language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
getsentry__sentry
tests/sentry/sentry_apps/api/endpoints/test_organization_sentry_apps.py
{ "start": 1213, "end": 4275 }
class ____(OrganizationSentryAppsTest): def test_gets_all_apps_in_own_org(self) -> None: self.login_as(user=self.user) response = self.client.get(self.url, format="json") assert response.status_code == 200 assert_response_json( response, [ { "name": self.unpublished_app.name, "author": self.unpublished_app.author, "slug": self.unpublished_app.slug, "scopes": [], "events": [], "uuid": self.unpublished_app.uuid, "status": self.unpublished_app.get_status_display(), "webhookUrl": self.unpublished_app.webhook_url, "redirectUrl": self.unpublished_app.redirect_url, "isAlertable": self.unpublished_app.is_alertable, "verifyInstall": self.unpublished_app.verify_install, "clientId": self.unpublished_app.application.client_id, "clientSecret": self.unpublished_app.application.client_secret, "overview": self.unpublished_app.overview, "allowedOrigins": [], "schema": {}, "owner": {"id": self.org.id, "slug": self.org.slug}, "featureData": [ { "featureId": 0, "featureGate": "integrations-api", "description": "Testin can **utilize the Sentry API** to pull data or update resources in Sentry (with permissions granted, of course).", } ], "popularity": SentryApp._meta.get_field("popularity").default, "avatars": [], "metadata": {}, } ], ) def test_includes_internal_integrations(self) -> None: self.create_project(organization=self.org) internal_integration = self.create_internal_integration(organization=self.org) self.login_as(self.user) response = self.client.get(self.url, format="json") assert response.status_code == 200 assert internal_integration.uuid in [a["uuid"] for a in response.data] def test_cannot_see_apps_in_other_orgs(self) -> None: self.login_as(user=self.user) url = reverse("sentry-api-0-organization-sentry-apps", args=[self.super_org.slug]) response = self.client.get(url, format="json") assert response.status_code == 403 def test_filter_for_internal(self) -> None: self.login_as(user=self.user) self.create_project(organization=self.org) internal_integration = self.create_internal_integration(organization=self.org) response = self.client.get(f"{self.url}?status=internal", format="json") assert len(response.data) == 1 assert response.data[0]["uuid"] == internal_integration.uuid
GetOrganizationSentryAppsTest
python
walkccc__LeetCode
solutions/109. Convert Sorted List to Binary Search Tree/109-2.py
{ "start": 0, "end": 476 }
class ____: def sortedListToBST(self, head: ListNode | None) -> TreeNode | None: arr = [] # Construct the array. curr = head while curr: arr.append(curr.val) curr = curr.next def helper(l: int, r: int) -> TreeNode | None: if l > r: return None m = (l + r) // 2 root = TreeNode(arr[m]) root.left = helper(l, m - 1) root.right = helper(m + 1, r) return root return helper(0, len(arr) - 1)
Solution
python
facebookresearch__faiss
benchs/bench_fw/benchmark.py
{ "start": 35153, "end": 42711 }
class ____: num_threads: int training_vectors: Optional[DatasetDescriptor] = None database_vectors: Optional[DatasetDescriptor] = None query_vectors: Optional[DatasetDescriptor] = None index_descs: Optional[List[IndexDescriptorClassic]] = None range_ref_index_desc: Optional[str] = None k: int = 1 distance_metric: str = "L2" def set_io(self, benchmark_io): self.io = benchmark_io def get_embedding_dimension(self): if self.training_vectors is not None: xt = self.io.get_dataset(self.training_vectors) return xt.shape[1] if self.database_vectors is not None: xb = self.io.get_dataset(self.database_vectors) return xb.shape[1] if self.query_vectors is not None: xq = self.io.get_dataset(self.query_vectors) return xq.shape[1] raise ValueError("Failed to determine dimension of dataset") def create_descriptors( self, ci_desc: IndexDescriptorClassic, train, build, knn, reconstruct, range ): codec_desc = None index_desc = None knn_desc = None dim = self.get_embedding_dimension() if train and ci_desc.factory is not None: codec_desc = CodecDescriptor( d=dim, metric=self.distance_metric, num_threads=self.num_threads, factory=ci_desc.factory, construction_params=ci_desc.construction_params, training_vectors=self.training_vectors, ) if build: if codec_desc is None: assert ci_desc.path is not None codec_desc = CodecDescriptor( d=dim, metric=self.distance_metric, num_threads=self.num_threads, bucket=ci_desc.bucket, path=ci_desc.path, ) index_desc = IndexDescriptor( d=codec_desc.d, metric=self.distance_metric, num_threads=self.num_threads, codec_desc=codec_desc, database_desc=self.database_vectors, ) if knn or range: if index_desc is None: assert ci_desc.path is not None index_desc = IndexDescriptor( d=dim, metric=self.distance_metric, num_threads=self.num_threads, bucket=ci_desc.bucket, path=ci_desc.path, ) knn_desc = KnnDescriptor( d=dim, metric=self.distance_metric, num_threads=self.num_threads, index_desc=index_desc, query_dataset=self.query_vectors, search_params=ci_desc.search_params, range_metrics=ci_desc.range_metrics, radius=ci_desc.radius, k=self.k, ) return codec_desc, index_desc, knn_desc def create_execution_operator( self, train, build, knn, reconstruct, range, ) -> ExecutionOperator: # all operators are created, as ground truth are always created in benchmarking train_op = TrainOperator( num_threads=self.num_threads, distance_metric=self.distance_metric ) build_op = BuildOperator( num_threads=self.num_threads, distance_metric=self.distance_metric ) search_op = SearchOperator( num_threads=self.num_threads, distance_metric=self.distance_metric ) search_op.range = range exec_op = ExecutionOperator( train_op=train_op, build_op=build_op, search_op=search_op, num_threads=self.num_threads, ) assert hasattr(self, "io") exec_op.set_io(self.io) # iterate over classic descriptors for ci_desc in self.index_descs: codec_desc, index_desc, knn_desc = self.create_descriptors( ci_desc, train, build, knn, reconstruct, range ) exec_op.add_index_descs(codec_desc, index_desc, knn_desc) return exec_op def clone_one(self, index_desc): benchmark = Benchmark( num_threads=self.num_threads, training_vectors=self.training_vectors, database_vectors=self.database_vectors, query_vectors=self.query_vectors, # index_descs=[self.get_flat_desc("Flat"), index_desc], index_descs=[index_desc], # Should automatically find flat descriptors range_ref_index_desc=self.range_ref_index_desc, k=self.k, distance_metric=self.distance_metric, ) benchmark.set_io(self.io.clone()) return benchmark def benchmark( self, result_file=None, local=False, train=False, reconstruct=False, knn=False, range=False, ): logger.info("begin evaluate") results = {"indices": {}, "experiments": {}} faiss.omp_set_num_threads(self.num_threads) exec_op = self.create_execution_operator( train=train, build=knn or range, knn=knn, reconstruct=reconstruct, range=range, ) exec_op.create_ground_truths(results) todo = self.index_descs for index_desc in self.index_descs: index_desc.requires = None queued = set() while todo: current_todo = [] next_todo = [] for index_desc in todo: results, requires = exec_op.execute(results, dry_run=False) if requires is None: continue if requires in queued: if index_desc.requires != requires: index_desc.requires = requires next_todo.append(index_desc) else: queued.add(requires) index_desc.requires = requires current_todo.append(index_desc) if current_todo: results_one = {"indices": {}, "experiments": {}} params = [ ( index_desc, self.clone_one(index_desc), results_one, train, reconstruct, knn, range, ) for index_desc in current_todo ] for result in self.io.launch_jobs( run_benchmark_one, params, local=local ): dict_merge(results, result) todo = next_todo if result_file is not None: self.io.write_json(results, result_file, overwrite=True) logger.info("end evaluate") return results def run_benchmark_one(params): logger.info(params) index_desc, benchmark, results, train, reconstruct, knn, range = params exec_op = benchmark.create_execution_operator( train=train, build=knn, knn=knn, reconstruct=reconstruct, range=range, ) results, requires = exec_op.execute(results=results, dry_run=False) assert requires is None assert results is not None return results
Benchmark
python
HypothesisWorks__hypothesis
hypothesis-python/tests/cover/test_stateful.py
{ "start": 1496, "end": 1704 }
class ____(RuleBasedStateMachine): def myfunc(self, data): print(data) rule1 = rule(data=just("rule1data"))(myfunc) rule2 = rule(data=just("rule2data"))(myfunc)
MultipleRulesSameFuncMachine
python
graphql-python__graphene
graphene/types/inputobjecttype.py
{ "start": 1956, "end": 2330 }
class ____(dict, BaseType): # type: ignore class Meta: abstract = True def __init__(self, *args, **kwargs): dict.__init__(self, *args, **kwargs) for key in self._meta.fields: setattr(self, key, self.get(key, _INPUT_OBJECT_TYPE_DEFAULT_VALUE)) def __init_subclass__(cls, *args, **kwargs): pass
InputObjectTypeContainer
python
pytorch__pytorch
test/test_multiprocessing_spawn.py
{ "start": 7730, "end": 7880 }
class ____(TestCase, _TestMultiProcessing): start_method = 'fork' @unittest.skipIf( IS_WINDOWS, "Fork is only available on Unix", )
ForkTest
python
django__django
django/contrib/flatpages/middleware.py
{ "start": 172, "end": 784 }
class ____(MiddlewareMixin): def process_response(self, request, response): if response.status_code != 404: return response # No need to check for a flatpage for non-404 responses. try: return flatpage(request, request.path_info) # Return the original response if any errors happened. Because this # is a middleware, we can't assume the errors will be caught elsewhere. except Http404: return response except Exception: if settings.DEBUG: raise return response
FlatpageFallbackMiddleware
python
numba__numba
numba/cuda/args.py
{ "start": 193, "end": 771 }
class ____(metaclass=abc.ABCMeta): def __init__(self, value): self.value = value @abc.abstractmethod def to_device(self, retr, stream=0): """ :param stream: a stream to use when copying data :param retr: a list of clean-up work to do after the kernel's been run. Append 0-arg lambdas to it! :return: a value (usually an `DeviceNDArray`) to be passed to the kernel """ pass @property def _numba_type_(self): return typeof(self.value, Purpose.argument)
ArgHint
python
sphinx-doc__sphinx
sphinx/util/_io.py
{ "start": 275, "end": 884 }
class ____: """File-like object writing to two streams.""" def __init__( self, stream_term: SupportsWrite, stream_file: SupportsWrite, ) -> None: self.stream_term = stream_term self.stream_file = stream_file def write(self, text: str, /) -> None: self.stream_term.write(text) self.stream_file.write(strip_escape_sequences(text)) def flush(self) -> None: if hasattr(self.stream_term, 'flush'): self.stream_term.flush() if hasattr(self.stream_file, 'flush'): self.stream_file.flush()
TeeStripANSI
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/functionAnnotation1.py
{ "start": 747, "end": 1061 }
class ____: pass def func1g(*args, **kwargs): # type: (*int, **float) -> int return sum(args) + sum(round(kwarg) for kwarg in kwargs.values()) def func1h( a, # type: _Literal["{", "}"] b, # type: Union[_Literal["%"], _Literal["{"], _Literal["$"]] ): # type: (...) -> str return ""
Foo
python
airbytehq__airbyte
airbyte-integrations/connectors/source-hardcoded-records/source_hardcoded_records/streams.py
{ "start": 557, "end": 834 }
class ____(HardcodedStream): sample_record = { "id": 1, "make": "Mazda", "model": "MX-5", "year": 2008, "price": 2869, "created_at": "2022-02-01T17:02:19+00:00", "updated_at": "2022-11-01T17:02:19+00:00", }
Products
python
walkccc__LeetCode
solutions/324. Wiggle Sort II/324.py
{ "start": 0, "end": 1302 }
class ____: def wiggleSort(self, nums: list[int]) -> None: n = len(nums) median = self._findKthLargest(nums, (n + 1) // 2) def A(i: int): return (1 + 2 * i) % (n | 1) i = 0 j = 0 k = n - 1 while i <= k: if nums[A(i)] > median: nums[A(i)], nums[A(j)] = nums[A(j)], nums[A(i)] i, j = i + 1, j + 1 elif nums[A(i)] < median: nums[A(i)], nums[A(k)] = nums[A(k)], nums[A(i)] k -= 1 else: i += 1 # Same as 215. Kth Largest Element in an Array def _findKthLargest(self, nums: list[int], k: int) -> int: def quickSelect(l: int, r: int, k: int) -> int: randIndex = random.randint(0, r - l) + l nums[randIndex], nums[r] = nums[r], nums[randIndex] pivot = nums[r] nextSwapped = l for i in range(l, r): if nums[i] >= pivot: nums[nextSwapped], nums[i] = nums[i], nums[nextSwapped] nextSwapped += 1 nums[nextSwapped], nums[r] = nums[r], nums[nextSwapped] count = nextSwapped - l + 1 # Number of nums >= pivot if count == k: return nums[nextSwapped] if count > k: return quickSelect(l, nextSwapped - 1, k) return quickSelect(nextSwapped + 1, r, k - count) return quickSelect(0, len(nums) - 1, k)
Solution
python
ansible__ansible
lib/ansible/module_utils/_internal/_ansiballz/_extensions/_debugpy.py
{ "start": 1745, "end": 3150 }
class ____: """Debugger options for debugpy.""" host: str = 'localhost' """The host to connect to for remote debugging.""" port: int = 5678 """The port to connect to for remote debugging.""" connect: dict[str, object] = dataclasses.field(default_factory=dict) """The options to pass to the `debugpy.connect` method.""" source_mapping: dict[str, str] = dataclasses.field(default_factory=dict) """ A mapping of source paths to provide to debugpy. This setting is used internally by AnsiballZ and is not required unless Ansible CLI commands are run from a different system than your IDE. In that scenario, use this setting instead of configuring source mapping in your IDE. The key is a path known to the IDE. The value is the same path as known to the Ansible CLI. Both file paths and directories are supported. """ def run(args: dict[str, t.Any]) -> None: # pragma: nocover """Enable remote debugging.""" import debugpy options = Options(**args) temp_dir = pathlib.Path(__file__).parent.parent.parent.parent.parent.parent path_mapping = [[key, str(temp_dir / value)] for key, value in options.source_mapping.items()] os.environ['PATHS_FROM_ECLIPSE_TO_PYTHON'] = json.dumps(path_mapping) debugpy.connect((options.host, options.port), **options.connect) pass # A convenient place to put a breakpoint
Options
python
networkx__networkx
networkx/classes/tests/test_special.py
{ "start": 2464, "end": 3739 }
class ____(BaseDiGraphTester): def setup_method(self): all_edge_dict = {"weight": 1} class MyGraph(nx.DiGraph): def edge_attr_dict_factory(self): return all_edge_dict self.Graph = MyGraph # build dict-of-dict-of-dict K3 ed1, ed2, ed3 = (all_edge_dict, all_edge_dict, all_edge_dict) ed4, ed5, ed6 = (all_edge_dict, all_edge_dict, all_edge_dict) self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}} self.k3edges = [(0, 1), (0, 2), (1, 2)] self.k3nodes = [0, 1, 2] self.K3 = self.Graph() self.K3._succ = self.k3adj # K3._adj is synced with K3._succ self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}} self.K3._node = {} self.K3._node[0] = {} self.K3._node[1] = {} self.K3._node[2] = {} ed1, ed2 = (all_edge_dict, all_edge_dict) self.P3 = self.Graph() self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}} # P3._adj is synced with P3._succ self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}} self.P3._node = {} self.P3._node[0] = {} self.P3._node[1] = {} self.P3._node[2] = {}
TestThinDiGraph
python
ansible__ansible
test/units/module_utils/facts/test_ansible_collector.py
{ "start": 19266, "end": 19996 }
class ____(TestPkgMgrFacts): def test_is_openbsd_pkg(self): self.assertIn('pkg_mgr', self.facts) self.assertEqual(self.facts['pkg_mgr'], 'openbsd_pkg') def setUp(self): self.patcher = patch('platform.system') mock_platform = self.patcher.start() mock_platform.return_value = 'OpenBSD' mock_module = self._mock_module() collectors = self._collectors(mock_module) fact_collector = \ ansible_collector.AnsibleFactCollector(collectors=collectors, namespace=ns) self.facts = fact_collector.collect(module=mock_module) def tearDown(self): self.patcher.stop()
TestOpenBSDPkgMgrFacts
python
PyCQA__pylint
tests/functional/a/arguments_differ.py
{ "start": 1966, "end": 2047 }
class ____: @staticmethod def func(data): return data
Staticmethod
python
facebookresearch__faiss
benchs/bench_fw/utils.py
{ "start": 3741, "end": 3874 }
class ____(Enum): DISABLE = 1 # no Pareto filtering INDEX = 2 # index-local optima GLOBAL = 3 # global optima
ParetoMode
python
pytorch__pytorch
torch/_numpy/_dtypes.py
{ "start": 1672, "end": 1792 }
class ____(signedinteger): name = "int64" typecode = "l" torch_dtype = torch.int64 # unsigned integers
int64
python
plotly__plotly.py
plotly/graph_objs/scattergl/legendgrouptitle/_font.py
{ "start": 233, "end": 9937 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "scattergl.legendgrouptitle" _path_str = "scattergl.legendgrouptitle.font" _valid_props = { "color", "family", "lineposition", "shadow", "size", "style", "textcase", "variant", "weight", } @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: see https://plotly.com/python/css-colors/ for a list Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser can only apply a font if it is available on the system where it runs. Provide multiple font families, separated by commas, to indicate the order in which to apply fonts if they aren't available. The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val @property def lineposition(self): """ Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. The 'lineposition' property is a flaglist and may be specified as a string containing: - Any combination of ['under', 'over', 'through'] joined with '+' characters (e.g. 'under+over') OR exactly one of ['none'] (e.g. 'none') Returns ------- Any """ return self["lineposition"] @lineposition.setter def lineposition(self, val): self["lineposition"] = val @property def shadow(self): """ Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en-US/docs/Web/CSS/text-shadow for additional options. The 'shadow' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["shadow"] @shadow.setter def shadow(self, val): self["shadow"] = val @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val @property def style(self): """ Sets whether a font should be styled with a normal or italic face from its family. The 'style' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'italic'] Returns ------- Any """ return self["style"] @style.setter def style(self, val): self["style"] = val @property def textcase(self): """ Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. The 'textcase' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'word caps', 'upper', 'lower'] Returns ------- Any """ return self["textcase"] @textcase.setter def textcase(self, val): self["textcase"] = val @property def variant(self): """ Sets the variant of the font. The 'variant' property is an enumeration that may be specified as: - One of the following enumeration values: ['normal', 'small-caps', 'all-small-caps', 'all-petite-caps', 'petite-caps', 'unicase'] Returns ------- Any """ return self["variant"] @variant.setter def variant(self, val): self["variant"] = val @property def weight(self): """ Sets the weight (or boldness) of the font. The 'weight' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [1, 1000] OR exactly one of ['normal', 'bold'] (e.g. 'bold') Returns ------- int """ return self["weight"] @weight.setter def weight(self, val): self["weight"] = val @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser can only apply a font if it is available on the system where it runs. Provide multiple font families, separated by commas, to indicate the order in which to apply fonts if they aren't available. lineposition Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. shadow Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en- US/docs/Web/CSS/text-shadow for additional options. size style Sets whether a font should be styled with a normal or italic face from its family. textcase Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. variant Sets the variant of the font. weight Sets the weight (or boldness) of the font. """ def __init__( self, arg=None, color=None, family=None, lineposition=None, shadow=None, size=None, style=None, textcase=None, variant=None, weight=None, **kwargs, ): """ Construct a new Font object Sets this legend group's title font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattergl.lege ndgrouptitle.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser can only apply a font if it is available on the system where it runs. Provide multiple font families, separated by commas, to indicate the order in which to apply fonts if they aren't available. lineposition Sets the kind of decoration line(s) with text, such as an "under", "over" or "through" as well as combinations e.g. "under+over", etc. shadow Sets the shape and color of the shadow behind text. "auto" places minimal shadow and applies contrast text font color. See https://developer.mozilla.org/en- US/docs/Web/CSS/text-shadow for additional options. size style Sets whether a font should be styled with a normal or italic face from its family. textcase Sets capitalization of text. It can be used to make text appear in all-uppercase or all-lowercase, or with each word capitalized. variant Sets the variant of the font. weight Sets the weight (or boldness) of the font. Returns ------- Font """ super().__init__("font") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.scattergl.legendgrouptitle.Font constructor must be a dict or an instance of :class:`plotly.graph_objs.scattergl.legendgrouptitle.Font`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("color", arg, color) self._set_property("family", arg, family) self._set_property("lineposition", arg, lineposition) self._set_property("shadow", arg, shadow) self._set_property("size", arg, size) self._set_property("style", arg, style) self._set_property("textcase", arg, textcase) self._set_property("variant", arg, variant) self._set_property("weight", arg, weight) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Font
python
pandas-dev__pandas
pandas/tests/indexes/datetimes/test_ops.py
{ "start": 163, "end": 530 }
class ____: def test_infer_freq(self, freq_sample): # GH 11018 idx = date_range("2011-01-01 09:00:00", freq=freq_sample, periods=10, unit="ns") result = DatetimeIndex(idx.asi8, freq="infer") tm.assert_index_equal(idx, result) assert result.freq == freq_sample @pytest.mark.parametrize("freq", ["B", "C"])
TestDatetimeIndexOps
python
pandas-dev__pandas
pandas/tests/series/methods/test_isna.py
{ "start": 147, "end": 941 }
class ____: def test_isna_period_dtype(self): # GH#13737 ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) expected = Series([False, True]) result = ser.isna() tm.assert_series_equal(result, expected) result = ser.notna() tm.assert_series_equal(result, ~expected) def test_isna(self): ser = Series([0, 5.4, 3, np.nan, -0.001]) expected = Series([False, False, False, True, False]) tm.assert_series_equal(ser.isna(), expected) tm.assert_series_equal(ser.notna(), ~expected) ser = Series(["hi", "", np.nan]) expected = Series([False, False, True]) tm.assert_series_equal(ser.isna(), expected) tm.assert_series_equal(ser.notna(), ~expected)
TestIsna
python
spack__spack
lib/spack/spack/fetch_strategy.py
{ "start": 44490, "end": 47397 }
class ____(VCSFetchStrategy): """Fetch strategy that gets source code from a subversion repository. Use like this in a package:: version("name", svn="http://www.example.com/svn/trunk") Optionally, you can provide a revision for the URL:: version("name", svn="http://www.example.com/svn/trunk", revision="1641") Repositories are checked out into the standard stage source path directory. """ url_attr = "svn" optional_attrs = ["revision"] def __init__(self, **kwargs): # Discards the keywords in kwargs that may conflict with the next call # to __init__ forwarded_args = copy.copy(kwargs) forwarded_args.pop("name", None) super().__init__(**forwarded_args) self._svn = None if self.revision is not None: self.revision = str(self.revision) @property def svn(self): if not self._svn: self._svn = which("svn", required=True) return self._svn @property def cachable(self): return self.cache_enabled and bool(self.revision) def source_id(self): return self.revision def mirror_id(self): if self.revision: repo_path = urllib.parse.urlparse(self.url).path result = os.path.sep.join(["svn", repo_path, self.revision]) return result @_needs_stage def fetch(self): if self.stage.expanded: tty.debug("Already fetched {0}".format(self.stage.source_path)) return tty.debug("Checking out subversion repository: {0}".format(self.url)) args = ["checkout", "--force", "--quiet"] if self.revision: args += ["-r", self.revision] args.extend([self.url]) with temp_cwd(): self.svn(*args) repo_name = get_single_file(".") self.stage.srcdir = repo_name shutil.move(repo_name, self.stage.source_path) def _remove_untracked_files(self): """Removes untracked files in an svn repository.""" with working_dir(self.stage.source_path): status = self.svn("status", "--no-ignore", output=str) self.svn("status", "--no-ignore") for line in status.split("\n"): if not re.match("^[I?]", line): continue path = line[8:].strip() if os.path.isfile(path): os.unlink(path) elif os.path.isdir(path): shutil.rmtree(path, ignore_errors=True) def archive(self, destination): super().archive(destination, exclude=".svn") @_needs_stage def reset(self): self._remove_untracked_files() with working_dir(self.stage.source_path): self.svn("revert", ".", "-R") def __str__(self): return "[svn] %s" % self.url @fetcher
SvnFetchStrategy
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/sql/traversals.py
{ "start": 6358, "end": 7577 }
class ____(HasTraverseInternals): __slots__ = () def _clone(self, **kw): raise NotImplementedError() def _copy_internals( self, *, omit_attrs: Iterable[str] = (), **kw: Any ) -> None: """Reassign internal elements to be clones of themselves. Called during a copy-and-traverse operation on newly shallow-copied elements to create a deep copy. The given clone function should be used, which may be applying additional transformations to the element (i.e. replacement traversal, cloned traversal, annotations). """ try: traverse_internals = self._traverse_internals except AttributeError: # user-defined classes may not have a _traverse_internals return for attrname, obj, meth in _copy_internals.run_generated_dispatch( self, traverse_internals, "_generated_copy_internals_traversal" ): if attrname in omit_attrs: continue if obj is not None: result = meth(attrname, self, obj, **kw) if result is not None: setattr(self, attrname, result)
HasCopyInternals
python
django-import-export__django-import-export
tests/core/migrations/0002_book_published_time.py
{ "start": 43, "end": 395 }
class ____(migrations.Migration): dependencies = [ ("core", "0001_initial"), ] operations = [ migrations.AddField( model_name="book", name="published_time", field=models.TimeField( blank=True, null=True, verbose_name="Time published" ), ), ]
Migration
python
donnemartin__interactive-coding-challenges
linked_lists/partition/test_partition.py
{ "start": 18, "end": 1463 }
class ____(unittest.TestCase): def test_partition(self): print('Test: Empty list') linked_list = MyLinkedList(None) linked_list.partition(10) self.assertEqual(linked_list.get_all_data(), []) print('Test: One element list, left list empty') linked_list = MyLinkedList(Node(5)) linked_list.partition(0) self.assertEqual(linked_list.get_all_data(), [5]) print('Test: Right list is empty') linked_list = MyLinkedList(Node(5)) linked_list.partition(10) self.assertEqual(linked_list.get_all_data(), [5]) print('Test: General case') # Partition = 10 # Input: 4, 3, 13, 8, 10, 1, 14, 10, 12 # Output: 4, 3, 8, 1, 10, 10, 13, 14, 12 linked_list = MyLinkedList(Node(12)) linked_list.insert_to_front(10) linked_list.insert_to_front(14) linked_list.insert_to_front(1) linked_list.insert_to_front(10) linked_list.insert_to_front(8) linked_list.insert_to_front(13) linked_list.insert_to_front(3) linked_list.insert_to_front(4) partitioned_list = linked_list.partition(10) self.assertEqual(partitioned_list.get_all_data(), [4, 3, 8, 1, 10, 10, 13, 14, 12]) print('Success: test_partition') def main(): test = TestPartition() test.test_partition() if __name__ == '__main__': main()
TestPartition
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/flake8_bugbear/class_as_data_structure.py
{ "start": 960, "end": 1115 }
class ____: def __init__(self, foo:int, bar:list): self.foo = foo self.bar = bar def other_function(self): ...
NoWarningsMoreMethods
python
Lightning-AI__lightning
src/lightning/fabric/_graveyard/tpu.py
{ "start": 2413, "end": 2823 }
class ____(XLAPrecision): """Legacy class. Use :class:`~lightning.fabric.plugins.precision.xla.XLAPrecision` instead. """ def __init__(self, *args: Any, **kwargs: Any) -> None: rank_zero_deprecation( "The `TPUPrecision` class is deprecated. Use `lightning.fabric.plugins.precision.XLAPrecision` instead." ) super().__init__(precision="32-true")
TPUPrecision
python
kamyu104__LeetCode-Solutions
Python/find-palindrome-with-fixed-length.py
{ "start": 40, "end": 659 }
class ____(object): def kthPalindrome(self, queries, intLength): """ :type queries: List[int] :type intLength: int :rtype: List[int] """ def reverse(x): result = 0 while x: result = result*10+x%10 x //= 10 return result def f(l, x): x = 10**((l-1)//2)+(x-1) if x > 10**((l+1)//2)-1: return -1 return x*10**(l//2)+reverse(x//10 if l%2 else x) return [f(intLength, x) for x in queries] # Time: O(n * l) # Space: O(l) # math
Solution
python
dagster-io__dagster
python_modules/libraries/dagster-airbyte/dagster_airbyte/managed/generated/sources.py
{ "start": 154076, "end": 154937 }
class ____(GeneratedAirbyteSource): @public def __init__(self, name: str, auth_token: str, counter_id: str, start_date: str, end_date: str): """Airbyte Source for Yandex Metrica. Args: name (str): The name of the destination. auth_token (str): Your Yandex Metrica API access token counter_id (str): Counter ID start_date (str): UTC date and time in the format YYYY-MM-DD. end_date (str): UTC date and time in the format YYYY-MM-DD. """ self.auth_token = check.str_param(auth_token, "auth_token") self.counter_id = check.str_param(counter_id, "counter_id") self.start_date = check.str_param(start_date, "start_date") self.end_date = check.str_param(end_date, "end_date") super().__init__("Yandex Metrica", name)
YandexMetricaSource
python
getsentry__sentry
src/sentry/api/serializers/models/group.py
{ "start": 35201, "end": 43663 }
class ____(GroupSerializerBase): skip_snuba_fields = { *SKIP_SNUBA_FIELDS, "last_seen", "times_seen", "date", "timestamp", # We merge this with start/end, so don't want to include it as its own # condition # We don't need to filter by release stage again here since we're # filtering to specific groups. Saves us making a second query to # postgres for no reason RELEASE_STAGE_ALIAS, } def __init__( self, environment_ids: list[int] | None = None, start: datetime | None = None, end: datetime | None = None, search_filters=None, collapse=None, expand=None, organization_id=None, project_ids=None, ): super().__init__(collapse=collapse, expand=expand) from sentry.search.snuba.executors import get_search_filter self.environment_ids = environment_ids self.organization_id = organization_id # XXX: We copy this logic from `PostgresSnubaQueryExecutor.query`. Ideally we # should try and encapsulate this logic, but if you're changing this, change it # there as well. self.start = None start_params = [ _f for _f in [ start, get_search_filter(search_filters, "date", ">"), get_search_filter(search_filters, "timestamp", ">"), ] if _f ] if start_params: self.start = max(_f for _f in start_params if _f) self.end = None end_params = [ _f for _f in [ end, get_search_filter(search_filters, "date", "<"), get_search_filter(search_filters, "timestamp", "<"), ] if _f ] if end_params: self.end = min(end_params) conditions = [] if search_filters is not None: for search_filter in search_filters: if search_filter.key.name not in self.skip_snuba_fields: formatted_conditions, projects_to_filter, group_ids = format_search_filter( search_filter, params={ "organization_id": organization_id, "project_id": project_ids, "environment_id": environment_ids, }, ) # if no re-formatted conditions, use fallback method new_condition = None if formatted_conditions: new_condition = formatted_conditions[0] elif group_ids: new_condition = convert_search_filter_to_snuba_query( search_filter, params={ "organization_id": organization_id, "project_id": project_ids, "environment_id": environment_ids, }, ) if new_condition: conditions.append(new_condition) self.conditions = conditions def _seen_stats_error( self, error_issue_list: Sequence[Group], user ) -> Mapping[Group, SeenStats]: return self._parse_seen_stats_results( self._execute_error_seen_stats_query( item_list=error_issue_list, start=self.start, end=self.end, conditions=self.conditions, environment_ids=self.environment_ids, ), error_issue_list, bool(self.start or self.end or self.conditions), self.environment_ids, ) def _seen_stats_generic( self, generic_issue_list: Sequence[Group], user ) -> Mapping[Group, SeenStats]: return self._parse_seen_stats_results( self._execute_generic_seen_stats_query( item_list=generic_issue_list, start=self.start, end=self.end, conditions=self.conditions, environment_ids=self.environment_ids, ), generic_issue_list, bool(self.start or self.end or self.conditions), self.environment_ids, ) @staticmethod def _execute_error_seen_stats_query( item_list, start=None, end=None, conditions=None, environment_ids=None ): project_ids = list({item.project_id for item in item_list}) group_ids = [item.id for item in item_list] aggregations = [ ["count()", "", "times_seen"], ["min", "timestamp", "first_seen"], ["max", "timestamp", "last_seen"], ["uniq", "tags[sentry:user]", "count"], ] filters = {"project_id": project_ids, "group_id": group_ids} if environment_ids: filters["environment"] = environment_ids return aliased_query( dataset=Dataset.Events, start=start, end=end, groupby=["group_id"], conditions=conditions, filter_keys=filters, aggregations=aggregations, referrer="serializers.GroupSerializerSnuba._execute_error_seen_stats_query", tenant_ids=( {"organization_id": item_list[0].project.organization_id} if item_list else None ), ) @staticmethod def _execute_generic_seen_stats_query( item_list, start=None, end=None, conditions=None, environment_ids=None ): project_ids = list({item.project_id for item in item_list}) group_ids = [item.id for item in item_list] aggregations = [ ["count()", "", "times_seen"], ["min", "timestamp", "first_seen"], ["max", "timestamp", "last_seen"], ["uniq", "tags[sentry:user]", "count"], ] filters = {"project_id": project_ids, "group_id": group_ids} if environment_ids: filters["environment"] = environment_ids return aliased_query( dataset=Dataset.IssuePlatform, start=start, end=end, groupby=["group_id"], conditions=conditions, filter_keys=filters, aggregations=aggregations, referrer="serializers.GroupSerializerSnuba._execute_generic_seen_stats_query", tenant_ids=( {"organization_id": item_list[0].project.organization_id} if item_list else None ), ) @staticmethod def _parse_seen_stats_results( result, item_list, use_result_first_seen_times_seen, environment_ids=None ): seen_data = { issue["group_id"]: fix_tag_value_data( dict(filter(lambda key: key[0] != "group_id", issue.items())) ) for issue in result["data"] } user_counts = {item_id: value["count"] for item_id, value in seen_data.items()} last_seen = {item_id: value["last_seen"] for item_id, value in seen_data.items()} if use_result_first_seen_times_seen: first_seen = {item_id: value["first_seen"] for item_id, value in seen_data.items()} times_seen = {item_id: value["times_seen"] for item_id, value in seen_data.items()} else: if environment_ids: first_seen = { ge["group_id"]: ge["first_seen__min"] for ge in GroupEnvironment.objects.filter( group_id__in=[item.id for item in item_list], environment_id__in=environment_ids, ) .values("group_id") .annotate(Min("first_seen")) } else: first_seen = {item.id: item.first_seen for item in item_list} times_seen = {item.id: item.times_seen for item in item_list} return { item: { "times_seen": times_seen.get(item.id, 0), "first_seen": first_seen.get(item.id), "last_seen": last_seen.get(item.id), "user_count": user_counts.get(item.id, 0), } for item in item_list }
GroupSerializerSnuba
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 56835, "end": 57364 }
class ____(sgqlc.types.Enum): """Represents items that can be pinned to a profile page or dashboard. Enumeration Choices: * `GIST`: A gist. * `ISSUE`: An issue. * `ORGANIZATION`: An organization. * `PROJECT`: A project. * `PULL_REQUEST`: A pull request. * `REPOSITORY`: A repository. * `TEAM`: A team. * `USER`: A user. """ __schema__ = github_schema __choices__ = ("GIST", "ISSUE", "ORGANIZATION", "PROJECT", "PULL_REQUEST", "REPOSITORY", "TEAM", "USER")
PinnableItemType
python
pandas-dev__pandas
pandas/tests/series/indexing/test_setitem.py
{ "start": 45579, "end": 46193 }
class ____(CoercionTest): @pytest.fixture def obj(self): return Series([1.1, 2.2, 3.3, 4.4], dtype=np.float32) def test_slice_key(self, obj, key, expected, raises, val, indexer_sli, is_inplace): super().test_slice_key(obj, key, expected, raises, val, indexer_sli, is_inplace) if isinstance(val, float): # the xfail would xpass bc test_slice_key short-circuits raise AssertionError("xfail not relevant for this test.") @pytest.mark.parametrize( "exp_dtype", [ "M8[ms]", "M8[ms, UTC]", "m8[ms]", ], )
TestCoercionFloat32
python
google__jax
jax/_src/interpreters/batching.py
{ "start": 2050, "end": 2378 }
class ____: idx: core.Var lengths: Array | core.Var | Tracer def __repr__(self) -> str: return f'{self.lengths}.Var{id(self.idx)}' replace = dataclasses.replace # Jumble(aval=a:3 => f32[[3 1 4].a], # data=Array([0., 1., 2., 0., 0., 1., 2., 3.], dtype=float32)) @dataclasses.dataclass(frozen=True)
IndexedAxisSize
python
pytorch__pytorch
torch/_dynamo/guards.py
{ "start": 6942, "end": 7290 }
class ____(IndentedBuffer): def prefix(self) -> str: return "| " * (self._indent * self.tabwidth) def writeline(self, line: str, skip_prefix: bool = False) -> None: # type: ignore[override] if skip_prefix: super().writeline(line) else: super().writeline("+- " + line)
IndentedBufferWithPrefix
python
kamyu104__LeetCode-Solutions
Python/permutation-difference-between-two-strings.py
{ "start": 48, "end": 379 }
class ____(object): def findPermutationDifference(self, s, t): """ :type s: str :type t: str :rtype: int """ lookup = [-1]*26 for i, x in enumerate(s): lookup[ord(x)-ord('a')] = i return sum(abs(lookup[ord(x)-ord('a')]-i)for i, x in enumerate(t))
Solution
python
huggingface__transformers
src/transformers/models/wavlm/modeling_wavlm.py
{ "start": 39499, "end": 45507 }
class ____(WavLMPreTrainedModel): def __init__(self, config: WavLMConfig): super().__init__(config) self.config = config self.feature_extractor = WavLMFeatureEncoder(config) self.feature_projection = WavLMFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = WavLMEncoderStableLayerNorm(config) else: self.encoder = WavLMEncoder(config) self.adapter = WavLMAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://huggingface.co/papers/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @auto_docstring def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, WavLMBaseModelOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return WavLMBaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) _HIDDEN_STATES_START_POSITION = 2 @auto_docstring( custom_intro=""" WavLM Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC). """ )
WavLMModel
python
cython__cython
tests/run/test_templatelib.py
{ "start": 8641, "end": 9728 }
class ____(unittest.TestCase): def test_abc(self): self.assertIsInstance(iter(t''), Iterable) self.assertIsInstance(iter(t''), Iterator) def test_final(self): TemplateIter = type(iter(t'')) with self.assertRaisesRegex(TypeError, 'is not an acceptable base type'): class Sub(TemplateIter): ... def test_iter(self): x = 1 res = list(iter(t'abc {x} yz')) self.assertEqual(res[0], 'abc ') self.assertIsInstance(res[1], Interpolation) self.assertEqual(res[1].value, 1) self.assertEqual(res[1].expression, 'x') self.assertEqual(res[1].conversion, None) self.assertEqual(res[1].format_spec, '') self.assertEqual(res[2], ' yz') def test_exhausted(self): # See https://github.com/python/cpython/issues/134119. template_iter = iter(t"{1}") self.assertIsInstance(next(template_iter), Interpolation) self.assertRaises(StopIteration, next, template_iter) self.assertRaises(StopIteration, next, template_iter)
TemplateIterTests
python
apache__airflow
providers/google/src/airflow/providers/google/cloud/triggers/vertex_ai.py
{ "start": 5256, "end": 6064 }
class ____(BaseVertexAIJobTrigger): """CreateBatchPredictionJobTrigger run on the trigger worker to perform create operation.""" job_type_verbose_name = "Batch Prediction Job" job_serializer_class = BatchPredictionJob @cached_property def async_hook(self) -> BatchPredictionJobAsyncHook: return BatchPredictionJobAsyncHook( gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain ) async def _wait_job(self) -> types.BatchPredictionJob: job: types.BatchPredictionJob = await self.async_hook.wait_batch_prediction_job( project_id=self.project_id, location=self.location, job_id=self.job_id, poll_interval=self.poll_interval, ) return job
CreateBatchPredictionJobTrigger
python
psf__black
tests/test_black.py
{ "start": 4027, "end": 85333 }
class ____(BlackBaseTestCase): invokeBlack = staticmethod(invokeBlack) def test_empty_ff(self) -> None: expected = "" tmp_file = Path(black.dump_to_file()) try: self.assertFalse(ff(tmp_file, write_back=black.WriteBack.YES)) actual = tmp_file.read_text(encoding="utf-8") finally: os.unlink(tmp_file) self.assertFormatEqual(expected, actual) @patch("black.dump_to_file", dump_to_stderr) def test_one_empty_line(self) -> None: for nl in ["\n", "\r\n"]: source = expected = nl assert_format(source, expected) def test_one_empty_line_ff(self) -> None: for nl in ["\n", "\r\n"]: expected = nl tmp_file = Path(black.dump_to_file(nl)) if system() == "Windows": # Writing files in text mode automatically uses the system newline, # but in this case we don't want this for testing reasons. See: # https://github.com/psf/black/pull/3348 with open(tmp_file, "wb") as f: f.write(nl.encode("utf-8")) try: self.assertFalse(ff(tmp_file, write_back=black.WriteBack.YES)) with open(tmp_file, "rb") as f: actual = f.read().decode("utf-8") finally: os.unlink(tmp_file) self.assertFormatEqual(expected, actual) def test_piping(self) -> None: _, source, expected = read_data_from_file( PROJECT_ROOT / "src/black/__init__.py" ) result = BlackRunner().invoke( black.main, [ "-", "--fast", f"--line-length={black.DEFAULT_LINE_LENGTH}", f"--config={EMPTY_CONFIG}", ], input=BytesIO(source.encode("utf-8")), ) self.assertEqual(result.exit_code, 0) self.assertFormatEqual(expected, result.stdout) if source != result.stdout: black.assert_equivalent(source, result.stdout) black.assert_stable(source, result.stdout, DEFAULT_MODE) def test_piping_diff(self) -> None: diff_header = re.compile( r"(STDIN|STDOUT)\t\d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d\.\d\d\d\d\d\d" r"\+\d\d:\d\d" ) source, _ = read_data("cases", "expression.py") expected, _ = read_data("cases", "expression.diff") args = [ "-", "--fast", f"--line-length={black.DEFAULT_LINE_LENGTH}", "--diff", f"--config={EMPTY_CONFIG}", ] result = BlackRunner().invoke( black.main, args, input=BytesIO(source.encode("utf-8")) ) self.assertEqual(result.exit_code, 0) actual = diff_header.sub(DETERMINISTIC_HEADER, result.stdout) actual = actual.rstrip() + "\n" # the diff output has a trailing space self.assertEqual(expected, actual) def test_piping_diff_with_color(self) -> None: source, _ = read_data("cases", "expression.py") args = [ "-", "--fast", f"--line-length={black.DEFAULT_LINE_LENGTH}", "--diff", "--color", f"--config={EMPTY_CONFIG}", ] result = BlackRunner().invoke( black.main, args, input=BytesIO(source.encode("utf-8")) ) actual = result.output # Again, the contents are checked in a different test, so only look for colors. self.assertIn("\033[1m", actual) self.assertIn("\033[36m", actual) self.assertIn("\033[32m", actual) self.assertIn("\033[31m", actual) self.assertIn("\033[0m", actual) def test_pep_572_version_detection(self) -> None: source, _ = read_data("cases", "pep_572") root = black.lib2to3_parse(source) features = black.get_features_used(root) self.assertIn(black.Feature.ASSIGNMENT_EXPRESSIONS, features) versions = black.detect_target_versions(root) self.assertIn(black.TargetVersion.PY38, versions) def test_pep_695_version_detection(self) -> None: for file in ("type_aliases", "type_params"): source, _ = read_data("cases", file) root = black.lib2to3_parse(source) features = black.get_features_used(root) self.assertIn(black.Feature.TYPE_PARAMS, features) versions = black.detect_target_versions(root) self.assertIn(black.TargetVersion.PY312, versions) def test_pep_696_version_detection(self) -> None: source, _ = read_data("cases", "type_param_defaults") samples = [ source, "type X[T=int] = float", "type X[T:int=int]=int", "type X[*Ts=int]=int", "type X[*Ts=*int]=int", "type X[**P=int]=int", ] for sample in samples: root = black.lib2to3_parse(sample) features = black.get_features_used(root) self.assertIn(black.Feature.TYPE_PARAM_DEFAULTS, features) def test_expression_ff(self) -> None: source, expected = read_data("cases", "expression.py") tmp_file = Path(black.dump_to_file(source)) try: self.assertTrue(ff(tmp_file, write_back=black.WriteBack.YES)) actual = tmp_file.read_text(encoding="utf-8") finally: os.unlink(tmp_file) self.assertFormatEqual(expected, actual) with patch("black.dump_to_file", dump_to_stderr): black.assert_equivalent(source, actual) black.assert_stable(source, actual, DEFAULT_MODE) def test_expression_diff(self) -> None: source, _ = read_data("cases", "expression.py") expected, _ = read_data("cases", "expression.diff") tmp_file = Path(black.dump_to_file(source)) diff_header = re.compile( rf"{re.escape(str(tmp_file))}\t\d\d\d\d-\d\d-\d\d " r"\d\d:\d\d:\d\d\.\d\d\d\d\d\d\+\d\d:\d\d" ) try: result = BlackRunner().invoke( black.main, ["--diff", str(tmp_file), f"--config={EMPTY_CONFIG}"] ) self.assertEqual(result.exit_code, 0) finally: os.unlink(tmp_file) actual = result.stdout actual = diff_header.sub(DETERMINISTIC_HEADER, actual) if expected != actual: dump = black.dump_to_file(actual) msg = ( "Expected diff isn't equal to the actual. If you made changes to" " expression.py and this is an anticipated difference, overwrite" f" tests/data/cases/expression.diff with {dump}" ) self.assertEqual(expected, actual, msg) def test_expression_diff_with_color(self) -> None: source, _ = read_data("cases", "expression.py") expected, _ = read_data("cases", "expression.diff") tmp_file = Path(black.dump_to_file(source)) try: result = BlackRunner().invoke( black.main, ["--diff", "--color", str(tmp_file), f"--config={EMPTY_CONFIG}"], ) finally: os.unlink(tmp_file) actual = result.output # We check the contents of the diff in `test_expression_diff`. All # we need to check here is that color codes exist in the result. self.assertIn("\033[1m", actual) self.assertIn("\033[36m", actual) self.assertIn("\033[32m", actual) self.assertIn("\033[31m", actual) self.assertIn("\033[0m", actual) def test_detect_pos_only_arguments(self) -> None: source, _ = read_data("cases", "pep_570") root = black.lib2to3_parse(source) features = black.get_features_used(root) self.assertIn(black.Feature.POS_ONLY_ARGUMENTS, features) versions = black.detect_target_versions(root) self.assertIn(black.TargetVersion.PY38, versions) def test_detect_debug_f_strings(self) -> None: root = black.lib2to3_parse("""f"{x=}" """) features = black.get_features_used(root) self.assertIn(black.Feature.DEBUG_F_STRINGS, features) versions = black.detect_target_versions(root) self.assertIn(black.TargetVersion.PY38, versions) root = black.lib2to3_parse( """f"{x}"\nf'{"="}'\nf'{(x:=5)}'\nf'{f(a="3=")}'\nf'{x:=10}'\n""" ) features = black.get_features_used(root) self.assertNotIn(black.Feature.DEBUG_F_STRINGS, features) root = black.lib2to3_parse( """f"heard a rumour that { f'{1+1=}' } ... seems like it could be true" """ ) features = black.get_features_used(root) self.assertIn(black.Feature.DEBUG_F_STRINGS, features) @patch("black.dump_to_file", dump_to_stderr) def test_string_quotes(self) -> None: source, expected = read_data("miscellaneous", "string_quotes") mode = black.Mode(unstable=True) assert_format(source, expected, mode) mode = replace(mode, string_normalization=False) not_normalized = fs(source, mode=mode) self.assertFormatEqual(source.replace("\\\n", ""), not_normalized) black.assert_equivalent(source, not_normalized) black.assert_stable(source, not_normalized, mode=mode) def test_skip_source_first_line(self) -> None: source, _ = read_data("miscellaneous", "invalid_header") tmp_file = Path(black.dump_to_file(source)) # Full source should fail (invalid syntax at header) self.invokeBlack([str(tmp_file), "--diff", "--check"], exit_code=123) # So, skipping the first line should work result = BlackRunner().invoke( black.main, [str(tmp_file), "-x", f"--config={EMPTY_CONFIG}"] ) self.assertEqual(result.exit_code, 0) actual = tmp_file.read_text(encoding="utf-8") self.assertFormatEqual(source, actual) def test_skip_source_first_line_when_mixing_newlines(self) -> None: code_mixing_newlines = b"Header will be skipped\r\ni = [1,2,3]\nj = [1,2,3]\n" expected = b"Header will be skipped\r\ni = [1, 2, 3]\nj = [1, 2, 3]\n" with TemporaryDirectory() as workspace: test_file = Path(workspace) / "skip_header.py" test_file.write_bytes(code_mixing_newlines) mode = replace(DEFAULT_MODE, skip_source_first_line=True) ff(test_file, mode=mode, write_back=black.WriteBack.YES) self.assertEqual(test_file.read_bytes(), expected) def test_skip_magic_trailing_comma(self) -> None: source, _ = read_data("cases", "expression") expected, _ = read_data( "miscellaneous", "expression_skip_magic_trailing_comma.diff" ) tmp_file = Path(black.dump_to_file(source)) diff_header = re.compile( rf"{re.escape(str(tmp_file))}\t\d\d\d\d-\d\d-\d\d " r"\d\d:\d\d:\d\d\.\d\d\d\d\d\d\+\d\d:\d\d" ) try: result = BlackRunner().invoke( black.main, ["-C", "--diff", str(tmp_file), f"--config={EMPTY_CONFIG}"] ) self.assertEqual(result.exit_code, 0) finally: os.unlink(tmp_file) actual = result.stdout actual = diff_header.sub(DETERMINISTIC_HEADER, actual) actual = actual.rstrip() + "\n" # the diff output has a trailing space if expected != actual: dump = black.dump_to_file(actual) msg = ( "Expected diff isn't equal to the actual. If you made changes to" " expression.py and this is an anticipated difference, overwrite" " tests/data/miscellaneous/expression_skip_magic_trailing_comma.diff" f" with {dump}" ) self.assertEqual(expected, actual, msg) @patch("black.dump_to_file", dump_to_stderr) def test_python37(self) -> None: source_path = get_case_path("cases", "python37") _, source, expected = read_data_from_file(source_path) actual = fs(source) self.assertFormatEqual(expected, actual) black.assert_equivalent(source, actual) black.assert_stable(source, actual, DEFAULT_MODE) # ensure black can parse this when the target is 3.7 self.invokeBlack([str(source_path), "--target-version", "py37"]) def test_tab_comment_indentation(self) -> None: contents_tab = "if 1:\n\tif 2:\n\t\tpass\n\t# comment\n\tpass\n" contents_spc = "if 1:\n if 2:\n pass\n # comment\n pass\n" self.assertFormatEqual(contents_spc, fs(contents_spc)) self.assertFormatEqual(contents_spc, fs(contents_tab)) contents_tab = "if 1:\n\tif 2:\n\t\tpass\n\t\t# comment\n\tpass\n" contents_spc = "if 1:\n if 2:\n pass\n # comment\n pass\n" self.assertFormatEqual(contents_spc, fs(contents_spc)) self.assertFormatEqual(contents_spc, fs(contents_tab)) def test_false_positive_symlink_output_issue_3384(self) -> None: # Emulate the behavior when using the CLI (`black ./child --verbose`), which # involves patching some `pathlib.Path` methods. In particular, `is_dir` is # patched only on its first call: when checking if "./child" is a directory it # should return True. The "./child" folder exists relative to the cwd when # running from CLI, but fails when running the tests because cwd is different project_root = Path(THIS_DIR / "data" / "nested_gitignore_tests") working_directory = project_root / "root" with change_directory(working_directory): # Note that the root folder (project_root) isn't the folder # named "root" (aka working_directory) report = MagicMock(verbose=True) black.get_sources( root=project_root, src=("./child",), quiet=False, verbose=True, include=DEFAULT_INCLUDE, exclude=None, report=report, extend_exclude=None, force_exclude=None, stdin_filename=None, ) assert not any( mock_args[1].startswith("is a symbolic link that points outside") for _, mock_args, _ in report.path_ignored.mock_calls ), "A symbolic link was reported." report.path_ignored.assert_called_once_with( Path(working_directory, "child", "b.py"), "matches a .gitignore file content", ) def test_report_verbose(self) -> None: report = Report(verbose=True) out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.output._out", out), patch("black.output._err", err): report.done(Path("f1"), black.Changed.NO) self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "f1 already well formatted, good job.") self.assertEqual(unstyle(str(report)), "1 file left unchanged.") self.assertEqual(report.return_code, 0) report.done(Path("f2"), black.Changed.YES) self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "reformatted f2") self.assertEqual( unstyle(str(report)), "1 file reformatted, 1 file left unchanged." ) report.done(Path("f3"), black.Changed.CACHED) self.assertEqual(len(out_lines), 3) self.assertEqual(len(err_lines), 0) self.assertEqual( out_lines[-1], "f3 wasn't modified on disk since last run." ) self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged." ) self.assertEqual(report.return_code, 0) report.check = True self.assertEqual(report.return_code, 1) report.check = False report.failed(Path("e1"), "boom") self.assertEqual(len(out_lines), 3) self.assertEqual(len(err_lines), 1) self.assertEqual(err_lines[-1], "error: cannot format e1: boom") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged, 1 file failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f3"), black.Changed.YES) self.assertEqual(len(out_lines), 4) self.assertEqual(len(err_lines), 1) self.assertEqual(out_lines[-1], "reformatted f3") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 1 file failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.failed(Path("e2"), "boom") self.assertEqual(len(out_lines), 4) self.assertEqual(len(err_lines), 2) self.assertEqual(err_lines[-1], "error: cannot format e2: boom") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.path_ignored(Path("wat"), "no match") self.assertEqual(len(out_lines), 5) self.assertEqual(len(err_lines), 2) self.assertEqual(out_lines[-1], "wat ignored: no match") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f4"), black.Changed.NO) self.assertEqual(len(out_lines), 6) self.assertEqual(len(err_lines), 2) self.assertEqual(out_lines[-1], "f4 already well formatted, good job.") self.assertEqual( unstyle(str(report)), "2 files reformatted, 3 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.check = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, 2" " files would fail to reformat.", ) report.check = False report.diff = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, 2" " files would fail to reformat.", ) def test_report_quiet(self) -> None: report = Report(quiet=True) out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.output._out", out), patch("black.output._err", err): report.done(Path("f1"), black.Changed.NO) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual(unstyle(str(report)), "1 file left unchanged.") self.assertEqual(report.return_code, 0) report.done(Path("f2"), black.Changed.YES) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual( unstyle(str(report)), "1 file reformatted, 1 file left unchanged." ) report.done(Path("f3"), black.Changed.CACHED) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged." ) self.assertEqual(report.return_code, 0) report.check = True self.assertEqual(report.return_code, 1) report.check = False report.failed(Path("e1"), "boom") self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 1) self.assertEqual(err_lines[-1], "error: cannot format e1: boom") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged, 1 file failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f3"), black.Changed.YES) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 1) self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 1 file failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.failed(Path("e2"), "boom") self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 2) self.assertEqual(err_lines[-1], "error: cannot format e2: boom") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.path_ignored(Path("wat"), "no match") self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f4"), black.Changed.NO) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 3 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.check = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, 2" " files would fail to reformat.", ) report.check = False report.diff = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, 2" " files would fail to reformat.", ) def test_report_normal(self) -> None: report = black.Report() out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.output._out", out), patch("black.output._err", err): report.done(Path("f1"), black.Changed.NO) self.assertEqual(len(out_lines), 0) self.assertEqual(len(err_lines), 0) self.assertEqual(unstyle(str(report)), "1 file left unchanged.") self.assertEqual(report.return_code, 0) report.done(Path("f2"), black.Changed.YES) self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "reformatted f2") self.assertEqual( unstyle(str(report)), "1 file reformatted, 1 file left unchanged." ) report.done(Path("f3"), black.Changed.CACHED) self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 0) self.assertEqual(out_lines[-1], "reformatted f2") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged." ) self.assertEqual(report.return_code, 0) report.check = True self.assertEqual(report.return_code, 1) report.check = False report.failed(Path("e1"), "boom") self.assertEqual(len(out_lines), 1) self.assertEqual(len(err_lines), 1) self.assertEqual(err_lines[-1], "error: cannot format e1: boom") self.assertEqual( unstyle(str(report)), "1 file reformatted, 2 files left unchanged, 1 file failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f3"), black.Changed.YES) self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 1) self.assertEqual(out_lines[-1], "reformatted f3") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 1 file failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.failed(Path("e2"), "boom") self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 2) self.assertEqual(err_lines[-1], "error: cannot format e2: boom") self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.path_ignored(Path("wat"), "no match") self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 2 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.done(Path("f4"), black.Changed.NO) self.assertEqual(len(out_lines), 2) self.assertEqual(len(err_lines), 2) self.assertEqual( unstyle(str(report)), "2 files reformatted, 3 files left unchanged, 2 files failed to" " reformat.", ) self.assertEqual(report.return_code, 123) report.check = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, 2" " files would fail to reformat.", ) report.check = False report.diff = True self.assertEqual( unstyle(str(report)), "2 files would be reformatted, 3 files would be left unchanged, 2" " files would fail to reformat.", ) def test_lib2to3_parse(self) -> None: with self.assertRaises(black.InvalidInput): black.lib2to3_parse("invalid syntax") straddling = "x + y" black.lib2to3_parse(straddling) black.lib2to3_parse(straddling, {TargetVersion.PY36}) py2_only = "print x" with self.assertRaises(black.InvalidInput): black.lib2to3_parse(py2_only, {TargetVersion.PY36}) py3_only = "exec(x, end=y)" black.lib2to3_parse(py3_only) black.lib2to3_parse(py3_only, {TargetVersion.PY36}) def test_get_features_used_decorator(self) -> None: # Test the feature detection of new decorator syntax # since this makes some test cases of test_get_features_used() # fails if it fails, this is tested first so that a useful case # is identified simples, relaxed = read_data("miscellaneous", "decorators") # skip explanation comments at the top of the file for simple_test in simples.split("##")[1:]: node = black.lib2to3_parse(simple_test) decorator = str(node.children[0].children[0]).strip() self.assertNotIn( Feature.RELAXED_DECORATORS, black.get_features_used(node), msg=( f"decorator '{decorator}' follows python<=3.8 syntax" "but is detected as 3.9+" # f"The full node is\n{node!r}" ), ) # skip the '# output' comment at the top of the output part for relaxed_test in relaxed.split("##")[1:]: node = black.lib2to3_parse(relaxed_test) decorator = str(node.children[0].children[0]).strip() self.assertIn( Feature.RELAXED_DECORATORS, black.get_features_used(node), msg=( f"decorator '{decorator}' uses python3.9+ syntax" "but is detected as python<=3.8" # f"The full node is\n{node!r}" ), ) def test_get_features_used(self) -> None: self.check_features_used("def f(*, arg): ...\n", set()) self.check_features_used( "def f(*, arg,): ...\n", {Feature.TRAILING_COMMA_IN_DEF} ) self.check_features_used("f(*arg,)\n", {Feature.TRAILING_COMMA_IN_CALL}) self.check_features_used("def f(*, arg): f'string'\n", {Feature.F_STRINGS}) self.check_features_used("123_456\n", {Feature.NUMERIC_UNDERSCORES}) self.check_features_used("123456\n", set()) source, expected = read_data("cases", "function") expected_features = { Feature.TRAILING_COMMA_IN_CALL, Feature.TRAILING_COMMA_IN_DEF, Feature.F_STRINGS, } self.check_features_used(source, expected_features) self.check_features_used(expected, expected_features) source, expected = read_data("cases", "expression") self.check_features_used(source, set()) self.check_features_used(expected, set()) self.check_features_used("lambda a, /, b: ...\n", {Feature.POS_ONLY_ARGUMENTS}) self.check_features_used("def fn(a, /, b): ...", {Feature.POS_ONLY_ARGUMENTS}) self.check_features_used("def fn(): yield a, b", set()) self.check_features_used("def fn(): return a, b", set()) self.check_features_used("def fn(): yield *b, c", {Feature.UNPACKING_ON_FLOW}) self.check_features_used( "def fn(): return a, *b, c", {Feature.UNPACKING_ON_FLOW} ) self.check_features_used("x = a, *b, c", set()) self.check_features_used("x: Any = regular", set()) self.check_features_used("x: Any = (regular, regular)", set()) self.check_features_used("x: Any = Complex(Type(1))[something]", set()) self.check_features_used( "x: Tuple[int, ...] = a, b, c", {Feature.ANN_ASSIGN_EXTENDED_RHS} ) self.check_features_used("try: pass\nexcept Something: pass", set()) self.check_features_used("try: pass\nexcept (*Something,): pass", set()) self.check_features_used( "try: pass\nexcept *Group: pass", {Feature.EXCEPT_STAR} ) self.check_features_used("a[*b]", {Feature.VARIADIC_GENERICS}) self.check_features_used("a[x, *y(), z] = t", {Feature.VARIADIC_GENERICS}) self.check_features_used("def fn(*args: *T): pass", {Feature.VARIADIC_GENERICS}) self.check_features_used( "def fn(*args: *tuple[*T]): pass", {Feature.VARIADIC_GENERICS} ) self.check_features_used("with a: pass", set()) self.check_features_used("with a, b: pass", set()) self.check_features_used("with a as b: pass", set()) self.check_features_used("with a as b, c as d: pass", set()) self.check_features_used("with (a): pass", set()) self.check_features_used("with (a, b): pass", set()) self.check_features_used("with (a, b) as (c, d): pass", set()) self.check_features_used( "with (a as b): pass", {Feature.PARENTHESIZED_CONTEXT_MANAGERS} ) self.check_features_used( "with ((a as b)): pass", {Feature.PARENTHESIZED_CONTEXT_MANAGERS} ) self.check_features_used( "with (a, b as c): pass", {Feature.PARENTHESIZED_CONTEXT_MANAGERS} ) self.check_features_used( "with (a, (b as c)): pass", {Feature.PARENTHESIZED_CONTEXT_MANAGERS} ) self.check_features_used( "with ((a, ((b as c)))): pass", {Feature.PARENTHESIZED_CONTEXT_MANAGERS} ) self.check_features_used( "x = t'foo {f'bar'}'", {Feature.T_STRINGS, Feature.F_STRINGS} ) def check_features_used(self, source: str, expected: set[Feature]) -> None: node = black.lib2to3_parse(source) actual = black.get_features_used(node) msg = f"Expected {expected} but got {actual} for {source!r}" try: self.assertEqual(actual, expected, msg=msg) except AssertionError: DebugVisitor.show(node) raise def test_get_features_used_for_future_flags(self) -> None: for src, features in [ ("from __future__ import annotations", {Feature.FUTURE_ANNOTATIONS}), ( "from __future__ import (other, annotations)", {Feature.FUTURE_ANNOTATIONS}, ), ("a = 1 + 2\nfrom something import annotations", set()), ("from __future__ import x, y", set()), ]: with self.subTest(src=src, features=sorted(f.value for f in features)): node = black.lib2to3_parse(src) future_imports = black.get_future_imports(node) self.assertEqual( black.get_features_used(node, future_imports=future_imports), features, ) def test_get_future_imports(self) -> None: node = black.lib2to3_parse("\n") self.assertEqual(set(), black.get_future_imports(node)) node = black.lib2to3_parse("from __future__ import black\n") self.assertEqual({"black"}, black.get_future_imports(node)) node = black.lib2to3_parse("from __future__ import multiple, imports\n") self.assertEqual({"multiple", "imports"}, black.get_future_imports(node)) node = black.lib2to3_parse("from __future__ import (parenthesized, imports)\n") self.assertEqual({"parenthesized", "imports"}, black.get_future_imports(node)) node = black.lib2to3_parse( "from __future__ import multiple\nfrom __future__ import imports\n" ) self.assertEqual({"multiple", "imports"}, black.get_future_imports(node)) node = black.lib2to3_parse("# comment\nfrom __future__ import black\n") self.assertEqual({"black"}, black.get_future_imports(node)) node = black.lib2to3_parse('"""docstring"""\nfrom __future__ import black\n') self.assertEqual({"black"}, black.get_future_imports(node)) node = black.lib2to3_parse("some(other, code)\nfrom __future__ import black\n") self.assertEqual(set(), black.get_future_imports(node)) node = black.lib2to3_parse("from some.module import black\n") self.assertEqual(set(), black.get_future_imports(node)) node = black.lib2to3_parse( "from __future__ import unicode_literals as _unicode_literals" ) self.assertEqual({"unicode_literals"}, black.get_future_imports(node)) node = black.lib2to3_parse( "from __future__ import unicode_literals as _lol, print" ) self.assertEqual({"unicode_literals", "print"}, black.get_future_imports(node)) @pytest.mark.incompatible_with_mypyc def test_debug_visitor(self) -> None: source, _ = read_data("miscellaneous", "debug_visitor") expected, _ = read_data("miscellaneous", "debug_visitor.out") out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.debug.out", out): DebugVisitor.show(source) actual = "\n".join(out_lines) + "\n" log_name = "" if expected != actual: log_name = black.dump_to_file(*out_lines) self.assertEqual( expected, actual, f"AST print out is different. Actual version dumped to {log_name}", ) def test_format_file_contents(self) -> None: mode = DEFAULT_MODE empty = "" with self.assertRaises(black.NothingChanged): black.format_file_contents(empty, mode=mode, fast=False) just_nl = "\n" with self.assertRaises(black.NothingChanged): black.format_file_contents(just_nl, mode=mode, fast=False) same = "j = [1, 2, 3]\n" with self.assertRaises(black.NothingChanged): black.format_file_contents(same, mode=mode, fast=False) different = "j = [1,2,3]" expected = same actual = black.format_file_contents(different, mode=mode, fast=False) self.assertEqual(expected, actual) invalid = "return if you can" with self.assertRaises(black.InvalidInput) as e: black.format_file_contents(invalid, mode=mode, fast=False) self.assertEqual(str(e.exception), "Cannot parse: 1:7: return if you can") just_crlf = "\r\n" with self.assertRaises(black.NothingChanged): black.format_file_contents(just_crlf, mode=mode, fast=False) just_whitespace_nl = "\n\t\n \n\t \n \t\n\n" actual = black.format_file_contents(just_whitespace_nl, mode=mode, fast=False) self.assertEqual("\n", actual) just_whitespace_crlf = "\r\n\t\r\n \r\n\t \r\n \t\r\n\r\n" actual = black.format_file_contents(just_whitespace_crlf, mode=mode, fast=False) self.assertEqual("\r\n", actual) def test_endmarker(self) -> None: n = black.lib2to3_parse("\n") self.assertEqual(n.type, black.syms.file_input) self.assertEqual(len(n.children), 1) self.assertEqual(n.children[0].type, black.token.ENDMARKER) @patch("tests.conftest.PRINT_FULL_TREE", True) @patch("tests.conftest.PRINT_TREE_DIFF", False) @pytest.mark.incompatible_with_mypyc def test_assertFormatEqual_print_full_tree(self) -> None: out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.output._out", out), patch("black.output._err", err): with self.assertRaises(AssertionError): self.assertFormatEqual("j = [1, 2, 3]", "j = [1, 2, 3,]") out_str = "".join(out_lines) self.assertIn("Expected tree:", out_str) self.assertIn("Actual tree:", out_str) self.assertEqual("".join(err_lines), "") @patch("tests.conftest.PRINT_FULL_TREE", False) @patch("tests.conftest.PRINT_TREE_DIFF", True) @pytest.mark.incompatible_with_mypyc def test_assertFormatEqual_print_tree_diff(self) -> None: out_lines = [] err_lines = [] def out(msg: str, **kwargs: Any) -> None: out_lines.append(msg) def err(msg: str, **kwargs: Any) -> None: err_lines.append(msg) with patch("black.output._out", out), patch("black.output._err", err): with self.assertRaises(AssertionError): self.assertFormatEqual("j = [1, 2, 3]\n", "j = [1, 2, 3,]\n") out_str = "".join(out_lines) self.assertIn("Tree Diff:", out_str) self.assertIn("+ COMMA", out_str) self.assertIn("+ ','", out_str) self.assertEqual("".join(err_lines), "") @event_loop() @patch("concurrent.futures.ProcessPoolExecutor", MagicMock(side_effect=OSError)) def test_works_in_mono_process_only_environment(self) -> None: with cache_dir() as workspace: for f in [ (workspace / "one.py").resolve(), (workspace / "two.py").resolve(), ]: f.write_text('print("hello")\n', encoding="utf-8") self.invokeBlack([str(workspace)]) @event_loop() def test_check_diff_use_together(self) -> None: with cache_dir(): # Files which will be reformatted. src1 = get_case_path("miscellaneous", "string_quotes") self.invokeBlack([str(src1), "--diff", "--check"], exit_code=1) # Files which will not be reformatted. src2 = get_case_path("cases", "composition") self.invokeBlack([str(src2), "--diff", "--check"]) # Multi file command. self.invokeBlack([str(src1), str(src2), "--diff", "--check"], exit_code=1) def test_no_src_fails(self) -> None: with cache_dir(): self.invokeBlack([], exit_code=1) def test_src_and_code_fails(self) -> None: with cache_dir(): self.invokeBlack([".", "-c", "0"], exit_code=1) def test_broken_symlink(self) -> None: with cache_dir() as workspace: symlink = workspace / "broken_link.py" try: symlink.symlink_to("nonexistent.py") except (OSError, NotImplementedError) as e: self.skipTest(f"Can't create symlinks: {e}") self.invokeBlack([str(workspace.resolve())]) def test_single_file_force_pyi(self) -> None: pyi_mode = replace(DEFAULT_MODE, is_pyi=True) contents, expected = read_data("miscellaneous", "force_pyi") with cache_dir() as workspace: path = (workspace / "file.py").resolve() path.write_text(contents, encoding="utf-8") self.invokeBlack([str(path), "--pyi"]) actual = path.read_text(encoding="utf-8") # verify cache with --pyi is separate pyi_cache = black.Cache.read(pyi_mode) assert not pyi_cache.is_changed(path) normal_cache = black.Cache.read(DEFAULT_MODE) assert normal_cache.is_changed(path) self.assertFormatEqual(expected, actual) black.assert_equivalent(contents, actual) black.assert_stable(contents, actual, pyi_mode) @event_loop() def test_multi_file_force_pyi(self) -> None: reg_mode = DEFAULT_MODE pyi_mode = replace(DEFAULT_MODE, is_pyi=True) contents, expected = read_data("miscellaneous", "force_pyi") with cache_dir() as workspace: paths = [ (workspace / "file1.py").resolve(), (workspace / "file2.py").resolve(), ] for path in paths: path.write_text(contents, encoding="utf-8") self.invokeBlack([str(p) for p in paths] + ["--pyi"]) for path in paths: actual = path.read_text(encoding="utf-8") self.assertEqual(actual, expected) # verify cache with --pyi is separate pyi_cache = black.Cache.read(pyi_mode) normal_cache = black.Cache.read(reg_mode) for path in paths: assert not pyi_cache.is_changed(path) assert normal_cache.is_changed(path) def test_pipe_force_pyi(self) -> None: source, expected = read_data("miscellaneous", "force_pyi") result = CliRunner().invoke( black.main, ["-", "-q", "--pyi"], input=BytesIO(source.encode("utf-8")) ) self.assertEqual(result.exit_code, 0) actual = result.output self.assertFormatEqual(actual, expected) def test_single_file_force_py36(self) -> None: reg_mode = DEFAULT_MODE py36_mode = replace(DEFAULT_MODE, target_versions=PY36_VERSIONS) source, expected = read_data("miscellaneous", "force_py36") with cache_dir() as workspace: path = (workspace / "file.py").resolve() path.write_text(source, encoding="utf-8") self.invokeBlack([str(path), *PY36_ARGS]) actual = path.read_text(encoding="utf-8") # verify cache with --target-version is separate py36_cache = black.Cache.read(py36_mode) assert not py36_cache.is_changed(path) normal_cache = black.Cache.read(reg_mode) assert normal_cache.is_changed(path) self.assertEqual(actual, expected) @event_loop() def test_multi_file_force_py36(self) -> None: reg_mode = DEFAULT_MODE py36_mode = replace(DEFAULT_MODE, target_versions=PY36_VERSIONS) source, expected = read_data("miscellaneous", "force_py36") with cache_dir() as workspace: paths = [ (workspace / "file1.py").resolve(), (workspace / "file2.py").resolve(), ] for path in paths: path.write_text(source, encoding="utf-8") self.invokeBlack([str(p) for p in paths] + PY36_ARGS) for path in paths: actual = path.read_text(encoding="utf-8") self.assertEqual(actual, expected) # verify cache with --target-version is separate pyi_cache = black.Cache.read(py36_mode) normal_cache = black.Cache.read(reg_mode) for path in paths: assert not pyi_cache.is_changed(path) assert normal_cache.is_changed(path) def test_pipe_force_py36(self) -> None: source, expected = read_data("miscellaneous", "force_py36") result = CliRunner().invoke( black.main, ["-", "-q", "--target-version=py36"], input=BytesIO(source.encode("utf-8")), ) self.assertEqual(result.exit_code, 0) actual = result.output self.assertFormatEqual(actual, expected) @pytest.mark.incompatible_with_mypyc def test_reformat_one_with_stdin(self) -> None: with patch( "black.format_stdin_to_stdout", return_value=lambda *args, **kwargs: black.Changed.YES, ) as fsts: report = MagicMock() path = Path("-") black.reformat_one( path, fast=True, write_back=black.WriteBack.YES, mode=DEFAULT_MODE, report=report, ) fsts.assert_called_once() report.done.assert_called_with(path, black.Changed.YES) @pytest.mark.incompatible_with_mypyc def test_reformat_one_with_stdin_filename(self) -> None: with patch( "black.format_stdin_to_stdout", return_value=lambda *args, **kwargs: black.Changed.YES, ) as fsts: report = MagicMock() p = "foo.py" path = Path(f"__BLACK_STDIN_FILENAME__{p}") expected = Path(p) black.reformat_one( path, fast=True, write_back=black.WriteBack.YES, mode=DEFAULT_MODE, report=report, ) fsts.assert_called_once_with( fast=True, write_back=black.WriteBack.YES, mode=DEFAULT_MODE, lines=() ) # __BLACK_STDIN_FILENAME__ should have been stripped report.done.assert_called_with(expected, black.Changed.YES) @pytest.mark.incompatible_with_mypyc def test_reformat_one_with_stdin_filename_pyi(self) -> None: with patch( "black.format_stdin_to_stdout", return_value=lambda *args, **kwargs: black.Changed.YES, ) as fsts: report = MagicMock() p = "foo.pyi" path = Path(f"__BLACK_STDIN_FILENAME__{p}") expected = Path(p) black.reformat_one( path, fast=True, write_back=black.WriteBack.YES, mode=DEFAULT_MODE, report=report, ) fsts.assert_called_once_with( fast=True, write_back=black.WriteBack.YES, mode=replace(DEFAULT_MODE, is_pyi=True), lines=(), ) # __BLACK_STDIN_FILENAME__ should have been stripped report.done.assert_called_with(expected, black.Changed.YES) @pytest.mark.incompatible_with_mypyc def test_reformat_one_with_stdin_filename_ipynb(self) -> None: with patch( "black.format_stdin_to_stdout", return_value=lambda *args, **kwargs: black.Changed.YES, ) as fsts: report = MagicMock() p = "foo.ipynb" path = Path(f"__BLACK_STDIN_FILENAME__{p}") expected = Path(p) black.reformat_one( path, fast=True, write_back=black.WriteBack.YES, mode=DEFAULT_MODE, report=report, ) fsts.assert_called_once_with( fast=True, write_back=black.WriteBack.YES, mode=replace(DEFAULT_MODE, is_ipynb=True), lines=(), ) # __BLACK_STDIN_FILENAME__ should have been stripped report.done.assert_called_with(expected, black.Changed.YES) @pytest.mark.incompatible_with_mypyc def test_reformat_one_with_stdin_and_existing_path(self) -> None: with patch( "black.format_stdin_to_stdout", return_value=lambda *args, **kwargs: black.Changed.YES, ) as fsts: report = MagicMock() # Even with an existing file, since we are forcing stdin, black # should output to stdout and not modify the file inplace p = THIS_DIR / "data" / "cases" / "collections.py" # Make sure is_file actually returns True self.assertTrue(p.is_file()) path = Path(f"__BLACK_STDIN_FILENAME__{p}") expected = Path(p) black.reformat_one( path, fast=True, write_back=black.WriteBack.YES, mode=DEFAULT_MODE, report=report, ) fsts.assert_called_once() # __BLACK_STDIN_FILENAME__ should have been stripped report.done.assert_called_with(expected, black.Changed.YES) def test_reformat_one_with_stdin_empty(self) -> None: cases = [ ("", ""), ("\n", "\n"), ("\r\n", "\r\n"), (" \t", ""), (" \t\n\t ", "\n"), (" \t\r\n\t ", "\r\n"), ] def _new_wrapper( output: io.StringIO, io_TextIOWrapper: type[io.TextIOWrapper] ) -> Callable[[Any, Any], io.StringIO | io.TextIOWrapper]: def get_output(*args: Any, **kwargs: Any) -> io.StringIO | io.TextIOWrapper: if args == (sys.stdout.buffer,): # It's `format_stdin_to_stdout()` calling `io.TextIOWrapper()`, # return our mock object. return output # It's something else (i.e. `decode_bytes()`) calling # `io.TextIOWrapper()`, pass through to the original implementation. # See discussion in https://github.com/psf/black/pull/2489 return io_TextIOWrapper(*args, **kwargs) return get_output for content, expected in cases: output = io.StringIO() io_TextIOWrapper = io.TextIOWrapper with patch("io.TextIOWrapper", _new_wrapper(output, io_TextIOWrapper)): try: black.format_stdin_to_stdout( fast=True, content=content, write_back=black.WriteBack.YES, mode=DEFAULT_MODE, ) except io.UnsupportedOperation: pass # StringIO does not support detach assert output.getvalue() == expected def test_cli_unstable(self) -> None: self.invokeBlack(["--unstable", "-c", "0"], exit_code=0) self.invokeBlack(["--preview", "-c", "0"], exit_code=0) # Must also pass --preview self.invokeBlack( ["--enable-unstable-feature", "string_processing", "-c", "0"], exit_code=1 ) self.invokeBlack( ["--preview", "--enable-unstable-feature", "string_processing", "-c", "0"], exit_code=0, ) self.invokeBlack( ["--unstable", "--enable-unstable-feature", "string_processing", "-c", "0"], exit_code=0, ) def test_invalid_cli_regex(self) -> None: for option in ["--include", "--exclude", "--extend-exclude", "--force-exclude"]: self.invokeBlack(["-", option, "**()(!!*)"], exit_code=2) def test_required_version_matches_version(self) -> None: self.invokeBlack( ["--required-version", black.__version__, "-c", "0"], exit_code=0, ignore_config=True, ) def test_required_version_matches_partial_version(self) -> None: self.invokeBlack( ["--required-version", black.__version__.split(".")[0], "-c", "0"], exit_code=0, ignore_config=True, ) def test_required_version_does_not_match_on_minor_version(self) -> None: self.invokeBlack( ["--required-version", black.__version__.split(".")[0] + ".999", "-c", "0"], exit_code=1, ignore_config=True, ) def test_required_version_does_not_match_version(self) -> None: result = BlackRunner().invoke( black.main, ["--required-version", "20.99b", "-c", "0"], ) self.assertEqual(result.exit_code, 1) self.assertIn("required version", result.stderr) def test_preserves_line_endings(self) -> None: with TemporaryDirectory() as workspace: test_file = Path(workspace) / "test.py" for nl in ["\n", "\r\n"]: contents = nl.join(["def f( ):", " pass"]) test_file.write_bytes(contents.encode()) ff(test_file, write_back=black.WriteBack.YES) updated_contents: bytes = test_file.read_bytes() self.assertIn(nl.encode(), updated_contents) if nl == "\n": self.assertNotIn(b"\r\n", updated_contents) def test_preserves_line_endings_via_stdin(self) -> None: for nl in ["\n", "\r\n"]: contents = nl.join(["def f( ):", " pass"]) runner = BlackRunner() result = runner.invoke( black.main, ["-", "--fast"], input=BytesIO(contents.encode("utf-8")) ) self.assertEqual(result.exit_code, 0) output = result.stdout_bytes self.assertIn(nl.encode("utf-8"), output) if nl == "\n": self.assertNotIn(b"\r\n", output) def test_normalize_line_endings(self) -> None: with TemporaryDirectory() as workspace: test_file = Path(workspace) / "test.py" for data, expected in ( (b"c\r\nc\n ", b"c\r\nc\r\n"), (b"l\nl\r\n ", b"l\nl\n"), ): test_file.write_bytes(data) ff(test_file, write_back=black.WriteBack.YES) self.assertEqual(test_file.read_bytes(), expected) def test_root_logger_not_used_directly(self) -> None: def fail(*args: Any, **kwargs: Any) -> None: self.fail("Record created with root logger") with patch.multiple( logging.root, debug=fail, info=fail, warning=fail, error=fail, critical=fail, log=fail, ): ff(THIS_DIR / "util.py") def test_invalid_config_return_code(self) -> None: tmp_file = Path(black.dump_to_file()) try: tmp_config = Path(black.dump_to_file()) tmp_config.unlink() args = ["--config", str(tmp_config), str(tmp_file)] self.invokeBlack(args, exit_code=2, ignore_config=False) finally: tmp_file.unlink() def test_parse_pyproject_toml(self) -> None: test_toml_file = THIS_DIR / "test.toml" config = black.parse_pyproject_toml(str(test_toml_file)) self.assertEqual(config["verbose"], 1) self.assertEqual(config["check"], "no") self.assertEqual(config["diff"], "y") self.assertEqual(config["color"], True) self.assertEqual(config["line_length"], 79) self.assertEqual(config["target_version"], ["py36", "py37", "py38"]) self.assertEqual(config["python_cell_magics"], ["custom1", "custom2"]) self.assertEqual(config["exclude"], r"\.pyi?$") self.assertEqual(config["include"], r"\.py?$") def test_spellcheck_pyproject_toml(self) -> None: test_toml_file = THIS_DIR / "data" / "incorrect_spelling.toml" result = BlackRunner().invoke( black.main, [ "--code=print('hello world')", "--verbose", f"--config={str(test_toml_file)}", ], ) assert ( r"Invalid config keys detected: 'ine_length', 'target_ersion' (in" rf" {test_toml_file})" in result.stderr ) def test_parse_pyproject_toml_project_metadata(self) -> None: for test_toml, expected in [ ("only_black_pyproject.toml", ["py310"]), ("only_metadata_pyproject.toml", ["py37", "py38", "py39", "py310"]), ("neither_pyproject.toml", None), ("both_pyproject.toml", ["py310"]), ]: test_toml_file = THIS_DIR / "data" / "project_metadata" / test_toml config = black.parse_pyproject_toml(str(test_toml_file)) self.assertEqual(config.get("target_version"), expected) def test_infer_target_version(self) -> None: for version, expected in [ ("3.6", [TargetVersion.PY36]), ("3.11.0rc1", [TargetVersion.PY311]), ( ">=3.10", [ TargetVersion.PY310, TargetVersion.PY311, TargetVersion.PY312, TargetVersion.PY313, TargetVersion.PY314, ], ), ( ">=3.10.6", [ TargetVersion.PY310, TargetVersion.PY311, TargetVersion.PY312, TargetVersion.PY313, TargetVersion.PY314, ], ), ("<3.6", [TargetVersion.PY33, TargetVersion.PY34, TargetVersion.PY35]), (">3.7,<3.10", [TargetVersion.PY38, TargetVersion.PY39]), ( ">3.7,!=3.8,!=3.9", [ TargetVersion.PY310, TargetVersion.PY311, TargetVersion.PY312, TargetVersion.PY313, TargetVersion.PY314, ], ), ( "> 3.9.4, != 3.10.3", [ TargetVersion.PY39, TargetVersion.PY310, TargetVersion.PY311, TargetVersion.PY312, TargetVersion.PY313, TargetVersion.PY314, ], ), ( "!=3.3,!=3.4", [ TargetVersion.PY35, TargetVersion.PY36, TargetVersion.PY37, TargetVersion.PY38, TargetVersion.PY39, TargetVersion.PY310, TargetVersion.PY311, TargetVersion.PY312, TargetVersion.PY313, TargetVersion.PY314, ], ), ( "==3.*", [ TargetVersion.PY33, TargetVersion.PY34, TargetVersion.PY35, TargetVersion.PY36, TargetVersion.PY37, TargetVersion.PY38, TargetVersion.PY39, TargetVersion.PY310, TargetVersion.PY311, TargetVersion.PY312, TargetVersion.PY313, TargetVersion.PY314, ], ), ("==3.8.*", [TargetVersion.PY38]), (None, None), ("", None), ("invalid", None), ("==invalid", None), (">3.9,!=invalid", None), ("3", None), ("3.2", None), ("2.7.18", None), ("==2.7", None), (">3.10,<3.11", None), ]: test_toml = {"project": {"requires-python": version}} result = black.files.infer_target_version(test_toml) self.assertEqual(result, expected) def test_read_pyproject_toml(self) -> None: test_toml_file = THIS_DIR / "test.toml" fake_ctx = FakeContext() black.read_pyproject_toml(fake_ctx, FakeParameter(), str(test_toml_file)) config = fake_ctx.default_map self.assertEqual(config["verbose"], "1") self.assertEqual(config["check"], "no") self.assertEqual(config["diff"], "y") self.assertEqual(config["color"], "True") self.assertEqual(config["line_length"], "79") self.assertEqual(config["target_version"], ["py36", "py37", "py38"]) self.assertEqual(config["exclude"], r"\.pyi?$") self.assertEqual(config["include"], r"\.py?$") def test_read_pyproject_toml_from_stdin(self) -> None: with TemporaryDirectory() as workspace: root = Path(workspace) src_dir = root / "src" src_dir.mkdir() src_pyproject = src_dir / "pyproject.toml" src_pyproject.touch() test_toml_content = (THIS_DIR / "test.toml").read_text(encoding="utf-8") src_pyproject.write_text(test_toml_content, encoding="utf-8") src_python = src_dir / "foo.py" src_python.touch() fake_ctx = FakeContext() fake_ctx.params["src"] = ("-",) fake_ctx.params["stdin_filename"] = str(src_python) with change_directory(root): black.read_pyproject_toml(fake_ctx, FakeParameter(), None) config = fake_ctx.default_map self.assertEqual(config["verbose"], "1") self.assertEqual(config["check"], "no") self.assertEqual(config["diff"], "y") self.assertEqual(config["color"], "True") self.assertEqual(config["line_length"], "79") self.assertEqual(config["target_version"], ["py36", "py37", "py38"]) self.assertEqual(config["exclude"], r"\.pyi?$") self.assertEqual(config["include"], r"\.py?$") @pytest.mark.incompatible_with_mypyc def test_find_project_root(self) -> None: with TemporaryDirectory() as workspace: root = Path(workspace) test_dir = root / "test" test_dir.mkdir() src_dir = root / "src" src_dir.mkdir() root_pyproject = root / "pyproject.toml" root_pyproject.write_text("[tool.black]", encoding="utf-8") src_pyproject = src_dir / "pyproject.toml" src_pyproject.write_text("[tool.black]", encoding="utf-8") src_python = src_dir / "foo.py" src_python.touch() self.assertEqual( black.find_project_root((src_dir, test_dir)), (root.resolve(), "pyproject.toml"), ) self.assertEqual( black.find_project_root((src_dir,)), (src_dir.resolve(), "pyproject.toml"), ) self.assertEqual( black.find_project_root((src_python,)), (src_dir.resolve(), "pyproject.toml"), ) with change_directory(test_dir): self.assertEqual( black.find_project_root(("-",), stdin_filename="../src/a.py"), (src_dir.resolve(), "pyproject.toml"), ) src_sub = src_dir / "sub" src_sub.mkdir() src_sub_pyproject = src_sub / "pyproject.toml" src_sub_pyproject.touch() # empty src_sub_python = src_sub / "bar.py" # we skip src_sub_pyproject since it is missing the [tool.black] section self.assertEqual( black.find_project_root((src_sub_python,)), (src_dir.resolve(), "pyproject.toml"), ) @patch( "black.files.find_user_pyproject_toml", ) def test_find_pyproject_toml(self, find_user_pyproject_toml: MagicMock) -> None: find_user_pyproject_toml.side_effect = RuntimeError() with redirect_stderr(io.StringIO()) as stderr: result = black.files.find_pyproject_toml( path_search_start=(str(Path.cwd().root),) ) assert result is None err = stderr.getvalue() assert "Ignoring user configuration" in err @patch( "black.files.find_user_pyproject_toml", black.files.find_user_pyproject_toml.__wrapped__, ) def test_find_user_pyproject_toml_linux(self) -> None: if system() == "Windows": return # Test if XDG_CONFIG_HOME is checked with TemporaryDirectory() as workspace: tmp_user_config = Path(workspace) / "black" with patch.dict("os.environ", {"XDG_CONFIG_HOME": workspace}): self.assertEqual( black.files.find_user_pyproject_toml(), tmp_user_config.resolve() ) # Test fallback for XDG_CONFIG_HOME with patch.dict("os.environ"): os.environ.pop("XDG_CONFIG_HOME", None) fallback_user_config = Path("~/.config").expanduser() / "black" self.assertEqual( black.files.find_user_pyproject_toml(), fallback_user_config.resolve() ) def test_find_user_pyproject_toml_windows(self) -> None: if system() != "Windows": return user_config_path = Path.home() / ".black" self.assertEqual( black.files.find_user_pyproject_toml(), user_config_path.resolve() ) def test_bpo_33660_workaround(self) -> None: if system() == "Windows": return root = Path("/") path = Path("workspace") / "project" report = black.Report(verbose=True) resolves_outside = black.resolves_outside_root_or_cannot_stat( path, root, report ) self.assertIs(resolves_outside, False) def test_normalize_path_ignore_windows_junctions_outside_of_root(self) -> None: if system() != "Windows": return with TemporaryDirectory() as workspace: root = Path(workspace) junction_dir = root / "junction" junction_target_outside_of_root = root / ".." os.system(f"mklink /J {junction_dir} {junction_target_outside_of_root}") report = black.Report(verbose=True) resolves_outside = black.resolves_outside_root_or_cannot_stat( junction_dir, root, report ) # Manually delete for Python < 3.8 os.system(f"rmdir {junction_dir}") self.assertIs(resolves_outside, True) def test_newline_comment_interaction(self) -> None: source = "class A:\\\r\n# type: ignore\n pass\n" output = black.format_str(source, mode=DEFAULT_MODE) black.assert_stable(source, output, mode=DEFAULT_MODE) def test_bpo_2142_workaround(self) -> None: # https://bugs.python.org/issue2142 source, _ = read_data("miscellaneous", "missing_final_newline") # read_data adds a trailing newline source = source.rstrip() expected, _ = read_data("miscellaneous", "missing_final_newline.diff") tmp_file = Path(black.dump_to_file(source, ensure_final_newline=False)) diff_header = re.compile( rf"{re.escape(str(tmp_file))}\t\d\d\d\d-\d\d-\d\d " r"\d\d:\d\d:\d\d\.\d\d\d\d\d\d\+\d\d:\d\d" ) try: result = BlackRunner().invoke(black.main, ["--diff", str(tmp_file)]) self.assertEqual(result.exit_code, 0) finally: os.unlink(tmp_file) actual = result.stdout actual = diff_header.sub(DETERMINISTIC_HEADER, actual) self.assertEqual(actual, expected) @staticmethod def compare_results( result: click.testing.Result, expected_value: str, expected_exit_code: int ) -> None: """Helper method to test the value and exit code of a click Result.""" assert ( result.stdout == expected_value ), "The output did not match the expected value." assert result.exit_code == expected_exit_code, "The exit code is incorrect." def test_code_option(self) -> None: """Test the code option with no changes.""" code = 'print("Hello world")\n' args = ["--code", code] result = CliRunner().invoke(black.main, args) self.compare_results(result, code, 0) def test_code_option_changed(self) -> None: """Test the code option when changes are required.""" code = "print('hello world')" formatted = black.format_str(code, mode=DEFAULT_MODE) args = ["--code", code] result = CliRunner().invoke(black.main, args) self.compare_results(result, formatted, 0) def test_code_option_check(self) -> None: """Test the code option when check is passed.""" args = ["--check", "--code", 'print("Hello world")\n'] result = CliRunner().invoke(black.main, args) self.compare_results(result, "", 0) def test_code_option_check_changed(self) -> None: """Test the code option when changes are required, and check is passed.""" args = ["--check", "--code", "print('hello world')"] result = CliRunner().invoke(black.main, args) self.compare_results(result, "", 1) def test_code_option_diff(self) -> None: """Test the code option when diff is passed.""" code = "print('hello world')" formatted = black.format_str(code, mode=DEFAULT_MODE) result_diff = diff(code, formatted, "STDIN", "STDOUT") args = ["--diff", "--code", code] result = CliRunner().invoke(black.main, args) # Remove time from diff output = DIFF_TIME.sub("", result.output) assert output == result_diff, "The output did not match the expected value." assert result.exit_code == 0, "The exit code is incorrect." def test_code_option_color_diff(self) -> None: """Test the code option when color and diff are passed.""" code = "print('hello world')" formatted = black.format_str(code, mode=DEFAULT_MODE) result_diff = diff(code, formatted, "STDIN", "STDOUT") result_diff = color_diff(result_diff) args = ["--diff", "--color", "--code", code] result = CliRunner().invoke(black.main, args) # Remove time from diff output = DIFF_TIME.sub("", result.output) assert output == result_diff, "The output did not match the expected value." assert result.exit_code == 0, "The exit code is incorrect." @pytest.mark.incompatible_with_mypyc def test_code_option_safe(self) -> None: """Test that the code option throws an error when the sanity checks fail.""" # Patch black.assert_equivalent to ensure the sanity checks fail with patch.object(black, "assert_equivalent", side_effect=AssertionError): code = 'print("Hello world")' error_msg = f"{code}\nerror: cannot format <string>: \n" args = ["--safe", "--code", code] result = CliRunner().invoke(black.main, args) assert error_msg == result.output assert result.exit_code == 123 def test_code_option_fast(self) -> None: """Test that the code option ignores errors when the sanity checks fail.""" # Patch black.assert_equivalent to ensure the sanity checks fail with patch.object(black, "assert_equivalent", side_effect=AssertionError): code = 'print("Hello world")' formatted = black.format_str(code, mode=DEFAULT_MODE) args = ["--fast", "--code", code] result = CliRunner().invoke(black.main, args) self.compare_results(result, formatted, 0) @pytest.mark.incompatible_with_mypyc def test_code_option_config(self) -> None: """ Test that the code option finds the pyproject.toml in the current directory. """ with patch.object(black, "parse_pyproject_toml", return_value={}) as parse: args = ["--code", "print"] # This is the only directory known to contain a pyproject.toml with change_directory(PROJECT_ROOT): CliRunner().invoke(black.main, args) pyproject_path = Path(Path.cwd(), "pyproject.toml").resolve() assert ( len(parse.mock_calls) >= 1 ), "Expected config parse to be called with the current directory." _, call_args, _ = parse.mock_calls[0] assert ( call_args[0].lower() == str(pyproject_path).lower() ), "Incorrect config loaded." @pytest.mark.incompatible_with_mypyc def test_code_option_parent_config(self) -> None: """ Test that the code option finds the pyproject.toml in the parent directory. """ with patch.object(black, "parse_pyproject_toml", return_value={}) as parse: with change_directory(THIS_DIR): args = ["--code", "print"] CliRunner().invoke(black.main, args) pyproject_path = Path(Path().cwd().parent, "pyproject.toml").resolve() assert ( len(parse.mock_calls) >= 1 ), "Expected config parse to be called with the current directory." _, call_args, _ = parse.mock_calls[0] assert ( call_args[0].lower() == str(pyproject_path).lower() ), "Incorrect config loaded." def test_for_handled_unexpected_eof_error(self) -> None: """ Test that an unexpected EOF SyntaxError is nicely presented. """ with pytest.raises(black.parsing.InvalidInput) as exc_info: black.lib2to3_parse("print(", {}) exc_info.match("Cannot parse: 1:6: Unexpected EOF in multi-line statement") def test_line_ranges_with_code_option(self) -> None: code = textwrap.dedent("""\ if a == b: print ( "OK" ) """) args = ["--line-ranges=1-1", "--code", code] result = CliRunner().invoke(black.main, args) expected = textwrap.dedent("""\ if a == b: print ( "OK" ) """) self.compare_results(result, expected, expected_exit_code=0) def test_line_ranges_with_stdin(self) -> None: code = textwrap.dedent("""\ if a == b: print ( "OK" ) """) runner = BlackRunner() result = runner.invoke( black.main, ["--line-ranges=1-1", "-"], input=BytesIO(code.encode("utf-8")) ) expected = textwrap.dedent("""\ if a == b: print ( "OK" ) """) self.compare_results(result, expected, expected_exit_code=0) def test_line_ranges_with_source(self) -> None: with TemporaryDirectory() as workspace: test_file = Path(workspace) / "test.py" test_file.write_text( textwrap.dedent("""\ if a == b: print ( "OK" ) """), encoding="utf-8", ) args = ["--line-ranges=1-1", str(test_file)] result = CliRunner().invoke(black.main, args) assert not result.exit_code formatted = test_file.read_text(encoding="utf-8") expected = textwrap.dedent("""\ if a == b: print ( "OK" ) """) assert expected == formatted def test_line_ranges_with_multiple_sources(self) -> None: with TemporaryDirectory() as workspace: test1_file = Path(workspace) / "test1.py" test1_file.write_text("", encoding="utf-8") test2_file = Path(workspace) / "test2.py" test2_file.write_text("", encoding="utf-8") args = ["--line-ranges=1-1", str(test1_file), str(test2_file)] result = CliRunner().invoke(black.main, args) assert result.exit_code == 1 assert "Cannot use --line-ranges to format multiple files" in result.output def test_line_ranges_with_ipynb(self) -> None: with TemporaryDirectory() as workspace: test_file = Path(workspace) / "test.ipynb" test_file.write_text("{}", encoding="utf-8") args = ["--line-ranges=1-1", "--ipynb", str(test_file)] result = CliRunner().invoke(black.main, args) assert "Cannot use --line-ranges with ipynb files" in result.output assert result.exit_code == 1 def test_line_ranges_in_pyproject_toml(self) -> None: config = THIS_DIR / "data" / "invalid_line_ranges.toml" result = BlackRunner().invoke( black.main, ["--code", "print()", "--config", str(config)] ) assert result.exit_code == 2 assert result.stderr_bytes is not None assert ( b"Cannot use line-ranges in the pyproject.toml file." in result.stderr_bytes ) def test_lines_with_leading_tabs_expanded(self) -> None: # See CVE-2024-21503. Mostly test that this completes in a reasonable # time. payload = "\t" * 10_000 assert lines_with_leading_tabs_expanded(payload) == [payload] tab = " " * 8 assert lines_with_leading_tabs_expanded("\tx") == [f"{tab}x"] assert lines_with_leading_tabs_expanded("\t\tx") == [f"{tab}{tab}x"] assert lines_with_leading_tabs_expanded("\tx\n y") == [f"{tab}x", " y"] def test_carriage_return_edge_cases(self) -> None: # These tests are here instead of in the normal cases because # of git's newline normalization and because it's hard to # get `\r` vs `\r\n` vs `\n` to display properly assert ( black.format_str( "try:\\\r# type: ignore\n pass\nfinally:\n pass\n", mode=black.FileMode(), ) == "try: # type: ignore\n pass\nfinally:\n pass\n" ) assert black.format_str("{\r}", mode=black.FileMode()) == "{}\n" assert black.format_str("pass #\r#\n", mode=black.FileMode()) == "pass #\n#\n" assert black.format_str("x=\\\r\n1", mode=black.FileMode()) == "x = 1\n" assert black.format_str("x=\\\n1", mode=black.FileMode()) == "x = 1\n" assert black.format_str("x=\\\r1", mode=black.FileMode()) == "x = 1\n" assert ( black.format_str("class A\\\r\n:...", mode=black.FileMode()) == "class A: ...\n" ) assert ( black.format_str("class A\\\n:...", mode=black.FileMode()) == "class A: ...\n" ) assert ( black.format_str("class A\\\r:...", mode=black.FileMode()) == "class A: ...\n" ) def test_preview_newline_type_detection(self) -> None: mode = Mode(enabled_features={Preview.normalize_cr_newlines}) newline_types = ["A\n", "A\r\n", "A\r"] for test_case in itertools.permutations(newline_types): assert black.format_str("".join(test_case), mode=mode) == test_case[0] * 3
BlackTestCase
python
walkccc__LeetCode
solutions/3085. Minimum Deletions to Make String K-Special/3085.py
{ "start": 0, "end": 388 }
class ____: def minimumDeletions(self, word: str, k: int) -> int: ans = math.inf count = collections.Counter(word) for minFreq in count.values(): deletions = 0 for freq in count.values(): if freq < minFreq: deletions += freq else: deletions += max(0, freq - (minFreq + k)) ans = min(ans, deletions) return ans
Solution
python
pypa__warehouse
tests/unit/test_views.py
{ "start": 17028, "end": 28411 }
class ____: @pytest.mark.parametrize("page", [None, 1, 5]) def test_with_a_query( self, monkeypatch, pyramid_services, db_request, metrics, page ): params = MultiDict({"q": "foo bar"}) if page is not None: params["page"] = page db_request.params = params fake_rate_limiter = pretend.stub( test=lambda *a: True, hit=lambda *a: True, resets_in=lambda *a: None ) pyramid_services.register_service( fake_rate_limiter, IRateLimiter, None, name="search" ) db_request.opensearch = pretend.stub() opensearch_query = pretend.stub() get_opensearch_query = pretend.call_recorder(lambda *a, **kw: opensearch_query) monkeypatch.setattr(views, "get_opensearch_query", get_opensearch_query) page_obj = pretend.stub(page_count=(page or 1) + 10, item_count=1000) page_cls = pretend.call_recorder(lambda *a, **kw: page_obj) monkeypatch.setattr(views, "OpenSearchPage", page_cls) url_maker = pretend.stub() url_maker_factory = pretend.call_recorder(lambda request: url_maker) monkeypatch.setattr(views, "paginate_url_factory", url_maker_factory) assert search(db_request) == { "page": page_obj, "term": params.get("q", ""), "order": "", "applied_filters": [], "available_filters": [], } assert get_opensearch_query.calls == [ pretend.call(db_request.opensearch, params.get("q"), "", []) ] assert page_cls.calls == [ pretend.call(opensearch_query, url_maker=url_maker, page=page or 1) ] assert url_maker_factory.calls == [pretend.call(db_request)] assert metrics.histogram.calls == [ pretend.call("warehouse.views.search.results", 1000) ] @pytest.mark.parametrize("page", [None, 1, 5]) def test_with_classifiers( self, monkeypatch, pyramid_services, db_request, metrics, page ): params = MultiDict([("q", "foo bar"), ("c", "foo :: bar"), ("c", "fiz :: buz")]) if page is not None: params["page"] = page db_request.params = params fake_rate_limiter = pretend.stub( test=lambda *a: True, hit=lambda *a: True, resets_in=lambda *a: None ) pyramid_services.register_service( fake_rate_limiter, IRateLimiter, None, name="search" ) opensearch_query = pretend.stub() db_request.opensearch = pretend.stub() get_opensearch_query = pretend.call_recorder(lambda *a, **kw: opensearch_query) monkeypatch.setattr(views, "get_opensearch_query", get_opensearch_query) classifier1 = ClassifierFactory.create(classifier="foo :: bar") classifier2 = ClassifierFactory.create(classifier="foo :: baz") classifier3 = ClassifierFactory.create(classifier="fiz :: buz") project = ProjectFactory.create() release1 = ReleaseFactory.create(project=project) release1.created = datetime.date(2011, 1, 1) release1._classifiers.append(classifier1) release1._classifiers.append(classifier2) page_obj = pretend.stub(page_count=(page or 1) + 10, item_count=1000) page_cls = pretend.call_recorder(lambda *a, **kw: page_obj) monkeypatch.setattr(views, "OpenSearchPage", page_cls) url_maker = pretend.stub() url_maker_factory = pretend.call_recorder(lambda request: url_maker) monkeypatch.setattr(views, "paginate_url_factory", url_maker_factory) search_view = search(db_request) assert search_view == { "page": page_obj, "term": params.get("q", ""), "order": "", "applied_filters": params.getall("c"), "available_filters": [ { "foo": { classifier1.classifier.split(" :: ")[1]: {}, classifier2.classifier.split(" :: ")[1]: {}, } } ], } assert ("fiz", [classifier3.classifier]) not in search_view["available_filters"] assert page_cls.calls == [ pretend.call(opensearch_query, url_maker=url_maker, page=page or 1) ] assert url_maker_factory.calls == [pretend.call(db_request)] assert get_opensearch_query.calls == [ pretend.call(db_request.opensearch, params.get("q"), "", params.getall("c")) ] assert metrics.histogram.calls == [ pretend.call("warehouse.views.search.results", 1000) ] def test_returns_404_with_pagenum_too_high( self, monkeypatch, pyramid_services, db_request, metrics ): params = MultiDict({"page": 15}) db_request.params = params fake_rate_limiter = pretend.stub( test=lambda *a: True, hit=lambda *a: True, resets_in=lambda *a: None ) pyramid_services.register_service( fake_rate_limiter, IRateLimiter, None, name="search" ) opensearch_query = pretend.stub() db_request.opensearch = pretend.stub(query=lambda *a, **kw: opensearch_query) page_obj = pretend.stub(page_count=10, item_count=1000) page_cls = pretend.call_recorder(lambda *a, **kw: page_obj) monkeypatch.setattr(views, "OpenSearchPage", page_cls) url_maker = pretend.stub() url_maker_factory = pretend.call_recorder(lambda request: url_maker) monkeypatch.setattr(views, "paginate_url_factory", url_maker_factory) with pytest.raises(HTTPNotFound): search(db_request) assert page_cls.calls == [ pretend.call(opensearch_query, url_maker=url_maker, page=15 or 1) ] assert url_maker_factory.calls == [pretend.call(db_request)] assert metrics.histogram.calls == [] def test_raises_400_with_pagenum_type_str( self, monkeypatch, pyramid_services, db_request, metrics ): params = MultiDict({"page": "abc"}) db_request.params = params fake_rate_limiter = pretend.stub( test=lambda *a: True, hit=lambda *a: True, resets_in=lambda *a: None ) pyramid_services.register_service( fake_rate_limiter, IRateLimiter, None, name="search" ) opensearch_query = pretend.stub() db_request.opensearch = pretend.stub(query=lambda *a, **kw: opensearch_query) page_obj = pretend.stub(page_count=10, item_count=1000) page_cls = pretend.call_recorder(lambda *a, **kw: page_obj) monkeypatch.setattr(views, "OpenSearchPage", page_cls) url_maker = pretend.stub() url_maker_factory = pretend.call_recorder(lambda request: url_maker) monkeypatch.setattr(views, "paginate_url_factory", url_maker_factory) with pytest.raises(HTTPBadRequest): search(db_request) assert page_cls.calls == [] assert metrics.histogram.calls == [] def test_return_413_when_query_too_long( self, pyramid_services, db_request, metrics ): params = MultiDict({"q": "a" * 1001}) db_request.params = params fake_rate_limiter = pretend.stub( test=lambda *a: True, hit=lambda *a: True, resets_in=lambda *a: None ) pyramid_services.register_service( fake_rate_limiter, IRateLimiter, None, name="search" ) with pytest.raises(HTTPRequestEntityTooLarge): search(db_request) assert metrics.increment.calls == [ pretend.call("warehouse.search.ratelimiter.hit"), pretend.call("warehouse.views.search.error", tags=["error:query_too_long"]), ] def test_returns_503_when_opensearch_unavailable( self, monkeypatch, pyramid_services, db_request, metrics ): params = MultiDict({"page": 15}) db_request.params = params fake_rate_limiter = pretend.stub( test=lambda *a: True, hit=lambda *a: True, resets_in=lambda *a: None ) pyramid_services.register_service( fake_rate_limiter, IRateLimiter, None, name="search" ) opensearch_query = pretend.stub() db_request.opensearch = pretend.stub(query=lambda *a, **kw: opensearch_query) def raiser(*args, **kwargs): raise opensearchpy.ConnectionError() monkeypatch.setattr(views, "OpenSearchPage", raiser) url_maker = pretend.stub() url_maker_factory = pretend.call_recorder(lambda request: url_maker) monkeypatch.setattr(views, "paginate_url_factory", url_maker_factory) with pytest.raises(HTTPServiceUnavailable): search(db_request) assert url_maker_factory.calls == [pretend.call(db_request)] assert metrics.increment.calls == [ pretend.call("warehouse.search.ratelimiter.hit"), pretend.call("warehouse.views.search.error"), ] assert metrics.histogram.calls == [] @pytest.mark.parametrize("resets_in", [None, 1, 5]) def test_returns_429_when_ratelimited( self, monkeypatch, pyramid_services, db_request, metrics, resets_in ): params = MultiDict({"q": "foo bar"}) db_request.params = params fake_rate_limiter = pretend.stub( test=lambda *a: False, hit=lambda *a: True, resets_in=lambda *a: ( None if resets_in is None else pretend.stub(total_seconds=lambda *a: resets_in) ), ) pyramid_services.register_service( fake_rate_limiter, IRateLimiter, None, name="search" ) with pytest.raises(HTTPTooManyRequests) as exc_info: search(db_request) message = ( "Your search query could not be performed because there were too " "many requests by the client." ) if resets_in is not None: message += f" Limit may reset in {resets_in} seconds." assert exc_info.value.args[0] == message assert metrics.increment.calls == [ pretend.call("warehouse.search.ratelimiter.exceeded") ] def test_classifiers(db_request): assert list_classifiers(db_request) == {"classifiers": sorted_classifiers} def test_stats(db_request): project = ProjectFactory.create() release1 = ReleaseFactory.create(project=project) release1.created = datetime.date(2011, 1, 1) FileFactory.create( release=release1, filename=f"{project.name}-{release1.version}.tar.gz", python_version="source", size=69, ) assert stats(db_request) == { "total_packages_size": 69, "top_packages": {project.name: {"size": 69}}, } def test_health(): request = pretend.stub( db=pretend.stub(execute=pretend.call_recorder(lambda q: None)) ) assert health(request) == "OK" assert len(request.db.execute.calls) == 1 assert len(request.db.execute.calls[0].args) == 1 assert len(request.db.execute.calls[0].kwargs) == 0 assert isinstance( request.db.execute.calls[0].args[0], sqlalchemy.sql.expression.TextClause ) assert request.db.execute.calls[0].args[0].text == "SELECT 1"
TestSearch
python
apache__airflow
providers/microsoft/azure/tests/unit/microsoft/azure/operators/test_container_instances.py
{ "start": 26434, "end": 26711 }
class ____: def __init__(self) -> None: self.values: MutableMapping[str, Any | None] = {} def xcom_push(self, key: str, value: Any | None) -> None: self.values[key] = value def xcom_pull(self, key: str) -> Any: return self.values[key]
XcomMock
python
run-llama__llama_index
llama-index-integrations/llms/llama-index-llms-sarvam/llama_index/llms/sarvam/base.py
{ "start": 472, "end": 2772 }
class ____(OpenAILike): """ Sarvam LLM. To instantiate the `Sarvam` class, you will need to provide an API key. You can set the API key either as an environment variable `SARVAM_API_KEY` or directly in the class constructor. If setting it in the class constructor, it would look like this: If you haven't signed up for an API key yet, you can do so on the Sarvam website at (https://sarvam.ai). Once you have your API key, you can use the `Sarvam` class to interact with the LLM for tasks like chatting, streaming, and completing prompts. Examples: `pip install llama-index-llms-sarvam` ```python from llama_index.llms.sarvam import Sarvam llm = Sarvam( api_key="<your-api-key>", max_tokens=256, context_window=4096, model="sarvam-m", ) response = llm.complete("Hello World!") print(response) ``` """ model: str = Field(description="The Sarvam model to use.") context_window: int = Field( default=DEFAULT_CONTEXT_WINDOW, description="The maximum number of context tokens for the model.", gt=0, ) is_chat_model: bool = Field( default=True, description=LLMMetadata.model_fields["is_chat_model"].description, ) def __init__( self, model: str = DEFAULT_MODEL, temperature: float = DEFAULT_TEMPERATURE, max_tokens: int = DEFAULT_NUM_OUTPUTS, additional_kwargs: Optional[Dict[str, Any]] = None, max_retries: int = 5, api_base: Optional[str] = DEFAULT_API_BASE, api_key: Optional[str] = None, **kwargs: Any, ) -> None: additional_kwargs = additional_kwargs or {} api_base = get_from_param_or_env("api_base", api_base, "SARVAM_API_BASE") api_key = get_from_param_or_env("api_key", api_key, "SARVAM_API_KEY") super().__init__( model=model, temperature=temperature, max_tokens=max_tokens, api_base=api_base, api_key=api_key, additional_kwargs=additional_kwargs, max_retries=max_retries, **kwargs, ) @classmethod def class_name(cls) -> str: return "Sarvam_LLM"
Sarvam
python
zarr-developers__zarr-python
src/zarr/core/chunk_key_encodings.py
{ "start": 2145, "end": 2796 }
class ____(ChunkKeyEncoding): name: ClassVar[Literal["default"]] = "default" separator: SeparatorLiteral = "/" def __post_init__(self) -> None: separator_parsed = parse_separator(self.separator) object.__setattr__(self, "separator", separator_parsed) def decode_chunk_key(self, chunk_key: str) -> tuple[int, ...]: if chunk_key == "c": return () return tuple(map(int, chunk_key[1:].split(self.separator))) def encode_chunk_key(self, chunk_coords: tuple[int, ...]) -> str: return self.separator.join(map(str, ("c",) + chunk_coords)) @dataclass(frozen=True)
DefaultChunkKeyEncoding
python
pola-rs__polars
py-polars/src/polars/exceptions.py
{ "start": 5039, "end": 5500 }
class ____(PolarsWarning): """ Warning issued when a chrono format string contains dubious patterns. Polars uses Rust's chrono crate to convert between string data and temporal data. The patterns used by chrono differ slightly from Python's built-in datetime module. Refer to the `chrono strftime documentation <https://docs.rs/chrono/latest/chrono/format/strftime/index.html>`_ for the full specification. """
ChronoFormatWarning
python
gevent__gevent
src/gevent/queue.py
{ "start": 23379, "end": 23899 }
class ____(Queue): """ A subclass of :class:`JoinableQueue` that retrieves most recently added entries first. .. versionchanged:: 24.10.1 Now extends :class:`JoinableQueue` instead of just :class:`Queue`. """ __slots__ = () def _create_queue(self, items=()): return list(items) def _put(self, item): self.queue.append(item) self._did_put_task() def _get(self): return self.queue.pop() def _peek(self): return self.queue[-1]
LifoQueue
python
dagster-io__dagster
python_modules/dagster/dagster/_core/storage/branching/branching_io_manager.py
{ "start": 1224, "end": 5400 }
class ____(ConfigurableIOManager): """A branching I/O manager composes two I/O managers. 1) The parent I/O manager, typically your production environment. 2) The branch I/O manager, typically a development or branched environment. The objective of this to allow a developer to safely read from a production environment and then write to a separate development environment. Once data has been written to the branch environment subsequent reads of that asset are sourced from the branch environment. This bookkeeping is done in Dagster's asset catalog by emitting AssetMaterializations with metadata. This is designed for iterative development on asset graphs, especially where assets early in the graph are large and expensive to compute. One can iteratively develop on downstream assets in that graph safely. Some storage systems branching functionality natively. Examples include Snowflake's CLONE feature. Branching I/O managers allow users to implement that functionality in more flexible software layer over arbitrary storage systems. """ parent_io_manager: ResourceDependency[IOManager] branch_io_manager: ResourceDependency[IOManager] branch_name: str = "dev" branch_metadata_key: str = "io_manager_branch" def load_input(self, context: InputContext) -> Any: if not context.has_asset_key: # we are dealing with an op input # just load it with the branch manager return self.branch_io_manager.load_input(context) else: # we are dealing with an asset input # figure out which partition keys are loaded, if any partition_keys = [] if context.has_asset_partitions: partition_keys = context.asset_partition_keys # we'll fetch materializations with key=None if we aren't loading # a partitioned asset, this will return us the latest materialization # of an unpartitioned asset if len(partition_keys) == 0: partition_keys = [None] # grab the latest materialization for each partition that we # need to load, OR just the latest materialization if not partitioned event_log_entries = [ latest_materialization_log_entry( instance=context.instance, asset_key=context.asset_key, partition_key=partition_key, ) for partition_key in partition_keys ] # if all partitions are available in the branch, we can load from the branch # otherwise we need to load from the parent if all( event_log_entry is not None and event_log_entry.asset_materialization and get_text_metadata_value( event_log_entry.asset_materialization, self.branch_metadata_key ) == self.branch_name for event_log_entry in event_log_entries ): context.log.info( f'Branching Manager: Loading "{context.asset_key.to_user_string()}" from' f' "{self.branch_name}"' ) return self.branch_io_manager.load_input(context) context.log.info( f'Branching Manager Loading "{context.asset_key.to_user_string()}" from parent' ) return self.parent_io_manager.load_input(context) def handle_output(self, context: OutputContext, obj: Any) -> None: # always write to the branch manager self.branch_io_manager.handle_output(context, obj) if context.has_asset_key: # we are dealing with an asset output (not an op output) # mark the asset materialization with the branch name context.add_output_metadata({self.branch_metadata_key: self.branch_name}) context.log.info( f'Branching Manager: Writing "{context.asset_key.to_user_string()}" to branch' f' "{self.branch_name}"' )
BranchingIOManager
python
mahmoud__boltons
boltons/dictutils.py
{ "start": 35525, "end": 37642 }
class ____(dict): """An immutable dict subtype that is hashable and can itself be used as a :class:`dict` key or :class:`set` entry. What :class:`frozenset` is to :class:`set`, FrozenDict is to :class:`dict`. There was once an attempt to introduce such a type to the standard library, but it was rejected: `PEP 416 <https://www.python.org/dev/peps/pep-0416/>`_. Because FrozenDict is a :class:`dict` subtype, it automatically works everywhere a dict would, including JSON serialization. """ __slots__ = ('_hash',) def updated(self, *a, **kw): """Make a copy and add items from a dictionary or iterable (and/or keyword arguments), overwriting values under an existing key. See :meth:`dict.update` for more details. """ data = dict(self) data.update(*a, **kw) return type(self)(data) @classmethod def fromkeys(cls, keys, value=None): # one of the lesser known and used/useful dict methods return cls(dict.fromkeys(keys, value)) def __repr__(self): cn = self.__class__.__name__ return f'{cn}({dict.__repr__(self)})' def __reduce_ex__(self, protocol): return type(self), (dict(self),) def __hash__(self): try: ret = self._hash except AttributeError: try: ret = self._hash = hash(frozenset(self.items())) except Exception as e: ret = self._hash = FrozenHashError(e) if ret.__class__ is FrozenHashError: raise ret return ret def __copy__(self): return self # immutable types don't copy, see tuple's behavior # block everything else def _raise_frozen_typeerror(self, *a, **kw): "raises a TypeError, because FrozenDicts are immutable" raise TypeError('%s object is immutable' % self.__class__.__name__) __ior__ = __setitem__ = __delitem__ = update = _raise_frozen_typeerror setdefault = pop = popitem = clear = _raise_frozen_typeerror del _raise_frozen_typeerror # end dictutils.py
FrozenDict
python
tornadoweb__tornado
tornado/test/web_test.py
{ "start": 25033, "end": 25387 }
class ____(RequestHandler): def get(self): try: self.set_header("X-Foo", "foo\r\nX-Bar: baz") raise Exception("Didn't get expected exception") except ValueError as e: if "Unsafe header value" in str(e): self.finish(b"ok") else: raise
HeaderInjectionHandler
python
pydantic__pydantic
pydantic-core/python/pydantic_core/core_schema.py
{ "start": 8396, "end": 8643 }
class ____(SerializationInfo[ContextT], Protocol): """Extra data used during field serialization.""" @property def field_name(self) -> str: """The name of the current field being serialized.""" ...
FieldSerializationInfo
python
getsentry__sentry
src/sentry/preprod/api/endpoints/size_analysis/project_preprod_size_analysis_compare_download.py
{ "start": 746, "end": 4586 }
class ____(ProjectEndpoint): owner = ApiOwner.EMERGE_TOOLS publish_status = { "GET": ApiPublishStatus.EXPERIMENTAL, } def get( self, request: Request, project: Project, head_size_metric_id: int, base_size_metric_id: int ) -> HttpResponseBase: """ Download size analysis comparison results for specific size metrics ```````````````````````````````````````````````````` Download the size analysis comparison results for specific size metrics. :pparam string organization_id_or_slug: the id or slug of the organization the artifact belongs to. :pparam string project_id_or_slug: the id or slug of the project to retrieve the artifact from. :pparam string head_size_metric_id: the ID of the head size metric to download size analysis comparison for. :pparam string base_size_metric_id: the ID of the base size metric to download size analysis comparison for. :auth: required """ analytics.record( PreprodArtifactApiSizeAnalysisCompareDownloadEvent( organization_id=project.organization_id, project_id=project.id, user_id=request.user.id, head_size_metric_id=str(head_size_metric_id), base_size_metric_id=str(base_size_metric_id), ) ) if not features.has( "organizations:preprod-frontend-routes", project.organization, actor=request.user ): return Response({"error": "Feature not enabled"}, status=403) logger.info( "preprod.size_analysis.compare.api.download", extra={ "head_size_metric_id": head_size_metric_id, "base_size_metric_id": base_size_metric_id, }, ) try: comparison_obj = PreprodArtifactSizeComparison.objects.get( head_size_analysis_id=head_size_metric_id, base_size_analysis_id=base_size_metric_id, organization_id=project.organization_id, ) except PreprodArtifactSizeComparison.DoesNotExist: logger.info( "preprod.size_analysis.compare.api.download.no_comparison_obj", extra={ "head_size_metric_id": head_size_metric_id, "base_size_metric_id": base_size_metric_id, }, ) return Response({"error": "Comparison not found."}, status=404) if comparison_obj.file_id is None: logger.info( "preprod.size_analysis.compare.api.download.no_file_id", extra={"comparison_id": comparison_obj.id}, ) return Response({"error": "Comparison not found."}, status=404) try: file_obj = File.objects.get(id=comparison_obj.file_id) except File.DoesNotExist: logger.info( "preprod.size_analysis.compare.api.download.no_file", extra={"comparison_id": comparison_obj.id}, ) return Response({"error": "Comparison not found."}, status=404) try: fp = file_obj.getfile() except Exception: logger.info( "preprod.size_analysis.compare.api.download.no_file_getfile", extra={"comparison_id": comparison_obj.id}, ) return Response({"error": "Failed to retrieve size analysis comparison."}, status=500) response = FileResponse( fp, content_type="application/json", ) response["Content-Length"] = file_obj.size return response
ProjectPreprodArtifactSizeAnalysisCompareDownloadEndpoint
python
plotly__plotly.py
plotly/figure_factory/_streamline.py
{ "start": 4332, "end": 14499 }
class ____(object): """ Refer to FigureFactory.create_streamline() for docstring """ def __init__(self, x, y, u, v, density, angle, arrow_scale, **kwargs): self.x = np.array(x) self.y = np.array(y) self.u = np.array(u) self.v = np.array(v) self.angle = angle self.arrow_scale = arrow_scale self.density = int(30 * density) # Scale similarly to other functions self.delta_x = self.x[1] - self.x[0] self.delta_y = self.y[1] - self.y[0] self.val_x = self.x self.val_y = self.y # Set up spacing self.blank = np.zeros((self.density, self.density)) self.spacing_x = len(self.x) / float(self.density - 1) self.spacing_y = len(self.y) / float(self.density - 1) self.trajectories = [] # Rescale speed onto axes-coordinates self.u = self.u / (self.x[-1] - self.x[0]) self.v = self.v / (self.y[-1] - self.y[0]) self.speed = np.sqrt(self.u**2 + self.v**2) # Rescale u and v for integrations. self.u *= len(self.x) self.v *= len(self.y) self.st_x = [] self.st_y = [] self.get_streamlines() streamline_x, streamline_y = self.sum_streamlines() arrows_x, arrows_y = self.get_streamline_arrows() def blank_pos(self, xi, yi): """ Set up positions for trajectories to be used with rk4 function. """ return (int((xi / self.spacing_x) + 0.5), int((yi / self.spacing_y) + 0.5)) def value_at(self, a, xi, yi): """ Set up for RK4 function, based on Bokeh's streamline code """ if isinstance(xi, np.ndarray): self.x = xi.astype(int) self.y = yi.astype(int) else: self.val_x = int(xi) self.val_y = int(yi) a00 = a[self.val_y, self.val_x] a01 = a[self.val_y, self.val_x + 1] a10 = a[self.val_y + 1, self.val_x] a11 = a[self.val_y + 1, self.val_x + 1] xt = xi - self.val_x yt = yi - self.val_y a0 = a00 * (1 - xt) + a01 * xt a1 = a10 * (1 - xt) + a11 * xt return a0 * (1 - yt) + a1 * yt def rk4_integrate(self, x0, y0): """ RK4 forward and back trajectories from the initial conditions. Adapted from Bokeh's streamline -uses Runge-Kutta method to fill x and y trajectories then checks length of traj (s in units of axes) """ def f(xi, yi): dt_ds = 1.0 / self.value_at(self.speed, xi, yi) ui = self.value_at(self.u, xi, yi) vi = self.value_at(self.v, xi, yi) return ui * dt_ds, vi * dt_ds def g(xi, yi): dt_ds = 1.0 / self.value_at(self.speed, xi, yi) ui = self.value_at(self.u, xi, yi) vi = self.value_at(self.v, xi, yi) return -ui * dt_ds, -vi * dt_ds def check(xi, yi): return (0 <= xi < len(self.x) - 1) and (0 <= yi < len(self.y) - 1) xb_changes = [] yb_changes = [] def rk4(x0, y0, f): ds = 0.01 stotal = 0 xi = x0 yi = y0 xb, yb = self.blank_pos(xi, yi) xf_traj = [] yf_traj = [] while check(xi, yi): xf_traj.append(xi) yf_traj.append(yi) try: k1x, k1y = f(xi, yi) k2x, k2y = f(xi + 0.5 * ds * k1x, yi + 0.5 * ds * k1y) k3x, k3y = f(xi + 0.5 * ds * k2x, yi + 0.5 * ds * k2y) k4x, k4y = f(xi + ds * k3x, yi + ds * k3y) except IndexError: break xi += ds * (k1x + 2 * k2x + 2 * k3x + k4x) / 6.0 yi += ds * (k1y + 2 * k2y + 2 * k3y + k4y) / 6.0 if not check(xi, yi): break stotal += ds new_xb, new_yb = self.blank_pos(xi, yi) if new_xb != xb or new_yb != yb: if self.blank[new_yb, new_xb] == 0: self.blank[new_yb, new_xb] = 1 xb_changes.append(new_xb) yb_changes.append(new_yb) xb = new_xb yb = new_yb else: break if stotal > 2: break return stotal, xf_traj, yf_traj sf, xf_traj, yf_traj = rk4(x0, y0, f) sb, xb_traj, yb_traj = rk4(x0, y0, g) stotal = sf + sb x_traj = xb_traj[::-1] + xf_traj[1:] y_traj = yb_traj[::-1] + yf_traj[1:] if len(x_traj) < 1: return None if stotal > 0.2: initxb, inityb = self.blank_pos(x0, y0) self.blank[inityb, initxb] = 1 return x_traj, y_traj else: for xb, yb in zip(xb_changes, yb_changes): self.blank[yb, xb] = 0 return None def traj(self, xb, yb): """ Integrate trajectories :param (int) xb: results of passing xi through self.blank_pos :param (int) xy: results of passing yi through self.blank_pos Calculate each trajectory based on rk4 integrate method. """ if xb < 0 or xb >= self.density or yb < 0 or yb >= self.density: return if self.blank[yb, xb] == 0: t = self.rk4_integrate(xb * self.spacing_x, yb * self.spacing_y) if t is not None: self.trajectories.append(t) def get_streamlines(self): """ Get streamlines by building trajectory set. """ for indent in range(self.density // 2): for xi in range(self.density - 2 * indent): self.traj(xi + indent, indent) self.traj(xi + indent, self.density - 1 - indent) self.traj(indent, xi + indent) self.traj(self.density - 1 - indent, xi + indent) self.st_x = [ np.array(t[0]) * self.delta_x + self.x[0] for t in self.trajectories ] self.st_y = [ np.array(t[1]) * self.delta_y + self.y[0] for t in self.trajectories ] for index in range(len(self.st_x)): self.st_x[index] = self.st_x[index].tolist() self.st_x[index].append(np.nan) for index in range(len(self.st_y)): self.st_y[index] = self.st_y[index].tolist() self.st_y[index].append(np.nan) def get_streamline_arrows(self): """ Makes an arrow for each streamline. Gets angle of streamline at 1/3 mark and creates arrow coordinates based off of user defined angle and arrow_scale. :param (array) st_x: x-values for all streamlines :param (array) st_y: y-values for all streamlines :param (angle in radians) angle: angle of arrowhead. Default = pi/9 :param (float in [0,1]) arrow_scale: value to scale length of arrowhead Default = .09 :rtype (list, list) arrows_x: x-values to create arrowhead and arrows_y: y-values to create arrowhead """ arrow_end_x = np.empty((len(self.st_x))) arrow_end_y = np.empty((len(self.st_y))) arrow_start_x = np.empty((len(self.st_x))) arrow_start_y = np.empty((len(self.st_y))) for index in range(len(self.st_x)): arrow_end_x[index] = self.st_x[index][int(len(self.st_x[index]) / 3)] arrow_start_x[index] = self.st_x[index][ (int(len(self.st_x[index]) / 3)) - 1 ] arrow_end_y[index] = self.st_y[index][int(len(self.st_y[index]) / 3)] arrow_start_y[index] = self.st_y[index][ (int(len(self.st_y[index]) / 3)) - 1 ] dif_x = arrow_end_x - arrow_start_x dif_y = arrow_end_y - arrow_start_y orig_err = np.geterr() np.seterr(divide="ignore", invalid="ignore") streamline_ang = np.arctan(dif_y / dif_x) np.seterr(**orig_err) ang1 = streamline_ang + (self.angle) ang2 = streamline_ang - (self.angle) seg1_x = np.cos(ang1) * self.arrow_scale seg1_y = np.sin(ang1) * self.arrow_scale seg2_x = np.cos(ang2) * self.arrow_scale seg2_y = np.sin(ang2) * self.arrow_scale point1_x = np.empty((len(dif_x))) point1_y = np.empty((len(dif_y))) point2_x = np.empty((len(dif_x))) point2_y = np.empty((len(dif_y))) for index in range(len(dif_x)): if dif_x[index] >= 0: point1_x[index] = arrow_end_x[index] - seg1_x[index] point1_y[index] = arrow_end_y[index] - seg1_y[index] point2_x[index] = arrow_end_x[index] - seg2_x[index] point2_y[index] = arrow_end_y[index] - seg2_y[index] else: point1_x[index] = arrow_end_x[index] + seg1_x[index] point1_y[index] = arrow_end_y[index] + seg1_y[index] point2_x[index] = arrow_end_x[index] + seg2_x[index] point2_y[index] = arrow_end_y[index] + seg2_y[index] space = np.empty((len(point1_x))) space[:] = np.nan # Combine arrays into array arrows_x = np.array([point1_x, arrow_end_x, point2_x, space]) arrows_x = arrows_x.flatten("F") arrows_x = arrows_x.tolist() # Combine arrays into array arrows_y = np.array([point1_y, arrow_end_y, point2_y, space]) arrows_y = arrows_y.flatten("F") arrows_y = arrows_y.tolist() return arrows_x, arrows_y def sum_streamlines(self): """ Makes all streamlines readable as a single trace. :rtype (list, list): streamline_x: all x values for each streamline combined into single list and streamline_y: all y values for each streamline combined into single list """ streamline_x = sum(self.st_x, []) streamline_y = sum(self.st_y, []) return streamline_x, streamline_y
_Streamline
python
django__django
django/contrib/admin/tests.py
{ "start": 711, "end": 9398 }
class ____(SeleniumTestCase, StaticLiveServerTestCase): available_apps = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", ] def tearDown(self): # Ensure that no CSP violations were logged in the browser. self.assertEqual(self.get_browser_logs(source="security"), []) super().tearDown() def wait_until(self, callback, timeout=10): """ Block the execution of the tests until the specified callback returns a value that is not falsy. This method can be called, for example, after clicking a link or submitting a form. See the other public methods that call this function for more details. """ from selenium.webdriver.support.wait import WebDriverWait WebDriverWait(self.selenium, timeout).until(callback) def wait_for_and_switch_to_popup(self, num_windows=2, timeout=10): """ Block until `num_windows` are present and are ready (usually 2, but can be overridden in the case of pop-ups opening other pop-ups). Switch the current window to the new pop-up. """ self.wait_until(lambda d: len(d.window_handles) == num_windows, timeout) self.selenium.switch_to.window(self.selenium.window_handles[-1]) self.wait_page_ready() def wait_for(self, css_selector, timeout=10): """ Block until a CSS selector is found on the page. """ from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as ec self.wait_until( ec.presence_of_element_located((By.CSS_SELECTOR, css_selector)), timeout ) def wait_for_text(self, css_selector, text, timeout=10): """ Block until the text is found in the CSS selector. """ from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as ec self.wait_until( ec.text_to_be_present_in_element((By.CSS_SELECTOR, css_selector), text), timeout, ) def wait_for_value(self, css_selector, text, timeout=10): """ Block until the value is found in the CSS selector. """ from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as ec self.wait_until( ec.text_to_be_present_in_element_value( (By.CSS_SELECTOR, css_selector), text ), timeout, ) def wait_until_visible(self, css_selector, timeout=10): """ Block until the element described by the CSS selector is visible. """ from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as ec self.wait_until( ec.visibility_of_element_located((By.CSS_SELECTOR, css_selector)), timeout ) def wait_until_invisible(self, css_selector, timeout=10): """ Block until the element described by the CSS selector is invisible. """ from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as ec self.wait_until( ec.invisibility_of_element_located((By.CSS_SELECTOR, css_selector)), timeout ) def wait_page_ready(self, timeout=10): """ Block until the page is ready. """ self.wait_until( lambda driver: driver.execute_script("return document.readyState;") == "complete", timeout, ) @contextmanager def wait_page_loaded(self, timeout=10): """ Block until a new page has loaded and is ready. """ from selenium.common.exceptions import WebDriverException from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as ec old_page = self.selenium.find_element(By.TAG_NAME, "html") yield # Wait for the next page to be loaded try: self.wait_until(ec.staleness_of(old_page), timeout=timeout) except WebDriverException: # Issue in version 113+ of Chrome driver where a WebDriverException # error is raised rather than a StaleElementReferenceException. # See: https://issues.chromium.org/issues/42323468 pass self.wait_page_ready(timeout=timeout) def trigger_resize(self): width = self.selenium.get_window_size()["width"] height = self.selenium.get_window_size()["height"] self.selenium.set_window_size(width + 1, height) self.wait_page_ready() self.selenium.set_window_size(width, height) self.wait_page_ready() def admin_login(self, username, password, login_url="/admin/"): """ Log in to the admin. """ from selenium.webdriver.common.by import By self.selenium.get("%s%s" % (self.live_server_url, login_url)) username_input = self.selenium.find_element(By.NAME, "username") username_input.send_keys(username) password_input = self.selenium.find_element(By.NAME, "password") password_input.send_keys(password) login_text = _("Log in") with self.wait_page_loaded(): self.selenium.find_element( By.XPATH, '//input[@value="%s"]' % login_text ).click() def select_option(self, selector, value): """ Select the <OPTION> with the value `value` inside the <SELECT> widget identified by the CSS selector `selector`. """ from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import Select select = Select(self.selenium.find_element(By.CSS_SELECTOR, selector)) select.select_by_value(value) def deselect_option(self, selector, value): """ Deselect the <OPTION> with the value `value` inside the <SELECT> widget identified by the CSS selector `selector`. """ from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import Select select = Select(self.selenium.find_element(By.CSS_SELECTOR, selector)) select.deselect_by_value(value) def assertCountSeleniumElements(self, selector, count, root_element=None): """ Assert number of matches for a CSS selector. `root_element` allow restriction to a pre-selected node. """ from selenium.webdriver.common.by import By root_element = root_element or self.selenium self.assertEqual( len(root_element.find_elements(By.CSS_SELECTOR, selector)), count ) def _assertOptionsValues(self, options_selector, values): from selenium.webdriver.common.by import By if values: options = self.selenium.find_elements(By.CSS_SELECTOR, options_selector) actual_values = [] for option in options: actual_values.append(option.get_attribute("value")) self.assertEqual(values, actual_values) else: # Prevent the `find_elements(By.CSS_SELECTOR, …)` call from # blocking if the selector doesn't match any options as we expect # it to be the case. with self.disable_implicit_wait(): self.wait_until( lambda driver: not driver.find_elements( By.CSS_SELECTOR, options_selector ) ) def assertSelectOptions(self, selector, values): """ Assert that the <SELECT> widget identified by `selector` has the options with the given `values`. """ self._assertOptionsValues("%s > option" % selector, values) def assertSelectedOptions(self, selector, values): """ Assert that the <SELECT> widget identified by `selector` has the selected options with the given `values`. """ self._assertOptionsValues("%s > option:checked" % selector, values) def is_disabled(self, selector): """ Return True if the element identified by `selector` has the `disabled` attribute. """ from selenium.webdriver.common.by import By return ( self.selenium.find_element(By.CSS_SELECTOR, selector).get_attribute( "disabled" ) == "true" )
AdminSeleniumTestCase
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/test_cloud_base.py
{ "start": 1056, "end": 1352 }
class ____(GoogleCloudBaseOperator): def __init__( self, retry: Retry | _MethodDefault = DEFAULT, config: dict | None = None, **kwargs, ) -> None: super().__init__(**kwargs) self.retry = retry self.config = config
GoogleSampleOperator
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 218912, "end": 219224 }
class ____(sgqlc.types.Type): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("column", "line") column = sgqlc.types.Field(Int, graphql_name="column") line = sgqlc.types.Field(sgqlc.types.non_null(Int), graphql_name="line")
CheckAnnotationPosition
python
astropy__astropy
astropy/io/votable/tree.py
{ "start": 15309, "end": 16481 }
class ____(SimpleElement): """ A base class for simple elements, such as FIELD, PARAM and INFO that don't require any special parsing or outputting machinery. """ def __init__(self): SimpleElement.__init__(self) self._content = None def parse(self, iterator, config): for start, tag, data, pos in iterator: if start and tag != self._element_name: self._add_unknown_tag(iterator, tag, data, config, pos) elif tag == self._element_name: if data: self.content = data break return self def to_xml(self, w, **kwargs): w.element( self._element_name, self._content, attrib=w.object_attrs(self, self._attr_list), ) @property def content(self): """The content of the element.""" return self._content @content.setter def content(self, content): check_string(content, "content", self._config, self._pos) self._content = content @content.deleter def content(self): self._content = None
SimpleElementWithContent
python
apache__airflow
providers/apache/beam/src/airflow/providers/apache/beam/operators/beam.py
{ "start": 2781, "end": 6948 }
class ____(metaclass=ABCMeta): """ Helper class to store common, Dataflow specific logic for both. :class:`~airflow.providers.apache.beam.operators.beam.BeamRunPythonPipelineOperator`, :class:`~airflow.providers.apache.beam.operators.beam.BeamRunJavaPipelineOperator` and :class:`~airflow.providers.apache.beam.operators.beam.BeamRunGoPipelineOperator`. """ dataflow_hook: DataflowHook | None dataflow_config: DataflowConfiguration gcp_conn_id: str dataflow_support_impersonation: bool = True def __init__(self): if not GOOGLE_PROVIDER: raise AirflowOptionalProviderFeatureException( "Failed to import apache-airflow-google-provider. To use the dataflow service please install " "the appropriate version of the google provider." ) def _set_dataflow( self, pipeline_options: dict, job_name_variable_key: str | None = None, ) -> tuple[str, dict, Callable[[str], None], Callable[[], bool]]: self.dataflow_hook = self.__set_dataflow_hook() self.dataflow_config.project_id = self.dataflow_config.project_id or self.dataflow_hook.project_id dataflow_job_name = self.__get_dataflow_job_name() pipeline_options = self.__get_dataflow_pipeline_options( pipeline_options, dataflow_job_name, job_name_variable_key ) process_line_callback = self.__get_dataflow_process_callback() is_dataflow_job_id_exist_callback = self.__is_dataflow_job_id_exist_callback() return dataflow_job_name, pipeline_options, process_line_callback, is_dataflow_job_id_exist_callback def __set_dataflow_hook(self) -> DataflowHook: self.dataflow_hook = DataflowHook( gcp_conn_id=self.dataflow_config.gcp_conn_id or self.gcp_conn_id, poll_sleep=self.dataflow_config.poll_sleep, impersonation_chain=self.dataflow_config.impersonation_chain, drain_pipeline=self.dataflow_config.drain_pipeline, cancel_timeout=self.dataflow_config.cancel_timeout, wait_until_finished=self.dataflow_config.wait_until_finished, ) return self.dataflow_hook def __get_dataflow_job_name(self) -> str: return DataflowHook.build_dataflow_job_name( self.dataflow_config.job_name, # type: ignore self.dataflow_config.append_job_name, ) def __get_dataflow_pipeline_options( self, pipeline_options: dict, job_name: str, job_name_key: str | None = None ) -> dict: pipeline_options = copy.deepcopy(pipeline_options) if job_name_key is not None: pipeline_options[job_name_key] = job_name if self.dataflow_config.service_account: pipeline_options["serviceAccount"] = self.dataflow_config.service_account if self.dataflow_support_impersonation and self.dataflow_config.impersonation_chain: if isinstance(self.dataflow_config.impersonation_chain, list): pipeline_options["impersonateServiceAccount"] = ",".join( self.dataflow_config.impersonation_chain ) else: pipeline_options["impersonateServiceAccount"] = self.dataflow_config.impersonation_chain pipeline_options["project"] = self.dataflow_config.project_id pipeline_options["region"] = self.dataflow_config.location pipeline_options.setdefault("labels", {}).update( {"airflow-version": "v" + version.replace(".", "-").replace("+", "-")} ) return pipeline_options def __get_dataflow_process_callback(self) -> Callable[[str], None]: def set_current_dataflow_job_id(job_id): self.dataflow_job_id = job_id return process_line_and_extract_dataflow_job_id_callback( on_new_job_id_callback=set_current_dataflow_job_id ) def __is_dataflow_job_id_exist_callback(self) -> Callable[[], bool]: def is_dataflow_job_id_exist() -> bool: return True if self.dataflow_job_id else False return is_dataflow_job_id_exist
BeamDataflowMixin
python
numba__numba
numba/cuda/tests/cudadrv/test_nvvm_driver.py
{ "start": 5857, "end": 7252 }
class ____(unittest.TestCase): def test_libdevice_load(self): # Test that constructing LibDevice gives a bitcode file libdevice = LibDevice() self.assertEqual(libdevice.bc[:4], b'BC\xc0\xde') nvvmir_generic = '''\ target triple="nvptx64-nvidia-cuda" target datalayout = "{data_layout}" define i32 @ave(i32 %a, i32 %b) {{ entry: %add = add nsw i32 %a, %b %div = sdiv i32 %add, 2 ret i32 %div }} define void @simple(i32* %data) {{ entry: %0 = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() %1 = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x() %mul = mul i32 %0, %1 %2 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x() %add = add i32 %mul, %2 %call = call i32 @ave(i32 %add, i32 %add) %idxprom = sext i32 %add to i64 %arrayidx = getelementptr inbounds i32, i32* %data, i64 %idxprom store i32 %call, i32* %arrayidx, align 4 ret void }} declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() nounwind readnone !nvvmir.version = !{{!1}} !1 = !{{i32 {v[0]}, i32 {v[1]}, i32 {v[2]}, i32 {v[3]}}} !nvvm.annotations = !{{!2}} !2 = !{{void (i32*)* @simple, !"kernel", i32 1}} @"llvm.used" = appending global [1 x i8*] [i8* bitcast (void (i32*)* @simple to i8*)], section "llvm.metadata" ''' # noqa: E501 if __name__ == '__main__': unittest.main()
TestLibDevice
python
ray-project__ray
python/ray/train/v2/_internal/state/schema.py
{ "start": 2521, "end": 3691 }
class ____(BaseModel): """Metadata about a Ray Train worker.""" world_rank: int = Field( description="The global rank of the worker in the training cluster." ) local_rank: int = Field(description="The local rank of the worker on its node.") node_rank: int = Field(description="The rank of the worker's node in the cluster.") actor_id: str = Field(description="The unique ID of the worker's actor.") node_id: str = Field( description="The unique ID of the node where the worker is running." ) node_ip: str = Field( description="The IP address of the node where the worker is running." ) pid: int = Field(description="The process ID of the worker.") gpu_ids: List[int] = Field(description="A list of GPU IDs allocated to the worker.") status: Optional[ActorStatus] = Field( description="The current status of the worker actor." ) resources: TrainResources = Field( description="The resources allocated to this Train worker." ) log_file_path: Optional[str] = Field( description="The path to the log file for the Train worker." ) @DeveloperAPI
TrainWorker
python
aio-libs__aiohttp
aiohttp/web_urldispatcher.py
{ "start": 7187, "end": 8282 }
class ____(UrlMappingMatchInfo): __slots__ = ("_exception",) def __init__(self, http_exception: HTTPException) -> None: self._exception = http_exception super().__init__({}, SystemRoute(self._exception)) @property def http_exception(self) -> HTTPException: return self._exception def __repr__(self) -> str: return f"<MatchInfoError {self._exception.status}: {self._exception.reason}>" async def _default_expect_handler(request: Request) -> None: """Default handler for Expect header. Just send "100 Continue" to client. raise HTTPExpectationFailed if value of header is not "100-continue" """ expect = request.headers.get(hdrs.EXPECT, "") if request.version == HttpVersion11: if expect.lower() == "100-continue": await request.writer.write(b"HTTP/1.1 100 Continue\r\n\r\n") # Reset output_size as we haven't started the main body yet. request.writer.output_size = 0 else: raise HTTPExpectationFailed(text="Unknown Expect: %s" % expect)
MatchInfoError
python
matplotlib__matplotlib
galleries/examples/event_handling/poly_editor.py
{ "start": 1032, "end": 6597 }
class ____: """ A polygon editor. Key-bindings 't' toggle vertex markers on and off. When vertex markers are on, you can move them, delete them 'd' delete the vertex under point 'i' insert a vertex at point. You must be within epsilon of the line connecting two existing vertices """ showverts = True epsilon = 5 # max pixel distance to count as a vertex hit def __init__(self, ax, poly): if poly.figure is None: raise RuntimeError('You must first add the polygon to a figure ' 'or canvas before defining the interactor') self.ax = ax canvas = poly.figure.canvas self.poly = poly x, y = zip(*self.poly.xy) self.line = Line2D(x, y, marker='o', markerfacecolor='r', animated=True) self.ax.add_line(self.line) self.cid = self.poly.add_callback(self.poly_changed) self._ind = None # the active vert canvas.mpl_connect('draw_event', self.on_draw) canvas.mpl_connect('button_press_event', self.on_button_press) canvas.mpl_connect('key_press_event', self.on_key_press) canvas.mpl_connect('button_release_event', self.on_button_release) canvas.mpl_connect('motion_notify_event', self.on_mouse_move) self.canvas = canvas def on_draw(self, event): self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.ax.draw_artist(self.poly) self.ax.draw_artist(self.line) # do not need to blit here, this will fire before the screen is # updated def poly_changed(self, poly): """This method is called whenever the pathpatch object is called.""" # only copy the artist props to the line (except visibility) vis = self.line.get_visible() Artist.update_from(self.line, poly) self.line.set_visible(vis) # don't use the poly visibility state def get_ind_under_point(self, event): """ Return the index of the point closest to the event position or *None* if no point is within ``self.epsilon`` to the event position. """ # display coords xy = np.asarray(self.poly.xy) xyt = self.poly.get_transform().transform(xy) xt, yt = xyt[:, 0], xyt[:, 1] d = np.hypot(xt - event.x, yt - event.y) indseq, = np.nonzero(d == d.min()) ind = indseq[0] if d[ind] >= self.epsilon: ind = None return ind def on_button_press(self, event): """Callback for mouse button presses.""" if not self.showverts: return if event.inaxes is None: return if event.button != 1: return self._ind = self.get_ind_under_point(event) def on_button_release(self, event): """Callback for mouse button releases.""" if not self.showverts: return if event.button != 1: return self._ind = None def on_key_press(self, event): """Callback for key presses.""" if not event.inaxes: return if event.key == 't': self.showverts = not self.showverts self.line.set_visible(self.showverts) if not self.showverts: self._ind = None elif event.key == 'd': ind = self.get_ind_under_point(event) if ind is not None: self.poly.xy = np.delete(self.poly.xy, ind, axis=0) self.line.set_data(zip(*self.poly.xy)) elif event.key == 'i': xys = self.poly.get_transform().transform(self.poly.xy) p = event.x, event.y # display coords for i in range(len(xys) - 1): s0 = xys[i] s1 = xys[i + 1] d = dist_point_to_segment(p, s0, s1) if d <= self.epsilon: self.poly.xy = np.insert( self.poly.xy, i+1, [event.xdata, event.ydata], axis=0) self.line.set_data(zip(*self.poly.xy)) break if self.line.stale: self.canvas.draw_idle() def on_mouse_move(self, event): """Callback for mouse movements.""" if not self.showverts: return if self._ind is None: return if event.inaxes is None: return if event.button != 1: return x, y = event.xdata, event.ydata self.poly.xy[self._ind] = x, y if self._ind == 0: self.poly.xy[-1] = x, y elif self._ind == len(self.poly.xy) - 1: self.poly.xy[0] = x, y self.line.set_data(zip(*self.poly.xy)) self.canvas.restore_region(self.background) self.ax.draw_artist(self.poly) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) if __name__ == '__main__': import matplotlib.pyplot as plt from matplotlib.patches import Polygon theta = np.arange(0, 2*np.pi, 0.1) r = 1.5 xs = r * np.cos(theta) ys = r * np.sin(theta) poly = Polygon(np.column_stack([xs, ys]), animated=True) fig, ax = plt.subplots() ax.add_patch(poly) p = PolygonInteractor(ax, poly) ax.set_title('Click and drag a point to move it') ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) plt.show()
PolygonInteractor
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/mro4.py
{ "start": 424, "end": 479 }
class ____(Generic[T1, T2], Foo1[T1], Foo2[T2]): ...
Bar1
python
PyCQA__pylint
tests/functional/a/arguments_differ.py
{ "start": 667, "end": 835 }
class ____(Classmethod): @staticmethod def func(): # [arguments-differ] pass @classmethod def func1(cls): return cls()
ClassmethodChild
python
django__django
django/db/models/fields/__init__.py
{ "start": 69874, "end": 72278 }
class ____(Field): description = _("File path") def __init__( self, verbose_name=None, name=None, path="", match=None, recursive=False, allow_files=True, allow_folders=False, **kwargs, ): self.path, self.match, self.recursive = path, match, recursive self.allow_files, self.allow_folders = allow_files, allow_folders kwargs.setdefault("max_length", 100) super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_allowing_files_or_folders(**kwargs), ] def _check_allowing_files_or_folders(self, **kwargs): if not self.allow_files and not self.allow_folders: return [ checks.Error( "FilePathFields must have either 'allow_files' or 'allow_folders' " "set to True.", obj=self, id="fields.E140", ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.path != "": kwargs["path"] = self.path if self.match is not None: kwargs["match"] = self.match if self.recursive is not False: kwargs["recursive"] = self.recursive if self.allow_files is not True: kwargs["allow_files"] = self.allow_files if self.allow_folders is not False: kwargs["allow_folders"] = self.allow_folders if kwargs.get("max_length") == 100: del kwargs["max_length"] return name, path, args, kwargs def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return str(value) def formfield(self, **kwargs): return super().formfield( **{ "path": self.path() if callable(self.path) else self.path, "match": self.match, "recursive": self.recursive, "form_class": forms.FilePathField, "allow_files": self.allow_files, "allow_folders": self.allow_folders, **kwargs, } ) def get_internal_type(self): return "FilePathField"
FilePathField
python
doocs__leetcode
solution/2400-2499/2496.Maximum Value of a String in an Array/Solution2.py
{ "start": 0, "end": 314 }
class ____: def maximumValue(self, strs: List[str]) -> int: def f(s: str) -> int: x = 0 for c in s: if c.isalpha(): return len(s) x = x * 10 + ord(c) - ord("0") return x return max(f(s) for s in strs)
Solution
python
langchain-ai__langchain
libs/core/langchain_core/runnables/graph_png.py
{ "start": 321, "end": 6473 }
class ____: """Helper class to draw a state graph into a PNG file. It requires `graphviz` and `pygraphviz` to be installed. Example: ```python drawer = PngDrawer() drawer.draw(state_graph, "graph.png") ``` """ def __init__( self, fontname: str | None = None, labels: LabelsDict | None = None ) -> None: """Initializes the PNG drawer. Args: fontname: The font to use for the labels. Defaults to "arial". labels: A dictionary of label overrides. The dictionary should have the following format: { "nodes": { "node1": "CustomLabel1", "node2": "CustomLabel2", "__end__": "End Node" }, "edges": { "continue": "ContinueLabel", "end": "EndLabel" } } The keys are the original labels, and the values are the new labels. """ self.fontname = fontname or "arial" self.labels = labels or LabelsDict(nodes={}, edges={}) def get_node_label(self, label: str) -> str: """Returns the label to use for a node. Args: label: The original label. Returns: The new label. """ label = self.labels.get("nodes", {}).get(label, label) return f"<<B>{label}</B>>" def get_edge_label(self, label: str) -> str: """Returns the label to use for an edge. Args: label: The original label. Returns: The new label. """ label = self.labels.get("edges", {}).get(label, label) return f"<<U>{label}</U>>" def add_node(self, viz: Any, node: str) -> None: """Adds a node to the graph. Args: viz: The graphviz object. node: The node to add. """ viz.add_node( node, label=self.get_node_label(node), style="filled", fillcolor="yellow", fontsize=15, fontname=self.fontname, ) def add_edge( self, viz: Any, source: str, target: str, label: str | None = None, conditional: bool = False, # noqa: FBT001,FBT002 ) -> None: """Adds an edge to the graph. Args: viz: The graphviz object. source: The source node. target: The target node. label: The label for the edge. conditional: Whether the edge is conditional. """ viz.add_edge( source, target, label=self.get_edge_label(label) if label else "", fontsize=12, fontname=self.fontname, style="dotted" if conditional else "solid", ) def draw(self, graph: Graph, output_path: str | None = None) -> bytes | None: """Draw the given state graph into a PNG file. Requires `graphviz` and `pygraphviz` to be installed. Args: graph: The graph to draw output_path: The path to save the PNG. If `None`, PNG bytes are returned. Raises: ImportError: If `pygraphviz` is not installed. Returns: The PNG bytes if `output_path` is None, else None. """ if not _HAS_PYGRAPHVIZ: msg = "Install pygraphviz to draw graphs: `pip install pygraphviz`." raise ImportError(msg) # Create a directed graph viz = pgv.AGraph(directed=True, nodesep=0.9, ranksep=1.0) # Add nodes, conditional edges, and edges to the graph self.add_nodes(viz, graph) self.add_edges(viz, graph) self.add_subgraph(viz, [node.split(":") for node in graph.nodes]) # Update entrypoint and END styles self.update_styles(viz, graph) # Save the graph as PNG try: return viz.draw(output_path, format="png", prog="dot") finally: viz.close() def add_nodes(self, viz: Any, graph: Graph) -> None: """Add nodes to the graph. Args: viz: The graphviz object. graph: The graph to draw. """ for node in graph.nodes: self.add_node(viz, node) def add_subgraph( self, viz: Any, nodes: list[list[str]], parent_prefix: list[str] | None = None, ) -> None: """Add subgraphs to the graph. Args: viz: The graphviz object. nodes: The nodes to add. parent_prefix: The prefix of the parent subgraph. """ for prefix, grouped in groupby( [node[:] for node in sorted(nodes)], key=lambda x: x.pop(0), ): current_prefix = (parent_prefix or []) + [prefix] grouped_nodes = list(grouped) if len(grouped_nodes) > 1: subgraph = viz.add_subgraph( [":".join(current_prefix + node) for node in grouped_nodes], name="cluster_" + ":".join(current_prefix), ) self.add_subgraph(subgraph, grouped_nodes, current_prefix) def add_edges(self, viz: Any, graph: Graph) -> None: """Add edges to the graph. Args: viz: The graphviz object. graph: The graph to draw. """ for start, end, data, cond in graph.edges: self.add_edge( viz, start, end, str(data) if data is not None else None, cond ) def update_styles(self, viz: Any, graph: Graph) -> None: """Update the styles of the entrypoint and END nodes. Args: viz: The graphviz object. graph: The graph to draw. """ if first := graph.first_node(): viz.get_node(first.id).attr.update(fillcolor="lightblue") if last := graph.last_node(): viz.get_node(last.id).attr.update(fillcolor="orange")
PngDrawer
python
viewflow__viewflow
tests/test_this_object.py
{ "start": 710, "end": 1464 }
class ____(TestCase): def test_this_refs_data(self): self.assertEqual(this.some_name.name, 'some_name') self.assertEqual(this.another_some_name.name, 'another_some_name') def test_this_ref_resolve(self): review = Review() approve = this.approve.resolve(review) self.assertEqual(approve, review.approve) self.assertEqual(Review.approver, this.approve.owner.resolve(review)) self.assertEqual(this.approve.call.resolve(review)(), 'approve') publish = this.publish.resolve(review) self.assertEqual(publish, review.publish) self.assertEqual(Review.publisher, this.publish.owner.resolve(review)) self.assertEqual(this.publish.call.resolve(review)(), 'publish')
Test
python
hynek__structlog
src/structlog/twisted.py
{ "start": 8500, "end": 10118 }
class ____: """ Adapt an ``event_dict`` to Twisted logging system. Particularly, make a wrapped `twisted.python.log.err <https://docs.twisted.org/en/stable/api/twisted.python.log.html#err>`_ behave as expected. Args: dictRenderer: Renderer that is used for the actual log message. Please note that structlog comes with a dedicated `JSONRenderer`. **Must** be the last processor in the chain and requires a *dictRenderer* for the actual formatting as an constructor argument in order to be able to fully support the original behaviors of ``log.msg()`` and ``log.err()``. """ def __init__( self, dictRenderer: ( Callable[[WrappedLogger, str, EventDict], str] | None ) = None, ) -> None: self._dictRenderer = dictRenderer or _BUILTIN_DEFAULT_PROCESSORS[-1] def __call__( self, logger: WrappedLogger, name: str, eventDict: EventDict ) -> Any: if name == "err": # This aspires to handle the following cases correctly: # 1. log.err(failure, _why='event', **kw) # 2. log.err('event', **kw) # 3. log.err(_stuff=failure, _why='event', **kw) _stuff, _why, eventDict = _extractStuffAndWhy(eventDict) eventDict["event"] = _why return ( (), { "_stuff": _stuff, "_why": self._dictRenderer(logger, name, eventDict), }, ) return self._dictRenderer(logger, name, eventDict)
EventAdapter
python
numpy__numpy
numpy/_core/tests/test_multiarray.py
{ "start": 224447, "end": 243403 }
class ____: """Test tofile, fromfile, tobytes, and fromstring""" def _create_data(self): shape = (2, 4, 3) rand = np.random.random x = rand(shape) + rand(shape).astype(complex) * 1j x[0, :, 1] = [np.nan, np.inf, -np.inf, np.nan] return x @pytest.fixture(params=["string", "path_obj"]) def param_filename(self, request): # This fixtures returns string or path_obj # so that every test doesn't need to have the # paramterize marker. return request.param def test_nofile(self): # this should probably be supported as a file # but for now test for proper errors b = io.BytesIO() assert_raises(OSError, np.fromfile, b, np.uint8, 80) d = np.ones(7) assert_raises(OSError, lambda x: x.tofile(b), d) def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool) y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool) assert_array_equal(v, y) def test_uint64_fromstring(self): d = np.fromstring("9923372036854775807 104783749223640", dtype=np.uint64, sep=' ') e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e) def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=' ') e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e) def test_fromstring_count0(self): d = np.fromstring("1,2", sep=",", dtype=np.int64, count=0) assert d.shape == (0,) def test_empty_files_text(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) with open(tmp_filename, 'w') as f: pass y = np.fromfile(tmp_filename) assert_(y.size == 0, "Array not empty") def test_empty_files_binary(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) with open(tmp_filename, 'wb') as f: pass y = np.fromfile(tmp_filename, sep=" ") assert_(y.size == 0, "Array not empty") def test_roundtrip_file(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() with open(tmp_filename, 'wb') as f: x.tofile(f) # NB. doesn't work with flush+seek, due to use of C stdio with open(tmp_filename, 'rb') as f: y = np.fromfile(f, dtype=x.dtype) assert_array_equal(y, x.flat) def test_roundtrip(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() x.tofile(tmp_filename) y = np.fromfile(tmp_filename, dtype=x.dtype) assert_array_equal(y, x.flat) def test_roundtrip_dump_pathlib(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() p = pathlib.Path(tmp_filename) x.dump(p) y = np.load(p, allow_pickle=True) assert_array_equal(y, x) def test_roundtrip_binary_str(self): x = self._create_data() s = x.tobytes() y = np.frombuffer(s, dtype=x.dtype) assert_array_equal(y, x.flat) s = x.tobytes('F') y = np.frombuffer(s, dtype=x.dtype) assert_array_equal(y, x.flatten('F')) def test_roundtrip_str(self): x = self._create_data() x = x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_equal(x[~nan_mask], y[~nan_mask]) def test_roundtrip_repr(self): x = self._create_data() x = x.real.ravel() s = "@".join(repr(x)[11:-1] for x in x) y = np.fromstring(s, sep="@") assert_array_equal(x, y) def test_unseekable_fromfile(self, tmp_path, param_filename): # gh-6246 tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() x.tofile(tmp_filename) def fail(*args, **kwargs): raise OSError('Can not tell or seek') with open(tmp_filename, 'rb', buffering=0) as f: f.seek = fail f.tell = fail assert_raises(OSError, np.fromfile, f, dtype=x.dtype) def test_io_open_unbuffered_fromfile(self, tmp_path, param_filename): # gh-6632 tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() x.tofile(tmp_filename) with open(tmp_filename, 'rb', buffering=0) as f: y = np.fromfile(f, dtype=x.dtype) assert_array_equal(y, x.flat) def test_largish_file(self, tmp_path, param_filename): # check the fallocate path on files > 16MB tmp_filename = normalize_filename(tmp_path, param_filename) d = np.zeros(4 * 1024 ** 2) d.tofile(tmp_filename) assert_equal(os.path.getsize(tmp_filename), d.nbytes) assert_array_equal(d, np.fromfile(tmp_filename)) # check offset with open(tmp_filename, "r+b") as f: f.seek(d.nbytes) d.tofile(f) assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2) # check append mode (gh-8329) open(tmp_filename, "w").close() # delete file contents with open(tmp_filename, "ab") as f: d.tofile(f) assert_array_equal(d, np.fromfile(tmp_filename)) with open(tmp_filename, "ab") as f: d.tofile(f) assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2) def test_io_open_buffered_fromfile(self, tmp_path, param_filename): # gh-6632 tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() x.tofile(tmp_filename) with open(tmp_filename, 'rb', buffering=-1) as f: y = np.fromfile(f, dtype=x.dtype) assert_array_equal(y, x.flat) def test_file_position_after_fromfile(self, tmp_path, param_filename): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE // 8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE * 8] tmp_filename = normalize_filename(tmp_path, param_filename) for size in sizes: with open(tmp_filename, 'wb') as f: f.seek(size - 1) f.write(b'\0') for mode in ['rb', 'r+b']: err_msg = "%d %s" % (size, mode) with open(tmp_filename, mode) as f: f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() assert_equal(pos, 10, err_msg=err_msg) def test_file_position_after_tofile(self, tmp_path, param_filename): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE // 8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE * 8] tmp_filename = normalize_filename(tmp_path, param_filename) for size in sizes: err_msg = "%d" % (size,) with open(tmp_filename, 'wb') as f: f.seek(size - 1) f.write(b'\0') f.seek(10) f.write(b'12') np.array([0], dtype=np.float64).tofile(f) pos = f.tell() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) with open(tmp_filename, 'r+b') as f: f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() assert_equal(pos, 10, err_msg=err_msg) def test_load_object_array_fromfile(self, tmp_path, param_filename): # gh-12300 tmp_filename = normalize_filename(tmp_path, param_filename) with open(tmp_filename, 'w') as f: # Ensure we have a file with consistent contents pass with open(tmp_filename, 'rb') as f: assert_raises_regex(ValueError, "Cannot read into object array", np.fromfile, f, dtype=object) assert_raises_regex(ValueError, "Cannot read into object array", np.fromfile, tmp_filename, dtype=object) def test_fromfile_offset(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() with open(tmp_filename, 'wb') as f: x.tofile(f) with open(tmp_filename, 'rb') as f: y = np.fromfile(f, dtype=x.dtype, offset=0) assert_array_equal(y, x.flat) with open(tmp_filename, 'rb') as f: count_items = len(x.flat) // 8 offset_items = len(x.flat) // 4 offset_bytes = x.dtype.itemsize * offset_items y = np.fromfile( f, dtype=x.dtype, count=count_items, offset=offset_bytes ) assert_array_equal( y, x.flat[offset_items:offset_items + count_items] ) # subsequent seeks should stack offset_bytes = x.dtype.itemsize z = np.fromfile(f, dtype=x.dtype, offset=offset_bytes) assert_array_equal(z, x.flat[offset_items + count_items + 1:]) with open(tmp_filename, 'wb') as f: x.tofile(f, sep=",") with open(tmp_filename, 'rb') as f: assert_raises_regex( TypeError, "'offset' argument only permitted for binary files", np.fromfile, tmp_filename, dtype=x.dtype, sep=",", offset=1) @pytest.mark.skipif(IS_PYPY, reason="bug in PyPy's PyNumber_AsSsize_t") def test_fromfile_bad_dup(self, tmp_path, param_filename, monkeypatch): def dup_str(fd): return 'abc' def dup_bigint(fd): return 2**68 tmp_filename = normalize_filename(tmp_path, param_filename) x = self._create_data() with open(tmp_filename, 'wb') as f: x.tofile(f) for dup, exc in ((dup_str, TypeError), (dup_bigint, OSError)): monkeypatch.setattr(os, "dup", dup) assert_raises(exc, np.fromfile, f) def _check_from(self, s, value, filename, **kw): if 'sep' not in kw: y = np.frombuffer(s, **kw) else: y = np.fromstring(s, **kw) assert_array_equal(y, value) with open(filename, 'wb') as f: f.write(s) y = np.fromfile(filename, **kw) assert_array_equal(y, value) @pytest.fixture(params=["period", "comma"]) def decimal_sep_localization(self, request): """ Including this fixture in a test will automatically execute it with both types of decimal separator. So:: def test_decimal(decimal_sep_localization): pass is equivalent to the following two tests:: def test_decimal_period_separator(): pass def test_decimal_comma_separator(): with CommaDecimalPointLocale(): pass """ if request.param == "period": yield elif request.param == "comma": with CommaDecimalPointLocale(): yield else: assert False, request.param def test_nan(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b"nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], tmp_filename, sep=' ') def test_inf(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b"inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], tmp_filename, sep=' ') def test_numbers(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b"1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, .3, .3e55, -123133.1231e+133], tmp_filename, sep=' ') def test_binary(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', np.array([1, 2, 3, 4]), tmp_filename, dtype='<f4') def test_string(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from(b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, sep=',') def test_counted_string(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, count=4, sep=',') self._check_from( b'1,2,3,4', [1., 2., 3.], tmp_filename, count=3, sep=',') self._check_from( b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, count=-1, sep=',') def test_string_with_ws(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b'1 2 3 4 ', [1, 2, 3, 4], tmp_filename, dtype=int, sep=' ') def test_counted_string_with_ws(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b'1 2 3 4 ', [1, 2, 3], tmp_filename, count=3, dtype=int, sep=' ') def test_ascii(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b'1 , 2 , 3 , 4', [1., 2., 3., 4.], tmp_filename, sep=',') self._check_from( b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, dtype=float, sep=',') def test_malformed(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) with assert_raises(ValueError): self._check_from( b'1.234 1,234', [1.234, 1.], tmp_filename, sep=' ') def test_long_sep(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) self._check_from( b'1_x_3_x_4_x_5', [1, 3, 4, 5], tmp_filename, sep='_x_') def test_dtype(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from(b'1,2,3,4', v, tmp_filename, sep=',', dtype=np.int_) def test_dtype_bool(self, tmp_path, param_filename): # can't use _check_from because fromstring can't handle True/False tmp_filename = normalize_filename(tmp_path, param_filename) v = np.array([True, False, True, False], dtype=np.bool) s = b'1,0,-2.3,0' with open(tmp_filename, 'wb') as f: f.write(s) y = np.fromfile(tmp_filename, sep=',', dtype=np.bool) assert_(y.dtype == '?') assert_array_equal(y, v) def test_tofile_sep(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) x = np.array([1.51, 2, 3.51, 4], dtype=float) with open(tmp_filename, 'w') as f: x.tofile(f, sep=',') with open(tmp_filename, 'r') as f: s = f.read() #assert_equal(s, '1.51,2.0,3.51,4.0') y = np.array([float(p) for p in s.split(',')]) assert_array_equal(x, y) def test_tofile_format(self, tmp_path, param_filename, decimal_sep_localization): tmp_filename = normalize_filename(tmp_path, param_filename) x = np.array([1.51, 2, 3.51, 4], dtype=float) with open(tmp_filename, 'w') as f: x.tofile(f, sep=',', format='%.2f') with open(tmp_filename, 'r') as f: s = f.read() assert_equal(s, '1.51,2.00,3.51,4.00') def test_tofile_cleanup(self, tmp_path, param_filename): tmp_filename = normalize_filename(tmp_path, param_filename) x = np.zeros((10), dtype=object) with open(tmp_filename, 'wb') as f: assert_raises(OSError, lambda: x.tofile(f, sep='')) # Dup-ed file handle should be closed or remove will fail on Windows OS os.remove(tmp_filename) # Also make sure that we close the Python handle assert_raises(OSError, lambda: x.tofile(tmp_filename)) os.remove(tmp_filename) def test_fromfile_subarray_binary(self, tmp_path, param_filename): # Test subarray dtypes which are absorbed into the shape tmp_filename = normalize_filename(tmp_path, param_filename) x = np.arange(24, dtype="i4").reshape(2, 3, 4) x.tofile(tmp_filename) res = np.fromfile(tmp_filename, dtype="(3,4)i4") assert_array_equal(x, res) x_str = x.tobytes() with pytest.raises(ValueError): # binary fromstring raises np.fromstring(x_str, dtype="(3,4)i4") def test_parsing_subarray_unsupported(self, tmp_path, param_filename): # We currently do not support parsing subarray dtypes tmp_filename = normalize_filename(tmp_path, param_filename) data = "12,42,13," * 50 with pytest.raises(ValueError): expected = np.fromstring(data, dtype="(3,)i", sep=",") with open(tmp_filename, "w") as f: f.write(data) with pytest.raises(ValueError): np.fromfile(tmp_filename, dtype="(3,)i", sep=",") def test_read_shorter_than_count_subarray(self, tmp_path, param_filename): # Test that requesting more values does not cause any problems # in conjunction with subarray dimensions being absorbed into the # array dimension. tmp_filename = normalize_filename(tmp_path, param_filename) expected = np.arange(511 * 10, dtype="i").reshape(-1, 10) binary = expected.tobytes() with pytest.raises(ValueError): np.fromstring(binary, dtype="(10,)i", count=10000) expected.tofile(tmp_filename) res = np.fromfile(tmp_filename, dtype="(10,)i", count=10000) assert_array_equal(res, expected)
TestIO
python
PrefectHQ__prefect
src/prefect/server/utilities/messaging/__init__.py
{ "start": 2020, "end": 3071 }
class ____(Publisher): messages: list[CapturedMessage] = [] deduplicate_by: Optional[str] def __init__( self, topic: str, cache: Optional[Cache] = None, deduplicate_by: Optional[str] = None, ) -> None: self.topic = topic self.cache: Cache = cache or create_cache() self.deduplicate_by = deduplicate_by async def __aenter__(self) -> Self: return self async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: pass async def publish_data(self, data: bytes, attributes: Mapping[str, str]) -> None: to_publish = [CapturedMessage(data, attributes)] if self.deduplicate_by: to_publish = await self.cache.without_duplicates( self.deduplicate_by, to_publish ) self.messages.extend(to_publish) MessageHandler = Callable[[Message], Awaitable[None]]
CapturingPublisher
python
catalyst-team__catalyst
catalyst/contrib/datasets/imagewoof.py
{ "start": 928, "end": 1446 }
class ____(ImageClassificationDataset): """ `Imagewoof <https://github.com/fastai/imagenette#imagewoof>`_ Dataset with images resized so that the shortest size is 320 px. .. note:: catalyst[cv] required for this dataset. """ name = "imagewoof2-320" resources = [ ( "https://s3.amazonaws.com/fast-ai-imageclas/imagewoof2-320.tgz", "0f46d997ec2264e97609196c95897a44", ) ] __all__ = ["Imagewoof", "Imagewoof160", "Imagewoof320"]
Imagewoof320
python
pytorch__pytorch
test/distributed/test_c10d_spawn.py
{ "start": 806, "end": 3033 }
class ____: world_size = 2 def _test_multiprocess(self, f, shared_tensors, init_pg, n_output): ws = self.world_size # file store will delete the test file on destruction file = tempfile.NamedTemporaryFile(delete=False) ctx = mp.get_context("spawn") c2p = ctx.Queue(2) p2c = ctx.Queue(2) ps = [] for i in range(ws): p = ctx.Process( target=f, args=(i, file.name, shared_tensors, ws, init_pg, c2p, p2c) ) p.start() ps.append(p) for _ in range(ws * n_output): pid, expected, result = c2p.get() self.assertEqual( expected, result, msg=f"Expect rank {pid} to receive tensor {expected} but got {result}.", ) for _ in range(ws): p2c.put(0) for p in ps: p.join(2) # Why classmethod? multiprocessing cannot pickle TestCase subclass when in # spawn mode. See https://bugs.python.org/issue33884. @classmethod def _test_broadcast_process( cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c ): pg = init_pg(rank, filename, world_size) xs = [shared_tensors[rank]] pg.broadcast(xs).wait() c2p.put((rank, torch.zeros(2, 2), xs[0].to("cpu"))) p2c.get() @classmethod def _test_allreduce_process( cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c ): pg = init_pg(rank, filename, world_size) xs = [shared_tensors[rank]] pg.allreduce(xs, op=c10d.ReduceOp.SUM).wait() c2p.put((rank, torch.ones(2, 2) * 2, xs[0].to("cpu"))) p2c.get() @classmethod def _test_allgather_process( cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c ): pg = init_pg(rank, filename, world_size) xs = [shared_tensors[rank]] ys = [[torch.zeros_like(xs[0]) for i in range(world_size)]] pg.allgather(ys, xs).wait() for i in range(world_size): c2p.put((rank, torch.ones(2, 2) * i, ys[0][i].to("cpu"))) p2c.get()
AbstractProcessGroupShareTensorTest
python
huggingface__transformers
src/transformers/models/xlm_roberta/modeling_xlm_roberta.py
{ "start": 38032, "end": 39017 }
class ____(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @auto_docstring( custom_intro=""" XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ )
XLMRobertaClassificationHead
python
pytorch__pytorch
test/profiler/test_profiler_tree.py
{ "start": 8565, "end": 48935 }
class ____(TestCase): def assertTreesMatch(self, actual: str, expected: str, allow_failure: bool = False): # Warning: Here be dragons # Different platforms will have subtly different behavior for Python # tracing. Observed differences include: # 1) Windows symbolicates names differently from posix # 2) The profile callback for c_call does not fire for Tensor.__pow__ # on certain platforms. This is not caused by the function tracer, # but by cPython itself. # # The purpose of these unit tests is to ensure that the profiler is # doing reasonable things. When these platform dependent variations occur # simply coerce them into a platform independent form. If you made a # change in the codebase which changes the trace produced, simply use # EXPECTTEST_ACCEPT=1 to update the tests to reflect the new structure. # expecttest will not show the diff view if `len(actual) < len(expected)` if not expecttest.ACCEPT: actual = actual.ljust(len(expected)) self.maxDiff = None replicate = getattr(self, "tree_replicate", None) self.assertIsNotNone( replicate, "Please annotate test with `@ProfilerTree.test`" ) # The profiler should produce deterministic results and should return # to a clean state after each run. As a result, only the first # replicate is allowed to update `expected`. If subsequent runs do not # match it is a bug in the profiler. if replicate: self.assertEqual(actual, expected) else: try: self.assertExpectedInline(actual, expected, skip=1) except AssertionError as e: if allow_failure: self.tree_replicate = None msg = traceback.format_exception_only(type(e), e)[0] print(msg.split("AssertionError:")[-1]) else: raise # TODO: Add logic for CUDA version of test @ProfilerTree.test @unittest.skipIf( torch.cuda.is_available() or torch.xpu.is_available(), "Test not working for CUDA and XPU", ) def test_profiler_experimental_tree(self): t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True) with torch.profiler.profile() as p: z = torch.add(t1, t2) y = torch.ones(1) loss = (y - z) ** 2 loss.backward() self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ aten::add aten::ones aten::empty aten::fill_ aten::sub aten::pow aten::result_type aten::to aten::ones_like aten::empty_like aten::empty_strided aten::fill_ autograd::engine::evaluate_function: PowBackward0 PowBackward0 aten::pow aten::result_type aten::to aten::copy_ aten::mul aten::mul aten::to aten::_to_copy aten::empty_strided aten::copy_ aten::mul autograd::engine::evaluate_function: SubBackward0 SubBackward0 aten::neg autograd::engine::evaluate_function: AddBackward0 AddBackward0 autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::new_empty_strided aten::empty_strided aten::copy_ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::detach detach""", ) # TODO: Add logic for CUDA version of test @ProfilerTree.test @unittest.skipIf( torch.cuda.is_available() or torch.xpu.is_available(), "Test not working for CUDA and XPU", ) def test_profiler_experimental_tree_with_record_function(self): with torch.profiler.profile() as p: with torch.autograd.profiler.record_function("Top level Annotation"): with torch.autograd.profiler.record_function("First Annotation"): x = torch.ones((1,), requires_grad=True) # Check that we correctly handle the case when a user # annotation does not call `__exit__`. _ = torch.autograd.profiler.record_function( "Second Annotation" ).__enter__() y = x + 1 with torch.autograd.profiler.record_function("Third Annotation"): y.backward() # NB: The `aten::zeros` before the record function annotations are due to # `at::cpp_custom_type_hack`. When we switch to `torch::CustomClassHolder` # they will disappear. self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ Top level Annotation First Annotation aten::ones aten::empty aten::fill_ Second Annotation aten::add aten::to aten::_to_copy aten::empty_strided aten::copy_ Third Annotation aten::ones_like aten::empty_like aten::empty_strided aten::fill_ autograd::engine::evaluate_function: AddBackward0 AddBackward0 autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::new_empty_strided aten::empty_strided aten::copy_""", ) # TODO: Add logic for CUDA version of test @ProfilerTree.test @unittest.skipIf( torch.cuda.is_available() or torch.xpu.is_available(), "Test not working for CUDA and XPU", ) def test_profiler_experimental_tree_with_memory(self): t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True) with torch.profiler.profile(profile_memory=True) as p: z = torch.add(t1, t2) y = torch.ones(1) loss = (y - z) ** 2 loss.backward() self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ aten::add [memory] aten::ones aten::empty [memory] aten::fill_ aten::sub [memory] aten::pow aten::result_type aten::to [memory] aten::ones_like aten::empty_like aten::empty_strided [memory] aten::fill_ autograd::engine::evaluate_function: PowBackward0 PowBackward0 aten::pow aten::result_type aten::to [memory] aten::copy_ aten::mul [memory] aten::mul aten::to aten::_to_copy aten::empty_strided [memory] aten::copy_ [memory] [memory] [memory] aten::mul [memory] [memory] [memory] [memory] autograd::engine::evaluate_function: SubBackward0 SubBackward0 aten::neg [memory] [memory] autograd::engine::evaluate_function: AddBackward0 AddBackward0 autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::new_empty_strided aten::empty_strided [memory] aten::copy_ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::detach detach [memory]""", ) @unittest.skip("https://github.com/pytorch/pytorch/issues/83606") @unittest.skipIf( TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite." ) @ProfilerTree.test def test_profiler_experimental_tree_with_memory_and_stack(self): t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True) with torch.profiler.profile(with_stack=True, profile_memory=True) as p: z = torch.add(t1, t2) y = torch.ones(1) loss = torch.pow(y - z, 2) loss.backward() self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ test_profiler_tree.py(...): test_profiler_experimental_tree_with_memory_and_stack torch/profiler/profiler.py(...): __enter__ ... <built-in method add of type object at 0xXXXXXXXXXXXX> aten::add [memory] <built-in method ones of type object at 0xXXXXXXXXXXXX> aten::ones aten::empty [memory] aten::fill_ aten::sub [memory] <built-in method pow of type object at 0xXXXXXXXXXXXX> aten::pow aten::result_type aten::to [memory] torch/_tensor.py(...): backward <built-in function _has_torch_function_unary> torch/autograd/__init__.py(...): backward <built-in method _are_functorch_transforms_active of PyCapsule object at 0xXXXXXXXXXXXX> <built-in function isinstance> <built-in function isinstance> <built-in function len> torch/autograd/__init__.py(...): _tensor_or_tensors_to_tuple torch/autograd/__init__.py(...): _make_grads typing.py(...): inner typing.py(...): __hash__ <built-in function hash> typing.py(...): cast <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in method numel of Tensor object at 0xXXXXXXXXXXXX> <built-in function isinstance> <built-in function isinstance> <built-in method ones_like of type object at 0xXXXXXXXXXXXX> aten::ones_like aten::empty_like aten::empty_strided [memory] aten::fill_ <built-in method append of list object at 0xXXXXXXXXXXXX> torch/autograd/graph.py(...): _engine_run_backward logging/__init__.py(...): getEffectiveLevel <built-in method run_backward of torch._C._EngineBase object at 0xXXXXXXXXXXXX> autograd::engine::evaluate_function: PowBackward0 PowBackward0 aten::pow aten::result_type aten::to [memory] aten::copy_ aten::mul [memory] aten::mul aten::to aten::_to_copy aten::empty_strided [memory] aten::copy_ [memory] [memory] [memory] aten::mul [memory] [memory] [memory] [memory] autograd::engine::evaluate_function: SubBackward0 SubBackward0 aten::neg [memory] [memory] autograd::engine::evaluate_function: AddBackward0 AddBackward0 autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::new_empty_strided aten::empty_strided [memory] aten::copy_ autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::detach detach [memory] torch/profiler/profiler.py(...): __exit__ torch/profiler/profiler.py(...): stop ...""", ) @skipIfTorchDynamo("too slow") @unittest.skipIf( TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite." ) @ProfilerTree.test def test_profiler_experimental_tree_with_stack_and_modules(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.layers = [ torch.nn.ReLU(), torch.nn.Linear(1, 1), torch.nn.ReLU(), ] def forward(self, x: torch.Tensor) -> torch.Tensor: for l in self.layers: x = l(x) return x model = MyModule() with torch.profiler.profile(with_stack=True) as p: for _ in range(2): model(torch.ones((1,))) self.maxDiff = None self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ test_profiler_tree.py(...): test_profiler_experimental_tree_with_stack_and_modules torch/profiler/profiler.py(...): __enter__ ... <built-in method ones of type object at 0xXXXXXXXXXXXX> aten::ones aten::empty aten::fill_ nn.Module: MyModule_0 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> test_profiler_tree.py(...): forward nn.Module: ReLU_0 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> torch/nn/modules/activation.py(...): forward torch/nn/functional.py(...): relu <built-in function _has_torch_function_unary> <built-in method relu of type object at 0xXXXXXXXXXXXX> aten::relu aten::clamp_min nn.Module: Linear_0 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> torch/nn/modules/linear.py(...): forward torch/nn/modules/module.py(...): __getattr__ torch/nn/modules/module.py(...): __getattr__ <built-in function linear> aten::linear aten::view aten::t aten::transpose aten::as_strided aten::addmm aten::expand aten::as_strided aten::copy_ aten::resolve_conj aten::resolve_conj aten::resolve_conj aten::view nn.Module: ReLU_1 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> torch/nn/modules/activation.py(...): forward torch/nn/functional.py(...): relu <built-in function _has_torch_function_unary> <built-in method relu of type object at 0xXXXXXXXXXXXX> aten::relu aten::clamp_min <built-in method ones of type object at 0xXXXXXXXXXXXX> aten::ones aten::empty aten::fill_ nn.Module: MyModule_0 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> test_profiler_tree.py(...): forward nn.Module: ReLU_0 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> torch/nn/modules/activation.py(...): forward torch/nn/functional.py(...): relu <built-in function _has_torch_function_unary> <built-in method relu of type object at 0xXXXXXXXXXXXX> aten::relu aten::clamp_min nn.Module: Linear_0 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> torch/nn/modules/linear.py(...): forward torch/nn/modules/module.py(...): __getattr__ torch/nn/modules/module.py(...): __getattr__ <built-in function linear> aten::linear aten::view aten::t aten::transpose aten::as_strided aten::addmm aten::expand aten::as_strided aten::copy_ aten::resolve_conj aten::resolve_conj aten::resolve_conj aten::view nn.Module: ReLU_1 torch/nn/modules/module.py(...): _call_impl <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> torch/nn/modules/activation.py(...): forward torch/nn/functional.py(...): relu <built-in function _has_torch_function_unary> <built-in method relu of type object at 0xXXXXXXXXXXXX> aten::relu aten::clamp_min torch/profiler/profiler.py(...): __exit__ torch/profiler/profiler.py(...): stop ...""", ) @unittest.skipIf( TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite." ) @ProfilerTree.test def test_profiler_experimental_tree_with_stack_and_torch_function(self): x = TorchFunctionTensor(torch.ones((1,))) y = torch.ones((1,)) # There's some lazy initialization in __torch_function__. If we don't # run this the first run won't match the replicates. torch.add(x, y) with torch.profiler.profile(with_stack=True) as p: torch.add(x, y) self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ test_profiler_tree.py(...): test_profiler_experimental_tree_with_stack_and_torch_function torch/profiler/profiler.py(...): __enter__ ... <built-in method add of type object at 0xXXXXXXXXXXXX> test_profiler_tree.py(...): __torch_function__ torch/_tensor.py(...): __torch_function__ torch/_tensor.py(...): <genexpr> <built-in function issubclass> torch/_tensor.py(...): <genexpr> <built-in method add of type object at 0xXXXXXXXXXXXX> aten::add torch/_tensor.py(...): _convert <built-in function isinstance> <built-in function isinstance> <built-in method as_subclass of Tensor object at 0xXXXXXXXXXXXX> aten::alias <built-in function isinstance> torch/profiler/profiler.py(...): __exit__ torch/profiler/profiler.py(...): stop ...""", ) @skipIfTorchDynamo("segfaults in 3.13+") @unittest.skipIf( TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite." ) @ProfilerTree.test def test_profiler_experimental_tree_with_stack_and_torch_dispatch(self): x = TorchDispatchTensor(torch.ones((1,))) y = torch.ones((1,)) # warmup round with torch.profiler.profile(with_stack=True): x + y with torch.profiler.profile(with_stack=True) as p: x + y self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ test_profiler_tree.py(...): test_profiler_experimental_tree_with_stack_and_torch_dispatch torch/profiler/profiler.py(...): __enter__ ... aten::add PythonSubclass torch/_library/simple_registry.py(...): find_torch_dispatch_rule torch/_library/simple_registry.py(...): find <built-in method get of dict object at 0xXXXXXXXXXXXX> torch/_library/simple_registry.py(...): find <built-in method get of dict object at 0xXXXXXXXXXXXX> test_profiler_tree.py(...): __torch_dispatch__ torch/utils/_pytree.py(...): tree_map ... torch/utils/_pytree.py(...): tree_map ... torch/_ops.py(...): __call__ <built-in method of PyCapsule object at 0xXXXXXXXXXXXX> aten::add torch/utils/_pytree.py(...): tree_map ... torch/profiler/profiler.py(...): __exit__ torch/profiler/profiler.py(...): stop ...""", ) @unittest.skip("https://github.com/pytorch/pytorch/issues/83606") @unittest.skipIf(not torch.cuda.is_available(), "CUDA is required") @ProfilerTree.test def test_profiler_experimental_tree_cuda(self): with torch.profiler.profile(profile_memory=True) as p: weight = torch.ones(1, device="cuda", requires_grad=True) x = torch.ones(1, device="cuda") y = torch.add(weight, x) loss = torch.pow(y, 2) loss.backward() torch.optim.SGD([weight], lr=0.01, momentum=0.9).step() self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ aten::ones aten::empty [memory] aten::fill_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) aten::ones aten::empty [memory] aten::fill_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) aten::add cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] aten::pow cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) aten::result_type aten::to [memory] aten::ones_like aten::empty_like aten::empty_strided [memory] aten::fill_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) autograd::engine::evaluate_function: PowBackward0 PowBackward0 aten::pow aten::result_type aten::to [memory] aten::copy_ cudaMemcpyAsync Memcpy DtoD (Device -> Device) aten::mul [memory] aten::mul cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] [memory] aten::mul cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] [memory] [memory] autograd::engine::evaluate_function: AddBackward0 AddBackward0 autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::detach detach [memory] aten::zeros aten::zeros aten::empty [memory] aten::zero_ Optimizer.step#SGD.step aten::empty [memory] [memory] [memory] aten::clone aten::empty_strided [memory] aten::copy_ cudaMemcpyAsync Memcpy DtoD (Device -> Device) aten::detach detach aten::add_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory]""", # noqa: B950 allow_failure=ALLOW_CUDA_FAILURE, ) @unittest.skip("https://github.com/pytorch/pytorch/issues/83606") @unittest.skipIf(not torch.cuda.is_available(), "CUDA is required") @ProfilerTree.test def test_profiler_experimental_tree_cuda_with_stream(self): streams = [torch.cuda.Stream() for _ in range(3)] results = [] with torch.profiler.profile(profile_memory=True) as p: x = torch.ones((4, 4), device="cuda") for stream in streams: with torch.cuda.stream(stream): results.append(torch.tanh(x) - x) del results for s in streams: torch.cuda.current_stream().wait_stream(s) self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ aten::ones aten::empty [memory] aten::fill_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) aten::tanh cudaMalloc cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] aten::sub cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] [memory] aten::tanh cudaMalloc cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] aten::sub cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] [memory] aten::tanh cudaMalloc cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] aten::sub cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] [memory]""", allow_failure=ALLOW_CUDA_FAILURE, ) @unittest.skip("https://github.com/pytorch/pytorch/issues/83606") @unittest.skipIf( TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite." ) @unittest.skipIf(not torch.cuda.is_available(), "CUDA is required") @ProfilerTree.test def test_profiler_experimental_tree_cuda_detailed(self): # Do lazy imports ahead of time to avoid it showing up in the tree import torch.nested._internal.nested_tensor model = torch.nn.modules.Linear(1, 1, device="cuda") model.train() opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) def step(): x = torch.ones((1, 1), device="cuda") loss = model(x) loss.backward() opt.step() # Warmup for _ in range(3): step() with torch.profiler.profile(profile_memory=True, with_stack=True) as p: step() self.assertTreesMatch( ProfilerTree.format(p.profiler, 12), """\ test_profiler_tree.py(...): test_profiler_experimental_tree_cuda_detailed torch/profiler/profiler.py(...): __enter__ ... test_profiler_tree.py(...): step <built-in method ones of type object at 0xXXXXXXXXXXXX> aten::ones aten::empty [memory] aten::fill_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) nn.Module: Linear_0 <built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX> torch/nn/modules/linear.py(...): forward torch/nn/modules/module.py(...): __getattr__ torch/nn/modules/module.py(...): __getattr__ <built-in function linear> aten::linear aten::t aten::transpose aten::as_strided aten::addmm cudaMemcpyAsync Memcpy DtoD (Device -> Device) cudaLaunchKernel void ..._kernel<...>(...) [memory] aten::expand aten::as_strided torch/_tensor.py(...): backward <built-in function _has_torch_function_unary> torch/autograd/__init__.py(...): backward <built-in function isinstance> <built-in function isinstance> <built-in function len> torch/autograd/__init__.py(...): _tensor_or_tensors_to_tuple torch/autograd/__init__.py(...): _make_grads typing.py(...): inner typing.py(...): __hash__ <built-in function hash> typing.py(...): cast <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in function isinstance> <built-in method numel of Tensor object at 0xXXXXXXXXXXXX> <built-in function isinstance> <built-in function isinstance> <built-in method ones_like of type object at 0xXXXXXXXXXXXX> aten::ones_like aten::empty_like aten::empty_strided [memory] aten::fill_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) <built-in method append of list object at 0xXXXXXXXXXXXX> <built-in method run_backward of torch._C._EngineBase object at 0xXXXXXXXXXXXX> autograd::engine::evaluate_function: AddmmBackward0 AddmmBackward0 aten::t aten::transpose aten::as_strided aten::mm cudaLaunchKernel void ..._kernel<...>(...) [memory] aten::t aten::transpose aten::as_strided aten::sum aten::sum cudaLaunchKernel void at::native::reduce_kernel<...>(...) [memory] aten::view aten::view autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::add_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] autograd::engine::evaluate_function: TBackward0 TBackward0 aten::t aten::transpose aten::as_strided autograd::engine::evaluate_function: torch::autograd::AccumulateGrad torch::autograd::AccumulateGrad aten::add_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] [memory] torch/optim/optimizer.py(...): wrapper <built-in method format of str object at 0xXXXXXXXXXXXX> torch/autograd/profiler.py(...): __init__ <built-in method zeros of type object at 0xXXXXXXXXXXXX> aten::zeros aten::zeros aten::empty [memory] aten::zero_ torch/autograd/profiler.py(...): __enter__ torch/_ops.py(...): __call__ <built-in method _record_function_enter of PyCapsule object at 0xXXXXXXXXXXXX> Optimizer.step#SGD.step aten::empty [memory] [memory] [memory] torch/optim/optimizer.py(...): _use_grad <built-in function is_grad_enabled> torch/autograd/grad_mode.py(...): __init__ <built-in function is_grad_enabled> <built-in function _set_grad_enabled> torch/optim/sgd.py(...): step <built-in method append of list object at 0xXXXXXXXXXXXX> <built-in method append of list object at 0xXXXXXXXXXXXX> torch/_tensor.py(...): __hash__ <built-in function id> <built-in method append of list object at 0xXXXXXXXXXXXX> <built-in method append of list object at 0xXXXXXXXXXXXX> <built-in method append of list object at 0xXXXXXXXXXXXX> torch/_tensor.py(...): __hash__ <built-in function id> <built-in method append of list object at 0xXXXXXXXXXXXX> torch/optim/sgd.py(...): sgd torch/optim/sgd.py(...): _single_tensor_sgd <built-in method mul_ of Tensor object at 0xXXXXXXXXXXXX> [memory] aten::mul_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] <built-in method add_ of Tensor object at 0xXXXXXXXXXXXX> aten::add_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) <built-in method add_ of Tensor object at 0xXXXXXXXXXXXX> aten::add_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) <built-in method mul_ of Tensor object at 0xXXXXXXXXXXXX> [memory] aten::mul_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) [memory] <built-in method add_ of Tensor object at 0xXXXXXXXXXXXX> aten::add_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) <built-in method add_ of Tensor object at 0xXXXXXXXXXXXX> aten::add_ cudaLaunchKernel void at::native::vectorized_elementwise_kernel<...>(...) torch/_tensor.py(...): __hash__ <built-in function id> torch/_tensor.py(...): __hash__ <built-in function id> torch/autograd/grad_mode.py(...): __init__ <built-in function is_grad_enabled> <built-in function _set_grad_enabled> torch/autograd/profiler.py(...): __exit__ torch/_ops.py(...): __call__ <built-in method _record_function_exit of PyCapsule object at 0xXXXXXXXXXXXX> [memory] [memory] torch/profiler/profiler.py(...): __exit__ torch/profiler/profiler.py(...): stop torch/profiler/profiler.py(...): _transit_action <built-in method get of dict object at 0xXXXXXXXXXXXX> enum.py(...): __hash__ <built-in function hash> ...""", # noqa: B950 allow_failure=ALLOW_CUDA_FAILURE, ) if __name__ == "__main__": run_tests()
TestProfilerTree
python
huggingface__transformers
src/transformers/models/pegasus/modeling_pegasus.py
{ "start": 55347, "end": 55800 }
class ____(PegasusPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = PegasusDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
PegasusDecoderWrapper
python
ray-project__ray
python/ray/train/v2/_internal/execution/controller/state.py
{ "start": 4673, "end": 4920 }
class ____(TrainControllerState): def __init__( self, scaling_decision: ScalingDecision, ): super().__init__(state_type=TrainControllerStateType.RESIZING) self.scaling_decision = scaling_decision
ResizingState
python
dagster-io__dagster
python_modules/libraries/dagster-aws/dagster_aws/ecs/launcher.py
{ "start": 2338, "end": 39234 }
class ____(RunLauncher[T_DagsterInstance], ConfigurableClass): """RunLauncher that starts a task in ECS for each Dagster job run. Args: inst_data (Optional[ConfigurableClassData]): If not provided, defaults to None. task_definition: If not provided, defaults to None. container_name (str): If not provided, defaults to "run". secrets (Optional[list[str]]): If not provided, defaults to None. secrets_tag (str): If not provided, defaults to "dagster". env_vars (Optional[Sequence[str]]): If not provided, defaults to None. include_sidecars (bool): If not provided, defaults to False. use_current_ecs_task_config (bool): If not provided, defaults to True. run_task_kwargs (Optional[Mapping[str, Any]]): If not provided, defaults to None. run_resources (Optional[dict[str, Any]]): If not provided, defaults to None. run_ecs_tags (Optional[list[dict[str, Optional[str]]]]): If not provided, defaults to None. propagate_tags (Optional[dict[str, Any]]): If not provided, defaults to None. task_definition_prefix (str): If not provided, defaults to "run". """ def __init__( self, inst_data: Optional[ConfigurableClassData] = None, task_definition=None, container_name: str = "run", secrets: Optional[list[str]] = None, secrets_tag: str = "dagster", env_vars: Optional[Sequence[str]] = None, include_sidecars: bool = False, use_current_ecs_task_config: bool = True, run_task_kwargs: Optional[Mapping[str, Any]] = None, run_resources: Optional[dict[str, Any]] = None, run_ecs_tags: Optional[list[dict[str, Optional[str]]]] = None, propagate_tags: Optional[dict[str, Any]] = None, task_definition_prefix: str = "run", ): self._inst_data = inst_data boto_client_config = self.get_boto_client_config() self.ecs = boto3.client("ecs", config=boto_client_config) self.ec2 = boto3.resource("ec2") self.secrets_manager = boto3.client("secretsmanager", config=boto_client_config) self.logs = boto3.client("logs", config=boto_client_config) self._task_definition_prefix = task_definition_prefix check.invariant( len(self._task_definition_prefix) <= 16, "Task definition prefix must be no more than 16 characters", ) self.task_definition = None self.task_definition_dict = {} if isinstance(task_definition, str): self.task_definition = task_definition elif task_definition and "env" in task_definition: check.invariant( len(task_definition) == 1, "If `task_definition` is set to a dictionary with `env`, `env` must be the only" " key.", ) env_var = task_definition["env"] self.task_definition = os.getenv(env_var) if not self.task_definition: raise Exception( f"You have attempted to fetch the environment variable {env_var} which is not" " set." ) else: self.task_definition_dict = task_definition or {} self.container_name = container_name self.secrets = check.opt_list_param(secrets, "secrets") self.env_vars = check.opt_list_param(env_vars, "env_vars") if self.secrets and all(isinstance(secret, str) for secret in self.secrets): warnings.warn( "Setting secrets as a list of ARNs is deprecated. " "Secrets should instead follow the same structure as the ECS API: " "https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Secret.html", DeprecationWarning, ) self.secrets = [ {"name": name, "valueFrom": value_from} for name, value_from in get_secrets_from_arns( self.secrets_manager, self.secrets ).items() ] self.secrets_tags = [secrets_tag] if secrets_tag else [] self.include_sidecars = include_sidecars if self.task_definition: task_definition = self.ecs.describe_task_definition(taskDefinition=self.task_definition) container_names = [ container.get("name") for container in task_definition["taskDefinition"]["containerDefinitions"] ] check.invariant( container_name in container_names, f"Cannot override container '{container_name}' in task definition " f"'{self.task_definition}' because the container is not defined.", ) self.task_definition = task_definition["taskDefinition"]["taskDefinitionArn"] self.use_current_ecs_task_config = check.opt_bool_param( use_current_ecs_task_config, "use_current_ecs_task_config" ) self.run_task_kwargs = check.opt_mapping_param(run_task_kwargs, "run_task_kwargs") if run_task_kwargs: check.invariant( "taskDefinition" not in run_task_kwargs, "Use the `taskDefinition` config field to pass in a task definition to run.", ) check.invariant( "overrides" not in run_task_kwargs, "Task overrides are set by the run launcher and cannot be set in run_task_kwargs.", ) expected_keys = [ key for key in self.ecs.meta.service_model.shape_for("RunTaskRequest").members ] for key in run_task_kwargs: check.invariant( key in expected_keys, f"Found an unexpected key {key} in run_task_kwargs" ) self.run_resources = check.opt_mapping_param(run_resources, "run_resources") self.run_ecs_tags = check.opt_sequence_param(run_ecs_tags, "run_ecs_tags") self.propagate_tags = check.opt_dict_param( propagate_tags, "propagate_tags", key_type=str, value_type=list, ) if self.propagate_tags: check.invariant( list(self.propagate_tags.keys()) == ["allow_list"], "Only allow_list can be set for the propagate_tags config property", ) if self.propagate_tags.get("allow_list"): # These tags are potentially very large and can cause ECS to fail to start a task. They also don't seem particularly useful in a task-tagging context check.invariant( TAGS_TO_EXCLUDE_FROM_PROPAGATION - set(self.propagate_tags.get("allow_list", [])) == TAGS_TO_EXCLUDE_FROM_PROPAGATION, f"Cannot include {TAGS_TO_EXCLUDE_FROM_PROPAGATION} in allow_list", ) self._current_task_metadata = None self._current_task = None def get_boto_client_config(self) -> Optional["Config"]: return None @property def inst_data(self): return self._inst_data @property def task_role_arn(self) -> Optional[str]: if not self.task_definition_dict: return None return self.task_definition_dict.get("task_role_arn") @property def execution_role_arn(self) -> Optional[str]: if not self.task_definition_dict: return None return self.task_definition_dict.get("execution_role_arn") @property def runtime_platform(self) -> Optional[Mapping[str, Any]]: if not self.task_definition_dict: return None return self.task_definition_dict.get("runtime_platform") @property def mount_points(self) -> Optional[Sequence[Mapping[str, Any]]]: if not self.task_definition_dict: return None return self.task_definition_dict.get("mount_points") @property def volumes(self) -> Optional[Sequence[Mapping[str, Any]]]: if not self.task_definition_dict: return None return self.task_definition_dict.get("volumes") @property def repository_credentials(self) -> Optional[str]: if not self.task_definition_dict: return None return self.task_definition_dict.get("repository_credentials") @property def run_sidecar_containers(self) -> Optional[Sequence[Mapping[str, Any]]]: if not self.task_definition_dict: return None return self.task_definition_dict.get("sidecar_containers") @property def linux_parameters(self) -> Optional[Mapping[str, Any]]: if not self.task_definition_dict: return None return self.task_definition_dict.get("linux_parameters") @classmethod def config_type(cls): return { "task_definition": Field( ScalarUnion( scalar_type=str, non_scalar_schema={ "log_group": Field(StringSource, is_required=False), "sidecar_containers": Field(Array(Permissive({})), is_required=False), "requires_compatibilities": Field(Array(str), is_required=False), "env": Field( str, is_required=False, description=( "Backwards-compatibility for when task_definition was a" " StringSource.Can be used to source the task_definition scalar" " from an environment variable." ), ), "linux_parameters": Field(Permissive(), is_required=False), **SHARED_TASK_DEFINITION_FIELDS, }, ), is_required=False, description=( "Either the short name of an existing task definition to use when launching new" " tasks, or a dictionary configuration to use when creating a task definition" " for the run.If neither is provided, the task definition will be created based" " on the current task's task definition." ), ), "container_name": Field( StringSource, is_required=False, default_value="run", description=( "The container name to use when launching new tasks. Defaults to 'run'." ), ), "secrets": Field( Array( ScalarUnion( scalar_type=str, non_scalar_schema={"name": StringSource, "valueFrom": StringSource}, ) ), is_required=False, description=( "An array of AWS Secrets Manager secrets. These secrets will " "be mounted as environment variables in the container. See " "https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_Secret.html." ), ), "secrets_tag": Field( Noneable(StringSource), is_required=False, default_value="dagster", description=( "AWS Secrets Manager secrets with this tag will be mounted as " "environment variables in the container. Defaults to 'dagster'." ), ), "include_sidecars": Field( bool, is_required=False, default_value=False, description=( "Whether each run should use the same sidecars as the task that launches it. " "Defaults to False." ), ), "use_current_ecs_task_config": Field( bool, is_required=False, default_value=True, description=( "Whether to use the run launcher's current ECS task in order to determine " "the cluster and networking configuration for the launched task. Defaults to " "True. Should only be called if the run launcher is running within an ECS " "task." ), ), "run_task_kwargs": Field( Permissive( { "cluster": Field( StringSource, is_required=False, description="Name of the ECS cluster to launch ECS tasks in.", ), } ), is_required=False, description=( "Additional arguments to include while running the task. See" " https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ecs.html#ECS.Client.run_task" " for the available parameters. The overrides and taskDefinition arguments will" " always be set by the run launcher." ), ), "propagate_tags": Field( Shape( { "allow_list": Field( Array(str), is_required=True, description="List of specific tag keys from the Dagster run which should be propagated to the ECS task.", ), } ), is_required=False, description="Configuration for propagating tags from Dagster runs to ECS tasks. Currently only exposes an allow list.", ), "task_definition_prefix": Field( StringSource, is_required=False, default_value="run", description=( "A prefix that is applied to all task definitions created by the EcsRunLauncher. Defaults to 'run'." ), ), **SHARED_ECS_SCHEMA, } @classmethod def from_config_value( cls, inst_data: ConfigurableClassData, config_value: Mapping[str, Any] ) -> Self: return cls(inst_data=inst_data, **config_value) def _set_run_tags(self, run_id: str, cluster: str, task_arn: str): tags = { "ecs/task_arn": task_arn, "ecs/cluster": cluster, RUN_WORKER_ID_TAG: str(uuid.uuid4().hex)[0:6], } self._instance.add_run_tags(run_id, tags) def build_ecs_tags_for_run_task(self, run: DagsterRun, container_context: EcsContainerContext): run_id_tag = "dagster/run_id" if any(tag["key"] == run_id_tag for tag in container_context.run_ecs_tags): raise Exception(f"Cannot override system ECS tag: {run_id_tag}") tags_to_propagate = self._get_tags_to_propagate_to_ecs_task(run) return [ {"key": run_id_tag, "value": run.run_id}, {"key": "dagster/job_name", "value": run.job_name}, *container_context.run_ecs_tags, *tags_to_propagate, ] def _get_tags_to_propagate_to_ecs_task(self, run: DagsterRun) -> list[dict[str, str]]: # These tags often contain * or + characters which are not allowed in ECS tags. # They don't seem super useful from an observability perspective, so are excluded from the ECS tags tags_to_propagate = [] if allow_list := (self.propagate_tags or {}).get("allow_list", []): # Add contextual Dagster run tags to ECS tags tags_to_propagate = [ {"key": k, "value": v} for k, v in run.tags.items() if k in allow_list and k not in TAGS_TO_EXCLUDE_FROM_PROPAGATION ] return tags_to_propagate def _get_run_tags(self, run_id: str) -> Tags: run = self._instance.get_run_by_id(run_id) tags = run.tags if run else {} arn = tags.get("ecs/task_arn") cluster = tags.get("ecs/cluster") cpu = tags.get("ecs/cpu") memory = tags.get("ecs/memory") return Tags(arn, cluster, cpu, memory) def _get_command_args(self, run_args: ExecuteRunArgs, context: LaunchRunContext): return run_args.get_command_args() def get_image_for_run(self, context: LaunchRunContext) -> Optional[str]: """Child classes can override this method to determine the image to use for a run. This is considered a public API.""" run = context.dagster_run return ( run.job_code_origin.repository_origin.container_image if run.job_code_origin is not None else None ) def _run_task(self, **run_task_kwargs): return run_ecs_task(self.ecs, run_task_kwargs) def launch_run(self, context: LaunchRunContext) -> None: """Launch a run in an ECS task.""" run = context.dagster_run container_context = EcsContainerContext.create_for_run(run, self) job_origin = check.not_none(context.job_code_origin) # ECS limits overrides to 8192 characters including json formatting # https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html # When container_context is serialized as part of the ExecuteRunArgs, we risk # going over this limit (for example, if many secrets have been set). This strips # the container context off of our job origin because we don't actually need # it to launch the run; we only needed it to create the task definition. repository_origin = job_origin.repository_origin stripped_repository_origin = repository_origin._replace(container_context={}) stripped_job_origin = job_origin._replace(repository_origin=stripped_repository_origin) args = ExecuteRunArgs( job_origin=stripped_job_origin, run_id=run.run_id, instance_ref=self._instance.get_ref(), ) command = self._get_command_args(args, context) image = self.get_image_for_run(context) run_task_kwargs = self._run_task_kwargs(run, image, container_context) # Set cpu or memory overrides # https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-cpu-memory-error.html cpu_and_memory_overrides = self.get_cpu_and_memory_overrides(container_context, run) task_overrides = self._get_task_overrides(container_context, run) container_overrides: list[dict[str, Any]] = [ { "name": self.get_container_name(container_context), "command": command, # containerOverrides expects cpu/memory as integers **{k: int(v) for k, v in cpu_and_memory_overrides.items()}, } ] run_task_kwargs["overrides"] = { "containerOverrides": container_overrides, # taskOverrides expects cpu/memory as strings **cpu_and_memory_overrides, **task_overrides, } run_task_kwargs_from_run = self._get_run_task_kwargs_from_run(run) run_task_kwargs["tags"] = [ *run_task_kwargs.get("tags", []), *self.build_ecs_tags_for_run_task(run, container_context), *run_task_kwargs_from_run.get("tags", []), ] run_task_kwargs.update(run_task_kwargs_from_run) # launchType and capacityProviderStrategy are incompatible - prefer the latter if it is set if "launchType" in run_task_kwargs and run_task_kwargs.get("capacityProviderStrategy"): del run_task_kwargs["launchType"] # Remove networkConfiguration if it is set to None if ( "networkConfiguration" in run_task_kwargs and run_task_kwargs.get("networkConfiguration") is None ): del run_task_kwargs["networkConfiguration"] # Run a task using the same network configuration as this processes's task. task = backoff( self._run_task, retry_on=(RetryableEcsException,), kwargs=run_task_kwargs, max_retries=int( os.getenv("RUN_TASK_RETRIES", DEFAULT_RUN_TASK_RETRIES), ), ) arn = task["taskArn"] cluster_arn = task["clusterArn"] self._set_run_tags(run.run_id, cluster=cluster_arn, task_arn=arn) self.report_launch_events(run, arn, cluster_arn) def report_launch_events( self, run: DagsterRun, arn: Optional[str] = None, cluster: Optional[str] = None ): # Extracted method to allow for subclasses to customize the launch reporting behavior metadata = {} if arn: metadata["ECS Task ARN"] = arn if cluster: metadata["ECS Cluster"] = cluster metadata["Run ID"] = run.run_id self._instance.report_engine_event( message="Launching run in ECS task", dagster_run=run, engine_event_data=EngineEventData(metadata), cls=self.__class__, ) def get_cpu_and_memory_overrides( self, container_context: EcsContainerContext, run: DagsterRun ) -> Mapping[str, str]: overrides = {} cpu = run.tags.get("ecs/cpu", container_context.run_resources.get("cpu")) memory = run.tags.get("ecs/memory", container_context.run_resources.get("memory")) if cpu: overrides["cpu"] = cpu if memory: overrides["memory"] = memory return overrides def _get_task_overrides( self, container_context: EcsContainerContext, run: DagsterRun ) -> Mapping[str, Any]: tag_overrides = run.tags.get("ecs/task_overrides") overrides = {} if tag_overrides: overrides = json.loads(tag_overrides) ephemeral_storage = run.tags.get( "ecs/ephemeral_storage", container_context.run_resources.get("ephemeral_storage") ) if ephemeral_storage: overrides["ephemeralStorage"] = {"sizeInGiB": int(ephemeral_storage)} return overrides def _get_run_task_kwargs_from_run(self, run: DagsterRun) -> Mapping[str, Any]: run_task_kwargs = run.tags.get("ecs/run_task_kwargs") if run_task_kwargs: result = json.loads(run_task_kwargs) check.invariant( not isinstance(result, list), f"Unexpected type for `ecs/run_task_kwargs` tag: {type(result)}", ) return result return {} def terminate(self, run_id: str): tags = self._get_run_tags(run_id) run = self._instance.get_run_by_id(run_id) if not run or run.is_finished: return False self._instance.report_run_canceling(run) if not (tags.arn and tags.cluster): return False tasks = self.ecs.describe_tasks(tasks=[tags.arn], cluster=tags.cluster).get("tasks") if not tasks: return False status = tasks[0].get("lastStatus") if status == "STOPPED": return False self.ecs.stop_task(task=tags.arn, cluster=tags.cluster) return True def _get_current_task_metadata(self): if self._current_task_metadata is None: self._current_task_metadata = get_current_ecs_task_metadata() return self._current_task_metadata def _get_current_task(self): if self._current_task is None: current_task_metadata = self._get_current_task_metadata() self._current_task = get_current_ecs_task( self.ecs, current_task_metadata.task_arn, current_task_metadata.cluster ) return self._current_task def _get_run_task_definition_family(self, run: DagsterRun) -> str: return get_task_definition_family( self._task_definition_prefix, check.not_none(run.remote_job_origin) ) def get_container_name(self, container_context: EcsContainerContext) -> str: return container_context.container_name or self.container_name def _run_task_kwargs( self, run: DagsterRun, image: Optional[str], container_context: EcsContainerContext ) -> dict[str, Any]: """Return a dictionary of args to launch the ECS task, registering a new task definition if needed. """ environment = self._environment(container_context) environment.append({"name": "DAGSTER_RUN_JOB_NAME", "value": run.job_name}) secrets = self._secrets(container_context) if container_context.task_definition_arn: task_definition = container_context.task_definition_arn elif image is not None: family = self._get_run_task_definition_family(run) if self.task_definition_dict or not self.use_current_ecs_task_config: runtime_platform = container_context.runtime_platform is_windows = container_context.runtime_platform.get( "operatingSystemFamily" ) not in {None, "LINUX"} default_resources = ( DEFAULT_WINDOWS_RESOURCES if is_windows else DEFAULT_LINUX_RESOURCES ) task_definition_config = DagsterEcsTaskDefinitionConfig( family, image, self.get_container_name(container_context), command=None, log_configuration=( { "logDriver": "awslogs", "options": { "awslogs-group": self.task_definition_dict["log_group"], "awslogs-region": self.ecs.meta.region_name, "awslogs-stream-prefix": family, }, } if self.task_definition_dict.get("log_group") else None ), secrets=secrets if secrets else [], environment=environment, execution_role_arn=container_context.execution_role_arn, task_role_arn=container_context.task_role_arn, sidecars=container_context.run_sidecar_containers, requires_compatibilities=self.task_definition_dict.get( "requires_compatibilities", [] ), cpu=container_context.run_resources.get("cpu", default_resources["cpu"]), memory=container_context.run_resources.get( "memory", default_resources["memory"] ), ephemeral_storage=container_context.run_resources.get("ephemeral_storage"), runtime_platform=runtime_platform, volumes=container_context.volumes, mount_points=container_context.mount_points, repository_credentials=container_context.repository_credentials, linux_parameters=self.linux_parameters, ) task_definition_dict = task_definition_config.task_definition_dict() else: task_definition_dict = get_task_definition_dict_from_current_task( self.ecs, family, self._get_current_task(), image, self.get_container_name(container_context), environment=environment, secrets=secrets if secrets else {}, include_sidecars=self.include_sidecars, task_role_arn=container_context.task_role_arn, execution_role_arn=container_context.execution_role_arn, cpu=container_context.run_resources.get("cpu"), memory=container_context.run_resources.get("memory"), runtime_platform=container_context.runtime_platform, ephemeral_storage=container_context.run_resources.get("ephemeral_storage"), volumes=container_context.volumes, mount_points=container_context.mount_points, additional_sidecars=container_context.run_sidecar_containers, repository_credentials=container_context.repository_credentials, ) task_definition_config = DagsterEcsTaskDefinitionConfig.from_task_definition_dict( task_definition_dict, self.get_container_name(container_context), ) container_name = self.get_container_name(container_context) backoff( self._reuse_or_register_task_definition, retry_on=(Exception,), kwargs={ "desired_task_definition_config": task_definition_config, "container_name": container_name, "task_definition_dict": task_definition_dict, }, max_retries=int( os.getenv( "REGISTER_TASK_DEFINITION_RETRIES", DEFAULT_REGISTER_TASK_DEFINITION_RETRIES ), ), ) task_definition = family else: # since image was not set, we cannot construct a task definition automatically raise DagsterInvariantViolationError( "Could not determine image to use for the run. It has to be provided in the code location: https://docs.dagster.io/concepts/code-locations/workspace-files#specifying-a-docker-image" ) if self.use_current_ecs_task_config: current_task_metadata = get_current_ecs_task_metadata() current_task = get_current_ecs_task( self.ecs, current_task_metadata.task_arn, current_task_metadata.cluster ) task_kwargs = get_task_kwargs_from_current_task( self.ec2, current_task_metadata.cluster, current_task, ) else: task_kwargs = {} return {**task_kwargs, **self.run_task_kwargs, "taskDefinition": task_definition} def _reuse_task_definition( self, desired_task_definition_config: DagsterEcsTaskDefinitionConfig, container_name: str ): family = desired_task_definition_config.family try: existing_task_definition = self.ecs.describe_task_definition(taskDefinition=family)[ "taskDefinition" ] except ClientError: # task definition does not exist, do not reuse return False return task_definitions_match( desired_task_definition_config, existing_task_definition, container_name=container_name, ) def _reuse_or_register_task_definition( self, desired_task_definition_config: DagsterEcsTaskDefinitionConfig, container_name: str, task_definition_dict: dict, ): if not self._reuse_task_definition(desired_task_definition_config, container_name): self.ecs.register_task_definition(**task_definition_dict) def _environment(self, container_context): return [ {"name": key, "value": value} for key, value in container_context.get_environment_dict().items() ] def _secrets(self, container_context): secrets = container_context.get_secrets_dict(self.secrets_manager) return ( [{"name": key, "valueFrom": value} for key, value in secrets.items()] if secrets else [] ) @property def supports_check_run_worker_health(self): return True @property def include_cluster_info_in_failure_messages(self): return True def _is_transient_startup_failure(self, run: DagsterRun, task: dict[str, Any]): if task.get("stoppedReason") is None: return False return run.status == DagsterRunStatus.STARTING and is_transient_task_stopped_reason( task.get("stoppedReason", "") ) def _add_eni_id_tags(self, run: DagsterRun, task: dict[str, Any]): attachments = task.get("attachments", []) eni_ids = {} eni_count = 0 for attachment in attachments: if attachment.get("type") == "ElasticNetworkInterface": details = {d["name"]: d["value"] for d in attachment.get("details", [])} if "networkInterfaceId" in details: if eni_count == 0: eni_ids[f"{HIDDEN_TAG_PREFIX}eni_id"] = details["networkInterfaceId"] else: eni_ids[f"{HIDDEN_TAG_PREFIX}eni_id_{eni_count}"] = details[ "networkInterfaceId" ] eni_count += 1 self._instance.add_run_tags(run.run_id, eni_ids) if eni_count > 0: logging.info(f"Added {eni_count} ENI ID tags for run {run.run_id}: {eni_ids}") else: logging.warning(f"No ENI IDs found for run {run.run_id}") def check_run_worker_health(self, run: DagsterRun): run_worker_id = run.tags.get(RUN_WORKER_ID_TAG) tags = self._get_run_tags(run.run_id) container_context = EcsContainerContext.create_for_run(run, self) if not (tags.arn and tags.cluster): return CheckRunHealthResult(WorkerStatus.UNKNOWN, "", run_worker_id=run_worker_id) tasks = self.ecs.describe_tasks(tasks=[tags.arn], cluster=tags.cluster).get("tasks") if not tasks: return CheckRunHealthResult(WorkerStatus.UNKNOWN, "", run_worker_id=run_worker_id) t = tasks[0] if get_boolean_tag_value(os.getenv("DAGSTER_AWS_ENI_TAGGING_ENABLED")) and not run.tags.get( f"{HIDDEN_TAG_PREFIX}eni_id" ): try: self._add_eni_id_tags(run, t) except Exception: logging.exception(f"Error adding ENI ID tags for run {run.run_id}") if t.get("lastStatus") in RUNNING_STATUSES: return CheckRunHealthResult(WorkerStatus.RUNNING, run_worker_id=run_worker_id) elif t.get("lastStatus") in STOPPED_STATUSES: failed_containers = [] for c in t.get("containers"): if c.get("exitCode") != 0: failed_containers.append(c) if len(failed_containers) > 0: failure_text = "" cluster_failure_info = ( f"Task {t.get('taskArn')} failed.\n" f"Stop code: {t.get('stopCode')}.\n" f"Stop reason: {t.get('stoppedReason')}.\n" ) for c in failed_containers: exit_code = c.get("exitCode") exit_code_msg = f" - exit code {exit_code}" if exit_code is not None else "" cluster_failure_info += f"Container '{c.get('name')}' failed{exit_code_msg}.\n" logging.warning( "Run monitoring detected run worker failure: " + cluster_failure_info ) if self.include_cluster_info_in_failure_messages: failure_text += cluster_failure_info logs = [] try: logs = get_task_logs( self.ecs, logs_client=self.logs, cluster=tags.cluster, task_arn=tags.arn, container_name=self.get_container_name(container_context), ) except: logging.exception(f"Error trying to get logs for failed task {tags.arn}") if logs: failure_text += "Run worker logs:\n" + "\n".join(logs) return CheckRunHealthResult( WorkerStatus.FAILED, failure_text, transient=self._is_transient_startup_failure(run, t), run_worker_id=run_worker_id, ) return CheckRunHealthResult(WorkerStatus.SUCCESS, run_worker_id=run_worker_id) return CheckRunHealthResult( WorkerStatus.UNKNOWN, "ECS task health status is unknown.", run_worker_id=run_worker_id )
EcsRunLauncher
python
instagram__MonkeyType
monkeytype/tracing.py
{ "start": 2510, "end": 6380 }
class ____(metaclass=ABCMeta): """Log and store/print records collected by a CallTracer.""" @abstractmethod def log(self, trace: CallTrace) -> None: """Log a single call trace.""" pass def flush(self) -> None: """Flush all logged traces to output / database. Not an abstractmethod because it's OK to leave it as a no-op; for very simple loggers it may not be necessary to batch-flush traces, and `log` can handle everything. """ pass def get_func_in_mro(obj: Any, code: CodeType) -> Optional[Callable[..., Any]]: """Attempt to find a function in a side-effect free way. This looks in obj's mro manually and does not invoke any descriptors. """ # FunctionType is incompatible with Callable # https://github.com/python/typeshed/issues/1378 val = inspect.getattr_static(obj, code.co_name, None) if val is None: return None if isinstance(val, (classmethod, staticmethod)): cand = val.__func__ elif isinstance(val, property) and (val.fset is None) and (val.fdel is None): cand = cast(Callable[..., Any], val.fget) elif cached_property and isinstance(val, cached_property): cand = val.func else: cand = cast(Callable[..., Any], val) return _has_code(cand, code) def _has_code( func: Optional[Callable[..., Any]], code: CodeType ) -> Optional[Callable[..., Any]]: while func is not None: func_code = getattr(func, "__code__", None) if func_code is code: return func # Attempt to find the decorated function func = getattr(func, "__wrapped__", None) return None def get_previous_frames(frame: Optional[FrameType]) -> Iterator[FrameType]: while frame is not None: yield frame frame = frame.f_back def get_locals_from_previous_frames(frame: FrameType) -> Iterator[Any]: for previous_frame in get_previous_frames(frame): yield from previous_frame.f_locals.values() def get_func(frame: FrameType) -> Optional[Callable[..., Any]]: """Return the function whose code object corresponds to the supplied stack frame.""" code = frame.f_code if code.co_name is None: return None # First, try to find the function in globals cand = frame.f_globals.get(code.co_name, None) func = _has_code(cand, code) # If that failed, as will be the case with class and instance methods, try # to look up the function from the first argument. In the case of class/instance # methods, this should be the class (or an instance of the class) on which our # method is defined. if func is None and code.co_argcount >= 1: first_arg = frame.f_locals.get(code.co_varnames[0]) func = get_func_in_mro(first_arg, code) # If we still can't find the function, as will be the case with static methods, # try looking at classes in global scope. if func is None: for v in frame.f_globals.values(): if not isinstance(v, type): continue func = get_func_in_mro(v, code) if func is not None: break # If we still can't find the function, try looking at the locals of all previous frames. if func is None: for v in get_locals_from_previous_frames(frame): if not callable(v): continue func = _has_code(v, code) if func is not None: break return func RETURN_VALUE_OPCODE = opcode.opmap["RETURN_VALUE"] YIELD_VALUE_OPCODE = opcode.opmap["YIELD_VALUE"] # A CodeFilter is a predicate that decides whether or not a the call for the # supplied code object should be traced. CodeFilter = Callable[[CodeType], bool] EVENT_CALL = "call" EVENT_RETURN = "return" SUPPORTED_EVENTS = {EVENT_CALL, EVENT_RETURN}
CallTraceLogger
python
pyparsing__pyparsing
pyparsing/diagram/__init__.py
{ "start": 3224, "end": 9077 }
class ____(Generic[T]): """ Acts like a functools.partial, but can be edited. In other words, it represents a type that hasn't yet been constructed. """ # We need this here because the railroad constructors actually transform the data, so can't be called until the # entire tree is assembled def __init__(self, func: Callable[..., T], args: list, kwargs: dict) -> None: self.func = func self.args = args self.kwargs = kwargs @classmethod def from_call(cls, func: Callable[..., T], *args, **kwargs) -> EditablePartial[T]: """ If you call this function in the same way that you would call the constructor, it will store the arguments as you expect. For example ``EditablePartial.from_call(Fraction, 1, 3)() == Fraction(1, 3)`` """ return EditablePartial(func=func, args=list(args), kwargs=kwargs) @property def name(self): return self.kwargs["name"] def __call__(self) -> T: """ Evaluate the partial and return the result """ args = self.args.copy() kwargs = self.kwargs.copy() # This is a helpful hack to allow you to specify varargs parameters (e.g. *args) as keyword args (e.g. # args=['list', 'of', 'things']) arg_spec = inspect.getfullargspec(self.func) if arg_spec.varargs in self.kwargs: args += kwargs.pop(arg_spec.varargs) return self.func(*args, **kwargs) def railroad_to_html(diagrams: list[NamedDiagram], embed=False, **kwargs) -> str: """ Given a list of :class:`NamedDiagram`, produce a single HTML string that visualises those diagrams. :params kwargs: kwargs to be passed in to the template """ data = [] for diagram in diagrams: if diagram.diagram is None: continue io = StringIO() try: css = kwargs.get("css") diagram.diagram.writeStandalone(io.write, css=css) except AttributeError: diagram.diagram.writeSvg(io.write) title = diagram.name if diagram.index == 0: title += " (root)" data.append( { "title": title, "text": "", "svg": io.getvalue(), "bookmark": diagram.bookmark } ) return template.render(diagrams=data, embed=embed, **kwargs) def resolve_partial(partial: EditablePartial[T]) -> T: """ Recursively resolves a collection of Partials into whatever type they are """ if isinstance(partial, EditablePartial): partial.args = resolve_partial(partial.args) partial.kwargs = resolve_partial(partial.kwargs) return partial() elif isinstance(partial, list): return [resolve_partial(x) for x in partial] elif isinstance(partial, dict): return {key: resolve_partial(x) for key, x in partial.items()} else: return partial def to_railroad( element: pyparsing.ParserElement, diagram_kwargs: typing.Optional[dict] = None, vertical: int = 3, show_results_names: bool = False, show_groups: bool = False, show_hidden: bool = False, ) -> list[NamedDiagram]: """ Convert a pyparsing element tree into a list of diagrams. This is the recommended entrypoint to diagram creation if you want to access the Railroad tree before it is converted to HTML :param element: base element of the parser being diagrammed :param diagram_kwargs: kwargs to pass to the :meth:`Diagram` constructor :param vertical: (optional) int - limit at which number of alternatives should be shown vertically instead of horizontally :param show_results_names: bool to indicate whether results name annotations should be included in the diagram :param show_groups: bool to indicate whether groups should be highlighted with an unlabeled surrounding box :param show_hidden: bool to indicate whether internal elements that are typically hidden should be shown """ # Convert the whole tree underneath the root lookup = ConverterState(diagram_kwargs=diagram_kwargs or {}) _to_diagram_element( element, lookup=lookup, parent=None, vertical=vertical, show_results_names=show_results_names, show_groups=show_groups, show_hidden=show_hidden, ) root_id = id(element) # Convert the root if it hasn't been already if root_id in lookup: if not element.customName: lookup[root_id].name = "" lookup[root_id].mark_for_extraction(root_id, lookup, force=True) # Now that we're finished, we can convert from intermediate structures into Railroad elements diags = list(lookup.diagrams.values()) if len(diags) > 1: # collapse out duplicate diags with the same name seen = set() deduped_diags = [] for d in diags: # don't extract SkipTo elements, they are uninformative as subdiagrams if d.name == "...": continue if d.name is not None and d.name not in seen: seen.add(d.name) deduped_diags.append(d) resolved = [resolve_partial(partial) for partial in deduped_diags] else: # special case - if just one diagram, always display it, even if # it has no name resolved = [resolve_partial(partial) for partial in diags] return sorted(resolved, key=lambda diag: diag.index) def _should_vertical( specification: int, exprs: Iterable[pyparsing.ParserElement] ) -> bool: """ Returns true if we should return a vertical list of elements """ if specification is None: return False else: return len(_visible_exprs(exprs)) >= specification @dataclasses.dataclass
EditablePartial
python
allegroai__clearml
clearml/backend_api/services/v2_20/events.py
{ "start": 136292, "end": 139227 }
class ____(Request): """ Get the image for the next variant for the same iteration or for the next iteration :param task: Task ID :type task: str :param scroll_id: Scroll ID from the previous call to get_debug_image_sample :type scroll_id: str :param navigate_earlier: If set then get the either previous variant event from the current iteration or (if does not exist) the last variant event from the previous iteration. Otherwise next variant event from the current iteration or first variant event from the next iteration :type navigate_earlier: bool """ _service = "events" _action = "next_debug_image_sample" _version = "2.20" _schema = { "definitions": {}, "properties": { "navigate_earlier": { "description": "If set then get the either previous variant event from the current iteration or (if does not exist) the last variant event from the previous iteration. Otherwise next variant event from the current iteration or first variant event from the next iteration", "type": "boolean", }, "scroll_id": { "description": "Scroll ID from the previous call to get_debug_image_sample", "type": "string", }, "task": {"description": "Task ID", "type": "string"}, }, "required": ["task", "scroll_id"], "type": "object", } def __init__(self, task: str, scroll_id: str, navigate_earlier: Optional[bool] = None, **kwargs: Any) -> None: super(NextDebugImageSampleRequest, self).__init__(**kwargs) self.task = task self.scroll_id = scroll_id self.navigate_earlier = navigate_earlier @schema_property("task") def task(self) -> str: return self._property_task @task.setter def task(self, value: str) -> None: if value is None: self._property_task = None return self.assert_isinstance(value, "task", six.string_types) self._property_task = value @schema_property("scroll_id") def scroll_id(self) -> str: return self._property_scroll_id @scroll_id.setter def scroll_id(self, value: str) -> None: if value is None: self._property_scroll_id = None return self.assert_isinstance(value, "scroll_id", six.string_types) self._property_scroll_id = value @schema_property("navigate_earlier") def navigate_earlier(self) -> Optional[bool]: return self._property_navigate_earlier @navigate_earlier.setter def navigate_earlier(self, value: Optional[bool]) -> None: if value is None: self._property_navigate_earlier = None return self.assert_isinstance(value, "navigate_earlier", (bool,)) self._property_navigate_earlier = value
NextDebugImageSampleRequest
python
pyca__cryptography
tests/hazmat/primitives/test_pkcs7.py
{ "start": 51646, "end": 54433 }
class ____: @pytest.mark.parametrize( ("encoding", "loader"), [ (serialization.Encoding.PEM, pkcs7.load_pem_pkcs7_certificates), (serialization.Encoding.DER, pkcs7.load_der_pkcs7_certificates), ], ) def test_roundtrip(self, encoding, loader, backend): certs = load_vectors_from_file( os.path.join("pkcs7", "amazon-roots.der"), lambda derfile: pkcs7.load_der_pkcs7_certificates(derfile.read()), mode="rb", ) p7 = pkcs7.serialize_certificates(certs, encoding) certs2 = loader(p7) assert certs == certs2 def test_ordering(self, backend): certs = load_vectors_from_file( os.path.join("pkcs7", "amazon-roots.der"), lambda derfile: pkcs7.load_der_pkcs7_certificates(derfile.read()), mode="rb", ) p7 = pkcs7.serialize_certificates( list(reversed(certs)), serialization.Encoding.DER ) certs2 = pkcs7.load_der_pkcs7_certificates(p7) assert certs == certs2 def test_pem_matches_vector(self, backend): p7_pem = load_vectors_from_file( os.path.join("pkcs7", "isrg.pem"), lambda p: p.read(), mode="rb", ) certs = pkcs7.load_pem_pkcs7_certificates(p7_pem) p7 = pkcs7.serialize_certificates(certs, serialization.Encoding.PEM) assert p7 == p7_pem def test_der_matches_vector(self, backend): p7_der = load_vectors_from_file( os.path.join("pkcs7", "amazon-roots.der"), lambda p: p.read(), mode="rb", ) certs = pkcs7.load_der_pkcs7_certificates(p7_der) p7 = pkcs7.serialize_certificates(certs, serialization.Encoding.DER) assert p7 == p7_der def test_invalid_types(self): certs = load_vectors_from_file( os.path.join("pkcs7", "amazon-roots.der"), lambda derfile: pkcs7.load_der_pkcs7_certificates(derfile.read()), mode="rb", ) with pytest.raises(TypeError): pkcs7.serialize_certificates( object(), # type: ignore[arg-type] serialization.Encoding.PEM, ) with pytest.raises(TypeError): pkcs7.serialize_certificates([], serialization.Encoding.PEM) with pytest.raises(TypeError): pkcs7.serialize_certificates( certs, "not an encoding", # type: ignore[arg-type] ) @pytest.mark.supported( only_if=lambda backend: backend.pkcs7_supported() and not backend.rsa_encryption_supported(padding.PKCS1v15()), skip_message="Requires OpenSSL with no PKCS1 v1.5 padding support", )
TestPKCS7SerializeCerts
python
altair-viz__altair
altair/vegalite/v6/schema/core.py
{ "start": 921373, "end": 939538 }
class ____(PolarDef): r""" PositionFieldDefBase schema wrapper. Parameters ---------- shorthand : str, dict, Sequence[str], :class:`RepeatRef` shorthand for field, aggregate, and type aggregate : dict, :class:`Aggregate`, :class:`ArgmaxDef`, :class:`ArgminDef`, :class:`NonArgAggregateOp`, Literal['average', 'count', 'distinct', 'max', 'mean', 'median', 'min', 'missing', 'product', 'q1', 'q3', 'ci0', 'ci1', 'stderr', 'stdev', 'stdevp', 'sum', 'valid', 'values', 'variance', 'variancep', 'exponential', 'exponentialb'] Aggregation function for the field (e.g., ``"mean"``, ``"sum"``, ``"median"``, ``"min"``, ``"max"``, ``"count"``). **Default value:** ``undefined`` (None) **See also:** `aggregate <https://vega.github.io/vega-lite/docs/aggregate.html>`__ documentation. bandPosition : float Relative position on a band of a stacked, binned, time unit, or band scale. For example, the marks will be positioned at the beginning of the band if set to ``0``, and at the middle of the band if set to ``0.5``. bin : bool, dict, Literal['binned'], :class:`BinParams`, None A flag for binning a ``quantitative`` field, `an object defining binning parameters <https://vega.github.io/vega-lite/docs/bin.html#bin-parameters>`__, or indicating that the data for ``x`` or ``y`` channel are binned before they are imported into Vega-Lite (``"binned"``). * If ``true``, default `binning parameters <https://vega.github.io/vega-lite/docs/bin.html#bin-parameters>`__ will be applied. * If ``"binned"``, this indicates that the data for the ``x`` (or ``y``) channel are already binned. You can map the bin-start field to ``x`` (or ``y``) and the bin-end field to ``x2`` (or ``y2``). The scale and axis will be formatted similar to binning in Vega-Lite. To adjust the axis ticks based on the bin step, you can also set the axis's `tickMinStep <https://vega.github.io/vega-lite/docs/axis.html#ticks>`__ property. **Default value:** ``false`` **See also:** `bin <https://vega.github.io/vega-lite/docs/bin.html>`__ documentation. field : str, dict, :class:`Field`, :class:`FieldName`, :class:`RepeatRef` **Required.** A string defining the name of the field from which to pull a data value or an object defining iterated values from the `repeat <https://vega.github.io/vega-lite/docs/repeat.html>`__ operator. **See also:** `field <https://vega.github.io/vega-lite/docs/field.html>`__ documentation. **Notes:** 1) Dots (``.``) and brackets (``[`` and ``]``) can be used to access nested objects (e.g., ``"field": "foo.bar"`` and ``"field": "foo['bar']"``). If field names contain dots or brackets but are not nested, you can use ``\\`` to escape dots and brackets (e.g., ``"a\\.b"`` and ``"a\\[0\\]"``). See more details about escaping in the `field documentation <https://vega.github.io/vega-lite/docs/field.html>`__. 2) ``field`` is not required if ``aggregate`` is ``count``. scale : dict, :class:`Scale`, None An object defining properties of the channel's scale, which is the function that transforms values in the data domain (numbers, dates, strings, etc) to visual values (pixels, colors, sizes) of the encoding channels. If ``null``, the scale will be `disabled and the data value will be directly encoded <https://vega.github.io/vega-lite/docs/scale.html#disable>`__. **Default value:** If undefined, default `scale properties <https://vega.github.io/vega-lite/docs/scale.html>`__ are applied. **See also:** `scale <https://vega.github.io/vega-lite/docs/scale.html>`__ documentation. sort : dict, :class:`Sort`, Sequence[str], Sequence[bool], Sequence[float], :class:`SortArray`, :class:`SortOrder`, :class:`AllSortString`, :class:`SortByChannel`, :class:`SortByEncoding`, :class:`EncodingSortField`, :class:`SortByChannelDesc`, Sequence[dict, :class:`DateTime`], Literal['-x', '-y', '-color', '-fill', '-stroke', '-strokeWidth', '-size', '-shape', '-fillOpacity', '-strokeOpacity', '-opacity', '-text', 'ascending', 'descending', 'x', 'y', 'color', 'fill', 'stroke', 'strokeWidth', 'size', 'shape', 'fillOpacity', 'strokeOpacity', 'opacity', 'text'], None Sort order for the encoded field. For continuous fields (quantitative or temporal), ``sort`` can be either ``"ascending"`` or ``"descending"``. For discrete fields, ``sort`` can be one of the following: * ``"ascending"`` or ``"descending"`` -- for sorting by the values' natural order in JavaScript. * `A string indicating an encoding channel name to sort by <https://vega.github.io/vega-lite/docs/sort.html#sort-by-encoding>`__ (e.g., ``"x"`` or ``"y"``) with an optional minus prefix for descending sort (e.g., ``"-x"`` to sort by x-field, descending). This channel string is short-form of `a sort-by-encoding definition <https://vega.github.io/vega-lite/docs/sort.html#sort-by-encoding>`__. For example, ``"sort": "-x"`` is equivalent to ``"sort": {"encoding": "x", "order": "descending"}``. * `A sort field definition <https://vega.github.io/vega-lite/docs/sort.html#sort-field>`__ for sorting by another field. * `An array specifying the field values in preferred order <https://vega.github.io/vega-lite/docs/sort.html#sort-array>`__. In this case, the sort order will obey the values in the array, followed by any unspecified values in their original order. For discrete time field, values in the sort array can be `date-time definition objects <https://vega.github.io/vega-lite/docs/datetime.html>`__. In addition, for time units ``"month"`` and ``"day"``, the values can be the month or day names (case insensitive) or their 3-letter initials (e.g., ``"Mon"``, ``"Tue"``). * ``null`` indicating no sort. **Default value:** ``"ascending"`` **Note:** ``null`` and sorting by another channel is not supported for ``row`` and ``column``. **See also:** `sort <https://vega.github.io/vega-lite/docs/sort.html>`__ documentation. stack : bool, :class:`StackOffset`, Literal['zero', 'center', 'normalize'], None Type of stacking offset if the field should be stacked. ``stack`` is only applicable for ``x``, ``y``, ``theta``, and ``radius`` channels with continuous domains. For example, ``stack`` of ``y`` can be used to customize stacking for a vertical bar chart. ``stack`` can be one of the following values: * ``"zero"`` or ``true``: stacking with baseline offset at zero value of the scale (for creating typical stacked `bar <https://vega.github.io/vega-lite/docs/stack.html#bar>`__ and `area <https://vega.github.io/vega-lite/docs/stack.html#area>`__ chart). * ``"normalize"`` - stacking with normalized domain (for creating `normalized stacked bar and area charts <https://vega.github.io/vega-lite/docs/stack.html#normalized>`__ and pie charts `with percentage tooltip <https://vega.github.io/vega-lite/docs/arc.html#tooltip>`__). * ``"center"`` - stacking with center baseline (for `streamgraph <https://vega.github.io/vega-lite/docs/stack.html#streamgraph>`__). * ``null`` or ``false`` - No-stacking. This will produce layered `bar <https://vega.github.io/vega-lite/docs/stack.html#layered-bar-chart>`__ and area chart. **Default value:** ``zero`` for plots with all of the following conditions are true: (1) the mark is ``bar``, ``area``, or ``arc``; (2) the stacked measure channel (x or y) has a linear scale; (3) At least one of non-position channels mapped to an unaggregated field that is different from x and y. Otherwise, ``null`` by default. **See also:** `stack <https://vega.github.io/vega-lite/docs/stack.html>`__ documentation. timeUnit : dict, :class:`TimeUnit`, :class:`MultiTimeUnit`, :class:`BinnedTimeUnit`, :class:`SingleTimeUnit`, :class:`TimeUnitParams`, :class:`UtcMultiTimeUnit`, :class:`UtcSingleTimeUnit`, :class:`LocalMultiTimeUnit`, :class:`LocalSingleTimeUnit`, Literal['binnedyear', 'binnedyearquarter', 'binnedyearquartermonth', 'binnedyearmonth', 'binnedyearmonthdate', 'binnedyearmonthdatehours', 'binnedyearmonthdatehoursminutes', 'binnedyearmonthdatehoursminutesseconds', 'binnedyearweek', 'binnedyearweekday', 'binnedyearweekdayhours', 'binnedyearweekdayhoursminutes', 'binnedyearweekdayhoursminutesseconds', 'binnedyeardayofyear', 'binnedutcyear', 'binnedutcyearquarter', 'binnedutcyearquartermonth', 'binnedutcyearmonth', 'binnedutcyearmonthdate', 'binnedutcyearmonthdatehours', 'binnedutcyearmonthdatehoursminutes', 'binnedutcyearmonthdatehoursminutesseconds', 'binnedutcyearweek', 'binnedutcyearweekday', 'binnedutcyearweekdayhours', 'binnedutcyearweekdayhoursminutes', 'binnedutcyearweekdayhoursminutesseconds', 'binnedutcyeardayofyear', 'utcyear', 'utcquarter', 'utcmonth', 'utcweek', 'utcday', 'utcdayofyear', 'utcdate', 'utchours', 'utcminutes', 'utcseconds', 'utcmilliseconds', 'year', 'quarter', 'month', 'week', 'day', 'dayofyear', 'date', 'hours', 'minutes', 'seconds', 'milliseconds', 'utcyearquarter', 'utcyearquartermonth', 'utcyearmonth', 'utcyearmonthdate', 'utcyearmonthdatehours', 'utcyearmonthdatehoursminutes', 'utcyearmonthdatehoursminutesseconds', 'utcyearweek', 'utcyearweekday', 'utcyearweekdayhours', 'utcyearweekdayhoursminutes', 'utcyearweekdayhoursminutesseconds', 'utcyeardayofyear', 'utcquartermonth', 'utcmonthdate', 'utcmonthdatehours', 'utcmonthdatehoursminutes', 'utcmonthdatehoursminutesseconds', 'utcweekday', 'utcweekdayhours', 'utcweekdayhoursminutes', 'utcweekdayhoursminutesseconds', 'utcdayhours', 'utcdayhoursminutes', 'utcdayhoursminutesseconds', 'utchoursminutes', 'utchoursminutesseconds', 'utcminutesseconds', 'utcsecondsmilliseconds', 'yearquarter', 'yearquartermonth', 'yearmonth', 'yearmonthdate', 'yearmonthdatehours', 'yearmonthdatehoursminutes', 'yearmonthdatehoursminutesseconds', 'yearweek', 'yearweekday', 'yearweekdayhours', 'yearweekdayhoursminutes', 'yearweekdayhoursminutesseconds', 'yeardayofyear', 'quartermonth', 'monthdate', 'monthdatehours', 'monthdatehoursminutes', 'monthdatehoursminutesseconds', 'weekday', 'weekdayhours', 'weekdayhoursminutes', 'weekdayhoursminutesseconds', 'dayhours', 'dayhoursminutes', 'dayhoursminutesseconds', 'hoursminutes', 'hoursminutesseconds', 'minutesseconds', 'secondsmilliseconds'] Time unit (e.g., ``year``, ``yearmonth``, ``month``, ``hours``) for a temporal field. or `a temporal field that gets casted as ordinal <https://vega.github.io/vega-lite/docs/type.html#cast>`__. **Default value:** ``undefined`` (None) **See also:** `timeUnit <https://vega.github.io/vega-lite/docs/timeunit.html>`__ documentation. title : str, :class:`Text`, Sequence[str], None A title for the field. If ``null``, the title will be removed. **Default value:** derived from the field's name and transformation function (``aggregate``, ``bin`` and ``timeUnit``). If the field has an aggregate function, the function is displayed as part of the title (e.g., ``"Sum of Profit"``). If the field is binned or has a time unit applied, the applied function is shown in parentheses (e.g., ``"Profit (binned)"``, ``"Transaction Date (year-month)"``). Otherwise, the title is simply the field name. **Notes**: 1) You can customize the default field title format by providing the `fieldTitle <https://vega.github.io/vega-lite/docs/config.html#top-level-config>`__ property in the `config <https://vega.github.io/vega-lite/docs/config.html>`__ or `fieldTitle function via the compile function's options <https://vega.github.io/vega-lite/usage/compile.html#field-title>`__. 2) If both field definition's ``title`` and axis, header, or legend ``title`` are defined, axis/header/legend title will be used. type : :class:`StandardType`, Literal['quantitative', 'ordinal', 'temporal', 'nominal'] The type of measurement (``"quantitative"``, ``"temporal"``, ``"ordinal"``, or ``"nominal"``) for the encoded field or constant value (``datum``). It can also be a ``"geojson"`` type for encoding `'geoshape' <https://vega.github.io/vega-lite/docs/geoshape.html>`__. Vega-Lite automatically infers data types in many cases as discussed below. However, type is required for a field if: (1) the field is not nominal and the field encoding has no specified ``aggregate`` (except ``argmin`` and ``argmax``), ``bin``, scale type, custom ``sort`` order, nor ``timeUnit`` or (2) if you wish to use an ordinal scale for a field with ``bin`` or ``timeUnit``. **Default value:** 1) For a data ``field``, ``"nominal"`` is the default data type unless the field encoding has ``aggregate``, ``channel``, ``bin``, scale type, ``sort``, or ``timeUnit`` that satisfies the following criteria: * ``"quantitative"`` is the default type if (1) the encoded field contains ``bin`` or ``aggregate`` except ``"argmin"`` and ``"argmax"``, (2) the encoding channel is ``latitude`` or ``longitude`` channel or (3) if the specified scale type is `a quantitative scale <https://vega.github.io/vega-lite/docs/scale.html#type>`__. * ``"temporal"`` is the default type if (1) the encoded field contains ``timeUnit`` or (2) the specified scale type is a time or utc scale * ``"ordinal"`` is the default type if (1) the encoded field contains a `custom sort order <https://vega.github.io/vega-lite/docs/sort.html#specifying-custom-sort-order>`__, (2) the specified scale type is an ordinal/point/band scale, or (3) the encoding channel is ``order``. 2) For a constant value in data domain (``datum``): * ``"quantitative"`` if the datum is a number * ``"nominal"`` if the datum is a string * ``"temporal"`` if the datum is `a date time object <https://vega.github.io/vega-lite/docs/datetime.html>`__ **Note:** * Data ``type`` describes the semantics of the data rather than the primitive data types (number, string, etc.). The same primitive data type can have different types of measurement. For example, numeric data can represent quantitative, ordinal, or nominal data. * Data values for a temporal field can be either a date-time string (e.g., ``"2015-03-07 12:32:17"``, ``"17:01"``, ``"2015-03-16"``. ``"2015"``) or a timestamp number (e.g., ``1552199579097``). * When using with `bin <https://vega.github.io/vega-lite/docs/bin.html>`__, the ``type`` property can be either ``"quantitative"`` (for using a linear bin scale) or `"ordinal" (for using an ordinal bin scale) <https://vega.github.io/vega-lite/docs/type.html#cast-bin>`__. * When using with `timeUnit <https://vega.github.io/vega-lite/docs/timeunit.html>`__, the ``type`` property can be either ``"temporal"`` (default, for using a temporal scale) or `"ordinal" (for using an ordinal scale) <https://vega.github.io/vega-lite/docs/type.html#cast-bin>`__. * When using with `aggregate <https://vega.github.io/vega-lite/docs/aggregate.html>`__, the ``type`` property refers to the post-aggregation data type. For example, we can calculate count ``distinct`` of a categorical field ``"cat"`` using ``{"aggregate": "distinct", "field": "cat"}``. The ``"type"`` of the aggregate output is ``"quantitative"``. * Secondary channels (e.g., ``x2``, ``y2``, ``xError``, ``yError``) do not have ``type`` as they must have exactly the same type as their primary channels (e.g., ``x``, ``y``). **See also:** `type <https://vega.github.io/vega-lite/docs/type.html>`__ documentation. """ _schema = {"$ref": "#/definitions/PositionFieldDefBase"} def __init__( self, shorthand: Optional[str | SchemaBase | Sequence[str] | Map] = Undefined, aggregate: Optional[SchemaBase | Map | NonArgAggregateOp_T] = Undefined, bandPosition: Optional[float] = Undefined, bin: Optional[bool | SchemaBase | Literal["binned"] | Map | None] = Undefined, field: Optional[str | SchemaBase | Map] = Undefined, scale: Optional[SchemaBase | Map | None] = Undefined, sort: Optional[ SchemaBase | Sequence[str] | Sequence[bool] | Sequence[float] | Sequence[Temporal | SchemaBase | Map] | Map | AllSortString_T | None ] = Undefined, stack: Optional[bool | SchemaBase | StackOffset_T | None] = Undefined, timeUnit: Optional[ SchemaBase | Map | MultiTimeUnit_T | BinnedTimeUnit_T | SingleTimeUnit_T ] = Undefined, title: Optional[str | SchemaBase | Sequence[str] | None] = Undefined, type: Optional[SchemaBase | StandardType_T] = Undefined, **kwds, ): super().__init__( shorthand=shorthand, aggregate=aggregate, bandPosition=bandPosition, bin=bin, field=field, scale=scale, sort=sort, stack=stack, timeUnit=timeUnit, title=title, type=type, **kwds, )
PositionFieldDefBase
python
readthedocs__readthedocs.org
readthedocs/projects/migrations/0061_add_imported_file_ignore.py
{ "start": 149, "end": 570 }
class ____(migrations.Migration): safe = Safe.after_deploy() dependencies = [ ("projects", "0060_make_rank_not_null"), ] operations = [ migrations.AddField( model_name="importedfile", name="ignore", field=models.BooleanField( null=True, verbose_name="Ignore this file from operations like indexing" ), ), ]
Migration
python
eventlet__eventlet
tests/zmq_test.py
{ "start": 15400, "end": 17224 }
class ____(tests.LimitedTestCase): @tests.skip_unless(zmq_supported) def test_queue_lock_order(self): q = zmq._QueueLock() s = eventlet.Semaphore(0) results = [] def lock(x): with q: results.append(x) s.release() q.acquire() eventlet.spawn(lock, 1) eventlet.sleep() eventlet.spawn(lock, 2) eventlet.sleep() eventlet.spawn(lock, 3) eventlet.sleep() self.assertEqual(results, []) q.release() s.acquire() s.acquire() s.acquire() self.assertEqual(results, [1, 2, 3]) @tests.skip_unless(zmq_supported) def test_count(self): q = zmq._QueueLock() self.assertFalse(q) q.acquire() self.assertTrue(q) q.release() self.assertFalse(q) with q: self.assertTrue(q) self.assertFalse(q) @tests.skip_unless(zmq_supported) def test_errors(self): q = zmq._QueueLock() self.assertRaises(zmq.LockReleaseError, q.release) q.acquire() q.release() self.assertRaises(zmq.LockReleaseError, q.release) @tests.skip_unless(zmq_supported) def test_nested_acquire(self): q = zmq._QueueLock() self.assertFalse(q) q.acquire() q.acquire() s = eventlet.Semaphore(0) results = [] def lock(x): with q: results.append(x) s.release() eventlet.spawn(lock, 1) eventlet.sleep() self.assertEqual(results, []) q.release() eventlet.sleep() self.assertEqual(results, []) self.assertTrue(q) q.release() s.acquire() self.assertEqual(results, [1])
TestQueueLock
python
huggingface__transformers
src/transformers/models/esm/modeling_esmfold.py
{ "start": 46324, "end": 47775 }
class ____: def __init__(self, param, bins=50, start=0, end=1): # All tensors are of shape ..., bins. self.logits = param bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype) self.v_bins = (bins[:-1] + bins[1:]) / 2 def log_prob(self, true): # Shapes are: # self.probs: ... x bins # true : ... true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1) nll = self.logits.log_softmax(-1) return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1) def mean(self): return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1) def categorical_lddt(logits, bins=50): # Logits are ..., 37, bins. return EsmCategoricalMixture(logits, bins=bins).mean() def get_axial_mask(mask): """ Helper to convert B x L mask of valid positions to axial mask used in row column attentions. Input: mask: B x L tensor of booleans Output: mask: B x L x L tensor of booleans """ if mask is None: return None if len(mask.shape) != 2: raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.") batch_dim, seq_dim = mask.shape m = mask.unsqueeze(1).expand(batch_dim, seq_dim, seq_dim) m = m.reshape(batch_dim * seq_dim, seq_dim) return m
EsmCategoricalMixture
python
dagster-io__dagster
examples/assets_pandas_type_metadata/assets_pandas_type_metadata/resources/csv_io_manager.py
{ "start": 298, "end": 3123 }
class ____(ConfigurableIOManager): """Translates between Pandas DataFrames and CSVs on the local filesystem.""" base_dir: Optional[str] = Field(default=None) @property @cached_method def resolved_base_dir(self) -> str: if self.base_dir: return self.base_dir resource_context = self.get_resource_context() if resource_context.instance is not None: return resource_context.instance.storage_directory() else: return os.getenv("DAGSTER_HOME", ".") def _get_fs_path(self, asset_key: AssetKey) -> str: rpath = os.path.join(self.resolved_base_dir, *asset_key.path) + ".csv" return os.path.abspath(rpath) def handle_output(self, context, obj: pd.DataFrame): """This saves the dataframe as a CSV.""" fpath = self._get_fs_path(asset_key=context.asset_key) os.makedirs(os.path.dirname(fpath), exist_ok=True) obj.to_csv(fpath) with open(fpath + ".version", "w", encoding="utf8") as f: f.write(context.version if context.version else "None") context.add_output_metadata( { "Rows": MetadataValue.int(obj.shape[0]), "Path": MetadataValue.path(fpath), "Sample": MetadataValue.md(obj.head(5).to_markdown()), "Resolved version": MetadataValue.text(context.version), # type: ignore "Schema": MetadataValue.table_schema(self.get_schema(context.dagster_type)), } ) def get_schema(self, dagster_type): schema_value = next( (x for x in dagster_type.metadata.values() if isinstance(x, TableSchemaMetadataValue)), None, ) assert schema_value return schema_value.schema def load_input(self, context): """This reads a dataframe from a CSV.""" fpath = self._get_fs_path(asset_key=context.asset_key) date_col_names = [ table_col.name for table_col in self.get_schema(context.upstream_output.dagster_type).columns if table_col.type == "datetime64[ns]" ] return pd.read_csv(fpath, parse_dates=date_col_names) def has_output(self, context) -> bool: fpath = self._get_fs_path(asset_key=context.asset_key) version_fpath = fpath + ".version" if not os.path.exists(version_fpath): return False with open(version_fpath, encoding="utf8") as f: version = f.read() return version == context.version def pandas_columns_to_markdown(dataframe: pd.DataFrame) -> str: return textwrap.dedent( """ | Name | Type | | ---- | ---- | """ ) + "\n".join([f"| {name} | {dtype} |" for name, dtype in dataframe.dtypes.items()])
LocalCsvIOManager
python
dask__distributed
distributed/deploy/cluster.py
{ "start": 862, "end": 21279 }
class ____(SyncMethodMixin): """Superclass for cluster objects This class contains common functionality for Dask Cluster manager classes. To implement this class, you must provide 1. A ``scheduler_comm`` attribute, which is a connection to the scheduler following the ``distributed.core.rpc`` API. 2. Implement ``scale``, which takes an integer and scales the cluster to that many workers, or else set ``_supports_scaling`` to False For that, you should get the following: 1. A standard ``__repr__`` 2. A live IPython widget 3. Adaptive scaling 4. Integration with dask-labextension 5. A ``scheduler_info`` attribute which contains an up-to-date copy of ``Scheduler.identity()``, which is used for much of the above 6. Methods to gather logs """ _supports_scaling = True __loop: IOLoop | None = None def __init__( self, asynchronous=False, loop=None, quiet=False, name=None, scheduler_sync_interval=1, ): self._loop_runner = LoopRunner(loop=loop, asynchronous=asynchronous) self.__asynchronous = asynchronous self.scheduler_info = {"workers": {}} self.periodic_callbacks = {} self._watch_worker_status_comm = None self._watch_worker_status_task = None self._cluster_manager_logs = [] self.quiet = quiet self.scheduler_comm = None self._adaptive = None self._sync_interval = parse_timedelta( scheduler_sync_interval, default="seconds" ) self._sync_cluster_info_task = None if name is None: name = str(uuid.uuid4())[:8] self._cluster_info = { "name": name, "type": typename(type(self)), } self.status = Status.created @property def loop(self) -> IOLoop | None: loop = self.__loop if loop is None: # If the loop is not running when this is called, the LoopRunner.loop # property will raise a DeprecationWarning # However subsequent calls might occur - eg atexit, where a stopped # loop is still acceptable - so we cache access to the loop. self.__loop = loop = self._loop_runner.loop return loop @loop.setter def loop(self, value: IOLoop) -> None: warnings.warn( "setting the loop property is deprecated", DeprecationWarning, stacklevel=2 ) if value is None: raise ValueError("expected an IOLoop, got None") self.__loop = value @property def called_from_running_loop(self): try: return ( getattr(self.loop, "asyncio_loop", None) is asyncio.get_running_loop() ) except RuntimeError: return self.__asynchronous @property def name(self): return self._cluster_info["name"] @name.setter def name(self, name): self._cluster_info["name"] = name async def _start(self): comm = await self.scheduler_comm.live_comm() comm.name = "Cluster worker status" await comm.write({"op": "subscribe_worker_status"}) self.scheduler_info = SchedulerInfo(await comm.read()) self._watch_worker_status_comm = comm self._watch_worker_status_task = asyncio.ensure_future( self._watch_worker_status(comm) ) info = await self.scheduler_comm.get_metadata( keys=["cluster-manager-info"], default={} ) self._cluster_info.update(info) # Start a background task for syncing cluster info with the scheduler self._sync_cluster_info_task = asyncio.ensure_future(self._sync_cluster_info()) for pc in self.periodic_callbacks.values(): pc.start() self.status = Status.running async def _sync_cluster_info(self): err_count = 0 warn_at = 5 max_interval = 10 * self._sync_interval # Loop until the cluster is shutting down. We shouldn't really need # this check (the `CancelledError` should be enough), but something # deep in the comms code is silencing `CancelledError`s _some_ of the # time, resulting in a cancellation not always bubbling back up to # here. Relying on the status is fine though, not worth changing. while self.status == Status.running: try: await self.scheduler_comm.set_metadata( keys=["cluster-manager-info"], value=self._cluster_info.copy(), ) err_count = 0 except Exception: err_count += 1 # Only warn if multiple subsequent attempts fail, and only once # per set of subsequent failed attempts. This way we're not # excessively noisy during a connection blip, but we also don't # silently fail. if err_count == warn_at: logger.warning( "Failed to sync cluster info multiple times - perhaps " "there's a connection issue? Error:", exc_info=True, ) # Sleep, with error backoff interval = _exponential_backoff( err_count, self._sync_interval, 1.5, max_interval ) await asyncio.sleep(interval) async def _close(self): if self.status == Status.closed: return self.status = Status.closing with suppress(AttributeError): self._adaptive.stop() if self._watch_worker_status_comm: await self._watch_worker_status_comm.close() if self._watch_worker_status_task: await self._watch_worker_status_task if self._sync_cluster_info_task: self._sync_cluster_info_task.cancel() with suppress(asyncio.CancelledError): await self._sync_cluster_info_task if self.scheduler_comm: await self.scheduler_comm.close_rpc() for pc in self.periodic_callbacks.values(): pc.stop() self.status = Status.closed def close(self, timeout: float | None = None) -> Any: # If the cluster is already closed, we're already done if self.status == Status.closed: if self.asynchronous: return NoOpAwaitable() return None try: return self.sync(self._close, callback_timeout=timeout) except RuntimeError: # loop closed during process shutdown return None def __del__(self, _warn=warnings.warn): if getattr(self, "status", Status.closed) != Status.closed: try: self_r = repr(self) except Exception: self_r = f"with a broken __repr__ {object.__repr__(self)}" _warn(f"unclosed cluster {self_r}", ResourceWarning, source=self) async def _watch_worker_status(self, comm): """Listen to scheduler for updates on adding and removing workers""" while True: try: msgs = await comm.read() except OSError: break with log_errors(): for op, msg in msgs: self._update_worker_status(op, msg) await comm.close() def _update_worker_status(self, op, msg): if op == "add": workers = msg.pop("workers") self.scheduler_info["workers"].update(workers) self.scheduler_info.update(msg) elif op == "remove": del self.scheduler_info["workers"][msg] else: # pragma: no cover raise ValueError("Invalid op", op, msg) def adapt(self, Adaptive: type[Adaptive] = Adaptive, **kwargs: Any) -> Adaptive: """Turn on adaptivity For keyword arguments see dask.distributed.Adaptive Examples -------- >>> cluster.adapt(minimum=0, maximum=10, interval='500ms') """ with suppress(AttributeError): self._adaptive.stop() if not hasattr(self, "_adaptive_options"): self._adaptive_options = {} self._adaptive_options.update(kwargs) self._adaptive = Adaptive(self, **self._adaptive_options) return self._adaptive def scale(self, n: int) -> None: """Scale cluster to n workers Parameters ---------- n : int Target number of workers Examples -------- >>> cluster.scale(10) # scale cluster to ten workers """ raise NotImplementedError() def _log(self, log): """Log a message. Output a message to the user and also store for future retrieval. For use in subclasses where initialisation may take a while and it would be beneficial to feed back to the user. Examples -------- >>> self._log("Submitted job X to batch scheduler") """ self._cluster_manager_logs.append((datetime.datetime.now(), log)) if not self.quiet: print(log) async def _get_logs(self, cluster=True, scheduler=True, workers=True): logs = Logs() if cluster: logs["Cluster"] = Log( "\n".join(line[1] for line in self._cluster_manager_logs) ) if scheduler: L = await self.scheduler_comm.get_logs() logs["Scheduler"] = Log("\n".join(line for level, line in L)) if workers: if workers is True: workers = None d = await self.scheduler_comm.worker_logs(workers=workers) for k, v in d.items(): logs[k] = Log("\n".join(line for level, line in v)) return logs def get_logs(self, cluster=True, scheduler=True, workers=True): """Return logs for the cluster, scheduler and workers Parameters ---------- cluster : boolean Whether or not to collect logs for the cluster manager scheduler : boolean Whether or not to collect logs for the scheduler workers : boolean or Iterable[str], optional A list of worker addresses to select. Defaults to all workers if `True` or no workers if `False` Returns ------- logs: Dict[str] A dictionary of logs, with one item for the scheduler and one for each worker """ return self.sync( self._get_logs, cluster=cluster, scheduler=scheduler, workers=workers ) @_deprecated(use_instead="get_logs") def logs(self, *args, **kwargs): return self.get_logs(*args, **kwargs) def get_client(self): """Return client for the cluster If a client has already been initialized for the cluster, return that otherwise initialize a new client object. """ from distributed.client import Client try: current_client = Client.current() if current_client and current_client.cluster == self: return current_client except ValueError: pass return Client(self) @property def dashboard_link(self): try: port = self.scheduler_info["services"]["dashboard"] except KeyError: return "" else: host = self.scheduler_address.split("://")[1].split("/")[0].split(":")[0] return format_dashboard_link(host, port) def _scaling_status(self): if self._adaptive and self._adaptive.periodic_callback: mode = "Adaptive" else: mode = "Manual" workers = len(self.scheduler_info["workers"]) if hasattr(self, "worker_spec"): requested = sum( 1 if "group" not in each else len(each["group"]) for each in self.worker_spec.values() ) elif hasattr(self, "workers"): requested = len(self.workers) else: requested = workers worker_count = workers if workers == requested else f"{workers} / {requested}" return f""" <table> <tr><td style="text-align: left;">Scaling mode: {mode}</td></tr> <tr><td style="text-align: left;">Workers: {worker_count}</td></tr> </table> """ def _widget(self): """Create IPython widget for display within a notebook""" try: return self._cached_widget except AttributeError: pass try: from ipywidgets import ( HTML, Accordion, Button, HBox, IntText, Layout, Tab, VBox, ) except ImportError: self._cached_widget = None return None layout = Layout(width="150px") status = HTML(self._repr_html_()) if self._supports_scaling: request = IntText(0, description="Workers", layout=layout) scale = Button(description="Scale", layout=layout) minimum = IntText(0, description="Minimum", layout=layout) maximum = IntText(0, description="Maximum", layout=layout) adapt = Button(description="Adapt", layout=layout) accordion = Accordion( [HBox([request, scale]), HBox([minimum, maximum, adapt])], layout=Layout(min_width="500px"), ) accordion.selected_index = None accordion.set_title(0, "Manual Scaling") accordion.set_title(1, "Adaptive Scaling") def adapt_cb(b): self.adapt(minimum=minimum.value, maximum=maximum.value) update() adapt.on_click(adapt_cb) @log_errors def scale_cb(b): n = request.value with suppress(AttributeError): self._adaptive.stop() self.scale(n) update() scale.on_click(scale_cb) else: # pragma: no cover accordion = HTML("") scale_status = HTML(self._scaling_status()) tab = Tab() tab.children = [status, VBox([scale_status, accordion])] tab.set_title(0, "Status") tab.set_title(1, "Scaling") self._cached_widget = tab def update(): status.value = self._repr_html_() scale_status.value = self._scaling_status() cluster_repr_interval = parse_timedelta( dask.config.get("distributed.deploy.cluster-repr-interval", default="ms") ) def install(): pc = PeriodicCallback(update, cluster_repr_interval * 1000) self.periodic_callbacks["cluster-repr"] = pc pc.start() self.loop.add_callback(install) return tab def _repr_html_(self, cluster_status=None): try: scheduler_info_repr = self.scheduler_info._repr_html_() except AttributeError: scheduler_info_repr = "Scheduler not started yet." return get_template("cluster.html.j2").render( type=type(self).__name__, name=self.name, workers=self.scheduler_info["workers"], dashboard_link=self.dashboard_link, scheduler_info_repr=scheduler_info_repr, cluster_status=cluster_status, ) def _ipython_display_(self, **kwargs): """Display the cluster rich IPython repr""" # Note: it would be simpler to just implement _repr_mimebundle_, # but we cannot do that until we drop ipywidgets 7 support, as # it does not provide a public way to get the mimebundle for a # widget. So instead we fall back on the more customizable _ipython_display_ # and display as a side-effect. from IPython.display import display widget = self._widget() if widget: import ipywidgets if parse_version(ipywidgets.__version__) >= parse_version("8.0.0"): mimebundle = widget._repr_mimebundle_(**kwargs) or {} mimebundle["text/plain"] = repr(self) mimebundle["text/html"] = self._repr_html_() display(mimebundle, raw=True) else: display(widget, **kwargs) else: mimebundle = {"text/plain": repr(self), "text/html": self._repr_html_()} display(mimebundle, raw=True) def __enter__(self): if self.asynchronous: raise TypeError( "Used 'with' with asynchronous class; please use 'async with'" ) return self.sync(self.__aenter__) def __exit__(self, exc_type, exc_value, traceback): aw = self.close() assert aw is None, aw def __await__(self): return self yield async def __aenter__(self): await self return self async def __aexit__(self, exc_type, exc_value, traceback): await self._close() @property def scheduler_address(self) -> str: if not self.scheduler_comm: return "<Not Connected>" return self.scheduler_comm.address @property def _cluster_class_name(self): return getattr(self, "_name", type(self).__name__) def __repr__(self): text = "%s(%s, %r, workers=%d, threads=%d" % ( self._cluster_class_name, self.name, self.scheduler_address, len(self.scheduler_info["workers"]), sum(w["nthreads"] for w in self.scheduler_info["workers"].values()), ) memory = [w["memory_limit"] for w in self.scheduler_info["workers"].values()] if all(memory): text += ", memory=" + format_bytes(sum(memory)) text += ")" return text @property def plan(self): return set(self.workers) @property def requested(self): return set(self.workers) @property def observed(self): return {d["name"] for d in self.scheduler_info["workers"].values()} def __eq__(self, other): return type(other) == type(self) and self.name == other.name def __hash__(self): return id(self) async def _wait_for_workers(self, n_workers=0, timeout=None): self.scheduler_info = SchedulerInfo(await self.scheduler_comm.identity()) if timeout: deadline = time() + parse_timedelta(timeout) else: deadline = None def running_workers(info): return len( [ ws for ws in info["workers"].values() if ws["status"] == Status.running.name ] ) while n_workers and running_workers(self.scheduler_info) < n_workers: if deadline and time() > deadline: raise WorkerStartTimeoutError( running_workers(self.scheduler_info), n_workers, timeout ) await asyncio.sleep(0.1) self.scheduler_info = SchedulerInfo(await self.scheduler_comm.identity()) def wait_for_workers(self, n_workers: int, timeout: float | None = None) -> None: """Blocking call to wait for n workers before continuing Parameters ---------- n_workers : int The number of workers timeout : number, optional Time in seconds after which to raise a ``dask.distributed.TimeoutError`` """ if not isinstance(n_workers, int) or n_workers < 1: raise ValueError( f"`n_workers` must be a positive integer. Instead got {n_workers}." ) return self.sync(self._wait_for_workers, n_workers, timeout=timeout) def _exponential_backoff( attempt: int, multiplier: float, exponential_base: float, max_interval: float ) -> float: """Calculate the duration of an exponential backoff""" try: interval = multiplier * exponential_base**attempt except OverflowError: return max_interval return min(max_interval, interval)
Cluster
python
getsentry__sentry
tests/sentry/tasks/test_auth.py
{ "start": 3557, "end": 5906 }
class ____(TestCase): def setUp(self) -> None: super().setUp() self.user = self.create_user(email="bar@example.com") self.organization = self.create_organization(name="Test") with assume_test_silo_mode(SiloMode.CONTROL): self.provider = AuthProvider.objects.create( organization_id=self.organization.id, provider="dummy" ) self.om = self.create_member( user_id=self.user.id, organization=self.organization, flags=OrganizationMember.flags["sso:linked"], ) assert self.om.flags["sso:linked"] self.user2 = self.create_user(email="baz@example.com") om2 = self.create_member(user_id=self.user2.id, organization=self.organization, flags=0) assert not om2.flags["sso:linked"] # Invited members don't get emails self.create_member(organization=self.organization, email="invited@example.com") def test_email_unlink_notifications_with_password(self) -> None: with self.tasks(): email_unlink_notifications( self.organization.id, self.user.email, self.provider.provider ) emails = sorted(message.body for message in mail.outbox) assert len(emails) == 2 assert f"can now login using your email {self.user.email}, and password" in emails[0] assert "you'll first have to set a password" not in emails[0] self.om.refresh_from_db() assert not self.om.flags["sso:linked"] def test_email_unlink_notifications_without_password(self) -> None: with assume_test_silo_mode(SiloMode.CONTROL): self.user.password = "" self.user.save() with self.tasks(): email_unlink_notifications( self.organization.id, self.user.email, self.provider.provider ) emails = sorted(message.body for message in mail.outbox) assert len(emails) == 2 assert "you'll first have to set a password" in emails[0] assert f"can now login using your email {self.user.email}, and password" not in emails[0] assert f"can now login using your email {self.user2.email}, and password" in emails[1] self.om.refresh_from_db() assert not self.om.flags["sso:linked"]
EmailUnlinkNotificationsTest
python
doocs__leetcode
solution/1500-1599/1595.Minimum Cost to Connect Two Groups of Points/Solution2.py
{ "start": 0, "end": 580 }
class ____: def connectTwoGroups(self, cost: List[List[int]]) -> int: m, n = len(cost), len(cost[0]) f = [inf] * (1 << n) f[0] = 0 g = f[:] for i in range(1, m + 1): for j in range(1 << n): g[j] = inf for k in range(n): if (j >> k & 1) == 0: continue c = cost[i - 1][k] x = min(g[j ^ (1 << k)], f[j], f[j ^ (1 << k)]) + c g[j] = min(g[j], x) f = g[:] return f[-1]
Solution
python
joke2k__faker
tests/providers/test_automotive.py
{ "start": 4485, "end": 5924 }
class ____: """Test es_ES automotive provider methods""" new_format_pattern: Pattern = re.compile(r"\d{4}\s[A-Z]{3}") old_format_pattern: Pattern = re.compile(r"(?P<province_prefix>[A-Z]{1,2})\s\d{4}\s[A-Z]{2}") def test_plate_new_format(self, faker, num_samples): for _ in range(num_samples): plate = faker.license_plate_unified() assert isinstance(plate, str) assert self.new_format_pattern.match(plate) def test_plate_old_format(self, faker, num_samples): for _ in range(num_samples): plate = faker.license_plate_by_province() assert isinstance(plate, str) match = self.old_format_pattern.match(plate) assert match assert match.group("province_prefix") in EsEsAutomotiveProvider.province_prefix def test_plate_old_format_explicit_province_prefix(self, faker, num_samples): for _ in range(num_samples): plate = faker.license_plate_by_province(province_prefix="CA") assert isinstance(plate, str) assert self.old_format_pattern.match(plate) assert plate[:2] == "CA" def test_plate_format(self, faker, num_samples): for _ in range(num_samples): plate = faker.license_plate() assert isinstance(plate, str) assert self.new_format_pattern.match(plate) or self.old_format_pattern.match(plate)
TestEsEs
python
matplotlib__matplotlib
galleries/examples/misc/multiprocess_sgskip.py
{ "start": 1710, "end": 2416 }
class ____: def __init__(self): self.plot_pipe, plotter_pipe = mp.Pipe() self.plotter = ProcessPlotter() self.plot_process = mp.Process( target=self.plotter, args=(plotter_pipe,), daemon=True) self.plot_process.start() def plot(self, finished=False): send = self.plot_pipe.send if finished: send(None) else: data = np.random.random(2) send(data) def main(): pl = NBPlot() for _ in range(10): pl.plot() time.sleep(0.5) pl.plot(finished=True) if __name__ == '__main__': if plt.get_backend() == "MacOSX": mp.set_start_method("forkserver") main()
NBPlot
python
yaml__pyyaml
packaging/_pyyaml_pep517.py
{ "start": 388, "end": 1149 }
class ____: _current = {} def __init__(self, config_settings): self._config = config_settings def __enter__(self): type(self)._current = self._config def __exit__(self, exc_type, exc_val, exc_tb): type(self)._current = {} @classmethod def current(cls): return cls._current def _expose_config_settings(real_method, *args, **kwargs): from contextlib import nullcontext import inspect sig = inspect.signature(real_method) boundargs = sig.bind(*args, **kwargs) config = boundargs.arguments.get('config_settings') ctx = ActiveConfigSettings(config) if config else nullcontext() with ctx: return real_method(*args, **kwargs) _bridge_build_meta()
ActiveConfigSettings
python
tensorflow__tensorflow
tensorflow/python/ops/sparse_bincount_ops_test.py
{ "start": 1626, "end": 24240 }
class ____(test_util.TensorFlowTestCase, parameterized.TestCase): @parameterized.named_parameters( { "testcase_name": "_no_maxlength", "x": np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5]], "expected_values": [1, 1, 1, 2, 1], "expected_shape": [2, 6] }, { "testcase_name": "_maxlength", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "maxlength": 7, "expected_indices": [[0, 1], [0, 2], [0, 3], [1, 0], [1, 4]], "expected_values": [1, 1, 1, 1, 2], "expected_shape": [2, 7] }, { "testcase_name": "_maxlength_zero", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "maxlength": 0, "expected_indices": np.empty([0, 2], dtype=np.int64), "expected_values": [], "expected_shape": [2, 0] }, { "testcase_name": "_minlength", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "minlength": 9, "expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4], [1, 7]], "expected_values": [1, 1, 1, 1, 1, 2, 1], "expected_shape": [2, 9] }, { "testcase_name": "_minlength_larger_values", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "minlength": 3, "expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4], [1, 7]], "expected_values": [1, 1, 1, 1, 1, 2, 1], "expected_shape": [2, 8] }, { "testcase_name": "_no_maxlength_binary", "x": np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5]], "expected_values": [1, 1, 1, 1, 1], "expected_shape": [2, 6], "binary_output": True, }, { "testcase_name": "_maxlength_binary", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "maxlength": 7, "expected_indices": [[0, 1], [0, 2], [0, 3], [1, 0], [1, 4]], "expected_values": [1, 1, 1, 1, 1], "expected_shape": [2, 7], "binary_output": True, }, { "testcase_name": "_minlength_binary", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "minlength": 9, "expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4], [1, 7]], "expected_values": [1, 1, 1, 1, 1, 1, 1], "expected_shape": [2, 9], "binary_output": True, }, { "testcase_name": "_minlength_larger_values_binary", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "minlength": 3, "expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4], [1, 7]], "expected_values": [1, 1, 1, 1, 1, 1, 1], "expected_shape": [2, 8], "binary_output": True, }, { "testcase_name": "_no_maxlength_weights", "x": np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 2], [0, 3], [1, 4], [1, 5]], "expected_values": [2, 1, 0.5, 9, 3], "expected_shape": [2, 6], "weights": [[0.5, 1, 2], [3, 4, 5]] }, { "testcase_name": "_maxlength_weights", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "maxlength": 7, "expected_indices": [[0, 1], [0, 2], [0, 3], [1, 0], [1, 4]], "expected_values": [2, 1, 0.5, 3, 9], "expected_shape": [2, 7], "weights": [[0.5, 1, 2, 11], [7, 3, 4, 5]] }, { "testcase_name": "_minlength_weights", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "minlength": 9, "expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4], [1, 7]], "expected_values": [2, 1, 0.5, 3, 5, 13, 4], "expected_shape": [2, 9], "weights": [[0.5, 1, 2, 3], [4, 5, 6, 7]] }, { "testcase_name": "_minlength_larger_values_weights", "x": np.array([[3, 2, 1, 7], [7, 0, 4, 4]], dtype=np.int32), "minlength": 3, "expected_indices": [[0, 1], [0, 2], [0, 3], [0, 7], [1, 0], [1, 4], [1, 7]], "expected_values": [2, 1, 0.5, 3, 5, 13, 4], "expected_shape": [2, 8], "weights": [[0.5, 1, 2, 3], [4, 5, 6, 7]] }, { "testcase_name": "_1d", "x": np.array([3, 2, 1, 1], dtype=np.int32), "expected_indices": [[1], [2], [3]], "expected_values": [2, 1, 1], "expected_shape": [4] }, { "testcase_name": "_all_axes", "x": np.array([[3, 2, 1], [5, 4, 4]], dtype=np.int32), "expected_indices": [[1], [2], [3], [4], [5]], "expected_values": [1, 1, 1, 2, 1], "expected_shape": [6], "axis": None }, { "testcase_name": "_large_inputs", "x": np.array([[ 1941591354222760687, 1748591354222760687, 1241591354229760689 ], [ 1941591354222760687, 1241591354229760689, 1241591354229760687 ]], dtype=np.int64), "expected_indices": [[1241591354229760687], [1241591354229760689], [1748591354222760687], [1941591354222760687]], "expected_values": [1, 2, 1, 2], "expected_shape": [1941591354222760687 + 1], "axis": None }) def test_dense_input(self, x, expected_indices, expected_values, expected_shape, minlength=None, maxlength=None, binary_output=False, weights=None, axis=-1): y = sparse_ops.sparse_bincount( x, weights=weights, minlength=minlength, maxlength=maxlength, binary_output=binary_output, axis=axis) self.assertAllEqual(expected_indices, y.indices) self.assertAllEqual(expected_values, y.values) self.assertAllEqual(expected_shape, y.dense_shape) @parameterized.named_parameters( { "testcase_name": "_no_maxlength", "x": np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [2, 4], [2, 5]], "expected_values": [1, 1, 2, 1], "expected_shape": [3, 6], }, { "testcase_name": "_maxlength", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [2, 4], [2, 5]], "expected_values": [1, 1, 2, 1], "expected_shape": [3, 7], "maxlength": 7, }, { "testcase_name": "_maxlength_zero", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": np.empty([0, 2], dtype=np.int64), "expected_values": [], "expected_shape": [3, 0], "maxlength": 0, }, { "testcase_name": "_minlength", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [1, 7], [2, 4], [2, 5]], "expected_values": [1, 1, 1, 2, 1], "expected_shape": [3, 9], "minlength": 9, }, { "testcase_name": "_minlength_larger_values", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [1, 7], [2, 4], [2, 5]], "expected_values": [1, 1, 1, 2, 1], "expected_shape": [3, 8], "minlength": 3, }, { "testcase_name": "_no_maxlength_binary", "x": np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [2, 4], [2, 5]], "expected_values": [1, 1, 1, 1], "expected_shape": [3, 6], "binary_output": True, }, { "testcase_name": "_maxlength_binary", "x": np.array([[3, 0, 1, 0], [0, 0, 7, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [2, 4], [2, 5]], "expected_values": [1, 1, 1, 1], "expected_shape": [3, 7], "maxlength": 7, "binary_output": True, }, { "testcase_name": "_minlength_binary", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [1, 7], [2, 4], [2, 5]], "expected_values": [1, 1, 1, 1, 1], "expected_shape": [3, 9], "minlength": 9, "binary_output": True, }, { "testcase_name": "_minlength_larger_values_binary", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [1, 7], [2, 4], [2, 5]], "expected_values": [1, 1, 1, 1, 1], "expected_shape": [3, 8], "minlength": 3, "binary_output": True, }, { "testcase_name": "_no_maxlength_weights", "x": np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [2, 4], [2, 5]], "expected_values": [2, 6, 7, 10], "expected_shape": [3, 6], "weights": np.array([[6, 0, 2, 0], [0, 0, 0, 0], [10, 0, 3.5, 3.5]]), }, { "testcase_name": "_maxlength_weights", "x": np.array([[3, 0, 1, 0], [0, 0, 7, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [2, 4], [2, 5]], "expected_values": [2, 6, 7, 10], "expected_shape": [3, 7], "maxlength": 7, "weights": np.array([[6, 0, 2, 0], [0, 0, 14, 0], [10, 0, 3.5, 3.5]]), }, { "testcase_name": "_minlength_weights", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [1, 7], [2, 4], [2, 5]], "expected_values": [2, 6, 14, 6.5, 10], "expected_shape": [3, 9], "minlength": 9, "weights": np.array([[6, 0, 2, 0], [14, 0, 0, 0], [10, 0, 3, 3.5]]), }, { "testcase_name": "_minlength_larger_values_weights", "x": np.array([[3, 0, 1, 0], [7, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[0, 1], [0, 3], [1, 7], [2, 4], [2, 5]], "expected_values": [2, 6, 14, 6.5, 10], "expected_shape": [3, 8], "minlength": 3, "weights": np.array([[6, 0, 2, 0], [14, 0, 0, 0], [10, 0, 3, 3.5]]), }, { "testcase_name": "_1d", "x": np.array([3, 0, 1, 1], dtype=np.int32), "expected_indices": [[1], [3]], "expected_values": [2, 1], "expected_shape": [4], }, { "testcase_name": "_all_axes", "x": np.array([[3, 0, 1, 0], [0, 0, 0, 0], [5, 0, 4, 4]], dtype=np.int32), "expected_indices": [[1], [3], [4], [5]], "expected_values": [1, 1, 2, 1], "expected_shape": [6], "axis": None, }, { "testcase_name": "_large_inputs", "x": np.array([[1941591354222760687, 0, 1241591354229760689], [0, 1241591354229760689, 1241591354229760687]], dtype=np.int64), "expected_indices": [[1241591354229760687], [1241591354229760689], [1941591354222760687]], "expected_values": [1, 2, 1], "expected_shape": [1941591354222760687 + 1], "axis": None }) def test_sparse_input(self, x, expected_indices, expected_values, expected_shape, maxlength=None, minlength=None, binary_output=False, weights=None, axis=-1): x_sparse = sparse_ops.from_dense(x) w_sparse = sparse_ops.from_dense(weights) if weights is not None else None y = sparse_ops.sparse_bincount( x_sparse, weights=w_sparse, minlength=minlength, maxlength=maxlength, binary_output=binary_output, axis=axis) self.assertAllEqual(expected_indices, y.indices) self.assertAllEqual(expected_values, y.values) self.assertAllEqual(expected_shape, y.dense_shape) @parameterized.product( ( dict( tid="_s1", x_factory=_sparse_factory([1, 2, 2, 3, 3, 3]), expected=[0, 1, 2, 3], ), dict( tid="_s1_some_zeros", x_factory=_sparse_factory([1, 0, 0, 3, 3, 3]), expected=[0, 1, 0, 3], ), dict( tid="_s1_all_zeros", x_factory=_sparse_factory([0, 0, 0, 0, 0, 0]), expected=[], ), dict( tid="_s2", x_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 2], [3, 3, 3]] ), expected=[0, 1, 2, 3], ), dict( tid="_s3", x_factory=_sparse_factory( [[[0, 0, 0], [0, 1, 0]], [[2, 0, 2], [3, 3, 3]]] ), expected=[0, 1, 2, 3], ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_default( self, x_factory, minlength, maxlength, expected, tid=None, ): x = x_factory() expected = _adjust_expected_rank1(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( sparse_ops.bincount(x, minlength=minlength, maxlength=maxlength) ), ) self.assertAllEqual( expected, self.evaluate( sparse_ops.bincount( x, minlength=minlength, maxlength=maxlength, axis=0 ) ), ) @parameterized.product( ( dict( tid="_s2", x_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 2], [3, 3, 3]] ), expected=[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]], ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_axis_neg_one( self, tid, x_factory, minlength, maxlength, expected ): x = x_factory() expected = _adjust_expected_rank2(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( sparse_ops.bincount( x, minlength=minlength, maxlength=maxlength, axis=-1 ) ), ) @parameterized.product( ( dict( tid="_s1", x_factory=_sparse_factory([1, 2, 2, 3, 3, 3]), weights_factory=_sparse_factory([1, 2, 3, 4, 5, 6]), expected=[0, 1, 5, 15], axis=None, ), dict( tid="_s2", x_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 2], [3, 3, 3]] ), # weights have the same shape as x, so when x has an implicit # zero, the corresponding weight is as an implicit zero weights_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 3], [4, 5, 6]] ), axis=None, expected=[0, 1, 5, 15], ), dict( tid="_s3", x_factory=_sparse_factory( [[[0, 0, 0], [0, 1, 0]], [[2, 0, 2], [3, 3, 3]]] ), # weights have the same shape as x, so when x has an implicit # zero, the corresponding weight is as an implicit zero weights_factory=_sparse_factory( [[[0, 0, 0], [0, 1, 0]], [[2, 0, 3], [4, 5, 6]]] ), axis=None, expected=[0, 1, 5, 15], ), dict( tid="_s2_axis_neg_1", x_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 2], [3, 3, 3]] ), # weights have the same shape as x, so when x has an implicit # zero, the corresponding weight is as an implicit zero weights_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 3], [4, 5, 6]] ), expected=[ [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 5, 0], [0, 0, 0, 15], ], axis=-1, ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_weights( self, tid, x_factory, weights_factory, minlength, maxlength, expected, axis, ): device_set = set([d.device_type for d in tf_config.list_physical_devices()]) if "GPU" in device_set and not test_util.is_xla_enabled(): self.skipTest( "b/263004039 The DenseBincount GPU kernel does not support weights." " unsorted_segment_sum should be used instead on GPU." ) x = x_factory() weights = weights_factory() if axis == -1: expected = _adjust_expected_rank2(expected, minlength, maxlength) else: expected = _adjust_expected_rank1(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( sparse_ops.bincount( x, weights=weights, minlength=minlength, maxlength=maxlength, axis=axis, ) ), ) @parameterized.product( ( dict( tid="_s1", x_factory=_sparse_factory([1, 2, 2, 3, 3, 3]), expected=[0, 1, 1, 1], axis=None, ), dict( tid="_s1_zeros", x_factory=_sparse_factory([1, 0, 0, 3, 3, 3]), expected=[0, 1, 0, 1], axis=None, ), dict( tid="_s2", x_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 2], [3, 3, 3]] ), expected=[0, 1, 1, 1], axis=None, ), dict( tid="_s3", x_factory=_sparse_factory( [[[0, 0, 0], [0, 1, 0]], [[2, 0, 2], [3, 3, 3]]] ), expected=[0, 1, 1, 1], axis=None, ), dict( tid="_s2_axis_neg_1", x_factory=_sparse_factory( [[0, 0, 0], [0, 1, 0], [2, 0, 2], [3, 3, 3]] ), expected=[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], axis=-1, ), ), ( dict(minlength=None, maxlength=None), dict(minlength=3, maxlength=None), dict(minlength=5, maxlength=None), dict(minlength=None, maxlength=3), dict(minlength=None, maxlength=5), dict(minlength=2, maxlength=3), dict(minlength=3, maxlength=5), dict(minlength=5, maxlength=10), dict(minlength=None, maxlength=0), ), ) def test_binary_output( self, tid, x_factory, minlength, maxlength, expected, axis=None, ): x = x_factory() if axis == -1: expected = _adjust_expected_rank2(expected, minlength, maxlength) else: expected = _adjust_expected_rank1(expected, minlength, maxlength) self.assertAllEqual( expected, self.evaluate( sparse_ops.bincount( x, minlength=minlength, maxlength=maxlength, binary_output=True, axis=axis, ) ), )
TestSparseCount
python
tiangolo__fastapi
scripts/notify_translations.py
{ "start": 2327, "end": 2401 }
class ____(BaseModel): discussion: CommentsDiscussion
CommentsRepository
python
ray-project__ray
python/ray/data/_internal/block_batching/interfaces.py
{ "start": 399, "end": 600 }
class ____: """A batch of data. Attributes: metadata: Metadata associated with this batch. data: The batch of data. """ metadata: BatchMetadata data: DataBatch
Batch
python
huggingface__transformers
src/transformers/models/arcee/modular_arcee.py
{ "start": 8539, "end": 8658 }
class ____(LlamaForQuestionAnswering): pass @auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
ArceeForQuestionAnswering
python
dagster-io__dagster
python_modules/automation/automation_tests/dagster_docs_tests/test_python_ast_rule.py
{ "start": 9733, "end": 13828 }
class ____: """Test the validate_python_code_blocks function.""" def test_valid_code_blocks(self): """Test validation with valid Python code blocks.""" docstring = """ Function with valid examples. .. code-block:: python def example(): return "hello" .. code-block:: python x = [1, 2, 3] print(x) """ context = ValidationContext(docstring=docstring, symbol_path="test.symbol") result = ValidationResult.create("test.symbol") result = validate_python_code_blocks(context, result) assert not result.has_errors() assert not result.has_warnings() assert result.is_valid() def test_invalid_code_blocks(self): """Test validation with invalid Python code blocks.""" docstring = """ Function with syntax errors. .. code-block:: python def broken_function( return "missing paren" .. code-block:: python valid_code = "this is fine" .. code-block:: python another broken function( print("another error") """ context = ValidationContext(docstring=docstring, symbol_path="test.symbol") result = ValidationResult.create("test.symbol") result = validate_python_code_blocks(context, result) assert result.has_errors() assert len(result.errors) == 2 # Two syntax errors # Check that both errors are reported error_text = " ".join(result.errors) assert "Python code block syntax error" in error_text assert "'(' was never closed" in error_text def test_mixed_valid_invalid_blocks(self): """Test validation with mix of valid and invalid blocks.""" docstring = """ Mixed examples. .. code-block:: python # This is valid print("hello") .. code-block:: python # This is broken def bad_function( return "error" .. code-block:: python # This is also valid x = 42 y = x * 2 """ context = ValidationContext(docstring=docstring, symbol_path="test.symbol") result = ValidationResult.create("test.symbol") result = validate_python_code_blocks(context, result) assert result.has_errors() assert len(result.errors) == 1 # Only one error assert "Python code block syntax error" in result.errors[0] def test_no_code_blocks(self): """Test validation with no Python code blocks.""" docstring = """ Function with no code examples. Args: param: A parameter Returns: A value """ context = ValidationContext(docstring=docstring, symbol_path="test.symbol") result = ValidationResult.create("test.symbol") result = validate_python_code_blocks(context, result) assert not result.has_errors() assert not result.has_warnings() assert result.is_valid() def test_line_number_reporting(self): """Test that error line numbers are correctly reported.""" docstring = """ Function with error on specific line. .. code-block:: python # This is line 6 of the docstring def broken( return "error on line 8" """ context = ValidationContext(docstring=docstring, symbol_path="test.symbol") result = ValidationResult.create("test.symbol") result = validate_python_code_blocks(context, result) assert result.has_errors() assert len(result.errors) == 1 # Should include line number in error message error = result.errors[0] assert "line 6" in error # Line where the code block starts
TestValidatePythonCodeBlocks
python
pandas-dev__pandas
pandas/tests/api/test_api.py
{ "start": 11539, "end": 14655 }
class ____(Base): funcs = [ "assert_frame_equal", "assert_series_equal", "assert_index_equal", "assert_extension_array_equal", ] def test_testing(self): from pandas import testing self.check(testing, self.funcs) def test_util_in_top_level(self): with pytest.raises(AttributeError, match="foo"): pd.util.foo def get_pandas_objects( module_name: str, recurse: bool ) -> list[tuple[str, str, object]]: """ Get all pandas objects within a module. An object is determined to be part of pandas if it has a string __module__ attribute that starts with ``"pandas"``. Parameters ---------- module_name : str Name of the module to search. recurse : bool Whether to search submodules. Returns ------- List of all objects that are determined to be a part of pandas. """ module = importlib.import_module(module_name) objs = [] for name, obj in inspect.getmembers(module): module_dunder = getattr(obj, "__module__", None) if isinstance(module_dunder, str) and module_dunder.startswith("pandas"): objs.append((module_name, name, obj)) if not recurse: return objs # __file__ can, but shouldn't, be None assert isinstance(module.__file__, str) paths = [pathlib.Path(module.__file__).parent] for module_info in pkgutil.walk_packages(paths): name = module_info.name if name.startswith("_") or name == "internals": continue objs.extend( get_pandas_objects(f"{module.__name__}.{name}", recurse=module_info.ispkg) ) return objs @pytest.mark.slow @pytest.mark.parametrize( "module_name", [ "pandas", "pandas.api", "pandas.arrays", "pandas.errors", pytest.param("pandas.io", marks=pytest.mark.xfail(reason="Private imports")), "pandas.plotting", "pandas.testing", ], ) def test_attributes_module(module_name): """ Ensures that all public objects have their __module__ set to the public import path. """ recurse = module_name not in ["pandas", "pandas.testing"] objs = get_pandas_objects(module_name, recurse=recurse) failures = [ (module_name, name, type(obj), obj.__module__) for module_name, name, obj in objs if not ( obj.__module__ == module_name # Explicit exceptions or ("Dtype" in name and obj.__module__ == "pandas") or (name == "Categorical" and obj.__module__ == "pandas") ) ] assert len(failures) == 0, "\n".join(str(e) for e in failures) # Check that all objects can indeed be imported from their __module__ failures = [] for module_name, name, obj in objs: module = importlib.import_module(obj.__module__) try: getattr(module, name) except Exception: failures.append((module_name, name, type(obj), obj.__module__)) assert len(failures) == 0, "\n".join(str(e) for e in failures)
TestTesting
python
donnemartin__interactive-coding-challenges
math_probability/generate_primes/test_generate_primes.py
{ "start": 18, "end": 991 }
class ____(unittest.TestCase): def test_generate_primes(self): prime_generator = PrimeGenerator() self.assertRaises(TypeError, prime_generator.generate_primes, None) self.assertRaises(TypeError, prime_generator.generate_primes, 98.6) self.assertEqual(prime_generator.generate_primes(20), [False, False, True, True, False, True, False, True, False, False, False, True, False, True, False, False, False, True, False, True]) print('Success: generate_primes') def main(): test = TestMath() test.test_generate_primes() if __name__ == '__main__': main()
TestMath
python
networkx__networkx
networkx/algorithms/tests/test_vitality.py
{ "start": 24, "end": 1380 }
class ____: def test_unweighted(self): G = nx.cycle_graph(3) vitality = nx.closeness_vitality(G) assert vitality == {0: 2, 1: 2, 2: 2} def test_weighted(self): G = nx.Graph() nx.add_cycle(G, [0, 1, 2], weight=2) vitality = nx.closeness_vitality(G, weight="weight") assert vitality == {0: 4, 1: 4, 2: 4} def test_unweighted_digraph(self): G = nx.DiGraph(nx.cycle_graph(3)) vitality = nx.closeness_vitality(G) assert vitality == {0: 4, 1: 4, 2: 4} def test_weighted_digraph(self): G = nx.DiGraph() nx.add_cycle(G, [0, 1, 2], weight=2) nx.add_cycle(G, [2, 1, 0], weight=2) vitality = nx.closeness_vitality(G, weight="weight") assert vitality == {0: 8, 1: 8, 2: 8} def test_weighted_multidigraph(self): G = nx.MultiDiGraph() nx.add_cycle(G, [0, 1, 2], weight=2) nx.add_cycle(G, [2, 1, 0], weight=2) vitality = nx.closeness_vitality(G, weight="weight") assert vitality == {0: 8, 1: 8, 2: 8} def test_disconnecting_graph(self): """Tests that the closeness vitality of a node whose removal disconnects the graph is negative infinity. """ G = nx.path_graph(3) assert nx.closeness_vitality(G, node=1) == -float("inf")
TestClosenessVitality