual(p.get('file1').file.read(), bottle.tob(test_file)) self.assertTrue(p.get('file1').is_buffered()) self.assertEqual(p.get('file2').file.read(), bottle.tob(test_file + 'a')) self.assertFalse(p.get('file2').is_buffered()) self.assertEqual(p.get('file3').file.read(), bottle.tob(test_file*2)) self.assertFalse(p.get('file3').is_buffered()) finally: for part in parts: part.close() def test_file_seek(self): ''' The file object should be readable withoud a seek(0). ''' test_file = 'abc'*1024 boundary = '---------------------------186454651713519341951581030105' request = BytesIO(bottle.tob('\r\n').join(map(bottle.tob,[ '--' + boundary, 'Content-Disposition: form-data; name="file1"; filename="random.png"', 'Content-Type: image/png', '', test_file, '--' + boundary + '--','']))) p = list(bottle._MultipartParser(request, boundary).parse()) self.assertEqual(p[0].file.read(), bottle.tob(test_file)) self.assertEqual(p[0].value, test_file) def test_unicode_value(self): ''' The .value property always returns unicode ''' test_file = 'abc'*1024 boundary = '---------------------------186454651713519341951581030105' request = BytesIO(bottle.tob('\r\n').join(map(bottle.tob,[ '--' + boundary, 'Content-Disposition: form-data; name="file1"; filename="random.png"', 'Content-Type: image/png', '', test_file, '--' + boundary + '--','']))) p = list(bottle._MultipartParser(request, boundary).parse()) self.assertEqual(p[0].file.read(), bottle.tob(test_file)) self.assertEqual(p[0].value, test_file) self.assertTrue(hasattr(p[0].value, 'encode')) def test_multiline_header(self): ''' HTTP allows headers to be multiline. ''' test_file = bottle.tob('abc'*1024) test_text = u'Test text\n with\r\n ΓΌmlΓ€uts!' boundary = '---------------------------186454651713519341951581030105' request = BytesIO(bottle.tob('\r\n').join(map(bottle.tob,[ '--' + boundary, 'Content-Disposition: form-data;', '\tname="file1"; filename="random.png"', 'Content-Type: image/png', '', test_file, '--' + boundary, 'Content-Disposition: form-data;', ' name="text"', '', test_text, '--' + boundary + '--','']))) p = list(bottle._MultipartParser(request, boundary, charset='utf8').parse()) self.assertEqual(p[0].name, "file1") self.assertEqual(p[0].file.read(), test_file) self.assertEqual(p[0].filename, 'random.png') self.assertEqual(p[1].name, "text") self.assertEqual(p[1].value, test_text)
TestMultipartParser
python
ansible__ansible
lib/ansible/module_utils/facts/network/netbsd.py
{ "start": 1643, "end": 1748 }
class ____(NetworkCollector): _fact_class = NetBSDNetwork _platform = 'NetBSD'
NetBSDNetworkCollector
python
MongoEngine__mongoengine
tests/fields/test_datetime_field.py
{ "start": 6498, "end": 7102 }
class ____(MongoDBTestCase): def test_datetime_tz_aware_mark_as_changed(self): # Reset the connections connection._connection_settings = {} connection._connections = {} connection._dbs = {} connect(db="mongoenginetest", tz_aware=True) class LogEntry(Document): time = DateTimeField() LogEntry.drop_collection() LogEntry(time=dt.datetime(2013, 1, 1, 0, 0, 0)).save() log = LogEntry.objects.first() log.time = dt.datetime(2013, 1, 1, 0, 0, 0) assert ["time"] == log._changed_fields
TestDateTimeTzAware
python
great-expectations__great_expectations
contrib/capitalone_dataprofiler_expectations/capitalone_dataprofiler_expectations/expectations/expect_profile_numeric_columns_percent_diff_greater_than_or_equal_to_threshold.py
{ "start": 7758, "end": 15049 }
class ____( ProfileNumericColumnsDiffExpectation ): """Expect a statistic's percent delta for a given column of a DataProfiler percent difference report to be greater than or equal to the specified threshold. This expectation takes the percent difference report between the data it is called on and a DataProfiler profile of the same schema loaded from a provided path. Each numerical column percent delta will be checked against a user provided dictionary of columns paired with dictionaries of statistics containing a threshold. This function builds upon the custom ProfileNumericColumnsDiff Expectation of Capital One's DataProfiler Expectations. It is expected that a statistic's percent delta for a given column is greater than or equal to the specified threshold. Args: profile_path (str): A path to a saved DataProfiler profile object on the local filesystem. limit_check_report_keys (dict[str, dict[str, float]]): A dict, containing column names as keys and dicts as values that contain statistics as keys and thresholds as values mostly (float - optional): a value indicating the lower bound percentage of successful values that must be present to evaluate to success=True. validator.expect_profile_numeric_columns_percent_diff_greater_than_or_equal_to_threshold( profile_path = "C:/path_to/my_profile.pkl", limit_check_report_keys = { "column_one": { "min": 0.5, #Indicating the threshold for the 'min' statistic in 'column_one' is 50% }, "*": { "*": .25, #Indicating the threshold for every statistic in every column is 25% }, } ) Note: In limit_check_report_keys, "*" in place of a column denotes a general operator in which the value it stores will be applied to every column in the data that has no explicit key. "*" in place of a statistic denotes a general operator in which the bounds it stores will be applied to every statistic for the given column that has no explicit key. """ example_profile_data = [ [2, 5, "10", "ten", 25], [4, 10, "20", "twenty", 50], [6, 15, "30", "thirty", 75], [8, 20, "40", "forty", 100], [10, 25, "50", "fifty", 125], ] example_profile_columns = [ "by_2", "by_5", "str_by_10", "words_by_10", "by_25", ] df = pd.DataFrame(example_profile_data, columns=example_profile_columns) profiler_opts = dp.ProfilerOptions() profiler_opts.structured_options.multiprocess.is_enabled = False example_profile = dp.Profiler(df, options=profiler_opts) profile_path = "/example_profiles/expect_profile_diff_less_than_threshold_profile.pkl" dir_path = os.path.dirname(os.path.abspath(__file__)) # noqa: PTH120, PTH100 profile_path = dir_path + profile_path example_profile.save(filepath=profile_path) examples = [ { "data": { "by_2": [4, 6, 8, 10, 12], "by_5": [10, 15, 20, 25, 30], "str_by_10": ["20", "30", "40", "50", "60"], "words_by_10": ["twenty", "thirty", "forty", "fifty", "sixty"], "by_25": [50, 75, 100, 125, 150], }, "tests": [ { "title": "profile_min_delta_exceeds_threshold", "exact_match_out": False, "include_in_gallery": True, "in": { "profile_path": profile_path, "limit_check_report_keys": { "*": { "min": 0.5, }, }, }, "out": {"success": True}, }, { "title": "single_column_min_delta_equals_threshold", "exact_match_out": False, "include_in_gallery": True, "in": { "profile_path": profile_path, "limit_check_report_keys": { "by_2": { "min": 1.0, }, }, }, "out": {"success": True}, }, { "title": "single_column_min_delta_below_threshold", "exact_match_out": False, "include_in_gallery": True, "in": { "profile_path": profile_path, "limit_check_report_keys": { "by_2": { "min": 1.01, }, }, }, "out": {"success": False}, }, { "title": "profile_all_stats_below_delta_threshold", "exact_match_out": False, "include_in_gallery": True, "in": { "profile_path": profile_path, "limit_check_report_keys": { "*": {"*": 100.0}, }, }, "out": {"success": False}, }, ], }, ] profile_metric = ( "data_profiler.profile_numeric_columns_percent_diff_greater_than_or_equal_to_threshold" ) success_keys = ( "profile_path", "limit_check_report_keys", "numerical_diff_statistics", "mostly", ) default_limit_check_report_keys = { "*": { "min": 0.0, "max": 0.0, "sum": 0.0, "mean": 0.0, "median": 0.0, "median_absolute_deviation": 0.0, "variance": 0.0, "stddev": 0.0, "unique_count": 0.0, "unique_ratio": 0.0, "gini_impurity": 0.0, "unalikeability": 0.0, "sample_size": 0.0, "null_count": 0.0, } } numerical_diff_statistics = list(default_limit_check_report_keys["*"].keys()) default_kwarg_values = { "limit_check_report_keys": default_limit_check_report_keys, "numerical_diff_statistics": numerical_diff_statistics, "mostly": 1.0, } library_metadata = { "requirements": ["dataprofiler", "tensorflow", "scikit-learn", "numpy"], "maturity": "experimental", # "concept_only", "experimental", "beta", or "production" "tags": [ "dataprofiler", "dataassistance", ], # Tags for this Expectation in the Gallery "contributors": [ # Github handles for all contributors to this Expectation. "@stevensecreti", # Don't forget to add your github handle here! ], } if __name__ == "__main__": diagnostics_report = ( ExpectProfileNumericColumnsPercentDiffGreaterThanOrEqualToThreshold().run_diagnostics() ) print(diagnostics_report.generate_checklist())
ExpectProfileNumericColumnsPercentDiffGreaterThanOrEqualToThreshold
python
jazzband__django-oauth-toolkit
tests/test_authorization_code.py
{ "start": 20771, "end": 26701 }
class ____(BaseTest): def test_login(self): """ Test login page is rendered if user is not authenticated """ self.oauth2_settings.PKCE_REQUIRED = False query_data = { "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "openid", "redirect_uri": "http://example.org", } path = reverse("oauth2_provider:authorize") response = self.client.get(path, data=query_data) # The authorization view redirects to the login page with the self.assertEqual(response.status_code, 302) scheme, netloc, path, params, query, fragment = urlparse(response["Location"]) self.assertEqual(path, settings.LOGIN_URL) parsed_query = parse_qs(query) next = parsed_query["next"][0] self.assertIn(f"client_id={self.application.client_id}", next) self.assertIn("response_type=code", next) self.assertIn("state=random_state_string", next) self.assertIn("scope=openid", next) self.assertIn("redirect_uri=http%3A%2F%2Fexample.org", next) def test_id_token_skip_authorization_completely(self): """ If application.skip_authorization = True, should skip the authorization page. """ self.client.login(username="test_user", password="123456") self.application.skip_authorization = True self.application.save() query_data = { "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "openid", "redirect_uri": "http://example.org", } response = self.client.get(reverse("oauth2_provider:authorize"), data=query_data) self.assertEqual(response.status_code, 302) def test_id_token_pre_auth_valid_client(self): """ Test response for a valid client_id with response_type: code """ self.client.login(username="test_user", password="123456") query_data = { "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "openid", "redirect_uri": "http://example.org", } response = self.client.get(reverse("oauth2_provider:authorize"), data=query_data) self.assertEqual(response.status_code, 200) # check form is in context and form params are valid self.assertIn("form", response.context) form = response.context["form"] self.assertEqual(form["redirect_uri"].value(), "http://example.org") self.assertEqual(form["state"].value(), "random_state_string") self.assertEqual(form["scope"].value(), "openid") self.assertEqual(form["client_id"].value(), self.application.client_id) def test_id_token_code_post_auth_allow(self): """ Test authorization code is given for an allowed request with response_type: code """ self.client.login(username="test_user", password="123456") form_data = { "client_id": self.application.client_id, "state": "random_state_string", "scope": "openid", "redirect_uri": "http://example.org", "response_type": "code", "allow": True, } response = self.client.post(reverse("oauth2_provider:authorize"), data=form_data) self.assertEqual(response.status_code, 302) self.assertIn("http://example.org?", response["Location"]) self.assertIn("state=random_state_string", response["Location"]) self.assertIn("code=", response["Location"]) def test_prompt_login(self): """ Test response for redirect when supplied with prompt: login """ self.oauth2_settings.PKCE_REQUIRED = False self.client.login(username="test_user", password="123456") query_data = { "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "prompt": "login", } response = self.client.get(reverse("oauth2_provider:authorize"), data=query_data) self.assertEqual(response.status_code, 302) scheme, netloc, path, params, query, fragment = urlparse(response["Location"]) self.assertEqual(path, settings.LOGIN_URL) parsed_query = parse_qs(query) next = parsed_query["next"][0] self.assertIn("redirect_uri=http%3A%2F%2Fexample.org", next) self.assertIn("state=random_state_string", next) self.assertIn("scope=read+write", next) self.assertIn(f"client_id={self.application.client_id}", next) self.assertNotIn("prompt=login", next) def test_prompt_none_unauthorized(self): """ Test response for redirect when supplied with prompt: none Should redirect to redirect_uri with an error of login_required """ self.oauth2_settings.PKCE_REQUIRED = False query_data = { "client_id": self.application.client_id, "response_type": "code", "state": "random_state_string", "scope": "read write", "redirect_uri": "http://example.org", "prompt": "none", } response = self.client.get(reverse("oauth2_provider:authorize"), data=query_data) self.assertEqual(response.status_code, 302) scheme, netloc, path, params, query, fragment = urlparse(response["Location"]) parsed_query = parse_qs(query) self.assertIn("login_required", parsed_query["error"]) self.assertIn("random_state_string", parsed_query["state"])
TestOIDCAuthorizationCodeView
python
tensorflow__tensorflow
tensorflow/python/autograph/pyct/naming_test.py
{ "start": 819, "end": 1750 }
class ____(test.TestCase): def test_new_symbol_tracks_names(self): namer = naming.Namer({}) self.assertEqual('temp', namer.new_symbol('temp', set())) self.assertItemsEqual(('temp',), namer.generated_names) def test_new_symbol_avoids_duplicates(self): namer = naming.Namer({}) self.assertEqual('temp', namer.new_symbol('temp', set())) self.assertEqual('temp_1', namer.new_symbol('temp', set())) self.assertItemsEqual(('temp', 'temp_1'), namer.generated_names) def test_new_symbol_avoids_conflicts(self): namer = naming.Namer({'temp': 1}) # temp is reserved in the global namespace self.assertEqual('temp_1', namer.new_symbol('temp', set())) # temp_2 is reserved in the local namespace self.assertEqual('temp_3', namer.new_symbol('temp', set(('temp_2',)))) self.assertItemsEqual(('temp_1', 'temp_3'), namer.generated_names) if __name__ == '__main__': test.main()
NamerTest
python
huggingface__transformers
tests/models/segformer/test_modeling_segformer.py
{ "start": 13684, "end": 18634 }
class ____(unittest.TestCase): @slow def test_inference_image_segmentation_ade(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( torch_device ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) expected_shape = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expectations = Expectations( { (None, None): [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ], ("cuda", 8): [ [[-4.6310, -5.5232, -6.2361], [-5.1918, -6.1445, -6.5996], [-5.4427, -6.2792, -6.7580]], [[-12.1397, -13.3124, -13.9551], [-12.8736, -13.9347, -14.3569], [-12.9440, -13.8222, -14.2514]], [[-12.5135, -13.4682, -14.4913], [-12.8670, -14.4339, -14.7766], [-13.2519, -14.5800, -15.0685]], ], } ) expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device) torch.testing.assert_close(outputs.logits[0, :3, :3, :3], expected_slice, rtol=2e-4, atol=2e-4) @slow def test_inference_image_segmentation_city(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(torch_device) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) expected_shape = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([]).to(torch_device) expectations = Expectations( { (None, None): [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ], ("cuda", 8): [ [[-13.5728, -13.9089, -12.6492], [-14.3478, -15.3656, -14.2309], [-14.7512, -16.0394, -15.6065]], [[-17.1642, -15.8704, -12.9641], [-17.2572, -17.3701, -14.8214], [-16.6043, -16.8761, -16.7425]], [[-3.6444, -3.0189, -1.4195], [-3.0787, -3.1953, -1.9993], [-1.8755, -1.9219, -1.7002]], ], } ) expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device) torch.testing.assert_close(outputs.logits[0, :3, :3, :3], expected_slice, rtol=1e-1, atol=1e-1) @slow def test_post_processing_semantic_segmentation(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( torch_device ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) outputs.logits = outputs.logits.detach().cpu() segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)]) expected_shape = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape, expected_shape) segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) expected_shape = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape, expected_shape)
SegformerModelIntegrationTest
python
sphinx-doc__sphinx
sphinx/addnodes.py
{ "start": 7635, "end": 8243 }
class ____(nodes.Part, nodes.Inline, nodes.FixedTextElement): """Node for a general type parameter list. As default the type parameters list is written in line with the rest of the signature. Set ``multi_line_parameter_list = True`` to describe a multi-line type parameters list. In that case each type parameter will then be written on its own, indented line. A trailing comma will be added on the last line if ``multi_line_trailing_comma`` is True. """ child_text_separator = ', ' def astext(self) -> str: return f'[{super().astext()}]'
desc_type_parameter_list
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 561479, "end": 561804 }
class ____(sgqlc.types.Type): """Autogenerated return type of DeleteRef""" __schema__ = github_schema __field_names__ = ("client_mutation_id",) client_mutation_id = sgqlc.types.Field(String, graphql_name="clientMutationId") """A unique identifier for the client performing the mutation."""
DeleteRefPayload
python
dagster-io__dagster
python_modules/dagster/dagster/_core/definitions/events.py
{ "start": 22310, "end": 24272 }
class ____( NamedTuple( "_ExpectationResult", [ ("success", PublicAttr[bool]), ("label", PublicAttr[Optional[str]]), ("description", PublicAttr[Optional[str]]), ("metadata", PublicAttr[Mapping[str, MetadataValue]]), ], ) ): """Event corresponding to a data quality test. Op compute functions may yield events of this type whenever they wish to indicate to the Dagster framework (and the end user) that a data quality test has produced a (positive or negative) result. Args: success (bool): Whether the expectation passed or not. label (Optional[str]): Short display name for expectation. Defaults to "result". description (Optional[str]): A longer human-readable description of the expectation. metadata (Optional[Dict[str, RawMetadataValue]]): Arbitrary metadata about the failure. Keys are displayed string labels, and values are one of the following: string, float, int, JSON-serializable dict, JSON-serializable list, and one of the data classes returned by a MetadataValue static method. """ def __new__( cls, success: bool, label: Optional[str] = None, description: Optional[str] = None, metadata: Optional[Mapping[str, RawMetadataValue]] = None, ): normed_metadata = normalize_metadata( check.opt_mapping_param(metadata, "metadata", key_type=str), ) return super().__new__( cls, success=check.bool_param(success, "success"), label=check.opt_str_param(label, "label", "result"), description=check.opt_str_param(description, "description"), metadata=normed_metadata, ) @whitelist_for_serdes( storage_field_names={"metadata": "metadata_entries"}, field_serializers={"metadata": MetadataFieldSerializer}, )
ExpectationResult
python
aio-libs__aiohttp
tests/test_proxy_functional.py
{ "start": 670, "end": 32209 }
class ____(TypedDict): status: int headers: dict[str, str] | None body: bytes | None if sys.version_info >= (3, 11) and TYPE_CHECKING: from typing import Unpack async def get_request( method: str = "GET", *, url: str | URL, trust_env: bool = False, **kwargs: Unpack[_RequestOptions], ) -> ClientResponse: ... else: from typing import Any async def get_request( method: str = "GET", *, url: str | URL, trust_env: bool = False, **kwargs: Any, ) -> ClientResponse: connector = aiohttp.TCPConnector(ssl=False) async with aiohttp.ClientSession( connector=connector, trust_env=trust_env ) as client: async with client.request(method, url, **kwargs) as resp: return resp @pytest.fixture def secure_proxy_url(tls_certificate_pem_path: str) -> Iterator[URL]: """Return the URL of an instance of a running secure proxy. This fixture also spawns that instance and tears it down after the test. """ proxypy_args = [ # --threadless does not work on windows, see # https://github.com/abhinavsingh/proxy.py/issues/492 "--threaded" if os.name == "nt" else "--threadless", "--num-workers", "1", # the tests only send one query anyway "--hostname", "127.0.0.1", # network interface to listen to "--port", "0", # ephemeral port, so that kernel allocates a free one "--cert-file", tls_certificate_pem_path, # contains both key and cert "--key-file", tls_certificate_pem_path, # contains both key and cert ] with proxy.Proxy(input_args=proxypy_args) as proxy_instance: yield URL.build( scheme="https", host=str(proxy_instance.flags.hostname), port=proxy_instance.flags.port, ) @pytest.fixture def web_server_endpoint_payload() -> str: return str(uuid4()) @pytest.fixture(params=("http", "https")) def web_server_endpoint_type(request: pytest.FixtureRequest) -> str: return request.param # type: ignore[no-any-return] @pytest.fixture async def web_server_endpoint_url( aiohttp_server: AiohttpServer, ssl_ctx: ssl.SSLContext, web_server_endpoint_payload: str, web_server_endpoint_type: str, ) -> URL: async def handler(request: web.Request) -> web.Response: return web.Response(text=web_server_endpoint_payload) app = web.Application() app.router.add_route("GET", "/", handler) if web_server_endpoint_type == "https": server = await aiohttp_server(app, ssl=ssl_ctx) else: server = await aiohttp_server(app) return URL.build( scheme=web_server_endpoint_type, host=server.host, port=server.port, ) @pytest.mark.skipif( not ASYNCIO_SUPPORTS_TLS_IN_TLS, reason="asyncio on this python does not support TLS in TLS", ) @pytest.mark.parametrize("web_server_endpoint_type", ("http", "https")) @pytest.mark.filterwarnings(r"ignore:.*ssl.OP_NO_SSL*") # Filter out the warning from # https://github.com/abhinavsingh/proxy.py/blob/30574fd0414005dfa8792a6e797023e862bdcf43/proxy/common/utils.py#L226 # otherwise this test will fail because the proxy will die with an error. @pytest.mark.usefixtures("loop") async def test_secure_https_proxy_absolute_path( client_ssl_ctx: ssl.SSLContext, secure_proxy_url: URL, web_server_endpoint_url: URL, web_server_endpoint_payload: str, ) -> None: """Ensure HTTP(S) sites are accessible through a secure proxy.""" conn = aiohttp.TCPConnector() sess = aiohttp.ClientSession(connector=conn) async with sess.get( web_server_endpoint_url, proxy=secure_proxy_url, ssl=client_ssl_ctx, # used for both proxy and endpoint connections ) as response: assert response.status == 200 assert await response.text() == web_server_endpoint_payload await sess.close() await conn.close() await asyncio.sleep(0.1) @pytest.mark.parametrize("web_server_endpoint_type", ("https",)) @pytest.mark.usefixtures("loop") @pytest.mark.skipif( ASYNCIO_SUPPORTS_TLS_IN_TLS, reason="asyncio on this python supports TLS in TLS" ) @pytest.mark.filterwarnings(r"ignore:.*ssl.OP_NO_SSL*") # Filter out the warning from # https://github.com/abhinavsingh/proxy.py/blob/30574fd0414005dfa8792a6e797023e862bdcf43/proxy/common/utils.py#L226 # otherwise this test will fail because the proxy will die with an error. async def test_https_proxy_unsupported_tls_in_tls( client_ssl_ctx: ssl.SSLContext, secure_proxy_url: URL, web_server_endpoint_type: str, ) -> None: """Ensure connecting to TLS endpoints w/ HTTPS proxy needs patching. This also checks that a helpful warning on how to patch the env is displayed. """ url = URL.build(scheme=web_server_endpoint_type, host="python.org") assert url.host is not None escaped_host_port = ":".join((url.host.replace(".", r"\."), str(url.port))) escaped_proxy_url = str(secure_proxy_url).replace(".", r"\.") conn = aiohttp.TCPConnector() sess = aiohttp.ClientSession(connector=conn) expected_warning_text = ( r"^" r"An HTTPS request is being sent through an HTTPS proxy\. " "This support for TLS in TLS is known to be disabled " r"in the stdlib asyncio\. This is why you'll probably see " r"an error in the log below\.\n\n" r"It is possible to enable it via monkeypatching\. " r"For more details, see:\n" r"\* https://bugs\.python\.org/issue37179\n" r"\* https://github\.com/python/cpython/pull/28073\n\n" r"You can temporarily patch this as follows:\n" r"\* https://docs\.aiohttp\.org/en/stable/client_advanced\.html#proxy-support\n" r"\* https://github\.com/aio-libs/aiohttp/discussions/6044\n$" ) type_err = ( r"transport <asyncio\.sslproto\._SSLProtocolTransport object at " r"0x[\d\w]+> is not supported by start_tls\(\)" ) expected_exception_reason = ( r"^" "Cannot initialize a TLS-in-TLS connection to host " f"{escaped_host_port!s} through an underlying connection " f"to an HTTPS proxy {escaped_proxy_url!s} ssl:{client_ssl_ctx!s} " f"[{type_err!s}]" r"$" ) with ( pytest.warns( RuntimeWarning, match=expected_warning_text, ), pytest.raises( ClientConnectionError, match=expected_exception_reason, ) as conn_err, ): async with sess.get(url, proxy=secure_proxy_url, ssl=client_ssl_ctx): pass assert isinstance(conn_err.value.__cause__, TypeError) assert match_regex(f"^{type_err!s}$", str(conn_err.value.__cause__)) await sess.close() await conn.close() await asyncio.sleep(0.1) @pytest.mark.skipif( platform.system() == "Windows" or sys.implementation.name != "cpython", reason="uvloop is not supported on Windows and non-CPython implementations", ) @pytest.mark.filterwarnings(r"ignore:.*ssl.OP_NO_SSL*") # Filter out the warning from # https://github.com/abhinavsingh/proxy.py/blob/30574fd0414005dfa8792a6e797023e862bdcf43/proxy/common/utils.py#L226 # otherwise this test will fail because the proxy will die with an error. async def test_uvloop_secure_https_proxy( client_ssl_ctx: ssl.SSLContext, secure_proxy_url: URL, uvloop_loop: asyncio.AbstractEventLoop, ) -> None: """Ensure HTTPS sites are accessible through a secure proxy without warning when using uvloop.""" conn = aiohttp.TCPConnector(force_close=True) sess = aiohttp.ClientSession(connector=conn) try: url = URL("https://example.com") async with sess.get( url, proxy=secure_proxy_url, ssl=client_ssl_ctx ) as response: assert response.status == 200 # Ensure response body is read to completion await response.read() finally: await sess.close() await conn.close() await asyncio.sleep(0) await asyncio.sleep(0.1) @pytest.fixture def proxy_test_server( aiohttp_raw_server: AiohttpRawServer, loop: asyncio.AbstractEventLoop, monkeypatch: pytest.MonkeyPatch, ) -> Callable[[], Awaitable[mock.Mock]]: # Handle all proxy requests and imitate remote server response. _patch_ssl_transport(monkeypatch) default_response = _ResponseArgs(status=200, headers=None, body=None) proxy_mock = mock.Mock() async def proxy_handler(request: web.Request) -> web.Response: proxy_mock.request = request proxy_mock.requests_list.append(request) response = default_response.copy() if isinstance(proxy_mock.return_value, dict): response.update(proxy_mock.return_value) # type: ignore[typeddict-item] headers = response["headers"] if not headers: headers = {} if request.method == "CONNECT": response["body"] = None response["headers"] = headers resp = web.Response(**response) await resp.prepare(request) await resp.write_eof() return resp async def proxy_server() -> mock.Mock: proxy_mock.request = None proxy_mock.auth = None proxy_mock.requests_list = [] server = await aiohttp_raw_server(proxy_handler) # type: ignore[arg-type] proxy_mock.server = server proxy_mock.url = server.make_url("/") return proxy_mock return proxy_server async def test_proxy_http_absolute_path( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "http://aiohttp.io/path?query=yes" proxy = await proxy_test_server() await get_request(url=url, proxy=proxy.url) assert len(proxy.requests_list) == 1 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path?query=yes" async def test_proxy_http_raw_path( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "http://aiohttp.io:2561/space sheep?q=can:fly" raw_url = "/space%20sheep?q=can:fly" proxy = await proxy_test_server() await get_request(url=url, proxy=proxy.url) assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == raw_url async def test_proxy_http_idna_support( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "http://éé.com/" proxy = await proxy_test_server() await get_request(url=url, proxy=proxy.url) assert proxy.request.host == "éé.com" assert proxy.request.path_qs == "/" async def test_proxy_http_connection_error() -> None: url = "http://aiohttp.io/path" proxy_url = "http://localhost:2242/" with pytest.raises(aiohttp.ClientConnectorError): await get_request(url=url, proxy=proxy_url) async def test_proxy_http_bad_response( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() proxy.return_value = dict(status=502, headers={"Proxy-Agent": "TestProxy"}) resp = await get_request(url=url, proxy=proxy.url) assert resp.status == 502 assert resp.headers["Proxy-Agent"] == "TestProxy" async def test_proxy_http_auth( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() await get_request(url=url, proxy=proxy.url) assert "Authorization" not in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers auth = aiohttp.BasicAuth("user", "pass") await get_request(url=url, auth=auth, proxy=proxy.url) assert "Authorization" in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers await get_request(url=url, proxy_auth=auth, proxy=proxy.url) assert "Authorization" not in proxy.request.headers assert "Proxy-Authorization" in proxy.request.headers await get_request(url=url, auth=auth, proxy_auth=auth, proxy=proxy.url) assert "Authorization" in proxy.request.headers assert "Proxy-Authorization" in proxy.request.headers async def test_proxy_http_auth_utf8( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "http://aiohttp.io/path" auth = aiohttp.BasicAuth("ΡŽΠ·Π΅Ρ€", "пасс", "utf-8") proxy = await proxy_test_server() await get_request(url=url, auth=auth, proxy=proxy.url) assert "Authorization" in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers async def test_proxy_http_auth_from_url( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() auth_url = URL(url).with_user("user").with_password("pass") await get_request(url=auth_url, proxy=proxy.url) assert "Authorization" in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers proxy_url = URL(proxy.url).with_user("user").with_password("pass") await get_request(url=url, proxy=proxy_url) assert "Authorization" not in proxy.request.headers assert "Proxy-Authorization" in proxy.request.headers async def test_proxy_http_acquired_cleanup( proxy_test_server: Callable[[], Awaitable[mock.Mock]], loop: asyncio.AbstractEventLoop, ) -> None: url = "http://aiohttp.io/path" conn = aiohttp.TCPConnector() sess = aiohttp.ClientSession(connector=conn) proxy = await proxy_test_server() assert 0 == len(conn._acquired) async with sess.get(url, proxy=proxy.url) as resp: pass assert resp.closed assert 0 == len(conn._acquired) await sess.close() await conn.close() @pytest.mark.skip("we need to reconsider how we test this") async def test_proxy_http_acquired_cleanup_force( proxy_test_server: Callable[[], Awaitable[mock.Mock]], loop: asyncio.AbstractEventLoop, ) -> None: url = "http://aiohttp.io/path" conn = aiohttp.TCPConnector(force_close=True) sess = aiohttp.ClientSession(connector=conn) proxy = await proxy_test_server() assert 0 == len(conn._acquired) async def request() -> None: async with sess.get(url, proxy=proxy.url): assert 1 == len(conn._acquired) await request() assert 0 == len(conn._acquired) await sess.close() await conn.close() @pytest.mark.skip("we need to reconsider how we test this") async def test_proxy_http_multi_conn_limit( proxy_test_server: Callable[[], Awaitable[mock.Mock]], loop: asyncio.AbstractEventLoop, ) -> None: url = "http://aiohttp.io/path" limit, multi_conn_num = 1, 5 conn = aiohttp.TCPConnector(limit=limit) sess = aiohttp.ClientSession(connector=conn) proxy = await proxy_test_server() current_pid = None async def request(pid: int) -> ClientResponse: # process requests only one by one nonlocal current_pid async with sess.get(url, proxy=proxy.url) as resp: current_pid = pid await asyncio.sleep(0.2) assert current_pid == pid return resp requests = [request(pid) for pid in range(multi_conn_num)] responses = await asyncio.gather(*requests) assert len(responses) == multi_conn_num assert {resp.status for resp in responses} == {200} await sess.close() await conn.close() @pytest.mark.xfail async def test_proxy_https_connect( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: proxy = await proxy_test_server() url = "https://www.google.com.ua/search?q=aiohttp proxy" await get_request(url=url, proxy=proxy.url) connect = proxy.requests_list[0] assert connect.method == "CONNECT" assert connect.path == "www.google.com.ua:443" assert connect.host == "www.google.com.ua" assert proxy.request.host == "www.google.com.ua" assert proxy.request.path_qs == "/search?q=aiohttp+proxy" @pytest.mark.xfail async def test_proxy_https_connect_with_port( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: proxy = await proxy_test_server() url = "https://secure.aiohttp.io:2242/path" await get_request(url=url, proxy=proxy.url) connect = proxy.requests_list[0] assert connect.method == "CONNECT" assert connect.path == "secure.aiohttp.io:2242" assert connect.host == "secure.aiohttp.io:2242" assert proxy.request.host == "secure.aiohttp.io:2242" assert proxy.request.path_qs == "/path" @pytest.mark.xfail async def test_proxy_https_send_body( proxy_test_server: Callable[[], Awaitable[mock.Mock]], loop: asyncio.AbstractEventLoop, ) -> None: sess = aiohttp.ClientSession() try: proxy = await proxy_test_server() proxy.return_value = {"status": 200, "body": b"1" * (2**20)} url = "https://www.google.com.ua/search?q=aiohttp proxy" async with sess.get(url, proxy=proxy.url) as resp: body = await resp.read() assert body == b"1" * (2**20) finally: await sess.close() @pytest.mark.xfail async def test_proxy_https_idna_support( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "https://éé.com/" proxy = await proxy_test_server() await get_request(url=url, proxy=proxy.url) connect = proxy.requests_list[0] assert connect.method == "CONNECT" assert connect.path == "xn--9caa.com:443" assert connect.host == "xn--9caa.com" async def test_proxy_https_connection_error() -> None: url = "https://secure.aiohttp.io/path" proxy_url = "http://localhost:2242/" with pytest.raises(aiohttp.ClientConnectorError): await get_request(url=url, proxy=proxy_url) async def test_proxy_https_bad_response( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "https://secure.aiohttp.io/path" proxy = await proxy_test_server() proxy.return_value = dict(status=502, headers={"Proxy-Agent": "TestProxy"}) with pytest.raises(aiohttp.ClientHttpProxyError): await get_request(url=url, proxy=proxy.url) assert len(proxy.requests_list) == 1 assert proxy.request.method == "CONNECT" # The following check fails on MacOS # assert proxy.request.path == 'secure.aiohttp.io:443' @pytest.mark.xfail async def test_proxy_https_auth( proxy_test_server: Callable[[], Awaitable[mock.Mock]], ) -> None: url = "https://secure.aiohttp.io/path" auth = aiohttp.BasicAuth("user", "pass") proxy = await proxy_test_server() await get_request(url=url, proxy=proxy.url) connect = proxy.requests_list[0] assert "Authorization" not in connect.headers assert "Proxy-Authorization" not in connect.headers assert "Authorization" not in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers proxy = await proxy_test_server() await get_request(url=url, auth=auth, proxy=proxy.url) connect = proxy.requests_list[0] assert "Authorization" not in connect.headers assert "Proxy-Authorization" not in connect.headers assert "Authorization" in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers proxy = await proxy_test_server() await get_request(url=url, proxy_auth=auth, proxy=proxy.url) connect = proxy.requests_list[0] assert "Authorization" not in connect.headers assert "Proxy-Authorization" in connect.headers assert "Authorization" not in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers proxy = await proxy_test_server() await get_request(url=url, auth=auth, proxy_auth=auth, proxy=proxy.url) connect = proxy.requests_list[0] assert "Authorization" not in connect.headers assert "Proxy-Authorization" in connect.headers assert "Authorization" in proxy.request.headers assert "Proxy-Authorization" not in proxy.request.headers @pytest.mark.xfail async def test_proxy_https_acquired_cleanup( proxy_test_server: Callable[[], Awaitable[mock.Mock]], loop: asyncio.AbstractEventLoop, ) -> None: url = "https://secure.aiohttp.io/path" conn = aiohttp.TCPConnector() sess = aiohttp.ClientSession(connector=conn) try: proxy = await proxy_test_server() assert 0 == len(conn._acquired) async def request() -> None: async with sess.get(url, proxy=proxy.url): assert 1 == len(conn._acquired) await request() assert 0 == len(conn._acquired) finally: await sess.close() await conn.close() @pytest.mark.xfail async def test_proxy_https_acquired_cleanup_force( proxy_test_server: Callable[[], Awaitable[mock.Mock]], loop: asyncio.AbstractEventLoop, ) -> None: url = "https://secure.aiohttp.io/path" conn = aiohttp.TCPConnector(force_close=True) sess = aiohttp.ClientSession(connector=conn) try: proxy = await proxy_test_server() assert 0 == len(conn._acquired) async def request() -> None: async with sess.get(url, proxy=proxy.url): assert 1 == len(conn._acquired) await request() assert 0 == len(conn._acquired) finally: await sess.close() await conn.close() @pytest.mark.xfail async def test_proxy_https_multi_conn_limit( proxy_test_server: Callable[[], Awaitable[mock.Mock]], loop: asyncio.AbstractEventLoop, ) -> None: url = "https://secure.aiohttp.io/path" limit, multi_conn_num = 1, 5 conn = aiohttp.TCPConnector(limit=limit) sess = aiohttp.ClientSession(connector=conn) proxy = await proxy_test_server() try: current_pid = None async def request(pid: int) -> ClientResponse: # process requests only one by one nonlocal current_pid async with sess.get(url, proxy=proxy.url) as resp: current_pid = pid await asyncio.sleep(0.2) assert current_pid == pid return resp requests = [request(pid) for pid in range(multi_conn_num)] responses = await asyncio.gather(*requests, return_exceptions=True) # Filter out exceptions to count actual responses actual_responses = [r for r in responses if isinstance(r, ClientResponse)] assert len(actual_responses) == multi_conn_num assert {resp.status for resp in actual_responses} == {200} finally: await sess.close() await conn.close() def _patch_ssl_transport(monkeypatch: pytest.MonkeyPatch) -> None: # Make ssl transport substitution to prevent ssl handshake. def _make_ssl_transport_dummy( self: asyncio.selector_events.BaseSelectorEventLoop, rawsock: object, protocol: object, sslcontext: object, waiter: object = None, **kwargs: object, ) -> object: return self._make_socket_transport( # type: ignore[attr-defined] rawsock, protocol, waiter, extra=kwargs.get("extra"), server=kwargs.get("server"), ) monkeypatch.setattr( "asyncio.selector_events.BaseSelectorEventLoop._make_ssl_transport", _make_ssl_transport_dummy, ) original_is_file = pathlib.Path.is_file def mock_is_file(self: pathlib.Path) -> bool: # make real netrc file invisible in home dir if self.name in ["_netrc", ".netrc"] and self.parent == self.home(): return False else: return original_is_file(self) async def test_proxy_from_env_http( proxy_test_server: Callable[[], Awaitable[mock.Mock]], mocker: MockerFixture ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() mocker.patch.dict(os.environ, {"http_proxy": str(proxy.url)}) mocker.patch("pathlib.Path.is_file", mock_is_file) await get_request(url=url, trust_env=True) assert len(proxy.requests_list) == 1 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path" assert "Proxy-Authorization" not in proxy.request.headers async def test_proxy_from_env_http_with_auth( proxy_test_server: Callable[[], Awaitable[mock.Mock]], mocker: MockerFixture ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() auth = aiohttp.BasicAuth("user", "pass") mocker.patch.dict( os.environ, { "http_proxy": str( proxy.url.with_user(auth.login).with_password(auth.password) ) }, ) await get_request(url=url, trust_env=True) assert len(proxy.requests_list) == 1 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path" assert proxy.request.headers["Proxy-Authorization"] == auth.encode() async def test_proxy_from_env_http_with_auth_from_netrc( proxy_test_server: Callable[[], Awaitable[mock.Mock]], tmp_path: pathlib.Path, mocker: MockerFixture, ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() auth = aiohttp.BasicAuth("user", "pass") netrc_file = tmp_path / "test_netrc" netrc_file_data = f"machine 127.0.0.1 login {auth.login} password {auth.password}" with netrc_file.open("w") as f: f.write(netrc_file_data) mocker.patch.dict( os.environ, {"http_proxy": str(proxy.url), "NETRC": str(netrc_file)} ) await get_request(url=url, trust_env=True) assert len(proxy.requests_list) == 1 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path" assert proxy.request.headers["Proxy-Authorization"] == auth.encode() async def test_proxy_from_env_http_without_auth_from_netrc( proxy_test_server: Callable[[], Awaitable[mock.Mock]], tmp_path: pathlib.Path, mocker: MockerFixture, ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() auth = aiohttp.BasicAuth("user", "pass") netrc_file = tmp_path / "test_netrc" netrc_file_data = f"machine 127.0.0.2 login {auth.login} password {auth.password}" with netrc_file.open("w") as f: f.write(netrc_file_data) mocker.patch.dict( os.environ, {"http_proxy": str(proxy.url), "NETRC": str(netrc_file)} ) await get_request(url=url, trust_env=True) assert len(proxy.requests_list) == 1 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path" assert "Proxy-Authorization" not in proxy.request.headers async def test_proxy_from_env_http_without_auth_from_wrong_netrc( proxy_test_server: Callable[[], Awaitable[mock.Mock]], tmp_path: pathlib.Path, mocker: MockerFixture, ) -> None: url = "http://aiohttp.io/path" proxy = await proxy_test_server() auth = aiohttp.BasicAuth("user", "pass") netrc_file = tmp_path / "test_netrc" invalid_data = f"machine 127.0.0.1 {auth.login} pass {auth.password}" with netrc_file.open("w") as f: f.write(invalid_data) mocker.patch.dict( os.environ, {"http_proxy": str(proxy.url), "NETRC": str(netrc_file)} ) await get_request(url=url, trust_env=True) assert len(proxy.requests_list) == 1 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path" assert "Proxy-Authorization" not in proxy.request.headers @pytest.mark.xfail async def test_proxy_from_env_https( proxy_test_server: Callable[[], Awaitable[mock.Mock]], mocker: MockerFixture ) -> None: url = "https://aiohttp.io/path" proxy = await proxy_test_server() mocker.patch.dict(os.environ, {"https_proxy": str(proxy.url)}) mocker.patch("pathlib.Path.is_file", mock_is_file) await get_request(url=url, trust_env=True) assert len(proxy.requests_list) == 2 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path" assert "Proxy-Authorization" not in proxy.request.headers @pytest.mark.xfail async def test_proxy_from_env_https_with_auth( proxy_test_server: Callable[[], Awaitable[mock.Mock]], mocker: MockerFixture ) -> None: url = "https://aiohttp.io/path" proxy = await proxy_test_server() auth = aiohttp.BasicAuth("user", "pass") mocker.patch.dict( os.environ, { "https_proxy": str( proxy.url.with_user(auth.login).with_password(auth.password) ) }, ) await get_request(url=url, trust_env=True) assert len(proxy.requests_list) == 2 assert proxy.request.method == "GET" assert proxy.request.host == "aiohttp.io" assert proxy.request.path_qs == "/path" assert "Proxy-Authorization" not in proxy.request.headers r2 = proxy.requests_list[0] assert r2.method == "CONNECT" assert r2.host == "aiohttp.io" assert r2.path_qs == "/path" assert r2.headers["Proxy-Authorization"] == auth.encode() async def test_proxy_auth() -> None: async with aiohttp.ClientSession() as session: with pytest.raises( ValueError, match=r"proxy_auth must be None or BasicAuth\(\) tuple" ): async with session.get( "http://python.org", proxy="http://proxy.example.com", proxy_auth=("user", "pass"), # type: ignore[arg-type] ): pass async def test_https_proxy_connect_tunnel_session_close_no_hang( aiohttp_server: AiohttpServer, ) -> None: """Test that CONNECT tunnel connections are not pooled.""" # Regression test for issue #11273. # Create a minimal proxy server # The CONNECT method is handled at the protocol level, not by the handler proxy_app = web.Application() proxy_server = await aiohttp_server(proxy_app) proxy_url = f"http://{proxy_server.host}:{proxy_server.port}" # Create session and make HTTPS request through proxy session = aiohttp.ClientSession() try: # This will fail during TLS upgrade because proxy doesn't establish tunnel with suppress(aiohttp.ClientError): async with session.get("https://example.com/test", proxy=proxy_url) as resp: await resp.read() # The critical test: Check if any connections were pooled with proxy=None # This is the root cause of the hang - CONNECT tunnel connections # should NOT be pooled connector = session.connector assert connector is not None # Count connections with proxy=None in the pool proxy_none_keys = [key for key in connector._conns if key.proxy is None] proxy_none_count = len(proxy_none_keys) # Before the fix, there would be a connection with proxy=None # After the fix, CONNECT tunnel connections are not pooled assert proxy_none_count == 0, ( f"Found {proxy_none_count} connections with proxy=None in pool. " f"CONNECT tunnel connections should not be pooled - this is bug #11273" ) finally: # Clean close await session.close()
_ResponseArgs
python
allegroai__clearml
clearml/backend_api/services/v2_20/events.py
{ "start": 29129, "end": 31270 }
class ____(Response): """ :param scroll_id: Scroll ID for getting more results :type scroll_id: str :param metrics: Debug image events grouped by tasks and iterations :type metrics: Sequence[DebugImagesResponseTaskMetrics] """ _service = "events" _action = "debug_images" _version = "2.20" _schema = { "properties": { "metrics": { "description": "Debug image events grouped by tasks and iterations", "items": {"$ref": "#/definitions/debug_images_response_task_metrics"}, "type": ["array", "null"], }, "scroll_id": { "description": "Scroll ID for getting more results", "type": ["string", "null"], }, }, "type": "object", } def __init__(self, scroll_id: Optional[str] = None, metrics: Optional[List[Any]] = None, **kwargs: Any) -> None: super(DebugImagesResponse, self).__init__(**kwargs) self.scroll_id = scroll_id self.metrics = metrics @schema_property("scroll_id") def scroll_id(self) -> Optional[str]: return self._property_scroll_id @scroll_id.setter def scroll_id(self, value: Optional[str]) -> None: if value is None: self._property_scroll_id = None return self.assert_isinstance(value, "scroll_id", six.string_types) self._property_scroll_id = value @schema_property("metrics") def metrics(self) -> Optional[List[Any]]: return self._property_metrics @metrics.setter def metrics(self, value: Optional[List[Any]]) -> None: if value is None: self._property_metrics = None return self.assert_isinstance(value, "metrics", (list, tuple)) if any((isinstance(v, dict) for v in value)): value = [DebugImagesResponseTaskMetrics.from_dict(v) if isinstance(v, dict) else v for v in value] else: self.assert_isinstance(value, "metrics", DebugImagesResponseTaskMetrics, is_array=True) self._property_metrics = value
DebugImagesResponse
python
pydantic__pydantic
tests/mypy/outputs/mypy-default_ini/plugin_success.py
{ "start": 6696, "end": 6953 }
class ____(BaseModel): model_config = ConfigDict(validate_by_alias=False, validate_by_name=True) my_field: str = Field(alias='my_alias') m1 = Model1(my_field='foo') # MYPY: error: Unexpected keyword argument "my_field" for "Model1" [call-arg]
Model1
python
django__django
tests/template_tests/test_base.py
{ "start": 1614, "end": 2151 }
class ____(SimpleTestCase): def test_lazy_template_string(self): template_string = gettext_lazy("lazy string") self.assertEqual(Template(template_string).render(Context()), template_string) def test_repr(self): template = Template( "<html><body>\n" "{% if test %}<h1>{{ varvalue }}</h1>{% endif %}" "</body></html>" ) self.assertEqual( repr(template), '<Template template_string="<html><body>{% if t...">', )
TemplateTests
python
davidhalter__jedi
jedi/inference/gradual/typing.py
{ "start": 8802, "end": 8912 }
class ____(ProxyTypingValue, _TypingClassMixin): index_class = TypingClassWithGenerics
ProxyTypingClassValue
python
realpython__materials
python-import/finders_and_loaders/ban_importer.py
{ "start": 57, "end": 273 }
class ____: @classmethod def find_spec(cls, name, path, target=None): if name in BANNED_MODULES: raise ModuleNotFoundError(f"{name!r} is banned") sys.meta_path.insert(0, BanFinder)
BanFinder
python
scipy__scipy
benchmarks/benchmarks/go_benchmark_functions/go_funcs_I.py
{ "start": 65, "end": 1082 }
class ____(Benchmark): r""" Infinity objective function. This class defines the Infinity [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Infinity}}(x) = \sum_{i=1}^{n} x_i^{6} \left [ \sin\left ( \frac{1}{x_i} \right ) + 2 \right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-1, 1]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015 """ change_dimensionality = True def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-1.0] * self.N, [1.0] * self.N)) self.global_optimum = [[1e-16 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return sum(x ** 6.0 * (sin(1.0 / x) + 2.0))
Infinity
python
conda__conda
conda/core/path_actions.py
{ "start": 2447, "end": 5421 }
class ____: """Base class for path manipulation actions, including linking, unlinking, and others. Pre and post-transaction plugins should inherit this class to implement their own verification, execution, reversing, and cleanup steps. These methods are guaranteed to be called in the following order: 1. ``verify`` 2. ``execute`` 3. ``reverse`` (only if ``execute`` raises an exception) 4. ``cleanup`` :param transaction_context: Mapping between target prefixes and PrefixActions instances :param target_prefix: Target prefix for the action :param unlink_precs: Package records to be unlinked :param link_precs: Package records to link :param remove_specs: Specs to be removed :param update_specs: Specs to be updated :param neutered_specs: Specs to be neutered """ _verified = False def __init__( self, transaction_context: dict[str, str] | None = None, target_prefix: str | None = None, unlink_precs: Iterable[PackageRecord] | None = None, link_precs: Iterable[PackageRecord] | None = None, remove_specs: Iterable[MatchSpec] | None = None, update_specs: Iterable[MatchSpec] | None = None, neutered_specs: Iterable[MatchSpec] | None = None, ): self.transaction_context = transaction_context self.target_prefix = target_prefix self.unlink_precs = unlink_precs self.link_precs = link_precs self.remove_specs = remove_specs self.update_specs = update_specs self.neutered_specs = neutered_specs @abstractmethod def verify(self) -> Exception | None: """Carry out any pre-execution verification. Should set self._verified = True upon success. :return: On failure, this function should return (not raise!) an exception object. At the end of the verification run, all errors will be raised as a CondaMultiError. """ @abstractmethod def execute(self) -> None: """Execute the action. Called after ``self.verify()``. If this function raises an exception, ``self.reverse()`` will be called. """ @abstractmethod def reverse(self) -> None: """Reverse what was done in execute. Called only if ``self.execute()`` raises an exception. """ pass @abstractmethod def cleanup(self) -> None: """Carry out any post-execution tasks.""" pass @property def verified(self): return self._verified def __repr__(self): args = ( f"{key}={value!r}" for key, value in vars(self).items() if key not in REPR_IGNORE_KWARGS ) return "{}({})".format(self.__class__.__name__, ", ".join(args)) deprecated.constant( "25.9", "26.3", "_Action", Action, addendum="Use `conda.core.path_actions.Action` instead.", )
Action
python
google__jax
tests/pallas/tpu_sparsecore_pallas_test.py
{ "start": 2733, "end": 2995 }
class ____(): COMPILER_OPTIONS = {"xla_tpu_use_tc_device_shape_on_sc": "true"} def setUp(self): super().setUp() if jtu.is_cloud_tpu(): # TODO(apaszke,slebedev): Fix those. self.skipTest("Many tests are failing on Cloud TPUs")
TCTilingMixin
python
doocs__leetcode
solution/2900-2999/2966.Divide Array Into Arrays With Max Difference/Solution.py
{ "start": 0, "end": 314 }
class ____: def divideArray(self, nums: List[int], k: int) -> List[List[int]]: nums.sort() ans = [] n = len(nums) for i in range(0, n, 3): t = nums[i : i + 3] if t[2] - t[0] > k: return [] ans.append(t) return ans
Solution
python
pytorch__pytorch
torch/_inductor/template_heuristics/aten.py
{ "start": 1875, "end": 2396 }
class ____(ATenConfigHeuristics): def get_extra_kwargs( self, kernel_inputs: KernelInputs, op_name: str, ) -> dict[str, Any]: kwargs = super().get_extra_kwargs(kernel_inputs, op_name) alpha = kernel_inputs.get_scalar("alpha") beta = kernel_inputs.get_scalar("beta") return { **kwargs, "alpha": alpha, "beta": beta, } @register_template_heuristic(aten_bias_addmm.uid, None, op_name="addmm")
ATenAddMMConfigHeuristics
python
wandb__wandb
wandb/vendor/pygments/lexers/configs.py
{ "start": 824, "end": 1612 }
class ____(RegexLexer): """ Lexer for configuration files in INI style. """ name = 'INI' aliases = ['ini', 'cfg', 'dosini'] filenames = ['*.ini', '*.cfg', '*.inf'] mimetypes = ['text/x-ini', 'text/inf'] tokens = { 'root': [ (r'\s+', Text), (r'[;#].*', Comment.Single), (r'\[.*?\]$', Keyword), (r'(.*?)([ \t]*)(=)([ \t]*)(.*(?:\n[ \t].+)*)', bygroups(Name.Attribute, Text, Operator, Text, String)), # standalone option, supported by some INI parsers (r'(.+?)$', Name.Attribute), ], } def analyse_text(text): npos = text.find('\n') if npos < 3: return False return text[0] == '[' and text[npos-1] == ']'
IniLexer
python
python-openxml__python-docx
src/docx/opc/parts/coreprops.py
{ "start": 458, "end": 1775 }
class ____(XmlPart): """Corresponds to part named ``/docProps/core.xml``. The "core" is short for "Dublin Core" and contains document metadata relatively common across documents of all types, not just DOCX. """ @classmethod def default(cls, package: OpcPackage): """Return a new |CorePropertiesPart| object initialized with default values for its base properties.""" core_properties_part = cls._new(package) core_properties = core_properties_part.core_properties core_properties.title = "Word Document" core_properties.last_modified_by = "python-docx" core_properties.revision = 1 core_properties.modified = dt.datetime.now(dt.timezone.utc) return core_properties_part @property def core_properties(self): """A |CoreProperties| object providing read/write access to the core properties contained in this core properties part.""" return CoreProperties(self.element) @classmethod def _new(cls, package: OpcPackage) -> CorePropertiesPart: partname = PackURI("/docProps/core.xml") content_type = CT.OPC_CORE_PROPERTIES coreProperties = CT_CoreProperties.new() return CorePropertiesPart(partname, content_type, coreProperties, package)
CorePropertiesPart
python
dagster-io__dagster
python_modules/dagster/dagster/_core/definitions/resource_requirement.py
{ "start": 3235, "end": 3445 }
class ____(ABC): @abstractmethod def with_resources( self, resource_defs: Mapping[str, "ResourceDefinition"] ) -> "ResourceAddable": raise NotImplementedError() @record
ResourceAddable
python
openai__openai-python
src/openai/resources/beta/threads/messages.py
{ "start": 1149, "end": 13584 }
class ____(SyncAPIResource): @cached_property def with_raw_response(self) -> MessagesWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return MessagesWithRawResponse(self) @cached_property def with_streaming_response(self) -> MessagesWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return MessagesWithStreamingResponse(self) @typing_extensions.deprecated("The Assistants API is deprecated in favor of the Responses API") def create( self, thread_id: str, *, content: Union[str, Iterable[MessageContentPartParam]], role: Literal["user", "assistant"], attachments: Optional[Iterable[message_create_params.Attachment]] | Omit = omit, metadata: Optional[Metadata] | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> Message: """ Create a message. Args: content: The text contents of the message. role: The role of the entity that is creating the message. Allowed values include: - `user`: Indicates the message is sent by an actual user and should be used in most cases to represent user-generated messages. - `assistant`: Indicates the message is generated by the assistant. Use this value to insert messages from the assistant into the conversation. attachments: A list of files attached to the message, and the tools they should be added to. metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not thread_id: raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return self._post( f"/threads/{thread_id}/messages", body=maybe_transform( { "content": content, "role": role, "attachments": attachments, "metadata": metadata, }, message_create_params.MessageCreateParams, ), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Message, ) @typing_extensions.deprecated("The Assistants API is deprecated in favor of the Responses API") def retrieve( self, message_id: str, *, thread_id: str, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> Message: """ Retrieve a message. Args: extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not thread_id: raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") if not message_id: raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return self._get( f"/threads/{thread_id}/messages/{message_id}", options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Message, ) @typing_extensions.deprecated("The Assistants API is deprecated in favor of the Responses API") def update( self, message_id: str, *, thread_id: str, metadata: Optional[Metadata] | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> Message: """ Modifies a message. Args: metadata: Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not thread_id: raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") if not message_id: raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return self._post( f"/threads/{thread_id}/messages/{message_id}", body=maybe_transform({"metadata": metadata}, message_update_params.MessageUpdateParams), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Message, ) @typing_extensions.deprecated("The Assistants API is deprecated in favor of the Responses API") def list( self, thread_id: str, *, after: str | Omit = omit, before: str | Omit = omit, limit: int | Omit = omit, order: Literal["asc", "desc"] | Omit = omit, run_id: str | Omit = omit, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> SyncCursorPage[Message]: """ Returns a list of messages for a given thread. Args: after: A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. before: A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. run_id: Filter messages by the run ID that generated them. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not thread_id: raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return self._get_api_list( f"/threads/{thread_id}/messages", page=SyncCursorPage[Message], options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, query=maybe_transform( { "after": after, "before": before, "limit": limit, "order": order, "run_id": run_id, }, message_list_params.MessageListParams, ), ), model=Message, ) @typing_extensions.deprecated("The Assistants API is deprecated in favor of the Responses API") def delete( self, message_id: str, *, thread_id: str, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = not_given, ) -> MessageDeleted: """ Deletes a message. Args: extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ if not thread_id: raise ValueError(f"Expected a non-empty value for `thread_id` but received {thread_id!r}") if not message_id: raise ValueError(f"Expected a non-empty value for `message_id` but received {message_id!r}") extra_headers = {"OpenAI-Beta": "assistants=v2", **(extra_headers or {})} return self._delete( f"/threads/{thread_id}/messages/{message_id}", options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=MessageDeleted, )
Messages
python
getsentry__sentry
tests/sentry/integrations/pagerduty/test_integration.py
{ "start": 784, "end": 9903 }
class ____(IntegrationTestCase): provider = PagerDutyIntegrationProvider base_url = "https://app.pagerduty.com" def setUp(self) -> None: super().setUp() self.app_id = "app_1" self.account_slug = "test-app" self._stub_pagerduty() def _stub_pagerduty(self): options.set("pagerduty.app-id", self.app_id) responses.reset() responses.add( responses.GET, self.base_url + "/install/integration?app_id=%sredirect_url=%s&version=1" % (self.app_id, self.setup_path), ) @patch("sentry.integrations.utils.metrics.EventLifecycle.record_event") def assert_setup_flow(self, mock_record): resp = self.client.get(self.init_path) assert resp.status_code == 302 redirect = urlparse(resp["Location"]) assert redirect.scheme == "https" assert redirect.netloc == "app.pagerduty.com" assert redirect.path == "/install/integration" config = { "integration_keys": [ { "integration_key": "key1", "name": "Super Cool Service", "id": "PD12345", "type": "service", }, { "integration_key": "key3", "name": "B Team's Rules", "id": "PDBCDEF", "type": "team_rule_set", }, ], "account": {"subdomain": "test-app", "name": "Test App"}, } resp = self.client.get( "{}?{}".format(self.setup_path, urlencode({"config": orjson.dumps(config).decode()})) ) self.assertDialogSuccess(resp) # SLO assertions # INSTALLATION_REDIRECT (success) -> POST_INSTALL (success) -> FINISH_PIPELINE (success) -> INSTALLATION_REDIRECT (success) # The first INSTALLATION_REDIRECT exits early because we redirect the user, the second INSTALLATION_REDIRECT is the last layer of the onion assert_count_of_metric( mock_record=mock_record, outcome=EventLifecycleOutcome.STARTED, outcome_count=4 ) assert_count_of_metric( mock_record=mock_record, outcome=EventLifecycleOutcome.SUCCESS, outcome_count=4 ) assert_success_metric(mock_record) return resp def assert_add_service_flow(self, integration): query_param = "?account=%s" % (integration.metadata["domain_name"]) init_path_with_account = f"{self.init_path}{query_param}" resp = self.client.get(init_path_with_account) assert resp.status_code == 302 redirect = urlparse(resp["Location"]) assert redirect.scheme == "https" assert redirect.netloc == "%s.pagerduty.com" % integration.metadata["domain_name"] assert redirect.path == "/install/integration" config = { "integration_keys": [ { "integration_key": "additional-service", "name": "Additional Service", "id": "PD123467", "type": "service", } ], "account": {"subdomain": "test-app", "name": "Test App"}, } resp = self.client.get( "{}?{}".format(self.setup_path, urlencode({"config": orjson.dumps(config).decode()})) ) self.assertDialogSuccess(resp) return resp @responses.activate def test_basic_flow(self) -> None: with self.tasks(): self.assert_setup_flow() integration = Integration.objects.get(provider=self.provider.key) assert integration.external_id == self.account_slug assert integration.name == "Test App" assert integration.metadata["services"] == [ { "integration_key": "key1", "name": "Super Cool Service", "id": "PD12345", "type": "service", } ] oi = OrganizationIntegration.objects.get( integration=integration, organization_id=self.organization.id ) services = get_services(oi) assert services[0]["service_name"] == "Super Cool Service" @responses.activate def test_add_services_flow(self) -> None: with self.tasks(): self.assert_setup_flow() integration = Integration.objects.get(provider=self.provider.key) oi = OrganizationIntegration.objects.get( integration_id=integration.id, organization_id=self.organization.id ) service = get_services(oi)[0] url = "https://%s.pagerduty.com" % (integration.metadata["domain_name"]) responses.add( responses.GET, url + "/install/integration?app_id=%sredirect_url=%s&version=1" % (self.app_id, self.setup_path), ) with self.tasks(): self.assert_add_service_flow(integration) oi.refresh_from_db() services = get_services(oi) assert services[1]["id"] del services[1]["id"] # type: ignore[misc] assert services == [ service, dict( integration_id=integration.id, integration_key="additional-service", service_name="Additional Service", ), ] @responses.activate def test_update_organization_config(self) -> None: with self.tasks(): self.assert_setup_flow() integration = Integration.objects.get(provider=self.provider.key) oi = OrganizationIntegration.objects.get( integration_id=integration.id, organization_id=self.organization.id ) service_id = get_services(oi)[0]["id"] config_data = { "service_table": [ {"service": "Mleep", "integration_key": "xxxxxxxxxxxxxxxx", "id": service_id}, {"service": "new_service", "integration_key": "new_key", "id": None}, ] } integration.get_installation(self.organization.id).update_organization_config(config_data) oi.refresh_from_db() services = get_services(oi) del services[1]["id"] # type: ignore[misc] assert services == [ dict( id=service_id, integration_key="xxxxxxxxxxxxxxxx", integration_id=oi.integration_id, service_name="Mleep", ), dict( integration_key="new_key", integration_id=oi.integration_id, service_name="new_service", ), ] @responses.activate def test_delete_pagerduty_service(self) -> None: with self.tasks(): self.assert_setup_flow() integration = Integration.objects.get(provider=self.provider.key) oi = OrganizationIntegration.objects.get( integration_id=integration.id, organization_id=self.organization.id ) services = get_services(oi) assert len(services) == 1 service_id = services[0]["id"] config_data = { "service_table": [{"service": "new_service", "integration_key": "new_key", "id": None}] } integration.get_installation(self.organization.id).update_organization_config(config_data) oi.refresh_from_db() services = get_services(oi) assert len(services) == 1 assert services[0]["id"] != service_id @responses.activate def test_no_name(self) -> None: with self.tasks(): self.assert_setup_flow() integration = Integration.objects.get(provider=self.provider.key) oi = OrganizationIntegration.objects.get( integration=integration, organization_id=self.organization.id ) service = get_services(oi)[0] service_id = service["id"] config_data = { "service_table": [{"service": "new_service", "integration_key": "", "id": service_id}] } with pytest.raises(IntegrationError) as error: integration.get_installation(self.organization.id).update_organization_config( config_data ) assert str(error.value) == "Name and key are required" @responses.activate def test_get_config_data(self) -> None: with self.tasks(): self.assert_setup_flow() integration = Integration.objects.get(provider=self.provider.key) oi = OrganizationIntegration.objects.get( integration=integration, organization_id=self.organization.id ) service = get_services(oi)[0] config = integration.get_installation(self.organization.id).get_config_data() assert config == { "service_table": [ { "id": service["id"], "service": service["service_name"], "integration_key": service["integration_key"], } ] }
PagerDutyIntegrationTest
python
tensorflow__tensorflow
tensorflow/python/ops/bincount_ops_test.py
{ "start": 13107, "end": 13785 }
class ____(test.TestCase, parameterized.TestCase): @test_util.run_v1_only("Test security error") def testSparseCountSparseOutputBadIndicesShapeTooSmall(self): indices = [1] values = [[1]] weights = [] dense_shape = [10] with self.assertRaisesRegex(ValueError, "Shape must be rank 2 but is rank 1 for"): self.evaluate( gen_count_ops.SparseCountSparseOutput( indices=indices, values=values, dense_shape=dense_shape, weights=weights, binary_output=True)) @test_util.run_all_in_graph_and_eager_modes @test_util.disable_tfrt
RawOpsHeapOobTest
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/linalg/linalg_ops_test.py
{ "start": 16068, "end": 16156 }
class ____(test.TestCase, _LUReconstruct): use_static_shape = False
LUReconstructDynamic
python
HIPS__autograd
examples/convnet.py
{ "start": 4810, "end": 4899 }
class ____(full_layer): def nonlinearity(self, x): return np.tanh(x)
tanh_layer
python
HypothesisWorks__hypothesis
hypothesis-python/tests/attrs/test_attrs.py
{ "start": 1100, "end": 2097 }
class ____: n = attr.ib() def test_jsonable_attrs(): obj = AttrsClass(n=10) assert to_jsonable(obj, avoid_realization=False) == {"n": 10} def test_hypothesis_is_not_the_first_to_import_attrs(testdir): # We only import attrs if the user did so first. test_path = testdir.makepyfile( """ import os # don't load hypothesis plugins, which might transitively import attrs os.environ["HYPOTHESIS_NO_PLUGINS"] = "1" import sys assert "attrs" not in sys.modules from hypothesis import given, strategies as st assert "attrs" not in sys.modules @given(st.integers() | st.floats() | st.sampled_from(["a", "b"])) def test_no_attrs_import(x): assert "attrs" not in sys.modules """ ) # don't load pytest plugins, which might transitively import attrs result = testdir.runpytest(test_path, "--disable-plugin-autoload") result.assert_outcomes(passed=1, failed=0)
AttrsClass
python
apache__airflow
scripts/ci/testing/summarize_captured_warnings.py
{ "start": 3143, "end": 10810 }
class ____: category: str message: str filename: str lineno: int when: str node_id: str | None @property def unique_warning(self) -> str: return _unique_key(self.category, self.message, self.filename, str(self.lineno)) @property def unique_key(self) -> str: return _unique_key(self.node_id, self.category, self.message, self.filename, str(self.lineno)) @classmethod def from_dict(cls, d: dict) -> CapturedWarnings: fields_names = [f.name for f in fields(CapturedWarnings)] return cls(**{k: v for k, v in d.items() if k in fields_names}) def output(self) -> str: return json.dumps(asdict(self)) def find_files(directory: Path, glob_pattern: str) -> Iterator[tuple[Path, str]]: print(f" Process directory {directory} with pattern {glob_pattern!r} ".center(CONSOLE_SIZE, "=")) directory = Path(directory) for filepath in directory.rglob(glob_pattern): yield from resolve_file(filepath, directory) def resolve_file(filepath: Path, directory: Path | None = None) -> Iterator[tuple[Path, str]]: if not filepath.is_file(): raise SystemExit("Provided path {filepath} is not a file.") if directory: source_path = filepath.relative_to(directory).as_posix() else: source_path = filepath.as_posix() yield filepath, source_path def merge_files(files: Iterator[tuple[Path, str]], output_directory: Path) -> Path: output_file = output_directory.joinpath(WARNINGS_ALL) output_bad = output_directory.joinpath(WARNINGS_BAD) records = bad_records = 0 processed_files = 0 with output_file.open(mode="w") as wfp, output_bad.open(mode="w") as badwfp: for filepath, source_filename in files: print(f"Process file: {filepath.as_posix()}") with open(filepath) as fp: for lineno, line in enumerate(fp, start=1): if not (line := line.strip()): continue try: record = json.loads(line) if not isinstance(record, dict): raise TypeError if not all(field in record for field in REQUIRED_FIELDS): raise ValueError except Exception: bad_records += 1 dump = json.dumps({"source": source_filename, "lineno": lineno, "record": line}) badwfp.write(f"{dump}\n") else: records += 1 record["source"] = source_filename wfp.write(f"{json.dumps(record)}\n") processed_files += 1 print() print( f" Total processed lines {records + bad_records:,} in {processed_files:,} file(s) ".center( CONSOLE_SIZE, "-" ) ) print(f"Good Records: {records:,}. Saved into file {output_file.as_posix()}") if bad_records: print(f"Bad Records: {bad_records:,}. Saved into file {output_file.as_posix()}") else: output_bad.unlink() return output_file def group_report_warnings(group, when: str, group_records, output_directory: Path) -> None: output_filepath = output_directory / warnings_filename(f"{group}-{when}") group_warnings: dict[str, CapturedWarnings] = {} unique_group_warnings: dict[str, CapturedWarnings] = {} for record in group_records: cw = CapturedWarnings.from_dict(record) if cw.unique_key not in group_warnings: group_warnings[cw.unique_key] = cw if cw.unique_warning not in unique_group_warnings: unique_group_warnings[cw.unique_warning] = cw print(f" Group {group!r} on {when!r} ".center(CONSOLE_SIZE, "=")) with output_filepath.open(mode="w") as fp: for cw in group_warnings.values(): fp.write(f"{cw.output()}\n") print(f"Saved into file: {output_filepath.as_posix()}\n") if when == "runtest": # Node id exists only during runtest print(f"Unique warnings within the test cases: {len(group_warnings):,}\n") print("Top 10 Tests Cases:") it = count_groups(group_warnings.values(), grouping_key=lambda cw: (cw.category, cw.node_id), top=10) for (category, node_id), count in it: if suffix := IMPORTANT_WARNING_SIGN.get(category, ""): suffix = f" ({suffix})" print(f" {category} {node_id} - {count:,}{suffix}") print() print(f"Unique warnings: {len(unique_group_warnings):,}\n") print("Warnings grouped by category:") for category, count in count_groups(unique_group_warnings.values(), grouping_key=lambda cw: cw.category): if suffix := IMPORTANT_WARNING_SIGN.get(category, ""): suffix = f" ({suffix})" print(f" {category} - {count:,}{suffix}") print() print("Top 10 Warnings:") it = count_groups( unique_group_warnings.values(), grouping_key=lambda cw: (cw.category, cw.filename, cw.lineno), top=10 ) for (category, filename, lineno), count in it: if suffix := IMPORTANT_WARNING_SIGN.get(category, ""): suffix = f" ({suffix})" print(f" {filename}:{lineno}:{category} - {count:,}{suffix}") print() always = list(filter(lambda w: w.category in ALWAYS_SHOW_WARNINGS, unique_group_warnings.values())) if always: print(f" Always reported warnings {len(always):,}".center(CONSOLE_SIZE, "-")) for cw in always: print(f"{cw.filename}:{cw.lineno}") print(f" {cw.category} - {cw.message}") print() def split_by_groups(output_file: Path, output_directory: Path) -> None: records: list[dict] = [] with output_file.open() as fp: records.extend(map(json.loads, fp)) for (group, when), group_records in sorted_groupby( records, grouping_key=lambda record: (record["group"], record["when"]) ): group_report_warnings(group, when, group_records, output_directory) def main(_input: str, _output: str | None, pattern: str | None) -> int | str: cwd = Path(".").resolve() print(f"Current Working Directory: {cwd.as_posix()}") try: input_path = Path(os.path.expanduser(os.path.expandvars(_input))).resolve(strict=True) except FileNotFoundError: print(f"The path {_input!r} does not exist. Skipping it.") return 0 except OSError as ex: return f"Unable to resolve {_input!r} path. {type(ex).__name__}: {ex}" if not pattern: print(f" Process file {input_path} ".center(CONSOLE_SIZE, "=")) if not input_path.is_file(): return f"{input_path} is not a file." files = resolve_file(input_path, cwd if not input_path.is_absolute() else None) else: if not input_path.is_dir(): return f"{input_path} is not a file." files = find_files(input_path, pattern) output_directory = Path(_output or cwd).resolve() output_directory.mkdir(parents=True, exist_ok=True) output_file = merge_files(files, output_directory) split_by_groups(output_file, output_directory) return 0 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Capture Warnings Summarizer") parser.add_argument("input", help="Input file/or directory path") parser.add_argument("-g", "--pattern", help="Glob pattern to filter warnings files") parser.add_argument("-o", "--output", help="Output directory") args = parser.parse_args() raise SystemExit(main(args.input, args.output, args.pattern))
CapturedWarnings
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/streams.py
{ "start": 56604, "end": 56929 }
class ____(SemiIncrementalMixin, GithubStream): """ API docs: https://docs.github.com/en/rest/deployments/deployments?apiVersion=2022-11-28#list-deployments """ def path(self, stream_slice: Mapping[str, Any] = None, **kwargs) -> str: return f"repos/{stream_slice['repository']}/deployments"
Deployments
python
walkccc__LeetCode
solutions/329. Longest Increasing Path in a Matrix/329.py
{ "start": 0, "end": 584 }
class ____: def longestIncreasingPath(self, matrix: list[list[int]]) -> int: m = len(matrix) n = len(matrix[0]) @functools.lru_cache(None) def dfs(i: int, j: int, prev: int) -> int: if i < 0 or i == m or j < 0 or j == n: return 0 if matrix[i][j] <= prev: return 0 curr = matrix[i][j] return 1 + max(dfs(i + 1, j, curr), dfs(i - 1, j, curr), dfs(i, j + 1, curr), dfs(i, j - 1, curr)) return max(dfs(i, j, -math.inf) for i in range(m) for j in range(n))
Solution
python
coleifer__peewee
playhouse/pool.py
{ "start": 2360, "end": 9700 }
class ____(object): def __init__(self, database, max_connections=20, stale_timeout=None, timeout=None, **kwargs): self._max_connections = make_int(max_connections) self._stale_timeout = make_int(stale_timeout) self._wait_timeout = make_int(timeout) if self._wait_timeout == 0: self._wait_timeout = float('inf') self._pool_lock = threading.RLock() # Available / idle connections stored in a heap, sorted oldest first. self._connections = [] # Mapping of connection id to PoolConnection. Ordinarily we would want # to use something like a WeakKeyDictionary, but Python typically won't # allow us to create weak references to connection objects. self._in_use = {} # Use the memory address of the connection as the key in the event the # connection object is not hashable. Connections will not get # garbage-collected, however, because a reference to them will persist # in "_in_use" as long as the conn has not been closed. self.conn_key = id super(PooledDatabase, self).__init__(database, **kwargs) def init(self, database, max_connections=None, stale_timeout=None, timeout=None, **connect_kwargs): super(PooledDatabase, self).init(database, **connect_kwargs) if max_connections is not None: self._max_connections = make_int(max_connections) if stale_timeout is not None: self._stale_timeout = make_int(stale_timeout) if timeout is not None: self._wait_timeout = make_int(timeout) if self._wait_timeout == 0: self._wait_timeout = float('inf') def connect(self, reuse_if_open=False): if not self._wait_timeout: return super(PooledDatabase, self).connect(reuse_if_open) expires = time.time() + self._wait_timeout while expires > time.time(): try: ret = super(PooledDatabase, self).connect(reuse_if_open) except MaxConnectionsExceeded: time.sleep(0.1) else: return ret raise MaxConnectionsExceeded('Max connections exceeded, timed out ' 'attempting to connect.') @locked def _connect(self): while True: try: # Remove the oldest connection from the heap. ts, _, c_conn = heapq.heappop(self._connections) conn = c_conn key = self.conn_key(conn) except IndexError: ts = conn = None logger.debug('No connection available in pool.') break else: if self._is_closed(conn): # This connecton was closed, but since it was not stale # it got added back to the queue of available conns. We # then closed it and marked it as explicitly closed, so # it's safe to throw it away now. # (Because Database.close() calls Database._close()). logger.debug('Connection %s was closed.', key) ts = conn = None elif self._stale_timeout and self._is_stale(ts): # If we are attempting to check out a stale connection, # then close it. We don't need to mark it in the "closed" # set, because it is not in the list of available conns # anymore. logger.debug('Connection %s was stale, closing.', key) self._close(conn, True) ts = conn = None else: break if conn is None: if self._max_connections and ( len(self._in_use) >= self._max_connections): raise MaxConnectionsExceeded('Exceeded maximum connections.') conn = super(PooledDatabase, self)._connect() ts = time.time() key = self.conn_key(conn) logger.debug('Created new connection %s.', key) self._in_use[key] = PoolConnection(ts, conn, time.time()) return conn def _is_stale(self, timestamp): # Called on check-out and check-in to ensure the connection has # not outlived the stale timeout. return (time.time() - timestamp) > self._stale_timeout def _is_closed(self, conn): return False def _can_reuse(self, conn): # Called on check-in to make sure the connection can be re-used. return True @locked def _close(self, conn, close_conn=False): key = self.conn_key(conn) if close_conn: super(PooledDatabase, self)._close(conn) elif key in self._in_use: pool_conn = self._in_use.pop(key) if self._stale_timeout and self._is_stale(pool_conn.timestamp): logger.debug('Closing stale connection %s.', key) super(PooledDatabase, self)._close(conn) elif self._can_reuse(conn): logger.debug('Returning %s to pool.', key) heapq.heappush(self._connections, (pool_conn.timestamp, _sentinel(), conn)) else: logger.debug('Closed %s.', key) @locked def manual_close(self): """ Close the underlying connection without returning it to the pool. """ if self.is_closed(): return False # Obtain reference to the connection in-use by the calling thread. conn = self.connection() # A connection will only be re-added to the available list if it is # marked as "in use" at the time it is closed. We will explicitly # remove it from the "in use" list, call "close()" for the # side-effects, and then explicitly close the connection. self._in_use.pop(self.conn_key(conn), None) self.close() self._close(conn, close_conn=True) @locked def close_idle(self): # Close any open connections that are not currently in-use. for _, _, conn in self._connections: self._close(conn, close_conn=True) self._connections = [] @locked def close_stale(self, age=600): # Close any connections that are in-use but were checked out quite some # time ago and can be considered stale. in_use = {} cutoff = time.time() - age n = 0 for key, pool_conn in self._in_use.items(): if pool_conn.checked_out < cutoff: self._close(pool_conn.connection, close_conn=True) n += 1 else: in_use[key] = pool_conn self._in_use = in_use return n @locked def close_all(self): # Close all connections -- available and in-use. Warning: may break any # active connections used by other threads. self.close() for _, _, conn in self._connections: self._close(conn, close_conn=True) for pool_conn in self._in_use.values(): self._close(pool_conn.connection, close_conn=True) self._connections = [] self._in_use = {}
PooledDatabase
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 103699, "end": 104139 }
class ____(sgqlc.types.Input): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("field", "direction") field = sgqlc.types.Field( sgqlc.types.non_null(EnterpriseServerInstallationOrderField), graphql_name="field", ) direction = sgqlc.types.Field( sgqlc.types.non_null(OrderDirection), graphql_name="direction" )
EnterpriseServerInstallationOrder
python
pandas-dev__pandas
pandas/core/computation/pytables.py
{ "start": 12849, "end": 13453 }
class ____(ops.UnaryOp): def prune(self, klass): if self.op != "~": raise NotImplementedError("UnaryOp only support invert type ops") operand = self.operand operand = operand.prune(klass) if operand is not None and ( (issubclass(klass, ConditionBinOp) and operand.condition is not None) or ( not issubclass(klass, ConditionBinOp) and issubclass(klass, FilterBinOp) and operand.filter is not None ) ): return operand.invert() return None
UnaryOp
python
kamyu104__LeetCode-Solutions
Python/matrix-cells-in-distance-order.py
{ "start": 33, "end": 698 }
class ____(object): def allCellsDistOrder(self, R, C, r0, c0): """ :type R: int :type C: int :type r0: int :type c0: int :rtype: List[List[int]] """ def append(R, C, r, c, result): if 0 <= r < R and 0 <= c < C: result.append([r, c]) result = [[r0, c0]] for d in xrange(1, R+C): append(R, C, r0-d, c0, result) for x in xrange(-d+1, d): append(R, C, r0+x, c0+abs(x)-d, result) append(R, C, r0+x, c0+d-abs(x), result) append(R, C, r0+d, c0, result) return result
Solution
python
fluentpython__example-code-2e
24-class-metaprog/persistent/persistlib.py
{ "start": 1800, "end": 4112 }
class ____: _TABLE_NAME: ClassVar[str] _TABLE_READY: ClassVar[bool] = False @classmethod def _fields(cls) -> dict[str, type]: return { name: py_type for name, py_type in get_type_hints(cls).items() if not name.startswith('_') } def __init_subclass__(cls, *, table: str = '', **kwargs: Any): super().__init_subclass__(**kwargs) # type:ignore cls._TABLE_NAME = table if table else cls.__name__.lower() + 's' for name, py_type in cls._fields().items(): setattr(cls, name, Field(name, py_type)) def __init__(self, *, _pk=None, **kwargs): field_names = self._asdict().keys() for name, arg in kwargs.items(): if name not in field_names: msg = f'{self.__class__.__name__!r} has no attribute {name!r}' raise AttributeError(msg) setattr(self, name, arg) self._pk = _pk def __repr__(self) -> str: kwargs = ', '.join( f'{key}={value!r}' for key, value in self._asdict().items() ) cls_name = self.__class__.__name__ if self._pk is None: return f'{cls_name}({kwargs})' return f'{cls_name}({kwargs}, _pk={self._pk})' def _asdict(self) -> dict[str, Any]: return { name: getattr(self, name) for name, attr in self.__class__.__dict__.items() if isinstance(attr, Field) } # database methods @staticmethod def _connect(db_path: str = db.DEFAULT_DB_PATH): return db.connect(db_path) @classmethod def _ensure_table(cls) -> str: if not cls._TABLE_READY: db.ensure_table(cls._TABLE_NAME, cls._fields()) cls._TABLE_READY = True return cls._TABLE_NAME def __class_getitem__(cls, pk: int) -> 'Persistent': field_names = ['_pk'] + list(cls._fields()) values = db.fetch_record(cls._TABLE_NAME, pk) return cls(**dict(zip(field_names, values))) def _save(self) -> int: table = self.__class__._ensure_table() if self._pk is None: self._pk = db.insert_record(table, self._asdict()) else: db.update_record(table, self._pk, self._asdict()) return self._pk
Persistent
python
getsentry__sentry
tests/sentry/search/test_utils.py
{ "start": 2739, "end": 6111 }
class ____(TestCase): def test_ms(self) -> None: assert parse_duration("123", "ms") == 123 def test_sec(self) -> None: assert parse_duration("456", "s") == 456000 def test_minutes(self) -> None: assert parse_duration("789", "min") == 789 * 60 * 1000 assert parse_duration("789", "m") == 789 * 60 * 1000 def test_hours(self) -> None: assert parse_duration("234", "hr") == 234 * 60 * 60 * 1000 assert parse_duration("234", "h") == 234 * 60 * 60 * 1000 def test_days(self) -> None: assert parse_duration("567", "day") == 567 * 24 * 60 * 60 * 1000 assert parse_duration("567", "d") == 567 * 24 * 60 * 60 * 1000 def test_weeks(self) -> None: assert parse_duration("890", "wk") == 890 * 7 * 24 * 60 * 60 * 1000 assert parse_duration("890", "w") == 890 * 7 * 24 * 60 * 60 * 1000 def test_errors(self) -> None: with pytest.raises(InvalidQuery): parse_duration("test", "ms") with pytest.raises(InvalidQuery): parse_duration("123", "test") def test_large_durations(self) -> None: max_duration = 999999999 * 24 * 60 * 60 * 1000 assert parse_duration("999999999", "d") == max_duration assert parse_duration(str(999999999 * 24), "h") == max_duration assert parse_duration(str(999999999 * 24 * 60), "m") == max_duration assert parse_duration(str(999999999 * 24 * 60 * 60), "s") == max_duration assert parse_duration(str(999999999 * 24 * 60 * 60 * 1000), "ms") == max_duration def test_overflow_durations(self) -> None: with pytest.raises(InvalidQuery): assert parse_duration(str(999999999 + 1), "d") with pytest.raises(InvalidQuery): assert parse_duration(str((999999999 + 1) * 24), "h") with pytest.raises(InvalidQuery): assert parse_duration(str((999999999 + 1) * 24 * 60 + 1), "m") with pytest.raises(InvalidQuery): assert parse_duration(str((999999999 + 1) * 24 * 60 * 60 + 1), "s") with pytest.raises(InvalidQuery): assert parse_duration(str((999999999 + 1) * 24 * 60 * 60 * 1000 + 1), "ms") def test_tokenize_query_only_keyed_fields() -> None: tests = [ ("a:a", {"a": ["a"]}), ("(a:a AND b:b)", {"a": ["a"], "b": ["b"]}), ("( a:a AND (b:b OR c:c))", {"a": ["a"], "b": ["b"], "c": ["c"]}), ("( a:a AND (b:b OR c:c ) )", {"a": ["a"], "b": ["b"], "c": ["c"]}), ( "(x y a:a AND (b:b OR c:c) z)", {"a": ["a"], "b": ["b"], "c": ["c"], "query": ["x", "y", "z"]}, ), ( "((x y)) a:a AND (b:b OR c:c) z)", {"a": ["a"], "b": ["b"], "c": ["c"], "query": ["x", "y", "z"]}, ), ( "((x y)) a():>a AND (!b:b OR c():<c) z)", {"a()": [">a"], "!b": ["b"], "c()": ["<c"], "query": ["x", "y", "z"]}, ), ('a:"\\"a\\""', {"a": ['\\"a\\"']}), ( 'a:"i \\" quote" b:"b\\"bb" c:"cc"', {"a": ['i \\" quote'], "b": ['b\\"bb'], "c": ["cc"]}, ), ] for test in tests: assert tokenize_query(test[0]) == test[1], test[0] def test_get_numeric_field_value_invalid() -> None: with pytest.raises(InvalidQuery): get_numeric_field_value("foo", ">=1k")
TestParseDuration
python
django__django
tests/admin_views/test_nav_sidebar.py
{ "start": 4268, "end": 9019 }
class ____(AdminSeleniumTestCase): available_apps = ["admin_views"] + AdminSeleniumTestCase.available_apps def setUp(self): self.superuser = User.objects.create_superuser( username="super", password="secret", email="super@example.com", ) self.admin_login( username="super", password="secret", login_url=reverse("test_with_sidebar:index"), ) self.selenium.execute_script( "localStorage.removeItem('django.admin.navSidebarIsOpen')" ) def test_sidebar_starts_open(self): from selenium.webdriver.common.by import By self.selenium.get( self.live_server_url + reverse("test_with_sidebar:auth_user_changelist") ) main_element = self.selenium.find_element(By.CSS_SELECTOR, "#main") self.assertIn("shifted", main_element.get_attribute("class").split()) def test_sidebar_can_be_closed(self): from selenium.webdriver.common.by import By self.selenium.get( self.live_server_url + reverse("test_with_sidebar:auth_user_changelist") ) toggle_button = self.selenium.find_element( By.CSS_SELECTOR, "#toggle-nav-sidebar" ) self.assertEqual(toggle_button.tag_name, "button") self.assertEqual(toggle_button.get_attribute("aria-label"), "Toggle navigation") nav_sidebar = self.selenium.find_element(By.ID, "nav-sidebar") self.assertEqual(nav_sidebar.get_attribute("aria-expanded"), "true") self.assertTrue(nav_sidebar.is_displayed()) toggle_button.click() # Hidden sidebar is not visible. nav_sidebar = self.selenium.find_element(By.ID, "nav-sidebar") self.assertEqual(nav_sidebar.get_attribute("aria-expanded"), "false") self.assertFalse(nav_sidebar.is_displayed()) main_element = self.selenium.find_element(By.CSS_SELECTOR, "#main") self.assertNotIn("shifted", main_element.get_attribute("class").split()) def test_sidebar_state_persists(self): from selenium.webdriver.common.by import By self.selenium.get( self.live_server_url + reverse("test_with_sidebar:auth_user_changelist") ) self.assertIsNone( self.selenium.execute_script( "return localStorage.getItem('django.admin.navSidebarIsOpen')" ) ) toggle_button = self.selenium.find_element( By.CSS_SELECTOR, "#toggle-nav-sidebar" ) toggle_button.click() self.assertEqual( self.selenium.execute_script( "return localStorage.getItem('django.admin.navSidebarIsOpen')" ), "false", ) self.selenium.get( self.live_server_url + reverse("test_with_sidebar:auth_user_changelist") ) main_element = self.selenium.find_element(By.CSS_SELECTOR, "#main") self.assertNotIn("shifted", main_element.get_attribute("class").split()) toggle_button = self.selenium.find_element( By.CSS_SELECTOR, "#toggle-nav-sidebar" ) # Hidden sidebar is not visible. nav_sidebar = self.selenium.find_element(By.ID, "nav-sidebar") self.assertEqual(nav_sidebar.get_attribute("aria-expanded"), "false") self.assertFalse(nav_sidebar.is_displayed()) toggle_button.click() nav_sidebar = self.selenium.find_element(By.ID, "nav-sidebar") self.assertEqual(nav_sidebar.get_attribute("aria-expanded"), "true") self.assertTrue(nav_sidebar.is_displayed()) self.assertEqual( self.selenium.execute_script( "return localStorage.getItem('django.admin.navSidebarIsOpen')" ), "true", ) self.selenium.get( self.live_server_url + reverse("test_with_sidebar:auth_user_changelist") ) main_element = self.selenium.find_element(By.CSS_SELECTOR, "#main") self.assertIn("shifted", main_element.get_attribute("class").split()) def test_sidebar_filter_persists(self): from selenium.webdriver.common.by import By self.selenium.get( self.live_server_url + reverse("test_with_sidebar:auth_user_changelist") ) filter_value_script = ( "return sessionStorage.getItem('django.admin.navSidebarFilterValue')" ) self.assertIsNone(self.selenium.execute_script(filter_value_script)) filter_input = self.selenium.find_element(By.CSS_SELECTOR, "#nav-filter") filter_input.send_keys("users") self.assertEqual(self.selenium.execute_script(filter_value_script), "users")
SeleniumTests
python
pexpect__pexpect
tests/test_misc.py
{ "start": 1319, "end": 13616 }
class ____(PexpectTestCase.PexpectTestCase): def test_isatty(self): " Test isatty() is True after spawning process on most platforms. " child = pexpect.spawn('cat') if not child.isatty() and sys.platform.lower().startswith('sunos'): if hasattr(unittest, 'SkipTest'): raise unittest.SkipTest("Not supported on this platform.") return 'skip' assert child.isatty() def test_isatty_poll(self): " Test isatty() is True after spawning process on most platforms. " child = pexpect.spawn('cat', use_poll=True) if not child.isatty() and sys.platform.lower().startswith('sunos'): if hasattr(unittest, 'SkipTest'): raise unittest.SkipTest("Not supported on this platform.") return 'skip' assert child.isatty() def test_read(self): " Test spawn.read by calls of various size. " child = pexpect.spawn('cat') child.sendline("abc") child.sendeof() self.assertEqual(child.read(0), b'') self.assertEqual(child.read(1), b'a') self.assertEqual(child.read(1), b'b') self.assertEqual(child.read(1), b'c') self.assertEqual(child.read(2), b'\r\n') remaining = child.read().replace(_CAT_EOF, b'') self.assertEqual(remaining, b'abc\r\n') def test_read_poll(self): " Test spawn.read by calls of various size. " child = pexpect.spawn('cat', use_poll=True) child.sendline("abc") child.sendeof() self.assertEqual(child.read(0), b'') self.assertEqual(child.read(1), b'a') self.assertEqual(child.read(1), b'b') self.assertEqual(child.read(1), b'c') self.assertEqual(child.read(2), b'\r\n') remaining = child.read().replace(_CAT_EOF, b'') self.assertEqual(remaining, b'abc\r\n') def test_read_poll_timeout(self): " Test use_poll properly times out " child = pexpect.spawn('sleep 5', use_poll=True) with self.assertRaises(pexpect.TIMEOUT): child.expect(pexpect.EOF, timeout=1) def test_readline_bin_echo(self): " Test spawn('echo'). " # given, child = pexpect.spawn('echo', ['alpha', 'beta']) # exercise, assert child.readline() == b'alpha beta' + child.crlf def test_readline(self): " Test spawn.readline(). " # when argument 0 is sent, nothing is returned. # Otherwise the argument value is meaningless. child = pexpect.spawn('cat', echo=False) child.sendline("alpha") child.sendline("beta") child.sendline("gamma") child.sendline("delta") child.sendeof() assert child.readline(0) == b'' assert child.readline().rstrip() == b'alpha' assert child.readline(1).rstrip() == b'beta' assert child.readline(2).rstrip() == b'gamma' assert child.readline().rstrip() == b'delta' child.expect(pexpect.EOF) assert not child.isalive() assert child.exitstatus == 0 def test_iter(self): " iterating over lines of spawn.__iter__(). " child = pexpect.spawn('cat', echo=False) child.sendline("abc") child.sendline("123") child.sendeof() # Don't use ''.join() because we want to test __iter__(). page = b'' for line in child: page += line page = page.replace(_CAT_EOF, b'') assert page == b'abc\r\n123\r\n' def test_readlines(self): " reading all lines of spawn.readlines(). " child = pexpect.spawn('cat', echo=False) child.sendline("abc") child.sendline("123") child.sendeof() page = b''.join(child.readlines()).replace(_CAT_EOF, b'') assert page == b'abc\r\n123\r\n' child.expect(pexpect.EOF) assert not child.isalive() assert child.exitstatus == 0 def test_write(self): " write a character and return it in return. " child = pexpect.spawn('cat', echo=False) child.write('a') child.write('\r') self.assertEqual(child.readline(), b'a\r\n') def test_writelines(self): " spawn.writelines() " child = pexpect.spawn('cat') # notice that much like file.writelines, we do not delimit by newline # -- it is equivalent to calling write(''.join([args,])) child.writelines(['abc', '123', 'xyz', '\r']) child.sendeof() line = child.readline() assert line == b'abc123xyz\r\n' def test_eof(self): " call to expect() after EOF is received raises pexpect.EOF " child = pexpect.spawn('cat') child.sendeof() with self.assertRaises(pexpect.EOF): child.expect('the unexpected') def test_with(self): "spawn can be used as a context manager" with pexpect.spawn(self.PYTHONBIN + ' echo_w_prompt.py') as p: p.expect('<in >') p.sendline(b'alpha') p.expect(b'<out>alpha') assert p.isalive() assert not p.isalive() def test_terminate(self): " test force terminate always succeeds (SIGKILL). " child = pexpect.spawn('cat') child.terminate(force=1) assert child.terminated def test_sighup(self): " validate argument `ignore_sighup=True` and `ignore_sighup=False`. " getch = self.PYTHONBIN + ' getch.py' child = pexpect.spawn(getch, ignore_sighup=True) child.expect('READY') child.kill(signal.SIGHUP) for _ in range(10): if not child.isalive(): self.fail('Child process should not have exited.') time.sleep(0.1) child = pexpect.spawn(getch, ignore_sighup=False) child.expect('READY') child.kill(signal.SIGHUP) for _ in range(10): if not child.isalive(): break time.sleep(0.1) else: self.fail('Child process should have exited.') def test_bad_child_pid(self): " assert bad condition error in isalive(). " expect_errmsg = re.escape("isalive() encountered condition where ") child = pexpect.spawn('cat') child.terminate(force=1) # Force an invalid state to test isalive child.ptyproc.terminated = 0 try: with self.assertRaisesRegex(pexpect.ExceptionPexpect, ".*" + expect_errmsg): child.isalive() finally: # Force valid state for child for __del__ child.terminated = 1 def test_bad_arguments_suggest_fdpsawn(self): " assert custom exception for spawn(int). " expect_errmsg = "maybe you want to use fdpexpect.fdspawn" with self.assertRaisesRegex(pexpect.ExceptionPexpect, ".*" + expect_errmsg): pexpect.spawn(1) def test_bad_arguments_second_arg_is_list(self): " Second argument to spawn, if used, must be only a list." with self.assertRaises(TypeError): pexpect.spawn('ls', '-la') with self.assertRaises(TypeError): # not even a tuple, pexpect.spawn('ls', ('-la',)) def test_read_after_close_raises_value_error(self): " Calling read_nonblocking after close raises ValueError. " # as read_nonblocking underlies all other calls to read, # ValueError should be thrown for all forms of read. with self.assertRaises(ValueError): p = pexpect.spawn('cat') p.close() p.read_nonblocking() with self.assertRaises(ValueError): p = pexpect.spawn('cat') p.close() p.read() with self.assertRaises(ValueError): p = pexpect.spawn('cat') p.close() p.readline() with self.assertRaises(ValueError): p = pexpect.spawn('cat') p.close() p.readlines() def test_isalive(self): " check isalive() before and after EOF. (True, False) " child = pexpect.spawn('cat') assert child.isalive() is True child.sendeof() child.expect(pexpect.EOF) assert child.isalive() is False def test_bad_type_in_expect(self): " expect() does not accept dictionary arguments. " child = pexpect.spawn('cat') with self.assertRaises(TypeError): child.expect({}) def test_cwd(self): " check keyword argument `cwd=' of pexpect.run() " tmp_dir = os.path.realpath(tempfile.gettempdir()) default = pexpect.run('pwd') pwd_tmp = pexpect.run('pwd', cwd=tmp_dir).rstrip() assert default != pwd_tmp assert tmp_dir == _u(pwd_tmp) def _test_searcher_as(self, searcher, plus=None): # given, given_words = ['alpha', 'beta', 'gamma', 'delta', ] given_search = given_words if searcher == pexpect.searcher_re: given_search = [re.compile(word) for word in given_words] if plus is not None: given_search = given_search + [plus] search_string = searcher(given_search) basic_fmt = '\n {0}: {1}' fmt = basic_fmt if searcher is pexpect.searcher_re: fmt = '\n {0}: re.compile({1})' expected_output = '{0}:'.format(searcher.__name__) idx = 0 for word in given_words: expected_output += fmt.format(idx, "'{0}'".format(word)) idx += 1 if plus is not None: if plus == pexpect.EOF: expected_output += basic_fmt.format(idx, 'EOF') elif plus == pexpect.TIMEOUT: expected_output += basic_fmt.format(idx, 'TIMEOUT') # exercise, assert search_string.__str__() == expected_output def test_searcher_as_string(self): " check searcher_string(..).__str__() " self._test_searcher_as(pexpect.searcher_string) def test_searcher_as_string_with_EOF(self): " check searcher_string(..).__str__() that includes EOF " self._test_searcher_as(pexpect.searcher_string, plus=pexpect.EOF) def test_searcher_as_string_with_TIMEOUT(self): " check searcher_string(..).__str__() that includes TIMEOUT " self._test_searcher_as(pexpect.searcher_string, plus=pexpect.TIMEOUT) def test_searcher_re_as_string(self): " check searcher_re(..).__str__() " self._test_searcher_as(pexpect.searcher_re) def test_searcher_re_as_string_with_EOF(self): " check searcher_re(..).__str__() that includes EOF " self._test_searcher_as(pexpect.searcher_re, plus=pexpect.EOF) def test_searcher_re_as_string_with_TIMEOUT(self): " check searcher_re(..).__str__() that includes TIMEOUT " self._test_searcher_as(pexpect.searcher_re, plus=pexpect.TIMEOUT) def test_nonnative_pty_fork(self): " test forced self.__fork_pty() and __pty_make_controlling_tty " # given, class spawn_ourptyfork(pexpect.spawn): def _spawn(self, command, args=[], preexec_fn=None, dimensions=None): self.use_native_pty_fork = False pexpect.spawn._spawn(self, command, args, preexec_fn, dimensions) # exercise, p = spawn_ourptyfork('cat', echo=False) # verify, p.sendline('abc') p.expect('abc') p.sendeof() p.expect(pexpect.EOF) assert not p.isalive() def test_exception_tb(self): " test get_trace() filters away pexpect/__init__.py calls. " p = pexpect.spawn('sleep 1') try: p.expect('BLAH') except pexpect.ExceptionPexpect as e: # get_trace should filter out frames in pexpect's own code tb = e.get_trace() # exercise, assert 'raise ' not in tb assert 'pexpect/__init__.py' not in tb else: assert False, "Should have raised an exception." if __name__ == '__main__': unittest.main() suite = unittest.TestLoader().loadTestsFromTestCase(TestCaseMisc)
TestCaseMisc
python
marshmallow-code__marshmallow
tests/base.py
{ "start": 1934, "end": 3625 }
class ____: SPECIES = "Homo sapiens" def __init__( self, name, *, age=0, id_=None, homepage=None, email=None, registered=True, time_registered=None, birthdate=None, birthtime=None, balance=100, sex=GenderEnum.male, hair_color=HairColorEnum.black, employer=None, various_data=None, ): self.name = name self.age = age # A naive datetime self.created = dt.datetime(2013, 11, 10, 14, 20, 58) # A TZ-aware datetime self.updated = dt.datetime(2013, 11, 10, 14, 20, 58, tzinfo=central) self.id = id_ self.homepage = homepage self.email = email self.balance = balance self.registered = registered self.hair_colors = list(HairColorEnum.__members__) self.sex_choices = list(GenderEnum.__members__) self.finger_count = 10 self.uid = uuid.uuid1() self.time_registered = time_registered or dt.time(1, 23, 45, 6789) self.birthdate = birthdate or dt.date(2013, 1, 23) self.birthtime = birthtime or dt.time(0, 1, 2, 3333) self.activation_date = dt.date(2013, 12, 11) self.sex = sex self.hair_color = hair_color self.employer = employer self.relatives = [] self.various_data = various_data or { "pets": ["cat", "dog"], "address": "1600 Pennsylvania Ave\nWashington, DC 20006", } @property def since_created(self): return dt.datetime(2013, 11, 24) - self.created def __repr__(self): return f"<User {self.name}>"
User
python
jina-ai__jina
tests/integration/hot_reload/my_executor_3_new.py
{ "start": 38, "end": 169 }
class ____(Executor): @requests def x(self, docs, **kwargs): for doc in docs: doc.text = 'AAfterReload'
A
python
mlflow__mlflow
mlflow/entities/model_registry/model_version_search.py
{ "start": 58, "end": 863 }
class ____(ModelVersion): def __init__(self, *args, **kwargs): kwargs["tags"] = [] kwargs["aliases"] = [] super().__init__(*args, **kwargs) def tags(self): raise Exception( "UC Model Versions gathered through search_model_versions do not have tags. " "Please use get_model_version to obtain an individual version's tags." ) def aliases(self): raise Exception( "UC Model Versions gathered through search_model_versions do not have aliases. " "Please use get_model_version to obtain an individual version's aliases." ) def __eq__(self, other): if type(other) in {type(self), ModelVersion}: return self.__dict__ == other.__dict__ return False
ModelVersionSearch
python
huggingface__transformers
src/transformers/models/llava/image_processing_llava_fast.py
{ "start": 1181, "end": 6233 }
class ____(BaseImageProcessorFast): resample = PILImageResampling.BICUBIC image_mean = OPENAI_CLIP_MEAN image_std = OPENAI_CLIP_STD size = {"shortest_edge": 224} default_to_square = False crop_size = {"height": 224, "width": 224} do_pad = False do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = True def pad_to_square( self, images: "torch.Tensor", background_color: Union[int, tuple[int, int, int]] = 0, ) -> "torch.Tensor": """ Pads an image to a square based on the longest edge. Args: images (`np.ndarray`): The images to pad. background_color (`int` or `tuple[int, int, int]`, *optional*, defaults to 0): The color to use for the padding. Can be an integer for single channel or a tuple of integers representing for multi-channel images. If passed as integer in multi-channel mode, it will default to `0` in subsequent channels. Returns: `torch.Tensor`: The padded images. """ height, width = get_image_size(images, ChannelDimension.FIRST) if height == width: return images num_channels = images.shape[1] if len(images.shape) == 4 else images.shape[0] if isinstance(background_color, int): background_color = [background_color] + [0] * (num_channels - 1) elif len(background_color) != num_channels: raise ValueError( f"background_color must have no more than {num_channels} elements to match the number of channels" ) max_dim = max(height, width) paste_x_left = (max_dim - width) // 2 paste_y_left = (max_dim - height) // 2 paste_x_right = max_dim - width - paste_x_left paste_y_right = max_dim - height - paste_y_left padded_images = F.pad( images, padding=[paste_x_left, paste_y_left, paste_x_right, paste_y_right], fill=background_color ) return padded_images def _preprocess( self, images: list["torch.Tensor"], do_resize: bool, size: SizeDict, interpolation: Optional["F.InterpolationMode"], do_pad: bool, do_center_crop: bool, crop_size: SizeDict, do_rescale: bool, rescale_factor: float, do_normalize: bool, image_mean: Optional[Union[float, list[float]]], image_std: Optional[Union[float, list[float]]], disable_grouping: Optional[bool], return_tensors: Optional[Union[str, TensorType]], **kwargs, ) -> BatchFeature: # Group images by size for batched resizing grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping) resized_images_grouped = {} for shape, stacked_images in grouped_images.items(): if do_pad: stacked_images = self.pad_to_square( images=stacked_images, background_color=tuple(int(x * 255) for x in self.image_mean) ) resized_images_grouped[shape] = stacked_images padded_images = reorder_images(resized_images_grouped, grouped_images_index) # Group images by size for batched resizing # Needed in case do_pad is False, or padding returns images with different sizes grouped_images, grouped_images_index = group_images_by_shape(padded_images, disable_grouping=disable_grouping) resized_images_grouped = {} for shape, stacked_images in grouped_images.items(): if do_resize: stacked_images = self.resize(image=stacked_images, size=size, interpolation=interpolation) resized_images_grouped[shape] = stacked_images resized_images = reorder_images(resized_images_grouped, grouped_images_index) # Group images by size for further processing # Needed in case do_resize is False, or resize returns images with different sizes grouped_images, grouped_images_index = group_images_by_shape(resized_images, disable_grouping=disable_grouping) processed_images_grouped = {} for shape, stacked_images in grouped_images.items(): if do_center_crop: stacked_images = self.center_crop(stacked_images, crop_size) # Fused rescale and normalize stacked_images = self.rescale_and_normalize( stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std ) processed_images_grouped[shape] = stacked_images processed_images = reorder_images(processed_images_grouped, grouped_images_index) processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors) __all__ = ["LlavaImageProcessorFast"]
LlavaImageProcessorFast
python
Unity-Technologies__ml-agents
ml-agents/mlagents/trainers/stats.py
{ "start": 4727, "end": 7032 }
class ____(StatsWriter): def __init__(self): self.training_start_time = time.time() # If self-play, we want to print ELO as well as reward self.self_play = False self.self_play_team = -1 self.rank = get_rank() def write_stats( self, category: str, values: Dict[str, StatsSummary], step: int ) -> None: is_training = "Not Training" if "Is Training" in values: stats_summary = values["Is Training"] if stats_summary.aggregated_value > 0.0: is_training = "Training" elapsed_time = time.time() - self.training_start_time log_info: List[str] = [category] log_info.append(f"Step: {step}") log_info.append(f"Time Elapsed: {elapsed_time:0.3f} s") if "Environment/Cumulative Reward" in values: stats_summary = values["Environment/Cumulative Reward"] if self.rank is not None: log_info.append(f"Rank: {self.rank}") log_info.append(f"Mean Reward: {stats_summary.mean:0.3f}") if "Environment/Group Cumulative Reward" in values: group_stats_summary = values["Environment/Group Cumulative Reward"] log_info.append(f"Mean Group Reward: {group_stats_summary.mean:0.3f}") else: log_info.append(f"Std of Reward: {stats_summary.std:0.3f}") log_info.append(is_training) if self.self_play and "Self-play/ELO" in values: elo_stats = values["Self-play/ELO"] log_info.append(f"ELO: {elo_stats.mean:0.3f}") else: log_info.append("No episode was completed since last summary") log_info.append(is_training) logger.info(". ".join(log_info) + ".") def add_property( self, category: str, property_type: StatsPropertyType, value: Any ) -> None: if property_type == StatsPropertyType.HYPERPARAMETERS: logger.info( """Hyperparameters for behavior name {}: \n{}""".format( category, _dict_to_str(value, 0) ) ) elif property_type == StatsPropertyType.SELF_PLAY: assert isinstance(value, bool) self.self_play = value
ConsoleWriter
python
Pylons__pyramid
src/pyramid/config/zca.py
{ "start": 55, "end": 889 }
class ____: def hook_zca(self): """Call :func:`zope.component.getSiteManager.sethook` with the argument :data:`pyramid.threadlocal.get_current_registry`, causing the :term:`Zope Component Architecture` 'global' APIs such as :func:`zope.component.getSiteManager`, :func:`zope.component.getAdapter` and others to use the :app:`Pyramid` :term:`application registry` rather than the Zope 'global' registry.""" from zope.component import getSiteManager getSiteManager.sethook(get_current_registry) def unhook_zca(self): """Call :func:`zope.component.getSiteManager.reset` to undo the action of :meth:`pyramid.config.Configurator.hook_zca`.""" from zope.component import getSiteManager getSiteManager.reset()
ZCAConfiguratorMixin
python
PrefectHQ__prefect
src/prefect/settings/legacy.py
{ "start": 480, "end": 5693 }
class ____: """Mimics the old Setting object for compatibility with existing code.""" def __init__( self, name: str, default: Any, type_: Any, accessor: Optional[str] = None ): self._name = name self._default = default self._type = type_ if accessor is None: self.accessor: str = _env_var_to_accessor(name) else: self.accessor: str = accessor @property def name(self) -> str: return self._name @property def is_secret(self) -> bool: if self._type in _SECRET_TYPES: return True for secret_type in _SECRET_TYPES: if secret_type in get_args(self._type): return True return False def default(self) -> Any: return self._default def value(self: Self) -> Any: if ( self.name == "PREFECT_TEST_SETTING" or self.name == "PREFECT_TESTING_TEST_SETTING" ): if ( "PREFECT_TEST_MODE" in os.environ or "PREFECT_TESTING_TEST_MODE" in os.environ ): return get_current_settings().testing.test_setting else: return None return self.value_from(get_current_settings()) def value_from(self: Self, settings: Settings) -> Any: path = self.accessor.split(".") current_value = settings for key in path: current_value = getattr(current_value, key, None) if isinstance(current_value, _SECRET_TYPES): return current_value.get_secret_value() # type: ignore return current_value def __bool__(self) -> bool: return bool(self.value()) def __str__(self) -> str: return str(self.value()) def __repr__(self) -> str: return f"<{self.name}: {self._type!r}>" def __eq__(self, __o: object) -> bool: return __o.__eq__(self.value()) def __hash__(self) -> int: return hash((type(self), self.name)) def _env_var_to_accessor(env_var: str) -> str: """ Convert an environment variable name to a settings accessor. """ if (field := _get_settings_fields(Settings).get(env_var)) is not None: return field.accessor return env_var.replace("PREFECT_", "").lower() @cache def _get_valid_setting_names(cls: type[BaseSettings]) -> Set[str]: """ A set of valid setting names, e.g. "PREFECT_API_URL" or "PREFECT_API_KEY". """ settings_fields: set[str] = set() for field_name, field in cls.model_fields.items(): if inspect.isclass(field.annotation) and issubclass( field.annotation, PrefectBaseSettings ): settings_fields.update(_get_valid_setting_names(field.annotation)) else: if field.validation_alias and isinstance( field.validation_alias, AliasChoices ): for alias in field.validation_alias.choices: if not isinstance(alias, str): continue settings_fields.add(alias.upper()) else: settings_fields.add( f"{cls.model_config.get('env_prefix')}{field_name.upper()}" ) return settings_fields @cache def _get_settings_fields( settings: Type[BaseSettings], accessor_prefix: Optional[str] = None ) -> Dict[str, "Setting"]: """Get the settings fields for the settings object""" settings_fields: dict[str, Setting] = {} for field_name, field in settings.model_fields.items(): if inspect.isclass(field.annotation) and issubclass( field.annotation, PrefectBaseSettings ): accessor = ( field_name if accessor_prefix is None else f"{accessor_prefix}.{field_name}" ) settings_fields.update(_get_settings_fields(field.annotation, accessor)) else: accessor = ( field_name if accessor_prefix is None else f"{accessor_prefix}.{field_name}" ) if field.validation_alias and isinstance( field.validation_alias, AliasChoices ): for alias in field.validation_alias.choices: if not isinstance(alias, str): continue setting = Setting( name=alias.upper(), default=field.default, type_=field.annotation, accessor=accessor, ) settings_fields[setting.name] = setting settings_fields[setting.accessor] = setting else: setting = Setting( name=f"{settings.model_config.get('env_prefix')}{field_name.upper()}", default=field.default, type_=field.annotation, accessor=accessor, ) settings_fields[setting.name] = setting settings_fields[setting.accessor] = setting return settings_fields
Setting
python
pytorch__pytorch
torch/distributed/algorithms/_checkpoint/checkpoint_wrapper.py
{ "start": 3789, "end": 12226 }
class ____(ActivationWrapper): """ An ``nn.Module`` that wraps another ``nn.Module`` with checkpointing. Note that this module is not meant to be used directly but instead, it is to be used through the ``checkpoint_wrapper`` function. """ def __init__( self, mod: torch.nn.Module, checkpoint_impl: CheckpointImpl = CheckpointImpl.NO_REENTRANT, checkpoint_fn=None, **checkpoint_fn_kwargs, ): super().__init__(mod) self.checkpoint_impl = checkpoint_impl if checkpoint_fn is None: # use torch.utils.checkpoint self.checkpoint_fn = partial( torch_utils_checkpoint, use_reentrant=(self.checkpoint_impl == CheckpointImpl.REENTRANT), **checkpoint_fn_kwargs, ) else: # Construct user-specified checkpoint function. self.checkpoint_fn = partial( checkpoint_fn, **checkpoint_fn_kwargs, ) def forward(self, *args, **kwargs): # Support keyword arguments for reentrant checkpoint. Note that this # only works if user has specified self.checkpoint_impl and is not # using their own custom checkpoint_fn. if self.checkpoint_impl == CheckpointImpl.REENTRANT and kwargs != {}: # Pack the args and kwargs flat_args, kwarg_keys = _pack_kwargs(*args, **kwargs) # Function that only takes (packed) args, but can unpack them # into the original args and kwargs for the checkpointed # function, and runs that function. def my_function(*inputs): # unpack back into args and kwargs unpacked_args, unpacked_kwargs = _unpack_kwargs(inputs, kwarg_keys) # run original module return self._checkpoint_wrapped_module( *unpacked_args, **unpacked_kwargs ) # Pass the function that only takes packed args into reentrant # checkpoint API. return self.checkpoint_fn( # type: ignore[misc] my_function, *flat_args, ) else: return self.checkpoint_fn( # type: ignore[misc] self._checkpoint_wrapped_module, *args, **kwargs ) def offload_wrapper(module: torch.nn.Module) -> torch.nn.Module: """ Wrap a module for activation offloading to CPU. Offloads intermediate activations to the CPU for modules wrapped with this function. Wrappers with activation offload can be composed with ones that do recomputation-based checkpoint to trade off increased compute versus increased CPU memory usage and additional H2D transfers. Usage:: offloaded_module = offload_wrapper(module) outputs = checkpointed_module(inputs) Args: module (nn.Module): The module to be wrapped Returns: (nn.Module): Wrapped module """ return OffloadWrapper(module) def checkpoint_wrapper( module: torch.nn.Module, checkpoint_impl: CheckpointImpl = CheckpointImpl.NO_REENTRANT, checkpoint_fn=None, **checkpoint_fn_kwargs, ) -> torch.nn.Module: """ Wrap a module for activation checkpointing. If the module is wrapped with this function, all subsequent calls to the module will, automatically perform checkpointing without the user having to explicitly call ``checkpoint`` function. Usage:: checkpointed_module = checkpoint_wrapper(module) outputs = checkpointed_module(inputs) Args: module (nn.Module): The module to be wrapped checkpoint_impl (Optional[CheckpointImpl]): The checkpointing implementation to use. Note that this will only be passed into the ``torch.utils.checkpoint.checkpoint`` implementation, and is ignored if a custom ``checkpoint_fn`` is specified. Note that for implementations using reentrant checkpoint from ``torch.utils.checkpoint``, keyword arguments will only be supported if ``checkpoint_impl`` is passed as ``CheckpointImpl.REENTRANT`. checkpoint_fn (Optional[Callable]): Functional checkpoint implementation to use. If this is specified, it will be used over the default ``torch.utils.checkpoint.checkpoint`` implementation and the `checkpoint_impl` argument will be ignored. **checkpoint_fn_kwargs: (Dict[str, Any]): Keyword arguments to pass into `checkpoint_fn`. Returns: (nn.Module): Wrapped module """ if checkpoint_impl == CheckpointImpl.REENTRANT: warnings.warn( f"Please specify {CheckpointImpl.NO_REENTRANT} as " f"{CheckpointImpl.REENTRANT} will soon be removed as " "the default and eventually deprecated.", FutureWarning, stacklevel=2, ) return CheckpointWrapper( module, checkpoint_impl, checkpoint_fn, **checkpoint_fn_kwargs, ) def apply_activation_checkpointing( model, checkpoint_wrapper_fn=checkpoint_wrapper, check_fn=lambda _: True, auto_wrap_policy: Callable[[nn.Module, bool, int], bool] | None = None, ): """ Apply :func:`checkpoint_wrapper` to modules within `model` based on a user-defined configuration. For each module within `model`, the `check_fn` is used to decide whether `module` should be wrapped with :func:`checkpoint_wrapper` or not. Note:: This function modifies `model` in place and replaces appropriate layers with their checkpoint-wrapped modules. Note:: This function will not wrap the overall root module. If this is needed, please directly use :func:`checkpoint_wrapper` or :func:`offload_wrapper`. Usage:: model = nn.Sequential( nn.Linear(10, 10), nn.Linear(10, 10), nn.Linear(10, 10) ) check_fn = lambda l: isinstance(l, nn.Linear) # checkpoint activations apply_activation_checkpointing(model, checkpoint_wrapper_fn=checkpoint_wrapper, check_fn=check_fn) # Or offload activations to CPU apply_activation_checkpointing(model, checkpoint_wrapper_fn=offload_wrapper, check_fn=check_fn) Args: model (nn.Module): The model whose submodules should be wrapped with activation checkpointing. checkpoint_wrapper_fn (Optional[Callable[nn.Module]]) A ``Callable`` which will wrap modules check_fn (Optional[Callable[nn.Module, nn.Module]]) A lambda function which will be passed each child submodule of ``model`` and returns ``True`` or ``False`` depending on whether the submodule should be wrapped. auto_wrap_policy (Optional[Callable[[nn.Module, bool, int], bool]]): A policy to wrap model's submodules with AC. Note that if this is specified, it takes precedence over ``check_fn``. Returns: None (`model` is modified inplace) """ # TODO: Importing inside function to avoid circular import issue between FSDP and # checkpoint_wrapper. This can be resolved once wrap() APIs are decoupled from FSDP code. from torch.distributed.fsdp._wrap_utils import _construct_wrap_fn, _post_order_apply from torch.distributed.fsdp.wrap import ( _Policy, _recursive_wrap, lambda_auto_wrap_policy, ) policy = ( auto_wrap_policy if auto_wrap_policy is not None else partial(lambda_auto_wrap_policy, lambda_fn=check_fn) ) if not callable(policy): if not isinstance(policy, _Policy): raise ValueError( f"Expected {policy} to be callable or be a pre-defined wrap policy" ) target_module_to_kwargs = policy._run_policy( model, ignored_modules=set(), root_kwargs={} ) wrap_fn = _construct_wrap_fn( model, target_module_to_kwargs, checkpoint_wrapper_fn ) _post_order_apply(model, wrap_fn) return _recursive_wrap( module=model, auto_wrap_policy=policy, # type: ignore[arg-type] wrapper_cls=checkpoint_wrapper_fn, ignored_modules=set(), ignored_params=set(), only_wrap_children=True, )
CheckpointWrapper
python
readthedocs__readthedocs.org
readthedocs/invitations/views.py
{ "start": 808, "end": 1597 }
class ____(PrivateViewMixin, UserPassesTestMixin, DeleteView): """ Revoke invitation view. An invitation is revoked by simple deleting it. """ model = Invitation pk_url_kwarg = "invitation_pk" http_method_names = ["post"] def form_valid(self, form): invitation = self.get_object() invitation.create_audit_log( action=AuditLog.INVITATION_REVOKED, request=self.request, user=self.request.user, ) return super().form_valid(form) def test_func(self): invitation = self.get_object() return invitation.can_revoke_invitation(self.request.user) def get_success_url(self): invitation = self.get_object() return invitation.get_origin_url()
RevokeInvitation
python
tiangolo__fastapi
tests/test_skip_defaults.py
{ "start": 363, "end": 2071 }
class ____(BaseModel): w: Optional[str] = None x: Optional[str] = None y: str = "y" z: str = "z" @app.get("/", response_model=Model, response_model_exclude_unset=True) def get_root() -> ModelSubclass: return ModelSubclass(sub={}, y=1, z=0) @app.get( "/exclude_unset", response_model=ModelDefaults, response_model_exclude_unset=True ) def get_exclude_unset() -> ModelDefaults: return ModelDefaults(x=None, y="y") @app.get( "/exclude_defaults", response_model=ModelDefaults, response_model_exclude_defaults=True, ) def get_exclude_defaults() -> ModelDefaults: return ModelDefaults(x=None, y="y") @app.get( "/exclude_none", response_model=ModelDefaults, response_model_exclude_none=True ) def get_exclude_none() -> ModelDefaults: return ModelDefaults(x=None, y="y") @app.get( "/exclude_unset_none", response_model=ModelDefaults, response_model_exclude_unset=True, response_model_exclude_none=True, ) def get_exclude_unset_none() -> ModelDefaults: return ModelDefaults(x=None, y="y") client = TestClient(app) def test_return_defaults(): response = client.get("/") assert response.json() == {"sub": {}} def test_return_exclude_unset(): response = client.get("/exclude_unset") assert response.json() == {"x": None, "y": "y"} def test_return_exclude_defaults(): response = client.get("/exclude_defaults") assert response.json() == {} def test_return_exclude_none(): response = client.get("/exclude_none") assert response.json() == {"y": "y", "z": "z"} def test_return_exclude_unset_none(): response = client.get("/exclude_unset_none") assert response.json() == {"y": "y"}
ModelDefaults
python
doocs__leetcode
solution/2300-2399/2369.Check if There is a Valid Partition For The Array/Solution.py
{ "start": 0, "end": 559 }
class ____: def validPartition(self, nums: List[int]) -> bool: @cache def dfs(i: int) -> bool: if i >= n: return True a = i + 1 < n and nums[i] == nums[i + 1] b = i + 2 < n and nums[i] == nums[i + 1] == nums[i + 2] c = ( i + 2 < n and nums[i + 1] - nums[i] == 1 and nums[i + 2] - nums[i + 1] == 1 ) return (a and dfs(i + 2)) or ((b or c) and dfs(i + 3)) n = len(nums) return dfs(0)
Solution
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/roots/mutation.py
{ "start": 12887, "end": 13417 }
class ____(graphene.Mutation): """Cancels a set of partition backfill runs.""" Output = graphene.NonNull(GrapheneCancelBackfillResult) class Arguments: backfillId = graphene.NonNull(graphene.String) class Meta: name = "CancelBackfillMutation" @capture_error @require_permission_check(Permissions.CANCEL_PARTITION_BACKFILL) def mutate(self, graphene_info: ResolveInfo, backfillId: str): return cancel_partition_backfill(graphene_info, backfillId)
GrapheneCancelBackfillMutation
python
kamyu104__LeetCode-Solutions
Python/evaluate-division.py
{ "start": 2483, "end": 3041 }
class ____(object): def calcEquation(self, equations, values, queries): """ :type equations: List[List[str]] :type values: List[float] :type queries: List[List[str]] :rtype: List[float] """ union_find = UnionFind() for (a, b), k in itertools.izip(equations, values): union_find.union_set(a, b, k) return [union_find.query_set(a, b) for a, b in queries] # Time: O(e + q * n), at most O(n^3 + q) # Space: O(n^2) # bfs solution import collections import itertools
Solution
python
great-expectations__great_expectations
great_expectations/data_context/store/query_store.py
{ "start": 884, "end": 5436 }
class ____(Store): """SqlAlchemyQueryStore stores queries by name, and makes it possible to retrieve the resulting value by query name.""" # noqa: E501 # FIXME CoP _key_class: ClassVar[Type] = StringKey def __init__( self, credentials, queries=None, store_backend=None, runtime_environment=None, store_name=None, ) -> None: if not sa: raise gx_exceptions.DataContextError( # noqa: TRY003 # FIXME CoP "sqlalchemy module not found, but is required for SqlAlchemyQueryStore" ) super().__init__( store_backend=store_backend, runtime_environment=runtime_environment, store_name=store_name, ) if queries: # If queries are defined in configuration, then we load them into an InMemoryStoreBackend # noqa: E501 # FIXME CoP try: assert isinstance(queries, dict), ( "SqlAlchemyQueryStore queries must be defined as a dictionary" ) assert ( store_backend is None or store_backend["class_name"] == "InMemoryStoreBackend" ), ( "If queries are provided in configuration, then store_backend must be empty or an " # noqa: E501 # FIXME CoP "InMemoryStoreBackend" ) for k, v in queries.items(): self._store_backend.set(tuple([k]), v) except (AssertionError, KeyError) as e: raise gx_exceptions.InvalidConfigError(str(e)) if "engine" in credentials: self.engine = credentials["engine"] elif "url" in credentials: self.engine = sa.create_engine(credentials["url"]) elif "connection_string" in credentials: self.engine = sa.create_engine(credentials["connection_string"]) else: drivername = credentials.pop("drivername") options = url_create_fn(drivername, **credentials) self.engine = sa.create_engine(options) # Gather the call arguments of the present function (include the "module_name" and add the "class_name"), filter # noqa: E501 # FIXME CoP # out the Falsy values, and set the instance "_config" variable equal to the resulting dictionary. # noqa: E501 # FIXME CoP self._config = { "credentials": credentials, "queries": queries, "store_backend": store_backend, "runtime_environment": runtime_environment, "store_name": store_name, "module_name": self.__class__.__module__, "class_name": self.__class__.__name__, } filter_properties_dict(properties=self._config, clean_falsy=True, inplace=True) def _convert_key(self, key): if isinstance(key, str): return StringKey(key) return key def get(self, key): # type: ignore[explicit-override] # FIXME return super().get(self._convert_key(key)) def set(self, key, value): # type: ignore[explicit-override] # FIXME return super().set(self._convert_key(key), value) def get_query_result(self, key, query_parameters=None): if query_parameters is None: query_parameters = {} result = self._store_backend.get(self._convert_key(key).to_tuple()) if isinstance(result, dict): query = result.get("query") return_type = result.get("return_type", "list") if return_type not in ["list", "scalar"]: raise ValueError( # noqa: TRY003 # FIXME CoP "The return_type of a SqlAlchemyQueryStore query must be one of either 'list' " "or 'scalar'" ) else: query = result return_type = None assert query, "Query must be specified to use SqlAlchemyQueryStore" query = Template(query).safe_substitute(query_parameters) with self.engine.begin() as connection: res = connection.execute(sa.text(query)).fetchall() # NOTE: 20200617 - JPC: this approach is probably overly opinionated, but we can # adjust based on specific user requests res = [val for row in res for val in row] if return_type == "scalar": [res] = res return res @property @override def config(self) -> dict: return self._config
SqlAlchemyQueryStore
python
huggingface__transformers
src/transformers/models/wav2vec2/modeling_wav2vec2.py
{ "start": 18865, "end": 22235 }
class ____(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[Wav2Vec2Config] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, # TODO: we need a refactor so that the different attention modules can get their specific kwargs # ATM, we have mixed things encoder, decoder, and encoder-decoder attn **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None # determine input shapes bsz, tgt_len = hidden_states.shape[:-1] src_len = key_value_states.shape[1] if is_cross_attention else tgt_len q_input_shape = (bsz, tgt_len, -1, self.head_dim) kv_input_shape = (bsz, src_len, -1, self.head_dim) # get query proj query_states = self.q_proj(hidden_states).view(*q_input_shape).transpose(1, 2) current_states = key_value_states if is_cross_attention else hidden_states key_states = self.k_proj(current_states).view(*kv_input_shape).transpose(1, 2) value_states = self.v_proj(current_states).view(*kv_input_shape).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.dropout, scaling=self.scaling, output_attentions=output_attentions, **kwargs, ) attn_output = attn_output.reshape(bsz, tgt_len, -1).contiguous() attn_output = self.out_proj(attn_output) return attn_output, attn_weights, None
Wav2Vec2Attention
python
pydantic__pydantic
tests/test_forward_ref.py
{ "start": 42770, "end": 44839 }
class ____(Base): pass """ ) ta = TypeAdapter(mod_2.Sub) assert ta.validate_python({'f': '1'}) == {'f': 1} def test_parameterized_with_annotated_forward_refs() -> None: T = TypeVar('T') class Parent(BaseModel, Generic[T]): a: T b: 'MyAnnotated[T, 1]' c: Annotated[T, 2] = Field(gt=2) M = Parent[Annotated['MyInt', 3]] assert not M.__pydantic_fields_complete__ MyAnnotated = Annotated MyInt = int M.model_rebuild() assert M.__pydantic_fields_complete__ assert M.model_fields['a'].annotation is int assert M.model_fields['b'].annotation is int assert M.model_fields['c'].annotation is int assert M.model_fields['a'].metadata == [3] assert M.model_fields['b'].metadata == [3, 1] assert M.model_fields['c'].metadata == [Gt(2), 3, 2] @pytest.mark.xfail( reason=( 'Similar to `test_uses_the_correct_globals_to_resolve_model_forward_refs()`,' "the NsResolver used for the `M.model_rebuild()` call doesn't make use of `Parent`, " "so its `__type_params__` aren't available (they contain `T`)." ) ) @pytest.mark.skipif(sys.version_info < (3, 12), reason='Test related to PEP 695 syntax.') def test_parameterized_pep695_generic_with_annotated_forward_refs(create_module) -> None: mod = create_module( """ from typing import Annotated from pydantic import BaseModel class Parent[T](BaseModel): a: T b: 'MyAnnotated[T, 1]' c: Annotated[T, 2] = Field(gt=2) M = Parent[Annotated['MyInt', 3]] MyAnnotated = Annotated MyInt = int M.model_rebuild() """ ) M = mod.M assert M.__pydantic_fields_complete__ assert M.model_fields['a'].annotation is int assert M.model_fields['b'].annotation is int assert M.model_fields['c'].annotation is int assert M.model_fields['a'].metadata == [3] assert M.model_fields['b'].metadata == [3, 1] assert M.model_fields['c'].metadata == [Gt(2), 3, 2]
Sub
python
tensorflow__tensorflow
tensorflow/python/ops/init_ops_v2.py
{ "start": 22952, "end": 26343 }
class ____(Initializer): """Initializer that generates an orthogonal matrix. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns. If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])` is initialized, where `n` is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape. Examples: >>> def make_variables(k, initializer): ... return (tf.Variable(initializer(shape=[k, k], dtype=tf.float32)), ... tf.Variable(initializer(shape=[k, k, k], dtype=tf.float32))) >>> v1, v2 = make_variables(3, tf.initializers.Orthogonal()) >>> v1 <tf.Variable ... shape=(3, 3) ... >>> v2 <tf.Variable ... shape=(3, 3, 3) ... >>> make_variables(4, tf.initializers.Orthogonal(gain=0.5)) (<tf.Variable ... shape=(4, 4) dtype=float32... <tf.Variable ... shape=(4, 4, 4) dtype=float32... Args: gain: multiplicative factor to apply to the orthogonal matrix seed: A Python integer. Used to create random seeds. See `tf.random.set_seed` for behavior. References: [Saxe et al., 2014](https://openreview.net/forum?id=_wzZwKpTDF_9C) ([pdf](https://arxiv.org/pdf/1312.6120.pdf)) """ def __init__(self, gain=1.0, seed=None): self.gain = gain self.seed = seed self._random_generator = _RandomGenerator(seed) def __call__(self, shape, dtype=dtypes.float32, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. **kwargs: Additional keyword arguments. Raises: ValueError: If the dtype is not floating point or the input shape is not valid. """ self._validate_kwargs(kwargs, support_partition=False) dtype = _assert_float_dtype(dtype) # Check the shape if len(shape) < 2: raise ValueError("The tensor to initialize, specified by argument `shape`" " must be at least two-dimensional. Received shape=" f"{shape}") # Flatten the input shape with the last dimension remaining # its original shape so it works for conv2d num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (max(num_cols, num_rows), min(num_cols, num_rows)) # Generate a random matrix a = self._random_generator.random_normal(flat_shape, dtype=dtype) # Compute the qr factorization q, r = gen_linalg_ops.qr(a, full_matrices=False) # Make Q uniform d = array_ops.diag_part(r) q *= math_ops.sign(d) if num_rows < num_cols: q = array_ops.matrix_transpose(q) return self.gain * array_ops.reshape(q, shape) def get_config(self): return {"gain": self.gain, "seed": self.seed}
Orthogonal
python
pytorch__pytorch
torch/utils/benchmark/utils/fuzzer.py
{ "start": 14125, "end": 18778 }
class ____: def __init__( self, parameters: list[FuzzedParameter | list[FuzzedParameter]], tensors: list[FuzzedTensor | list[FuzzedTensor]], constraints: list[Callable] | None = None, seed: int | None = None ) -> None: """ Args: parameters: List of FuzzedParameters which provide specifications for generated parameters. Iterable elements will be unpacked, though arbitrary nested structures will not. tensors: List of FuzzedTensors which define the Tensors which will be created each step based on the parameters for that step. Iterable elements will be unpacked, though arbitrary nested structures will not. constraints: List of callables. They will be called with params as kwargs, and if any of them return False the current set of parameters will be rejected. seed: Seed for the RandomState used by the Fuzzer. This will also be used to set the PyTorch random seed so that random ops will create reproducible Tensors. """ import numpy as np if seed is None: seed = int(np.random.RandomState().randint(0, 2 ** 32 - 1, dtype=np.int64)) self._seed = seed self._parameters = Fuzzer._unpack(parameters, FuzzedParameter) self._tensors = Fuzzer._unpack(tensors, FuzzedTensor) self._constraints = constraints or () p_names = {p.name for p in self._parameters} t_names = {t.name for t in self._tensors} name_overlap = p_names.intersection(t_names) if name_overlap: raise ValueError(f"Duplicate names in parameters and tensors: {name_overlap}") self._rejections = 0 self._total_generated = 0 @staticmethod def _unpack(values, cls): return tuple(it.chain.from_iterable( [[i] if isinstance(i, cls) else i for i in values] )) def take(self, n): import numpy as np state = np.random.RandomState(self._seed) torch.manual_seed(state.randint(low=0, high=2 ** 63, dtype=np.int64)) for _ in range(n): params = self._generate(state) tensors = {} tensor_properties = {} for t in self._tensors: tensor, properties = t._make_tensor(params, state) tensors[t.name] = tensor tensor_properties[t.name] = properties yield tensors, tensor_properties, params @property def rejection_rate(self): if not self._total_generated: return 0. return self._rejections / self._total_generated def _generate(self, state): strict_params: dict[str, float | int | ParameterAlias] = {} for _ in range(1000): candidate_params: dict[str, float | int | ParameterAlias] = {} for p in self._parameters: if p.strict: if p.name in strict_params: candidate_params[p.name] = strict_params[p.name] else: candidate_params[p.name] = p.sample(state) strict_params[p.name] = candidate_params[p.name] else: candidate_params[p.name] = p.sample(state) candidate_params = self._resolve_aliases(candidate_params) self._total_generated += 1 if not all(f(candidate_params) for f in self._constraints): self._rejections += 1 continue if not all(t.satisfies_constraints(candidate_params) for t in self._tensors): self._rejections += 1 continue return candidate_params raise ValueError("Failed to generate a set of valid parameters.") @staticmethod def _resolve_aliases(params): params = dict(params) alias_count = sum(isinstance(v, ParameterAlias) for v in params.values()) keys = list(params.keys()) while alias_count: for k in keys: v = params[k] if isinstance(v, ParameterAlias): params[k] = params[v.alias_to] alias_count_new = sum(isinstance(v, ParameterAlias) for v in params.values()) if alias_count == alias_count_new: raise ValueError(f"ParameterAlias cycle detected\n{params}") alias_count = alias_count_new return params
Fuzzer
python
ray-project__ray
rllib/core/models/base.py
{ "start": 6446, "end": 10138 }
class ____(Model, abc.ABC): """The framework-agnostic base class for all RLlib encoders. Encoders are used to transform observations to a latent space. Therefore, their `input_specs` contains the observation space dimensions. Similarly, their `output_specs` contains the latent space dimensions. Encoders can be recurrent, in which case the state should be part of input- and output_specs. The latent vectors produced by an encoder are fed into subsequent "heads". Any implementation of Encoder should also be callable. This should be done by also inheriting from a framework-specific model base-class, s.a. TorchModel or TfModel. Abstract illustration of typical flow of tensors: Inputs | Encoder | \ Head1 Head2 | / Outputs Outputs of encoders are generally of shape (B, latent_dim) or (B, T, latent_dim). That is, for time-series data, we encode into the latent space for each time step. This should be reflected in the `output_specs`. Usage example together with a ModelConfig: .. testcode:: from dataclasses import dataclass import numpy as np from ray.rllib.core.columns import Columns from ray.rllib.core.models.base import Encoder, ENCODER_OUT from ray.rllib.core.models.configs import ModelConfig from ray.rllib.policy.sample_batch import SampleBatch class NumpyEncoder(Encoder): def __init__(self, config): super().__init__(config) self.factor = config.factor def __call__(self, *args, **kwargs): # This is a dummy method to do checked forward passes. return self._forward(*args, **kwargs) def _forward(self, input_dict, **kwargs): obs = input_dict[Columns.OBS] return { ENCODER_OUT: np.array(obs) * self.factor, Columns.STATE_OUT: ( np.array(input_dict[Columns.STATE_IN]) * self.factor ), } @dataclass class NumpyEncoderConfig(ModelConfig): factor: int = None def build(self, framework: str): return NumpyEncoder(self) config = NumpyEncoderConfig(factor=2) encoder = NumpyEncoder(config) print(encoder({Columns.OBS: 1, Columns.STATE_IN: 2})) .. testoutput:: {'encoder_out': 2, 'state_out': 4} """ @abc.abstractmethod def _forward(self, input_dict: dict, **kwargs) -> dict: """Returns the latent of the encoder for the given inputs. This method is called by the forwarding method of the respective framework that is itself wrapped by RLlib in order to check model inputs and outputs. The input dict contains at minimum the observation and the state of the encoder (None for stateless encoders). The output dict contains at minimum the latent and the state of the encoder (None for stateless encoders). To establish an agreement between the encoder and RLModules, these values have the fixed keys `Columns.OBS` for the `input_dict`, and `ACTOR` and `CRITIC` for the returned dict. Args: input_dict: The input tensors. Must contain at a minimum the keys Columns.OBS and Columns.STATE_IN (which might be None for stateless encoders). **kwargs: Forward compatibility kwargs. Returns: The output tensors. Must contain at a minimum the key ENCODER_OUT. """ @ExperimentalAPI
Encoder
python
bokeh__bokeh
src/bokeh/models/widgets/tables.py
{ "start": 4541, "end": 5318 }
class ____(StringFormatter): ''' Display numeric values from continuous ranges as "basic numbers", using scientific notation when appropriate by default. ''' # explicit __init__ to support Init signatures def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) precision = Int(10, help=""" How many digits of precision to display. """) power_limit_high = Int(5, help=""" Limit the use of scientific notation to when:: log(x) >= power_limit_high """) power_limit_low = Int(-3, help=""" Limit the use of scientific notation to when:: log(x) <= power_limit_low """) nan_format = Override(default="-") null_format = Override(default="-")
ScientificFormatter
python
doocs__leetcode
solution/1100-1199/1168.Optimize Water Distribution in a Village/Solution2.py
{ "start": 624, "end": 1076 }
class ____: def minCostToSupplyWater( self, n: int, wells: List[int], pipes: List[List[int]] ) -> int: for i, w in enumerate(wells, 1): pipes.append([0, i, w]) pipes.sort(key=lambda x: x[2]) uf = UnionFind(n + 1) ans = 0 for a, b, c in pipes: if uf.union(a, b): ans += c n -= 1 if n == 0: return ans
Solution
python
pandas-dev__pandas
pandas/plotting/_misc.py
{ "start": 22046, "end": 24868 }
class ____(dict): """ Stores pandas plotting options. Allows for parameter aliasing so you can just use parameter names that are the same as the plot function parameters, but is stored in a canonical format that makes it easy to breakdown into groups later. See Also -------- plotting.register_matplotlib_converters : Register pandas formatters and converters with matplotlib. plotting.bootstrap_plot : Bootstrap plot on mean, median and mid-range statistics. plotting.autocorrelation_plot : Autocorrelation plot for time series. plotting.lag_plot : Lag plot for time series. Examples -------- .. plot:: :context: close-figs >>> np.random.seed(42) >>> df = pd.DataFrame( ... {"A": np.random.randn(10), "B": np.random.randn(10)}, ... index=pd.date_range("1/1/2000", freq="4MS", periods=10), ... ) >>> with pd.plotting.plot_params.use("x_compat", True): ... _ = df["A"].plot(color="r") ... _ = df["B"].plot(color="g") """ # alias so the names are same as plotting method parameter names _ALIASES = {"x_compat": "xaxis.compat"} _DEFAULT_KEYS = ["xaxis.compat"] def __init__(self) -> None: super().__setitem__("xaxis.compat", False) def __getitem__(self, key): key = self._get_canonical_key(key) if key not in self: raise ValueError(f"{key} is not a valid pandas plotting option") return super().__getitem__(key) def __setitem__(self, key, value) -> None: key = self._get_canonical_key(key) super().__setitem__(key, value) def __delitem__(self, key) -> None: key = self._get_canonical_key(key) if key in self._DEFAULT_KEYS: raise ValueError(f"Cannot remove default parameter {key}") super().__delitem__(key) def __contains__(self, key) -> bool: key = self._get_canonical_key(key) return super().__contains__(key) def reset(self) -> None: """ Reset the option store to its initial state Returns ------- None """ # error: Cannot access "__init__" directly self.__init__() # type: ignore[misc] def _get_canonical_key(self, key: str) -> str: return self._ALIASES.get(key, key) @contextmanager def use(self, key, value) -> Generator[_Options]: """ Temporarily set a parameter value using the with statement. Aliasing allowed. """ old_value = self[key] try: self[key] = value yield self finally: self[key] = old_value plot_params = _Options() plot_params.__module__ = "pandas.plotting"
_Options
python
django__django
django/core/files/storage/memory.py
{ "start": 649, "end": 977 }
class ____: def _initialize_times(self): self.created_time = now() self.accessed_time = self.created_time self.modified_time = self.created_time def _update_accessed_time(self): self.accessed_time = now() def _update_modified_time(self): self.modified_time = now()
TimingMixin
python
keras-team__keras
keras/src/ops/symbolic_arguments_test.py
{ "start": 164, "end": 3623 }
class ____(testing.TestCase): # Testing multiple args and empty kwargs def test_args(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {}, ) self.assertEqual(args.keras_tensors, [a, b]) self.assertEqual(args._flat_arguments, [a, b]) self.assertEqual(args._single_positional_tensor, None) # Testing single arg and single position tensor def test_args_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) args = SymbolicArguments((a)) self.assertEqual(args.keras_tensors, [a]) self.assertEqual(args._flat_arguments, [a]) self.assertEqual(len(args.kwargs), 0) self.assertEqual(isinstance(args.args[0], KerasTensor), True) self.assertEqual(args._single_positional_tensor, a) # Testing kwargs def test_kwargs(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {1: c}, ) self.assertEqual(args.keras_tensors, [a, b, c]) self.assertEqual(args._flat_arguments, [a, b, c]) self.assertEqual(args._single_positional_tensor, None) # Testing conversion function with args and kwargs def test_conversion_fn(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) sym_args = SymbolicArguments( ( a, b, ), {1: c}, ) (value, _) = sym_args.convert(lambda x: x**2) args1 = value[0][0] self.assertIsInstance(args1, KerasTensor) mapped_value = tree.map_structure(lambda x: x**2, a) self.assertEqual(mapped_value.shape, args1.shape) self.assertEqual(mapped_value.dtype, args1.dtype) # Testing fill in function with single args only def test_fill_in_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) tensor_dict = {id(a): 3} sym_args = SymbolicArguments((a)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, (3,)) # Testing fill in function with multiple args def test_fill_in_multiple_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) tensor_dict = {id(b): 2} sym_args = SymbolicArguments((a, b)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, ((None, 2),)) # Testing fill in function for args and kwargs def test_fill_in(self): shape1 = (2, 3, 4) shape2 = (3, 2, 4) a = KerasTensor(shape=shape1) b = KerasTensor(shape=shape2) c = KerasTensor(shape=shape2) dictionary = {id(a): 3, id(c): 2} sym_args = SymbolicArguments( ( a, b, ), {"1": c}, ) (values, _) = sym_args.fill_in(dictionary) self.assertEqual(values, ((3, None), {"1": 2}))
SymbolicArgumentsTest
python
getsentry__sentry
src/sentry/db/models/fields/bounded.py
{ "start": 2396, "end": 2806 }
class ____(models.PositiveBigIntegerField): description = _("Positive big integer") MAX_VALUE = I64_MAX def get_internal_type(self) -> str: return "PositiveBigIntegerField" def get_prep_value(self, value: int) -> int: if value: value = int(value) assert value <= self.MAX_VALUE return super().get_prep_value(value)
BoundedPositiveBigIntegerField
python
more-itertools__more-itertools
tests/test_more.py
{ "start": 198432, "end": 199840 }
class ____(TestCase): def test_basic(self): self.assertTrue(mi.iequals("abc", iter("abc"))) self.assertTrue(mi.iequals(range(3), [0, 1, 2])) self.assertFalse(mi.iequals("abc", [0, 1, 2])) def test_no_iterables(self): self.assertTrue(mi.iequals()) def test_one_iterable(self): self.assertTrue(mi.iequals("abc")) def test_more_than_two_iterable(self): self.assertTrue(mi.iequals("abc", iter("abc"), ['a', 'b', 'c'])) self.assertFalse(mi.iequals("abc", iter("abc"), ['a', 'b', 'd'])) def test_order_matters(self): self.assertFalse(mi.iequals("abc", "acb")) def test_not_equal_lengths(self): self.assertFalse(mi.iequals("abc", "ab")) self.assertFalse(mi.iequals("abc", "bc")) self.assertFalse(mi.iequals("aaa", "aaaa")) def test_empty_iterables(self): self.assertTrue(mi.iequals([], "")) def test_none_is_not_a_sentinel(self): # See https://stackoverflow.com/a/900444 self.assertFalse(mi.iequals([1, 2], [1, 2, None])) self.assertFalse(mi.iequals([1, 2], [None, 1, 2])) def test_not_identical_but_equal(self): self.assertTrue([1, True], [1.0, complex(1, 0)]) def test_fillvalue_not_fakeable(self): # See https://github.com/more-itertools/more-itertools/issues/900 self.assertFalse(mi.iequals([], [mock.ANY]))
IequalsTests
python
sphinx-doc__sphinx
tests/roots/test-ext-autosummary-imported_members/autosummary_dummy_package/autosummary_dummy_module.py
{ "start": 0, "end": 86 }
class ____: """Bar class""" pass def foo(): """Foo function""" pass
Bar
python
spyder-ide__spyder
spyder/config/user.py
{ "start": 984, "end": 4536 }
class ____(cp.ConfigParser, object): """ Class used to save defaults to a file and as UserConfig base class. """ def __init__(self, name, path): """ Class used to save defaults to a file and as UserConfig base class. """ super().__init__(interpolation=None) self._name = name self._path = path if not osp.isdir(osp.dirname(self._path)): os.makedirs(osp.dirname(self._path)) def _write(self, fp): """ Write method for Python 2. The one from configparser fails for non-ascii Windows accounts. """ if self._defaults: fp.write('[{}]\n'.format(cp.DEFAULTSECT)) for (key, value) in self._defaults.items(): value_plus_end_of_line = str(value).replace('\n', '\n\t') fp.write('{} = {}\n'.format(key, value_plus_end_of_line)) fp.write('\n') for section in self._sections: fp.write('[{}]\n'.format(section)) for (key, value) in self._sections[section].items(): if key == '__name__': continue if (value is not None) or (self._optcre == self.OPTCRE): value = str(value) value_plus_end_of_line = value.replace('\n', '\n\t') key = ' = '.join((key, value_plus_end_of_line)) fp.write('{}\n'.format(key)) fp.write('\n') def _set(self, section, option, value, verbose): """Set method.""" if not self.has_section(section): self.add_section(section) if not isinstance(value, str): value = repr(value) if verbose: text = '[{}][{}] = {}'.format(section, option, value) print(text) # spyder: test-skip super().set(section, option, value) def _save(self): """Save config into the associated .ini file.""" fpath = self.get_config_fpath() def _write_file(fpath): with io.open(fpath, 'w', encoding='utf-8') as configfile: self.write(configfile) # See spyder-ide/spyder#1086 and spyder-ide/spyder#1242 for background # on why this method contains all the exception handling. try: # The "easy" way _write_file(fpath) except EnvironmentError: try: # The "delete and sleep" way if osp.isfile(fpath): os.remove(fpath) time.sleep(0.05) _write_file(fpath) except Exception as e: print('Failed to write user configuration file to disk, with ' 'the exception shown below') # spyder: test-skip print(e) # spyder: test-skip def get_config_fpath(self): """Return the ini file where this configuration is stored.""" path = self._path config_file = osp.join(path, '{}.ini'.format(self._name)) return config_file def set_defaults(self, defaults): """Set default values and save to defaults folder location.""" for section, options in defaults: for option in options: new_value = options[option] self._set(section, option, new_value, verbose=False) # ============================================================================ # User config class # ============================================================================
DefaultsConfig
python
getsentry__sentry
src/sentry/new_migrations/monkey/fields.py
{ "start": 894, "end": 3916 }
class ____(RemoveField): def __init__(self, *args, deletion_action: DeletionAction, **kwargs): super().__init__(*args, **kwargs) self.deletion_action = deletion_action def state_forwards(self, app_label: str, state: SentryProjectState) -> None: # type: ignore[override] if self.deletion_action == DeletionAction.MOVE_TO_PENDING: field = state.apps.get_model(app_label, self.model_name_lower)._meta.get_field( self.name_lower ) if getattr(field, "db_constraint", False): raise UnsafeOperationException( f"Foreign key db constraint must be removed before dropping {app_label}.{self.model_name_lower}.{self.name}. " "More info: https://develop.sentry.dev/api-server/application-domains/database-migrations/#deleting-columns" ) if ( not isinstance(field, ManyToManyField) and not field.null and field.db_default is NOT_PROVIDED ): raise UnsafeOperationException( f"Field {app_label}.{self.model_name_lower}.{self.name} must either be nullable or have a db_default before dropping. " "More info: https://develop.sentry.dev/api-server/application-domains/database-migrations/#deleting-columns" ) state.remove_field( app_label, self.model_name_lower, self.name_lower, deletion_action=self.deletion_action ) def database_forwards( self, app_label: str, schema_editor: SafePostgresDatabaseSchemaEditor, # type: ignore[override] from_state: SentryProjectState, # type: ignore[override] to_state: SentryProjectState, # type: ignore[override] ) -> None: if self.deletion_action == DeletionAction.MOVE_TO_PENDING: return field = from_state.get_pending_deletion_field(app_label, self.model_name, self.name) if self.allow_migrate_model(schema_editor.connection.alias, field.model): schema_editor.remove_field(field.model, field, is_safe=True) def database_backwards( self, app_label: str, schema_editor: SafePostgresDatabaseSchemaEditor, # type: ignore[override] from_state: SentryProjectState, # type: ignore[override] to_state: SentryProjectState, # type: ignore[override] ) -> None: if self.deletion_action == DeletionAction.MOVE_TO_PENDING: return field = to_state.get_pending_deletion_field(app_label, self.model_name, self.name) if self.allow_migrate_model(schema_editor.connection.alias, field.model): schema_editor.add_field(field.model, field) def describe(self) -> str: if self.deletion_action == DeletionAction.MOVE_TO_PENDING: return f"Moved {self.model_name}.{self.name} field to pending deletion state" else: return super().describe()
SafeRemoveField
python
MorvanZhou__Reinforcement-learning-with-tensorflow
experiments/Solve_BipedalWalker/DDPG.py
{ "start": 1418, "end": 4406 }
class ____(object): def __init__(self, sess, action_dim, action_bound, learning_rate, t_replace_iter): self.sess = sess self.a_dim = action_dim self.action_bound = action_bound self.lr = learning_rate self.t_replace_iter = t_replace_iter self.t_replace_counter = 0 with tf.variable_scope('Actor'): # input s, output a self.a = self._build_net(S, scope='eval_net', trainable=True) # input s_, output a, get a_ for critic self.a_ = self._build_net(S_, scope='target_net', trainable=False) self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/eval_net') self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/target_net') def _build_net(self, s, scope, trainable): with tf.variable_scope(scope): init_w = tf.random_normal_initializer(0., 0.01) init_b = tf.constant_initializer(0.01) net = tf.layers.dense(s, 500, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l1', trainable=trainable) net = tf.layers.dense(net, 200, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l2', trainable=trainable) with tf.variable_scope('a'): actions = tf.layers.dense(net, self.a_dim, activation=tf.nn.tanh, kernel_initializer=init_w, bias_initializer=init_b, name='a', trainable=trainable) scaled_a = tf.multiply(actions, self.action_bound, name='scaled_a') # Scale output to -action_bound to action_bound return scaled_a def learn(self, s): # batch update self.sess.run(self.train_op, feed_dict={S: s}) if self.t_replace_counter % self.t_replace_iter == 0: self.sess.run([tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)]) self.t_replace_counter += 1 def choose_action(self, s): s = s[np.newaxis, :] # single state return self.sess.run(self.a, feed_dict={S: s})[0] # single action def add_grad_to_graph(self, a_grads): with tf.variable_scope('policy_grads'): # ys = policy; # xs = policy's parameters; # self.a_grads = the gradients of the policy to get more Q # tf.gradients will calculate dys/dxs with a initial gradients for ys, so this is dq/da * da/dparams self.policy_grads_and_vars = tf.gradients(ys=self.a, xs=self.e_params, grad_ys=a_grads) with tf.variable_scope('A_train'): opt = tf.train.RMSPropOptimizer(-self.lr) # (- learning rate) for ascent policy self.train_op = opt.apply_gradients(zip(self.policy_grads_and_vars, self.e_params), global_step=GLOBAL_STEP) ############################### Critic ####################################
Actor
python
pytorch__pytorch
test/distributed/_pycute/test_right_inverse.py
{ "start": 2093, "end": 3505 }
class ____(TestCase): def helper_test_right_inverse(self, layout): inv_layout = right_inverse(layout) _LOGGER.debug(f"{layout} => {inv_layout}") for i in range(size(inv_layout)): self.assertEqual(layout(inv_layout(i)), i) def test_right_inverse(self): test = Layout(1, 0) self.helper_test_right_inverse(test) test = Layout((1, 1), (0, 0)) self.helper_test_right_inverse(test) test = Layout((3, 7), (0, 0)) self.helper_test_right_inverse(test) test = Layout(1, 1) self.helper_test_right_inverse(test) test = Layout(4, 0) self.helper_test_right_inverse(test) test = Layout(4, 1) self.helper_test_right_inverse(test) test = Layout(4, 2) self.helper_test_right_inverse(test) test = Layout((2, 4), (0, 2)) self.helper_test_right_inverse(test) test = Layout((8, 4), (1, 8)) self.helper_test_right_inverse(test) test = Layout((8, 4), (4, 1)) self.helper_test_right_inverse(test) test = Layout((2, 4, 6), (1, 2, 8)) self.helper_test_right_inverse(test) test = Layout((2, 4, 6), (4, 1, 8)) self.helper_test_right_inverse(test) test = Layout((4, 2), (1, 16)) self.helper_test_right_inverse(test) if __name__ == "__main__": run_tests()
TestRightInverse
python
django-haystack__django-haystack
test_haystack/solr_tests/test_solr_backend.py
{ "start": 59420, "end": 61152 }
class ____(TestCase): def setUp(self): super().setUp() # Wipe it clean. self.raw_solr = pysolr.Solr(settings.HAYSTACK_CONNECTIONS["solr"]["URL"]) clear_solr_index() # Stow. self.old_ui = connections["solr"].get_unified_index() self.ui = UnifiedIndex() self.smmi = SolrBoostMockSearchIndex() self.ui.build(indexes=[self.smmi]) connections["solr"]._index = self.ui self.sb = connections["solr"].get_backend() self.sample_objs = [] for i in range(1, 5): mock = AFourthMockModel() mock.id = i if i % 2: mock.author = "daniel" mock.editor = "david" else: mock.author = "david" mock.editor = "daniel" mock.pub_date = datetime.date(2009, 2, 25) - datetime.timedelta(days=i) self.sample_objs.append(mock) def tearDown(self): connections["solr"]._index = self.old_ui super().tearDown() def test_boost(self): self.sb.update(self.smmi, self.sample_objs) self.assertEqual(self.raw_solr.search("*:*").hits, 4) results = SearchQuerySet("solr").filter( SQ(author="daniel") | SQ(editor="daniel") ) self.assertEqual( [result.id for result in results], [ "core.afourthmockmodel.1", "core.afourthmockmodel.3", "core.afourthmockmodel.2", "core.afourthmockmodel.4", ], ) @unittest.skipIf( Version(pysolr.__version__) < Version("3.1.1"), "content extraction requires pysolr > 3.1.1", )
SolrBoostBackendTestCase
python
huggingface__transformers
src/transformers/models/chameleon/modeling_chameleon.py
{ "start": 8238, "end": 10794 }
class ____(nn.LayerNorm): """ LayerNorm but computes stats only over the last dim because Chameleon applies gamma and beta from each shard separately to each head, instead of reducing. We can apply each head's own gamma/beta by repeat-interleaving weights from each shard, but the stats have to be computed in the last dimension. This module applies gamma/beta manually to fulfill this requirement. """ def __init__(self, hidden_size, *args, **kwargs): super().__init__(hidden_size, *args, **kwargs) self.normalized_shape = (hidden_size[-1],) def forward(self, hidden_states): hidden_states = F.layer_norm(hidden_states, self.normalized_shape, None, None, eps=1e-5) hidden_states = hidden_states * self.weight + self.bias return hidden_states # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # Copied from transformers.models.llama.modeling_llama.eager_attention_forward def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights
ChameleonLayerNorm
python
joke2k__faker
faker/providers/date_time/pt_BR/__init__.py
{ "start": 46, "end": 803 }
class ____(DateTimeProvider): DAY_NAMES = { "0": "domingo", "1": "segunda-feira", "2": "terΓ§a-feira", "3": "quarta-feira", "4": "quinta-feira", "5": "sexta-feira", "6": "sΓ‘bado", } MONTH_NAMES = { "01": "janeiro", "02": "fevereiro", "03": "marΓ§o", "04": "abril", "05": "maio", "06": "junho", "07": "julho", "08": "agosto", "09": "setembro", "10": "outubro", "11": "novembro", "12": "dezembro", } def day_of_week(self): day = self.date("%w") return self.DAY_NAMES[day] def month_name(self): month = self.month() return self.MONTH_NAMES[month]
Provider
python
streamlit__streamlit
lib/tests/streamlit/web/server/routes_test.py
{ "start": 8808, "end": 9629 }
class ____(tornado.testing.AsyncHTTPTestCase): def get_app(self): return tornado.web.Application( [ ( r"^/(?!/)(.*)", RemoveSlashHandler, ) ] ) def test_parse_url_path_301(self): paths = ["/page1/", "/page2/page3/"] responses = [self.fetch(path, follow_redirects=False) for path in paths] for idx, r in enumerate(responses): assert r.code == 301 assert r.headers["Location"] == paths[idx].rstrip("/") def test_parse_url_path_404(self): paths = ["//page1/", "//page2/page3/"] responses = [self.fetch(path, follow_redirects=False) for path in paths] for r in responses: assert r.code == 404
RemoveSlashHandlerTest
python
zarr-developers__zarr-python
src/zarr/core/array_spec.py
{ "start": 902, "end": 2727 }
class ____: """ A model of the runtime configuration of an array. Parameters ---------- order : MemoryOrder The memory layout of the arrays returned when reading data from the store. write_empty_chunks : bool If True, empty chunks will be written to the store. """ order: MemoryOrder write_empty_chunks: bool def __init__(self, order: MemoryOrder, write_empty_chunks: bool) -> None: order_parsed = parse_order(order) write_empty_chunks_parsed = parse_bool(write_empty_chunks) object.__setattr__(self, "order", order_parsed) object.__setattr__(self, "write_empty_chunks", write_empty_chunks_parsed) @classmethod def from_dict(cls, data: ArrayConfigParams) -> Self: """ Create an ArrayConfig from a dict. The keys of that dict are a subset of the attributes of the ArrayConfig class. Any keys missing from that dict will be set to the the values in the ``array`` namespace of ``zarr.config``. """ kwargs_out: ArrayConfigParams = {} for f in fields(ArrayConfig): field_name = cast("Literal['order', 'write_empty_chunks']", f.name) if field_name not in data: kwargs_out[field_name] = zarr_config.get(f"array.{field_name}") else: kwargs_out[field_name] = data[field_name] return cls(**kwargs_out) ArrayConfigLike = ArrayConfig | ArrayConfigParams def parse_array_config(data: ArrayConfigLike | None) -> ArrayConfig: """ Convert various types of data to an ArrayConfig. """ if data is None: return ArrayConfig.from_dict({}) elif isinstance(data, ArrayConfig): return data else: return ArrayConfig.from_dict(data) @dataclass(frozen=True)
ArrayConfig
python
allegroai__clearml
clearml/backend_api/services/v2_23/queues.py
{ "start": 61173, "end": 63892 }
class ____(Response): """ Response of queues.get_next_task endpoint. :param entry: Entry information :type entry: Entry :param task_info: Info about the returned task. Returned only if get_task_info is set to True :type task_info: dict """ _service = "queues" _action = "get_next_task" _version = "2.23" _schema = { "definitions": { "entry": { "properties": { "added": { "description": "Time this entry was added to the queue", "format": "date-time", "type": ["string", "null"], }, "task": { "description": "Queued task ID", "type": ["string", "null"], }, }, "type": "object", } }, "properties": { "entry": { "description": "Entry information", "oneOf": [{"$ref": "#/definitions/entry"}, {"type": "null"}], }, "task_info": { "description": "Info about the returned task. Returned only if get_task_info is set to True", "properties": { "company": {"description": "Task company ID", "type": "string"}, "user": { "description": "ID of the user who created the task", "type": "string", }, }, "type": ["object", "null"], }, }, "type": "object", } def __init__(self, entry: Any = None, task_info: Optional[dict] = None, **kwargs: Any) -> None: super(GetNextTaskResponse, self).__init__(**kwargs) self.entry = entry self.task_info = task_info @schema_property("entry") def entry(self) -> Any: return self._property_entry @entry.setter def entry(self, value: Any) -> None: if value is None: self._property_entry = None return if isinstance(value, dict): value = Entry.from_dict(value) else: self.assert_isinstance(value, "entry", Entry) self._property_entry = value @schema_property("task_info") def task_info(self) -> Optional[dict]: return self._property_task_info @task_info.setter def task_info(self, value: Optional[dict]) -> None: if value is None: self._property_task_info = None return self.assert_isinstance(value, "task_info", (dict,)) self._property_task_info = value
GetNextTaskResponse
python
airbytehq__airbyte
airbyte-integrations/connectors/source-appsflyer/source_appsflyer/source.py
{ "start": 7537, "end": 8051 }
class ____: cursor_field = "date" def request_params( self, stream_state: Mapping[str, Any], stream_slice: Mapping[str, any] = None, next_page_token: Mapping[str, Any] = None ) -> MutableMapping[str, Any]: params = super().request_params(stream_state, stream_slice, next_page_token) params["from"] = stream_slice.get(self.cursor_field).to_date_string() params["to"] = stream_slice.get(self.cursor_field + "_end").to_date_string() return params
AggregateDataMixin
python
anthropics__anthropic-sdk-python
src/anthropic/_response.py
{ "start": 20588, "end": 21727 }
class ____(AnthropicError): """ Attempted to read or stream content, but the content has already been streamed. This can happen if you use a method like `.iter_lines()` and then attempt to read th entire response body afterwards, e.g. ```py response = await client.post(...) async for line in response.iter_lines(): ... # do something with `line` content = await response.read() # ^ error ``` If you want this behaviour you'll need to either manually accumulate the response content or call `await response.read()` before iterating over the stream. """ def __init__(self) -> None: message = ( "Attempted to read or stream some content, but the content has " "already been streamed. " "This could be due to attempting to stream the response " "content more than once." "\n\n" "You can fix this by manually accumulating the response content while streaming " "or by calling `.read()` before starting to stream." ) super().__init__(message)
StreamAlreadyConsumed
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/test_bigquery.py
{ "start": 11979, "end": 12582 }
class ____: @mock.patch("airflow.providers.google.cloud.operators.bigquery.BigQueryHook") def test_execute(self, mock_hook): operator = BigQueryDeleteDatasetOperator( task_id=TASK_ID, dataset_id=TEST_DATASET, project_id=TEST_GCP_PROJECT_ID, delete_contents=TEST_DELETE_CONTENTS, ) operator.execute(None) mock_hook.return_value.delete_dataset.assert_called_once_with( dataset_id=TEST_DATASET, project_id=TEST_GCP_PROJECT_ID, delete_contents=TEST_DELETE_CONTENTS )
TestBigQueryDeleteDatasetOperator
python
pytorch__pytorch
torchgen/api/autograd.py
{ "start": 8860, "end": 9554 }
class ____: name: str type: Type # TODO: only to keep it byte-for-byte compatible with the old codegen, should remove. cpp_type: str # Represents a differentiable `Return`. # How it it different from the `Return` type? # - The name in `Return` is optional. Here it is always populated using the same # `cpp.return_names()` method. # TODO: some cpp naming logic (e.g. resolving name conflict) might be irrelevant? # - It's processed Returns which are differentiable, in compliance with the # `output_differentiability` field defined in derivatives.yaml (if specified), # and are only used in the context of the autograd codegen; @dataclass(frozen=True)
DifferentiableInput
python
pola-rs__polars
py-polars/src/polars/expr/list.py
{ "start": 622, "end": 50636 }
class ____: """Namespace for list related expressions.""" _accessor = "list" def __init__(self, expr: Expr) -> None: self._pyexpr = expr._pyexpr def __getitem__(self, item: int) -> Expr: return self.get(item) def all(self) -> Expr: """ Evaluate whether all boolean values in a list are true. Notes ----- If there are no non-null elements in a row, the output is `True`. Examples -------- >>> df = pl.DataFrame( ... {"a": [[True, True], [False, True], [False, False], [None], [], None]} ... ) >>> df.with_columns(all=pl.col("a").list.all()) shape: (6, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ all β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[bool] ┆ bool β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════║ β”‚ [true, true] ┆ true β”‚ β”‚ [false, true] ┆ false β”‚ β”‚ [false, false] ┆ false β”‚ β”‚ [null] ┆ true β”‚ β”‚ [] ┆ true β”‚ β”‚ null ┆ null β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_all()) def any(self) -> Expr: """ Evaluate whether any boolean value in a list is true. Notes ----- If there are no non-null elements in a row, the output is `False`. Examples -------- >>> df = pl.DataFrame( ... {"a": [[True, True], [False, True], [False, False], [None], [], None]} ... ) >>> df.with_columns(any=pl.col("a").list.any()) shape: (6, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ any β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[bool] ┆ bool β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════║ β”‚ [true, true] ┆ true β”‚ β”‚ [false, true] ┆ true β”‚ β”‚ [false, false] ┆ false β”‚ β”‚ [null] ┆ false β”‚ β”‚ [] ┆ false β”‚ β”‚ null ┆ null β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_any()) def len(self) -> Expr: """ Return the number of elements in each list. Null values count towards the total. Returns ------- Expr Expression of data type :class:`UInt32`. Examples -------- >>> df = pl.DataFrame({"a": [[1, 2, None], [5]]}) >>> df.with_columns(len=pl.col("a").list.len()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β” β”‚ a ┆ len β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ u32 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═════║ β”‚ [1, 2, null] ┆ 3 β”‚ β”‚ [5] ┆ 1 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_len()) def drop_nulls(self) -> Expr: """ Drop all null values in the list. The original order of the remaining elements is preserved. Examples -------- >>> df = pl.DataFrame({"values": [[None, 1, None, 2], [None], [3, 4]]}) >>> df.with_columns(drop_nulls=pl.col("values").list.drop_nulls()) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ values ┆ drop_nulls β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ════════════║ β”‚ [null, 1, … 2] ┆ [1, 2] β”‚ β”‚ [null] ┆ [] β”‚ β”‚ [3, 4] ┆ [3, 4] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_drop_nulls()) def sample( self, n: int | IntoExprColumn | None = None, *, fraction: float | IntoExprColumn | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None, ) -> Expr: """ Sample from this list. Parameters ---------- n Number of items to return. Cannot be used with `fraction`. Defaults to 1 if `fraction` is None. fraction Fraction of items to return. Cannot be used with `n`. with_replacement Allow values to be sampled more than once. shuffle Shuffle the order of sampled data points. seed Seed for the random number generator. If set to None (default), a random seed is generated for each sample operation. Examples -------- >>> df = pl.DataFrame({"values": [[1, 2, 3], [4, 5]], "n": [2, 1]}) >>> df.with_columns(sample=pl.col("values").list.sample(n=pl.col("n"), seed=1)) shape: (2, 3) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ values ┆ n ┆ sample β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═════β•ͺ═══════════║ β”‚ [1, 2, 3] ┆ 2 ┆ [2, 3] β”‚ β”‚ [4, 5] ┆ 1 ┆ [5] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ if n is not None and fraction is not None: msg = "cannot specify both `n` and `fraction`" raise ValueError(msg) if fraction is not None: fraction_pyexpr = parse_into_expression(fraction) return wrap_expr( self._pyexpr.list_sample_fraction( fraction_pyexpr, with_replacement, shuffle, seed ) ) if n is None: n = 1 n_pyexpr = parse_into_expression(n) return wrap_expr( self._pyexpr.list_sample_n(n_pyexpr, with_replacement, shuffle, seed) ) def sum(self) -> Expr: """ Sum all the lists in the array. Notes ----- If there are no non-null elements in a row, the output is `0`. Examples -------- >>> df = pl.DataFrame({"values": [[1], [2, 3]]}) >>> df.with_columns(sum=pl.col("values").list.sum()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β” β”‚ values ┆ sum β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═════║ β”‚ [1] ┆ 1 β”‚ β”‚ [2, 3] ┆ 5 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_sum()) def max(self) -> Expr: """ Compute the max value of the lists in the array. Examples -------- >>> df = pl.DataFrame({"values": [[1], [2, 3]]}) >>> df.with_columns(max=pl.col("values").list.max()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β” β”‚ values ┆ max β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═════║ β”‚ [1] ┆ 1 β”‚ β”‚ [2, 3] ┆ 3 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_max()) def min(self) -> Expr: """ Compute the min value of the lists in the array. Examples -------- >>> df = pl.DataFrame({"values": [[1], [2, 3]]}) >>> df.with_columns(min=pl.col("values").list.min()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β” β”‚ values ┆ min β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═════║ β”‚ [1] ┆ 1 β”‚ β”‚ [2, 3] ┆ 2 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_min()) def mean(self) -> Expr: """ Compute the mean value of the lists in the array. Examples -------- >>> df = pl.DataFrame({"values": [[1], [2, 3]]}) >>> df.with_columns(mean=pl.col("values").list.mean()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β” β”‚ values ┆ mean β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ f64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════║ β”‚ [1] ┆ 1.0 β”‚ β”‚ [2, 3] ┆ 2.5 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_mean()) def median(self) -> Expr: """ Compute the median value of the lists in the array. Examples -------- >>> df = pl.DataFrame({"values": [[-1, 0, 1], [1, 10]]}) >>> df.with_columns(pl.col("values").list.median().alias("median")) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ values ┆ median β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ f64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•ͺ════════║ β”‚ [-1, 0, 1] ┆ 0.0 β”‚ β”‚ [1, 10] ┆ 5.5 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_median()) def std(self, ddof: int = 1) -> Expr: """ Compute the std value of the lists in the array. Parameters ---------- ddof β€œDelta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1. Examples -------- >>> df = pl.DataFrame({"values": [[-1, 0, 1], [1, 10]]}) >>> df.with_columns(pl.col("values").list.std().alias("std")) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ values ┆ std β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ f64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════║ β”‚ [-1, 0, 1] ┆ 1.0 β”‚ β”‚ [1, 10] ┆ 6.363961 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_std(ddof)) def var(self, ddof: int = 1) -> Expr: """ Compute the var value of the lists in the array. Parameters ---------- ddof β€œDelta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1. Examples -------- >>> df = pl.DataFrame({"values": [[-1, 0, 1], [1, 10]]}) >>> df.with_columns(pl.col("values").list.var().alias("var")) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β” β”‚ values ┆ var β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ f64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•ͺ══════║ β”‚ [-1, 0, 1] ┆ 1.0 β”‚ β”‚ [1, 10] ┆ 40.5 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_var(ddof)) def sort(self, *, descending: bool = False, nulls_last: bool = False) -> Expr: """ Sort the lists in this column. Parameters ---------- descending Sort in descending order. nulls_last Place null values last. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[3, 2, 1], [9, 1, 2]], ... } ... ) >>> df.with_columns(sort=pl.col("a").list.sort()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ sort β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [3, 2, 1] ┆ [1, 2, 3] β”‚ β”‚ [9, 1, 2] ┆ [1, 2, 9] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ >>> df.with_columns(sort=pl.col("a").list.sort(descending=True)) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ sort β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [3, 2, 1] ┆ [3, 2, 1] β”‚ β”‚ [9, 1, 2] ┆ [9, 2, 1] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_sort(descending, nulls_last)) def reverse(self) -> Expr: """ Reverse the arrays in the list. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[3, 2, 1], [9, 1, 2]], ... } ... ) >>> df.with_columns(reverse=pl.col("a").list.reverse()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ reverse β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [3, 2, 1] ┆ [1, 2, 3] β”‚ β”‚ [9, 1, 2] ┆ [2, 1, 9] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_reverse()) def unique(self, *, maintain_order: bool = False) -> Expr: """ Get the unique/distinct values in the list. Parameters ---------- maintain_order Maintain order of data. This requires more work. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 1, 2]], ... } ... ) >>> df.with_columns(unique=pl.col("a").list.unique()) shape: (1, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ unique β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [1, 1, 2] ┆ [1, 2] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_unique(maintain_order)) def n_unique(self) -> Expr: """ Count the number of unique values in every sub-lists. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 1, 2], [2, 3, 4]], ... } ... ) >>> df.with_columns(n_unique=pl.col("a").list.n_unique()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ n_unique β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ u32 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════║ β”‚ [1, 1, 2] ┆ 2 β”‚ β”‚ [2, 3, 4] ┆ 3 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_n_unique()) def concat(self, other: list[Expr | str] | Expr | str | Series | list[Any]) -> Expr: """ Concat the arrays in a Series dtype List in linear time. Parameters ---------- other Columns to concat into a List Series Examples -------- >>> df = pl.DataFrame( ... { ... "a": [["a"], ["x"]], ... "b": [["b", "c"], ["y", "z"]], ... } ... ) >>> df.with_columns(concat=pl.col("a").list.concat("b")) shape: (2, 3) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ b ┆ concat β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ list[str] ┆ list[str] ┆ list[str] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ════════════β•ͺ═════════════════║ β”‚ ["a"] ┆ ["b", "c"] ┆ ["a", "b", "c"] β”‚ β”‚ ["x"] ┆ ["y", "z"] ┆ ["x", "y", "z"] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ if isinstance(other, list) and ( not isinstance(other[0], (pl.Expr, str, pl.Series)) ): return self.concat(pl.Series([other])) other_list: list[Expr | str | Series] other_list = [other] if not isinstance(other, list) else copy.copy(other) # type: ignore[arg-type] other_list.insert(0, wrap_expr(self._pyexpr)) return F.concat_list(other_list) def get( self, index: int | Expr | str, *, null_on_oob: bool = False, ) -> Expr: """ Get the value by index in the sublists. So index `0` would return the first item of every sublist and index `-1` would return the last item of every sublist if an index is out of bounds, it will return a `None`. Parameters ---------- index Index to return per sublist null_on_oob Behavior if an index is out of bounds: * True -> set as null * False -> raise an error Examples -------- >>> df = pl.DataFrame({"a": [[3, 2, 1], [], [1, 2]]}) >>> df.with_columns(get=pl.col("a").list.get(0, null_on_oob=True)) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ get β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════║ β”‚ [3, 2, 1] ┆ 3 β”‚ β”‚ [] ┆ null β”‚ β”‚ [1, 2] ┆ 1 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”˜ """ index_pyexpr = parse_into_expression(index) return wrap_expr(self._pyexpr.list_get(index_pyexpr, null_on_oob)) def gather( self, indices: Expr | Series | list[int] | list[list[int]], *, null_on_oob: bool = False, ) -> Expr: """ Take sublists by multiple indices. The indices may be defined in a single column, or by sublists in another column of dtype `List`. Parameters ---------- indices Indices to return per sublist null_on_oob Behavior if an index is out of bounds: True -> set as null False -> raise an error Note that defaulting to raising an error is much cheaper Examples -------- >>> df = pl.DataFrame({"a": [[3, 2, 1], [], [1, 2, 3, 4, 5]]}) >>> df.with_columns(gather=pl.col("a").list.gather([0, 4], null_on_oob=True)) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ gather β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════════║ β”‚ [3, 2, 1] ┆ [3, null] β”‚ β”‚ [] ┆ [null, null] β”‚ β”‚ [1, 2, … 5] ┆ [1, 5] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ indices_pyexpr = parse_into_expression(indices) return wrap_expr(self._pyexpr.list_gather(indices_pyexpr, null_on_oob)) def gather_every( self, n: int | IntoExprColumn, offset: int | IntoExprColumn = 0, ) -> Expr: """ Take every n-th value start from offset in sublists. Parameters ---------- n Gather every n-th element. offset Starting index. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 2, 3, 4, 5], [6, 7, 8], [9, 10, 11, 12]], ... "n": [2, 1, 3], ... "offset": [0, 1, 0], ... } ... ) >>> df.with_columns( ... gather_every=pl.col("a").list.gather_every( ... n=pl.col("n"), offset=pl.col("offset") ... ) ... ) shape: (3, 4) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ n ┆ offset ┆ gather_every β”‚ β”‚ --- ┆ --- ┆ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 ┆ i64 ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═════β•ͺ════════β•ͺ══════════════║ β”‚ [1, 2, … 5] ┆ 2 ┆ 0 ┆ [1, 3, 5] β”‚ β”‚ [6, 7, 8] ┆ 1 ┆ 1 ┆ [7, 8] β”‚ β”‚ [9, 10, … 12] ┆ 3 ┆ 0 ┆ [9, 12] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ n_pyexpr = parse_into_expression(n) offset_pyexpr = parse_into_expression(offset) return wrap_expr(self._pyexpr.list_gather_every(n_pyexpr, offset_pyexpr)) def first(self) -> Expr: """ Get the first value of the sublists. Examples -------- >>> df = pl.DataFrame({"a": [[3, 2, 1], [], [1, 2]]}) >>> df.with_columns(first=pl.col("a").list.first()) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ first β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════║ β”‚ [3, 2, 1] ┆ 3 β”‚ β”‚ [] ┆ null β”‚ β”‚ [1, 2] ┆ 1 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜ """ return self.get(0, null_on_oob=True) def last(self) -> Expr: """ Get the last value of the sublists. Examples -------- >>> df = pl.DataFrame({"a": [[3, 2, 1], [], [1, 2]]}) >>> df.with_columns(last=pl.col("a").list.last()) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ last β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════║ β”‚ [3, 2, 1] ┆ 1 β”‚ β”‚ [] ┆ null β”‚ β”‚ [1, 2] ┆ 2 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”˜ """ return self.get(-1, null_on_oob=True) @unstable() def item(self, *, allow_empty: bool = False) -> Expr: """ Get the single value of the sublists. This errors if the sublist length is not exactly one. Parameters ---------- allow_empty Allow having no values to return `null`. See Also -------- :meth:`Expr.list.get` : Get the value by index in the sublists. Examples -------- >>> df = pl.DataFrame({"a": [[3], [1], [2]]}) >>> df.with_columns(item=pl.col("a").list.item()) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ item β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ i64 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════║ β”‚ [3] ┆ 3 β”‚ β”‚ [1] ┆ 1 β”‚ β”‚ [2] ┆ 2 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”˜ >>> df = pl.DataFrame({"a": [[3, 2, 1], [1], [2]]}) >>> df.select(pl.col("a").list.item()) Traceback (most recent call last): ... polars.exceptions.ComputeError: aggregation 'item' expected a single value, got 3 values >>> df = pl.DataFrame({"a": [[], [1], [2]]}) >>> df.select(pl.col("a").list.item(allow_empty=True)) shape: (3, 1) β”Œβ”€β”€β”€β”€β”€β”€β” β”‚ a β”‚ β”‚ --- β”‚ β”‚ i64 β”‚ β•žβ•β•β•β•β•β•β•‘ β”‚ null β”‚ β”‚ 1 β”‚ β”‚ 2 β”‚ β””β”€β”€β”€β”€β”€β”€β”˜ """ # noqa: W505 return self.agg(F.element().item(allow_empty=allow_empty)) def contains(self, item: IntoExpr, *, nulls_equal: bool = True) -> Expr: """ Check if sublists contain the given item. Parameters ---------- item Item that will be checked for membership nulls_equal : bool, default True If True, treat null as a distinct value. Null values will not propagate. Returns ------- Expr Expression of data type :class:`Boolean`. Examples -------- >>> df = pl.DataFrame({"a": [[3, 2, 1], [], [1, 2]]}) >>> df.with_columns(contains=pl.col("a").list.contains(1)) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ contains β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ bool β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════║ β”‚ [3, 2, 1] ┆ true β”‚ β”‚ [] ┆ false β”‚ β”‚ [1, 2] ┆ true β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ item_pyexpr = parse_into_expression(item, str_as_lit=True) return wrap_expr(self._pyexpr.list_contains(item_pyexpr, nulls_equal)) def join(self, separator: IntoExprColumn, *, ignore_nulls: bool = True) -> Expr: """ Join all string items in a sublist and place a separator between them. This errors if inner type of list `!= String`. Parameters ---------- separator string to separate the items with ignore_nulls Ignore null values (default). If set to ``False``, null values will be propagated. If the sub-list contains any null values, the output is ``None``. Returns ------- Expr Expression of data type :class:`String`. Examples -------- >>> df = pl.DataFrame({"s": [["a", "b", "c"], ["x", "y"]]}) >>> df.with_columns(join=pl.col("s").list.join(" ")) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β” β”‚ s ┆ join β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[str] ┆ str β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════║ β”‚ ["a", "b", "c"] ┆ a b c β”‚ β”‚ ["x", "y"] ┆ x y β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜ >>> df = pl.DataFrame( ... {"s": [["a", "b", "c"], ["x", "y"]], "separator": ["*", "_"]} ... ) >>> df.with_columns(join=pl.col("s").list.join(pl.col("separator"))) shape: (2, 3) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β” β”‚ s ┆ separator ┆ join β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ list[str] ┆ str ┆ str β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════β•ͺ═══════║ β”‚ ["a", "b", "c"] ┆ * ┆ a*b*c β”‚ β”‚ ["x", "y"] ┆ _ ┆ x_y β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”˜ """ separator_pyexpr = parse_into_expression(separator, str_as_lit=True) return wrap_expr(self._pyexpr.list_join(separator_pyexpr, ignore_nulls)) def arg_min(self) -> Expr: """ Retrieve the index of the minimal value in every sublist. Returns ------- Expr Expression of data type :class:`UInt32` or :class:`UInt64` (depending on compilation). Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 2], [2, 1]], ... } ... ) >>> df.with_columns(arg_min=pl.col("a").list.arg_min()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ arg_min β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ u32 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═════════║ β”‚ [1, 2] ┆ 0 β”‚ β”‚ [2, 1] ┆ 1 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_arg_min()) def arg_max(self) -> Expr: """ Retrieve the index of the maximum value in every sublist. Returns ------- Expr Expression of data type :class:`UInt32` or :class:`UInt64` (depending on compilation). Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 2], [2, 1]], ... } ... ) >>> df.with_columns(arg_max=pl.col("a").list.arg_max()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ arg_max β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ u32 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═════════║ β”‚ [1, 2] ┆ 1 β”‚ β”‚ [2, 1] ┆ 0 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_arg_max()) def diff(self, n: int = 1, null_behavior: NullBehavior = "ignore") -> Expr: """ Calculate the first discrete difference between shifted items of every sublist. Parameters ---------- n Number of slots to shift. null_behavior : {'ignore', 'drop'} How to handle null values. Examples -------- >>> df = pl.DataFrame({"n": [[1, 2, 3, 4], [10, 2, 1]]}) >>> df.with_columns(diff=pl.col("n").list.diff()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ n ┆ diff β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ════════════════║ β”‚ [1, 2, … 4] ┆ [null, 1, … 1] β”‚ β”‚ [10, 2, 1] ┆ [null, -8, -1] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ >>> df.with_columns(diff=pl.col("n").list.diff(n=2)) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ n ┆ diff β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════════════║ β”‚ [1, 2, … 4] ┆ [null, null, … 2] β”‚ β”‚ [10, 2, 1] ┆ [null, null, -9] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ >>> df.with_columns(diff=pl.col("n").list.diff(n=2, null_behavior="drop")) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ n ┆ diff β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [1, 2, … 4] ┆ [2, 2] β”‚ β”‚ [10, 2, 1] ┆ [-9] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_diff(n, null_behavior)) def shift(self, n: int | IntoExprColumn = 1) -> Expr: """ Shift list values by the given number of indices. Parameters ---------- n Number of indices to shift forward. If a negative value is passed, values are shifted in the opposite direction instead. Notes ----- This method is similar to the `LAG` operation in SQL when the value for `n` is positive. With a negative value for `n`, it is similar to `LEAD`. Examples -------- By default, list values are shifted forward by one index. >>> df = pl.DataFrame({"a": [[1, 2, 3], [4, 5]]}) >>> df.with_columns(shift=pl.col("a").list.shift()) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ shift β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════════║ β”‚ [1, 2, 3] ┆ [null, 1, 2] β”‚ β”‚ [4, 5] ┆ [null, 4] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ Pass a negative value to shift in the opposite direction instead. >>> df.with_columns(shift=pl.col("a").list.shift(-2)) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ shift β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═════════════════║ β”‚ [1, 2, 3] ┆ [3, null, null] β”‚ β”‚ [4, 5] ┆ [null, null] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ n_pyexpr = parse_into_expression(n) return wrap_expr(self._pyexpr.list_shift(n_pyexpr)) def slice( self, offset: int | str | Expr, length: int | str | Expr | None = None ) -> Expr: """ Slice every sublist. Parameters ---------- offset Start index. Negative indexing is supported. length Length of the slice. If set to `None` (default), the slice is taken to the end of the list. Examples -------- >>> df = pl.DataFrame({"a": [[1, 2, 3, 4], [10, 2, 1]]}) >>> df.with_columns(slice=pl.col("a").list.slice(1, 2)) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ slice β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [1, 2, … 4] ┆ [2, 3] β”‚ β”‚ [10, 2, 1] ┆ [2, 1] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ if isinstance(offset, Collection) and not isinstance(offset, str): msg = f"'offset' must be an integer, string, or expression, not {type(offset).__name__}" raise TypeError(msg) if ( length is not None and isinstance(length, Collection) and not isinstance(length, str) ): msg = f"'length' must be an integer, string, or expression, not {type(length).__name__}" raise TypeError(msg) offset_pyexpr = parse_into_expression(offset) length_pyexpr = parse_into_expression(length) return wrap_expr(self._pyexpr.list_slice(offset_pyexpr, length_pyexpr)) def head(self, n: int | str | Expr = 5) -> Expr: """ Slice the first `n` values of every sublist. Parameters ---------- n Number of values to return for each sublist. Examples -------- >>> df = pl.DataFrame({"a": [[1, 2, 3, 4], [10, 2, 1]]}) >>> df.with_columns(head=pl.col("a").list.head(2)) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ head β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [1, 2, … 4] ┆ [1, 2] β”‚ β”‚ [10, 2, 1] ┆ [10, 2] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return self.slice(0, n) def tail(self, n: int | str | Expr = 5) -> Expr: """ Slice the last `n` values of every sublist. Parameters ---------- n Number of values to return for each sublist. Examples -------- >>> df = pl.DataFrame({"a": [[1, 2, 3, 4], [10, 2, 1]]}) >>> df.with_columns(tail=pl.col("a").list.tail(2)) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ tail β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [1, 2, … 4] ┆ [3, 4] β”‚ β”‚ [10, 2, 1] ┆ [2, 1] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ n_pyexpr = parse_into_expression(n) return wrap_expr(self._pyexpr.list_tail(n_pyexpr)) def explode(self, *, empty_as_null: bool = True, keep_nulls: bool = True) -> Expr: """ Returns a column with a separate row for every list element. Parameters ---------- empty_as_null Explode an empty list into a `null`. keep_nulls Explode a `null` list into a `null`. Returns ------- Expr Expression with the data type of the list elements. See Also -------- Expr.reshape: Reshape this Expr to a flat Series or a Series of Lists. Examples -------- >>> df = pl.DataFrame({"a": [[1, 2, 3], [4, 5, 6]]}) >>> df.select(pl.col("a").list.explode()) shape: (6, 1) β”Œβ”€β”€β”€β”€β”€β” β”‚ a β”‚ β”‚ --- β”‚ β”‚ i64 β”‚ β•žβ•β•β•β•β•β•‘ β”‚ 1 β”‚ β”‚ 2 β”‚ β”‚ 3 β”‚ β”‚ 4 β”‚ β”‚ 5 β”‚ β”‚ 6 β”‚ β””β”€β”€β”€β”€β”€β”˜ """ return wrap_expr( self._pyexpr.explode(empty_as_null=empty_as_null, keep_nulls=keep_nulls) ) def count_matches(self, element: IntoExpr) -> Expr: """ Count how often the value produced by `element` occurs. Parameters ---------- element An expression that produces a single value Examples -------- >>> df = pl.DataFrame({"a": [[0], [1], [1, 2, 3, 2], [1, 2, 1], [4, 4]]}) >>> df.with_columns(number_of_twos=pl.col("a").list.count_matches(2)) shape: (5, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ number_of_twos β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ u32 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ════════════════║ β”‚ [0] ┆ 0 β”‚ β”‚ [1] ┆ 0 β”‚ β”‚ [1, 2, … 2] ┆ 2 β”‚ β”‚ [1, 2, 1] ┆ 1 β”‚ β”‚ [4, 4] ┆ 0 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ element_pyexpr = parse_into_expression(element, str_as_lit=True) return wrap_expr(self._pyexpr.list_count_matches(element_pyexpr)) def to_array(self, width: int) -> Expr: """ Convert a List column into an Array column with the same inner data type. Parameters ---------- width Width of the resulting Array column. Returns ------- Expr Expression of data type :class:`Array`. Examples -------- >>> df = pl.DataFrame( ... data={"a": [[1, 2], [3, 4]]}, ... schema={"a": pl.List(pl.Int8)}, ... ) >>> df.with_columns(array=pl.col("a").list.to_array(2)) shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ array β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i8] ┆ array[i8, 2] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•ͺ══════════════║ β”‚ [1, 2] ┆ [1, 2] β”‚ β”‚ [3, 4] ┆ [3, 4] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_to_array(width)) def to_struct( self, n_field_strategy: ListToStructWidthStrategy | None = None, fields: Sequence[str] | Callable[[int], str] | None = None, upper_bound: int | None = None, ) -> Expr: """ Convert the Series of type `List` to a Series of type `Struct`. Parameters ---------- n_field_strategy : {'first_non_null', 'max_width'} Deprecated and ignored. fields If the name and number of the desired fields is known in advance a list of field names can be given, which will be assigned by index. Otherwise, to dynamically assign field names, a custom function can be used; if neither are set, fields will be `field_0, field_1 .. field_n`. upper_bound A polars expression needs to be able to evaluate the output datatype at all times, so the caller must provide an upper bound of the number of struct fields that will be created if `fields` is not a sequence of field names. .. versionchanged:: 1.33.0 The `n_field_strategy` parameter is ignored and deprecated. The `fields` needs to be a sequence of field names or the upper bound is regarded as ground truth. Examples -------- Convert list to struct with default field name assignment: >>> df = pl.DataFrame({"n": [[0, 1], [0, 1, 2]]}) >>> df.with_columns( ... struct=pl.col("n").list.to_struct(upper_bound=2) ... ) # doctest: +SKIP shape: (2, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ n ┆ struct β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ struct[2] β”‚ # <- struct with 2 fields β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [0, 1] ┆ {0,1} β”‚ # OK β”‚ [0, 1, 2] ┆ {0,1} β”‚ # NOT OK - last value missing β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ Convert list to struct with field name assignment by function/index: >>> df = pl.DataFrame({"n": [[0, 1], [2, 3]]}) >>> df.select( ... pl.col("n").list.to_struct(fields=lambda idx: f"n{idx}", upper_bound=2) ... ).rows(named=True) # doctest: +SKIP [{'n': {'n0': 0, 'n1': 1}}, {'n': {'n0': 2, 'n1': 3}}] Convert list to struct with field name assignment by index from a list of names: >>> df.select(pl.col("n").list.to_struct(fields=["one", "two"])).rows( ... named=True ... ) [{'n': {'one': 0, 'two': 1}}, {'n': {'one': 2, 'two': 3}}] """ if n_field_strategy is not None: issue_warning( "`Expr.list.to_struct` with `n_field_strategy` is deprecated and has no effect on execution.", DeprecationWarning, ) if not isinstance(fields, Sequence): if upper_bound is None: msg = "`Expr.list.to_struct` requires either `fields` to be a sequence or `upper_bound` to be set.\n\nThis used to be allowed but produced unpredictable results." raise exceptions.InvalidOperationError(msg) if fields is None: fields = [f"field_{i}" for i in range(upper_bound)] else: fields = [fields(i) for i in range(upper_bound)] return wrap_expr(self._pyexpr.list_to_struct(fields)) def eval(self, expr: Expr, *, parallel: bool = False) -> Expr: """ Run any polars expression against the lists' elements. Parameters ---------- expr Expression to run. Note that you can select an element with `pl.element()`. parallel Run all expression parallel. Don't activate this blindly. Parallelism is worth it if there is enough work to do per thread. This likely should not be used in the group by context, because we already parallel execution per group Examples -------- >>> df = pl.DataFrame({"a": [1, 8, 3], "b": [4, 5, 2]}) >>> df.with_columns( ... rank=pl.concat_list("a", "b").list.eval(pl.element().rank()) ... ) shape: (3, 3) β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ b ┆ rank β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ i64 ┆ i64 ┆ list[f64] β”‚ β•žβ•β•β•β•β•β•ͺ═════β•ͺ════════════║ β”‚ 1 ┆ 4 ┆ [1.0, 2.0] β”‚ β”‚ 8 ┆ 5 ┆ [2.0, 1.0] β”‚ β”‚ 3 ┆ 2 ┆ [2.0, 1.0] β”‚ β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ See Also -------- polars.Expr.list.agg: Evaluate any expression and automatically explode. polars.Expr.arr.eval: Same for the Array datatype. """ return wrap_expr(self._pyexpr.list_eval(expr._pyexpr, parallel)) def agg(self, expr: Expr) -> Expr: """ Run any polars aggregation expression against the lists' elements. Parameters ---------- expr Expression to run. Note that you can select an element with `pl.element()`. Examples -------- >>> df = pl.DataFrame({"a": [[1, None], [42, 13], [None, None]]}) >>> df.with_columns(null_count=pl.col.a.list.agg(pl.element().null_count())) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ null_count β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ u32 β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ════════════║ β”‚ [1, null] ┆ 1 β”‚ β”‚ [42, 13] ┆ 0 β”‚ β”‚ [null, null] ┆ 2 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ >>> df.with_columns(no_nulls=pl.col.a.list.agg(pl.element().drop_nulls())) shape: (3, 2) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ no_nulls β”‚ β”‚ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•ͺ═══════════║ β”‚ [1, null] ┆ [1] β”‚ β”‚ [42, 13] ┆ [42, 13] β”‚ β”‚ [null, null] ┆ [] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ See Also -------- polars.Expr.list.eval: Evaluates expressions without automatically exploding. polars.Expr.arr.agg: Same for the Array datatype. """ return wrap_expr(self._pyexpr.list_agg(expr._pyexpr)) def filter(self, predicate: Expr) -> Expr: """ Filter elements in each list by a boolean expression. Parameters ---------- predicate A boolean expression that is evaluated per list element. You can refer to the current element with `pl.element()`. Examples -------- >>> import polars as pl >>> df = pl.DataFrame({"a": [1, 8, 3], "b": [4, 5, 2]}) >>> df.with_columns( ... evens=pl.concat_list("a", "b").list.filter(pl.element() % 2 == 0) ... ) shape: (3, 3) β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ b ┆ evens β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ i64 ┆ i64 ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•ͺ═════β•ͺ═══════════║ β”‚ 1 ┆ 4 ┆ [4] β”‚ β”‚ 8 ┆ 5 ┆ [8] β”‚ β”‚ 3 ┆ 2 ┆ [2] β”‚ β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ return wrap_expr(self._pyexpr.list_filter(predicate._pyexpr)) def set_union(self, other: IntoExpr | Collection[Any]) -> Expr: """ Compute the SET UNION between the elements in this list and the elements of `other`. Parameters ---------- other Right hand side of the set operation. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 2, 3], [], [None, 3], [5, 6, 7]], ... "b": [[2, 3, 4], [3], [3, 4, None], [6, 8]], ... } ... ) >>> df.with_columns( ... union=pl.col("a").list.set_union("b") ... ) # doctest: +IGNORE_RESULT shape: (4, 3) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ b ┆ union β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════════β•ͺ═══════════════║ β”‚ [1, 2, 3] ┆ [2, 3, 4] ┆ [1, 2, 3, 4] β”‚ β”‚ [] ┆ [3] ┆ [3] β”‚ β”‚ [null, 3] ┆ [3, 4, null] ┆ [null, 3, 4] β”‚ β”‚ [5, 6, 7] ┆ [6, 8] ┆ [5, 6, 7, 8] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ # noqa: W505 if isinstance(other, Collection) and not isinstance(other, str): if not isinstance(other, (Sequence, pl.Series, pl.DataFrame)): other = list(other) # eg: set, frozenset, etc other_pyexpr = F.lit(other)._pyexpr else: other_pyexpr = parse_into_expression(other) return wrap_expr(self._pyexpr.list_set_operation(other_pyexpr, "union")) def set_difference(self, other: IntoExpr | Collection[Any]) -> Expr: """ Compute the SET DIFFERENCE between the elements in this list and the elements of `other`. Parameters ---------- other Right hand side of the set operation. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 2, 3], [], [None, 3], [5, 6, 7]], ... "b": [[2, 3, 4], [3], [3, 4, None], [6, 8]], ... } ... ) >>> df.with_columns(difference=pl.col("a").list.set_difference("b")) shape: (4, 3) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ b ┆ difference β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════════β•ͺ════════════║ β”‚ [1, 2, 3] ┆ [2, 3, 4] ┆ [1] β”‚ β”‚ [] ┆ [3] ┆ [] β”‚ β”‚ [null, 3] ┆ [3, 4, null] ┆ [] β”‚ β”‚ [5, 6, 7] ┆ [6, 8] ┆ [5, 7] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ See Also -------- polars.Expr.list.diff: Calculates the n-th discrete difference of every sublist. """ # noqa: W505 if isinstance(other, Collection) and not isinstance(other, str): if not isinstance(other, (Sequence, pl.Series, pl.DataFrame)): other = list(other) # eg: set, frozenset, etc other_pyexpr = F.lit(other)._pyexpr else: other_pyexpr = parse_into_expression(other) return wrap_expr(self._pyexpr.list_set_operation(other_pyexpr, "difference")) def set_intersection(self, other: IntoExpr | Collection[Any]) -> Expr: """ Compute the SET INTERSECTION between the elements in this list and the elements of `other`. Parameters ---------- other Right hand side of the set operation. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 2, 3], [], [None, 3], [5, 6, 7]], ... "b": [[2, 3, 4], [3], [3, 4, None], [6, 8]], ... } ... ) >>> df.with_columns(intersection=pl.col("a").list.set_intersection("b")) shape: (4, 3) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ b ┆ intersection β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════════β•ͺ══════════════║ β”‚ [1, 2, 3] ┆ [2, 3, 4] ┆ [2, 3] β”‚ β”‚ [] ┆ [3] ┆ [] β”‚ β”‚ [null, 3] ┆ [3, 4, null] ┆ [null, 3] β”‚ β”‚ [5, 6, 7] ┆ [6, 8] ┆ [6] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ # noqa: W505 if isinstance(other, Collection) and not isinstance(other, str): if not isinstance(other, (Sequence, pl.Series, pl.DataFrame)): other = list(other) # eg: set, frozenset, etc other_pyexpr = F.lit(other)._pyexpr else: other_pyexpr = parse_into_expression(other) return wrap_expr(self._pyexpr.list_set_operation(other_pyexpr, "intersection")) def set_symmetric_difference(self, other: IntoExpr | Collection[Any]) -> Expr: """ Compute the SET SYMMETRIC DIFFERENCE between the elements in this list and the elements of `other`. Parameters ---------- other Right hand side of the set operation. Examples -------- >>> df = pl.DataFrame( ... { ... "a": [[1, 2, 3], [], [None, 3], [5, 6, 7]], ... "b": [[2, 3, 4], [3], [3, 4, None], [6, 8]], ... } ... ) >>> df.with_columns(sdiff=pl.col("b").list.set_symmetric_difference("a")) shape: (4, 3) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ a ┆ b ┆ sdiff β”‚ β”‚ --- ┆ --- ┆ --- β”‚ β”‚ list[i64] ┆ list[i64] ┆ list[i64] β”‚ β•žβ•β•β•β•β•β•β•β•β•β•β•β•ͺ══════════════β•ͺ═══════════║ β”‚ [1, 2, 3] ┆ [2, 3, 4] ┆ [4, 1] β”‚ β”‚ [] ┆ [3] ┆ [3] β”‚ β”‚ [null, 3] ┆ [3, 4, null] ┆ [4] β”‚ β”‚ [5, 6, 7] ┆ [6, 8] ┆ [8, 5, 7] β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ """ # noqa: W505 if isinstance(other, Collection) and not isinstance(other, str): if not isinstance(other, (Sequence, pl.Series, pl.DataFrame)): other = list(other) # eg: set, frozenset, etc other_pyexpr = F.lit(other)._pyexpr else: other_pyexpr = parse_into_expression(other) return wrap_expr( self._pyexpr.list_set_operation(other_pyexpr, "symmetric_difference") )
ExprListNameSpace
python
automl__auto-sklearn
autosklearn/metalearning/metafeatures/metafeatures.py
{ "start": 2056, "end": 4009 }
class ____(object): def __init__(self): self.functions = OrderedDict() self.dependencies = OrderedDict() self.values = OrderedDict() def clear(self): self.values = OrderedDict() def __iter__(self): return self.functions.__iter__() def __getitem__(self, item): return self.functions.__getitem__(item) def __setitem__(self, key, value): return self.functions.__setitem__(key, value) def __delitem__(self, key): return self.functions.__delitem__(key) def __contains__(self, item): return self.functions.__contains__(item) def get_value(self, key): return self.values[key].value def set_value(self, key, item): self.values[key] = item def is_calculated(self, key): """Return if a helper function has already been executed. Necessary as get_value() can return None if the helper function hasn't been executed or if it returned None.""" return key in self.values def get_dependency(self, name): """Return the dependency of metafeature "name".""" return self.dependencies.get(name) def define(self, name, dependency=None): """Decorator for adding metafeature functions to a "dictionary" of metafeatures. This behaves like a function decorating a function, not a class decorating a function""" def wrapper(metafeature_class): instance = metafeature_class() self.__setitem__(name, instance) self.dependencies[name] = dependency return instance return wrapper metafeatures = MetafeatureFunctions() helper_functions = HelperFunctions() ################################################################################ # Simple features ################################################################################ @metafeatures.define("NumberOfInstances")
MetafeatureFunctions
python
dagster-io__dagster
python_modules/automation/automation_tests/dagster_docs_tests/test_exclude_lists_audit.py
{ "start": 371, "end": 2887 }
class ____: """Test suite for _audit_exclude_missing_public function.""" def test_audit_exclude_missing_public_all_valid(self): """Test audit when all EXCLUDE_MISSING_PUBLIC entries are still valid.""" # Mock validator with no symbols having @public decorators mock_validator = Mock() mock_validator.find_public_symbols.return_value = [] with patch( "automation.dagster_docs.commands.check.EXCLUDE_MISSING_PUBLIC", {"symbol.one", "symbol.two"}, ): with patch("automation.dagster_docs.commands.check.click.echo") as mock_echo: result = _audit_exclude_missing_public(mock_validator) assert result == 0 mock_echo.assert_called_with( "βœ“ All entries in EXCLUDE_MISSING_PUBLIC are still valid (symbols still missing @public decorators)" ) def test_audit_exclude_missing_public_some_have_public(self): """Test audit when some EXCLUDE_MISSING_PUBLIC entries now have @public decorators.""" # Mock validator with some symbols having @public decorators mock_symbols = [ PublicSymbol( module_path="test.module", symbol_name="one", symbol_type="function", is_exported=False, source_file="/path/to/test/module.py", ), PublicSymbol( module_path="test.module", symbol_name="three", symbol_type="class", is_exported=False, source_file="/path/to/test/module.py", ), ] mock_validator = Mock() mock_validator.find_public_symbols.return_value = mock_symbols with patch( "automation.dagster_docs.commands.check.EXCLUDE_MISSING_PUBLIC", {"test.module.one", "test.module.two", "test.module.three"}, ): with patch("automation.dagster_docs.commands.check.click.echo") as mock_echo: result = _audit_exclude_missing_public(mock_validator) assert result == 1 # Should report the symbols that can be removed call_args = [str(call.args[0]) for call in mock_echo.call_args_list if call.args] output_text = "\n".join(call_args) assert "test.module.one" in output_text assert "test.module.three" in output_text assert "test.module.two" not in output_text # This one doesn't have @public
TestAuditExcludeMissingPublic
python
kamyu104__LeetCode-Solutions
Python/lowest-common-ancestor-of-a-binary-search-tree.py
{ "start": 29, "end": 458 }
class ____(object): # @param {TreeNode} root # @param {TreeNode} p # @param {TreeNode} q # @return {TreeNode} def lowestCommonAncestor(self, root, p, q): s, b = sorted([p.val, q.val]) while not s <= root.val <= b: # Keep searching since root is outside of [s, b]. root = root.left if s <= root.val else root.right # s <= root.val <= b. return root
Solution
python
doocs__leetcode
solution/2900-2999/2936.Number of Equal Numbers Blocks/Solution.py
{ "start": 145, "end": 539 }
class ____(object): def countBlocks(self, nums: Optional["BigArray"]) -> int: i, n = 0, nums.size() ans = 0 while i < n: ans += 1 x = nums.at(i) if i + 1 < n and nums.at(i + 1) != x: i += 1 else: i += bisect_left(range(i, n), True, key=lambda j: nums.at(j) != x) return ans
Solution
python
pydata__xarray
xarray/core/treenode.py
{ "start": 349, "end": 461 }
class ____(Exception): """Raised when user attempts to create an invalid tree in some way."""
InvalidTreeError
python
pallets__werkzeug
src/werkzeug/sansio/multipart.py
{ "start": 318, "end": 383 }
class ____(Event): data: bytes @dataclass(frozen=True)
Preamble
python
getsentry__sentry
src/sentry/users/api/serializers/authenticator.py
{ "start": 2819, "end": 3736 }
class ____(AuthenticatorInterfaceSerializer): def serialize( self, obj: AuthenticatorInterface, attrs: Mapping[str, Any], user: User | RpcUser | AnonymousUser, **kwargs: Any, ) -> SmsInterfaceSerializerResponse: data = cast(SmsInterfaceSerializerResponse, super().serialize(obj, attrs, user)) assert isinstance( obj, SmsInterface ), "Interface must be SmsInterface to serialize phone number" data["phone"] = obj.phone_number return data for interface in RecoveryCodeInterface, TotpInterface, U2fInterface: register(interface)(AuthenticatorInterfaceSerializer) def get_interface_serializer(interface: AuthenticatorInterface) -> AuthenticatorInterfaceSerializer: if isinstance(interface, SmsInterface): return SmsInterfaceSerializer() return AuthenticatorInterfaceSerializer()
SmsInterfaceSerializer