language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
walkccc__LeetCode
solutions/496. Next Greater Element I/496.py
{ "start": 0, "end": 351 }
class ____: def nextGreaterElement(self, nums1: list[int], nums2: list[int]) -> list[int]: numToNextGreater = {} stack = [] # a decreasing stack for num in nums2: while stack and stack[-1] < num: numToNextGreater[stack.pop()] = num stack.append(num) return [numToNextGreater.get(num, -1) for num in nums1]
Solution
python
jazzband__django-pipeline
tests/tests/test_storage.py
{ "start": 896, "end": 1065 }
class ____(DummyCompiler): """Handles css files""" output_extension = "css" def match_file(self, path): return path.endswith(".css")
DummyCSSCompiler
python
sphinx-doc__sphinx
sphinx/ext/imgmath.py
{ "start": 1088, "end": 1426 }
class ____(SphinxError): category = 'Math extension error' def __init__( self, msg: str, stderr: str | None = None, stdout: str | None = None ) -> None: if stderr: msg += '\n[stderr]\n' + stderr if stdout: msg += '\n[stdout]\n' + stdout super().__init__(msg)
MathExtError
python
pandas-dev__pandas
pandas/tests/io/formats/test_to_latex.py
{ "start": 11573, "end": 20775 }
class ____: @pytest.fixture def caption_table(self): """Caption for table/tabular LaTeX environment.""" return "a table in a \\texttt{table/tabular} environment" @pytest.fixture def short_caption(self): """Short caption for testing \\caption[short_caption]{full_caption}.""" return "a table" @pytest.fixture def label_table(self): """Label for table/tabular LaTeX environment.""" return "tab:table_tabular" @pytest.fixture def caption_longtable(self): """Caption for longtable LaTeX environment.""" return "a table in a \\texttt{longtable} environment" @pytest.fixture def label_longtable(self): """Label for longtable LaTeX environment.""" return "tab:longtable" def test_to_latex_caption_only(self, df_short, caption_table): # GH 25436 result = df_short.to_latex(caption=caption_table) expected = _dedent( r""" \begin{table} \caption{a table in a \texttt{table/tabular} environment} \begin{tabular}{lrl} \toprule & a & b \\ \midrule 0 & 1 & b1 \\ 1 & 2 & b2 \\ \bottomrule \end{tabular} \end{table} """ ) assert result == expected def test_to_latex_label_only(self, df_short, label_table): # GH 25436 result = df_short.to_latex(label=label_table) expected = _dedent( r""" \begin{table} \label{tab:table_tabular} \begin{tabular}{lrl} \toprule & a & b \\ \midrule 0 & 1 & b1 \\ 1 & 2 & b2 \\ \bottomrule \end{tabular} \end{table} """ ) assert result == expected def test_to_latex_caption_and_label(self, df_short, caption_table, label_table): # GH 25436 result = df_short.to_latex(caption=caption_table, label=label_table) expected = _dedent( r""" \begin{table} \caption{a table in a \texttt{table/tabular} environment} \label{tab:table_tabular} \begin{tabular}{lrl} \toprule & a & b \\ \midrule 0 & 1 & b1 \\ 1 & 2 & b2 \\ \bottomrule \end{tabular} \end{table} """ ) assert result == expected def test_to_latex_caption_and_shortcaption( self, df_short, caption_table, short_caption, ): result = df_short.to_latex(caption=(caption_table, short_caption)) expected = _dedent( r""" \begin{table} \caption[a table]{a table in a \texttt{table/tabular} environment} \begin{tabular}{lrl} \toprule & a & b \\ \midrule 0 & 1 & b1 \\ 1 & 2 & b2 \\ \bottomrule \end{tabular} \end{table} """ ) assert result == expected def test_to_latex_caption_and_shortcaption_list_is_ok(self, df_short): caption = ("Long-long-caption", "Short") result_tuple = df_short.to_latex(caption=caption) result_list = df_short.to_latex(caption=list(caption)) assert result_tuple == result_list def test_to_latex_caption_shortcaption_and_label( self, df_short, caption_table, short_caption, label_table, ): # test when the short_caption is provided alongside caption and label result = df_short.to_latex( caption=(caption_table, short_caption), label=label_table, ) expected = _dedent( r""" \begin{table} \caption[a table]{a table in a \texttt{table/tabular} environment} \label{tab:table_tabular} \begin{tabular}{lrl} \toprule & a & b \\ \midrule 0 & 1 & b1 \\ 1 & 2 & b2 \\ \bottomrule \end{tabular} \end{table} """ ) assert result == expected @pytest.mark.parametrize( "bad_caption", [ ("full_caption", "short_caption", "extra_string"), ("full_caption", "short_caption", 1), ("full_caption", "short_caption", None), ("full_caption",), (None,), ], ) def test_to_latex_bad_caption_raises(self, bad_caption): # test that wrong number of params is raised df = DataFrame({"a": [1]}) msg = "`caption` must be either a string or 2-tuple of strings" with pytest.raises(ValueError, match=msg): df.to_latex(caption=bad_caption) def test_to_latex_two_chars_caption(self, df_short): # test that two chars caption is handled correctly # it must not be unpacked into long_caption, short_caption. result = df_short.to_latex(caption="xy") expected = _dedent( r""" \begin{table} \caption{xy} \begin{tabular}{lrl} \toprule & a & b \\ \midrule 0 & 1 & b1 \\ 1 & 2 & b2 \\ \bottomrule \end{tabular} \end{table} """ ) assert result == expected def test_to_latex_longtable_caption_only(self, df_short, caption_longtable): # GH 25436 # test when no caption and no label is provided # is performed by test_to_latex_longtable() result = df_short.to_latex(longtable=True, caption=caption_longtable) expected = _dedent( r""" \begin{longtable}{lrl} \caption{a table in a \texttt{longtable} environment} \\ \toprule & a & b \\ \midrule \endfirsthead \caption[]{a table in a \texttt{longtable} environment} \\ \toprule & a & b \\ \midrule \endhead \midrule \multicolumn{3}{r}{Continued on next page} \\ \midrule \endfoot \bottomrule \endlastfoot 0 & 1 & b1 \\ 1 & 2 & b2 \\ \end{longtable} """ ) assert result == expected def test_to_latex_longtable_label_only(self, df_short, label_longtable): # GH 25436 result = df_short.to_latex(longtable=True, label=label_longtable) expected = _dedent( r""" \begin{longtable}{lrl} \label{tab:longtable} \\ \toprule & a & b \\ \midrule \endfirsthead \toprule & a & b \\ \midrule \endhead \midrule \multicolumn{3}{r}{Continued on next page} \\ \midrule \endfoot \bottomrule \endlastfoot 0 & 1 & b1 \\ 1 & 2 & b2 \\ \end{longtable} """ ) assert result == expected def test_to_latex_longtable_caption_and_label( self, df_short, caption_longtable, label_longtable, ): # GH 25436 result = df_short.to_latex( longtable=True, caption=caption_longtable, label=label_longtable, ) expected = _dedent( r""" \begin{longtable}{lrl} \caption{a table in a \texttt{longtable} environment} \label{tab:longtable} \\ \toprule & a & b \\ \midrule \endfirsthead \caption[]{a table in a \texttt{longtable} environment} \\ \toprule & a & b \\ \midrule \endhead \midrule \multicolumn{3}{r}{Continued on next page} \\ \midrule \endfoot \bottomrule \endlastfoot 0 & 1 & b1 \\ 1 & 2 & b2 \\ \end{longtable} """ ) assert result == expected def test_to_latex_longtable_caption_shortcaption_and_label( self, df_short, caption_longtable, short_caption, label_longtable, ): # test when the caption, the short_caption and the label are provided result = df_short.to_latex( longtable=True, caption=(caption_longtable, short_caption), label=label_longtable, ) expected = _dedent( r""" \begin{longtable}{lrl} \caption[a table]{a table in a \texttt{longtable} environment} \label{tab:longtable} \\ \toprule & a & b \\ \midrule \endfirsthead \caption[]{a table in a \texttt{longtable} environment} \\ \toprule & a & b \\ \midrule \endhead \midrule \multicolumn{3}{r}{Continued on next page} \\ \midrule \endfoot \bottomrule \endlastfoot 0 & 1 & b1 \\ 1 & 2 & b2 \\ \end{longtable} """ ) assert result == expected
TestToLatexCaptionLabel
python
fastai__fastai
fastai/callback/tracker.py
{ "start": 836, "end": 2473 }
class ____(Callback): "A `Callback` that keeps track of the best value in `monitor`." order,remove_on_fetch,_only_train_loop = 60,True,True def __init__(self, monitor='valid_loss', # value (usually loss or metric) being monitored. comp=None, # numpy comparison operator; np.less if monitor is loss, np.greater if monitor is metric. min_delta=0., # minimum delta between the last monitor value and the best monitor value. reset_on_fit=True # before model fitting, reset value being monitored to -infinity (if monitor is metric) or +infinity (if monitor is loss). ): if comp is None: comp = np.less if 'loss' in monitor or 'error' in monitor else np.greater if comp == np.less: min_delta *= -1 self.monitor,self.comp,self.min_delta,self.reset_on_fit,self.best= monitor,comp,min_delta,reset_on_fit,None def before_fit(self): "Prepare the monitored value" self.run = not hasattr(self, "lr_finder") and not hasattr(self, "gather_preds") if self.reset_on_fit or self.best is None: self.best = float('inf') if self.comp == np.less else -float('inf') assert self.monitor in self.recorder.metric_names[1:] self.idx = list(self.recorder.metric_names[1:]).index(self.monitor) def after_epoch(self): "Compare the last value to the best up to now" val = self.recorder.values[-1][self.idx] if self.comp(val - self.min_delta, self.best): self.best,self.new_best = val,True else: self.new_best = False def after_fit(self): self.run=True # %% ../../nbs/17_callback.tracker.ipynb 19
TrackerCallback
python
gevent__gevent
src/greentest/3.14/test_urllib2_localnet.py
{ "start": 8149, "end": 9501 }
class ____(http.server.BaseHTTPRequestHandler): """This is a 'fake proxy' that makes it look like the entire internet has gone down due to a sudden zombie invasion. It main utility is in providing us with authentication support for testing. """ def __init__(self, digest_auth_handler, *args, **kwargs): # This has to be set before calling our parent's __init__(), which will # try to call do_GET(). self.digest_auth_handler = digest_auth_handler http.server.BaseHTTPRequestHandler.__init__(self, *args, **kwargs) def log_message(self, format, *args): # Uncomment the next line for debugging. # sys.stderr.write(format % args) pass def do_GET(self): (scm, netloc, path, params, query, fragment) = urllib.parse.urlparse( self.path, "http") self.short_path = path if self.digest_auth_handler.handle_request(self): self.send_response(200, "OK") self.send_header("Content-Type", "text/html") self.end_headers() self.wfile.write(bytes("You've reached %s!<BR>" % self.path, "ascii")) self.wfile.write(b"Our apologies, but our server is down due to " b"a sudden zombie invasion.") # Test cases
FakeProxyHandler
python
kubernetes-client__python
kubernetes/client/api/version_api.py
{ "start": 543, "end": 5113 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_code(self, **kwargs): # noqa: E501 """get_code # noqa: E501 get the version information for this server # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_code(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: VersionInfo If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True return self.get_code_with_http_info(**kwargs) # noqa: E501 def get_code_with_http_info(self, **kwargs): # noqa: E501 """get_code # noqa: E501 get the version information for this server # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_code_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(VersionInfo, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = [ ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_code" % key ) local_var_params[key] = val del local_var_params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['BearerToken'] # noqa: E501 return self.api_client.call_api( '/version/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='VersionInfo', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats)
VersionApi
python
spyder-ide__spyder
spyder/plugins/run/widgets.py
{ "start": 5138, "end": 19310 }
class ____(BaseRunConfigDialog): """Run execution parameters edition dialog.""" def __init__( self, parent, executor_name, executor_params: Dict[ Tuple[str, str], SupportedExecutionRunConfiguration ], param_names: Dict[Tuple[str, str], List[str]], extensions: Optional[List[str]] = None, contexts: Optional[Dict[str, List[str]]] = None, current_params: Optional[ExtendedRunExecutionParameters] = None, extension: Optional[str] = None, context: Optional[str] = None, new_config: bool = False ): super().__init__(parent, True) self.executor_name = executor_name self.executor_params = executor_params self.param_names = param_names self.current_params = current_params self.extensions = extensions or [] self.contexts = contexts or {} self.extension = extension self.context = context self.new_config = new_config self.parameters_name = None if current_params is not None: self.parameters_name = ( _("Default") if current_params["default"] else current_params["name"] ) self.current_widget = None self.status = RunDialogStatus.Close self.saved_conf = None # ---- Public methods # ------------------------------------------------------------------------- def setup(self): # --- Configuration name if self.new_config: params_name_text = _("Save configuration as:") else: params_name_text = _("Configuration name:") params_name_label = QLabel(params_name_text) self.store_params_text = QLineEdit(self) self.store_params_text.setMinimumWidth(250) store_params_layout = QHBoxLayout() store_params_layout.addWidget(params_name_label) store_params_layout.addWidget(self.store_params_text) store_params_layout.addStretch(1) # This action needs to be added before setting an icon for it so that # it doesn't show up in the line edit (despite being set as not visible # below). That's probably a Qt bug. status_action = QAction(self) self.store_params_text.addAction( status_action, QLineEdit.TrailingPosition ) self.store_params_text.status_action = status_action status_action.setIcon(ima.icon("error")) status_action.setVisible(False) # This is necessary to fix the style of the tooltip shown inside the # lineedit store_params_css = qstylizer.style.StyleSheet() store_params_css["QLineEdit QToolTip"].setValues( padding="1px 2px", ) self.store_params_text.setStyleSheet(store_params_css.toString()) # --- Extension and context widgets ext_combo_label = QLabel(_("File extension:")) context_combo_label = QLabel(_("Run context:")) self.extension_combo = SpyderComboBox(self) self.extension_combo.addItems(self.extensions) self.extension_combo.currentIndexChanged.connect( self.extension_changed) self.context_combo = SpyderComboBox(self) self.context_combo.currentIndexChanged.connect(self.context_changed) self.extension_combo.setMinimumWidth(150) self.context_combo.setMinimumWidth(150) ext_context_g_layout = QGridLayout() ext_context_g_layout.addWidget(ext_combo_label, 0, 0) ext_context_g_layout.addWidget(self.extension_combo, 0, 1) ext_context_g_layout.addWidget(context_combo_label, 1, 0) ext_context_g_layout.addWidget(self.context_combo, 1, 1) ext_context_layout = QHBoxLayout() ext_context_layout.addLayout(ext_context_g_layout) ext_context_layout.addStretch(1) # --- Runner settings self.stack = QStackedWidget(self) # --- Working directory settings self.wdir_group = QGroupBox(_("Working directory settings")) wdir_layout = QVBoxLayout(self.wdir_group) wdir_layout.setContentsMargins( 3 * AppStyle.MarginSize, 3 * AppStyle.MarginSize, 3 * AppStyle.MarginSize, AppStyle.MarginSize if MAC else 0, ) self.file_dir_radio = QRadioButton(FILE_DIR) wdir_layout.addWidget(self.file_dir_radio) self.cwd_radio = QRadioButton(CW_DIR) wdir_layout.addWidget(self.cwd_radio) self.fixed_dir_radio = QRadioButton(FIXED_DIR) self.wd_edit = QLineEdit(self) self.fixed_dir_radio.toggled.connect(self.wd_edit.setEnabled) self.wd_edit.setEnabled(False) browse_btn = QPushButton(ima.icon('DirOpenIcon'), '', self) browse_btn.setToolTip(_("Select directory")) browse_btn.clicked.connect(self.select_directory) browse_btn.setIconSize( QSize(AppStyle.ConfigPageIconSize, AppStyle.ConfigPageIconSize) ) fixed_dir_layout = QHBoxLayout() fixed_dir_layout.addWidget(self.fixed_dir_radio) fixed_dir_layout.addWidget(self.wd_edit) fixed_dir_layout.addWidget(browse_btn) wdir_layout.addLayout(fixed_dir_layout) # --- Final layout layout = self.add_widgets( store_params_layout, 4 * AppStyle.MarginSize, ext_context_layout, (3 if MAC else 4) * AppStyle.MarginSize, self.stack, self.wdir_group, (-2 if MAC else 1) * AppStyle.MarginSize, ) layout.addStretch() layout.setContentsMargins(*((AppStyle.InnerContentPadding,) * 4)) self.add_button_box(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) # --- Settings self.setWindowTitle( _("New run configuration for: {}").format(self.executor_name) ) self.layout().setSizeConstraint(QLayout.SetFixedSize) extension_index = 0 if self.extension is not None: extension_index = self.extensions.index(self.extension) self.extension_combo.setEnabled(False) self.extension_combo.setCurrentIndex(extension_index) # This is necessary because extension_changed is not triggered # automatically for this extension_index. if extension_index == 0: self.extension_changed(extension_index) if self.context is not None: self.context_combo.setEnabled(False) if self.parameters_name: self.store_params_text.setText(self.parameters_name) # Don't allow to change name for default or already saved params. if self.current_params["default"] or not self.new_config: self.store_params_text.setEnabled(False) # --- Stylesheet self.setStyleSheet(self._stylesheet) def extension_changed(self, index: int): if index < 0: return self.selected_extension = self.extension_combo.itemText(index) contexts = self.contexts[self.selected_extension] self.context_combo.clear() self.context_combo.addItems(contexts) self.context_combo.setCurrentIndex(-1) context_index = 0 if self.context is not None: context_index = contexts.index(self.context) self.context_combo.setCurrentIndex(context_index) def context_changed(self, index: int, reset: bool = False): if index < 0: return # Clear the QStackWidget contents self.current_widget = None while self.stack.count() > 0: widget = self.stack.widget(0) self.stack.removeWidget(widget) self.selected_context = self.context_combo.itemText(index) executor_conf_metadata = self.executor_params[ (self.selected_extension, self.selected_context)] requires_cwd = executor_conf_metadata['requires_cwd'] ConfigWidget = (executor_conf_metadata['configuration_widget'] or RunExecutorConfigurationGroup) if executor_conf_metadata['configuration_widget'] is None: self.stack.setEnabled(False) else: self.stack.setEnabled(True) self.wdir_group.setEnabled(requires_cwd) self.current_widget = ConfigWidget( self, self.selected_context, self.selected_extension, {}) self.stack.addWidget(self.current_widget) working_dir_params = WorkingDirOpts( source=WorkingDirSource.ConfigurationDirectory, path=None) exec_params = RunExecutionParameters( working_dir=working_dir_params, executor_params=None) default_params = self.current_widget.get_default_configuration() if self.current_params: params = self.current_params['params'] working_dir_params = params['working_dir'] exec_params = params params_set = ( default_params if reset else (exec_params["executor_params"] or default_params) ) if params_set.keys() == default_params.keys(): self.current_widget.set_configuration(params_set) source = working_dir_params['source'] path = working_dir_params['path'] if source == WorkingDirSource.ConfigurationDirectory: self.file_dir_radio.setChecked(True) self.cwd_radio.setChecked(False) self.fixed_dir_radio.setChecked(False) self.wd_edit.setText('') elif source == WorkingDirSource.CurrentDirectory: self.file_dir_radio.setChecked(False) self.cwd_radio.setChecked(True) self.fixed_dir_radio.setChecked(False) self.wd_edit.setText('') elif source == WorkingDirSource.CustomDirectory: self.file_dir_radio.setChecked(False) self.cwd_radio.setChecked(False) self.fixed_dir_radio.setChecked(True) self.wd_edit.setText(path) if not self.stack.isEnabled() and not self.wdir_group.isEnabled(): ok_btn = self.bbox.button(QDialogButtonBox.Ok) ok_btn.setEnabled(False) self.adjustSize() def select_directory(self): """Select directory""" basedir = str(self.wd_edit.text()) if not osp.isdir(basedir): basedir = getcwd_or_home() directory = getexistingdirectory(self, _("Select directory"), basedir) if directory: self.wd_edit.setText(directory) self.dir = directory def reset_btn_clicked(self): index = self.context_combo.currentIndex() self.context_changed(index, reset=True) def run_btn_clicked(self): self.status |= RunDialogStatus.Run def ok_btn_clicked(self): self.status |= RunDialogStatus.Save def get_configuration( self ) -> Tuple[str, str, ExtendedRunExecutionParameters]: return self.saved_conf # ---- Qt methods # ------------------------------------------------------------------------- def accept(self) -> None: self.status |= RunDialogStatus.Save widget_conf = self.current_widget.get_configuration() self.store_params_text.status_action.setVisible(False) path = None source = None if self.file_dir_radio.isChecked(): source = WorkingDirSource.ConfigurationDirectory elif self.cwd_radio.isChecked(): source = WorkingDirSource.CurrentDirectory else: source = WorkingDirSource.CustomDirectory path = self.wd_edit.text() cwd_opts = WorkingDirOpts(source=source, path=path) exec_params = RunExecutionParameters( working_dir=cwd_opts, executor_params=widget_conf) if self.current_params: uuid = self.current_params['uuid'] else: uuid = str(uuid4()) # Validate name only for new configurations name = self.store_params_text.text() if self.new_config: if name == '': self.store_params_text.status_action.setVisible(True) self.store_params_text.status_action.setToolTip( '\n'.join(textwrap.wrap(EMPTY_NAME, 50)) ) return else: extension = self.extension_combo.lineEdit().text() context = self.context_combo.lineEdit().text() current_names = self.param_names[(extension, context)] if name in current_names: self.store_params_text.status_action.setVisible(True) self.store_params_text.status_action.setToolTip( '\n'.join(textwrap.wrap(REPEATED_NAME, 50)) ) return # Check if params are app default ones. # Fixes spyder-ide/spyder#22649 if self.current_params is None: # The user is trying to create new params, so this is not a # default. is_default = False else: if self.current_params["default"]: # Default params is_default = True else: # User created params is_default = False ext_exec_params = ExtendedRunExecutionParameters( uuid=uuid, name=name, params=exec_params, file_uuid=None, default=is_default, ) self.saved_conf = (self.selected_extension, self.selected_context, ext_exec_params) super().accept() # ---- Private methods # ------------------------------------------------------------------------- @property def _stylesheet(self): # This avoids the extra bottom margin added by the config dialog since # this widget is one of its children self._css.QGroupBox.setValues( marginBottom='0px', ) return self._css.toString()
ExecutionParametersDialog
python
numba__numba
numba/tests/test_sysinfo.py
{ "start": 2489, "end": 4271 }
class ____(TestCase): mem_total = 2 * 1024 ** 2 # 2_097_152 mem_available = 1024 ** 2 # 1_048_576 cpus_list = [1, 2] def setUp(self): super(TestSysInfoWithPsutil, self).setUp() self.psutil_orig_state = nsi._psutil_import # Mocking psutil nsi._psutil_import = True nsi.psutil = NonCallableMock() vm = nsi.psutil.virtual_memory.return_value vm.total = self.mem_total vm.available = self.mem_available if platform.system() in ('Linux', 'Windows',): # cpu_affiniy only available on Linux and Windows proc = nsi.psutil.Process.return_value proc.cpu_affinity.return_value = self.cpus_list else: nsi.psutil.Process.return_value = None self.info = nsi.get_os_spec_info(platform.system()) def tearDown(self): super(TestSysInfoWithPsutil, self).tearDown() nsi._psutil_import = self.psutil_orig_state def test_has_all_data(self): keys = (nsi._mem_total, nsi._mem_available) for k in keys: with self.subTest(k=k): self.assertIn(k, self.info.keys()) self.assertIsInstance(self.info[k], int) def test_has_correct_values(self): self.assertEqual(self.info[nsi._mem_total], self.mem_total) self.assertEqual(self.info[nsi._mem_available], self.mem_available) @skipUnless(platform.system() in ('Linux', 'Windows'), "CPUs allowed info only available on Linux and Windows") def test_cpus_list(self): self.assertEqual(self.info[nsi._cpus_allowed], len(self.cpus_list)) self.assertEqual(self.info[nsi._cpus_list], ' '.join(str(n) for n in self.cpus_list))
TestSysInfoWithPsutil
python
encode__django-rest-framework
rest_framework/test.py
{ "start": 13890, "end": 14823 }
class ____(testcases.SimpleTestCase): """ Isolate URL patterns on a per-TestCase basis. For example, class ATestCase(URLPatternsTestCase): urlpatterns = [...] def test_something(self): ... class AnotherTestCase(URLPatternsTestCase): urlpatterns = [...] def test_something_else(self): ... """ @classmethod def setUpClass(cls): # Get the module of the TestCase subclass cls._module = import_module(cls.__module__) cls._override = override_settings(ROOT_URLCONF=cls.__module__) if hasattr(cls._module, 'urlpatterns'): cls._module_urlpatterns = cls._module.urlpatterns cls._module.urlpatterns = cls.urlpatterns cls._override.enable() cls.addClassCleanup(cls._override.disable) cls.addClassCleanup(cleanup_url_patterns, cls) super().setUpClass()
URLPatternsTestCase
python
django-import-export__django-import-export
import_export/tmp_storages.py
{ "start": 1710, "end": 2869 }
class ____(BaseStorage): _storage = None def __init__(self, **kwargs): super().__init__(**kwargs) self._configure_storage() self.MEDIA_FOLDER = kwargs.get("MEDIA_FOLDER", "django-import-export") # issue 1589 - Ensure that for MediaStorage, we read in binary mode kwargs.update({"read_mode": "rb"}) super().__init__(**kwargs) def _configure_storage(self): from django.core.files.storage import StorageHandler sh = StorageHandler() self._storage = ( sh["import_export"] if "import_export" in sh.backends else sh["default"] ) def save(self, data): if not self.name: self.name = uuid4().hex self._storage.save(self.get_full_path(), ContentFile(data)) def read(self): with self._storage.open(self.get_full_path(), mode=self.read_mode) as f: return f.read() def remove(self): self._storage.delete(self.get_full_path()) def get_full_path(self): if self.MEDIA_FOLDER is not None: return os.path.join(self.MEDIA_FOLDER, self.name) return self.name
MediaStorage
python
facebook__pyre-check
source/interprocedural_analyses/taint/test/integration/entrypoint.py
{ "start": 264, "end": 1445 }
class ____: def some_entrypoint_function(): glob.append(1) @MyEntrypoint def method_entrypoint_with_decorator(): glob.append(1) def nested_run(): def do_the_thing(): glob.append(1) do_the_thing() def immediate_examples(): glob.append(1) def this_one_shouldnt_be_found(): glob.append(1) def transitive_call_with_globals_passed_in(local_list: List[int]): local_list.append(1) def transitive_call_accessing_globals(): glob.append(1) def leak_globals_by_passing_in(): transitive_call_with_globals_passed_in(glob) def leak_globals_by_transitive_call(): transitive_call_accessing_globals() @MyEntrypoint def function_entrypoint_with_decorator(): glob.append(1) def entrypoint_into_lambda(): @MyEntrypoint def lambda_entrypoint_with_decorator(): glob.append(1) lambda_entrypoint_with_decorator() def get_these(): immediate_examples() leak_globals_by_passing_in() leak_globals_by_transitive_call() nested_run() def main(): get_these() this_one_shouldnt_be_found() MyClass().some_entrypoint_function() if __name__ == "__main__": main()
MyClass
python
google__pytype
build_scripts/release.py
{ "start": 592, "end": 2587 }
class ____(Exception): def __init__(self, msg): super().__init__() self.msg = msg def parse_args(): """Parse and return the command line args.""" allowed_modes = (TEST_MODE, RELEASE_MODE) parser = argparse.ArgumentParser() parser.add_argument( "-m", "--mode", type=str, default=f"{TEST_MODE}", help=( "Specify if the release should be uploaded to pypi or testpyi. Can " "take a value of %s or %s" ) % allowed_modes, ) args = parser.parse_args() if args.mode not in allowed_modes: sys.exit(f"Invalid --mode option. Should be one of {allowed_modes}") return args def verify_no_pytype_installation_exists(): try: import pytype as _ # pylint: disable=g-import-not-at-top except ImportError: return # This is what we want - that Pytype does not already exist. sys.exit( "ERROR: Pytype installation detected; Run this script from inside " "a virtualenv without a pytype installation." ) def verify_pypirc_exists(): pypirc_path = os.path.join(os.path.expanduser("~"), ".pypirc") if not os.path.exists(pypirc_path): sys.exit("ERROR: '.pypirc' file not found.") def check_if_version_is_ok(): """Prompt the user to confirm that the version in __version__.py is OK.""" sys.path.append(build_utils.PYTYPE_SRC_ROOT) version_mod = __import__("pytype.__version__", fromlist=["pytype"]) response = input( "Making a release with version %s; Continue? " % getattr(version_mod, "__version__") ) if response not in ["y", "Y", "yes", "YES"]: sys.exit("Aborting release.") def upload_package(package_path, test=False): twine_cmd = ["twine", "upload"] if test: twine_cmd.extend(["--repository", "testpypi"]) twine_cmd.append(os.path.join(package_path, "*")) print(f"Uploading: {twine_cmd}") returncode, stdout = build_utils.run_cmd(twine_cmd) if returncode != 0: raise ReleaseError(f"Package upload failed:\n{stdout}")
ReleaseError
python
sympy__sympy
sympy/codegen/fnodes.py
{ "start": 1484, "end": 2197 }
class ____(Token): """ Represents a renaming in a use statement in Fortran. Examples ======== >>> from sympy.codegen.fnodes import use_rename, use >>> from sympy import fcode >>> ren = use_rename("thingy", "convolution2d") >>> print(fcode(ren, source_format='free')) thingy => convolution2d >>> full = use('signallib', only=['snr', ren]) >>> print(fcode(full, source_format='free')) use signallib, only: snr, thingy => convolution2d """ __slots__ = _fields = ('local', 'original') _construct_local = String _construct_original = String def _name(arg): if hasattr(arg, 'name'): return arg.name else: return String(arg)
use_rename
python
jina-ai__jina
jina/orchestrate/flow/base.py
{ "start": 2368, "end": 148029 }
class ____( PostMixin, ProfileMixin, HealthCheckMixin, JAMLCompatible, BaseOrchestrator, metaclass=FlowType, ): """Flow is how Jina streamlines and distributes Executors.""" # overload_inject_start_client_flow @overload def __init__( self, *, asyncio: Optional[bool] = False, grpc_channel_options: Optional[dict] = None, host: Optional[str] = '0.0.0.0', log_config: Optional[str] = None, metrics: Optional[bool] = False, metrics_exporter_host: Optional[str] = None, metrics_exporter_port: Optional[int] = None, port: Optional[int] = None, prefetch: Optional[int] = 1000, protocol: Optional[Union[str, List[str]]] = 'GRPC', proxy: Optional[bool] = False, reuse_session: Optional[bool] = False, suppress_root_logging: Optional[bool] = False, tls: Optional[bool] = False, traces_exporter_host: Optional[str] = None, traces_exporter_port: Optional[int] = None, tracing: Optional[bool] = False, **kwargs, ): """Create a Flow. Flow is how Jina streamlines and scales Executors. This overloaded method provides arguments from `jina client` CLI. :param asyncio: If set, then the input and output of this Client work in an asynchronous manner. :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param host: The host of the Gateway, which the client should connect to, by default it is 0.0.0.0. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param port: The port of the Gateway, which the client should connect to. :param prefetch: Number of requests fetched from the client before feeding into the first Executor. Used to control the speed of data input into a Flow. 0 disables prefetch (1000 requests is the default) :param protocol: Communication protocol between server and client. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param reuse_session: True if HTTPClient should reuse ClientSession. If true, user will be responsible to close it :param suppress_root_logging: If set, then no root handlers will be suppressed from logging. :param tls: If set, connect to gateway using tls encryption :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_client_flow # overload_inject_start_gateway_flow @overload def __init__( self, *, compression: Optional[str] = None, cors: Optional[bool] = False, deployments_addresses: Optional[str] = '{}', deployments_metadata: Optional[str] = '{}', deployments_no_reduce: Optional[str] = '[]', description: Optional[str] = None, docker_kwargs: Optional[dict] = None, entrypoint: Optional[str] = None, env: Optional[dict] = None, expose_endpoints: Optional[str] = None, expose_graphql_endpoint: Optional[bool] = False, floating: Optional[bool] = False, graph_conditions: Optional[str] = '{}', graph_description: Optional[str] = '{}', grpc_channel_options: Optional[dict] = None, grpc_server_options: Optional[dict] = None, host: Optional[str] = '0.0.0.0', log_config: Optional[str] = None, metrics: Optional[bool] = False, metrics_exporter_host: Optional[str] = None, metrics_exporter_port: Optional[int] = None, monitoring: Optional[bool] = False, name: Optional[str] = 'gateway', no_crud_endpoints: Optional[bool] = False, no_debug_endpoints: Optional[bool] = False, port: Optional[int] = None, port_monitoring: Optional[int] = None, prefetch: Optional[int] = 1000, protocol: Optional[Union[str, List[str]]] = ['GRPC'], provider: Optional[str] = ['NONE'], provider_endpoint: Optional[str] = None, proxy: Optional[bool] = False, py_modules: Optional[List] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, reload: Optional[bool] = False, replicas: Optional[int] = 1, retries: Optional[int] = -1, runtime_cls: Optional[str] = 'GatewayRuntime', ssl_certfile: Optional[str] = None, ssl_keyfile: Optional[str] = None, stateful: Optional[bool] = False, timeout_ctrl: Optional[int] = 60, timeout_ready: Optional[int] = 600000, timeout_send: Optional[int] = None, title: Optional[str] = None, traces_exporter_host: Optional[str] = None, traces_exporter_port: Optional[int] = None, tracing: Optional[bool] = False, uses: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_with: Optional[dict] = None, uvicorn_kwargs: Optional[dict] = None, workspace: Optional[str] = None, **kwargs, ): """Create a Flow. Flow is how Jina streamlines and scales Executors. This overloaded method provides arguments from `jina gateway` CLI. :param compression: The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, check https://grpc.github.io/grpc/python/grpc.html#compression. :param cors: If set, a CORS middleware is added to FastAPI frontend to allow cross-origin access. :param deployments_addresses: JSON dictionary with the input addresses of each Deployment :param deployments_metadata: JSON dictionary with the request metadata for each Deployment :param deployments_no_reduce: list JSON disabling the built-in merging mechanism for each Deployment listed :param description: The description of this HTTP server. It will be used in automatics docs such as Swagger UI. :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param expose_endpoints: A JSON string that represents a map from executor endpoints (`@requests(on=...)`) to HTTP endpoints. :param expose_graphql_endpoint: If set, /graphql endpoint is added to HTTP interface. :param floating: If set, the current Pod/Deployment can not be further chained, and the next `.add()` will chain after the last Pod/Deployment not this current one. :param graph_conditions: Dictionary stating which filtering conditions each Executor in the graph requires to receive Documents. :param graph_description: Routing graph for the gateway :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param grpc_server_options: Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1} :param host: The host address of the runtime, by default it is 0.0.0.0. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param monitoring: If set, spawn an http server with a prometheus endpoint to expose metrics :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param no_crud_endpoints: If set, `/index`, `/search`, `/update`, `/delete` endpoints are removed from HTTP interface. Any executor that has `@requests(on=...)` bound with those values will receive data requests. :param no_debug_endpoints: If set, `/status` `/post` endpoints are removed from HTTP interface. :param port: The port for input data to bind the gateway server to, by default, random ports between range [49152, 65535] will be assigned. The port argument can be either 1 single value in case only 1 protocol is used or multiple values when many protocols are used. :param port_monitoring: The port on which the prometheus server is exposed, default is a random port between [49152, 65535] :param prefetch: Number of requests fetched from the client before feeding into the first Executor. Used to control the speed of data input into a Flow. 0 disables prefetch (1000 requests is the default) :param protocol: Communication protocol of the server exposed by the Gateway. This can be a single value or a list of protocols, depending on your chosen Gateway. Choose the convenient protocols from: ['GRPC', 'HTTP', 'WEBSOCKET']. :param provider: If set, Executor is translated to a custom container compatible with the chosen provider. Choose the convenient providers from: ['NONE', 'SAGEMAKER', 'AZURE']. :param provider_endpoint: If set, Executor endpoint will be explicitly chosen and used in the custom container operated by the provider. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param py_modules: The customized python modules need to be imported before loading the gateway Note that the recommended way is to only import a single module - a simple python file, if your gateway can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param reload: If set, the Gateway will restart while serving if YAML configuration source is changed. :param replicas: The number of replicas of the Gateway. This replicas will only be applied when converted into Kubernetes YAML :param retries: Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas) :param runtime_cls: The runtime class to run inside the Pod :param ssl_certfile: the path to the certificate file :param ssl_keyfile: the path to the key file :param stateful: If set, start consensus module to make sure write operations are properly replicated between all the replicas :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting forever :param timeout_send: The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default :param title: The title of this HTTP server. It will be used in automatics docs such as Swagger UI. :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. :param uses: The config of the gateway, it could be one of the followings: * the string literal of an Gateway class name * a Gateway YAML file (.yml, .yaml, .jaml) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server More details can be found in Uvicorn docs: https://www.uvicorn.org/settings/ :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_gateway_flow # overload_inject_start_flow @overload def __init__( self, *, env: Optional[dict] = None, inspect: Optional[str] = 'COLLECT', log_config: Optional[str] = None, name: Optional[str] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, reload: Optional[bool] = False, suppress_root_logging: Optional[bool] = False, uses: Optional[str] = None, workspace: Optional[str] = None, **kwargs, ): """Create a Flow. Flow is how Jina streamlines and scales Executors. This overloaded method provides arguments from `jina flow` CLI. :param env: The map of environment variables that are available inside runtime :param inspect: The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param reload: If set, auto-reloading on file changes is enabled: the Flow will restart while blocked if YAML configuration source is changed. This also applies apply to underlying Executors, if their source code or YAML configuration has changed. :param suppress_root_logging: If set, then no root handlers will be suppressed from logging. :param uses: The YAML path represents a flow. It can be either a local file path or a URL. :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_flow def __init__( self, args: Optional['argparse.Namespace'] = None, **kwargs, ): # implementation_stub_inject_start_flow """Create a Flow. Flow is how Jina streamlines and scales Executors. EXAMPLE USAGE Python API .. code-block:: python from jina import Flow f = Flow().add(uses='jinahub+docker://SimpleIndexer') # create Flow and add Executor with f: f.bock() # serve Flow To and from YAML configuration .. code-block:: python from jina import Flow f = Flow().add(uses='jinahub+docker://SimpleIndexer') # create Flow and add Executor f.save_config('flow.yml') # save YAML config file f = Flow.load_config('flow.yml') # load Flow from YAML config with f: f.bock() # serve Flow All arguments received by {class}`~jina.Flow()` API will be propagated to other entities (Gateway, Executor) with the following exceptions: - `uses` and `uses_with` won't be passed to Gateway - `port`, `port_monitoring`, `uses` and `uses_with` won't be passed to Executor :param asyncio: If set, then the input and output of this Client work in an asynchronous manner. :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param host: The host of the Gateway, which the client should connect to, by default it is 0.0.0.0. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param port: The port of the Gateway, which the client should connect to. :param prefetch: Number of requests fetched from the client before feeding into the first Executor. Used to control the speed of data input into a Flow. 0 disables prefetch (1000 requests is the default) :param protocol: Communication protocol between server and client. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param reuse_session: True if HTTPClient should reuse ClientSession. If true, user will be responsible to close it :param suppress_root_logging: If set, then no root handlers will be suppressed from logging. :param tls: If set, connect to gateway using tls encryption :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. :param compression: The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, check https://grpc.github.io/grpc/python/grpc.html#compression. :param cors: If set, a CORS middleware is added to FastAPI frontend to allow cross-origin access. :param deployments_addresses: JSON dictionary with the input addresses of each Deployment :param deployments_metadata: JSON dictionary with the request metadata for each Deployment :param deployments_no_reduce: list JSON disabling the built-in merging mechanism for each Deployment listed :param description: The description of this HTTP server. It will be used in automatics docs such as Swagger UI. :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param expose_endpoints: A JSON string that represents a map from executor endpoints (`@requests(on=...)`) to HTTP endpoints. :param expose_graphql_endpoint: If set, /graphql endpoint is added to HTTP interface. :param floating: If set, the current Pod/Deployment can not be further chained, and the next `.add()` will chain after the last Pod/Deployment not this current one. :param graph_conditions: Dictionary stating which filtering conditions each Executor in the graph requires to receive Documents. :param graph_description: Routing graph for the gateway :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param grpc_server_options: Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1} :param host: The host address of the runtime, by default it is 0.0.0.0. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param monitoring: If set, spawn an http server with a prometheus endpoint to expose metrics :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param no_crud_endpoints: If set, `/index`, `/search`, `/update`, `/delete` endpoints are removed from HTTP interface. Any executor that has `@requests(on=...)` bound with those values will receive data requests. :param no_debug_endpoints: If set, `/status` `/post` endpoints are removed from HTTP interface. :param port: The port for input data to bind the gateway server to, by default, random ports between range [49152, 65535] will be assigned. The port argument can be either 1 single value in case only 1 protocol is used or multiple values when many protocols are used. :param port_monitoring: The port on which the prometheus server is exposed, default is a random port between [49152, 65535] :param prefetch: Number of requests fetched from the client before feeding into the first Executor. Used to control the speed of data input into a Flow. 0 disables prefetch (1000 requests is the default) :param protocol: Communication protocol of the server exposed by the Gateway. This can be a single value or a list of protocols, depending on your chosen Gateway. Choose the convenient protocols from: ['GRPC', 'HTTP', 'WEBSOCKET']. :param provider: If set, Executor is translated to a custom container compatible with the chosen provider. Choose the convenient providers from: ['NONE', 'SAGEMAKER', 'AZURE']. :param provider_endpoint: If set, Executor endpoint will be explicitly chosen and used in the custom container operated by the provider. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param py_modules: The customized python modules need to be imported before loading the gateway Note that the recommended way is to only import a single module - a simple python file, if your gateway can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param reload: If set, the Gateway will restart while serving if YAML configuration source is changed. :param replicas: The number of replicas of the Gateway. This replicas will only be applied when converted into Kubernetes YAML :param retries: Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas) :param runtime_cls: The runtime class to run inside the Pod :param ssl_certfile: the path to the certificate file :param ssl_keyfile: the path to the key file :param stateful: If set, start consensus module to make sure write operations are properly replicated between all the replicas :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting forever :param timeout_send: The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default :param title: The title of this HTTP server. It will be used in automatics docs such as Swagger UI. :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. :param uses: The config of the gateway, it could be one of the followings: * the string literal of an Gateway class name * a Gateway YAML file (.yml, .yaml, .jaml) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server More details can be found in Uvicorn docs: https://www.uvicorn.org/settings/ :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. :param env: The map of environment variables that are available inside runtime :param inspect: The strategy on those inspect deployments in the flow. If `REMOVE` is given then all inspect deployments are removed when building the flow. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param reload: If set, auto-reloading on file changes is enabled: the Flow will restart while blocked if YAML configuration source is changed. This also applies apply to underlying Executors, if their source code or YAML configuration has changed. :param suppress_root_logging: If set, then no root handlers will be suppressed from logging. :param uses: The YAML path represents a flow. It can be either a local file path or a URL. :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. .. # noqa: DAR102 .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # implementation_stub_inject_end_flow super().__init__() self._version = '1' #: YAML version number, this will be later overridden if YAML config says the other way self._deployment_nodes = OrderedDict() # type: Dict[str, Deployment] self._inspect_deployments = {} # type: Dict[str, str] self._endpoints_mapping = {} # type: Dict[str, Dict] self._build_level = FlowBuildLevel.EMPTY self._last_changed_deployment = [ GATEWAY_NAME ] #: default first deployment is gateway, will add when build() self._update_args(args, **kwargs) if isinstance(self.args, argparse.Namespace): self.logger = JinaLogger( self.__class__.__name__, **vars(self.args), **self._common_kwargs ) else: self.logger = JinaLogger(self.__class__.__name__, **self._common_kwargs) self._client = None def _update_args(self, args, **kwargs): from jina.helper import ArgNamespace from jina.parsers.flow import set_flow_parser _flow_parser = set_flow_parser() if args is None: args = ArgNamespace.kwargs2namespace( kwargs, _flow_parser, True, fallback_parsers=FALLBACK_PARSERS ) self.args = args # common args should be the ones that can not be parsed by _flow_parser known_keys = list(vars(args).keys()) self._common_kwargs = {k: v for k, v in kwargs.items() if k not in known_keys} # gateway args inherit from flow args self._gateway_kwargs = { k: v for k, v in self._common_kwargs.items() if k not in GATEWAY_ARGS_BLACKLIST } self._kwargs = ArgNamespace.get_non_defaults_args( args, _flow_parser ) #: for yaml dump if self._common_kwargs.get('asyncio', False) and not isinstance( self, AsyncPostMixin ): from jina.orchestrate.flow.asyncio import AsyncFlow self.__class__ = AsyncFlow @staticmethod def _parse_endpoints( op_flow, deployment_name, endpoint, connect_to_last_deployment=False ) -> Set: # parsing needs if isinstance(endpoint, str): endpoint = [endpoint] elif not endpoint: if op_flow._last_changed_deployment and connect_to_last_deployment: endpoint = [op_flow._last_deployment] else: endpoint = [] if isinstance(endpoint, (list, tuple)): for idx, s in enumerate(endpoint): if s == deployment_name: raise FlowTopologyError( 'the income/output of a deployment can not be itself' ) else: raise ValueError(f'endpoint={endpoint} is not parsable') # if an endpoint is being inspected, then replace it with inspected Deployment endpoint = set(op_flow._inspect_deployments.get(ep, ep) for ep in endpoint) return endpoint @property def _last_deployment(self): """Last deployment .. # noqa: DAR401 .. # noqa: DAR201 """ return self._last_changed_deployment[-1] @_last_deployment.setter def _last_deployment(self, name: str): """ Set a Deployment as the last Deployment in the Flow, useful when modifying the Flow. .. # noqa: DAR401 :param name: the name of the existing Deployment """ if name not in self._deployment_nodes: raise FlowMissingDeploymentError(f'{name} can not be found in this Flow') if self._last_changed_deployment and name == self._last_deployment: pass else: self._last_changed_deployment.append(name) # graph is now changed so we need to # reset the build level to the lowest self._build_level = FlowBuildLevel.EMPTY @allowed_levels([FlowBuildLevel.EMPTY]) def _add_gateway( self, needs: Union[str, Set[str]], graph_description: Dict[str, List[str]], deployments_addresses: Dict[str, List[str]], deployments_metadata: Dict[str, Dict[str, str]], graph_conditions: Dict[str, Dict], deployments_no_reduce: List[str], **kwargs, ): kwargs.update( dict( name=GATEWAY_NAME, ctrl_with_ipc=True, # otherwise ctrl port would be conflicted host=self.host, protocol=self.protocol, port=self.port, deployment_role=DeploymentRoleType.GATEWAY, expose_endpoints=json.dumps(self._endpoints_mapping), env=self.env, log_config=( kwargs.get('log_config') if 'log_config' in kwargs else self.args.log_config ), ) ) kwargs.update(self._gateway_kwargs) args = ArgNamespace.kwargs2namespace(kwargs, set_gateway_parser()) # We need to check later if the port was manually set or randomly args.default_port = ( kwargs.get('port', None) is None and kwargs.get('port_expose', None) is None ) if not args.port: args.port = random_ports(len(args.protocol)) args.noblock_on_start = True args.graph_description = json.dumps(graph_description) args.graph_conditions = json.dumps(graph_conditions) args.deployments_addresses = json.dumps(deployments_addresses) args.deployments_metadata = json.dumps(deployments_metadata) args.deployments_no_reduce = json.dumps(deployments_no_reduce) self._deployment_nodes[GATEWAY_NAME] = Deployment( args, needs, include_gateway=False, noblock_on_start=True ) def _get_deployments_metadata(self) -> Dict[str, Dict[str, str]]: """Get the metadata of all deployments in the Flow :return: a dictionary of deployment name and its metadata """ return { name: deployment.grpc_metadata for name, deployment in self._deployment_nodes.items() if deployment.grpc_metadata } def _get_deployments_addresses(self) -> Dict[str, List[str]]: graph_dict = {} for node, deployment in self._deployment_nodes.items(): if node == GATEWAY_NAME: continue graph_dict[node] = deployment._get_connection_list_for_flow() return graph_dict def _get_k8s_deployments_addresses( self, k8s_namespace: str ) -> Dict[str, List[str]]: graph_dict = {} from jina.orchestrate.deployments.config.helper import to_compatible_name from jina.serve.networking import GrpcConnectionPool for node, v in self._deployment_nodes.items(): if node == GATEWAY_NAME: continue if v.external: deployment_k8s_address = f'{v.host}' elif v.head_args: deployment_k8s_address = ( f'{to_compatible_name(v.head_args.name)}.{k8s_namespace}.svc' ) else: deployment_k8s_address = ( f'{to_compatible_name(v.name)}.{k8s_namespace}.svc' ) external_port = v.head_port if v.head_port else v.port graph_dict[node] = [ f'{v.protocol.lower()}://{deployment_k8s_address}:{external_port if v.external else GrpcConnectionPool.K8S_PORT}' ] return graph_dict if graph_dict else None def _get_docker_compose_deployments_addresses(self) -> Dict[str, List[str]]: graph_dict = {} for node, v in self._deployment_nodes.items(): if node == GATEWAY_NAME: continue deployment_docker_compose_address = v._docker_compose_address graph_dict[node] = deployment_docker_compose_address return graph_dict def _get_graph_conditions(self) -> Dict[str, Dict]: graph_condition = {} for node, v in self._deployment_nodes.items(): if v.args.when is not None: # condition on input docs graph_condition[node] = v.args.when return graph_condition def _get_disabled_reduce_deployments(self) -> List[str]: disabled_deployments = [] for node, v in self._deployment_nodes.items(): if v.args.no_reduce: disabled_deployments.append(node) return disabled_deployments def _get_graph_representation(self) -> Dict[str, List[str]]: def _add_node(graph, n): # in the graph we need to distinguish between start and end gateway, although they are the same deployment if n == GATEWAY_NAME: n = 'start-gateway' if n not in graph: graph[n] = [] return n graph_dict = {} for node, v in self._deployment_nodes.items(): node = _add_node(graph_dict, node) if node == 'start-gateway': continue for need in sorted(v.needs): need = _add_node(graph_dict, need) graph_dict[need].append(node) # find all non floating leafs last_deployment = self._last_deployment if last_deployment != 'gateway': graph_dict[last_deployment].append('end-gateway') return graph_dict @allowed_levels([FlowBuildLevel.EMPTY]) def needs( self, needs: Union[Tuple[str], List[str]], name: str = 'joiner', *args, **kwargs ) -> 'Flow': """ Add a blocker to the Flow, wait until all pods defined in **needs** completed. .. # noqa: DAR401 :param needs: list of service names to wait :param name: the name of this joiner, by default is ``joiner`` :param args: additional positional arguments forwarded to the add function :param kwargs: additional key value arguments forwarded to the add function :return: the modified Flow """ if len(needs) <= 1: raise FlowTopologyError( 'no need to wait for a single service, need len(needs) > 1' ) return self.add( name=name, needs=needs, deployment_role=DeploymentRoleType.JOIN, *args, **kwargs, ) @allowed_levels([FlowBuildLevel.EMPTY]) def needs_all(self, name: str = 'joiner', *args, **kwargs) -> 'Flow': """ Collect all floating Deployments so far and add a blocker to the Flow; wait until all handing pods completed. :param name: the name of this joiner (default is ``joiner``) :param args: additional positional arguments which are forwarded to the add and needs function :param kwargs: additional key value arguments which are forwarded to the add and needs function :return: the modified Flow """ needs = _hanging_deployments(self) if len(needs) == 1: return self.add(name=name, needs=needs, *args, **kwargs) return self.needs(name=name, needs=needs, *args, **kwargs) # overload_inject_start_deployment @overload def add( self, *, allow_concurrent: Optional[bool] = False, compression: Optional[str] = None, connection_list: Optional[str] = None, cors: Optional[bool] = False, description: Optional[str] = None, disable_auto_volume: Optional[bool] = False, docker_kwargs: Optional[dict] = None, entrypoint: Optional[str] = None, env: Optional[dict] = None, exit_on_exceptions: Optional[List] = [], external: Optional[bool] = False, floating: Optional[bool] = False, force_update: Optional[bool] = False, gpus: Optional[str] = None, grpc_channel_options: Optional[dict] = None, grpc_metadata: Optional[dict] = None, grpc_server_options: Optional[dict] = None, host: Optional[List] = ['0.0.0.0'], install_requirements: Optional[bool] = False, log_config: Optional[str] = None, metrics: Optional[bool] = False, metrics_exporter_host: Optional[str] = None, metrics_exporter_port: Optional[int] = None, monitoring: Optional[bool] = False, name: Optional[str] = 'executor', native: Optional[bool] = False, no_reduce: Optional[bool] = False, output_array_type: Optional[str] = None, polling: Optional[str] = 'ANY', port: Optional[int] = None, port_monitoring: Optional[int] = None, prefer_platform: Optional[str] = None, protocol: Optional[Union[str, List[str]]] = ['GRPC'], provider: Optional[str] = ['NONE'], provider_endpoint: Optional[str] = None, py_modules: Optional[List] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, raft_configuration: Optional[dict] = None, reload: Optional[bool] = False, replicas: Optional[int] = 1, retries: Optional[int] = -1, runtime_cls: Optional[str] = 'WorkerRuntime', shards: Optional[int] = 1, ssl_certfile: Optional[str] = None, ssl_keyfile: Optional[str] = None, stateful: Optional[bool] = False, timeout_ctrl: Optional[int] = 60, timeout_ready: Optional[int] = 600000, timeout_send: Optional[int] = None, title: Optional[str] = None, tls: Optional[bool] = False, traces_exporter_host: Optional[str] = None, traces_exporter_port: Optional[int] = None, tracing: Optional[bool] = False, uses: Optional[Union[str, Type['BaseExecutor'], dict]] = 'BaseExecutor', uses_after: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_after_address: Optional[str] = None, uses_before: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_before_address: Optional[str] = None, uses_dynamic_batching: Optional[dict] = None, uses_metas: Optional[dict] = None, uses_requests: Optional[dict] = None, uses_with: Optional[dict] = None, uvicorn_kwargs: Optional[dict] = None, volumes: Optional[List] = None, when: Optional[dict] = None, workspace: Optional[str] = None, **kwargs, ) -> Union['Flow', 'AsyncFlow']: """Add an Executor to the current Flow object. :param allow_concurrent: Allow concurrent requests to be processed by the Executor. This is only recommended if the Executor is thread-safe. :param compression: The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, check https://grpc.github.io/grpc/python/grpc.html#compression. :param connection_list: dictionary JSON with a list of connections to configure :param cors: If set, a CORS middleware is added to FastAPI frontend to allow cross-origin access. :param description: The description of this HTTP server. It will be used in automatics docs such as Swagger UI. :param disable_auto_volume: Do not automatically mount a volume for dockerized Executors. :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param exit_on_exceptions: List of exceptions that will cause the Executor to shut down. :param external: The Deployment will be considered an external Deployment that has been started independently from the Flow.This Deployment will not be context managed by the Flow. :param floating: If set, the current Pod/Deployment can not be further chained, and the next `.add()` will chain after the last Pod/Deployment not this current one. :param force_update: If set, always pull the latest Hub Executor bundle even it exists on local :param gpus: This argument allows dockerized Jina Executors to discover local gpu devices. Note, - To access all gpus, use `--gpus all`. - To access multiple gpus, e.g. make use of 2 gpus, use `--gpus 2`. - To access specified gpus based on device id, use `--gpus device=[YOUR-GPU-DEVICE-ID]` - To access specified gpus based on multiple device id, use `--gpus device=[YOUR-GPU-DEVICE-ID1],device=[YOUR-GPU-DEVICE-ID2]` - To specify more parameters, use `--gpus device=[YOUR-GPU-DEVICE-ID],runtime=nvidia,capabilities=display :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param grpc_metadata: The metadata to be passed to the gRPC request. :param grpc_server_options: Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1} :param host: The host of the Gateway, which the client should connect to, by default it is 0.0.0.0. In the case of an external Executor (`--external` or `external=True`) this can be a list of hosts. Then, every resulting address will be considered as one replica of the Executor. :param install_requirements: If set, try to install `requirements.txt` from the local Executor if exists in the Executor folder. If using Hub, install `requirements.txt` in the Hub Executor bundle to local. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param monitoring: If set, spawn an http server with a prometheus endpoint to expose metrics :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param native: If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime. :param no_reduce: Disable the built-in reduction mechanism. Set this if the reduction is to be handled by the Executor itself by operating on a `docs_matrix` or `docs_map` :param output_array_type: The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. :param polling: The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} :param port: The port for input data to bind to, default is a random port between [49152, 65535]. In the case of an external Executor (`--external` or `external=True`) this can be a list of ports. Then, every resulting address will be considered as one replica of the Executor. :param port_monitoring: The port on which the prometheus server is exposed, default is a random port between [49152, 65535] :param prefer_platform: The preferred target Docker platform. (e.g. "linux/amd64", "linux/arm64") :param protocol: Communication protocol of the server exposed by the Executor. This can be a single value or a list of protocols, depending on your chosen Gateway. Choose the convenient protocols from: ['GRPC', 'HTTP', 'WEBSOCKET']. :param provider: If set, Executor is translated to a custom container compatible with the chosen provider. Choose the convenient providers from: ['NONE', 'SAGEMAKER', 'AZURE']. :param provider_endpoint: If set, Executor endpoint will be explicitly chosen and used in the custom container operated by the provider. :param py_modules: The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://jina.ai/serve/concepts/executor/executor-files/>`__ :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param raft_configuration: Dictionary of kwargs arguments that will be passed to the RAFT node as configuration options when starting the RAFT node. :param reload: If set, the Executor will restart while serving if YAML configuration source or Executor modules are changed. If YAML configuration is changed, the whole deployment is reloaded and new processes will be restarted. If only Python modules of the Executor have changed, they will be reloaded to the interpreter without restarting process. :param replicas: The number of replicas in the deployment :param retries: Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas) :param runtime_cls: The runtime class to run inside the Pod :param shards: The number of shards in the deployment running at the same time. For more details check https://jina.ai/serve/concepts/flow/create-flow/#complex-flow-topologies :param ssl_certfile: the path to the certificate file :param ssl_keyfile: the path to the key file :param stateful: If set, start consensus module to make sure write operations are properly replicated between all the replicas :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting forever :param timeout_send: The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default :param title: The title of this HTTP server. It will be used in automatics docs such as Swagger UI. :param tls: If set, connect to deployment using tls encryption :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. :param uses: The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_after: The executor attached after the Pods described by --uses, typically used for receiving from all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1). :param uses_after_address: The address of the uses-before runtime :param uses_before: The executor attached before the Pods described by --uses, typically before sending to all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1). :param uses_before_address: The address of the uses-before runtime :param uses_dynamic_batching: Dictionary of keyword arguments that will override the `dynamic_batching` configuration in `uses` :param uses_metas: Dictionary of keyword arguments that will override the `metas` configuration in `uses` :param uses_requests: Dictionary of keyword arguments that will override the `requests` configuration in `uses` :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server More details can be found in Uvicorn docs: https://www.uvicorn.org/settings/ :param volumes: The path on the host to be mounted inside the container. Note, - If separated by `:`, then the first part will be considered as the local host path and the second part is the path in the container system. - If no split provided, then the basename of that directory will be mounted into container's root path, e.g. `--volumes="/user/test/my-workspace"` will be mounted into `/my-workspace` inside the container. - All volumes are mounted with read-write mode. :param when: The condition that the documents need to fulfill before reaching the Executor.The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>` :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. :return: a (new) Flow object with modification .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_deployment @overload def add( self, *, needs: Optional[Union[str, Tuple[str], List[str]]] = None, copy_flow: bool = True, deployment_role: 'DeploymentRoleType' = DeploymentRoleType.DEPLOYMENT, **kwargs, ) -> Union['Flow', 'AsyncFlow']: """ Add a Deployment to the current Flow object and return the new modified Flow object. The attribute of the Deployment can be later changed with :py:meth:`set` or deleted with :py:meth:`remove` :param needs: the name of the Deployment(s) that this Deployment receives data from. One can also use 'gateway' to indicate the connection with the gateway. :param deployment_role: the role of the Deployment, used for visualization and route planning :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :param kwargs: other keyword-value arguments that the Deployment CLI supports :return: a (new) Flow object with modification .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 .. # noqa: DAR401 """ @allowed_levels([FlowBuildLevel.EMPTY]) def add( self, deployment: Union[str, Deployment] = None, **kwargs, ) -> Union['Flow', 'AsyncFlow']: # implementation_stub_inject_start_add """Add a Deployment to the current Flow object and return the new modified Flow object. The attribute of the Deployment can be later changed with :py:meth:`set` or deleted with :py:meth:`remove` :param allow_concurrent: Allow concurrent requests to be processed by the Executor. This is only recommended if the Executor is thread-safe. :param compression: The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, check https://grpc.github.io/grpc/python/grpc.html#compression. :param connection_list: dictionary JSON with a list of connections to configure :param cors: If set, a CORS middleware is added to FastAPI frontend to allow cross-origin access. :param description: The description of this HTTP server. It will be used in automatics docs such as Swagger UI. :param disable_auto_volume: Do not automatically mount a volume for dockerized Executors. :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param exit_on_exceptions: List of exceptions that will cause the Executor to shut down. :param external: The Deployment will be considered an external Deployment that has been started independently from the Flow.This Deployment will not be context managed by the Flow. :param floating: If set, the current Pod/Deployment can not be further chained, and the next `.add()` will chain after the last Pod/Deployment not this current one. :param force_update: If set, always pull the latest Hub Executor bundle even it exists on local :param gpus: This argument allows dockerized Jina Executors to discover local gpu devices. Note, - To access all gpus, use `--gpus all`. - To access multiple gpus, e.g. make use of 2 gpus, use `--gpus 2`. - To access specified gpus based on device id, use `--gpus device=[YOUR-GPU-DEVICE-ID]` - To access specified gpus based on multiple device id, use `--gpus device=[YOUR-GPU-DEVICE-ID1],device=[YOUR-GPU-DEVICE-ID2]` - To specify more parameters, use `--gpus device=[YOUR-GPU-DEVICE-ID],runtime=nvidia,capabilities=display :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param grpc_metadata: The metadata to be passed to the gRPC request. :param grpc_server_options: Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1} :param host: The host of the Gateway, which the client should connect to, by default it is 0.0.0.0. In the case of an external Executor (`--external` or `external=True`) this can be a list of hosts. Then, every resulting address will be considered as one replica of the Executor. :param install_requirements: If set, try to install `requirements.txt` from the local Executor if exists in the Executor folder. If using Hub, install `requirements.txt` in the Hub Executor bundle to local. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param monitoring: If set, spawn an http server with a prometheus endpoint to expose metrics :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param native: If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime. :param no_reduce: Disable the built-in reduction mechanism. Set this if the reduction is to be handled by the Executor itself by operating on a `docs_matrix` or `docs_map` :param output_array_type: The type of array `tensor` and `embedding` will be serialized to. Supports the same types as `docarray.to_protobuf(.., ndarray_type=...)`, which can be found `here <https://docarray.jina.ai/fundamentals/document/serialization/#from-to-protobuf>`. Defaults to retaining whatever type is returned by the Executor. :param polling: The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} :param port: The port for input data to bind to, default is a random port between [49152, 65535]. In the case of an external Executor (`--external` or `external=True`) this can be a list of ports. Then, every resulting address will be considered as one replica of the Executor. :param port_monitoring: The port on which the prometheus server is exposed, default is a random port between [49152, 65535] :param prefer_platform: The preferred target Docker platform. (e.g. "linux/amd64", "linux/arm64") :param protocol: Communication protocol of the server exposed by the Executor. This can be a single value or a list of protocols, depending on your chosen Gateway. Choose the convenient protocols from: ['GRPC', 'HTTP', 'WEBSOCKET']. :param provider: If set, Executor is translated to a custom container compatible with the chosen provider. Choose the convenient providers from: ['NONE', 'SAGEMAKER', 'AZURE']. :param provider_endpoint: If set, Executor endpoint will be explicitly chosen and used in the custom container operated by the provider. :param py_modules: The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://jina.ai/serve/concepts/executor/executor-files/>`__ :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param raft_configuration: Dictionary of kwargs arguments that will be passed to the RAFT node as configuration options when starting the RAFT node. :param reload: If set, the Executor will restart while serving if YAML configuration source or Executor modules are changed. If YAML configuration is changed, the whole deployment is reloaded and new processes will be restarted. If only Python modules of the Executor have changed, they will be reloaded to the interpreter without restarting process. :param replicas: The number of replicas in the deployment :param retries: Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas) :param runtime_cls: The runtime class to run inside the Pod :param shards: The number of shards in the deployment running at the same time. For more details check https://jina.ai/serve/concepts/flow/create-flow/#complex-flow-topologies :param ssl_certfile: the path to the certificate file :param ssl_keyfile: the path to the key file :param stateful: If set, start consensus module to make sure write operations are properly replicated between all the replicas :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting forever :param timeout_send: The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default :param title: The title of this HTTP server. It will be used in automatics docs such as Swagger UI. :param tls: If set, connect to deployment using tls encryption :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. :param uses: The config of the executor, it could be one of the followings: * the string literal of an Executor class name * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_after: The executor attached after the Pods described by --uses, typically used for receiving from all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1). :param uses_after_address: The address of the uses-before runtime :param uses_before: The executor attached before the Pods described by --uses, typically before sending to all shards, accepted type follows `--uses`. This argument only applies for sharded Deployments (shards > 1). :param uses_before_address: The address of the uses-before runtime :param uses_dynamic_batching: Dictionary of keyword arguments that will override the `dynamic_batching` configuration in `uses` :param uses_metas: Dictionary of keyword arguments that will override the `metas` configuration in `uses` :param uses_requests: Dictionary of keyword arguments that will override the `requests` configuration in `uses` :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server More details can be found in Uvicorn docs: https://www.uvicorn.org/settings/ :param volumes: The path on the host to be mounted inside the container. Note, - If separated by `:`, then the first part will be considered as the local host path and the second part is the path in the container system. - If no split provided, then the basename of that directory will be mounted into container's root path, e.g. `--volumes="/user/test/my-workspace"` will be mounted into `/my-workspace` inside the container. - All volumes are mounted with read-write mode. :param when: The condition that the documents need to fulfill before reaching the Executor.The condition can be defined in the form of a `DocArray query condition <https://docarray.jina.ai/fundamentals/documentarray/find/#query-by-conditions>` :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. :param needs: the name of the Deployment(s) that this Deployment receives data from. One can also use "gateway" to indicate the connection with the gateway. :param deployment_role: the role of the Deployment, used for visualization and route planning :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :param kwargs: other keyword-value arguments that the Deployment CLI supports :return: a (new) Flow object with modification :return: a (new) Flow object with modification .. # noqa: DAR102 .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # implementation_stub_inject_end_add needs = kwargs.pop('needs', None) copy_flow = kwargs.pop('copy_flow', True) deployment_role = kwargs.get('deployment_role', DeploymentRoleType.DEPLOYMENT) op_flow = copy.deepcopy(self) if copy_flow else self # deployment naming logic deployment_name = kwargs.get('name', None) if deployment_name in op_flow._deployment_nodes: new_name = f'{deployment_name}{len(op_flow._deployment_nodes)}' self.logger.debug( f'"{deployment_name}" is used in this Flow already! renamed it to "{new_name}"' ) deployment_name = new_name if not deployment_name: deployment_name = f'executor{len(op_flow._deployment_nodes)}' if not deployment_name.isidentifier(): # hyphen - can not be used in the name raise ValueError( f'name: {deployment_name} is invalid, please follow the python variable name conventions' ) # needs logic needs = op_flow._parse_endpoints( op_flow, deployment_name, needs, connect_to_last_deployment=True ) if deployment is None: # set the kwargs inherit from `Flow(kwargs1=..., kwargs2=)` for key, value in op_flow._common_kwargs.items(): # do not inherit from all the argument from the flow and respect EXECUTOR_ARGS_BLACKLIST if key not in kwargs and key not in EXECUTOR_ARGS_BLACKLIST: kwargs[key] = value # update kwargs of this Deployment kwargs.update( dict( name=deployment_name, deployment_role=deployment_role, log_config=( kwargs.get('log_config') if 'log_config' in kwargs else self.args.log_config ), ) ) parser = set_deployment_parser() if deployment_role == DeploymentRoleType.GATEWAY: parser = set_gateway_parser() args = ArgNamespace.kwargs2namespace( kwargs, parser, True, fallback_parsers=FALLBACK_PARSERS ) # deployment workspace if not set then derive from flow workspace if args.workspace: args.workspace = os.path.abspath(args.workspace) else: args.workspace = self.workspace args.noblock_on_start = True if len(needs) > 1 and args.external and args.no_reduce: raise ValueError( 'External Executors with multiple needs have to do auto reduce.' ) deployment = Deployment( args, needs, include_gateway=False, noblock_on_start=True ) floating = args.floating elif isinstance(deployment, str): deployment = Deployment.load_config( deployment, needs=needs, include_gateway=False, noblock_on_start=True ) floating = deployment.args.floating else: deployment.needs = needs floating = deployment.args.floating op_flow._deployment_nodes[deployment_name] = deployment if not floating: op_flow._last_deployment = deployment_name return op_flow # overload_inject_start_config_gateway @overload def config_gateway( self, *, compression: Optional[str] = None, cors: Optional[bool] = False, deployments_addresses: Optional[str] = '{}', deployments_metadata: Optional[str] = '{}', deployments_no_reduce: Optional[str] = '[]', description: Optional[str] = None, docker_kwargs: Optional[dict] = None, entrypoint: Optional[str] = None, env: Optional[dict] = None, expose_endpoints: Optional[str] = None, expose_graphql_endpoint: Optional[bool] = False, floating: Optional[bool] = False, graph_conditions: Optional[str] = '{}', graph_description: Optional[str] = '{}', grpc_channel_options: Optional[dict] = None, grpc_server_options: Optional[dict] = None, host: Optional[str] = '0.0.0.0', log_config: Optional[str] = None, metrics: Optional[bool] = False, metrics_exporter_host: Optional[str] = None, metrics_exporter_port: Optional[int] = None, monitoring: Optional[bool] = False, name: Optional[str] = 'gateway', no_crud_endpoints: Optional[bool] = False, no_debug_endpoints: Optional[bool] = False, port: Optional[int] = None, port_monitoring: Optional[int] = None, prefetch: Optional[int] = 1000, protocol: Optional[Union[str, List[str]]] = ['GRPC'], provider: Optional[str] = ['NONE'], provider_endpoint: Optional[str] = None, proxy: Optional[bool] = False, py_modules: Optional[List] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, reload: Optional[bool] = False, replicas: Optional[int] = 1, retries: Optional[int] = -1, runtime_cls: Optional[str] = 'GatewayRuntime', ssl_certfile: Optional[str] = None, ssl_keyfile: Optional[str] = None, stateful: Optional[bool] = False, timeout_ctrl: Optional[int] = 60, timeout_ready: Optional[int] = 600000, timeout_send: Optional[int] = None, title: Optional[str] = None, traces_exporter_host: Optional[str] = None, traces_exporter_port: Optional[int] = None, tracing: Optional[bool] = False, uses: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_with: Optional[dict] = None, uvicorn_kwargs: Optional[dict] = None, workspace: Optional[str] = None, **kwargs, ): """Configure the Gateway inside a Flow. The Gateway exposes your Flow logic as a service to the internet according to the protocol and configuration you choose. :param compression: The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, check https://grpc.github.io/grpc/python/grpc.html#compression. :param cors: If set, a CORS middleware is added to FastAPI frontend to allow cross-origin access. :param deployments_addresses: JSON dictionary with the input addresses of each Deployment :param deployments_metadata: JSON dictionary with the request metadata for each Deployment :param deployments_no_reduce: list JSON disabling the built-in merging mechanism for each Deployment listed :param description: The description of this HTTP server. It will be used in automatics docs such as Swagger UI. :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param expose_endpoints: A JSON string that represents a map from executor endpoints (`@requests(on=...)`) to HTTP endpoints. :param expose_graphql_endpoint: If set, /graphql endpoint is added to HTTP interface. :param floating: If set, the current Pod/Deployment can not be further chained, and the next `.add()` will chain after the last Pod/Deployment not this current one. :param graph_conditions: Dictionary stating which filtering conditions each Executor in the graph requires to receive Documents. :param graph_description: Routing graph for the gateway :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param grpc_server_options: Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1} :param host: The host address of the runtime, by default it is 0.0.0.0. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param monitoring: If set, spawn an http server with a prometheus endpoint to expose metrics :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param no_crud_endpoints: If set, `/index`, `/search`, `/update`, `/delete` endpoints are removed from HTTP interface. Any executor that has `@requests(on=...)` bound with those values will receive data requests. :param no_debug_endpoints: If set, `/status` `/post` endpoints are removed from HTTP interface. :param port: The port for input data to bind the gateway server to, by default, random ports between range [49152, 65535] will be assigned. The port argument can be either 1 single value in case only 1 protocol is used or multiple values when many protocols are used. :param port_monitoring: The port on which the prometheus server is exposed, default is a random port between [49152, 65535] :param prefetch: Number of requests fetched from the client before feeding into the first Executor. Used to control the speed of data input into a Flow. 0 disables prefetch (1000 requests is the default) :param protocol: Communication protocol of the server exposed by the Gateway. This can be a single value or a list of protocols, depending on your chosen Gateway. Choose the convenient protocols from: ['GRPC', 'HTTP', 'WEBSOCKET']. :param provider: If set, Executor is translated to a custom container compatible with the chosen provider. Choose the convenient providers from: ['NONE', 'SAGEMAKER', 'AZURE']. :param provider_endpoint: If set, Executor endpoint will be explicitly chosen and used in the custom container operated by the provider. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param py_modules: The customized python modules need to be imported before loading the gateway Note that the recommended way is to only import a single module - a simple python file, if your gateway can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param reload: If set, the Gateway will restart while serving if YAML configuration source is changed. :param replicas: The number of replicas of the Gateway. This replicas will only be applied when converted into Kubernetes YAML :param retries: Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas) :param runtime_cls: The runtime class to run inside the Pod :param ssl_certfile: the path to the certificate file :param ssl_keyfile: the path to the key file :param stateful: If set, start consensus module to make sure write operations are properly replicated between all the replicas :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting forever :param timeout_send: The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default :param title: The title of this HTTP server. It will be used in automatics docs such as Swagger UI. :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. :param uses: The config of the gateway, it could be one of the followings: * the string literal of an Gateway class name * a Gateway YAML file (.yml, .yaml, .jaml) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server More details can be found in Uvicorn docs: https://www.uvicorn.org/settings/ :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_config_gateway @allowed_levels([FlowBuildLevel.EMPTY]) def config_gateway( self, args: Optional['argparse.Namespace'] = None, **kwargs, ) -> Union['Flow', 'AsyncFlow']: # implementation_stub_inject_start_config_gateway """Configure the Gateway inside a Flow. The Gateway exposes your Flow logic as a service to the internet according to the protocol and configuration you choose. :param compression: The compression mechanism used when sending requests from the Head to the WorkerRuntimes. For more details, check https://grpc.github.io/grpc/python/grpc.html#compression. :param cors: If set, a CORS middleware is added to FastAPI frontend to allow cross-origin access. :param deployments_addresses: JSON dictionary with the input addresses of each Deployment :param deployments_metadata: JSON dictionary with the request metadata for each Deployment :param deployments_no_reduce: list JSON disabling the built-in merging mechanism for each Deployment listed :param description: The description of this HTTP server. It will be used in automatics docs such as Swagger UI. :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param expose_endpoints: A JSON string that represents a map from executor endpoints (`@requests(on=...)`) to HTTP endpoints. :param expose_graphql_endpoint: If set, /graphql endpoint is added to HTTP interface. :param floating: If set, the current Pod/Deployment can not be further chained, and the next `.add()` will chain after the last Pod/Deployment not this current one. :param graph_conditions: Dictionary stating which filtering conditions each Executor in the graph requires to receive Documents. :param graph_description: Routing graph for the gateway :param grpc_channel_options: Dictionary of kwargs arguments that will be passed to the grpc channel as options when creating a channel, example : {'grpc.max_send_message_length': -1}. When max_attempts > 1, the 'grpc.service_config' option will not be applicable. :param grpc_server_options: Dictionary of kwargs arguments that will be passed to the grpc server as options when starting the server, example : {'grpc.max_send_message_length': -1} :param host: The host address of the runtime, by default it is 0.0.0.0. :param log_config: The config name or the absolute path to the YAML config file of the logger used in this object. :param metrics: If set, the sdk implementation of the OpenTelemetry metrics will be available for default monitoring and custom measurements. Otherwise a no-op implementation will be provided. :param metrics_exporter_host: If tracing is enabled, this hostname will be used to configure the metrics exporter agent. :param metrics_exporter_port: If tracing is enabled, this port will be used to configure the metrics exporter agent. :param monitoring: If set, spawn an http server with a prometheus endpoint to expose metrics :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param no_crud_endpoints: If set, `/index`, `/search`, `/update`, `/delete` endpoints are removed from HTTP interface. Any executor that has `@requests(on=...)` bound with those values will receive data requests. :param no_debug_endpoints: If set, `/status` `/post` endpoints are removed from HTTP interface. :param port: The port for input data to bind the gateway server to, by default, random ports between range [49152, 65535] will be assigned. The port argument can be either 1 single value in case only 1 protocol is used or multiple values when many protocols are used. :param port_monitoring: The port on which the prometheus server is exposed, default is a random port between [49152, 65535] :param prefetch: Number of requests fetched from the client before feeding into the first Executor. Used to control the speed of data input into a Flow. 0 disables prefetch (1000 requests is the default) :param protocol: Communication protocol of the server exposed by the Gateway. This can be a single value or a list of protocols, depending on your chosen Gateway. Choose the convenient protocols from: ['GRPC', 'HTTP', 'WEBSOCKET']. :param provider: If set, Executor is translated to a custom container compatible with the chosen provider. Choose the convenient providers from: ['NONE', 'SAGEMAKER', 'AZURE']. :param provider_endpoint: If set, Executor endpoint will be explicitly chosen and used in the custom container operated by the provider. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param py_modules: The customized python modules need to be imported before loading the gateway Note that the recommended way is to only import a single module - a simple python file, if your gateway can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param reload: If set, the Gateway will restart while serving if YAML configuration source is changed. :param replicas: The number of replicas of the Gateway. This replicas will only be applied when converted into Kubernetes YAML :param retries: Number of retries per gRPC call. If <0 it defaults to max(3, num_replicas) :param runtime_cls: The runtime class to run inside the Pod :param ssl_certfile: the path to the certificate file :param ssl_keyfile: the path to the key file :param stateful: If set, start consensus module to make sure write operations are properly replicated between all the replicas :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pod waits for the runtime to be ready, -1 for waiting forever :param timeout_send: The timeout in milliseconds used when sending data requests to Executors, -1 means no timeout, disabled by default :param title: The title of this HTTP server. It will be used in automatics docs such as Swagger UI. :param traces_exporter_host: If tracing is enabled, this hostname will be used to configure the trace exporter agent. :param traces_exporter_port: If tracing is enabled, this port will be used to configure the trace exporter agent. :param tracing: If set, the sdk implementation of the OpenTelemetry tracer will be available and will be enabled for automatic tracing of requests and customer span creation. Otherwise a no-op implementation will be provided. :param uses: The config of the gateway, it could be one of the followings: * the string literal of an Gateway class name * a Gateway YAML file (.yml, .yaml, .jaml) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server More details can be found in Uvicorn docs: https://www.uvicorn.org/settings/ :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. :return: the new Flow object .. # noqa: DAR102 .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # implementation_stub_inject_end_config_gateway copy_flow = kwargs.pop('copy_flow', True) op_flow = copy.deepcopy(self) if copy_flow else self # override gateway args inherited from Flow API for key, value in kwargs.items(): op_flow._gateway_kwargs[key] = value return op_flow @allowed_levels([FlowBuildLevel.EMPTY]) def inspect(self, name: str = 'inspect', *args, **kwargs) -> 'Flow': """Add an inspection on the last changed Deployment in the Flow Internally, it adds two Deployments to the Flow. But don't worry, the overhead is minimized and you can remove them by simply using `Flow(inspect=FlowInspectType.REMOVE)` before using the Flow. .. highlight:: bash .. code-block:: bash Flow -- PUB-SUB -- Deployment(_pass) -- Flow | -- PUB-SUB -- InspectDeployment (Hanging) In this way, :class:`InspectDeployment` looks like a simple ``_pass`` from outside and does not introduce side-effects (e.g. changing the socket type) to the original Flow. The original incoming and outgoing socket types are preserved. This function is very handy for introducing an Evaluator into the Flow. .. seealso:: :meth:`gather_inspect` :param name: name of the Deployment :param args: args for .add() :param kwargs: kwargs for .add() :return: the new instance of the Flow """ _last_deployment = self._last_deployment op_flow = self.add( name=name, needs=_last_deployment, deployment_role=DeploymentRoleType.INSPECT, *args, **kwargs, ) # now remove uses and add an auxiliary Deployment if 'uses' in kwargs: kwargs.pop('uses') op_flow = op_flow.add( name=f'_aux_{name}', needs=_last_deployment, deployment_role=DeploymentRoleType.INSPECT_AUX_PASS, *args, **kwargs, ) # register any future connection to _last_deployment by the auxiliary Deployment op_flow._inspect_deployments[_last_deployment] = op_flow._last_deployment return op_flow @allowed_levels([FlowBuildLevel.EMPTY]) def gather_inspect( self, name: str = 'gather_inspect', include_last_deployment: bool = True, *args, **kwargs, ) -> 'Flow': """Gather all inspect Deployments output into one Deployment. When the Flow has no inspect Deployment then the Flow itself is returned. .. note:: If ``--no-inspect`` is **not** given, then :meth:`gather_inspect` is auto called before :meth:`build`. So in general you don't need to manually call :meth:`gather_inspect`. :param name: the name of the gather Deployment :param include_last_deployment: if to include the last modified Deployment in the Flow :param args: args for .add() :param kwargs: kwargs for .add() :return: the modified Flow or the copy of it .. seealso:: :meth:`inspect` """ needs = [ k for k, v in self._deployment_nodes.items() if v.role == DeploymentRoleType.INSPECT ] if needs: if include_last_deployment: needs.append(self._last_deployment) return self.add( name=name, needs=needs, deployment_role=DeploymentRoleType.JOIN_INSPECT, *args, **kwargs, ) else: # no inspect node is in the graph, return the current graph return self def _get_gateway_target(self, prefix): gateway_deployment = self._deployment_nodes[GATEWAY_NAME] return ( f'{prefix}-{GATEWAY_NAME}', { 'host': gateway_deployment.head_host, 'port': gateway_deployment.head_port, 'expected_parts': 0, }, ) @allowed_levels([FlowBuildLevel.EMPTY]) def build(self, copy_flow: bool = False, **kwargs) -> 'Flow': """ Build the current Flow and make it ready to use .. note:: No need to manually call it since 0.0.8. When using Flow with the context manager, or using :meth:`start`, :meth:`build` will be invoked. :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :param kwargs: kwargs for backward compatibility :return: the current Flow (by default) .. note:: ``copy_flow=True`` is recommended if you are building the same Flow multiple times in a row. e.g. .. highlight:: python .. code-block:: python f = Flow() with f: f.index() with f.build(copy_flow=True) as fl: fl.search() .. # noqa: DAR401 """ if multiprocessing.get_start_method().lower() == 'fork': os.environ['GRPC_ENABLE_FORK_SUPPORT'] = '1' op_flow = copy.deepcopy(self) if copy_flow else self if op_flow.args.inspect == FlowInspectType.COLLECT: op_flow.gather_inspect(copy_flow=False) if GATEWAY_NAME not in op_flow._deployment_nodes: op_flow._add_gateway( needs={op_flow._last_deployment}, graph_description=op_flow._get_graph_representation(), deployments_addresses=op_flow._get_deployments_addresses(), deployments_metadata=op_flow._get_deployments_metadata(), graph_conditions=op_flow._get_graph_conditions(), deployments_no_reduce=op_flow._get_disabled_reduce_deployments(), uses=op_flow.gateway_args.uses, ) removed_deployments = [] # if set no_inspect then all inspect related nodes are removed if op_flow.args.inspect == FlowInspectType.REMOVE: filtered_deployment_nodes = OrderedDict() for k, v in op_flow._deployment_nodes.items(): if not v.role.is_inspect: filtered_deployment_nodes[k] = v else: removed_deployments.append(v.name) op_flow._deployment_nodes = filtered_deployment_nodes reverse_inspect_map = { v: k for k, v in op_flow._inspect_deployments.items() } while ( len(op_flow._last_changed_deployment) > 0 and len(removed_deployments) > 0 and op_flow._last_deployment in removed_deployments ): op_flow._last_changed_deployment.pop() for end, deployment in op_flow._deployment_nodes.items(): # if an endpoint is being inspected, then replace it with inspected Deployment # but not those inspect related node if op_flow.args.inspect.is_keep: deployment.needs = set( ( ep if deployment.role.is_inspect else op_flow._inspect_deployments.get(ep, ep) ) for ep in deployment.needs ) else: deployment.needs = set( reverse_inspect_map.get(ep, ep) for ep in deployment.needs ) hanging_deployments = _hanging_deployments(op_flow) if hanging_deployments: op_flow.logger.warning( f'{hanging_deployments} are "floating" in this flow with no deployment receiving from them, ' f'you may want to double check if it is intentional or some mistake' ) op_flow._build_level = FlowBuildLevel.GRAPH if len(removed_deployments) > 0: # very dirty op_flow._deployment_nodes[GATEWAY_NAME].args.graph_description = json.dumps( op_flow._get_graph_representation() ) op_flow._deployment_nodes[GATEWAY_NAME].args.deployments_addresses = ( json.dumps(op_flow._get_deployments_addresses()) ) op_flow._deployment_nodes[GATEWAY_NAME].update_pod_args() return op_flow def __call__(self, *args, **kwargs): """Builds the Flow :param args: args for build :param kwargs: kwargs for build :return: the built Flow """ return self.build(*args, **kwargs) def __exit__(self, exc_type, exc_val, exc_tb): super().__exit__(exc_type, exc_val, exc_tb) if self._client: self._client.teardown_instrumentation() self._client = None # unset all envs to avoid any side-effect if self.args.env: for k in self.args.env.keys(): os.environ.pop(k, None) # do not know why but removing these 2 lines make 2 tests fail if GATEWAY_NAME in self._deployment_nodes: self._deployment_nodes.pop(GATEWAY_NAME) self._build_level = FlowBuildLevel.EMPTY self._stop_time = time.time() send_telemetry_event( event='stop', obj_cls_name=self.__class__.__name__, entity_id=self._entity_id, duration=self._stop_time - self._start_time, exc_type=str(exc_type), ) self.logger.debug('flow is closed!') self.logger.close() @allowed_levels([FlowBuildLevel.EMPTY, FlowBuildLevel.GRAPH]) def start(self): """Start to run all Deployments in this Flow. Remember to close the Flow with :meth:`close`. Note that this method has a timeout of ``timeout_ready`` set in CLI, which is inherited all the way from :class:`jina.orchestrate.pods.Pod` .. # noqa: DAR401 :return: this instance """ self._start_time = time.time() if self._build_level.value < FlowBuildLevel.GRAPH.value: self.build(copy_flow=False) port_gateway = self._deployment_nodes[GATEWAY_NAME].args.port host_gateway = self._deployment_nodes[GATEWAY_NAME].args.host if not ( is_port_free(host_gateway, port_gateway) ): # we check if the port is not used at parsing time as well for robustness raise PortAlreadyUsed(f'port:{port_gateway}') # set env only before the Deployment get started if self.args.env: for k, v in self.args.env.items(): os.environ[k] = str(v) for depl_name, deployment in self: if not deployment.external: self.enter_context(deployment) self._wait_until_all_ready() self._build_level = FlowBuildLevel.RUNNING send_telemetry_event( event='start', obj_cls_name=self.__class__.__name__, entity_id=self._entity_id, ) return self def _wait_until_all_ready(self): import warnings with warnings.catch_warnings(): results = {} results_lock = threading.Lock() async def _async_wait_ready(_deployment_name, _deployment): try: if not _deployment.external: with results_lock: results[_deployment_name] = 'pending' await _deployment.async_wait_start_success() with results_lock: results[_deployment_name] = 'done' except Exception as ex: results[_deployment_name] = repr(ex) raise ex def _wait_ready(_deployment_name, _deployment): try: if not _deployment.external: with results_lock: results[_deployment_name] = 'pending' _deployment.wait_start_success() with results_lock: results[_deployment_name] = 'done' except Exception as ex: with results_lock: results[_deployment_name] = repr(ex) def _polling_status(num_tasks_to_wait): progress = Progress( SpinnerColumn(), TextColumn( 'Waiting [b]{task.fields[pending_str]}[/]...', justify='right' ), BarColumn(), MofNCompleteColumn(), TimeElapsedColumn(), transient=True, ) with progress: task = progress.add_task( 'wait', total=num_tasks_to_wait, pending_str='', start=False ) with results_lock: progress.update(task, total=len(results)) progress.start_task(task) while True: num_done = 0 pendings = [] one_failing = False with results_lock: for _k, _v in results.items(): sys.stdout.flush() if _v == 'pending': pendings.append(_k) elif _v == 'done': num_done += 1 else: one_failing = True if 'JINA_EARLY_STOP' in os.environ: self.logger.error( f'Flow is aborted due to {_k} {_v}.' ) os._exit(1) else: break if one_failing: break pending_str = ' '.join(pendings) progress.update( task, completed=num_done, pending_str=pending_str ) if not pendings: break time.sleep(0.1) wait_for_ready_coros = [] for k, v in self: wait_for_ready_coros.append(_async_wait_ready(k, v)) async def _async_wait_all(): wrapped_tasks = [ asyncio.create_task(coro) for coro in wait_for_ready_coros ] done, pending = await asyncio.wait( wrapped_tasks, return_when=asyncio.FIRST_EXCEPTION ) try: for task in done: try: task.result() # This raises an exception if the task had an exception except Exception as e: self.logger.error(f"An exception occurred: {str(e)}") finally: for task in pending: task.cancel() if 'GITHUB_WORKFLOW' not in os.environ: # kick off spinner thread polling_status_thread = threading.Thread( target=_polling_status, args=(len(wait_for_ready_coros),), daemon=True, ) polling_status_thread.start() # kick off all deployments wait-ready tasks try: _ = asyncio.get_event_loop() except: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) async def _f(): pass running_in_event_loop = False try: asyncio.get_event_loop().run_until_complete(_f()) except: running_in_event_loop = True wait_ready_threads = [] if not running_in_event_loop: asyncio.get_event_loop().run_until_complete(_async_wait_all()) else: for k, v in self: wait_ready_threads.append( threading.Thread(target=_wait_ready, args=(k, v), daemon=True) ) for t in wait_ready_threads: t.start() if 'GITHUB_WORKFLOW' not in os.environ: polling_status_thread.join() for t in wait_ready_threads: t.join() error_deployments = [k for k, v in results.items() if v != 'done'] if error_deployments: self.logger.error( f'Flow is aborted due to {error_deployments} can not be started.' ) self.close() raise RuntimeFailToStart from rich.rule import Rule all_panels = [] self._get_summary_table(all_panels) print( Rule(':tada: Flow is ready to serve!'), *all_panels ) # can't use logger here see : https://github.com/Textualize/rich/discussions/2024 self.logger.debug( f'{self.num_deployments} Deployments (i.e. {self.num_pods} Pods) are running in this Flow' ) @property def num_deployments(self) -> int: """Get the number of Deployments in this Flow .. # noqa: DAR201""" return len(self._deployment_nodes) @property def num_pods(self) -> int: """Get the number of pods (shards count) in this Flow .. # noqa: DAR201""" return sum(v.num_pods for v in self._deployment_nodes.values()) def __eq__(self, other: 'Flow') -> bool: """ Compare the topology of a Flow with another Flow. Identification is defined by whether two flows share the same set of edges. :param other: the second Flow object :return: result of equality check """ if self._build_level.value < FlowBuildLevel.GRAPH.value: op_flow = copy.deepcopy(self) a = op_flow.build() else: a = self if other._build_level.value < FlowBuildLevel.GRAPH.value: op_flow_b = copy.deepcopy(other) b = op_flow_b.build() else: b = other return a._deployment_nodes == b._deployment_nodes @property def client(self) -> 'BaseClient': """Return a :class:`BaseClient` object attach to this Flow. .. # noqa: DAR201""" if not self._client: kwargs = dict( host=self.host, port=self.port, protocol=self.protocol, log_config=self.args.log_config, ) kwargs.update(self._gateway_kwargs) self._client = Client(**kwargs) return self._client @property def _mermaid_str(self): mermaid_graph = [ ''' %%{init:{ "theme": "base", "themeVariables": { "primaryColor": "#fff", "primaryBorderColor": "#fff", "mainBkg": "#32C8CD", "clusterBkg": "#EEEDE78C", "secondaryBorderColor": "none", "tertiaryBorderColor": "none", "lineColor": "#a6d8da" } }}%%'''.replace( '\n', '' ), 'flowchart LR;', ] deployment_nodes = [] # plot subgraphs for node, v in self._deployment_nodes.items(): deployment_nodes.append(v.name) deployment_mermaid = v._mermaid_str mermaid_graph.extend(deployment_mermaid) for node, v in self._deployment_nodes.items(): for need in sorted(v.needs): need_print = need if need == 'gateway': need_print = 'gatewaystart[gateway]' node_print = node if node == 'gateway': node_print = 'gatewayend[gateway]' _s_role = self._deployment_nodes[need].role _e_role = self._deployment_nodes[node].role if self._deployment_nodes[need].external: _s_role = 'EXTERNAL' if self._deployment_nodes[node].external: _e_role = 'EXTERNAL' line_st = '-->' if ( _s_role == DeploymentRoleType.INSPECT or _e_role == DeploymentRoleType.INSPECT ): line_st = '-.->' mermaid_graph.append( f'{need_print}:::{str(_s_role)} {line_st} {node_print}:::{str(_e_role)};' ) mermaid_graph.append( f'classDef {str(DeploymentRoleType.INSPECT)} stroke:#F29C9F' ) mermaid_graph.append( f'classDef {str(DeploymentRoleType.JOIN_INSPECT)} stroke:#F29C9F' ) mermaid_graph.append( f'classDef {str(DeploymentRoleType.GATEWAY)} fill:none,color:#000,stroke:none' ) mermaid_graph.append( f'classDef {str(DeploymentRoleType.INSPECT_AUX_PASS)} stroke-dasharray: 2 2' ) mermaid_graph.append(f'classDef HEADTAIL fill:#32C8CD1D') mermaid_graph.append(f'\nclassDef EXTERNAL fill:#fff,stroke:#32C8CD') return '\n'.join(mermaid_graph) def plot( self, output: Optional[str] = None, vertical_layout: bool = False, inline_display: bool = False, build: bool = True, copy_flow: bool = True, ) -> 'Flow': """ Visualize the Flow up to the current point If a file name is provided it will create a jpg image with that name, otherwise it will display the URL for mermaid. If called within IPython notebook, it will be rendered inline, otherwise an image will be created. Example, .. highlight:: python .. code-block:: python flow = Flow().add(name='deployment_a').plot('flow.svg') :param output: a filename specifying the name of the image to be created, the suffix svg/jpg determines the file type of the output image :param vertical_layout: top-down or left-right layout :param inline_display: show image directly inside the Jupyter Notebook :param build: build the Flow first before plotting, gateway connection can be better showed :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :return: the Flow """ # deepcopy causes the below error while reusing a Flow in Jupyter # 'Pickling an AuthenticationString object is disallowed for security reasons' # no need to deep copy if the Graph is built because no change will be made to the Flow op_flow = ( copy.deepcopy(self) if (copy_flow and self._build_level.value == FlowBuildLevel.EMPTY) else self ) if build and op_flow._build_level.value == FlowBuildLevel.EMPTY: op_flow.build(copy_flow=False) mermaid_str = op_flow._mermaid_str if vertical_layout: mermaid_str = mermaid_str.replace('flowchart LR', 'flowchart TD') image_type = 'svg' if output and not output.endswith('svg'): image_type = 'img' url = op_flow._mermaid_to_url(mermaid_str, image_type) showed = False if inline_display: try: from IPython.display import Image, display display(Image(url=url)) showed = True except: # no need to panic users pass if output: download_mermaid_url(url, output) elif not showed: print(f'[link={url}]Click here to see the visualization in browser[/]') return self def _ipython_display_(self): """Displays the object in IPython as a side effect""" self.plot( inline_display=True, build=(self._build_level != FlowBuildLevel.GRAPH) ) def _mermaid_to_url(self, mermaid_str: str, img_type: str) -> str: """ Render the current Flow as URL points to a SVG. It needs internet connection :param mermaid_str: the mermaid representation :param img_type: image type (svg/jpg) :return: the url points to a SVG """ encoded_str = base64.b64encode(bytes(mermaid_str, 'utf-8')).decode('utf-8') return f'https://mermaid.ink/{img_type}/{encoded_str}' @property def port(self) -> Union[List[int], Optional[int]]: """Return the exposed port of the gateway .. # noqa: DAR201 """ if GATEWAY_NAME in self._deployment_nodes: res = self._deployment_nodes[GATEWAY_NAME].first_pod_args.port else: res = self._gateway_kwargs.get('port', None) or self._gateway_kwargs.get( 'ports', None ) if not isinstance(res, list): return res elif len(res) == 1: return res[0] else: return res @port.setter def port(self, value: Union[int, List[int]]): """Set the new exposed port of the Flow (affects Gateway and Client) :param value: the new port to expose """ if isinstance(value, int): self._gateway_kwargs['port'] = [value] elif isinstance(value, list): self._gateway_kwargs['port'] = value # Flow is build to graph already if self._build_level >= FlowBuildLevel.GRAPH: self[GATEWAY_NAME].args.port = self._gateway_kwargs['port'] # Flow is running already, then close the existing gateway if self._build_level >= FlowBuildLevel.RUNNING: self[GATEWAY_NAME].close() self.enter_context(self[GATEWAY_NAME]) self[GATEWAY_NAME].wait_start_success() @property def host(self) -> str: """Return the local address of the gateway .. # noqa: DAR201 """ if GATEWAY_NAME in self._deployment_nodes: return self._deployment_nodes[GATEWAY_NAME].host else: return self._gateway_kwargs.get('host', __default_host__) @host.setter def host(self, value: str): """Set the new host of the Flow (affects Gateway and Client) :param value: the new port to expose """ self._gateway_kwargs['host'] = value # Flow is build to graph already if self._build_level >= FlowBuildLevel.GRAPH: self[GATEWAY_NAME].args.host = self._gateway_kwargs['host'] # Flow is running already, then close the existing gateway if self._build_level >= FlowBuildLevel.RUNNING: self[GATEWAY_NAME].close() self.enter_context(self[GATEWAY_NAME]) self[GATEWAY_NAME].wait_start_success() @property def monitoring(self) -> bool: """Return if the monitoring is enabled .. # noqa: DAR201 """ if GATEWAY_NAME in self._deployment_nodes: return self[GATEWAY_NAME].args.monitoring else: return False @property def port_monitoring(self) -> Optional[int]: """Return if the monitoring is enabled .. # noqa: DAR201 """ if GATEWAY_NAME in self._deployment_nodes: return self[GATEWAY_NAME].args.port_monitoring else: return self._gateway_kwargs.get('port_monitoring', None) def __iter__(self): return self._deployment_nodes.items().__iter__() def _get_summary_table(self, all_panels: List[Panel]): address_table = self._init_table() if not isinstance(self.protocol, list): _protocols = [str(self.protocol)] else: _protocols = [str(_p) for _p in self.protocol] if not isinstance(self.port, list): _ports = [self.port] else: _ports = [str(_p) for _p in self.port] swagger_ui_link = None redoc_link = None graphql_ui_link = None for _port, _protocol in zip(_ports, _protocols): if self.gateway_args.ssl_certfile and self.gateway_args.ssl_keyfile: _protocol = f'{_protocol}S' address_table.add_row( ':chains:', 'Protocol', f':closed_lock_with_key: {_protocol}' ) else: address_table.add_row(':chains:', 'Protocol', _protocol) _protocol = _protocol.lower() address_table.add_row( ':house:', 'Local', f'[link={_protocol}://{self.host}:{_port}]{self.host}:{_port}[/]', ) address_table.add_row( ':lock:', 'Private', f'[link={_protocol}://{self.address_private}:{_port}]{self.address_private}:{_port}[/]', ) if self.address_public: address_table.add_row( ':earth_africa:', 'Public', f'[link={_protocol}://{self.address_public}:{_port}]{self.address_public}:{_port}[/]', ) if _protocol.lower() == ProtocolType.HTTP.to_string().lower(): swagger_ui_link = f'[link={_protocol}://{self.host}:{_port}/docs]{self.host}:{_port}/docs' redoc_link = f'[link={_protocol}://{self.host}:{_port}/redoc]{self.host}:{_port}/redoc' graphql_ui_link = f'[link={_protocol}://{self.host}:{_port}/graphql]{self.host}:{_port}/graphql' all_panels.append( Panel( address_table, title=':link: [b]Endpoint[/]', expand=False, ) ) if ProtocolType.HTTP.to_string().lower() in [p.lower() for p in _protocols]: http_ext_table = self._init_table() _protocol = ProtocolType.HTTP.to_string() http_ext_table.add_row( ':speech_balloon:', 'Swagger UI', swagger_ui_link, ) http_ext_table.add_row(':books:', 'Redoc', redoc_link) if self.gateway_args.expose_graphql_endpoint: http_ext_table.add_row(':strawberry:', 'GraphQL UI', graphql_ui_link) all_panels.append( Panel( http_ext_table, title=':gem: [b]HTTP extension[/]', expand=False, ) ) if self.monitoring: monitor_ext_table = self._init_table() for name, deployment in self: if deployment.args.monitoring: for replica in deployment.pod_args['pods'][0]: _address = [ f'[link=http://localhost:{replica.port_monitoring}]Local[/]', f'[link=http://{self.address_private}:{replica.port_monitoring}]Private[/]', ] if self.address_public: _address.append( f'[link=http://{self.address_public}:{deployment.args.port_monitoring}]Public[/]' ) _name = ( name if len(deployment.pod_args['pods'][0]) == 1 else replica.name ) monitor_ext_table.add_row( ':flashlight:', # upstream issue: they dont have :torch: emoji, so we use :flashlight: # to represent observability of Prometheus (even they have :torch: it will be a war # between AI community and Cloud-native community fighting on this emoji) _name, f'...[b]:{replica.port_monitoring}[/]', ) all_panels.append( Panel( monitor_ext_table, title=':gem: [b]Prometheus extension[/]', expand=False, ) ) return all_panels @allowed_levels([FlowBuildLevel.RUNNING]) def block( self, stop_event: Optional[Union[threading.Event, multiprocessing.Event]] = None ): """Block the Flow until `stop_event` is set or user hits KeyboardInterrupt :param stop_event: a threading event or a multiprocessing event that onces set will resume the control Flow to main thread. """ def _reload_flow(changed_file): self.logger.info( f'change in Flow YAML {changed_file} observed, reloading Flow' ) self.__exit__(None, None, None) new_flow = Flow.load_config(changed_file) self.__dict__ = new_flow.__dict__ self.__enter__() def _reload_deployment(deployment, changed_file): self.logger.info( f'change in Executor configuration YAML {changed_file} observed, reloading Executor deployment' ) deployment.__exit__(None, None, None) old_args, old_needs = deployment.args, deployment.needs new_deployment = Deployment(old_args, old_needs, include_gateway=False) deployment.__dict__ = new_deployment.__dict__ deployment.__enter__() try: watch_changes = self.args.reload or any( [ deployment.args.reload for deployment in list(self._deployment_nodes.values()) ] ) watch_files_from_deployments = {} for name, deployment in self._deployment_nodes.items(): if deployment.args.reload: if deployment._is_executor_from_yaml: watch_files_from_deployments[deployment.args.uses] = name watch_files_list = list(watch_files_from_deployments.keys()) config_loaded = getattr(self, '_config_loaded', '') if config_loaded.endswith('yml') or config_loaded.endswith('yaml'): watch_files_list.append(config_loaded) if watch_changes and len(watch_files_list) > 0: with ImportExtensions( required=True, logger=self.logger, help_text='''reload requires watchfiles dependency to be installed. You can do `pip install watchfiles''', ): from watchfiles import watch new_stop_event = stop_event or threading.Event() if len(watch_files_list) > 0: for changes in watch(*watch_files_list, stop_event=new_stop_event): for _, changed_file in changes: if changed_file not in watch_files_from_deployments: # maybe changed_file is the absolute path of one in watch_files_from_deployments is_absolute_path = False for ( file, deployment_name, ) in watch_files_from_deployments.items(): if changed_file.endswith(file): is_absolute_path = True _reload_deployment( self._deployment_nodes[deployment_name], changed_file, ) break if not is_absolute_path: _reload_flow(changed_file) else: _reload_deployment( self._deployment_nodes[ watch_files_from_deployments[changed_file] ], changed_file, ) else: wait_event = stop_event if not wait_event: self._stop_event = threading.Event() wait_event = self._stop_event if not __windows__: wait_event.wait() else: while True: if wait_event.is_set(): break time.sleep(0.5) except KeyboardInterrupt: pass @property def protocol(self) -> Union[ProtocolType, List[ProtocolType]]: """Return the protocol of this Flow :return: the protocol of this Flow, if only 1 protocol is supported otherwise returns the list of protocols """ v = ( self._gateway_kwargs.get('protocol', None) or self._gateway_kwargs.get('protocols', None) or [ProtocolType.GRPC] ) if not isinstance(v, list): v = [v] v = ProtocolType.from_string_list(v) if len(v) == 1: return v[0] else: return v @protocol.setter def protocol( self, value: Union[str, ProtocolType, List[str], List[ProtocolType]], ): """Set the protocol of this Flow, can only be set before the Flow has been started :param value: the protocol to set """ # Flow is running already, protocol cant be changed anymore if self._build_level >= FlowBuildLevel.RUNNING: raise RuntimeError('Protocol can not be changed after the Flow has started') if isinstance(value, str): self._gateway_kwargs['protocol'] = [ProtocolType.from_string(value)] elif isinstance(value, ProtocolType): self._gateway_kwargs['protocol'] = [value] elif isinstance(value, list): self._gateway_kwargs['protocol'] = ProtocolType.from_string_list(value) else: raise TypeError( f'{value} must be either `str` or `ProtocolType` or list of protocols' ) # Flow is build to graph already if self._build_level >= FlowBuildLevel.GRAPH: self[GATEWAY_NAME].args.protocol = self._gateway_kwargs['protocol'] def __getitem__(self, item): if isinstance(item, str): return self._deployment_nodes[item] elif isinstance(item, int): return list(self._deployment_nodes.values())[item] else: raise TypeError(f'{typename(item)} is not supported') @property def workspace(self) -> str: """Return the workspace path of the flow. .. # noqa: DAR201""" if self.args.workspace is not None: return os.path.abspath(self.args.workspace) else: return None @workspace.setter def workspace(self, value: str): """set workspace dir for flow & all deployments :param value: workspace to be set """ self.args.workspace = value for k, p in self: p.args.workspace = value p.update_pod_args() @property def workspace_id(self) -> Dict[str, str]: """Get all Deployments' ``workspace_id`` values in a dict .. # noqa: DAR201""" return { k: p.args.workspace_id for k, p in self if hasattr(p.args, 'workspace_id') } @workspace_id.setter def workspace_id(self, value: str): """Set all Deployments' ``workspace_id`` to ``value`` :param value: a hexadecimal UUID string """ uuid.UUID(value) for k, p in self: if hasattr(p.args, 'workspace_id'): p.args.workspace_id = value args = getattr(p, 'pod_args', getattr(p, 'shards_args', None)) if args is None: raise ValueError( f'could not find "pod_args" or "shards_args" on {p}' ) values = None if isinstance(args, dict): values = args.values() elif isinstance(args, list): values = args for v in values: if v and isinstance(v, argparse.Namespace): v.workspace_id = value if v and isinstance(v, List): for i in v: i.workspace_id = value @property def env(self) -> Optional[Dict]: """Get all envs to be set in the Flow :return: envs as dict """ return self.args.env @env.setter def env(self, value: Dict[str, str]): """set env vars for flow & all deployments. This can be used by jinad to set envs for Flow and all child objects :param value: value to be set """ self.args.env = value for k, v in self: v.args.env = value v.update_pod_args() @overload def expose_endpoint(self, exec_endpoint: str, path: Optional[str] = None): """Expose an Executor's endpoint (defined by `@requests(on=...)`) to HTTP endpoint for easier access. After expose, you can send data request directly to `http://hostname:port/endpoint`. :param exec_endpoint: the endpoint string, by convention starts with `/` :param path: the HTTP endpoint string, when not given, it is `exec_endpoint` """ ... @overload def expose_endpoint( self, exec_endpoint: str, *, path: Optional[str] = None, status_code: int = 200, tags: Optional[List[str]] = None, summary: Optional[str] = None, description: Optional[str] = None, response_description: str = 'Successful Response', deprecated: Optional[bool] = None, methods: Optional[List[str]] = None, operation_id: Optional[str] = None, response_model_by_alias: bool = True, response_model_exclude_unset: bool = False, response_model_exclude_defaults: bool = False, response_model_exclude_none: bool = False, include_in_schema: bool = True, name: Optional[str] = None, ): """Expose an Executor's endpoint (defined by `@requests(on=...)`) to HTTP endpoint for easier access. After expose, you can send data request directly to `http://hostname:port/endpoint`. Use this method to specify your HTTP endpoint with richer semantic and schema. :param exec_endpoint: the endpoint string, by convention starts with `/` # noqa: DAR101 """ ... @allowed_levels([FlowBuildLevel.EMPTY]) def expose_endpoint(self, exec_endpoint: str, **kwargs): """Expose an Executor's endpoint (defined by `@requests(on=...)`) to HTTP endpoint for easier access. After expose, you can send data request directly to `http://hostname:port/endpoint`. :param exec_endpoint: the endpoint string, by convention starts with `/` # noqa: DAR101 # noqa: DAR102 """ self._endpoints_mapping[exec_endpoint] = kwargs def to_kubernetes_yaml( self, output_base_path: str, k8s_namespace: Optional[str] = None, include_gateway: bool = True, ): """ Converts the Flow into a set of yaml deployments to deploy in Kubernetes. If you don't want to rebuild image on Jina Hub, you can set `JINA_HUB_NO_IMAGE_REBUILD` environment variable. :param output_base_path: The base path where to dump all the yaml files :param k8s_namespace: The name of the k8s namespace to set for the configurations. If None, the name of the Flow will be used. :param include_gateway: Defines if the gateway deployment should be included, defaults to True """ if self._build_level.value < FlowBuildLevel.GRAPH.value: self.build(copy_flow=False) k8s_namespace = k8s_namespace or self.args.name or 'default' for node, v in self._deployment_nodes.items(): if node == 'gateway' and not include_gateway: continue deployment_base = os.path.join(output_base_path, node) v._to_kubernetes_yaml( deployment_base, k8s_namespace=k8s_namespace, k8s_deployments_addresses=self._get_k8s_deployments_addresses( k8s_namespace ), ) self.logger.info( f'K8s yaml files have been created under [b]{output_base_path}[/]. You can use it by running [b]kubectl apply -R -f {output_base_path}[/]' ) to_k8s_yaml = to_kubernetes_yaml def to_docker_compose_yaml( self, output_path: Optional[str] = None, network_name: Optional[str] = None, include_gateway: bool = True, ): """ Converts the Flow into a yaml file to run with `docker-compose up` :param output_path: The output path for the yaml file :param network_name: The name of the network that will be used by the deployment name :param include_gateway: Defines if the gateway deployment should be included, defaults to True """ import yaml if self._build_level.value < FlowBuildLevel.GRAPH.value: self.build(copy_flow=False) output_path = output_path or 'docker-compose.yml' network_name = network_name or 'jina-network' docker_compose_dict = { 'version': '3.3', 'networks': {network_name: {'driver': 'bridge'}}, } services = {} for node, v in self._deployment_nodes.items(): if v.external or (node == 'gateway' and not include_gateway): continue service_configs = v._to_docker_compose_config( deployments_addresses=self._get_docker_compose_deployments_addresses(), ) for service_name, service in service_configs: service['networks'] = [network_name] services[service_name] = service docker_compose_dict['services'] = services with open(output_path, 'w+', encoding='utf-8') as fp: yaml.dump(docker_compose_dict, fp, sort_keys=False) command = ( 'docker compose up' if output_path is None else f'docker compose -f {output_path} up' ) self.logger.info( f'Docker compose file has been created under [b]{output_path}[/b]. You can use it by running [b]{command}[/b]' ) @property def gateway_args(self) -> argparse.Namespace: """Get Gateway settings. # noqa: DAR201 """ return ArgNamespace.kwargs2namespace(self._gateway_kwargs, set_gateway_parser()) def _update_network_interface(self, **kwargs): """Update the network interface of this Flow (affects Gateway & Client) :param kwargs: new network settings """ self._gateway_kwargs.update(kwargs) # reset client self._client = None def __getattribute__(self, item): obj = super().__getattribute__(item) if ( item == 'load_config' and inspect.ismethod(obj) and obj.__self__ is Flow ): # check if obj load config call from an instance and not the Class warnings.warn( "Calling `load_config` from a Flow instance will override all of the instance's initial parameters. We recommend to use `Flow.load_config(...)` instead" ) return obj
Flow
python
weaviate__weaviate-python-client
weaviate/users/users.py
{ "start": 343, "end": 440 }
class ____: user_id: str role_names: List[str] user_type: UserTypes @dataclass
UserBase
python
plotly__plotly.py
plotly/graph_objs/scatterpolar/selected/_marker.py
{ "start": 233, "end": 3609 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "scatterpolar.selected" _path_str = "scatterpolar.selected.marker" _valid_props = {"color", "opacity", "size"} @property def color(self): """ Sets the marker color of selected points. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: see https://plotly.com/python/css-colors/ for a list Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val @property def opacity(self): """ Sets the marker opacity of selected points. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val @property def size(self): """ Sets the marker size of selected points. The 'size' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val @property def _prop_descriptions(self): return """\ color Sets the marker color of selected points. opacity Sets the marker opacity of selected points. size Sets the marker size of selected points. """ def __init__(self, arg=None, color=None, opacity=None, size=None, **kwargs): """ Construct a new Marker object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scatterpolar.selected.Marker` color Sets the marker color of selected points. opacity Sets the marker opacity of selected points. size Sets the marker size of selected points. Returns ------- Marker """ super().__init__("marker") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.scatterpolar.selected.Marker constructor must be a dict or an instance of :class:`plotly.graph_objs.scatterpolar.selected.Marker`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("color", arg, color) self._set_property("opacity", arg, opacity) self._set_property("size", arg, size) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Marker
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/constrainedTypeVar1.py
{ "start": 366, "end": 997 }
class ____(Generic[U]): def generic_func1(self, a: U, b: str = "", **kwargs: U) -> U: return a a1 = ClassA[str]() r1 = a1.generic_func1("hi") reveal_type(r1, expected_text="str") r2 = a1.generic_func1("hi", test="hi") reveal_type(r2, expected_text="str") # This should generate an error. r3 = a1.generic_func1("hi", test=3) reveal_type(r3, expected_text="str") # This should generate an error. r4 = a1.generic_func1("hi", 3) reveal_type(r4, expected_text="str") a2: ClassA[int] # This should generate an error. a3: ClassA[Never] ClassAAlias = ClassA[U] # This should generate an error. a4: ClassAAlias[Never]
ClassA
python
kamyu104__LeetCode-Solutions
Python/maximize-sum-of-at-most-k-distinct-elements.py
{ "start": 329, "end": 801 }
class ____(object): def maxKDistinct(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ min_heap = [] for x in set(nums): heapq.heappush(min_heap, x) if len(min_heap) == k+1: heapq.heappop(min_heap) result = [] while min_heap: result.append(heapq.heappop(min_heap)) result.reverse() return result
Solution2
python
huggingface__transformers
tests/models/internvl/test_modeling_internvl.py
{ "start": 25862, "end": 45440 }
class ____(unittest.TestCase): def setUp(self): self.small_model_checkpoint = "OpenGVLab/InternVL2_5-2B-MPO-hf" self.medium_model_checkpoint = "OpenGVLab/InternVL2_5-8B-MPO-hf" cleanup(torch_device, gc_collect=True) def tearDown(self): cleanup(torch_device, gc_collect=True) def test_llama_small_model_integration_generate(self): processor = AutoProcessor.from_pretrained(self.small_model_checkpoint) model = InternVLForConditionalGeneration.from_pretrained( self.small_model_checkpoint, device_map=torch_device, dtype=torch.float16 ) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) prompt = ( "<|im_start|>user\n<IMG_CONTEXT>\nPlease describe the image explicitly.<|im_end|>\n<|im_start|>assistant\n" ) inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) with torch.no_grad(): generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False) decoded_output = processor.decode( generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True ) expected_output = "The image shows two cats sleeping on a pink couch. They are lying side by side, with their" self.assertEqual(decoded_output, expected_output) def test_llama_small_model_integration_forward(self): processor = AutoProcessor.from_pretrained(self.small_model_checkpoint) model = InternVLForConditionalGeneration.from_pretrained( self.small_model_checkpoint, device_map=torch_device, dtype=torch.float16 ) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) prompt = ( "<|im_start|>user\n<IMG_CONTEXT>\nPlease describe the image explicitly.<|im_end|>\n<|im_start|>assistant\n" ) inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) # Forward with torch.inference_mode(): output = model(**inputs) actual_logits = output.logits[0, -1, :5].cpu() expected_logits_all = Expectations( { ("xpu", 3): [-9.8828, -0.4954, 1.4561, -10.3438, -10.3438], ("cuda", 7): [-9.8750, -0.4861, 1.4648, -10.3359, -10.3359], ("cuda", 8): [-9.8906, -0.4995, 1.4473, -10.3359, -10.3438], ("rocm", (9, 4)): [ -9.8828, -0.5005, 1.4697, -10.3438, -10.3438], ("rocm", (9, 5)): [ -9.8906, -0.4976, 1.4502, -10.3359, -10.3438], } ) # fmt: skip expected_logits = torch.tensor(expected_logits_all.get_expectation(), dtype=torch.float16) # The original implementation and the transformers implementation do not match exactly, hence the higher tolerance. # The difference is likely due to the different implementations of the attention mechanism (different order of operations) # between the transformers Llama model and the original InternLM model. # The difference has almost no effect on the output tokens, but it does affect the logits a lot more. self.assertTrue( torch.allclose(actual_logits, expected_logits, atol=1e-3), f"Actual logits: {actual_logits}" f"\nExpected logits: {expected_logits}" f"\nDifference: {torch.abs(actual_logits - expected_logits)}", ) def test_llama_small_model_integration_generate_text_only(self): processor = AutoProcessor.from_pretrained(self.small_model_checkpoint) model = InternVLForConditionalGeneration.from_pretrained( self.small_model_checkpoint, device_map=torch_device, dtype=torch.float16 ) prompt = "<|im_start|>user\nWrite a haiku<|im_end|>\n<|im_start|>assistant\n" inputs = processor(text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) with torch.no_grad(): generate_ids = model.generate(**inputs, max_new_tokens=200, do_sample=False) decoded_output = processor.decode( generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True ) expected_outputs = Expectations( { ("xpu", 3): "Autumn leaves fall,\nNature's breath, a season's sigh,\nSilent woods awake.", ("cuda", 7): "Autumn leaves fall,\nNature's breath, a gentle sigh,\nSilent whispers.", ("cuda", 8): "Autumn leaves fall,\nNature's breath, a silent sigh,\nWinter's chill approaches.", } ) expected_output = expected_outputs.get_expectation() self.assertEqual(decoded_output, expected_output) def test_llama_small_model_integration_generate_chat_template(self): processor = AutoProcessor.from_pretrained(self.small_model_checkpoint) model = InternVLForConditionalGeneration.from_pretrained( self.small_model_checkpoint, device_map=torch_device, dtype=torch.float16 ) messages = [ { "role": "user", "content": [ {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"}, {"type": "text", "text": "Please describe the image explicitly."}, ], } ] inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(torch_device, dtype=torch.float16) with torch.no_grad(): generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False) decoded_output = processor.decode( generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True ) expected_output = "The image shows two cats sleeping on a pink couch. They are lying side by side, with their" self.assertEqual(decoded_output, expected_output) def test_llama_small_model_integration_batched_generate(self): processor = AutoProcessor.from_pretrained(self.small_model_checkpoint) model = InternVLForConditionalGeneration.from_pretrained( self.small_model_checkpoint, device_map=torch_device, dtype=torch.float16 ) # Prepare inputs prompt = [ "<|im_start|>user\n<IMG_CONTEXT>\nWrite a haiku for this image<|im_end|>\n<|im_start|>assistant\n", "<|im_start|>user\n<IMG_CONTEXT>\nDescribe this image<|im_end|>\n<|im_start|>assistant\n", ] image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw) image2 = Image.open( requests.get( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg", stream=True, ).raw ) inputs = processor(text=prompt, images=[[image1], [image2]], padding=True, return_tensors="pt").to( torch_device, dtype=torch.float16 ) output = model.generate(**inputs, do_sample=False, max_new_tokens=25) # Check first output decoded_output = processor.decode(output[0], skip_special_tokens=True) expected_outputs = Expectations( { ("xpu", 3): "user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.", ("cuda", 7): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.', ("cuda", 8): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.', } ) # fmt: skip expected_output = expected_outputs.get_expectation() self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", ) # Check second output decoded_output = processor.decode(output[1], skip_special_tokens=True) expected_output = "user\n\nDescribe this image\nassistant\nThe image shows a street scene with a traditional Chinese gate in the background, adorned with red and gold colors and Chinese characters" self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", ) def test_llama_small_model_integration_batched_generate_multi_image(self): processor = AutoProcessor.from_pretrained(self.small_model_checkpoint) model = InternVLForConditionalGeneration.from_pretrained( self.small_model_checkpoint, device_map=torch_device, dtype=torch.float16 ) # Prepare inputs prompt = [ "<|im_start|>user\n<IMG_CONTEXT>\nWrite a haiku for this image<|im_end|>\n<|im_start|>assistant\n", "<|im_start|>user\n<IMG_CONTEXT><IMG_CONTEXT>\nWhat are the difference between these two images?<|im_end|>\n<|im_start|>assistant\n", ] image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw) image2 = Image.open( BytesIO( requests.get( "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" ).content ) ) image3 = Image.open( BytesIO( requests.get( "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg" ).content ) ) inputs = processor(text=prompt, images=[[image1], [image2, image3]], padding=True, return_tensors="pt").to( torch_device, dtype=torch.float16 ) output = model.generate(**inputs, do_sample=False, max_new_tokens=25) # Check first output decoded_output = processor.decode(output[0], skip_special_tokens=True) # Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232 expected_output = "user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors." self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", ) # Check second output decoded_output = processor.decode(output[1], skip_special_tokens=True) expected_output = "user\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. After closely examining the images again, I can see that there are several differences" self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", ) @require_av @require_bitsandbytes def test_llama_medium_model_integration_video(self): processor = AutoProcessor.from_pretrained(self.medium_model_checkpoint) quantization_config = BitsAndBytesConfig(load_in_4bit=True) model = InternVLForConditionalGeneration.from_pretrained( self.medium_model_checkpoint, quantization_config=quantization_config ) # Prepare inputs messages = [ { "role": "user", "content": [ { "type": "video", "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4", }, {"type": "text", "text": "What type of shot is the man performing?"}, ], } ] inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", num_frames=8, ).to(torch_device, dtype=torch.float16) output = model.generate(**inputs, do_sample=False, max_new_tokens=25) decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True) expected_output = "The man is performing a forehand shot." self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", ) @require_av def test_llama_small_model_integration_interleaved_images_videos(self): processor = AutoProcessor.from_pretrained(self.small_model_checkpoint) model = InternVLForConditionalGeneration.from_pretrained( self.small_model_checkpoint, dtype=torch.float16, device_map=torch_device ) messages = [ [ { "role": "user", "content": [ { "type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg", }, { "type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg", }, {"type": "text", "text": "What are the difference between these two images?"}, ], }, ], [ { "role": "user", "content": [ { "type": "video", "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4", }, {"type": "text", "text": "What type of shot is the man performing?"}, ], }, ], [ { "role": "user", "content": [ { "type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg", }, {"type": "text", "text": "Write a haiku for this image"}, ], } ], ] inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", padding=True, num_frames=8, ).to(torch_device, dtype=torch.float16) output = model.generate(**inputs, do_sample=False, max_new_tokens=25) decoded_output = processor.decode(output[0], skip_special_tokens=True) # Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232 expected_outputs = Expectations( { ("xpu", 3): "user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. Upon closer inspection, the differences between the two images are:\n\n1. **", ("cuda", 7): 'user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. Upon closer inspection, the differences between the two images are:\n\n1. **', ("cuda", 8): 'user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. After re-examining the images, I can see that there are no', ("rocm", (9, 4)): 'user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. Upon closer inspection, the differences between the two images are:\n\n1. **', ("rocm", (9, 5)): 'user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. After re-examining the images, I can see that there are no', } ) # fmt: skip expected_output = expected_outputs.get_expectation() self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", ) # Check second output decoded_output = processor.decode(output[1], skip_special_tokens=True) expected_outputs = Expectations( { ("xpu", 3): "user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nThe man is performing a forehand shot. This is a common stroke in tennis where the player swings the racket across their", ("cuda", 7): 'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nThe man is performing a forehand shot. This is a common stroke in tennis where the player swings the racket across their', ("cuda", 8): 'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nThe man is performing a forehand shot. This is a common stroke in tennis where the player swings the racket across their', } ) # fmt: skip expected_output = expected_outputs.get_expectation() self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", ) # Check third output decoded_output = processor.decode(output[2], skip_special_tokens=True) expected_outputs = Expectations( { ("xpu", 3): "user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.", ("cuda", 7): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.', ("cuda", 8): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.', } ) # fmt: skip expected_output = expected_outputs.get_expectation() self.assertEqual( decoded_output, expected_output, f"Decoded output: {decoded_output}\nExpected output: {expected_output}", )
InternVLLlamaIntegrationTest
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/pydocstyle/D.py
{ "start": 11994, "end": 14791 }
class ____: # noqa: D203,D213 """A Blah. Parameters ---------- x : int """ def __init__(self, x): pass expect(os.path.normcase(__file__ if __file__[-1] != 'c' else __file__[:-1]), 'D100: Missing docstring in public module') @expect('D201: No blank lines allowed before function docstring (found 1)') @expect('D213: Multi-line docstring summary should start at the second line') def multiline_leading_space(): """Leading space. More content. """ @expect('D202: No blank lines allowed after function docstring (found 1)') @expect('D213: Multi-line docstring summary should start at the second line') def multiline_trailing_space(): """Leading space. More content. """ pass @expect('D201: No blank lines allowed before function docstring (found 1)') @expect('D202: No blank lines allowed after function docstring (found 1)') @expect('D213: Multi-line docstring summary should start at the second line') def multiline_trailing_and_leading_space(): """Trailing and leading space. More content. """ pass @expect('D210: No whitespaces allowed surrounding docstring text') @expect("D400: First line should end with a period (not '\"')") @expect("D415: First line should end with a period, question mark, " "or exclamation point (not '\"')") def endswith_quote(): """Whitespace at the end, but also a quote" """ @expect('D209: Multi-line docstring closing quotes should be on a separate ' 'line') @expect('D213: Multi-line docstring summary should start at the second line') def asdfljdjgf24(): """Summary. Description. """ @expect('D200: One-line docstring should fit on one line with quotes ' '(found 3)') @expect('D212: Multi-line docstring summary should start at the first line') def one_liner(): """ Wrong.""" @expect('D200: One-line docstring should fit on one line with quotes ' '(found 3)') @expect('D212: Multi-line docstring summary should start at the first line') def one_liner(): r"""Wrong. """ @expect('D200: One-line docstring should fit on one line with quotes ' '(found 3)') @expect('D212: Multi-line docstring summary should start at the first line') def one_liner(): """Wrong." """ @expect('D200: One-line docstring should fit on one line with quotes ' '(found 3)') @expect('D212: Multi-line docstring summary should start at the first line') def one_liner(): """ "Wrong.""" @expect('D404: First word of the docstring should not be "This"') def starts_with_this(): """This is a docstring.""" @expect('D404: First word of the docstring should not be "This"') def starts_with_space_then_this(): """ This is a docstring that starts with a space.""" # noqa: D210
Blah
python
streamlit__streamlit
lib/streamlit/runtime/scriptrunner_utils/script_requests.py
{ "start": 5876, "end": 12776 }
class ____: """An interface for communicating with a ScriptRunner. Thread-safe. AppSession makes requests of a ScriptRunner through this class, and ScriptRunner handles those requests. """ def __init__(self) -> None: self._lock = threading.Lock() self._state = ScriptRequestType.CONTINUE self._rerun_data = RerunData() def request_stop(self) -> None: """Request that the ScriptRunner stop running. A stopped ScriptRunner can't be used anymore. STOP requests succeed unconditionally. """ with self._lock: self._state = ScriptRequestType.STOP def request_rerun(self, new_data: RerunData) -> bool: """Request that the ScriptRunner rerun its script. If the ScriptRunner has been stopped, this request can't be honored: return False. Otherwise, record the request and return True. The ScriptRunner will handle the rerun request as soon as it reaches an interrupt point. """ with self._lock: if self._state == ScriptRequestType.STOP: # We can't rerun after being stopped. return False if self._state == ScriptRequestType.CONTINUE: # The script is currently running, and we haven't received a request to # rerun it as of yet. We can handle a rerun request unconditionally so # just change self._state and set self._rerun_data. self._state = ScriptRequestType.RERUN # Convert from a single fragment_id into fragment_id_queue. if new_data.fragment_id: new_data = replace( new_data, fragment_id=None, fragment_id_queue=[new_data.fragment_id], ) self._rerun_data = new_data return True if self._state == ScriptRequestType.RERUN: # We already have an existing Rerun request, so we can coalesce the new # rerun request into the existing one. coalesced_states = _coalesce_widget_states( self._rerun_data.widget_states, new_data.widget_states ) if new_data.fragment_id: # This RERUN request corresponds to a new fragment run. We append # the new fragment ID to the end of the current fragment_id_queue if # it isn't already contained in it. fragment_id_queue = [*self._rerun_data.fragment_id_queue] if new_data.fragment_id not in fragment_id_queue: fragment_id_queue.append(new_data.fragment_id) elif new_data.fragment_id_queue: # new_data contains a new fragment_id_queue, so we just use it. fragment_id_queue = new_data.fragment_id_queue else: # Otherwise, this is a request to rerun the full script, so we want # to clear out any fragments we have queued to run since they'll all # be run with the full script anyway. fragment_id_queue = [] self._rerun_data = RerunData( query_string=new_data.query_string, widget_states=coalesced_states, page_script_hash=new_data.page_script_hash, page_name=new_data.page_name, fragment_id_queue=fragment_id_queue, cached_message_hashes=new_data.cached_message_hashes, is_fragment_scoped_rerun=new_data.is_fragment_scoped_rerun, is_auto_rerun=new_data.is_auto_rerun, context_info=new_data.context_info, ) return True # We'll never get here raise RuntimeError(f"Unrecognized ScriptRunnerState: {self._state}") def on_scriptrunner_yield(self) -> ScriptRequest | None: """Called by the ScriptRunner when it's at a yield point. If we have no request or a RERUN request corresponding to one or more fragments (that is not a fragment-scoped rerun), return None. If we have a (full script or fragment-scoped) RERUN request, return the request and set our internal state to CONTINUE. If we have a STOP request, return the request and remain stopped. """ if self._state == ScriptRequestType.CONTINUE or ( self._state == ScriptRequestType.RERUN and _fragment_run_should_not_preempt_script( self._rerun_data.fragment_id_queue, self._rerun_data.is_fragment_scoped_rerun, ) ): # We avoid taking the lock in the common cases described above. If a STOP or # preempting RERUN request is received after we've taken this code path, it # will be handled at the next `on_scriptrunner_yield`, or when # `on_scriptrunner_ready` is called. return None with self._lock: if self._state == ScriptRequestType.RERUN: # We already made this check in the fast-path above but need to do so # again in case our state changed while we were waiting on the lock. if _fragment_run_should_not_preempt_script( self._rerun_data.fragment_id_queue, self._rerun_data.is_fragment_scoped_rerun, ): return None self._state = ScriptRequestType.CONTINUE return ScriptRequest(ScriptRequestType.RERUN, self._rerun_data) if self._state != ScriptRequestType.STOP: raise RuntimeError( f"Unrecognized ScriptRunnerState: {self._state}. This should never happen." ) return ScriptRequest(ScriptRequestType.STOP) def on_scriptrunner_ready(self) -> ScriptRequest: """Called by the ScriptRunner when it's about to run its script for the first time, and also after its script has successfully completed. If we have a RERUN request, return the request and set our internal state to CONTINUE. If we have a STOP request or no request, set our internal state to STOP. """ with self._lock: if self._state == ScriptRequestType.RERUN: self._state = ScriptRequestType.CONTINUE return ScriptRequest(ScriptRequestType.RERUN, self._rerun_data) # If we don't have a rerun request, unconditionally change our # state to STOP. self._state = ScriptRequestType.STOP return ScriptRequest(ScriptRequestType.STOP)
ScriptRequests
python
Farama-Foundation__Gymnasium
tests/vector/testing_utils.py
{ "start": 3103, "end": 4698 }
class ____(gym.Env): """An environment with custom spaces for observation and action spaces.""" def __init__(self): """Initialise the environment.""" super().__init__() self.observation_space = CustomSpace() self.action_space = CustomSpace() def reset(self, *, seed: int | None = None, options: dict | None = None): """Resets the environment.""" super().reset(seed=seed) return "reset", {} def step(self, action): """Steps through the environment.""" observation = f"step({action:s})" reward, terminated, truncated = 0.0, False, False return observation, reward, terminated, truncated, {} def make_env(env_name, seed, **kwargs): """Creates an environment.""" def _make(): env = gym.make(env_name, disable_env_checker=True, **kwargs) env.action_space.seed(seed) env.reset(seed=seed) return env return _make def make_slow_env(slow_reset, seed): """Creates an environment with slow reset.""" def _make(): env = SlowEnv(slow_reset=slow_reset) env.reset(seed=seed) return env return _make def make_custom_space_env(seed): """Creates a custom space environment.""" def _make(): env = CustomSpaceEnv() env.reset(seed=seed) return env return _make def assert_rng_equal(rng_1: np.random.Generator, rng_2: np.random.Generator): """Tests whether two random number generators are equal.""" assert rng_1.bit_generator.state == rng_2.bit_generator.state
CustomSpaceEnv
python
great-expectations__great_expectations
docs/sphinx_api_docs_source/public_api_report.py
{ "start": 3886, "end": 8049 }
class ____: """Parse examples from docs to find classes, methods and functions used.""" def __init__(self, file_contents: Set[FileContents]) -> None: self.file_contents = file_contents def get_names_from_usage_in_docs_examples(self) -> Set[str]: """Get names in docs examples of classes, methods and functions used. Usages are retrieved from imports and function / method calls. Returns: Names of classes, methods and functions as a set of strings. """ all_usages = set() for file_contents in self.file_contents: file_usages = self._get_names_of_all_usages_in_file( file_contents=file_contents ) all_usages |= file_usages return all_usages def _get_names_of_all_usages_in_file(self, file_contents: FileContents) -> Set[str]: """Retrieve the names of all class, method + functions used in file_contents.""" tree = ast.parse(file_contents.contents) function_calls = self._get_all_function_calls(tree=tree) function_names = self._get_non_private_function_names(calls=function_calls) logger.debug(f"function_names: {function_names}") gx_imports = self._list_all_gx_imports(tree=tree) import_names = self._get_non_private_gx_import_names(imports=gx_imports) logger.debug(f"import_names: {import_names}") pattern = re.compile(r"class_name: (\w+)") matches = re.finditer(pattern, file_contents.contents) yaml_names = {m.group(1) for m in matches} return function_names | import_names | yaml_names def _list_all_gx_imports( self, tree: ast.AST ) -> List[Union[ast.Import, ast.ImportFrom]]: """Get all the GX related imports in an ast tree.""" imports: List[Union[ast.Import, ast.ImportFrom]] = [] for node in ast.walk(tree): node_is_imported_from_gx = isinstance( node, ast.ImportFrom ) and node.module.startswith( # type: ignore[union-attr] "great_expectations" ) node_is_gx_import = isinstance(node, ast.Import) and any( n.name.startswith("great_expectations") for n in node.names ) if node_is_imported_from_gx: cast("ast.ImportFrom", node) imports.append(node) # type: ignore[arg-type] elif node_is_gx_import: cast("ast.Import", node) imports.append(node) # type: ignore[arg-type] return imports def _get_non_private_gx_import_names( self, imports: List[Union[ast.Import, ast.ImportFrom]] ) -> Set[str]: """From ast trees, get names of all non private GX related imports.""" names = [] for import_ in imports: if not isinstance(import_, (ast.Import, ast.ImportFrom)): raise TypeError( # noqa: TRY003 f"`imports` should only contain ast.Import, ast.ImportFrom types, you provided {type(import_)}" ) # Generally there is only 1 alias, # but we add all names if there are multiple aliases to be safe. names.extend([n.name for n in import_.names if not n.name.startswith("_")]) return set(names) def _get_all_function_calls(self, tree: ast.AST) -> List[ast.Call]: """Get all the function calls from an ast tree.""" calls = [] for node in ast.walk(tree): if isinstance(node, ast.Call): calls.append(node) return calls def _get_non_private_function_names(self, calls: List[ast.Call]) -> Set[str]: """Get function names that are not private from ast.Call objects.""" names = [] for call in calls: name = None if isinstance(call.func, ast.Attribute): name = call.func.attr elif isinstance(call.func, ast.Name): name = call.func.id if name and not name.startswith("_"): names.append(name) return set(names)
DocsExampleParser
python
PrefectHQ__prefect
src/prefect/settings/models/cloud.py
{ "start": 719, "end": 2171 }
class ____(PrefectBaseSettings): """ Settings for interacting with Prefect Cloud """ model_config: ClassVar[SettingsConfigDict] = build_settings_config(("cloud",)) api_url: str = Field( default="https://api.prefect.cloud/api", description="API URL for Prefect Cloud. Used for authentication with Prefect Cloud.", ) enable_orchestration_telemetry: bool = Field( default=True, description="Whether or not to enable orchestration telemetry.", ) max_log_size: int = Field( default=25_000, description="Maximum size in characters for a single log when sending logs to Prefect Cloud.", ) ui_url: Optional[str] = Field( default=None, description="The URL of the Prefect Cloud UI. If not set, the client will attempt to infer it.", ) @model_validator(mode="after") def post_hoc_settings(self) -> Self: """refactor on resolution of https://github.com/pydantic/pydantic/issues/9789 we should not be modifying __pydantic_fields_set__ directly, but until we can define dependencies between defaults in a first-class way, we need clean up post-hoc default assignments to keep set/unset fields correct after instantiation. """ if self.ui_url is None: self.ui_url = default_cloud_ui_url(self) self.__pydantic_fields_set__.remove("ui_url") return self
CloudSettings
python
doocs__leetcode
solution/1800-1899/1814.Count Nice Pairs in an Array/Solution.py
{ "start": 0, "end": 349 }
class ____: def countNicePairs(self, nums: List[int]) -> int: def rev(x): y = 0 while x: y = y * 10 + x % 10 x //= 10 return y cnt = Counter(x - rev(x) for x in nums) mod = 10**9 + 7 return sum(v * (v - 1) // 2 for v in cnt.values()) % mod
Solution
python
pypa__pip
src/pip/_vendor/urllib3/request.py
{ "start": 213, "end": 6691 }
class ____(object): """ Convenience mixin for classes who implement a :meth:`urlopen` method, such as :class:`urllib3.HTTPConnectionPool` and :class:`urllib3.PoolManager`. Provides behavior for making common types of HTTP request methods and decides which type of request field encoding to use. Specifically, :meth:`.request_encode_url` is for sending requests whose fields are encoded in the URL (such as GET, HEAD, DELETE). :meth:`.request_encode_body` is for sending requests whose fields are encoded in the *body* of the request using multipart or www-form-urlencoded (such as for POST, PUT, PATCH). :meth:`.request` is for making any kind of request, it will look up the appropriate encoding format and use one of the above two methods to make the request. Initializer parameters: :param headers: Headers to include with all requests, unless other headers are given explicitly. """ _encode_url_methods = {"DELETE", "GET", "HEAD", "OPTIONS"} def __init__(self, headers=None): self.headers = headers or {} def urlopen( self, method, url, body=None, headers=None, encode_multipart=True, multipart_boundary=None, **kw ): # Abstract raise NotImplementedError( "Classes extending RequestMethods must implement " "their own ``urlopen`` method." ) def request(self, method, url, fields=None, headers=None, **urlopen_kw): """ Make a request using :meth:`urlopen` with the appropriate encoding of ``fields`` based on the ``method`` used. This is a convenience method that requires the least amount of manual effort. It can be used in most situations, while still having the option to drop down to more specific methods when necessary, such as :meth:`request_encode_url`, :meth:`request_encode_body`, or even the lowest level :meth:`urlopen`. """ method = method.upper() urlopen_kw["request_url"] = url if method in self._encode_url_methods: return self.request_encode_url( method, url, fields=fields, headers=headers, **urlopen_kw ) else: return self.request_encode_body( method, url, fields=fields, headers=headers, **urlopen_kw ) def request_encode_url(self, method, url, fields=None, headers=None, **urlopen_kw): """ Make a request using :meth:`urlopen` with the ``fields`` encoded in the url. This is useful for request methods like GET, HEAD, DELETE, etc. """ if headers is None: headers = self.headers extra_kw = {"headers": headers} extra_kw.update(urlopen_kw) if fields: url += "?" + urlencode(fields) return self.urlopen(method, url, **extra_kw) def request_encode_body( self, method, url, fields=None, headers=None, encode_multipart=True, multipart_boundary=None, **urlopen_kw ): """ Make a request using :meth:`urlopen` with the ``fields`` encoded in the body. This is useful for request methods like POST, PUT, PATCH, etc. When ``encode_multipart=True`` (default), then :func:`urllib3.encode_multipart_formdata` is used to encode the payload with the appropriate content type. Otherwise :func:`urllib.parse.urlencode` is used with the 'application/x-www-form-urlencoded' content type. Multipart encoding must be used when posting files, and it's reasonably safe to use it in other times too. However, it may break request signing, such as with OAuth. Supports an optional ``fields`` parameter of key/value strings AND key/filetuple. A filetuple is a (filename, data, MIME type) tuple where the MIME type is optional. For example:: fields = { 'foo': 'bar', 'fakefile': ('foofile.txt', 'contents of foofile'), 'realfile': ('barfile.txt', open('realfile').read()), 'typedfile': ('bazfile.bin', open('bazfile').read(), 'image/jpeg'), 'nonamefile': 'contents of nonamefile field', } When uploading a file, providing a filename (the first parameter of the tuple) is optional but recommended to best mimic behavior of browsers. Note that if ``headers`` are supplied, the 'Content-Type' header will be overwritten because it depends on the dynamic random boundary string which is used to compose the body of the request. The random boundary string can be explicitly set with the ``multipart_boundary`` parameter. """ if headers is None: headers = self.headers extra_kw = {"headers": {}} if fields: if "body" in urlopen_kw: raise TypeError( "request got values for both 'fields' and 'body', can only specify one." ) if encode_multipart: body, content_type = encode_multipart_formdata( fields, boundary=multipart_boundary ) else: body, content_type = ( urlencode(fields), "application/x-www-form-urlencoded", ) extra_kw["body"] = body extra_kw["headers"] = {"Content-Type": content_type} extra_kw["headers"].update(headers) extra_kw.update(urlopen_kw) return self.urlopen(method, url, **extra_kw) if not six.PY2: class RequestModule(sys.modules[__name__].__class__): def __call__(self, *args, **kwargs): """ If user tries to call this module directly urllib3 v2.x style raise an error to the user suggesting they may need urllib3 v2 """ raise TypeError( "'module' object is not callable\n" "urllib3.request() method is not supported in this release, " "upgrade to urllib3 v2 to use it\n" "see https://urllib3.readthedocs.io/en/stable/v2-migration-guide.html" ) sys.modules[__name__].__class__ = RequestModule
RequestMethods
python
readthedocs__readthedocs.org
readthedocs/core/db.py
{ "start": 158, "end": 1011 }
class ____: """ Router to map Django applications to a specific database. :py:attr:`apps_to_db` is used to map an application to a database, if an application isn't listed here, it will use the ``default`` database. """ def __init__(self): self.apps_to_db = defaultdict(lambda: "default") self.apps_to_db.update({"telemetry": "telemetry"}) def db_for_read(self, model, **hints): return self.apps_to_db[model._meta.app_label] def db_for_write(self, model, **hints): return self.apps_to_db[model._meta.app_label] def allow_relation(self, obj1, obj2, **hints): return self.apps_to_db[obj1._meta.app_label] == self.apps_to_db[obj2._meta.app_label] def allow_migrate(self, db, app_label, model_name=None, **hints): return self.apps_to_db[app_label] == db
MapAppsRouter
python
django-haystack__django-haystack
haystack/views.py
{ "start": 4355, "end": 6902 }
class ____(SearchView): def __init__(self, *args, **kwargs): # Needed to switch out the default form class. if kwargs.get("form_class") is None: kwargs["form_class"] = FacetedSearchForm super().__init__(*args, **kwargs) def build_form(self, form_kwargs=None): if form_kwargs is None: form_kwargs = {} # This way the form can always receive a list containing zero or more # facet expressions: form_kwargs["selected_facets"] = self.request.GET.getlist("selected_facets") return super().build_form(form_kwargs) def extra_context(self): extra = super().extra_context() extra["request"] = self.request extra["facets"] = self.results.facet_counts() return extra def basic_search( request, template="search/search.html", load_all=True, form_class=ModelSearchForm, searchqueryset=None, extra_context=None, results_per_page=None, ): """ A more traditional view that also demonstrate an alternative way to use Haystack. Useful as an example of for basing heavily custom views off of. Also has the benefit of thread-safety, which the ``SearchView`` class may not be. Template:: ``search/search.html`` Context:: * form An instance of the ``form_class``. (default: ``ModelSearchForm``) * page The current page of search results. * paginator A paginator instance for the results. * query The query received by the form. """ query = "" results = EmptySearchQuerySet() if request.GET.get("q"): form = form_class(request.GET, searchqueryset=searchqueryset, load_all=load_all) if form.is_valid(): query = form.cleaned_data["q"] results = form.search() else: form = form_class(searchqueryset=searchqueryset, load_all=load_all) paginator = Paginator(results, results_per_page or RESULTS_PER_PAGE) try: page = paginator.page(int(request.GET.get("page", 1))) except InvalidPage: raise Http404("No such page of results!") context = { "form": form, "page": page, "paginator": paginator, "query": query, "suggestion": None, } if results.query.backend.include_spelling: context["suggestion"] = form.get_suggestion() if extra_context: context.update(extra_context) return render(request, template, context)
FacetedSearchView
python
pytorch__pytorch
torch/testing/_internal/common_quantization.py
{ "start": 74314, "end": 74833 }
class ____(torch.nn.Module): def __init__(self) -> None: super().__init__() self.fc1 = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Conv2d(5, 5, 1).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x def get_example_inputs(self) -> tuple[Any, ...]: return (torch.rand(1, 3, 5, 5),) # TODO: self.fc should be self.conv
ConvReluConvModel
python
ray-project__ray
python/ray/llm/_internal/common/utils/cloud_utils.py
{ "start": 1008, "end": 1093 }
class ____(BaseModelExtended): bucket_uri: str destination_path: str
ExtraFiles
python
tiangolo__fastapi
docs_src/response_model/tutorial001_py39.py
{ "start": 109, "end": 556 }
class ____(BaseModel): name: str description: Union[str, None] = None price: float tax: Union[float, None] = None tags: list[str] = [] @app.post("/items/", response_model=Item) async def create_item(item: Item) -> Any: return item @app.get("/items/", response_model=list[Item]) async def read_items() -> Any: return [ {"name": "Portal Gun", "price": 42.0}, {"name": "Plumbus", "price": 32.0}, ]
Item
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/typeNarrowingIsinstance6.py
{ "start": 1731, "end": 1980 }
class ____(ParentD[int]): ... def func7(a: ParentD[_T1]) -> _T1 | None: if isinstance(a, ChildD1): reveal_type(a, expected_text="ChildD1[_T1@func7]") elif isinstance(a, ChildD2): reveal_type(a, expected_text="ChildD2")
ChildD2
python
great-expectations__great_expectations
tests/datasource/fluent/test_sql_datasources.py
{ "start": 3459, "end": 14115 }
class ____: def test_kwargs_passed_to_create_engine( self, create_engine_spy: mock.MagicMock, # noqa: TID251 # FIXME CoP monkeypatch: pytest.MonkeyPatch, ephemeral_context_with_defaults: EphemeralDataContext, ds_kwargs: dict, filter_gx_datasource_warnings: None, ): monkeypatch.setenv("MY_CONN_STR", "sqlite:///") context = ephemeral_context_with_defaults ds = context.data_sources.add_or_update_sql(name="my_datasource", **ds_kwargs) print(ds) ds.test_connection() create_engine_spy.assert_called_once_with( "sqlite:///", **{ **ds.dict(include={"kwargs"}, exclude_unset=False)["kwargs"], **ds_kwargs.get("kwargs", {}), }, ) def test_ds_config_passed_to_gx_sqlalchemy_execution_engine( self, gx_sqlalchemy_execution_engine_spy: mock.MagicMock, # noqa: TID251 # FIXME CoP monkeypatch: pytest.MonkeyPatch, ephemeral_context_with_defaults: EphemeralDataContext, ds_kwargs: dict, filter_gx_datasource_warnings: None, ): monkeypatch.setenv("MY_CONN_STR", "sqlite:///") context = ephemeral_context_with_defaults ds = context.data_sources.add_or_update_sql(name="my_datasource", **ds_kwargs) print(ds) gx_execution_engine: SqlAlchemyExecutionEngine = ds.get_execution_engine() print(f"{gx_execution_engine=}") expected_args: dict[str, Any] = { # kwargs that we expect are passed to SqlAlchemyExecutionEngine # including datasource field default values **ds.dict( exclude_unset=False, exclude={"kwargs", *ds_kwargs.keys(), *ds._get_exec_engine_excludes()}, ), **{k: v for k, v in ds_kwargs.items() if k not in ["kwargs"]}, **ds_kwargs.get("kwargs", {}), # config substitution should have been performed **ds.dict(include={"connection_string"}, config_provider=ds._config_provider), } assert "create_temp_table" in expected_args print(f"\nExpected SqlAlchemyExecutionEngine arguments:\n{pf(expected_args)}") gx_sqlalchemy_execution_engine_spy.assert_called_once_with(**expected_args) @pytest.mark.unit def test_table_quoted_name_type_does_not_exist( mocker, ): """ DBMS entity names (table, column, etc.) must adhere to correct case insensitivity standards. All upper case is standard for Oracle, DB2, and Snowflake, while all lowercase is standard for SQLAlchemy; hence, proper conversion to quoted names must occur. This test ensures that mechanism for detection of non-existent table_nam" works correctly. """ # noqa: E501 # FIXME CoP table_names_in_dbms_schema: list[str] = [ "table_name_0", "table_name_1", "table_name_2", "table_name_3", ] with mock.patch( "great_expectations.datasource.fluent.sql_datasource.TableAsset.datasource", new_callable=mock.PropertyMock, return_value=SQLDatasource( name="my_snowflake_datasource", connection_string="snowflake://<user_login_name>:<password>@<account_identifier>/<database_name>/<schema_name>?warehouse=<warehouse_name>&role=<role_name>", ), ): table_asset = TableAsset( name="my_table_asset", table_name="nonexistent_table_name", schema_name="my_schema", ) assert table_asset.table_name not in table_names_in_dbms_schema @pytest.mark.unit def test_table_quoted_name_type_all_upper_case_normalizion_is_noop(): """ DBMS entity names (table, column, etc.) must adhere to correct case insensitivity standards. All upper case is standard for Oracle, DB2, and Snowflake, while all lowercase is standard for SQLAlchemy; hence, proper conversion to quoted names must occur. This test ensures that all upper case entity usage does not undergo any conversion. """ # noqa: E501 # FIXME CoP table_names_in_dbms_schema: list[str] = [ "ACTORS", "ARTISTS", "ATHLETES", "BUSINESS_PEOPLE", "HEALTHCARE_WORKERS", "ENGINEERS", "LAWYERS", "MUSICIANS", "SCIENTISTS", "LITERARY_PROFESSIONALS", ] asset_name: str table_name: str with mock.patch( "great_expectations.datasource.fluent.sql_datasource.TableAsset.datasource", new_callable=mock.PropertyMock, return_value=SQLDatasource( name="my_snowflake_datasource", connection_string="snowflake://<user_login_name>:<password>@<account_identifier>/<database_name>/<schema_name>?warehouse=<warehouse_name>&role=<role_name>", ), ): for table_name in table_names_in_dbms_schema: asset_name = f"{table_name}_asset" table_asset = TableAsset( name=asset_name, table_name=table_name, schema_name="my_schema", ) assert str(table_asset.table_name) == table_name assert str(table_asset.table_name.casefold()) != table_name assert isinstance(table_asset.table_name, sqlalchemy.quoted_name) assert table_asset.table_name in table_names_in_dbms_schema @pytest.mark.unit def test_table_quoted_name_type_all_lower_case_normalizion_full(): """ DBMS entity names (table, column, etc.) must adhere to correct case insensitivity standards. All upper case is standard for Oracle, DB2, and Snowflake, while all lowercase is standard for SQLAlchemy; hence, proper conversion to quoted names must occur. This test ensures that all lower case entity usage undergo conversion to quoted literals. """ # noqa: E501 # FIXME CoP table_names_in_dbms_schema: list[str] = [ "actors", "artists", "athletes", "business_people", "healthcare_workers", "engineers", "lawyers", "musicians", "scientists", "literary_professionals", ] name: str quoted_table_names: list[sqlalchemy.quoted_name] = [ sqlalchemy.quoted_name(value="actors", quote=True), sqlalchemy.quoted_name(value="artists", quote=True), sqlalchemy.quoted_name(value="athletes", quote=True), sqlalchemy.quoted_name(value="business_people", quote=True), sqlalchemy.quoted_name(value="healthcare_workers", quote=True), sqlalchemy.quoted_name(value="engineers", quote=True), sqlalchemy.quoted_name(value="lawyers", quote=True), sqlalchemy.quoted_name(value="musicians", quote=True), sqlalchemy.quoted_name(value="scientists", quote=True), sqlalchemy.quoted_name(value="literary_professionals", quote=True), ] asset_name: str table_name: str with mock.patch( "great_expectations.datasource.fluent.sql_datasource.TableAsset.datasource", new_callable=mock.PropertyMock, return_value=SQLDatasource( name="my_snowflake_datasource", connection_string="snowflake://<user_login_name>:<password>@<account_identifier>/<database_name>/<schema_name>?warehouse=<warehouse_name>&role=<role_name>", ), ): for table_name in table_names_in_dbms_schema: asset_name = f"{table_name}_asset" table_asset = TableAsset( name=asset_name, table_name=table_name, schema_name="my_schema", ) assert str(table_asset.table_name) == table_name assert str(table_asset.table_name.casefold()) == table_name assert isinstance(table_asset.table_name, sqlalchemy.quoted_name) assert table_asset.table_name in table_names_in_dbms_schema assert table_asset.table_name in quoted_table_names @pytest.mark.big @pytest.mark.parametrize( ["connection_string", "suggested_datasource_class"], [ ("gregshift://", None), ("sqlite:///", "SqliteDatasource"), ("snowflake+pyodbc://", "SnowflakeDatasource"), ("postgresql+psycopg2://bob:secret@localhost:5432/my_db", "PostgresDatasource"), ("${MY_PG_CONN_STR}", "PostgresDatasource"), ("databricks://", "DatabricksSQLDatasource"), ], ) def test_specific_datasource_warnings( create_engine_fake: None, ephemeral_context_with_defaults: EphemeralDataContext, monkeypatch: pytest.MonkeyPatch, connection_string: str, suggested_datasource_class: str | None, ): """ This test ensures that a warning is raised when a specific datasource class is suggested. """ context = ephemeral_context_with_defaults monkeypatch.setenv("MY_PG_CONN_STR", "postgresql://bob:secret@localhost:5432/bobs_db") if suggested_datasource_class: with pytest.warns(GxDatasourceWarning, match=suggested_datasource_class): context.data_sources.add_sql(name="my_datasource", connection_string=connection_string) else: with warnings.catch_warnings(): context.data_sources.add_sql( name="my_datasource", connection_string=connection_string ).test_connection() @pytest.mark.unit @pytest.mark.parametrize( ["input_", "expected_output", "quote_characters"], [ ("my_schema", "my_schema", DEFAULT_INITIAL_QUOTE_CHARACTERS), ("MY_SCHEMA", "my_schema", DEFAULT_INITIAL_QUOTE_CHARACTERS), ("My_Schema", "my_schema", DEFAULT_INITIAL_QUOTE_CHARACTERS), ('"my_schema"', '"my_schema"', DEFAULT_INITIAL_QUOTE_CHARACTERS), ('"MY_SCHEMA"', '"MY_SCHEMA"', DEFAULT_INITIAL_QUOTE_CHARACTERS), ('"My_Schema"', '"My_Schema"', DEFAULT_INITIAL_QUOTE_CHARACTERS), ("'my_schema'", "'my_schema'", DEFAULT_INITIAL_QUOTE_CHARACTERS), ("'MY_SCHEMA'", "'MY_SCHEMA'", DEFAULT_INITIAL_QUOTE_CHARACTERS), ("'My_Schema'", "'My_Schema'", DEFAULT_INITIAL_QUOTE_CHARACTERS), (None, None, DEFAULT_INITIAL_QUOTE_CHARACTERS), ("", "", DEFAULT_INITIAL_QUOTE_CHARACTERS), ("`My_Schema`", "`My_Schema`", DEFAULT_INITIAL_QUOTE_CHARACTERS), ("'My_Schema'", "'my_schema'", ("`")), ("[My_Schema]", "[My_Schema]", DEFAULT_INITIAL_QUOTE_CHARACTERS), ], ids=lambda x: str(x), ) def test_to_lower_if_not_quoted( input_: str | None, expected_output: str | None, quote_characters: tuple[str, ...] ): assert to_lower_if_not_quoted(input_, quote_characters=quote_characters) == expected_output @pytest.mark.unit
TestConfigPasstrough
python
facebook__pyre-check
source/interprocedural_analyses/taint/test/integration/combinatory_ports.py
{ "start": 671, "end": 807 }
class ____(Base): def __init__(self, base: Base) -> None: self.a: Base = base def method(self): self.a.method()
A
python
fastapi__sqlmodel
docs_src/tutorial/many_to_many/tutorial002.py
{ "start": 616, "end": 3203 }
class ____(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(index=True) secret_name: str age: Optional[int] = Field(default=None, index=True) teams: List[Team] = Relationship(back_populates="heroes", link_model=HeroTeamLink) sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_heroes(): with Session(engine) as session: team_preventers = Team(name="Preventers", headquarters="Sharp Tower") team_z_force = Team(name="Z-Force", headquarters="Sister Margaret's Bar") hero_deadpond = Hero( name="Deadpond", secret_name="Dive Wilson", teams=[team_z_force, team_preventers], ) hero_rusty_man = Hero( name="Rusty-Man", secret_name="Tommy Sharp", age=48, teams=[team_preventers], ) hero_spider_boy = Hero( name="Spider-Boy", secret_name="Pedro Parqueador", teams=[team_preventers] ) session.add(hero_deadpond) session.add(hero_rusty_man) session.add(hero_spider_boy) session.commit() session.refresh(hero_deadpond) session.refresh(hero_rusty_man) session.refresh(hero_spider_boy) print("Deadpond:", hero_deadpond) print("Deadpond teams:", hero_deadpond.teams) print("Rusty-Man:", hero_rusty_man) print("Rusty-Man Teams:", hero_rusty_man.teams) print("Spider-Boy:", hero_spider_boy) print("Spider-Boy Teams:", hero_spider_boy.teams) def update_heroes(): with Session(engine) as session: hero_spider_boy = session.exec( select(Hero).where(Hero.name == "Spider-Boy") ).one() team_z_force = session.exec(select(Team).where(Team.name == "Z-Force")).one() team_z_force.heroes.append(hero_spider_boy) session.add(team_z_force) session.commit() print("Updated Spider-Boy's Teams:", hero_spider_boy.teams) print("Z-Force heroes:", team_z_force.heroes) hero_spider_boy.teams.remove(team_z_force) session.add(team_z_force) session.commit() print("Reverted Z-Force's heroes:", team_z_force.heroes) print("Reverted Spider-Boy's teams:", hero_spider_boy.teams) def main(): create_db_and_tables() create_heroes() update_heroes() if __name__ == "__main__": main()
Hero
python
networkx__networkx
networkx/algorithms/assortativity/tests/test_mixing.py
{ "start": 144, "end": 1134 }
class ____(BaseTestDegreeMixing): def test_degree_mixing_dict_undirected(self): d = nx.degree_mixing_dict(self.P4) d_result = {1: {2: 2}, 2: {1: 2, 2: 2}} assert d == d_result def test_degree_mixing_dict_undirected_normalized(self): d = nx.degree_mixing_dict(self.P4, normalized=True) d_result = {1: {2: 1.0 / 3}, 2: {1: 1.0 / 3, 2: 1.0 / 3}} assert d == d_result def test_degree_mixing_dict_directed(self): d = nx.degree_mixing_dict(self.D) d_result = {1: {3: 2}, 2: {1: 1, 3: 1}, 3: {}} assert d == d_result def test_degree_mixing_dict_multigraph(self): d = nx.degree_mixing_dict(self.M) d_result = {1: {2: 1}, 2: {1: 1, 3: 3}, 3: {2: 3}} assert d == d_result def test_degree_mixing_dict_weighted(self): d = nx.degree_mixing_dict(self.W, weight="weight") d_result = {0.5: {1.5: 1}, 1.5: {1.5: 6, 0.5: 1}} assert d == d_result
TestDegreeMixingDict
python
pennersr__django-allauth
allauth/headless/tokens/strategies/sessions.py
{ "start": 239, "end": 817 }
class ____(AbstractTokenStrategy): def create_session_token(self, request: HttpRequest) -> str: if not request.session.session_key: request.session.save() key = request.session.session_key # We did save assert isinstance(key, str) # nosec return key def lookup_session(self, session_token: str) -> typing.Optional[SessionBase]: session_key = session_token if sessionkit.session_store().exists(session_key): return sessionkit.session_store(session_key) return None
SessionTokenStrategy
python
Pylons__pyramid
src/pyramid/httpexceptions.py
{ "start": 36083, "end": 36544 }
class ____(HTTPServerError): """ subclass of :class:`~HTTPServerError` This indicates that the server is currently unable to handle the request due to a temporary overloading or maintenance of the server. code: 503, title: Service Unavailable """ code = 503 title = 'Service Unavailable' explanation = ( 'The server is currently unavailable. ' 'Please try again at a later time.' )
HTTPServiceUnavailable
python
airbytehq__airbyte
airbyte-integrations/connectors/source-zendesk-talk/components.py
{ "start": 1313, "end": 2041 }
class ____(DeclarativeAuthenticator): config: Mapping[str, Any] legacy_basic_auth: BasicHttpAuthenticator basic_auth: BasicHttpAuthenticator oauth: BearerAuthenticator def __new__(cls, legacy_basic_auth, basic_auth, oauth, config, *args, **kwargs): credentials = config.get("credentials", {}) if config.get("access_token", {}) and config.get("email", {}): return legacy_basic_auth elif credentials["auth_type"] == "api_token": return basic_auth elif credentials["auth_type"] == "oauth2.0": return oauth else: raise Exception(f"Missing valid authenticator for auth_type: {credentials['auth_type']}")
ZendeskTalkAuthenticator
python
miyuchina__mistletoe
test/test_latex_renderer.py
{ "start": 5154, "end": 5454 }
class ____(TestCase): def test_html_entity(self): self.assertIn('hello \\& goodbye', markdown('hello &amp; goodbye', LaTeXRenderer)) def test_html_entity_in_link_target(self): self.assertIn('\\href{foo}{hello}', markdown('[hello](f&#111;&#111;)', LaTeXRenderer))
TestHtmlEntity
python
great-expectations__great_expectations
contrib/great_expectations_semantic_types_expectations/great_expectations_semantic_types_expectations/expectations/expect_column_values_to_be_daytime.py
{ "start": 2247, "end": 5362 }
class ____(ColumnMapExpectation): """Expect the provided timestamp is daytime at the given GPS coordinate (latitude, longitude).""" # These examples will be shown in the public gallery. # They will also be executed as unit tests for your Expectation. examples = [ { "data": { "all_daytime": [ "2022-04-01 12:00:00", "2022-04-02 14:31:14", "2022-04-03 09:01:12", "2021-12-01 13:45:32", "2021-11-02 12:01:01", ], "some_other": [ "2022-04-01 12:00:00", "2022-04-02 14:31:14", "2022-04-03 09:01:12", "2021-12-01 13:45:32", "2021-11-02 21:01:01", ], }, "tests": [ { "title": "basic_positive_test", "exact_match_out": False, "include_in_gallery": True, "in": { "column": "all_daytime", "lat": "47.458593", "lon": "19.030024", }, "out": { "success": True, }, }, { "title": "basic_negative_test", "exact_match_out": False, "include_in_gallery": True, "in": { "column": "some_other", "lat": "47.458593", "lon": "19.030024", "mostly": 0.9, }, "out": { "success": False, }, }, ], } ] # This is the id string of the Metric used by this Expectation. # For most Expectations, it will be the same as the `condition_metric_name` defined in your Metric class above. map_metric = "column_values.daytime" # This is a list of parameter names that can affect whether the Expectation evaluates to True or False success_keys = ( "mostly", "lat", "lon", ) # This dictionary contains default values for any parameters that should have default values default_kwarg_values = {} # This object contains metadata for display in the public Gallery library_metadata = { "maturity": "experimental", "tags": [ "hackathon-22", "experimental", "typed-entities", ], # Tags for this Expectation in the Gallery "contributors": [ # Github handles for all contributors to this Expectation. "@szecsip", # Don't forget to add your github handle here! ], "requirements": ["ephem"], } success_keys = ( "lat", "lon", "mostly", ) if __name__ == "__main__": ExpectColumnValuesToBeDaytime().print_diagnostic_checklist()
ExpectColumnValuesToBeDaytime
python
apache__airflow
providers/amazon/tests/unit/amazon/aws/operators/test_glacier.py
{ "start": 1428, "end": 2291 }
class ____: op_class: type[AwsBaseOperator] default_op_kwargs: dict[str, Any] def test_base_aws_op_attributes(self): op = self.op_class(**self.default_op_kwargs) assert op.hook.aws_conn_id == "aws_default" assert op.hook._region_name is None assert op.hook._verify is None assert op.hook._config is None op = self.op_class( **self.default_op_kwargs, aws_conn_id="aws-test-custom-conn", region_name="eu-west-1", verify=False, botocore_config={"read_timeout": 42}, ) assert op.hook.aws_conn_id == "aws-test-custom-conn" assert op.hook._region_name == "eu-west-1" assert op.hook._verify is False assert op.hook._config is not None assert op.hook._config.read_timeout == 42
BaseGlacierOperatorsTests
python
airbytehq__airbyte
airbyte-integrations/connectors/source-shopify/source_shopify/streams/streams.py
{ "start": 9880, "end": 9987 }
class ____(IncrementalShopifyGraphQlBulkStream): bulk_query: InventoryItem = InventoryItem
InventoryItems
python
kubernetes-client__python
kubernetes/client/models/v1_probe.py
{ "start": 383, "end": 13723 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { '_exec': 'V1ExecAction', 'failure_threshold': 'int', 'grpc': 'V1GRPCAction', 'http_get': 'V1HTTPGetAction', 'initial_delay_seconds': 'int', 'period_seconds': 'int', 'success_threshold': 'int', 'tcp_socket': 'V1TCPSocketAction', 'termination_grace_period_seconds': 'int', 'timeout_seconds': 'int' } attribute_map = { '_exec': 'exec', 'failure_threshold': 'failureThreshold', 'grpc': 'grpc', 'http_get': 'httpGet', 'initial_delay_seconds': 'initialDelaySeconds', 'period_seconds': 'periodSeconds', 'success_threshold': 'successThreshold', 'tcp_socket': 'tcpSocket', 'termination_grace_period_seconds': 'terminationGracePeriodSeconds', 'timeout_seconds': 'timeoutSeconds' } def __init__(self, _exec=None, failure_threshold=None, grpc=None, http_get=None, initial_delay_seconds=None, period_seconds=None, success_threshold=None, tcp_socket=None, termination_grace_period_seconds=None, timeout_seconds=None, local_vars_configuration=None): # noqa: E501 """V1Probe - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self.__exec = None self._failure_threshold = None self._grpc = None self._http_get = None self._initial_delay_seconds = None self._period_seconds = None self._success_threshold = None self._tcp_socket = None self._termination_grace_period_seconds = None self._timeout_seconds = None self.discriminator = None if _exec is not None: self._exec = _exec if failure_threshold is not None: self.failure_threshold = failure_threshold if grpc is not None: self.grpc = grpc if http_get is not None: self.http_get = http_get if initial_delay_seconds is not None: self.initial_delay_seconds = initial_delay_seconds if period_seconds is not None: self.period_seconds = period_seconds if success_threshold is not None: self.success_threshold = success_threshold if tcp_socket is not None: self.tcp_socket = tcp_socket if termination_grace_period_seconds is not None: self.termination_grace_period_seconds = termination_grace_period_seconds if timeout_seconds is not None: self.timeout_seconds = timeout_seconds @property def _exec(self): """Gets the _exec of this V1Probe. # noqa: E501 :return: The _exec of this V1Probe. # noqa: E501 :rtype: V1ExecAction """ return self.__exec @_exec.setter def _exec(self, _exec): """Sets the _exec of this V1Probe. :param _exec: The _exec of this V1Probe. # noqa: E501 :type: V1ExecAction """ self.__exec = _exec @property def failure_threshold(self): """Gets the failure_threshold of this V1Probe. # noqa: E501 Minimum consecutive failures for the probe to be considered failed after having succeeded. Defaults to 3. Minimum value is 1. # noqa: E501 :return: The failure_threshold of this V1Probe. # noqa: E501 :rtype: int """ return self._failure_threshold @failure_threshold.setter def failure_threshold(self, failure_threshold): """Sets the failure_threshold of this V1Probe. Minimum consecutive failures for the probe to be considered failed after having succeeded. Defaults to 3. Minimum value is 1. # noqa: E501 :param failure_threshold: The failure_threshold of this V1Probe. # noqa: E501 :type: int """ self._failure_threshold = failure_threshold @property def grpc(self): """Gets the grpc of this V1Probe. # noqa: E501 :return: The grpc of this V1Probe. # noqa: E501 :rtype: V1GRPCAction """ return self._grpc @grpc.setter def grpc(self, grpc): """Sets the grpc of this V1Probe. :param grpc: The grpc of this V1Probe. # noqa: E501 :type: V1GRPCAction """ self._grpc = grpc @property def http_get(self): """Gets the http_get of this V1Probe. # noqa: E501 :return: The http_get of this V1Probe. # noqa: E501 :rtype: V1HTTPGetAction """ return self._http_get @http_get.setter def http_get(self, http_get): """Sets the http_get of this V1Probe. :param http_get: The http_get of this V1Probe. # noqa: E501 :type: V1HTTPGetAction """ self._http_get = http_get @property def initial_delay_seconds(self): """Gets the initial_delay_seconds of this V1Probe. # noqa: E501 Number of seconds after the container has started before liveness probes are initiated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes # noqa: E501 :return: The initial_delay_seconds of this V1Probe. # noqa: E501 :rtype: int """ return self._initial_delay_seconds @initial_delay_seconds.setter def initial_delay_seconds(self, initial_delay_seconds): """Sets the initial_delay_seconds of this V1Probe. Number of seconds after the container has started before liveness probes are initiated. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes # noqa: E501 :param initial_delay_seconds: The initial_delay_seconds of this V1Probe. # noqa: E501 :type: int """ self._initial_delay_seconds = initial_delay_seconds @property def period_seconds(self): """Gets the period_seconds of this V1Probe. # noqa: E501 How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. # noqa: E501 :return: The period_seconds of this V1Probe. # noqa: E501 :rtype: int """ return self._period_seconds @period_seconds.setter def period_seconds(self, period_seconds): """Sets the period_seconds of this V1Probe. How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. # noqa: E501 :param period_seconds: The period_seconds of this V1Probe. # noqa: E501 :type: int """ self._period_seconds = period_seconds @property def success_threshold(self): """Gets the success_threshold of this V1Probe. # noqa: E501 Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1. Must be 1 for liveness and startup. Minimum value is 1. # noqa: E501 :return: The success_threshold of this V1Probe. # noqa: E501 :rtype: int """ return self._success_threshold @success_threshold.setter def success_threshold(self, success_threshold): """Sets the success_threshold of this V1Probe. Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1. Must be 1 for liveness and startup. Minimum value is 1. # noqa: E501 :param success_threshold: The success_threshold of this V1Probe. # noqa: E501 :type: int """ self._success_threshold = success_threshold @property def tcp_socket(self): """Gets the tcp_socket of this V1Probe. # noqa: E501 :return: The tcp_socket of this V1Probe. # noqa: E501 :rtype: V1TCPSocketAction """ return self._tcp_socket @tcp_socket.setter def tcp_socket(self, tcp_socket): """Sets the tcp_socket of this V1Probe. :param tcp_socket: The tcp_socket of this V1Probe. # noqa: E501 :type: V1TCPSocketAction """ self._tcp_socket = tcp_socket @property def termination_grace_period_seconds(self): """Gets the termination_grace_period_seconds of this V1Probe. # noqa: E501 Optional duration in seconds the pod needs to terminate gracefully upon probe failure. The grace period is the duration in seconds after the processes running in the pod are sent a termination signal and the time when the processes are forcibly halted with a kill signal. Set this value longer than the expected cleanup time for your process. If this value is nil, the pod's terminationGracePeriodSeconds will be used. Otherwise, this value overrides the value provided by the pod spec. Value must be non-negative integer. The value zero indicates stop immediately via the kill signal (no opportunity to shut down). This is a beta field and requires enabling ProbeTerminationGracePeriod feature gate. Minimum value is 1. spec.terminationGracePeriodSeconds is used if unset. # noqa: E501 :return: The termination_grace_period_seconds of this V1Probe. # noqa: E501 :rtype: int """ return self._termination_grace_period_seconds @termination_grace_period_seconds.setter def termination_grace_period_seconds(self, termination_grace_period_seconds): """Sets the termination_grace_period_seconds of this V1Probe. Optional duration in seconds the pod needs to terminate gracefully upon probe failure. The grace period is the duration in seconds after the processes running in the pod are sent a termination signal and the time when the processes are forcibly halted with a kill signal. Set this value longer than the expected cleanup time for your process. If this value is nil, the pod's terminationGracePeriodSeconds will be used. Otherwise, this value overrides the value provided by the pod spec. Value must be non-negative integer. The value zero indicates stop immediately via the kill signal (no opportunity to shut down). This is a beta field and requires enabling ProbeTerminationGracePeriod feature gate. Minimum value is 1. spec.terminationGracePeriodSeconds is used if unset. # noqa: E501 :param termination_grace_period_seconds: The termination_grace_period_seconds of this V1Probe. # noqa: E501 :type: int """ self._termination_grace_period_seconds = termination_grace_period_seconds @property def timeout_seconds(self): """Gets the timeout_seconds of this V1Probe. # noqa: E501 Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes # noqa: E501 :return: The timeout_seconds of this V1Probe. # noqa: E501 :rtype: int """ return self._timeout_seconds @timeout_seconds.setter def timeout_seconds(self, timeout_seconds): """Sets the timeout_seconds of this V1Probe. Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes # noqa: E501 :param timeout_seconds: The timeout_seconds of this V1Probe. # noqa: E501 :type: int """ self._timeout_seconds = timeout_seconds def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1Probe): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1Probe): return True return self.to_dict() != other.to_dict()
V1Probe
python
requests__requests-oauthlib
tests/test_compliance_fixes.py
{ "start": 3447, "end": 4583 }
class ____(TestCase): def setUp(self): mocker = requests_mock.Mocker() mocker.post( "https://login.mailchimp.com/oauth2/token", json={"access_token": "mailchimp", "expires_in": 0, "scope": None}, ) mocker.start() self.addCleanup(mocker.stop) mailchimp = OAuth2Session("someclientid", redirect_uri="https://i.b") self.session = mailchimp_compliance_fix(mailchimp) def test_fetch_access_token(self): token = self.session.fetch_token( "https://login.mailchimp.com/oauth2/token", client_secret="someclientsecret", authorization_response="https://i.b/?code=hello", ) # Times should be close approx_expires_at = round(time.time()) + 3600 actual_expires_at = token.pop("expires_at") self.assertAlmostEqual(actual_expires_at, approx_expires_at, places=2) # Other token values exact self.assertEqual(token, {"access_token": "mailchimp", "expires_in": 3600}) # And no scope at all self.assertNotIn("scope", token)
MailChimpComplianceFixTest
python
keras-team__keras
keras/src/optimizers/adamw.py
{ "start": 171, "end": 3785 }
class ____(adam.Adam): """Optimizer that implements the AdamW algorithm. AdamW optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments with an added method to decay weights per the techniques discussed in the paper, 'Decoupled Weight Decay Regularization' by [Loshchilov, Hutter et al., 2019](https://arxiv.org/abs/1711.05101). According to [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), the underlying Adam method is "*computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters*". Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to `0.999`. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7. amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Defaults to `False`. {{base_optimizer_keyword_args}} References: - [Loshchilov et al., 2019](https://arxiv.org/abs/1711.05101) - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) for `adam` - [Reddi et al., 2018]( https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`. """ def __init__( self, learning_rate=0.001, weight_decay=0.004, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adamw", **kwargs, ): super().__init__( learning_rate=learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, amsgrad=amsgrad, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) if self.weight_decay is None: raise ValueError( "Argument `weight_decay` must be a float. Received: " "weight_decay=None" ) AdamW.__doc__ = AdamW.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
AdamW
python
pydata__xarray
asv_bench/benchmarks/repr.py
{ "start": 62, "end": 663 }
class ____: def setup(self): a = np.arange(0, 100) data_vars = dict() for i in a: data_vars[f"long_variable_name_{i}"] = xr.DataArray( name=f"long_variable_name_{i}", data=np.arange(0, 20), dims=[f"long_coord_name_{i}_x"], coords={f"long_coord_name_{i}_x": np.arange(0, 20) * 2}, ) self.ds = xr.Dataset(data_vars) self.ds.attrs = {f"attr_{k}": 2 for k in a} def time_repr(self): repr(self.ds) def time_repr_html(self): self.ds._repr_html_()
Repr
python
django__django
tests/fixtures/models.py
{ "start": 1035, "end": 1377 }
class ____(models.Model): name = models.CharField(max_length=100) featured = models.ForeignKey( Article, models.CASCADE, related_name="fixtures_featured_set" ) articles = models.ManyToManyField( Article, blank=True, related_name="fixtures_articles_set" ) def __str__(self): return self.name
Blog
python
pytorch__pytorch
test/dynamo/cpython/3_13/test_operator.py
{ "start": 29271, "end": 29448 }
class ____(OperatorPickleTestCase, __TestCase): module = py_operator module2 = py_operator @unittest.skipUnless(c_operator, 'requires _operator')
PyPyOperatorPickleTestCase
python
pypa__pipenv
pipenv/patched/pip/_internal/commands/hash.py
{ "start": 434, "end": 1763 }
class ____(Command): """ Compute a hash of a local package archive. These can be used with --hash in a requirements file to do repeatable installs. """ usage = "%prog [options] <file> ..." ignore_require_venv = True def add_options(self) -> None: self.cmd_opts.add_option( "-a", "--algorithm", dest="algorithm", choices=STRONG_HASHES, action="store", default=FAVORITE_HASH, help="The hash algorithm to use: one of {}".format( ", ".join(STRONG_HASHES) ), ) self.parser.insert_option_group(0, self.cmd_opts) def run(self, options: Values, args: List[str]) -> int: if not args: self.parser.print_usage(sys.stderr) return ERROR algorithm = options.algorithm for path in args: write_output( "%s:\n--hash=%s:%s", path, algorithm, _hash_of_file(path, algorithm) ) return SUCCESS def _hash_of_file(path: str, algorithm: str) -> str: """Return the hash digest of a file.""" with open(path, "rb") as archive: hash = hashlib.new(algorithm) for chunk in read_chunks(archive): hash.update(chunk) return hash.hexdigest()
HashCommand
python
wandb__wandb
wandb/sdk/artifacts/_generated/input_types.py
{ "start": 3177, "end": 3328 }
class ____(GQLInput): artifact_collection_name: str = Field(alias="artifactCollectionName") alias: str = Field(max_length=128)
ArtifactAliasInput
python
walkccc__LeetCode
solutions/3548. Equal Sum Grid Partition II/3548.py
{ "start": 1, "end": 689 }
class ____: def canPartitionGrid(self, grid: list[list[int]]) -> bool: summ = sum(map(sum, grid)) def canPartition(grid: list[list[int]]) -> bool: topSum = 0 seen = set() for i, row in enumerate(grid): topSum += sum(row) botSum = summ - topSum seen |= set(row) if topSum - botSum in (0, grid[0][0], grid[0][-1], row[0]): return True if len(grid[0]) > 1 and i > 0 and topSum - botSum in seen: return True return False return (canPartition(grid) or canPartition(grid[::-1]) or canPartition(list(zip(*grid))[::-1]) or canPartition(list(zip(*grid))))
Solution
python
apache__airflow
dev/breeze/tests/test_publish_docs_to_s3.py
{ "start": 974, "end": 10930 }
class ____: def setup_method(self): self.publish_docs_to_s3 = S3DocsPublish( source_dir_path="source_dir_path", destination_location="destination_location", exclude_docs="exclude_docs", dry_run=False, overwrite=False, parallelism=1, ) @patch("os.listdir") def test_get_all_docs(self, mock_listdir): mock_listdir.return_value = ["apache-airflow-providers-amazon"] assert self.publish_docs_to_s3.get_all_docs == ["apache-airflow-providers-amazon"] def test_get_all_docs_exception(self): with patch("os.listdir", side_effect=FileNotFoundError): with pytest.raises(SystemExit): self.publish_docs_to_s3.get_all_docs() def test_get_all_excluded_docs(self): self.publish_docs_to_s3.exclude_docs = "amazon google apache-airflow" assert self.publish_docs_to_s3.get_all_excluded_docs == ["amazon", "google", "apache-airflow"] @patch("os.listdir") def test_get_all_eligible_docs(self, mock_listdir): mock_listdir.return_value = [ "apache-airflow-providers-amazon", "apache-airflow-providers-google", "apache-airflow", "docker-stack", "apache-airflow-providers-apache-kafka", "apache-airflow-providers-apache-cassandra", "helm-chart", "apache-airflow-ctl", ] self.publish_docs_to_s3.exclude_docs = "amazon docker-stack apache.kafka" assert sorted(self.publish_docs_to_s3.get_all_eligible_docs) == sorted( [ "apache-airflow-providers-google", "apache-airflow", "apache-airflow-providers-apache-cassandra", "helm-chart", "apache-airflow-ctl", ] ) @patch("os.listdir") def test_get_all_eligible_docs_should_raise_when_empty(self, mock_listdir): mock_listdir.return_value = [ "apache-airflow-providers-amazon", "apache-airflow", "apache-airflow-providers-apache-kafka", ] self.publish_docs_to_s3.exclude_docs = "amazon apache-airflow apache.kafka" with pytest.raises(SystemExit): self.publish_docs_to_s3.get_all_eligible_docs @pytest.mark.parametrize( ("all_eligible_docs", "doc_exists", "overwrite", "expected_source_dest_mapping"), [ ( ["apache-airflow-providers-amazon", "apache-airflow-providers-google", "apache-airflow"], False, False, [ ( "/tmp/docs-archive/apache-airflow-providers-amazon/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-amazon/1.0.0/", ), ( "/tmp/docs-archive/apache-airflow-providers-amazon/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-amazon/stable/", ), ( "/tmp/docs-archive/apache-airflow-providers-google/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-google/1.0.0/", ), ( "/tmp/docs-archive/apache-airflow-providers-google/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-google/stable/", ), ("/tmp/docs-archive/apache-airflow/1.0.0/", "s3://dummy-docs/docs/apache-airflow/1.0.0/"), ( "/tmp/docs-archive/apache-airflow/1.0.0/", "s3://dummy-docs/docs/apache-airflow/stable/", ), ], ), ( ["apache-airflow-providers-amazon", "apache-airflow-providers-google", "apache-airflow"], True, False, [], ), ( ["apache-airflow-providers-amazon", "apache-airflow-providers-google", "apache-airflow"], True, True, [ ( "/tmp/docs-archive/apache-airflow-providers-amazon/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-amazon/1.0.0/", ), ( "/tmp/docs-archive/apache-airflow-providers-amazon/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-amazon/stable/", ), ( "/tmp/docs-archive/apache-airflow-providers-google/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-google/1.0.0/", ), ( "/tmp/docs-archive/apache-airflow-providers-google/1.0.0/", "s3://dummy-docs/docs/apache-airflow-providers-google/stable/", ), ("/tmp/docs-archive/apache-airflow/1.0.0/", "s3://dummy-docs/docs/apache-airflow/1.0.0/"), ( "/tmp/docs-archive/apache-airflow/1.0.0/", "s3://dummy-docs/docs/apache-airflow/stable/", ), ], ), ( [], True, False, [], ), ], ids=[ "no_doc_version_exists_in_destination", "doc_version_exists_in_destination", "overwrite_existing_doc", "no_docs_to_publish", ], ) @patch.object(S3DocsPublish, "run_publish") @patch("builtins.open", new_callable=mock_open, read_data="1.0.0") @patch.object(S3DocsPublish, "get_all_eligible_docs", new_callable=PropertyMock) @patch("os.path.exists") @patch.object(S3DocsPublish, "doc_exists") def test_publish_stable_version_docs( self, mock_doc_exists, mock_path_exists, mock_get_all_eligible_docs, mock_open, mock_run_publish, all_eligible_docs, doc_exists, overwrite, expected_source_dest_mapping, ): mock_path_exists.return_value = True mock_doc_exists.return_value = doc_exists mock_get_all_eligible_docs.return_value = all_eligible_docs self.publish_docs_to_s3.overwrite = overwrite self.publish_docs_to_s3.source_dir_path = "/tmp/docs-archive" self.publish_docs_to_s3.destination_location = "s3://dummy-docs/docs" mock_run_publish.return_value = MagicMock() self.publish_docs_to_s3.publish_stable_version_docs() assert self.publish_docs_to_s3.source_dest_mapping == expected_source_dest_mapping @pytest.mark.parametrize( ("all_eligible_docs", "doc_exists", "overwrite", "expected_source_dest_mapping"), [ ( ["apache-airflow-providers-amazon", "apache-airflow-providers-google", "apache-airflow"], False, False, [ ( "/tmp/docs-archive/apache-airflow-providers-amazon/", "s3://dummy-docs/docs/apache-airflow-providers-amazon/", ), ( "/tmp/docs-archive/apache-airflow-providers-google/", "s3://dummy-docs/docs/apache-airflow-providers-google/", ), ("/tmp/docs-archive/apache-airflow/", "s3://dummy-docs/docs/apache-airflow/"), ], ), ( ["apache-airflow-providers-amazon", "apache-airflow-providers-google", "apache-airflow"], True, False, [], ), ( ["apache-airflow-providers-amazon", "apache-airflow-providers-google", "apache-airflow"], True, True, [ ( "/tmp/docs-archive/apache-airflow-providers-amazon/", "s3://dummy-docs/docs/apache-airflow-providers-amazon/", ), ( "/tmp/docs-archive/apache-airflow-providers-google/", "s3://dummy-docs/docs/apache-airflow-providers-google/", ), ("/tmp/docs-archive/apache-airflow/", "s3://dummy-docs/docs/apache-airflow/"), ], ), ( [], True, False, [], ), ], ids=[ "no_doc_version_exists_in_destination", "doc_version_exists_in_destination", "overwrite_existing_doc", "no_docs_to_publish", ], ) @patch.object(S3DocsPublish, "run_publish") @patch.object(S3DocsPublish, "get_all_eligible_docs", new_callable=PropertyMock) @patch.object(S3DocsPublish, "doc_exists") def test_publish_all_docs( self, mock_doc_exists, mock_get_all_eligible_docs, mock_run_publish, all_eligible_docs, doc_exists, overwrite, expected_source_dest_mapping, ): mock_doc_exists.return_value = doc_exists mock_get_all_eligible_docs.return_value = all_eligible_docs self.publish_docs_to_s3.overwrite = overwrite self.publish_docs_to_s3.source_dir_path = "/tmp/docs-archive" self.publish_docs_to_s3.destination_location = "s3://dummy-docs/docs" mock_run_publish.return_value = MagicMock() self.publish_docs_to_s3.publish_all_docs() assert self.publish_docs_to_s3.source_dest_mapping == expected_source_dest_mapping
TestPublishDocsToS3
python
walkccc__LeetCode
solutions/3. Longest Substring Without Repeating Characters/3-2.py
{ "start": 0, "end": 435 }
class ____: def lengthOfLongestSubstring(self, s: str) -> int: ans = 0 # The substring s[j + 1..i] has no repeating characters. j = -1 # lastSeen[c] := the index of the last time c appeared lastSeen = {} for i, c in enumerate(s): # Update j to lastSeen[c], so the window must start from j + 1. j = max(j, lastSeen.get(c, -1)) ans = max(ans, i - j) lastSeen[c] = i return ans
Solution
python
pennersr__django-allauth
allauth/socialaccount/providers/xing/provider.py
{ "start": 564, "end": 1059 }
class ____(OAuthProvider): id = "xing" name = "Xing" account_class = XingAccount oauth_adapter_class = XingOAuthAdapter def extract_uid(self, data): return data["id"] def extract_common_fields(self, data): return dict( email=data.get("active_email"), username=data.get("page_name"), first_name=data.get("first_name"), last_name=data.get("last_name"), ) provider_classes = [XingProvider]
XingProvider
python
explosion__spaCy
spacy/pipeline/_edit_tree_internals/schemas.py
{ "start": 946, "end": 1669 }
class ____(BaseModel): __root__: Union[MatchNodeSchema, SubstNodeSchema] def validate_edit_tree(obj: Dict[str, Any]) -> List[str]: """Validate edit tree. obj (Dict[str, Any]): JSON-serializable data to validate. RETURNS (List[str]): A list of error messages, if available. """ try: EditTreeSchema.parse_obj(obj) return [] except ValidationError as e: errors = e.errors() data = defaultdict(list) for error in errors: err_loc = " -> ".join([str(p) for p in error.get("loc", [])]) data[err_loc].append(error.get("msg")) return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()] # type: ignore[arg-type]
EditTreeSchema
python
django__django
tests/schema/models.py
{ "start": 4303, "end": 4544 }
class ____(models.Model): title = models.CharField(max_length=255) slug2 = models.SlugField(unique=True) class Meta: apps = new_apps db_table = "schema_tag" # Based on tests/reserved_names/models.py
TagUniqueRename
python
tiangolo__fastapi
tests/test_security_api_key_header.py
{ "start": 217, "end": 1944 }
class ____(BaseModel): username: str def get_current_user(oauth_header: str = Security(api_key)): user = User(username=oauth_header) return user @app.get("/users/me") def read_current_user(current_user: User = Depends(get_current_user)): return current_user client = TestClient(app) def test_security_api_key(): response = client.get("/users/me", headers={"key": "secret"}) assert response.status_code == 200, response.text assert response.json() == {"username": "secret"} def test_security_api_key_no_key(): response = client.get("/users/me") assert response.status_code == 401, response.text assert response.json() == {"detail": "Not authenticated"} assert response.headers["WWW-Authenticate"] == "APIKey" def test_openapi_schema(): response = client.get("/openapi.json") assert response.status_code == 200, response.text assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/users/me": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, } }, "summary": "Read Current User", "operationId": "read_current_user_users_me_get", "security": [{"APIKeyHeader": []}], } } }, "components": { "securitySchemes": { "APIKeyHeader": {"type": "apiKey", "name": "key", "in": "header"} } }, }
User
python
apache__airflow
providers/openlineage/src/airflow/providers/openlineage/utils/utils.py
{ "start": 27712, "end": 29744 }
class ____(InfoJsonEncodable): """Defines encoding DagRun object to JSON.""" includes = [ "conf", "dag_id", "data_interval_start", "data_interval_end", "external_trigger", # Removed in Airflow 3, use run_type instead "execution_date", # Airflow 2 "logical_date", # Airflow 3 "run_after", # Airflow 3 "run_id", "run_type", "start_date", "end_date", ] casts = { "duration": lambda dagrun: DagRunInfo.duration(dagrun), "dag_bundle_name": lambda dagrun: DagRunInfo.dag_version_info(dagrun, "bundle_name"), "dag_bundle_version": lambda dagrun: DagRunInfo.dag_version_info(dagrun, "bundle_version"), "dag_version_id": lambda dagrun: DagRunInfo.dag_version_info(dagrun, "version_id"), "dag_version_number": lambda dagrun: DagRunInfo.dag_version_info(dagrun, "version_number"), } @classmethod def duration(cls, dagrun: DagRun) -> float | None: if not getattr(dagrun, "end_date", None) or not isinstance(dagrun.end_date, datetime.datetime): return None if not getattr(dagrun, "start_date", None) or not isinstance(dagrun.start_date, datetime.datetime): return None return (dagrun.end_date - dagrun.start_date).total_seconds() @classmethod def dag_version_info(cls, dagrun: DagRun, key: str) -> str | int | None: # AF2 DagRun and AF3 DagRun SDK model (on worker) do not have this information if not getattr(dagrun, "dag_versions", []): return None current_version = dagrun.dag_versions[-1] if key == "bundle_name": return current_version.bundle_name if key == "bundle_version": return current_version.bundle_version if key == "version_id": return str(current_version.id) if key == "version_number": return current_version.version_number raise ValueError(f"Unsupported key: {key}`")
DagRunInfo
python
numba__numba
numba/tests/test_cli.py
{ "start": 3934, "end": 8361 }
class ____(TestCase): def setUp(self): # Mock the entire class, to report valid things, # then override bits of it locally to check failures etc. self._patches = [] mock_init = lambda self: None self._patches.append(mock.patch.object(_GDBTestWrapper, '__init__', mock_init)) bpath = 'numba.misc.numba_gdbinfo._GDBTestWrapper.gdb_binary' self._patches.append(mock.patch(bpath, 'PATH_TO_GDB')) def _patch(fnstr, func): self._patches.append(mock.patch.object(_GDBTestWrapper, fnstr, func)) def mock_check_launch(self): return CompletedProcess('COMMAND STRING', 0) _patch('check_launch', mock_check_launch) # NOTE: The Python and NumPy versions are set to something unsupported! def mock_check_python(self): return CompletedProcess('COMMAND STRING', 0, stdout='(3, 2)', stderr='') _patch('check_python', mock_check_python) def mock_check_numpy(self): return CompletedProcess('COMMAND STRING', 0, stdout='True', stderr='') _patch('check_numpy', mock_check_numpy) def mock_check_numpy_version(self): return CompletedProcess('COMMAND STRING', 0, stdout='1.15', stderr='') _patch('check_numpy_version', mock_check_numpy_version) # start the patching for p in self._patches: p.start() def tearDown(self): # stop the patching for p in self._patches: p.stop() def test_valid(self): collected = collect_gdbinfo() self.assertEqual(collected.binary_loc, 'PATH_TO_GDB') extp = os.path.exists(os.path.abspath(collected.extension_loc)) self.assertTrue(extp) self.assertEqual(collected.py_ver, '3.2') self.assertEqual(collected.np_ver, '1.15') self.assertIn('Full', collected.supported) def test_invalid_binary(self): def mock_fn(self): return CompletedProcess('INVALID_BINARY', 1) with mock.patch.object(_GDBTestWrapper, 'check_launch', mock_fn): info = collect_gdbinfo() self.assertIn("Testing gdb binary failed.", info.binary_loc) self.assertIn("gdb at 'PATH_TO_GDB' does not appear to work", info.binary_loc) def test_no_python(self): def mock_fn(self): return CompletedProcess('NO PYTHON', 1) with mock.patch.object(_GDBTestWrapper, 'check_python', mock_fn): collected = collect_gdbinfo() self.assertEqual(collected.py_ver, 'No Python support') self.assertEqual(collected.supported, 'None') def test_unparsable_python_version(self): def mock_fn(self): return CompletedProcess('NO PYTHON', 0, stdout='(NOT A VERSION)') with mock.patch.object(_GDBTestWrapper, 'check_python', mock_fn): collected = collect_gdbinfo() self.assertEqual(collected.py_ver, 'No Python support') def test_no_numpy(self): def mock_fn(self): return CompletedProcess('NO NUMPY', 1) with mock.patch.object(_GDBTestWrapper, 'check_numpy', mock_fn): collected = collect_gdbinfo() self.assertEqual(collected.np_ver, 'No NumPy support') self.assertEqual(collected.py_ver, '3.2') self.assertIn('Partial', collected.supported) def test_no_numpy_version(self): def mock_fn(self): return CompletedProcess('NO NUMPY VERSION', 1) with mock.patch.object(_GDBTestWrapper, 'check_numpy_version', mock_fn): collected = collect_gdbinfo() self.assertEqual(collected.np_ver, 'Unknown') def test_traceback_in_numpy_version(self): def mock_fn(self): return CompletedProcess('NO NUMPY VERSION', 0, stdout='(NOT A VERSION)', stderr='Traceback') with mock.patch.object(_GDBTestWrapper, 'check_numpy_version', mock_fn): collected = collect_gdbinfo() self.assertEqual(collected.np_ver, 'Unknown') @linux_only
TestGDBCLIInfo
python
sympy__sympy
sympy/diffgeom/diffgeom.py
{ "start": 44628, "end": 46866 }
class ____(Expr): """Lie derivative with respect to a vector field. Explanation =========== The transport operator that defines the Lie derivative is the pushforward of the field to be derived along the integral curve of the field with respect to which one derives. Examples ======== >>> from sympy.diffgeom.rn import R2_r, R2_p >>> from sympy.diffgeom import (LieDerivative, TensorProduct) >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> e_rho, e_theta = R2_p.base_vectors() >>> dx, dy = R2_r.base_oneforms() >>> LieDerivative(e_x, fy) 0 >>> LieDerivative(e_x, fx) 1 >>> LieDerivative(e_x, e_x) 0 The Lie derivative of a tensor field by another tensor field is equal to their commutator: >>> LieDerivative(e_x, e_rho) Commutator(e_x, e_rho) >>> LieDerivative(e_x + e_y, fx) 1 >>> tp = TensorProduct(dx, dy) >>> LieDerivative(e_x, tp) LieDerivative(e_x, TensorProduct(dx, dy)) >>> LieDerivative(e_x, tp) LieDerivative(e_x, TensorProduct(dx, dy)) """ def __new__(cls, v_field, expr): expr_form_ord = covariant_order(expr) if contravariant_order(v_field) != 1 or covariant_order(v_field): raise ValueError('Lie derivatives are defined only with respect to' ' vector fields. The supplied argument was not a ' 'vector field.') if expr_form_ord > 0: obj = super().__new__(cls, v_field, expr) # deprecated assignments obj._v_field = v_field obj._expr = expr return obj if expr.atoms(BaseVectorField): return Commutator(v_field, expr) else: return v_field.rcall(expr) @property def v_field(self): return self.args[0] @property def expr(self): return self.args[1] def __call__(self, *args): v = self.v_field expr = self.expr lead_term = v(expr(*args)) rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:]) for i in range(len(args))]) return lead_term - rest
LieDerivative
python
dask__distributed
distributed/client.py
{ "start": 21214, "end": 23736 }
class ____(Exception): """Raised when an action with a closed client can't be performed""" def _handle_print(event): _, msg = event if not isinstance(msg, dict): # someone must have manually logged a print event with a hand-crafted # payload, rather than by calling worker.print(). In that case simply # print the payload and hope it works. print(msg) return args = msg.get("args") if not isinstance(args, tuple): # worker.print() will always send us a tuple of args, even if it's an # empty tuple. raise TypeError( f"_handle_print: client received non-tuple print args: {args!r}" ) file = msg.get("file") if file == 1: file = sys.stdout elif file == 2: file = sys.stderr elif file is not None: raise TypeError( f"_handle_print: client received unsupported file kwarg: {file!r}" ) print( *args, sep=msg.get("sep"), end=msg.get("end"), file=file, flush=msg.get("flush") ) def _handle_warn(event): _, msg = event if not isinstance(msg, dict): # someone must have manually logged a warn event with a hand-crafted # payload, rather than by calling worker.warn(). In that case simply # warn the payload and hope it works. warnings.warn(msg) else: if "message" not in msg: # TypeError makes sense here because it's analogous to calling a # function without a required positional argument raise TypeError( "_handle_warn: client received a warn event missing the required " '"message" argument.' ) if "category" in msg: category = pickle.loads(msg["category"]) else: category = None warnings.warn( pickle.loads(msg["message"]), category=category, ) def _maybe_call_security_loader(address): security_loader_term = dask.config.get("distributed.client.security-loader") if security_loader_term: try: security_loader = import_term(security_loader_term) except Exception as exc: raise ImportError( f"Failed to import `{security_loader_term}` configured at " f"`distributed.client.security-loader` - is this module " f"installed?" ) from exc return security_loader({"address": address}) return None
ClosedClientError
python
allegroai__clearml
examples/frameworks/ignite/cifar_ignite.py
{ "start": 3215, "end": 7140 }
class ____(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 3) self.conv2 = nn.Conv2d(6, 16, 3) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 6 * 6, 120) self.fc2 = nn.Linear(120, 84) self.dorpout = nn.Dropout(p=params.get('dropout', 0.25)) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 6 * 6) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(self.dorpout(x)) return x # Training def run(epochs, lr, momentum, log_interval): device = "cuda" if torch.cuda.is_available() else "cpu" net = Net().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) trainer = create_supervised_trainer(net, optimizer, criterion, device=device) trainer.logger = setup_logger("trainer") val_metrics = {"accuracy": Accuracy(),"loss": Loss(criterion), "recall": Recall()} evaluator = create_supervised_evaluator(net, metrics=val_metrics, device=device) evaluator.logger = setup_logger("evaluator") # Attach handler to plot trainer's loss every 100 iterations tb_logger.attach_output_handler( trainer, event_name=Events.ITERATION_COMPLETED(every=params.get('loss_report')), tag="training", output_transform=lambda loss: {"loss": loss}, ) # Attach handler to dump evaluator's metrics every epoch completed for tag, evaluator in [("training", trainer), ("validation", evaluator)]: tb_logger.attach_output_handler( evaluator, event_name=Events.EPOCH_COMPLETED, tag=tag, metric_names="all", global_step_transform=global_step_from_engine(trainer), ) # Attach function to build debug images and report every epoch end tb_logger.attach( evaluator, log_handler=predictions_gt_images_handler, event_name=Events.EPOCH_COMPLETED(once=1), ); desc = "ITERATION - loss: {:.2f}" pbar = tqdm(initial=0, leave=False, total=len(trainloader), desc=desc.format(0)) @trainer.on(Events.ITERATION_COMPLETED(every=log_interval)) def log_training_loss(engine): pbar.desc = desc.format(engine.state.output) pbar.update(log_interval) @trainer.on(Events.EPOCH_COMPLETED) def log_training_results(engine): pbar.refresh() evaluator.run(trainloader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["loss"] tqdm.write( "Training Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format( engine.state.epoch, avg_accuracy, avg_nll ) ) @trainer.on(Events.EPOCH_COMPLETED) def log_validation_results(engine): evaluator.run(testloader) metrics = evaluator.state.metrics avg_accuracy = metrics["accuracy"] avg_nll = metrics["loss"] tqdm.write( "Validation Results - Epoch: {} Avg accuracy: {:.2f} Avg loss: {:.2f}".format( engine.state.epoch, avg_accuracy, avg_nll ) ) pbar.n = pbar.last_print_n = 0 @trainer.on(Events.EPOCH_COMPLETED | Events.COMPLETED) def log_time(): tqdm.write( "{} took {} seconds".format(trainer.last_event_name.name, trainer.state.times[trainer.last_event_name.name]) ) trainer.run(trainloader, max_epochs=epochs) pbar.close() PATH = './cifar_net.pth' torch.save(net.state_dict(), PATH) print('Finished Training') print('Task ID number is: {}'.format(task.id)) run(params.get('number_of_epochs'), params.get('base_lr'), params.get('momentum'), 10)
Net
python
allegroai__clearml
clearml/backend_api/services/v2_13/projects.py
{ "start": 95760, "end": 97971 }
class ____(Response): """ Response of projects.get_task_tags endpoint. :param tags: The list of unique tag values :type tags: Sequence[str] :param system_tags: The list of unique system tag values. Returned only if 'include_system' is set to 'true' in the request :type system_tags: Sequence[str] """ _service = "projects" _action = "get_task_tags" _version = "2.13" _schema = { "definitions": {}, "properties": { "system_tags": { "description": "The list of unique system tag values. Returned only if 'include_system' is set to 'true' in the request", "items": {"type": "string"}, "type": ["array", "null"], }, "tags": { "description": "The list of unique tag values", "items": {"type": "string"}, "type": ["array", "null"], }, }, "type": "object", } def __init__( self, tags: Optional[List[str]] = None, system_tags: Optional[List[str]] = None, **kwargs: Any ) -> None: super(GetTaskTagsResponse, self).__init__(**kwargs) self.tags = tags self.system_tags = system_tags @schema_property("tags") def tags(self) -> Optional[List[str]]: return self._property_tags @tags.setter def tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_tags = None return self.assert_isinstance(value, "tags", (list, tuple)) self.assert_isinstance(value, "tags", six.string_types, is_array=True) self._property_tags = value @schema_property("system_tags") def system_tags(self) -> Optional[List[str]]: return self._property_system_tags @system_tags.setter def system_tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_system_tags = None return self.assert_isinstance(value, "system_tags", (list, tuple)) self.assert_isinstance(value, "system_tags", six.string_types, is_array=True) self._property_system_tags = value
GetTaskTagsResponse
python
HypothesisWorks__hypothesis
hypothesis-python/src/hypothesis/errors.py
{ "start": 1957, "end": 2059 }
class ____(HypothesisException): """An internal error raised by choice_from_index."""
ChoiceTooLarge
python
openai__openai-python
src/openai/types/responses/response.py
{ "start": 1171, "end": 1552 }
class ____(BaseModel): reason: Optional[Literal["max_output_tokens", "content_filter"]] = None """The reason why the response is incomplete.""" ToolChoice: TypeAlias = Union[ ToolChoiceOptions, ToolChoiceAllowed, ToolChoiceTypes, ToolChoiceFunction, ToolChoiceMcp, ToolChoiceCustom, ToolChoiceApplyPatch, ToolChoiceShell, ]
IncompleteDetails
python
getsentry__sentry
tests/sentry/ratelimits/utils/test_enforce_rate_limit.py
{ "start": 826, "end": 1169 }
class ____(RateLimitTestEndpoint): enforce_rate_limit = False urlpatterns = [ re_path(r"^/enforced$", RateLimitEnforcedEndpoint.as_view(), name="enforced-endpoint"), re_path(r"^/unenforced$", RateLimitUnenforcedEndpoint.as_view(), name="unenforced-endpoint"), ] @override_settings(ROOT_URLCONF=__name__)
RateLimitUnenforcedEndpoint
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 189717, "end": 190821 }
class ____(sgqlc.types.Input): """Autogenerated input type of CreateProjectV2Field""" __schema__ = github_schema __field_names__ = ("project_id", "data_type", "name", "single_select_options", "client_mutation_id") project_id = sgqlc.types.Field(sgqlc.types.non_null(ID), graphql_name="projectId") """The ID of the Project to create the field in.""" data_type = sgqlc.types.Field(sgqlc.types.non_null(ProjectV2CustomFieldType), graphql_name="dataType") """The data type of the field.""" name = sgqlc.types.Field(sgqlc.types.non_null(String), graphql_name="name") """The name of the field.""" single_select_options = sgqlc.types.Field( sgqlc.types.list_of(sgqlc.types.non_null("ProjectV2SingleSelectFieldOptionInput")), graphql_name="singleSelectOptions" ) """Options for a single select field. At least one value is required if data_type is SINGLE_SELECT """ client_mutation_id = sgqlc.types.Field(String, graphql_name="clientMutationId") """A unique identifier for the client performing the mutation."""
CreateProjectV2FieldInput
python
conda__conda
conda/auxlib/entity.py
{ "start": 21097, "end": 21151 }
class ____(ListField): _type = list
MutableListField
python
weaviate__weaviate-python-client
weaviate/collections/batch/base.py
{ "start": 32923, "end": 56099 }
class ____: def __init__( self, connection: ConnectionSync, consistency_level: Optional[ConsistencyLevel], results: _BatchDataWrapper, batch_mode: _BatchMode, executor: ThreadPoolExecutor, vectorizer_batching: bool, objects: Optional[ObjectsBatchRequest[batch_pb2.BatchObject]] = None, references: Optional[ReferencesBatchRequest] = None, ) -> None: self.__batch_objects = objects or ObjectsBatchRequest[batch_pb2.BatchObject]() self.__batch_references = references or ReferencesBatchRequest[batch_pb2.BatchReference]() self.__connection = connection self.__consistency_level: ConsistencyLevel = consistency_level or ConsistencyLevel.QUORUM self.__batch_size = 100 self.__batch_grpc = _BatchGRPC( connection._weaviate_version, self.__consistency_level, connection._grpc_max_msg_size ) # lookup table for objects that are currently being processed - is used to not send references from objects that have not been added yet self.__uuid_lookup: Set[str] = set() # we do not want that users can access the results directly as they are not thread-safe self.__results_for_wrapper_backup = results self.__results_for_wrapper = _BatchDataWrapper() self.__objs_count = 0 self.__refs_count = 0 self.__uuid_lookup_lock = threading.Lock() self.__results_lock = threading.Lock() self.__bg_thread_exception: Optional[Exception] = None self.__is_shutting_down = threading.Event() self.__is_shutdown = threading.Event() self.__objs_cache_lock = threading.Lock() self.__refs_cache_lock = threading.Lock() self.__objs_cache: dict[str, BatchObject] = {} self.__refs_cache: dict[str, BatchReference] = {} # maxsize=1 so that __batch_send does not run faster than generator for __batch_recv # thereby using too much buffer in case of server-side shutdown self.__reqs: Queue[Optional[batch_pb2.BatchStreamRequest]] = Queue(maxsize=1) self.__stop = False self.__batch_mode = batch_mode self.__total = 0 @property def number_errors(self) -> int: """Return the number of errors in the batch.""" return len(self.__results_for_wrapper.failed_objects) + len( self.__results_for_wrapper.failed_references ) def __all_threads_alive(self) -> bool: return self.__bg_threads is not None and all( thread.is_alive() for thread in self.__bg_threads ) def __any_threads_alive(self) -> bool: return self.__bg_threads is not None and any( thread.is_alive() for thread in self.__bg_threads ) def _start(self) -> None: assert isinstance(self.__batch_mode, _ServerSideBatching), ( "Only server-side batching is supported in this mode" ) self.__bg_threads = [ self.__start_bg_threads() for _ in range(self.__batch_mode.concurrency) ] logger.warning( f"Provisioned {len(self.__bg_threads)} stream(s) to the server for batch processing" ) now = time.time() while not self.__all_threads_alive(): # wait for the stream to be started by __batch_stream time.sleep(0.01) if time.time() - now > 10: raise WeaviateBatchValidationError( "Batch stream was not started within 10 seconds. Please check your connection." ) def _shutdown(self) -> None: # Shutdown the current batch and wait for all requests to be finished self.flush() self.__stop = True # we are done, wait for bg threads to finish # self.__batch_stream will set the shutdown event when it receives # the stop message from the server while self.__any_threads_alive(): time.sleep(1) logger.warning("Send & receive threads finished.") # copy the results to the public results self.__results_for_wrapper_backup.results = self.__results_for_wrapper.results self.__results_for_wrapper_backup.failed_objects = self.__results_for_wrapper.failed_objects self.__results_for_wrapper_backup.failed_references = ( self.__results_for_wrapper.failed_references ) self.__results_for_wrapper_backup.imported_shards = ( self.__results_for_wrapper.imported_shards ) def __batch_send(self) -> None: refresh_time: float = 0.01 while ( self.__shut_background_thread_down is not None and not self.__shut_background_thread_down.is_set() ): if len(self.__batch_objects) + len(self.__batch_references) > 0: self._batch_send = True start = time.time() while (len_o := len(self.__batch_objects)) + ( len_r := len(self.__batch_references) ) < self.__batch_size: # wait for more objects to be added up to the batch size time.sleep(0.01) if ( self.__shut_background_thread_down is not None and self.__shut_background_thread_down.is_set() ): logger.warning("Threads were shutdown, exiting batch send loop") # shutdown was requested, exit early self.__reqs.put(None) return if time.time() - start >= 1 and ( len_o == len(self.__batch_objects) or len_r == len(self.__batch_references) ): # no new objects were added in the last second, exit the loop break objs = self.__batch_objects.pop_items(self.__batch_size) refs = self.__batch_references.pop_items( self.__batch_size - len(objs), uuid_lookup=self.__uuid_lookup, ) with self.__uuid_lookup_lock: self.__uuid_lookup.difference_update(obj.uuid for obj in objs) for req in self.__generate_stream_requests(objs, refs): logged = False while self.__is_shutting_down.is_set() or self.__is_shutdown.is_set(): # if we were shutdown by the node we were connected to, we need to wait for the stream to be restarted # so that the connection is refreshed to a new node where the objects can be accepted # otherwise, we wait until the stream has been started by __batch_stream to send the first batch if not logged: logger.warning("Waiting for stream to be re-established...") logged = True # put sentinel into our queue to signal the end of the current stream self.__reqs.put(None) time.sleep(1) if logged: logger.warning("Stream re-established, resuming sending batches") self.__reqs.put(req) elif self.__stop: # we are done, send the sentinel into our queue to be consumed by the batch sender self.__reqs.put(None) # signal the end of the stream logger.warning("Batching finished, sent stop signal to batch stream") return time.sleep(refresh_time) def __generate_stream_requests( self, objs: List[batch_pb2.BatchObject], refs: List[batch_pb2.BatchReference], ) -> Generator[batch_pb2.BatchStreamRequest, None, None]: per_object_overhead = 4 # extra overhead bytes per object in the request def request_maker(): return batch_pb2.BatchStreamRequest() request = request_maker() total_size = request.ByteSize() for obj in objs: obj_size = obj.ByteSize() + per_object_overhead if total_size + obj_size >= self.__batch_grpc.grpc_max_msg_size: yield request request = request_maker() total_size = request.ByteSize() request.data.objects.values.append(obj) total_size += obj_size for ref in refs: ref_size = ref.ByteSize() + per_object_overhead if total_size + ref_size >= self.__batch_grpc.grpc_max_msg_size: yield request request = request_maker() total_size = request.ByteSize() request.data.references.values.append(ref) total_size += ref_size if len(request.data.objects.values) > 0 or len(request.data.references.values) > 0: yield request def __generate_stream_requests_for_grpc( self, ) -> Generator[batch_pb2.BatchStreamRequest, None, None]: yield batch_pb2.BatchStreamRequest( start=batch_pb2.BatchStreamRequest.Start( consistency_level=self.__batch_grpc._consistency_level, ), ) while ( self.__shut_background_thread_down is not None and not self.__shut_background_thread_down.is_set() ): req = self.__reqs.get() if req is not None: self.__total += len(req.data.objects.values) + len(req.data.references.values) yield req continue if self.__stop and not ( self.__is_shutting_down.is_set() or self.__is_shutdown.is_set() ): logger.warning("Batching finished, closing the client-side of the stream") yield batch_pb2.BatchStreamRequest(stop=batch_pb2.BatchStreamRequest.Stop()) return if self.__is_shutting_down.is_set(): logger.warning("Server shutting down, closing the client-side of the stream") return logger.warning("Received sentinel, but not stopping, continuing...") def __batch_recv(self) -> None: for message in self.__batch_grpc.stream( connection=self.__connection, requests=self.__generate_stream_requests_for_grpc(), ): if message.HasField("started"): logger.warning("Batch stream started successfully") for threads in self.__bg_threads: threads.start_send() if message.HasField("backoff"): if ( message.backoff.batch_size != self.__batch_size and not self.__is_shutting_down.is_set() and not self.__is_shutdown.is_set() and not self.__stop ): self.__batch_size = message.backoff.batch_size logger.warning( f"Updated batch size to {self.__batch_size} as per server request" ) if message.HasField("results"): result_objs = BatchObjectReturn() result_refs = BatchReferenceReturn() failed_objs: List[ErrorObject] = [] failed_refs: List[ErrorReference] = [] for error in message.results.errors: if error.HasField("uuid"): try: cached = self.__objs_cache.pop(error.uuid) except KeyError: continue err = ErrorObject( message=error.error, object_=cached, ) result_objs += BatchObjectReturn( _all_responses=[err], errors={cached.index: err}, ) failed_objs.append(err) logger.warning( { "error": error.error, "object": error.uuid, "action": "use {client,collection}.batch.failed_objects to access this error", } ) if error.HasField("beacon"): try: cached = self.__refs_cache.pop(error.beacon) except KeyError: continue err = ErrorReference( message=error.error, reference=error.beacon, # pyright: ignore ) failed_refs.append(err) result_refs += BatchReferenceReturn( errors={cached.index: err}, ) logger.warning( { "error": error.error, "reference": error.beacon, "action": "use {client,collection}.batch.failed_references to access this error", } ) for success in message.results.successes: if success.HasField("uuid"): try: cached = self.__objs_cache.pop(success.uuid) except KeyError: continue uuid = uuid_package.UUID(success.uuid) result_objs += BatchObjectReturn( _all_responses=[uuid], uuids={cached.index: uuid}, ) if success.HasField("beacon"): try: self.__refs_cache.pop(success.beacon, None) except KeyError: continue with self.__results_lock: self.__results_for_wrapper.results.objs += result_objs self.__results_for_wrapper.results.refs += result_refs self.__results_for_wrapper.failed_objects.extend(failed_objs) self.__results_for_wrapper.failed_references.extend(failed_refs) elif message.HasField("shutting_down"): logger.warning( "Received shutting down message from server, pausing sending until stream is re-established" ) self.__is_shutting_down.set() elif message.HasField("shutdown"): logger.warning("Received shutdown finished message from server") self.__is_shutdown.set() self.__is_shutting_down.clear() self.__reconnect() # restart the stream if we were shutdown by the node we were connected to ensuring that the index is # propagated properly from it to the new one if self.__is_shutdown.is_set(): logger.warning("Restarting batch recv after shutdown...") self.__is_shutdown.clear() return self.__batch_recv() else: logger.warning("Server closed the stream from its side, shutting down batch") return def __reconnect(self, retry: int = 0) -> None: if self.__consistency_level == ConsistencyLevel.ALL: # check that all nodes are available before reconnecting cluster = _ClusterBatch(self.__connection) while len(nodes := cluster.get_nodes_status()) != 3 or any( node["status"] != "HEALTHY" for node in nodes ): logger.warning( "Waiting for all nodes to be HEALTHY before reconnecting to batch stream due to CL=ALL..." ) time.sleep(5) try: logger.warning(f"Trying to reconnect after shutdown... {retry + 1}/{5}") self.__connection.close("sync") self.__connection.connect(force=True) logger.warning("Reconnected successfully") except (WeaviateStartUpError, WeaviateGRPCUnavailableError) as e: if retry < 5: time.sleep(2**retry) self.__reconnect(retry + 1) else: logger.error("Failed to reconnect after 5 attempts") self.__bg_thread_exception = e def __start_bg_threads(self) -> _BgThreads: """Create a background thread that periodically checks how congested the batch queue is.""" self.__shut_background_thread_down = threading.Event() def batch_send_wrapper() -> None: try: self.__batch_send() logger.warning("exited batch send thread") except Exception as e: logger.error(e) self.__bg_thread_exception = e def batch_recv_wrapper() -> None: socket_hung_up = False try: self.__batch_recv() logger.warning("exited batch receive thread") except Exception as e: if isinstance(e, WeaviateBatchStreamError) and ( "Socket closed" in e.message or "context canceled" in e.message ): socket_hung_up = True else: logger.error(e) logger.error(type(e)) self.__bg_thread_exception = e if socket_hung_up: # this happens during ungraceful shutdown of the coordinator # lets restart the stream and add the cached objects again logger.warning("Stream closed unexpectedly, restarting...") self.__reconnect() # server sets this whenever it restarts, gracefully or unexpectedly, so need to clear it now self.__is_shutting_down.clear() with self.__objs_cache_lock: logger.warning( f"Re-adding {len(self.__objs_cache)} cached objects to the batch" ) self.__batch_objects.prepend( [ self.__batch_grpc.grpc_object(o._to_internal()) for o in self.__objs_cache.values() ] ) with self.__refs_cache_lock: self.__batch_references.prepend( [ self.__batch_grpc.grpc_reference(o._to_internal()) for o in self.__refs_cache.values() ] ) # start a new stream with a newly reconnected channel return batch_recv_wrapper() threads = _BgThreads( send=threading.Thread( target=batch_send_wrapper, daemon=True, name="BgBatchSend", ), recv=threading.Thread( target=batch_recv_wrapper, daemon=True, name="BgBatchRecv", ), ) threads.start_recv() return threads def flush(self) -> None: """Flush the batch queue and wait for all requests to be finished.""" # bg thread is sending objs+refs automatically, so simply wait for everything to be done while len(self.__batch_objects) > 0 or len(self.__batch_references) > 0: time.sleep(0.01) self.__check_bg_threads_alive() def _add_object( self, collection: str, properties: Optional[WeaviateProperties] = None, references: Optional[ReferenceInputs] = None, uuid: Optional[UUID] = None, vector: Optional[VECTORS] = None, tenant: Optional[str] = None, ) -> UUID: self.__check_bg_threads_alive() try: batch_object = BatchObject( collection=collection, properties=properties, references=references, uuid=uuid, vector=vector, tenant=tenant, index=self.__objs_count, ) self.__results_for_wrapper.imported_shards.add( Shard(collection=collection, tenant=tenant) ) except ValidationError as e: raise WeaviateBatchValidationError(repr(e)) uuid = str(batch_object.uuid) with self.__uuid_lookup_lock: self.__uuid_lookup.add(uuid) self.__batch_objects.add(self.__batch_grpc.grpc_object(batch_object._to_internal())) with self.__objs_cache_lock: self.__objs_cache[uuid] = batch_object self.__objs_count += 1 # block if queue gets too long or weaviate is overloaded - reading files is faster them sending them so we do # not need a long queue while len(self.__batch_objects) >= self.__batch_size * 2: self.__check_bg_threads_alive() time.sleep(0.01) assert batch_object.uuid is not None return batch_object.uuid def _add_reference( self, from_object_uuid: UUID, from_object_collection: str, from_property_name: str, to: ReferenceInput, tenant: Optional[str] = None, ) -> None: self.__check_bg_threads_alive() if isinstance(to, ReferenceToMulti): to_strs: Union[List[str], List[UUID]] = to.uuids_str elif isinstance(to, str) or isinstance(to, uuid_package.UUID): to_strs = [to] else: to_strs = list(to) for uid in to_strs: try: batch_reference = BatchReference( from_object_collection=from_object_collection, from_object_uuid=from_object_uuid, from_property_name=from_property_name, to_object_collection=( to.target_collection if isinstance(to, ReferenceToMulti) else None ), to_object_uuid=uid, tenant=tenant, index=self.__refs_count, ) except ValidationError as e: raise WeaviateBatchValidationError(repr(e)) self.__batch_references.add( self.__batch_grpc.grpc_reference(batch_reference._to_internal()) ) with self.__refs_cache_lock: self.__refs_cache[batch_reference._to_beacon()] = batch_reference self.__refs_count += 1 def __check_bg_threads_alive(self) -> None: if self.__any_threads_alive(): return raise self.__bg_thread_exception or Exception("Batch thread died unexpectedly")
_BatchBaseNew
python
plotly__plotly.py
tests/test_optional/test_tools/test_figure_factory.py
{ "start": 29438, "end": 44984 }
class ____(TestCaseNoTemplate, NumpyTestUtilsMixin): def test_unequal_z_text_size(self): # check: PlotlyError if z and text are not the same dimensions kwargs = {"z": [[1, 2], [1, 2]], "annotation_text": [[1, 2, 3], [1]]} self.assertRaises(PlotlyError, ff.create_annotated_heatmap, **kwargs) kwargs = {"z": [[1], [1]], "annotation_text": [[1], [1], [1]]} self.assertRaises(PlotlyError, ff.create_annotated_heatmap, **kwargs) def test_incorrect_x_size(self): # check: PlotlyError if x is the wrong size kwargs = {"z": [[1, 2], [1, 2]], "x": ["A"]} self.assertRaises(PlotlyError, ff.create_annotated_heatmap, **kwargs) def test_incorrect_y_size(self): # check: PlotlyError if y is the wrong size kwargs = {"z": [[1, 2], [1, 2]], "y": [1, 2, 3]} self.assertRaises(PlotlyError, ff.create_annotated_heatmap, **kwargs) def test_simple_annotated_heatmap(self): # we should be able to create a heatmap with annotated values with a # logical text color z = [[1, 0, 0.5], [0.25, 0.75, 0.45]] a_heat = ff.create_annotated_heatmap(z) expected_a_heat = { "data": [ { "colorscale": [ [0.0, "#0d0887"], [0.1111111111111111, "#46039f"], [0.2222222222222222, "#7201a8"], [0.3333333333333333, "#9c179e"], [0.4444444444444444, "#bd3786"], [0.5555555555555556, "#d8576b"], [0.6666666666666666, "#ed7953"], [0.7777777777777778, "#fb9f3a"], [0.8888888888888888, "#fdca26"], [1.0, "#f0f921"], ], "showscale": False, "reversescale": False, "type": "heatmap", "z": [[1, 0, 0.5], [0.25, 0.75, 0.45]], } ], "layout": { "annotations": [ { "font": {"color": "#000000"}, "showarrow": False, "text": "1", "x": 0, "xref": "x", "y": 0, "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0", "x": 1, "xref": "x", "y": 0, "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "0.5", "x": 2, "xref": "x", "y": 0, "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0.25", "x": 0, "xref": "x", "y": 1, "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "0.75", "x": 1, "xref": "x", "y": 1, "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0.45", "x": 2, "xref": "x", "y": 1, "yref": "y", }, ], "xaxis": { "gridcolor": "rgb(0, 0, 0)", "showticklabels": False, "side": "top", "ticks": "", }, "yaxis": {"showticklabels": False, "ticks": "", "ticksuffix": " "}, }, } self.assert_fig_equal(a_heat["data"][0], expected_a_heat["data"][0]) self.assert_fig_equal(a_heat["layout"], expected_a_heat["layout"]) def test_annotated_heatmap_kwargs(self): # we should be able to create an annotated heatmap with x and y axes # labels, a defined colorscale, and supplied text. z = [[1, 0], [0.25, 0.75], [0.45, 0.5]] text = [["first", "second"], ["third", "fourth"], ["fifth", "sixth"]] a = ff.create_annotated_heatmap( z, x=["A", "B"], y=["One", "Two", "Three"], annotation_text=text, colorscale=[[0, "rgb(255,255,255)"], [1, "#e6005a"]], ) expected_a = { "data": [ { "colorscale": [[0, "rgb(255,255,255)"], [1, "#e6005a"]], "showscale": False, "reversescale": False, "type": "heatmap", "x": ["A", "B"], "y": ["One", "Two", "Three"], "z": [[1, 0], [0.25, 0.75], [0.45, 0.5]], } ], "layout": { "annotations": [ { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "first", "x": "A", "xref": "x", "y": "One", "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "second", "x": "B", "xref": "x", "y": "One", "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "third", "x": "A", "xref": "x", "y": "Two", "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "fourth", "x": "B", "xref": "x", "y": "Two", "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "fifth", "x": "A", "xref": "x", "y": "Three", "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "sixth", "x": "B", "xref": "x", "y": "Three", "yref": "y", }, ], "xaxis": { "dtick": 1, "gridcolor": "rgb(0, 0, 0)", "side": "top", "ticks": "", }, "yaxis": {"dtick": 1, "ticks": "", "ticksuffix": " "}, }, } self.assert_fig_equal(a["data"][0], expected_a["data"][0]) self.assert_fig_equal(a["layout"], expected_a["layout"]) def test_annotated_heatmap_reversescale(self): # we should be able to create an annotated heatmap with x and y axes # labels, a defined colorscale, and supplied text. z = [[1, 0], [0.25, 0.75], [0.45, 0.5]] text = [["first", "second"], ["third", "fourth"], ["fifth", "sixth"]] a = ff.create_annotated_heatmap( z, x=["A", "B"], y=["One", "Two", "Three"], annotation_text=text, reversescale=True, colorscale=[[0, "rgb(255,255,255)"], [1, "#e6005a"]], ) expected_a = { "data": [ { "colorscale": [[0, "rgb(255,255,255)"], [1, "#e6005a"]], "showscale": False, "reversescale": True, "type": "heatmap", "x": ["A", "B"], "y": ["One", "Two", "Three"], "z": [[1, 0], [0.25, 0.75], [0.45, 0.5]], } ], "layout": { "annotations": [ { "font": {"color": "#000000"}, "showarrow": False, "text": "first", "x": "A", "xref": "x", "y": "One", "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "second", "x": "B", "xref": "x", "y": "One", "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "third", "x": "A", "xref": "x", "y": "Two", "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "fourth", "x": "B", "xref": "x", "y": "Two", "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "fifth", "x": "A", "xref": "x", "y": "Three", "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "sixth", "x": "B", "xref": "x", "y": "Three", "yref": "y", }, ], "xaxis": { "dtick": 1, "gridcolor": "rgb(0, 0, 0)", "side": "top", "ticks": "", }, "yaxis": {"dtick": 1, "ticks": "", "ticksuffix": " "}, }, } self.assert_fig_equal(a["data"][0], expected_a["data"][0]) self.assert_fig_equal(a["layout"], expected_a["layout"]) def test_bug_1300(self): # https://github.com/plotly/plotly.py/issues/1300 sub_z = [[0.1, 0.0, 0.0], [0.0, 1.0, 0.1]] # sub_z = sub_z.tolist() # Standard scale direction fig = ff.create_annotated_heatmap( sub_z, colorscale="Greens", showscale=True, reversescale=True ) expected = graph_objs.Figure( { "data": [ { "colorscale": [ [0.0, "rgb(247,252,245)"], [0.125, "rgb(229,245,224)"], [0.25, "rgb(199,233,192)"], [0.375, "rgb(161,217,155)"], [0.5, "rgb(116,196,118)"], [0.625, "rgb(65,171,93)"], [0.75, "rgb(35,139,69)"], [0.875, "rgb(0,109,44)"], [1.0, "rgb(0,68,27)"], ], "reversescale": True, "showscale": True, "type": "heatmap", "z": [[0.1, 0.0, 0.0], [0.0, 1.0, 0.1]], } ], "layout": { "annotations": [ { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0.1", "x": 0, "xref": "x", "y": 0, "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0.0", "x": 1, "xref": "x", "y": 0, "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0.0", "x": 2, "xref": "x", "y": 0, "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0.0", "x": 0, "xref": "x", "y": 1, "yref": "y", }, { "font": {"color": "#000000"}, "showarrow": False, "text": "1.0", "x": 1, "xref": "x", "y": 1, "yref": "y", }, { "font": {"color": "#FFFFFF"}, "showarrow": False, "text": "0.1", "x": 2, "xref": "x", "y": 1, "yref": "y", }, ], "xaxis": { "gridcolor": "rgb(0, 0, 0)", "showticklabels": False, "side": "top", "ticks": "", }, "yaxis": {"showticklabels": False, "ticks": "", "ticksuffix": " "}, }, } ) # Remove uids for trace in fig.data: trace.update(uid=None) for trace in expected.data: trace.update(uid=None) # Perform comparison self.assert_fig_equal(fig, expected)
TestAnnotatedHeatmap
python
doocs__leetcode
solution/1500-1599/1507.Reformat Date/Solution.py
{ "start": 0, "end": 282 }
class ____: def reformatDate(self, date: str) -> str: s = date.split() s.reverse() months = " JanFebMarAprMayJunJulAugSepOctNovDec" s[1] = str(months.index(s[1]) // 3 + 1).zfill(2) s[2] = s[2][:-2].zfill(2) return "-".join(s)
Solution
python
apache__airflow
airflow-core/tests/unit/serialization/test_serde.py
{ "start": 5376, "end": 5444 }
class ____: __version__: ClassVar[int] = 2 x: int @dataclass
W
python
geekcomputers__Python
insta_monitering/insta_datafetcher.py
{ "start": 427, "end": 2759 }
class ____(object): def __init__(self): filename = os.getcwd() + "/" + "ipList.txt" with open(filename, "r") as f: ipdata = f.read() self._IP = random.choice(ipdata.split(",")) def __call__(self, function_to_call_for_appling_proxy): SOCKS5_PROXY_HOST = self._IP # default_socket = socket.socket socks.set_default_proxy( socks.SOCKS5, SOCKS5_PROXY_HOST, config.SOCKS5_PROXY_PORT, True, config.auth, config.passcode, ) socket.socket = socks.socksocket def wrapper_function(url): # this is used for applyting socks5 proxy over the request return function_to_call_for_appling_proxy(url) socks.set_default_proxy() return wrapper_function async def dataprocess(htmldata): bs4obj = bs4.BeautifulSoup(htmldata, "html.parser") scriptsdata = bs4obj.findAll("script", {"type": "text/javascript"}) datatext = "" for i in scriptsdata: datatext = i.text if "window._sharedData =" in datatext: break datajson = re.findall("{(.*)}", datatext) datajson = "{" + datajson[0] + "}" datadict = ujson.loads(datajson) maindict = {} datadict = datadict["entry_data"]["PostPage"][0]["graphql"]["shortcode_media"] tofind = ["owner", "location"] for i in tofind: try: maindict[i] = datadict[i] except Exception as e: print(e) pass return maindict async def datapullpost(future, url): while True: @PorxyApplyingDecorator() async def request_pull(url): data = None print(url) urllib3.disable_warnings() user_agent = {"User-agent": "Mozilla/17.0"} try: data = requests.get( url=url, headers=user_agent, timeout=10, verify=False ).text except Exception as e: print(e) data = None finally: return data data = await request_pull(url) if data != None: break data = await dataprocess(htmldata=data) # here processing of data has to occur future.set_result(data)
PorxyApplyingDecorator
python
scipy__scipy
scipy/stats/tests/test_morestats.py
{ "start": 93533, "end": 100055 }
class ____: @pytest.mark.parametrize("dtype", ["float32", "float64"]) def test_basic(self, dtype, xp): dt = getattr(xp, dtype) x = stats.norm.rvs(size=10000, loc=10, random_state=54321) lmbda = 1 llf = stats.boxcox_llf(lmbda, xp.asarray(x, dtype=dt)) llf_expected = -x.size / 2. * np.log(np.sum(x.std()**2)) xp_assert_close(llf, xp.asarray(llf_expected, dtype=dt)) @skip_xp_backends(np_only=True, reason='array-likes only accepted for NumPy backend.') def test_array_like(self, xp): x = stats.norm.rvs(size=100, loc=10, random_state=54321) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf2 = stats.boxcox_llf(lmbda, list(x)) xp_assert_close(llf, llf2, rtol=1e-12) def test_2d_input(self, xp): # Note: boxcox_llf() was already working with 2-D input (sort of), so # keep it like that. boxcox() doesn't work with 2-D input though, due # to brent() returning a scalar. x = stats.norm.rvs(size=100, loc=10, random_state=54321) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T) xp_assert_close(xp.asarray([llf, llf]), xp.asarray(llf2), rtol=1e-12) def test_empty(self, xp): message = "One or more sample arguments is too small..." with eager_warns(SmallSampleWarning, match=message, xp=xp): assert xp.isnan(xp.asarray(stats.boxcox_llf(1, xp.asarray([])))) def test_gh_6873(self, xp): # Regression test for gh-6873. # This example was taken from gh-7534, a duplicate of gh-6873. data = xp.asarray([198.0, 233.0, 233.0, 392.0]) llf = stats.boxcox_llf(-8, data) # The expected value was computed with mpmath. xp_assert_close(llf, xp.asarray(-17.93934208579061)) def test_instability_gh20021(self, xp): data = xp.asarray([2003, 1950, 1997, 2000, 2009], dtype=xp.float64) llf = stats.boxcox_llf(1e-8, data) # The expected value was computed with mpsci, set mpmath.mp.dps=100 # expect float64 output for integer input xp_assert_close(llf, xp.asarray(-15.32401272869016598, dtype=xp.float64), rtol=5e-7) # bumped tolerance from 1e-7 for Accelerate def test_axis(self, xp): data = xp.asarray([[100, 200], [300, 400]]) llf_axis_0 = stats.boxcox_llf(1, data, axis=0) llf_0 = xp.stack([ stats.boxcox_llf(1, data[:, 0]), stats.boxcox_llf(1, data[:, 1]), ]) xp_assert_close(llf_axis_0, llf_0) llf_axis_1 = stats.boxcox_llf(1, data, axis=1) llf_1 = xp.stack([ stats.boxcox_llf(1, data[0, :]), stats.boxcox_llf(1, data[1, :]), ]) xp_assert_close(llf_axis_1, llf_1) # This is the data from GitHub user Qukaiyi, given as an example # of a data set that caused boxcox to fail. _boxcox_data = [ 15957, 112079, 1039553, 711775, 173111, 307382, 183155, 53366, 760875, 207500, 160045, 473714, 40194, 440319, 133261, 265444, 155590, 36660, 904939, 55108, 138391, 339146, 458053, 63324, 1377727, 1342632, 41575, 68685, 172755, 63323, 368161, 199695, 538214, 167760, 388610, 398855, 1001873, 364591, 1320518, 194060, 194324, 2318551, 196114, 64225, 272000, 198668, 123585, 86420, 1925556, 695798, 88664, 46199, 759135, 28051, 345094, 1977752, 51778, 82746, 638126, 2560910, 45830, 140576, 1603787, 57371, 548730, 5343629, 2298913, 998813, 2156812, 423966, 68350, 145237, 131935, 1600305, 342359, 111398, 1409144, 281007, 60314, 242004, 113418, 246211, 61940, 95858, 957805, 40909, 307955, 174159, 124278, 241193, 872614, 304180, 146719, 64361, 87478, 509360, 167169, 933479, 620561, 483333, 97416, 143518, 286905, 597837, 2556043, 89065, 69944, 196858, 88883, 49379, 916265, 1527392, 626954, 54415, 89013, 2883386, 106096, 402697, 45578, 349852, 140379, 34648, 757343, 1305442, 2054757, 121232, 606048, 101492, 51426, 1820833, 83412, 136349, 1379924, 505977, 1303486, 95853, 146451, 285422, 2205423, 259020, 45864, 684547, 182014, 784334, 174793, 563068, 170745, 1195531, 63337, 71833, 199978, 2330904, 227335, 898280, 75294, 2011361, 116771, 157489, 807147, 1321443, 1148635, 2456524, 81839, 1228251, 97488, 1051892, 75397, 3009923, 2732230, 90923, 39735, 132433, 225033, 337555, 1204092, 686588, 1062402, 40362, 1361829, 1497217, 150074, 551459, 2019128, 39581, 45349, 1117187, 87845, 1877288, 164448, 10338362, 24942, 64737, 769946, 2469124, 2366997, 259124, 2667585, 29175, 56250, 74450, 96697, 5920978, 838375, 225914, 119494, 206004, 430907, 244083, 219495, 322239, 407426, 618748, 2087536, 2242124, 4736149, 124624, 406305, 240921, 2675273, 4425340, 821457, 578467, 28040, 348943, 48795, 145531, 52110, 1645730, 1768364, 348363, 85042, 2673847, 81935, 169075, 367733, 135474, 383327, 1207018, 93481, 5934183, 352190, 636533, 145870, 55659, 146215, 73191, 248681, 376907, 1606620, 169381, 81164, 246390, 236093, 885778, 335969, 49266, 381430, 307437, 350077, 34346, 49340, 84715, 527120, 40163, 46898, 4609439, 617038, 2239574, 159905, 118337, 120357, 430778, 3799158, 3516745, 54198, 2970796, 729239, 97848, 6317375, 887345, 58198, 88111, 867595, 210136, 1572103, 1420760, 574046, 845988, 509743, 397927, 1119016, 189955, 3883644, 291051, 126467, 1239907, 2556229, 411058, 657444, 2025234, 1211368, 93151, 577594, 4842264, 1531713, 305084, 479251, 20591, 1466166, 137417, 897756, 594767, 3606337, 32844, 82426, 1294831, 57174, 290167, 322066, 813146, 5671804, 4425684, 895607, 450598, 1048958, 232844, 56871, 46113, 70366, 701618, 97739, 157113, 865047, 194810, 1501615, 1765727, 38125, 2733376, 40642, 437590, 127337, 106310, 4167579, 665303, 809250, 1210317, 45750, 1853687, 348954, 156786, 90793, 1885504, 281501, 3902273, 359546, 797540, 623508, 3672775, 55330, 648221, 266831, 90030, 7118372, 735521, 1009925, 283901, 806005, 2434897, 94321, 309571, 4213597, 2213280, 120339, 64403, 8155209, 1686948, 4327743, 1868312, 135670, 3189615, 1569446, 706058, 58056, 2438625, 520619, 105201, 141961, 179990, 1351440, 3148662, 2804457, 2760144, 70775, 33807, 1926518, 2362142, 186761, 240941, 97860, 1040429, 1431035, 78892, 484039, 57845, 724126, 3166209, 175913, 159211, 1182095, 86734, 1921472, 513546, 326016, 1891609 ]
TestBoxcox_llf
python
jina-ai__jina
jina/clients/mixin.py
{ "start": 6217, "end": 6886 }
class ____: """The Profile Mixin for Client and Flow to expose `profile` API""" def profiling(self, show_table: bool = True) -> Dict[str, float]: """Profiling a single query's roundtrip including network and computation latency. Results is summarized in a Dict. :param show_table: whether to show the table or not. :return: the latency report in a dict. """ from docarray import Document st = time.perf_counter() r = self.client.post(on='/', inputs=Document(), return_responses=True) ed = time.perf_counter() return _render_response_table(r[0], st, ed, show_table=show_table)
ProfileMixin
python
django__django
tests/queries/tests.py
{ "start": 178537, "end": 178889 }
class ____(TestCase): def test_filter_rejects_invalid_arguments(self): school = School.objects.create() msg = "The following kwargs are invalid: '_connector', '_negated'" with self.assertRaisesMessage(TypeError, msg): School.objects.filter(pk=school.pk, _negated=True, _connector="evil")
TestInvalidFilterArguments
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/resources.py
{ "start": 701, "end": 851 }
class ____(graphene.Enum): VALUE = "VALUE" ENV_VAR = "ENV_VAR" class Meta: name = "ConfiguredValueType"
GrapheneConfiguredValueType
python
apache__airflow
providers/openlineage/tests/unit/openlineage/dags/test_openlineage_execution.py
{ "start": 1089, "end": 2783 }
class ____(BaseOperator): def __init__(self, *, stall_amount=0, fail=False, **kwargs) -> None: super().__init__(**kwargs) self.stall_amount = stall_amount self.fail = fail def execute(self, context): self.log.error("STALL AMOUNT %s", self.stall_amount) time.sleep(1) if self.fail: raise Exception("Failed") def get_openlineage_facets_on_start(self): return OperatorLineage(inputs=[Dataset(namespace="test", name="on-start")]) def get_openlineage_facets_on_complete(self, task_instance): self.log.error("STALL AMOUNT %s", self.stall_amount) time.sleep(self.stall_amount) return OperatorLineage(inputs=[Dataset(namespace="test", name="on-complete")]) def get_openlineage_facets_on_failure(self, task_instance): self.log.error("STALL AMOUNT %s", self.stall_amount) time.sleep(self.stall_amount) return OperatorLineage(inputs=[Dataset(namespace="test", name="on-failure")]) with DAG( dag_id="test_openlineage_execution", default_args={"owner": "airflow", "retries": 3, "start_date": datetime.datetime(2022, 1, 1)}, schedule="0 0 * * *", dagrun_timeout=datetime.timedelta(minutes=60), ): no_stall = OpenLineageExecutionOperator(task_id="execute_no_stall") short_stall = OpenLineageExecutionOperator(task_id="execute_short_stall", stall_amount=5) mid_stall = OpenLineageExecutionOperator(task_id="execute_mid_stall", stall_amount=15) long_stall = OpenLineageExecutionOperator(task_id="execute_long_stall", stall_amount=30) fail = OpenLineageExecutionOperator(task_id="execute_fail", fail=True)
OpenLineageExecutionOperator
python
getsentry__sentry
tests/sentry/rules/conditions/test_existing_high_priority_issue.py
{ "start": 312, "end": 1467 }
class ____(RuleTestCase): rule_cls = ExistingHighPriorityIssueCondition def setUp(self) -> None: self.rule = Rule(environment_id=1, project=self.project, label="label") def test_applies_correctly(self) -> None: rule = self.get_rule(rule=self.rule) # This will never pass for non-new or non-escalating issuesalways pass self.event.group.update(priority=PriorityLevel.HIGH) self.assertPasses(rule, is_new=False, has_reappeared=True, has_escalated=True) self.assertPasses(rule, is_new=False, has_reappeared=False, has_escalated=True) # This will never pass self.assertDoesNotPass(rule, is_new=True, has_reappeared=False, has_escalated=False) self.assertDoesNotPass(rule, is_new=True, has_reappeared=True, has_escalated=False) self.event.group.update(priority=PriorityLevel.LOW) self.assertDoesNotPass(rule, is_new=False, has_reappeared=True, has_escalated=False) self.event.group.update(priority=PriorityLevel.MEDIUM) self.assertDoesNotPass(rule, is_new=False, has_reappeared=True, has_escalated=True)
ExistingHighPriorityIssueConditionTest
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/typeAlias4.py
{ "start": 216, "end": 1553 }
class ____: pass not_a_type = "ClassA" def requires_string(a: str): pass requires_string(not_a_type) # This should generate an error because type2 should # not be interpreted as a string. requires_string(type2) # This should generate an error because the symbol # is later declared as a TypeAlias. my_type3 = int # This should generate an error because it is obscured # by another type alias declaration. my_type3: "TA" = Union[int, str] # This should generate an error because the symbol # was previously declared as a TypeAlias. my_type3: TA = int # This should generate an error because the expression # on the RHS evaluates to an object, not a class. my_type4: TA = 3 # This should generate an error because the expression # on the RHS evaluates to an object, not a class. my_type5: TA = True # This should generate an error because the expression # on the RHS evaluates to an object, not a class. my_type7: TA = list() # Verify that variables with declarations (other than explicit TypeAlias) # are not treated as a type alias. SimpleAlias = int ExplicitAlias: TA = int SimpleNonAlias: Type[int] = int if sys.version_info > (3, 9): reveal_type(SimpleAlias, expected_text="type[int]") reveal_type(ExplicitAlias, expected_text="type[int]") reveal_type(SimpleNonAlias, expected_text="type[int]")
ClassA
python
airbytehq__airbyte
airbyte-integrations/connectors/source-shopify/source_shopify/shopify_graphql/bulk/query.py
{ "start": 78400, "end": 88742 }
class ____(ShopifyBulkQuery): """ { products(query: "updated_at:>='2020-01-20T00:00:00+00:00' AND updated_at:<'2024-04-25T00:00:00+00:00'", sortKey:UPDATED_AT) { edges { node { __typename id publishedAt createdAt status vendor updatedAt bodyHtml productType tags options { __typename id values position } handle images { edges { node { __typename id } } } templateSuffix title variants { edges { node { __typename id } } } description descriptionHtml isGiftCard legacyResourceId media_count: mediaCount { media_count: count } onlineStorePreviewUrl onlineStoreUrl totalInventory tracksInventory total_variants: variantsCount { total_variants: count } hasOnlyDefaultVariant hasOutOfStockVariants requiresSellingPlan priceRangeV2 { maxVariantPrice { amount currencyCode } minVariantPrice { amount currencyCode } } featuredImage { altText height id url width } seo { description title } featuredMedia { alt id mediaContentType status preview { image { id altText } status } mediaErrors { code details message } mediaWarnings { code message } } feedback { details { app { id } link { url } messages { field message } } summary } } } } } """ query_name = "products" sort_key = "UPDATED_AT" # images property fields images_fields: List[Field] = [Field(name="edges", fields=[Field(name="node", fields=["__typename", "id"])])] # variants property fields, we re-use the same field names as for the `images` property variants_fields: List[Field] = images_fields amount_fields: List[Field] = [ "amount", Field(name="currencyCode", alias="currency_code"), ] price_range_v2_fields: List[Field] = [ Field(name="maxVariantPrice", alias="max_variant_price", fields=amount_fields), Field(name="minVariantPrice", alias="min_variant_price", fields=amount_fields), ] featured_image_fields: List[Field] = [ "height", "id", "url", "width", Field(name="altText", alias="alt_text"), ] featured_media_fields: List[Field] = [ "alt", "id", "status", Field(name="mediaContentType", alias="media_content_type"), Field(name="preview", fields=["status", Field(name="image", fields=["id", Field(name="altText", alias="alt_text")])]), Field(name="mediaErrors", alias="media_errors", fields=["code", "details", "message"]), Field(name="mediaWarnings", alias="media_warnings", fields=["code", "message"]), ] feedback_details_fields: List[Field] = [ Field(name="app", fields=["id"]), Field(name="link", fields=["url"]), Field(name="messages", fields=["field", "message"]), ] feedback_fields: List[Field] = [ "summary", Field(name="details", fields=feedback_details_fields), ] # main query query_nodes: List[Field] = [ "__typename", "id", "publishedAt", "createdAt", "status", "vendor", "updatedAt", "bodyHtml", "productType", "tags", "handle", "templateSuffix", "title", "description", "descriptionHtml", "isGiftCard", "legacyResourceId", "onlineStorePreviewUrl", "onlineStoreUrl", "totalInventory", "tracksInventory", "hasOnlyDefaultVariant", "hasOutOfStockVariants", "requiresSellingPlan", Field(name="priceRangeV2", fields=price_range_v2_fields), Field(name="featuredImage", fields=featured_image_fields), Field(name="seo", fields=["description", "title"]), Field(name="featuredMedia", fields=featured_media_fields), Field(name="feedback", fields=feedback_fields), Field(name="variantsCount", alias="total_variants", fields=[Field(name="count", alias="total_variants")]), Field(name="mediaCount", alias="media_count", fields=[Field(name="count", alias="media_count")]), Field(name="options", fields=["id", "name", "values", "position"]), Field(name="images", fields=images_fields), Field(name="variants", fields=variants_fields), ] record_composition = { "new_record": "Product", # each product could have `Image` and `ProductVariant` associated with the product "record_components": ["Image", "ProductVariant"], } def _process_component(self, entity: List[dict]) -> List[dict]: for item in entity: # remove the `__parentId` from the object if BULK_PARENT_KEY in item: item.pop(BULK_PARENT_KEY) # resolve the id from string item["id"] = self.tools.resolve_str_id(item.get("id")) return entity def _process_options(self, options: List[dict], product_id: Optional[int] = None) -> List[dict]: for option in options: # add product_id to each option option["product_id"] = product_id if product_id else None return options def _unnest_tags(self, record: MutableMapping[str, Any]) -> Optional[str]: # we keep supporting 1 tag only, as it was for the REST stream, # to avoid breaking change. tags = record.get("tags", []) return ", ".join(tags) if tags else None def _process_price_range_v2(self, price_range_v2: MutableMapping[str, Any]) -> MutableMapping[str, Any]: max_variant_price = price_range_v2.get("max_variant_price", {}) min_variant_price = price_range_v2.get("min_variant_price", {}) # cast the `amount` for each of the min/max object if max_variant_price: price_range_v2["max_variant_price"]["amount"] = float(max_variant_price.get("amount")) if min_variant_price: price_range_v2["min_variant_price"]["amount"] = float(min_variant_price.get("amount")) return price_range_v2 def record_process_components(self, record: MutableMapping[str, Any]) -> Iterable[MutableMapping[str, Any]]: """ Defines how to process collected components. """ # get the joined record components collected for the record record_components = record.get("record_components", {}) # process record components if record_components: record["images"] = self._process_component(record_components.get("Image", [])) record["variants"] = self._process_component(record_components.get("ProductVariant", [])) record["options"] = self._process_component(record.get("options", [])) # add the product_id to the `options` product_id = record.get("id") record["options"] = self._process_options(record.get("options", []), product_id) record.pop("record_components") # unnest the `tags` (the list of 1) record["tags"] = self._unnest_tags(record) # unnest `total_variants` record["total_variants"] = record.get("total_variants", {}).get("total_variants") # unnest `media_count` record["media_count"] = record.get("media_count", {}).get("media_count") # convert dates from ISO-8601 to RFC-3339 record["published_at"] = self.tools.from_iso8601_to_rfc3339(record, "publishedAt") record["updatedAt"] = self.tools.from_iso8601_to_rfc3339(record, "updatedAt") record["createdAt"] = self.tools.from_iso8601_to_rfc3339(record, "createdAt") # process `price_range_v2` price_range_v2 = record.get("priceRangeV2", {}) if price_range_v2: record["priceRangeV2"] = self._process_price_range_v2(price_range_v2) yield record
Product
python
django__django
tests/admin_widgets/models.py
{ "start": 5630, "end": 5796 }
class ____(models.Model): user = models.ForeignKey("auth.User", models.CASCADE, to_field="username") def __str__(self): return self.user.username
Profile
python
numpy__numpy
numpy/distutils/fujitsuccompiler.py
{ "start": 51, "end": 834 }
class ____(UnixCCompiler): """ Fujitsu compiler. """ compiler_type = 'fujitsu' cc_exe = 'fcc' cxx_exe = 'FCC' def __init__(self, verbose=0, dry_run=0, force=0): UnixCCompiler.__init__(self, verbose, dry_run, force) cc_compiler = self.cc_exe cxx_compiler = self.cxx_exe self.set_executables( compiler=cc_compiler + ' -O3 -Nclang -fPIC', compiler_so=cc_compiler + ' -O3 -Nclang -fPIC', compiler_cxx=cxx_compiler + ' -O3 -Nclang -fPIC', linker_exe=cc_compiler + ' -lfj90i -lfj90f -lfjsrcinfo -lelf -shared', linker_so=cc_compiler + ' -lfj90i -lfj90f -lfjsrcinfo -lelf -shared' )
FujitsuCCompiler
python
kamyu104__LeetCode-Solutions
Python/match-substring-after-replacement.py
{ "start": 113, "end": 953 }
class ____(object): def matchReplacement(self, s, sub, mappings): """ :type s: str :type sub: str :type mappings: List[List[str]] :rtype: bool """ def transform(x): return ord(x)-ord('0') if x.isdigit() else ord(x)-ord('a')+10 if x.islower() else ord(x)-ord('A')+36 def check(i): return all(sub[j] == s[i+j] or lookup[sub[j]][s[i+j]] for j in xrange(len(sub))) lookup = [[0]*62 for _ in xrange(62)] for a, b in mappings: lookup[transform(a)][transform(b)] = 1 s = map(transform, s) sub = map(transform, sub) return any(check(i) for i in xrange(len(s)-len(sub)+1)) # Time: O(n * k), n = len(s), k = len(sub) # Space: O(m), m = len(mappings) import collections # brute force
Solution
python
python-markdown__markdown
markdown/util.py
{ "start": 6590, "end": 7073 }
class ____: """ The base class for all processors. Attributes: Processor.md: The `Markdown` instance passed in an initialization. Arguments: md: The `Markdown` instance this processor is a part of. """ def __init__(self, md: Markdown | None = None): self.md = md if TYPE_CHECKING: # pragma: no cover class TagData(TypedDict): tag: str attrs: dict[str, str] left_index: int right_index: int
Processor
python
sympy__sympy
sympy/solvers/ode/single.py
{ "start": 1755, "end": 7133 }
class ____: """Represents an ordinary differential equation (ODE) This class is used internally in the by dsolve and related functions/classes so that properties of an ODE can be computed efficiently. Examples ======== This class is used internally by dsolve. To instantiate an instance directly first define an ODE problem: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> eq = f(x).diff(x, 2) Now you can create a SingleODEProblem instance and query its properties: >>> from sympy.solvers.ode.single import SingleODEProblem >>> problem = SingleODEProblem(f(x).diff(x), f(x), x) >>> problem.eq Derivative(f(x), x) >>> problem.func f(x) >>> problem.sym x """ # Instance attributes: eq: Expr func: AppliedUndef sym: Symbol _order: int _eq_expanded: Expr _eq_preprocessed: Expr _eq_high_order_free = None def __init__(self, eq: Expr, func: AppliedUndef, sym: Symbol, prep: bool = True, **kwargs): self.eq = eq self.func = func self.sym = sym self.prep = prep self.params = kwargs @cached_property def order(self) -> int: return ode_order(self.eq, self.func) @cached_property def eq_preprocessed(self) -> Expr: return self._get_eq_preprocessed() @cached_property def eq_high_order_free(self) -> Expr: a = Wild('a', exclude=[self.func]) c1 = Wild('c1', exclude=[self.sym]) # Precondition to try remove f(x) from highest order derivative reduced_eq = None if self.eq.is_Add: deriv_coef = self.eq.coeff(self.func.diff(self.sym, self.order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*self.func**c1) if r and r[c1]: den = self.func**r[c1] reduced_eq = Add(*[arg/den for arg in self.eq.args]) if reduced_eq is None: reduced_eq = expand(self.eq) return reduced_eq @cached_property def eq_expanded(self) -> Expr: return expand(self.eq_preprocessed) def _get_eq_preprocessed(self) -> Expr: if self.prep: process_eq, process_func = _preprocess(self.eq, self.func) if process_func != self.func: raise ValueError else: process_eq = self.eq return process_eq def get_numbered_constants(self, num=1, start=1, prefix='C') -> list[Symbol]: """ Returns a list of constants that do not occur in eq already. """ ncs = self.iter_numbered_constants(start, prefix) Cs = [next(ncs) for i in range(num)] return Cs def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]: """ Returns an iterator of constants that do not occur in eq already. """ atom_set = self.eq.free_symbols func_set = self.eq.atoms(Function) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) @cached_property def is_autonomous(self): u = Dummy('u') x = self.sym syms = self.eq.subs(self.func, u).free_symbols return x not in syms def get_linear_coefficients(self, eq, func, order): r""" Matches a differential equation to the linear form: .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 Returns a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is not linear. This function assumes that ``func`` has already been checked to be good. Examples ======== >>> from sympy import Function, cos, sin >>> from sympy.abc import x >>> from sympy.solvers.ode.single import SingleODEProblem >>> f = Function('f') >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ ... sin(x) >>> obj = SingleODEProblem(eq, f(x), x) >>> obj.get_linear_coefficients(eq, f(x), 3) {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ ... sin(f(x)) >>> obj = SingleODEProblem(eq, f(x), x) >>> obj.get_linear_coefficients(eq, f(x), 3) == None True """ f = func.func x = func.args[0] symset = {Derivative(f(x), x, i) for i in range(order+1)} try: rhs, lhs_terms = _lin_eq2dict(eq, symset) except PolyNonlinearError: return None if rhs.has(func) or any(c.has(func) for c in lhs_terms.values()): return None terms = {i: lhs_terms.get(f(x).diff(x, i), S.Zero) for i in range(order+1)} terms[-1] = rhs return terms # TODO: Add methods that can be used by many ODE solvers: # order # is_linear() # get_linear_coefficients() # eq_prepared (the ODE in prepared form)
SingleODEProblem
python
django__django
django/db/models/fields/__init__.py
{ "start": 48710, "end": 51352 }
class ____: def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_mutually_exclusive_options(), *self._check_fix_default_value(), ] def _check_mutually_exclusive_options(self): # auto_now, auto_now_add, and default are mutually exclusive # options. The use of more than one of these options together # will trigger an Error mutually_exclusive_options = [ self.auto_now_add, self.auto_now, self.has_default(), ] enabled_options = [ option not in (None, False) for option in mutually_exclusive_options ].count(True) if enabled_options > 1: return [ checks.Error( "The options auto_now, auto_now_add, and default " "are mutually exclusive. Only one of these options " "may be present.", obj=self, id="fields.E160", ) ] else: return [] def _check_fix_default_value(self): return [] # Concrete subclasses use this in their implementations of # _check_fix_default_value(). def _check_if_value_fixed(self, value, now=None): """ Check if the given value appears to have been provided as a "fixed" time value, and include a warning in the returned list if it does. The value argument must be a date object or aware/naive datetime object. If now is provided, it must be a naive datetime object. """ if now is None: now = _get_naive_now() offset = datetime.timedelta(seconds=10) lower = now - offset upper = now + offset if isinstance(value, datetime.datetime): value = _to_naive(value) else: assert isinstance(value, datetime.date) lower = lower.date() upper = upper.date() if lower <= value <= upper: return [ checks.Warning( "Fixed default value provided.", hint=( "It seems you set a fixed date / time / datetime " "value as default for this field. This may not be " "what you want. If you want to have the current date " "as default, use `django.utils.timezone.now`" ), obj=self, id="fields.W161", ) ] return []
DateTimeCheckMixin
python
PrefectHQ__prefect
tests/server/models/test_block_schemas.py
{ "start": 500, "end": 11579 }
class ____: async def test_create_block_schema(self, session, block_type_x): block_schema = await models.block_schemas.create_block_schema( session=session, block_schema=schemas.actions.BlockSchemaCreate( fields={ "title": "x", "type": "object", "properties": { "access_key_id": {"title": "Access Key Id", "type": "string"}, "secret_access_key": { "title": "Secret Access Key", "type": "string", }, "session_token": {"title": "Session Token", "type": "string"}, }, "block_type_slug": "x", "block_schema_references": {}, }, block_type_id=block_type_x.id, capabilities=["this block can test"], ), ) assert block_schema.fields == { "title": "x", "type": "object", "properties": { "access_key_id": {"title": "Access Key Id", "type": "string"}, "secret_access_key": {"title": "Secret Access Key", "type": "string"}, "session_token": {"title": "Session Token", "type": "string"}, }, "block_type_slug": "x", "block_schema_references": {}, } assert ( block_schema.checksum == "sha256:4448d5cf2ddb989f7fde8b2c36ec89527ca30e0e8ef041eed8bd15c11fe6cfee" ) assert block_schema.block_type_id == block_type_x.id db_block_schema = await models.block_schemas.read_block_schema( session=session, block_schema_id=block_schema.id ) assert db_block_schema.checksum == block_schema.checksum assert db_block_schema.fields == block_schema.fields assert db_block_schema.block_type_id == block_schema.block_type_id assert db_block_schema.capabilities == ["this block can test"] async def test_create_nested_block_schema(self, session, block_type_x): class Y(Block): a: str b: str class X(Block): _block_type_id = block_type_x.id _block_type_name = block_type_x.name y: Y z: str await models.block_types.create_block_type( session=session, block_type=Y._to_block_type() ) await models.block_schemas.create_block_schema( session=session, block_schema=X._to_block_schema() ) nested_block_schema = await read_block_schema_by_checksum( session=session, checksum=Y._calculate_schema_checksum(), ) assert nested_block_schema is not None assert nested_block_schema.fields == { "block_schema_references": {}, "block_type_slug": "y", "properties": { "a": {"title": "A", "type": "string"}, "b": {"title": "B", "type": "string"}, }, "required": ["a", "b"], "title": "Y", "type": "object", "secret_fields": [], } assert nested_block_schema.fields == Y.model_json_schema() async def test_create_multiply_nested_block_schema(self, session, block_type_x): class A(Block): d: str e: str class Z(Block): a: A c: int class Y(Block): b: str c: int class X(Block): _block_type_id = block_type_x.id _block_type_name = block_type_x.name y: Y z: Z await models.block_types.create_block_type( session=session, block_type=A._to_block_type() ) await models.block_types.create_block_type( session=session, block_type=Z._to_block_type() ) await models.block_types.create_block_type( session=session, block_type=Y._to_block_type() ) await models.block_schemas.create_block_schema( session=session, block_schema=X._to_block_schema() ) block_schemas = await models.block_schemas.read_block_schemas(session=session) assert len(block_schemas) == 4 nested_block_schema = await read_block_schema_by_checksum( session=session, checksum=A._calculate_schema_checksum(), ) assert nested_block_schema is not None assert nested_block_schema.fields == { "block_schema_references": {}, "block_type_slug": "a", "properties": { "d": {"title": "D", "type": "string"}, "e": {"title": "E", "type": "string"}, }, "required": ["d", "e"], "title": "A", "type": "object", "secret_fields": [], } assert nested_block_schema.fields == A.model_json_schema() async def test_create_nested_block_schema_with_multiply_used_blocks(self, session): warnings.filterwarnings("ignore", category=UserWarning) class A(Block): d: str e: str class Z(Block): a: A c: int class Y(Block): a: A b: str c: int class X(Block): y: Y z: Z await models.block_types.create_block_type( session=session, block_type=A._to_block_type() ) await models.block_types.create_block_type( session=session, block_type=Z._to_block_type() ) await models.block_types.create_block_type( session=session, block_type=Y._to_block_type() ) block_type_x = await models.block_types.create_block_type( session=session, block_type=X._to_block_type() ) await models.block_schemas.create_block_schema( session=session, block_schema=X._to_block_schema(block_type_id=block_type_x.id), ) block_schemas = await models.block_schemas.read_block_schemas(session=session) assert len(block_schemas) == 4 nested_block_schema_a = await read_block_schema_by_checksum( session=session, checksum=A._calculate_schema_checksum(), ) assert nested_block_schema_a is not None assert nested_block_schema_a.fields == { "block_schema_references": {}, "block_type_slug": "a", "properties": { "d": {"title": "D", "type": "string"}, "e": {"title": "E", "type": "string"}, }, "required": ["d", "e"], "title": "A", "type": "object", "secret_fields": [], } assert nested_block_schema_a.fields == A.model_json_schema() nested_block_schema_z = ( await models.block_schemas.read_block_schema_by_checksum( session=session, checksum=Z._calculate_schema_checksum() ) ) assert nested_block_schema_z is not None assert nested_block_schema_z.fields == Z.model_json_schema() assert ( Z.model_json_schema()["block_schema_references"]["a"][ "block_schema_checksum" ] == A._calculate_schema_checksum() ) nested_block_schema_y = ( await models.block_schemas.read_block_schema_by_checksum( session=session, checksum=Y._calculate_schema_checksum() ) ) assert nested_block_schema_y is not None assert nested_block_schema_y.fields == Y.model_json_schema() assert ( Y.model_json_schema()["block_schema_references"]["a"][ "block_schema_checksum" ] == A._calculate_schema_checksum() ) async def test_create_block_schema_with_union( self, session, block_type_x, block_type_y, block_type_z ): class Z(Block): _block_type_id = block_type_z.id _block_type_name = block_type_z.name b: str class Y(Block): _block_type_id = block_type_y.id _block_type_name = block_type_y.name a: str class X(Block): _block_type_id = block_type_x.id _block_type_name = block_type_x.name y_or_z: Union[Y, Z] block_schema = await models.block_schemas.create_block_schema( session=session, block_schema=X._to_block_schema(), ) assert block_schema.checksum == X._calculate_schema_checksum() assert block_schema.fields == X.model_json_schema() async def test_create_block_schema_is_idempotent(self, session, block_type_x): first_create_response = await models.block_schemas.create_block_schema( session=session, block_schema=schemas.actions.BlockSchemaCreate( fields={}, block_type_id=block_type_x.id, ), ) # Should not raise second_create_response = await models.block_schemas.create_block_schema( session=session, block_schema=schemas.actions.BlockSchemaCreate( fields={}, block_type_id=block_type_x.id, ), ) # Should not raise third_create_response = await models.block_schemas.create_block_schema( session=session, block_schema=schemas.actions.BlockSchemaCreate( fields={}, block_type_id=block_type_x.id, ), ) assert ( first_create_response.id == second_create_response.id == third_create_response.id ) async def test_create_block_schema_is_idempotent_for_nested_blocks(self, session): class Child(Block): age: int class Parent(Block): child: Child parent_block_type = await models.block_types.create_block_type( session=session, block_type=Parent._to_block_type() ) child_block_type = await models.block_types.create_block_type( session=session, block_type=Child._to_block_type() ) parent_create_response = await models.block_schemas.create_block_schema( session=session, block_schema=Parent._to_block_schema(block_type_id=parent_block_type.id), ) # Should not raise child_create_response = await models.block_schemas.create_block_schema( session=session, block_schema=Child._to_block_schema(block_type_id=child_block_type.id), ) assert ( parent_create_response.fields["block_schema_references"]["child"][ "block_schema_checksum" ] == child_create_response.checksum )
TestCreateBlockSchema
python
getsentry__sentry
tests/sentry/hybridcloud/models/test_outbox.py
{ "start": 1840, "end": 5177 }
class ____(TestCase): region = Region("eu", 1, "http://eu.testserver", RegionCategory.MULTI_TENANT) region_config = (region,) def test_skip_shards(self) -> None: with self.options({"hybrid_cloud.authentication.disabled_user_shards": [100]}): assert ControlOutbox( shard_scope=OutboxScope.USER_SCOPE, shard_identifier=100 ).should_skip_shard() assert not ControlOutbox( shard_scope=OutboxScope.USER_SCOPE, shard_identifier=101 ).should_skip_shard() assert not ControlOutbox( shard_scope=OutboxScope.USER_SCOPE, shard_identifier=100 ).should_skip_shard() def test_control_sharding_keys(self) -> None: with assume_test_silo_mode(SiloMode.REGION): org = Factories.create_organization() user1 = Factories.create_user() user2 = Factories.create_user() with assume_test_silo_mode(SiloMode.REGION): expected_region_name = get_local_region().name om = OrganizationMember.objects.create( organization_id=org.id, user_id=user1.id, role=org.default_role, ) om.outbox_for_update().drain_shard() om = OrganizationMember.objects.create( organization_id=org.id, user_id=user2.id, role=org.default_role, ) om.outbox_for_update().drain_shard() with outbox_context(flush=False): for inst in User.outboxes_for_user_update(user1.id): inst.save() for inst in User.outboxes_for_user_update(user2.id): inst.save() shards = { (row["shard_scope"], row["shard_identifier"], row["region_name"]) for row in ControlOutbox.find_scheduled_shards() } assert shards == { (OutboxScope.USER_SCOPE.value, user1.id, expected_region_name), (OutboxScope.USER_SCOPE.value, user2.id, expected_region_name), } def test_prepare_next_from_shard_no_conflict_with_processing(self) -> None: with outbox_runner(): org = Factories.create_organization() user1 = Factories.create_user() Factories.create_member(organization_id=org.id, user_id=user1.id) with outbox_context(flush=False): outbox = user1.outboxes_for_update()[0] outbox.save() with outbox.process_shard(None) as next_shard_row: assert next_shard_row is not None def test_with_other_connection() -> None: try: assert ( ControlOutbox.prepare_next_from_shard( { k: getattr(next_shard_row, k) for k in ControlOutbox.sharding_columns } ) is None ) finally: for c in connections.all(): c.close() t = threading.Thread(target=test_with_other_connection) t.start() t.join()
ControlOutboxTest
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/dialects/mysql/types.py
{ "start": 5605, "end": 6939 }
class ____(_FloatType, sqltypes.DOUBLE[Union[decimal.Decimal, float]]): """MySQL DOUBLE type.""" __visit_name__ = "DOUBLE" def __init__( self, precision: Optional[int] = None, scale: Optional[int] = None, asdecimal: bool = True, **kw: Any, ): """Construct a DOUBLE. .. note:: The :class:`.DOUBLE` type by default converts from float to Decimal, using a truncation that defaults to 10 digits. Specify either ``scale=n`` or ``decimal_return_scale=n`` in order to change this scale, or ``asdecimal=False`` to return values directly as Python floating points. :param precision: Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server. :param scale: The number of digits after the decimal point. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ super().__init__( precision=precision, scale=scale, asdecimal=asdecimal, **kw )
DOUBLE
python
networkx__networkx
networkx/algorithms/isomorphism/tests/test_vf2pp.py
{ "start": 4439, "end": 21961 }
class ____: def test_custom_graph1_same_labels(self): G1 = nx.Graph() mapped = {1: "A", 2: "B", 3: "C", 4: "D", 5: "Z", 6: "E"} edges1 = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 6), (3, 4), (5, 1), (5, 2)] G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") assert vf2pp_isomorphism(G1, G2, node_label="label") # Add edge making G1 symmetrical G1.add_edge(3, 7) G1.nodes[7]["label"] = "blue" assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Make G2 isomorphic to G1 G2.add_edges_from([(mapped[3], "X"), (mapped[6], mapped[5])]) G1.add_edge(4, 7) G2.nodes["X"]["label"] = "blue" assert vf2pp_isomorphism(G1, G2, node_label="label") # Re-structure maintaining isomorphism G1.remove_edges_from([(1, 4), (1, 3)]) G2.remove_edges_from([(mapped[1], mapped[5]), (mapped[1], mapped[2])]) assert vf2pp_isomorphism(G1, G2, node_label="label") def test_custom_graph1_different_labels(self): G1 = nx.Graph() mapped = {1: "A", 2: "B", 3: "C", 4: "D", 5: "Z", 6: "E"} edges1 = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 6), (3, 4), (5, 1), (5, 2)] G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") nx.set_node_attributes( G2, dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), "label", ) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped def test_custom_graph2_same_labels(self): G1 = nx.Graph() mapped = {1: "A", 2: "C", 3: "D", 4: "E", 5: "G", 7: "B", 6: "F"} edges1 = [(1, 2), (1, 5), (5, 6), (2, 3), (2, 4), (3, 4), (4, 5), (2, 7)] G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") assert vf2pp_isomorphism(G1, G2, node_label="label") # Obtain two isomorphic subgraphs from the graph G2.remove_edge(mapped[1], mapped[2]) G2.add_edge(mapped[1], mapped[4]) H1 = nx.Graph(G1.subgraph([2, 3, 4, 7])) H2 = nx.Graph(G2.subgraph([mapped[1], mapped[4], mapped[5], mapped[6]])) assert vf2pp_isomorphism(H1, H2, node_label="label") # Add edges maintaining isomorphism H1.add_edges_from([(3, 7), (4, 7)]) H2.add_edges_from([(mapped[1], mapped[6]), (mapped[4], mapped[6])]) assert vf2pp_isomorphism(H1, H2, node_label="label") def test_custom_graph2_different_labels(self): G1 = nx.Graph() mapped = {1: "A", 2: "C", 3: "D", 4: "E", 5: "G", 7: "B", 6: "F"} edges1 = [(1, 2), (1, 5), (5, 6), (2, 3), (2, 4), (3, 4), (4, 5), (2, 7)] G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") nx.set_node_attributes( G2, dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), "label", ) # Adding new nodes G1.add_node(0) G2.add_node("Z") G1.nodes[0]["label"] = G1.nodes[1]["label"] G2.nodes["Z"]["label"] = G1.nodes[1]["label"] mapped.update({0: "Z"}) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped # Change the color of one of the nodes G2.nodes["Z"]["label"] = G1.nodes[2]["label"] assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Add an extra edge G1.nodes[0]["label"] = "blue" G2.nodes["Z"]["label"] = "blue" G1.add_edge(0, 1) assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Add extra edge to both G2.add_edge("Z", "A") assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped def test_custom_graph3_same_labels(self): G1 = nx.Graph() mapped = {1: 9, 2: 8, 3: 7, 4: 6, 5: 3, 8: 5, 9: 4, 7: 1, 6: 2} edges1 = [ (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 7), (4, 9), (5, 8), (8, 9), (5, 6), (6, 7), (5, 2), ] G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") assert vf2pp_isomorphism(G1, G2, node_label="label") # Connect nodes maintaining symmetry G1.add_edges_from([(6, 9), (7, 8)]) G2.add_edges_from([(mapped[6], mapped[8]), (mapped[7], mapped[9])]) assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Make isomorphic G1.add_edges_from([(6, 8), (7, 9)]) G2.add_edges_from([(mapped[6], mapped[9]), (mapped[7], mapped[8])]) assert vf2pp_isomorphism(G1, G2, node_label="label") # Connect more nodes G1.add_edges_from([(2, 7), (3, 6)]) G2.add_edges_from([(mapped[2], mapped[7]), (mapped[3], mapped[6])]) G1.add_node(10) G2.add_node("Z") G1.nodes[10]["label"] = "blue" G2.nodes["Z"]["label"] = "blue" assert vf2pp_isomorphism(G1, G2, node_label="label") # Connect the newly added node, to opposite sides of the graph G1.add_edges_from([(10, 1), (10, 5), (10, 8)]) G2.add_edges_from([("Z", mapped[1]), ("Z", mapped[4]), ("Z", mapped[9])]) assert vf2pp_isomorphism(G1, G2, node_label="label") # Get two subgraphs that are not isomorphic but are easy to make H1 = nx.Graph(G1.subgraph([2, 3, 4, 5, 6, 7, 10])) H2 = nx.Graph( G2.subgraph( [mapped[4], mapped[5], mapped[6], mapped[7], mapped[8], mapped[9], "Z"] ) ) assert vf2pp_isomorphism(H1, H2, node_label="label") is None # Restructure both to make them isomorphic H1.add_edges_from([(10, 2), (10, 6), (3, 6), (2, 7), (2, 6), (3, 7)]) H2.add_edges_from( [("Z", mapped[7]), (mapped[6], mapped[9]), (mapped[7], mapped[8])] ) assert vf2pp_isomorphism(H1, H2, node_label="label") # Add edges with opposite direction in each Graph H1.add_edge(3, 5) H2.add_edge(mapped[5], mapped[7]) assert vf2pp_isomorphism(H1, H2, node_label="label") is None def test_custom_graph3_different_labels(self): G1 = nx.Graph() mapped = {1: 9, 2: 8, 3: 7, 4: 6, 5: 3, 8: 5, 9: 4, 7: 1, 6: 2} edges1 = [ (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 7), (4, 9), (5, 8), (8, 9), (5, 6), (6, 7), (5, 2), ] G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") nx.set_node_attributes( G2, dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), "label", ) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped # Add extra edge to G1 G1.add_edge(1, 7) assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Compensate in G2 G2.add_edge(9, 1) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped # Add extra node G1.add_node("A") G2.add_node("K") G1.nodes["A"]["label"] = "green" G2.nodes["K"]["label"] = "green" mapped.update({"A": "K"}) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped # Connect A to one side of G1 and K to the opposite G1.add_edge("A", 6) G2.add_edge("K", 5) assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Make the graphs symmetrical G1.add_edge(1, 5) G1.add_edge(2, 9) G2.add_edge(9, 3) G2.add_edge(8, 4) assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Assign same colors so the two opposite sides are identical for node in G1.nodes(): color = "red" G1.nodes[node]["label"] = color G2.nodes[mapped[node]]["label"] = color assert vf2pp_isomorphism(G1, G2, node_label="label") def test_custom_graph4_different_labels(self): G1 = nx.Graph() edges1 = [ (1, 2), (2, 3), (3, 8), (3, 4), (4, 5), (4, 6), (3, 6), (8, 7), (8, 9), (5, 9), (10, 11), (11, 12), (12, 13), (11, 13), ] mapped = { 1: "n", 2: "m", 3: "l", 4: "j", 5: "k", 6: "i", 7: "g", 8: "h", 9: "f", 10: "b", 11: "a", 12: "d", 13: "e", } G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") nx.set_node_attributes( G2, dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), "label", ) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped def test_custom_graph4_same_labels(self): G1 = nx.Graph() edges1 = [ (1, 2), (2, 3), (3, 8), (3, 4), (4, 5), (4, 6), (3, 6), (8, 7), (8, 9), (5, 9), (10, 11), (11, 12), (12, 13), (11, 13), ] mapped = { 1: "n", 2: "m", 3: "l", 4: "j", 5: "k", 6: "i", 7: "g", 8: "h", 9: "f", 10: "b", 11: "a", 12: "d", 13: "e", } G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") assert vf2pp_isomorphism(G1, G2, node_label="label") # Add nodes of different label G1.add_node(0) G2.add_node("z") G1.nodes[0]["label"] = "green" G2.nodes["z"]["label"] = "blue" assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Make the labels identical G2.nodes["z"]["label"] = "green" assert vf2pp_isomorphism(G1, G2, node_label="label") # Change the structure of the graphs, keeping them isomorphic G1.add_edge(2, 5) G2.remove_edge("i", "l") G2.add_edge("g", "l") G2.add_edge("m", "f") assert vf2pp_isomorphism(G1, G2, node_label="label") # Change the structure of the disconnected sub-graph, keeping it isomorphic G1.remove_node(13) G2.remove_node("d") assert vf2pp_isomorphism(G1, G2, node_label="label") # Connect the newly added node to the disconnected graph, which now is just a path of size 3 G1.add_edge(0, 10) G2.add_edge("e", "z") assert vf2pp_isomorphism(G1, G2, node_label="label") # Connect the two disconnected sub-graphs, forming a single graph G1.add_edge(11, 3) G1.add_edge(0, 8) G2.add_edge("a", "l") G2.add_edge("z", "j") assert vf2pp_isomorphism(G1, G2, node_label="label") def test_custom_graph5_same_labels(self): G1 = nx.Graph() edges1 = [ (1, 5), (1, 2), (1, 4), (2, 3), (2, 6), (3, 4), (3, 7), (4, 8), (5, 8), (5, 6), (6, 7), (7, 8), ] mapped = {1: "a", 2: "h", 3: "d", 4: "i", 5: "g", 6: "b", 7: "j", 8: "c"} G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") assert vf2pp_isomorphism(G1, G2, node_label="label") # Add different edges in each graph, maintaining symmetry G1.add_edges_from([(3, 6), (2, 7), (2, 5), (1, 3), (4, 7), (6, 8)]) G2.add_edges_from( [ (mapped[6], mapped[3]), (mapped[2], mapped[7]), (mapped[1], mapped[6]), (mapped[5], mapped[7]), (mapped[3], mapped[8]), (mapped[2], mapped[4]), ] ) assert vf2pp_isomorphism(G1, G2, node_label="label") # Obtain two different but isomorphic subgraphs from G1 and G2 H1 = nx.Graph(G1.subgraph([1, 5, 8, 6, 7, 3])) H2 = nx.Graph( G2.subgraph( [mapped[1], mapped[4], mapped[8], mapped[7], mapped[3], mapped[5]] ) ) assert vf2pp_isomorphism(H1, H2, node_label="label") # Delete corresponding node from the two graphs H1.remove_node(8) H2.remove_node(mapped[7]) assert vf2pp_isomorphism(H1, H2, node_label="label") # Re-orient, maintaining isomorphism H1.add_edge(1, 6) H1.remove_edge(3, 6) assert vf2pp_isomorphism(H1, H2, node_label="label") def test_custom_graph5_different_labels(self): G1 = nx.Graph() edges1 = [ (1, 5), (1, 2), (1, 4), (2, 3), (2, 6), (3, 4), (3, 7), (4, 8), (5, 8), (5, 6), (6, 7), (7, 8), ] mapped = {1: "a", 2: "h", 3: "d", 4: "i", 5: "g", 6: "b", 7: "j", 8: "c"} G1.add_edges_from(edges1) G2 = nx.relabel_nodes(G1, mapped) colors = ["red", "blue", "grey", "none", "brown", "solarized", "yellow", "pink"] nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") nx.set_node_attributes( G2, dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), "label", ) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped # Assign different colors to matching nodes c = 0 for node in G1.nodes(): color1 = colors[c] color2 = colors[(c + 3) % len(colors)] G1.nodes[node]["label"] = color1 G2.nodes[mapped[node]]["label"] = color2 c += 1 assert vf2pp_isomorphism(G1, G2, node_label="label") is None # Get symmetrical sub-graphs of G1,G2 and compare them H1 = G1.subgraph([1, 5]) H2 = G2.subgraph(["i", "c"]) c = 0 for node1, node2 in zip(H1.nodes(), H2.nodes()): H1.nodes[node1]["label"] = "red" H2.nodes[node2]["label"] = "red" c += 1 assert vf2pp_isomorphism(H1, H2, node_label="label") def test_disconnected_graph_all_same_labels(self): G1 = nx.Graph() G1.add_nodes_from(list(range(10))) mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_same))), "label") nx.set_node_attributes(G2, dict(zip(G2, it.cycle(labels_same))), "label") assert vf2pp_isomorphism(G1, G2, node_label="label") def test_disconnected_graph_all_different_labels(self): G1 = nx.Graph() G1.add_nodes_from(list(range(10))) mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} G2 = nx.relabel_nodes(G1, mapped) nx.set_node_attributes(G1, dict(zip(G1, it.cycle(labels_many))), "label") nx.set_node_attributes( G2, dict(zip([mapped[n] for n in G1], it.cycle(labels_many))), "label", ) assert vf2pp_isomorphism(G1, G2, node_label="label") == mapped def test_disconnected_graph_some_same_labels(self): G1 = nx.Graph() G1.add_nodes_from(list(range(10))) mapped = {0: 9, 1: 8, 2: 7, 3: 6, 4: 5, 5: 4, 6: 3, 7: 2, 8: 1, 9: 0} G2 = nx.relabel_nodes(G1, mapped) colors = [ "white", "white", "white", "purple", "purple", "red", "red", "pink", "pink", "pink", ] nx.set_node_attributes(G1, dict(zip(G1, it.cycle(colors))), "label") nx.set_node_attributes( G2, dict(zip([mapped[n] for n in G1], it.cycle(colors))), "label" ) assert vf2pp_isomorphism(G1, G2, node_label="label")
TestGraphISOVF2pp
python
spack__spack
lib/spack/spack/container/writers.py
{ "start": 11910, "end": 12689 }
class ____(PathContext): """Context used to instantiate a Singularity definition file""" #: Name of the template used for Singularity definition files template_name = "container/singularity.def" @property def singularity_config(self): return self.container_config.get("singularity", {}) @tengine.context_property def runscript(self): return self.singularity_config.get("runscript", "") @tengine.context_property def startscript(self): return self.singularity_config.get("startscript", "") @tengine.context_property def test(self): return self.singularity_config.get("test", "") @tengine.context_property def help(self): return self.singularity_config.get("help", "")
SingularityContext
python
falconry__falcon
tests/test_middleware.py
{ "start": 28657, "end": 29573 }
class ____(TestMiddleware): @pytest.mark.parametrize('independent_middleware', [True, False]) def test_can_access_resource_params(self, asgi, util, independent_middleware): """Test that params can be accessed from within process_resource""" global context class Resource: def on_get(self, req, resp, **params): resp.text = json.dumps(params) app = util.create_app( asgi, middleware=AccessParamsMiddleware(), independent_middleware=independent_middleware, ) app.add_route('/path/{id}', Resource()) client = testing.TestClient(app) response = client.simulate_request(path='/path/22') assert 'params' in context assert context['params'] assert context['params']['id'] == '22' assert response.json == {'added': True, 'id': '22'}
TestResourceMiddleware
python
langchain-ai__langchain
libs/core/langchain_core/tracers/base.py
{ "start": 847, "end": 14311 }
class ____(_TracerCore, BaseCallbackHandler, ABC): """Base interface for tracers.""" @abstractmethod def _persist_run(self, run: Run) -> None: """Persist a run.""" def _start_trace(self, run: Run) -> None: """Start a trace for a run.""" super()._start_trace(run) self._on_run_create(run) def _end_trace(self, run: Run) -> None: """End a trace for a run.""" if not run.parent_run_id: self._persist_run(run) self.run_map.pop(str(run.id)) self._on_run_update(run) def on_chat_model_start( self, serialized: dict[str, Any], messages: list[list[BaseMessage]], *, run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Start a trace for an LLM run. Args: serialized: The serialized model. messages: The messages to start the chat with. run_id: The run ID. tags: The tags for the run. parent_run_id: The parent run ID. metadata: The metadata for the run. name: The name of the run. **kwargs: Additional arguments. Returns: The run. """ chat_model_run = self._create_chat_model_run( serialized=serialized, messages=messages, run_id=run_id, parent_run_id=parent_run_id, tags=tags, metadata=metadata, name=name, **kwargs, ) self._start_trace(chat_model_run) self._on_chat_model_start(chat_model_run) return chat_model_run def on_llm_start( self, serialized: dict[str, Any], prompts: list[str], *, run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Start a trace for an LLM run. Args: serialized: The serialized model. prompts: The prompts to start the LLM with. run_id: The run ID. tags: The tags for the run. parent_run_id: The parent run ID. metadata: The metadata for the run. name: The name of the run. **kwargs: Additional arguments. Returns: The run. """ llm_run = self._create_llm_run( serialized=serialized, prompts=prompts, run_id=run_id, parent_run_id=parent_run_id, tags=tags, metadata=metadata, name=name, **kwargs, ) self._start_trace(llm_run) self._on_llm_start(llm_run) return llm_run @override def on_llm_new_token( self, token: str, *, chunk: GenerationChunk | ChatGenerationChunk | None = None, run_id: UUID, parent_run_id: UUID | None = None, **kwargs: Any, ) -> Run: """Run on new LLM token. Only available when streaming is enabled. Args: token: The token. chunk: The chunk. run_id: The run ID. parent_run_id: The parent run ID. **kwargs: Additional arguments. Returns: The run. """ # "chat_model" is only used for the experimental new streaming_events format. # This change should not affect any existing tracers. llm_run = self._llm_run_with_token_event( token=token, run_id=run_id, chunk=chunk, parent_run_id=parent_run_id, ) self._on_llm_new_token(llm_run, token, chunk) return llm_run @override def on_retry( self, retry_state: RetryCallState, *, run_id: UUID, **kwargs: Any, ) -> Run: """Run on retry. Args: retry_state: The retry state. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ return self._llm_run_with_retry_event( retry_state=retry_state, run_id=run_id, ) @override def on_llm_end(self, response: LLMResult, *, run_id: UUID, **kwargs: Any) -> Run: """End a trace for an LLM run. Args: response: The response. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ # "chat_model" is only used for the experimental new streaming_events format. # This change should not affect any existing tracers. llm_run = self._complete_llm_run( response=response, run_id=run_id, ) self._end_trace(llm_run) self._on_llm_end(llm_run) return llm_run def on_llm_error( self, error: BaseException, *, run_id: UUID, **kwargs: Any, ) -> Run: """Handle an error for an LLM run. Args: error: The error. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ # "chat_model" is only used for the experimental new streaming_events format. # This change should not affect any existing tracers. llm_run = self._errored_llm_run( error=error, run_id=run_id, response=kwargs.pop("response", None) ) self._end_trace(llm_run) self._on_llm_error(llm_run) return llm_run @override def on_chain_start( self, serialized: dict[str, Any], inputs: dict[str, Any], *, run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, run_type: str | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Start a trace for a chain run. Args: serialized: The serialized chain. inputs: The inputs for the chain. run_id: The run ID. tags: The tags for the run. parent_run_id: The parent run ID. metadata: The metadata for the run. run_type: The type of the run. name: The name of the run. **kwargs: Additional arguments. Returns: The run. """ chain_run = self._create_chain_run( serialized=serialized, inputs=inputs, run_id=run_id, tags=tags, parent_run_id=parent_run_id, metadata=metadata, run_type=run_type, name=name, **kwargs, ) self._start_trace(chain_run) self._on_chain_start(chain_run) return chain_run @override def on_chain_end( self, outputs: dict[str, Any], *, run_id: UUID, inputs: dict[str, Any] | None = None, **kwargs: Any, ) -> Run: """End a trace for a chain run. Args: outputs: The outputs for the chain. run_id: The run ID. inputs: The inputs for the chain. **kwargs: Additional arguments. Returns: The run. """ chain_run = self._complete_chain_run( outputs=outputs, run_id=run_id, inputs=inputs, ) self._end_trace(chain_run) self._on_chain_end(chain_run) return chain_run @override def on_chain_error( self, error: BaseException, *, inputs: dict[str, Any] | None = None, run_id: UUID, **kwargs: Any, ) -> Run: """Handle an error for a chain run. Args: error: The error. inputs: The inputs for the chain. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ chain_run = self._errored_chain_run( error=error, run_id=run_id, inputs=inputs, ) self._end_trace(chain_run) self._on_chain_error(chain_run) return chain_run def on_tool_start( self, serialized: dict[str, Any], input_str: str, *, run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, inputs: dict[str, Any] | None = None, **kwargs: Any, ) -> Run: """Start a trace for a tool run. Args: serialized: The serialized tool. input_str: The input string. run_id: The run ID. tags: The tags for the run. parent_run_id: The parent run ID. metadata: The metadata for the run. name: The name of the run. inputs: The inputs for the tool. **kwargs: Additional arguments. Returns: The run. """ tool_run = self._create_tool_run( serialized=serialized, input_str=input_str, run_id=run_id, tags=tags, parent_run_id=parent_run_id, metadata=metadata, name=name, inputs=inputs, **kwargs, ) self._start_trace(tool_run) self._on_tool_start(tool_run) return tool_run @override def on_tool_end(self, output: Any, *, run_id: UUID, **kwargs: Any) -> Run: """End a trace for a tool run. Args: output: The output for the tool. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ tool_run = self._complete_tool_run( output=output, run_id=run_id, ) self._end_trace(tool_run) self._on_tool_end(tool_run) return tool_run @override def on_tool_error( self, error: BaseException, *, run_id: UUID, **kwargs: Any, ) -> Run: """Handle an error for a tool run. Args: error: The error. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ tool_run = self._errored_tool_run( error=error, run_id=run_id, ) self._end_trace(tool_run) self._on_tool_error(tool_run) return tool_run def on_retriever_start( self, serialized: dict[str, Any], query: str, *, run_id: UUID, parent_run_id: UUID | None = None, tags: list[str] | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Run when the Retriever starts running. Args: serialized: The serialized retriever. query: The query. run_id: The run ID. parent_run_id: The parent run ID. tags: The tags for the run. metadata: The metadata for the run. name: The name of the run. **kwargs: Additional arguments. Returns: The run. """ retrieval_run = self._create_retrieval_run( serialized=serialized, query=query, run_id=run_id, parent_run_id=parent_run_id, tags=tags, metadata=metadata, name=name, **kwargs, ) self._start_trace(retrieval_run) self._on_retriever_start(retrieval_run) return retrieval_run @override def on_retriever_error( self, error: BaseException, *, run_id: UUID, **kwargs: Any, ) -> Run: """Run when Retriever errors. Args: error: The error. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ retrieval_run = self._errored_retrieval_run( error=error, run_id=run_id, ) self._end_trace(retrieval_run) self._on_retriever_error(retrieval_run) return retrieval_run @override def on_retriever_end( self, documents: Sequence[Document], *, run_id: UUID, **kwargs: Any ) -> Run: """Run when the Retriever ends running. Args: documents: The documents. run_id: The run ID. **kwargs: Additional arguments. Returns: The run. """ retrieval_run = self._complete_retrieval_run( documents=documents, run_id=run_id, ) self._end_trace(retrieval_run) self._on_retriever_end(retrieval_run) return retrieval_run def __deepcopy__(self, memo: dict) -> BaseTracer: """Return self.""" return self def __copy__(self) -> BaseTracer: """Return self.""" return self
BaseTracer
python
viewflow__viewflow
viewflow/forms/renderers.py
{ "start": 2542, "end": 2614 }
class ____(WidgetRenderer): tag = "vf-field-checkbox"
CheckboxRenderer
python
h5py__h5py
h5py/tests/test_group.py
{ "start": 7105, "end": 8186 }
class ____(BaseGroup): """ Feature: Objects can be unlinked via "del" operator """ def test_delete(self): """ Object deletion via "del" """ name = make_name() self.f.create_group(name) self.assertIn(name, self.f) del self.f[name] self.assertNotIn(name, self.f) def test_nonexisting(self): """ Deleting non-existent object raises KeyError """ with self.assertRaises(KeyError): del self.f['foo'] def test_readonly_delete_exception(self): """ Deleting object in readonly file raises KeyError """ # Note: it is impossible to restore the old behavior (ValueError) # without breaking the above test (non-existing objects) fname = self.mktemp() hfile = File(fname, 'w') try: hfile.create_group('foo') finally: hfile.close() hfile = File(fname, 'r') try: with self.assertRaises(KeyError): del hfile['foo'] finally: hfile.close()
TestDelete
python
scipy__scipy
scipy/signal/tests/test_peak_finding.py
{ "start": 2611, "end": 4989 }
class ____: def test_empty(self): """Test with empty signal.""" x = np.array([], dtype=np.float64) for array in _local_maxima_1d(x): xp_assert_equal(array, np.array([]), check_dtype=False) assert array.base is None def test_linear(self): """Test with linear signal.""" x = np.linspace(0, 100) for array in _local_maxima_1d(x): xp_assert_equal(array, np.array([], dtype=np.intp)) assert array.base is None def test_simple(self): """Test with simple signal.""" x = np.linspace(-10, 10, 50) x[2::3] += 1 expected = np.arange(2, 50, 3, dtype=np.intp) for array in _local_maxima_1d(x): # For plateaus of size 1, the edges are identical with the # midpoints xp_assert_equal(array, expected, check_dtype=False) assert array.base is None def test_flat_maxima(self): """Test if flat maxima are detected correctly.""" x = np.array([-1.3, 0, 1, 0, 2, 2, 0, 3, 3, 3, 2.99, 4, 4, 4, 4, -10, -5, -5, -5, -5, -5, -10]) midpoints, left_edges, right_edges = _local_maxima_1d(x) xp_assert_equal(midpoints, np.array([2, 4, 8, 12, 18]), check_dtype=False) xp_assert_equal(left_edges, np.array([2, 4, 7, 11, 16]), check_dtype=False) xp_assert_equal(right_edges, np.array([2, 5, 9, 14, 20]), check_dtype=False) @pytest.mark.parametrize('x', [ np.array([1., 0, 2]), np.array([3., 3, 0, 4, 4]), np.array([5., 5, 5, 0, 6, 6, 6]), ]) def test_signal_edges(self, x): """Test if behavior on signal edges is correct.""" for array in _local_maxima_1d(x): xp_assert_equal(array, np.array([], dtype=np.intp)) assert array.base is None def test_exceptions(self): """Test input validation and raised exceptions.""" with raises(ValueError, match="wrong number of dimensions"): _local_maxima_1d(np.ones((1, 1))) with raises(ValueError, match="expected 'const float64_t'"): _local_maxima_1d(np.ones(1, dtype=int)) with raises(TypeError, match="list"): _local_maxima_1d([1., 2.]) with raises(TypeError, match="'x' must not be None"): _local_maxima_1d(None)
TestLocalMaxima1d
python
ZoranPandovski__al-go-rithms
data_structures/Graphs/graphsearch/a-star-search/python/util/node.py
{ "start": 0, "end": 940 }
class ____: def __init__(self, id, heuristic, f): self.id=id self.heuristic=heuristic self.totalCost=0 self.f=f self.parent=None def setParent(self,parent): self.parent=parent def __lt__(self, other): return self.f < other.f def __repr__(self): #return "node:[id={}, heuristic={}, totalCost={}, cost={}, parent={}]".format(self.id,self.heuristic,self.totalCost,self.cost,self.parent) if(self.parent != None): return "node:[id={}, parentId={}, f={}, heuristic={}]".format(self.id,self.parent.id,self.f, self.heuristic) else: return "node:[id={}], f={}, heuristic={}]".format(self.id,self.f, self.heuristic) def copy(self): """ Sometimes we need a new copy of a node if you find it again as a neighbor of another node. :return: """ return node(self.id,self.heuristic,self.f)
node