language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
apache__airflow
dev/breeze/src/airflow_breeze/utils/parallel.py
{ "start": 3692, "end": 3958 }
class ____(metaclass=ABCMeta): @abstractmethod def get_best_matching_lines(self, output: Output) -> list[str] | None: """ Return best matching lines of the output. :return: array of lines to print """
AbstractProgressInfoMatcher
python
walkccc__LeetCode
solutions/1476. Subrectangle Queries/1476.py
{ "start": 0, "end": 517 }
class ____: def __init__(self, rectangle: list[list[int]]): self.rectangle = rectangle self.updates = [] def updateSubrectangle(self, row1: int, col1: int, row2: int, col2: int, newValue: int) -> None: self.updates.append((row1, col1, row2, col2, newValue)) def getValue(self, row: int, col: int) -> int: for r1, c1, r2, c2, v in reversed(self.updates): if r1 <= row <= r2 and c1 <= col <= c2: return v return self.rectangle[row][col]
SubrectangleQueries
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_chart_size04.py
{ "start": 315, "end": 1392 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_size04.xlsx") def test_create_file(self): """Test XlsxWriter chartarea properties.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "column"}) chart.axis_ids = [73773440, 73774976] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series({"values": "=Sheet1!$A$1:$A$5"}) chart.add_series({"values": "=Sheet1!$B$1:$B$5"}) chart.add_series({"values": "=Sheet1!$C$1:$C$5"}) chart.set_size({"x_offset": 8, "y_offset": 9}) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
mlflow__mlflow
mlflow/spark/__init__.py
{ "start": 44357, "end": 54631 }
class ____: """ Wrapper around Spark MLlib PipelineModel providing interface for scoring pandas DataFrame. """ def __init__(self, spark, spark_model, signature): self.spark = spark self.spark_model = spark_model self.signature = signature def get_raw_model(self): """ Returns the underlying model. """ return self.spark_model def predict( self, pandas_df, params: dict[str, Any] | None = None, ): """ Generate predictions given input data in a pandas DataFrame. Args: pandas_df: pandas DataFrame containing input data. params: Additional parameters to pass to the model for inference. Returns: List with model predictions. """ if _is_spark_connect_model(self.spark_model): # Spark connect ML model directly appends prediction result column to input pandas # dataframe. To make input dataframe intact, make a copy first. # TODO: apache/spark master has made a change to do shallow copy before # calling `spark_model.transform`, so once spark 4.0 releases, we can # remove this line. pandas_df = pandas_df.copy(deep=False) # Assuming the model output column name is "prediction". # Spark model uses "prediction" as default model inference output column name. return self.spark_model.transform(pandas_df)["prediction"] # Convert List[np.float64] / np.array[np.float64] type to List[float] type, # otherwise it will break `spark.createDataFrame` column type inferring. if self.signature and self.signature.inputs: for col_spec in self.signature.inputs.inputs: if isinstance(col_spec.type, SparkMLVector): col_name = col_spec.name or pandas_df.columns[0] pandas_df[col_name] = pandas_df[col_name].map( lambda array: [float(elem) for elem in array] ) spark_df = self.spark.createDataFrame(pandas_df) # Convert Array[Double] column to spark ML vector type according to signature if self.signature and self.signature.inputs: for col_spec in self.signature.inputs.inputs: if isinstance(col_spec.type, SparkMLVector): from pyspark.ml.functions import array_to_vector col_name = col_spec.name or spark_df.columns[0] spark_df = spark_df.withColumn(col_name, array_to_vector(col_name)) # For the case of no signature or signature logged by old version MLflow, # the signature does not support spark ML vector type, in this case, # automatically infer vector type input columns and do the conversion # using `_find_and_set_features_col_as_vector_if_needed` utility function. spark_df = _find_and_set_features_col_as_vector_if_needed(spark_df, self.spark_model) prediction_column = mlflow.pyspark.ml._check_or_set_model_prediction_column( self.spark_model, spark_df ) prediction_df = self.spark_model.transform(spark_df).select(prediction_column) # If signature output schema exists and it contains vector type columns, # Convert spark ML vector type column to Array[Double] otherwise it will # break enforce_schema checking if self.signature and self.signature.outputs: for col_spec in self.signature.outputs.inputs: if isinstance(col_spec.type, SparkMLVector): from pyspark.ml.functions import vector_to_array col_name = col_spec.name or prediction_df.columns[0] prediction_df = prediction_df.withColumn(col_name, vector_to_array(col_name)) return [x.prediction for x in prediction_df.collect()] @autologging_integration(FLAVOR_NAME) def autolog(disable=False, silent=False): """ Enables (or disables) and configures logging of Spark datasource paths, versions (if applicable), and formats when they are read. This method is not threadsafe and assumes a `SparkSession <https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.SparkSession.html>`_ already exists with the `mlflow-spark JAR <https://www.mlflow.org/docs/latest/tracking.html#spark>`_ attached. It should be called on the Spark driver, not on the executors (i.e. do not call this method within a function parallelized by Spark). The mlflow-spark JAR used must match the Scala version of Spark. Please see the `Maven Repository <https://mvnrepository.com/artifact/org.mlflow/mlflow-spark>`_ for available versions. This API requires Spark 3.0 or above. Datasource information is cached in memory and logged to all subsequent MLflow runs, including the active MLflow run (if one exists when the data is read). Note that autologging of Spark ML (MLlib) models is not currently supported via this API. Datasource autologging is best-effort, meaning that if Spark is under heavy load or MLflow logging fails for any reason (e.g., if the MLflow server is unavailable), logging may be dropped. For any unexpected issues with autologging, check Spark driver and executor logs in addition to stderr & stdout generated from your MLflow code - datasource information is pulled from Spark, so logs relevant to debugging may show up amongst the Spark logs. .. Note:: Spark datasource autologging only supports logging to MLflow runs in a single thread .. code-block:: python :caption: Example import mlflow.spark import os import shutil from pyspark.sql import SparkSession # Create and persist some dummy data # Note: the 2.12 in 'org.mlflow:mlflow-spark_2.12:2.16.2' below indicates the Scala # version, please match this with that of Spark. The 2.16.2 indicates the mlflow version. # Note: On environments like Databricks with pre-created SparkSessions, # ensure the org.mlflow:mlflow-spark_2.12:2.16.2 is attached as a library to # your cluster spark = ( SparkSession.builder.config( "spark.jars.packages", "org.mlflow:mlflow-spark_2.12:2.16.2", ) .master("local[*]") .getOrCreate() ) df = spark.createDataFrame( [(4, "spark i j k"), (5, "l m n"), (6, "spark hadoop spark"), (7, "apache hadoop")], ["id", "text"], ) import tempfile tempdir = tempfile.mkdtemp() df.write.csv(os.path.join(tempdir, "my-data-path"), header=True) # Enable Spark datasource autologging. mlflow.spark.autolog() loaded_df = spark.read.csv( os.path.join(tempdir, "my-data-path"), header=True, inferSchema=True ) # Call toPandas() to trigger a read of the Spark datasource. Datasource info # (path and format) is logged to the current active run, or the # next-created MLflow run if no run is currently active with mlflow.start_run() as active_run: pandas_df = loaded_df.toPandas() Args: disable: If ``True``, disables the Spark datasource autologging integration. If ``False``, enables the Spark datasource autologging integration. silent: If ``True``, suppress all event logs and warnings from MLflow during Spark datasource autologging. If ``False``, show all events and warnings during Spark datasource autologging. """ from pyspark import __version__ as pyspark_version from pyspark.sql import SparkSession from mlflow.spark.autologging import ( _listen_for_spark_activity, _stop_listen_for_spark_activity, ) from mlflow.utils import databricks_utils from mlflow.utils._spark_utils import _get_active_spark_session if ( databricks_utils.is_in_databricks_serverless_runtime() or databricks_utils.is_in_databricks_shared_cluster_runtime() ): if disable: return raise MlflowException( "MLflow Spark dataset autologging is not supported on Databricks shared clusters " "or Databricks serverless clusters." ) # Check if environment variable PYSPARK_PIN_THREAD is set to false. # The "Pin thread" concept was introduced since Pyspark 3.0.0 and set to default to true # since Pyspark 3.2.0 (https://issues.apache.org/jira/browse/SPARK-35303). When pin thread # is enabled, Pyspark manages Python and JVM threads in a 1:1, meaning that when one thread # is terminated, the corresponding thread in the other side will be terminated as well. # However, this causes an issue in spark autologging as our event listener thread may be # terminated before receiving the datasource event. # Hence, we have to disable it and decouple the thread management between Python and JVM. if ( Version(pyspark_version) >= Version("3.2.0") and os.environ.get("PYSPARK_PIN_THREAD", "").lower() != "false" ): _logger.warning( "With Pyspark >= 3.2, PYSPARK_PIN_THREAD environment variable must be set to false " "for Spark datasource autologging to work." ) def __init__(original, self, *args, **kwargs): original(self, *args, **kwargs) _listen_for_spark_activity(self._sc) safe_patch(FLAVOR_NAME, SparkSession, "__init__", __init__, manage_run=False) def patched_session_stop(original, self, *args, **kwargs): _stop_listen_for_spark_activity(self.sparkContext) original(self, *args, **kwargs) safe_patch(FLAVOR_NAME, SparkSession, "stop", patched_session_stop, manage_run=False) active_session = _get_active_spark_session() if active_session is not None: # We know SparkContext exists here already, so get it sc = active_session.sparkContext if disable: _stop_listen_for_spark_activity(sc) else: _listen_for_spark_activity(sc)
_PyFuncModelWrapper
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 1229609, "end": 1229876 }
class ____(sgqlc.types.Type, Node, AuditEntry, EnterpriseAuditEntryData, OrganizationAuditEntryData): """Audit log entry for a members_can_delete_repos.disable event.""" __schema__ = github_schema __field_names__ = ()
MembersCanDeleteReposDisableAuditEntry
python
networkx__networkx
networkx/classes/tests/test_graph_historical.py
{ "start": 108, "end": 258 }
class ____(HistoricalTests): @classmethod def setup_class(cls): HistoricalTests.setup_class() cls.G = nx.Graph
TestGraphHistorical
python
conda__conda
conda/models/dist.py
{ "start": 715, "end": 855 }
class ____(NamedTuple): name: str version: str build_string: str build_number: str dist_name: str fmt: str
DistDetails
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 48746, "end": 49283 }
class ____(sgqlc.types.Enum): """The reason an outside collaborator was removed from an Organization. Enumeration Choices: * `SAML_EXTERNAL_IDENTITY_MISSING`: SAML external identity missing * `TWO_FACTOR_REQUIREMENT_NON_COMPLIANCE`: The organization required 2FA of its billing managers and this user did not have 2FA enabled. """ __schema__ = github_schema __choices__ = ("SAML_EXTERNAL_IDENTITY_MISSING", "TWO_FACTOR_REQUIREMENT_NON_COMPLIANCE")
OrgRemoveOutsideCollaboratorAuditEntryReason
python
pytorch__pytorch
torch/ao/nn/intrinsic/modules/fused.py
{ "start": 9891, "end": 10317 }
class ____(_FusedModule): r"""This is a sequential container which calls the Conv2d, add, Relu. During quantization this will be replaced with the corresponding fused module.""" def __init__(self, conv, add, relu): super().__init__(conv) self.add = add self.relu = relu def forward(self, x1, x2): # type: ignore[override] return self.relu(self.add(self[0](x1), x2))
ConvAddReLU2d
python
huggingface__transformers
src/transformers/models/zoedepth/modeling_zoedepth.py
{ "start": 19878, "end": 23127 }
class ____(nn.Module): def __init__(self, config, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10): """Bin center regressor network. Can be "normed" or "unnormed". If "normed", bin centers are bounded on the (min_depth, max_depth) interval. Args: config (`int`): Model configuration. n_bins (`int`, *optional*, defaults to 16): Number of bin centers. mlp_dim (`int`, *optional*, defaults to 256): Hidden dimension. min_depth (`float`, *optional*, defaults to 1e-3): Min depth value. max_depth (`float`, *optional*, defaults to 10): Max depth value. """ super().__init__() self.in_features = config.bottleneck_features self.bin_centers_type = config.bin_centers_type self.min_depth = min_depth self.max_depth = max_depth self.conv1 = nn.Conv2d(self.in_features, mlp_dim, 1, 1, 0) self.act1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(mlp_dim, n_bins, 1, 1, 0) self.act2 = nn.ReLU(inplace=True) if self.bin_centers_type == "normed" else nn.Softplus() def forward(self, x): """ Returns tensor of bin_width vectors (centers). One vector b for every pixel """ x = self.conv1(x) x = self.act1(x) x = self.conv2(x) bin_centers = self.act2(x) if self.bin_centers_type == "normed": bin_centers = bin_centers + 1e-3 bin_widths_normed = bin_centers / bin_centers.sum(dim=1, keepdim=True) # shape (batch_size, num_channels, height, width) bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed # pad has the form (left, right, top, bottom, front, back) bin_widths = nn.functional.pad(bin_widths, (0, 0, 0, 0, 1, 0), mode="constant", value=self.min_depth) # shape (batch_size, num_channels, height, width) bin_edges = torch.cumsum(bin_widths, dim=1) bin_centers = 0.5 * (bin_edges[:, :-1, ...] + bin_edges[:, 1:, ...]) return bin_widths_normed, bin_centers else: return bin_centers, bin_centers @torch.jit.script def inv_attractor(dx, alpha: float = 300, gamma: int = 2): """Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center This is the default one according to the accompanying paper. Args: dx (`torch.Tensor`): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center. alpha (`float`, *optional*, defaults to 300): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. gamma (`int`, *optional*, defaults to 2): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Returns: torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc """ return dx.div(1 + alpha * dx.pow(gamma))
ZoeDepthSeedBinRegressor
python
apache__thrift
lib/py/src/server/TServer.py
{ "start": 1033, "end": 3016 }
class ____(object): """Base interface for a server, which must have a serve() method. Three constructors for all servers: 1) (processor, serverTransport) 2) (processor, serverTransport, transportFactory, protocolFactory) 3) (processor, serverTransport, inputTransportFactory, outputTransportFactory, inputProtocolFactory, outputProtocolFactory) """ def __init__(self, *args): if (len(args) == 2): self.__initArgs__(args[0], args[1], TTransport.TTransportFactoryBase(), TTransport.TTransportFactoryBase(), TBinaryProtocol.TBinaryProtocolFactory(), TBinaryProtocol.TBinaryProtocolFactory()) elif (len(args) == 4): self.__initArgs__(args[0], args[1], args[2], args[2], args[3], args[3]) elif (len(args) == 6): self.__initArgs__(args[0], args[1], args[2], args[3], args[4], args[5]) def __initArgs__(self, processor, serverTransport, inputTransportFactory, outputTransportFactory, inputProtocolFactory, outputProtocolFactory): self.processor = processor self.serverTransport = serverTransport self.inputTransportFactory = inputTransportFactory self.outputTransportFactory = outputTransportFactory self.inputProtocolFactory = inputProtocolFactory self.outputProtocolFactory = outputProtocolFactory input_is_header = isinstance(self.inputProtocolFactory, THeaderProtocolFactory) output_is_header = isinstance(self.outputProtocolFactory, THeaderProtocolFactory) if any((input_is_header, output_is_header)) and input_is_header != output_is_header: raise ValueError("THeaderProtocol servers require that both the input and " "output protocols are THeaderProtocol.") def serve(self): pass
TServer
python
wandb__wandb
tests/system_tests/test_importers/test_mlflow/conftest.py
{ "start": 1394, "end": 9414 }
class ____: # experiments and metrics n_experiments: int n_runs_per_experiment: int n_steps_per_run: int # artifacts n_artifacts: int n_root_files: int n_subdirs: int n_subdir_files: int # batching logging_batch_size: int = 50 @property def total_runs(self): return self.n_experiments * self.n_runs_per_experiment @property def total_files(self): return self.n_artifacts * ( self.n_root_files + self.n_subdirs * self.n_subdir_files ) # def make_nested_run(): # with mlflow.start_run(): # for _ in range(NUM_RUNS_PER_NESTED_EXPERIMENT): # make_run(batch_size=50) def batch_metrics(metrics, bs: int) -> Iterable[List[Metric]]: step = 0 for i, batch in enumerate(batched(bs, metrics)): batched_metrics = [] for step, metric in enumerate(batch, start=i * bs): for k, v in metric.items(): batched_metrics.append( Metric(k, v, step=step, timestamp=SECONDS_FROM_2023_01_01) ) yield batched_metrics def make_tags(): return st.dictionaries( st.text( min_size=1, max_size=20, alphabet="abcdefghijklmnopqrstuvwxyz1234567890_- ", ), st.text(max_size=20), max_size=10, ).example() def make_params(): # Older versions have trouble handling certain kinds of strings and larger dicts if mlflow_version < Version("2.0.0"): param_str = st.text( max_size=20, alphabet="abcdefghijklmnopqrstuvwxyz1234567890_- " ).example() param_dict = st.dictionaries( st.text(max_size=4, alphabet="abcdefghijklmnopqrstuvwxyz1234567890_- "), st.integers(), max_size=2, ).example() else: param_str = st.text(max_size=20).example() param_dict = st.dictionaries( st.text(max_size=20), st.integers(), max_size=10, ).example() return { "param_int": st.integers().example(), "param_float": st.floats().example(), "param_str": param_str, "param_bool": st.booleans().example(), "param_list": st.lists(st.integers()).example(), "param_dict": param_dict, "param_tuple": st.tuples(st.integers(), st.integers()).example(), "param_set": st.sets(st.integers()).example(), "param_none": None, } def make_metrics(n_steps): for _ in range(n_steps): yield { "metric_int": st.integers(min_value=0, max_value=100).example(), "metric_float": st.floats(min_value=0, max_value=100).example(), "metric_bool": st.booleans().example(), } def make_artifacts_dir( root_dir: str, n_root_files: int, n_subdirs: int, n_subdir_files: int ) -> str: # Ensure root_dir exists os.makedirs(root_dir, exist_ok=True) for i in range(n_root_files): file_path = os.path.join(root_dir, f"file{i}.txt") with open(file_path, "w") as f: f.write(f"text from {file_path}") for i in range(n_subdirs): subdir_path = os.path.join(root_dir, f"subdir{i}") os.makedirs(subdir_path, exist_ok=True) for j in range(n_subdir_files): file_path = os.path.join(subdir_path, f"file{j}.txt") with open(file_path, "w") as f: f.write(f"text from {file_path}") return root_dir def _check_mlflow_server_health( base_url: str, endpoint: str, num_retries: int = 1, sleep_time: int = 1 ): for _ in range(num_retries): try: response = requests.get(urllib.parse.urljoin(base_url, endpoint)) if response.status_code == 200: return True time.sleep(sleep_time) except requests.exceptions.ConnectionError: time.sleep(sleep_time) return False @pytest.fixture def mssql_backend(): ... @pytest.fixture def mysql_backend(): ... @pytest.fixture def postgres_backend(): ... @pytest.fixture def file_backend(tmp_path): yield tmp_path / "mlruns" @pytest.fixture def sqlite_backend(): yield "sqlite:///mlflow.db" # https://github.com/pytest-dev/pytest/issues/349 @pytest.fixture( params=[ # "mssql_backend", # "mysql_backend", # "postgres_backend", "file_backend", "sqlite_backend", ] ) def mlflow_backend(request): yield request.getfixturevalue(request.param) @pytest.fixture def file_artifacts(tmp_path): yield tmp_path / "mlartifacts" @pytest.fixture def s3_artifacts(): yield ... @pytest.fixture( params=[ "file_artifacts", # "s3_artifacts", ] ) def mlflow_artifacts_destination(request): yield request.getfixturevalue(request.param) @pytest.fixture def mlflow_server_settings(mlflow_artifacts_destination, mlflow_backend): return MlflowServerSettings( metrics_backend=mlflow_backend, artifacts_backend=mlflow_artifacts_destination, ) @pytest.fixture def mlflow_logging_config(): return MlflowLoggingConfig( # run settings n_experiments=1, n_runs_per_experiment=2, n_steps_per_run=100, # artifact settings n_artifacts=2, n_root_files=5, n_subdirs=3, n_subdir_files=2, ) @pytest.fixture def mlflow_server(mlflow_server_settings): if mlflow_version < Version("2.0.0"): start_cmd = [ "mlflow", "server", "-p", mlflow_server_settings.new_port, # no sqlite # no --artifacts-destination flag ] else: start_cmd = [ "mlflow", "server", "-p", mlflow_server_settings.new_port, "--backend-store-uri", mlflow_server_settings.metrics_backend, "--artifacts-destination", mlflow_server_settings.artifacts_backend, ] _ = subprocess.Popen(start_cmd) # process healthy = _check_mlflow_server_health( mlflow_server_settings.base_url, mlflow_server_settings.health_endpoint, num_retries=30, ) if healthy: yield mlflow_server_settings else: raise Exception("MLflow server is not healthy") @pytest.fixture def prelogged_mlflow_server(mlflow_server, mlflow_logging_config): config = mlflow_logging_config with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=NonInteractiveExampleWarning) mlflow.set_tracking_uri(mlflow_server.base_url) # Experiments for _ in range(config.n_experiments): exp_name = "Experiment " + str(uuid.uuid4()) mlflow.set_experiment(exp_name) # Runs for _ in range(config.n_runs_per_experiment): run_name = "Run " + str(uuid.uuid4()) client = MlflowClient() with mlflow.start_run() as run: mlflow.set_tag("mlflow.runName", run_name) mlflow.set_tags(make_tags()) mlflow.set_tag("longTag", "abcd" * 100) mlflow.log_params(make_params()) metrics = make_metrics(config.n_steps_per_run) for batch in batch_metrics(metrics, config.logging_batch_size): client.log_batch(run.info.run_id, metrics=batch) for _ in range(config.n_artifacts): with tempfile.TemporaryDirectory() as temp_path: artifacts_dir = make_artifacts_dir( temp_path, config.n_root_files, config.n_subdirs, config.n_subdir_files, ) mlflow.log_artifact(artifacts_dir) return mlflow_server
MlflowLoggingConfig
python
ray-project__ray
rllib/utils/schedules/piecewise_schedule.py
{ "start": 439, "end": 4172 }
class ____(Schedule): """Implements a Piecewise Scheduler.""" def __init__( self, endpoints: List[Tuple[int, float]], framework: Optional[str] = None, interpolation: Callable[ [TensorType, TensorType, TensorType], TensorType ] = _linear_interpolation, outside_value: Optional[float] = None, ): """Initializes a PiecewiseSchedule instance. Args: endpoints: A list of tuples `(t, value)` such that the output is an interpolation (given by the `interpolation` callable) between two values. E.g. t=400 and endpoints=[(0, 20.0),(500, 30.0)] output=20.0 + 0.8 * (30.0 - 20.0) = 28.0 NOTE: All the values for time must be sorted in an increasing order. framework: The framework descriptor string, e.g. "tf", "torch", or None. interpolation: A function that takes the left-value, the right-value and an alpha interpolation parameter (0.0=only left value, 1.0=only right value), which is the fraction of distance from left endpoint to right endpoint. outside_value: If t in call to `value` is outside of all the intervals in `endpoints` this value is returned. If None then an AssertionError is raised when outside value is requested. """ super().__init__(framework=framework) idxes = [e[0] for e in endpoints] assert idxes == sorted(idxes) self.interpolation = interpolation self.outside_value = outside_value self.endpoints = [(int(e[0]), float(e[1])) for e in endpoints] @override(Schedule) def _value(self, t: TensorType) -> TensorType: # Find t in our list of endpoints. for (l_t, l), (r_t, r) in zip(self.endpoints[:-1], self.endpoints[1:]): # When found, return an interpolation (default: linear). if l_t <= t < r_t: alpha = float(t - l_t) / (r_t - l_t) return self.interpolation(l, r, alpha) # t does not belong to any of the pieces, return `self.outside_value`. assert self.outside_value is not None return self.outside_value @override(Schedule) def _tf_value_op(self, t: TensorType) -> TensorType: assert self.outside_value is not None, ( "tf-version of PiecewiseSchedule requires `outside_value` to be " "provided!" ) endpoints = tf.cast(tf.stack([e[0] for e in self.endpoints] + [-1]), tf.int64) # Create all possible interpolation results. results_list = [] for (l_t, l), (r_t, r) in zip(self.endpoints[:-1], self.endpoints[1:]): alpha = tf.cast(t - l_t, tf.float32) / tf.cast(r_t - l_t, tf.float32) results_list.append(self.interpolation(l, r, alpha)) # If t does not belong to any of the pieces, return `outside_value`. results_list.append(self.outside_value) results_list = tf.stack(results_list) # Return correct results tensor depending on where we find t. def _cond(i, x): x = tf.cast(x, tf.int64) return tf.logical_not( tf.logical_or( tf.equal(endpoints[i + 1], -1), tf.logical_and(endpoints[i] <= x, x < endpoints[i + 1]), ) ) def _body(i, x): return (i + 1, t) idx_and_t = tf.while_loop(_cond, _body, [tf.constant(0, dtype=tf.int64), t]) return results_list[idx_and_t[0]]
PiecewiseSchedule
python
catalyst-team__catalyst
catalyst/contrib/datasets/imagenette.py
{ "start": 942, "end": 1470 }
class ____(ImageClassificationDataset): """ `Imagenette <https://github.com/fastai/imagenette#imagenette-1>`_ Dataset with images resized so that the shortest size is 320 px. .. note:: catalyst[cv] required for this dataset. """ name = "imagenette2-320" resources = [ ( "https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", "3df6f0d01a2c9592104656642f5e78a3", ) ] __all__ = ["Imagenette", "Imagenette160", "Imagenette320"]
Imagenette320
python
Lightning-AI__lightning
tests/tests_pytorch/plugins/test_amp_plugins.py
{ "start": 884, "end": 1944 }
class ____(MixedPrecision): pass @RunIf(mps=False) @mock.patch.dict( os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_NTASKS_PER_NODE": "1", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_PROCID": "0", "SLURM_LOCALID": "0", }, ) @pytest.mark.parametrize(("strategy", "devices"), [("ddp", 2), ("ddp_spawn", 2)]) @pytest.mark.parametrize( ("custom_plugin", "plugin_cls"), [ (False, MixedPrecision), (True, MyAMP), ], ) def test_amp_ddp(cuda_count_2, strategy, devices, custom_plugin, plugin_cls): plugin = None precision = None if custom_plugin: plugin = plugin_cls("16-mixed", "cpu") else: precision = "16-mixed" trainer = Trainer( fast_dev_run=True, precision=precision, accelerator="gpu", devices=devices, strategy=strategy, plugins=plugin, ) assert isinstance(trainer.precision_plugin, plugin_cls)
MyAMP
python
astropy__astropy
astropy/io/fits/diff.py
{ "start": 42833, "end": 45994 }
class ____(ImageDataDiff): """ `RawDataDiff` is just a special case of `ImageDataDiff` where the images are one-dimensional, and the data is treated as a 1-dimensional array of bytes instead of pixel values. This is used to compare the data of two non-standard extension HDUs that were not recognized as containing image or table data. `ImageDataDiff` objects have the following diff attributes: - ``diff_dimensions``: Same as the ``diff_dimensions`` attribute of `ImageDataDiff` objects. Though the "dimension" of each array is just an integer representing the number of bytes in the data. - ``diff_bytes``: Like the ``diff_pixels`` attribute of `ImageDataDiff` objects, but renamed to reflect the minor semantic difference that these are raw bytes and not pixel values. Also the indices are integers instead of tuples. - ``diff_total`` and ``diff_ratio``: Same as `ImageDataDiff`. """ def __init__(self, a, b, numdiffs=10): """ Parameters ---------- a : BaseHDU An HDU object. b : BaseHDU An HDU object to compare to the first HDU object. numdiffs : int, optional The number of pixel/table values to output when reporting HDU data differences. Though the count of differences is the same either way, this allows controlling the number of different values that are kept in memory or output. If a negative value is given, then numdiffs is treated as unlimited (default: 10). """ self.diff_dimensions = () self.diff_bytes = [] super().__init__(a, b, numdiffs=numdiffs) def _diff(self): super()._diff() if self.diff_dimensions: self.diff_dimensions = ( self.diff_dimensions[0][0], self.diff_dimensions[1][0], ) self.diff_bytes = [(x[0], y) for x, y in self.diff_pixels] del self.diff_pixels def _report(self): if self.diff_dimensions: self._writeln(" Data sizes differ:") self._writeln(f" a: {self.diff_dimensions[0]} bytes") self._writeln(f" b: {self.diff_dimensions[1]} bytes") # For now we don't do any further comparison if the dimensions # differ; though in the future it might be nice to be able to # compare at least where the images intersect self._writeln(" No further data comparison performed.") return if not self.diff_bytes: return for index, values in self.diff_bytes: self._writeln(f" Data differs at byte {index}:") report_diff_values( values[0], values[1], fileobj=self._fileobj, indent_width=self._indent + 1, rtol=self.rtol, atol=self.atol, ) self._writeln(" ...") self._writeln( f" {self.diff_total} different bytes found " f"({self.diff_ratio:.2%} different)." )
RawDataDiff
python
prompt-toolkit__python-prompt-toolkit
src/prompt_toolkit/input/base.py
{ "start": 2587, "end": 4030 }
class ____(Input): """ Input for use in a `DummyApplication` If used in an actual application, it will make the application render itself once and exit immediately, due to an `EOFError`. """ def fileno(self) -> int: raise NotImplementedError def typeahead_hash(self) -> str: return f"dummy-{id(self)}" def read_keys(self) -> list[KeyPress]: return [] @property def closed(self) -> bool: # This needs to be true, so that the dummy input will trigger an # `EOFError` immediately in the application. return True def raw_mode(self) -> ContextManager[None]: return _dummy_context_manager() def cooked_mode(self) -> ContextManager[None]: return _dummy_context_manager() def attach(self, input_ready_callback: Callable[[], None]) -> ContextManager[None]: # Call the callback immediately once after attaching. # This tells the callback to call `read_keys` and check the # `input.closed` flag, after which it won't receive any keys, but knows # that `EOFError` should be raised. This unblocks `read_from_input` in # `application.py`. input_ready_callback() return _dummy_context_manager() def detach(self) -> ContextManager[None]: return _dummy_context_manager() @contextmanager def _dummy_context_manager() -> Generator[None, None, None]: yield
DummyInput
python
getsentry__sentry
tests/sentry/runner/commands/test_init.py
{ "start": 105, "end": 1029 }
class ____(CliTestCase): command = init def test_simple(self) -> None: with self.runner.isolated_filesystem(): rv = self.invoke("config") assert rv.exit_code == 0, rv.output contents = os.listdir("config") assert set(contents) == {"sentry.conf.py", "config.yml"} # Make sure the python file is valid ctx = {"__file__": "sentry.conf.py"} with open("config/sentry.conf.py") as fp: exec(fp.read(), ctx) assert "DEBUG" in ctx # Make sure the yaml file is valid from sentry.utils.yaml import safe_load with open("config/config.yml", "rb") as fp: ctx = safe_load(fp) assert "system.secret-key" in ctx def test_no_directory(self) -> None: rv = self.invoke("sentry.conf.py") assert rv.exit_code != 0, rv.output
InitTest
python
google__jax
docs/autodidax.py
{ "start": 25723, "end": 25806 }
class ____: pass not_mapped = NotMapped() BatchAxis = Union[NotMapped, int]
NotMapped
python
wandb__wandb
wandb/automations/_filters/run_metrics.py
{ "start": 4931, "end": 6969 }
class ____(BaseMetricFilter): # from: RunMetricChangeFilter """Filter that compares a **change** in a metric value to a user-defined threshold. The change is calculated over "tumbling" windows, i.e. the difference between the current window and the non-overlapping prior window. """ name: str agg: Annotated[Optional[Agg], Field(alias="agg_op")] = None window: Annotated[PositiveInt, Field(alias="current_window_size")] = 1 # `prior_window` is only for `RUN_METRIC_CHANGE` events prior_window: Annotated[ PositiveInt, # By default, set `window -> prior_window` if the latter wasn't provided. Field(alias="prior_window_size", default_factory=lambda data: data["window"]), ] """Size of the "prior" metric aggregation window (ignored if `agg` is ``None``). If omitted, defaults to the size of the current window. """ # ------------------------------------------------------------------------------ # NOTE: # - The "comparison" operator isn't actually part of the backend schema, # but it's defined here for consistency -- and ignored otherwise. # - In the backend, it's effectively "$gte" or "$lte", depending on the sign # (change_dir), though again, this is not explicit in the schema. cmp: Annotated[None, Field(frozen=True, exclude=True, repr=False)] = None """Ignored.""" # ------------------------------------------------------------------------------ change_type: ChangeType change_dir: ChangeDir threshold: Annotated[PosNum, Field(alias="change_amount")] def __repr__(self) -> str: metric = f"{self.agg.value}({self.name})" if self.agg else self.name verb = ( "changes" if (self.change_dir is ChangeDir.ANY) else f"{self.change_dir.value.lower()}s" ) fmt_spec = ".2%" if (self.change_type is ChangeType.REL) else "" amt = f"{self.threshold:{fmt_spec}}" return repr(rf"{metric} {verb} {amt}")
MetricChangeFilter
python
rapidsai__cudf
cpp/scripts/gdb-pretty-printers.py
{ "start": 547, "end": 1000 }
class ____(gdb.printing.PrettyPrinter): """Print a cudf::host_span""" def __init__(self, val): self.val = val self.pointer = val["_data"] self.size = int(val["_size"]) def children(self): return HostIterator(self.pointer, self.size) def to_string(self): return f"{self.val.type} of length {self.size} at {hex(self.pointer)}" def display_hint(self): return "array"
CudfHostSpanPrinter
python
google__jax
jax/_src/pallas/mosaic_gpu/lowering.py
{ "start": 6690, "end": 12954 }
class ____(Protocol): def __call__( self, ctx: ResourceEstimatorContext, *args: Any, **params: Any ) -> Resources: ... _resource_estimators: dict[jax_core.Primitive, ResourceEstimator] = {} def _register_resource_estimator(primitive: jax_core.Primitive): def deco(fn): _resource_estimators[primitive] = fn return fn return deco def _estimate_resources( ctx: ResourceEstimatorContext, jaxpr: jax_core.Jaxpr ) -> Resources: """Estimates the resources required by the kernel.""" rs = Resources(smem_scratch_bytes=0) for eqn in jaxpr.eqns: # TODO(slebedev): Add support for other primitives, notably control flow. if rule := _resource_estimators.get(eqn.primitive): rs = rs.or_( rule(ctx, *(invar.aval for invar in eqn.invars), **eqn.params), ctx.axis_names, ) continue # Assume that unsupported primitives are neutral wrt resource usage, # unless they have a jaxpr in their params. if any( isinstance(v, (jax_core.Jaxpr, jax_core.ClosedJaxpr)) for v in eqn.params.values() ): raise NotImplementedError( f"Resource estimation does not support {eqn.primitive}" ) return rs @_register_resource_estimator(lax.cond_p) def _cond_resource_estimator( ctx: ResourceEstimatorContext, *args, branches ) -> Resources: del args # Unused. return functools.reduce( lambda a, b: a.or_(b, ctx.axis_names), (_estimate_resources(ctx, branch.jaxpr) for branch in branches), ) @_register_resource_estimator(lax.scan_p) def _scan_resource_estimator( ctx: ResourceEstimatorContext, *args, jaxpr: jax_core.ClosedJaxpr, **params ) -> Resources: del args, params # Unused. return _estimate_resources(ctx, jaxpr.jaxpr) @_register_resource_estimator(lax.while_p) def _while_resource_estimator( ctx: ResourceEstimatorContext, *args, cond_jaxpr: jax_core.ClosedJaxpr, body_jaxpr: jax_core.ClosedJaxpr, **params, ) -> Resources: del args, params # Unused. return _estimate_resources(ctx, cond_jaxpr.jaxpr).or_( _estimate_resources(ctx, body_jaxpr.jaxpr), ctx.axis_names ) @_register_resource_estimator(pjit.jit_p) def _pjit_resource_estimator( ctx: ResourceEstimatorContext, *args, jaxpr: jax_core.ClosedJaxpr, **params, ) -> Resources: del args, params # Unused. return _estimate_resources(ctx, jaxpr.jaxpr) @_register_resource_estimator(pallas_core.core_map_p) def _core_map_resource_estimator( ctx: ResourceEstimatorContext, *args, jaxpr: jax_core.Jaxpr, **params ) -> Resources: del args, params # Unused. return _estimate_resources(ctx, jaxpr) @_register_resource_estimator(discharge.run_state_p) def _run_state_resource_estimator( ctx: ResourceEstimatorContext, *args, jaxpr: jax_core.Jaxpr, **params ) -> Resources: del args, params # Unused. return _estimate_resources(ctx, jaxpr) @_register_resource_estimator(primitives.run_scoped_p) def _run_scoped_resource_estimator( ctx: ResourceEstimatorContext, *consts, jaxpr: jax_core.Jaxpr, collective_axes, ) -> Resources: # NOTE: This rule assumes that the allocation happens collectively, although # it can't be checked here due to limited context. We check this in the actual # lowering rule. del consts # Unused. rs = Resources() for v in jaxpr.invars: aval = cast(ShapedAbstractValue, v.aval) if isinstance(aval.dtype, gpu_core.BarrierType): multiplier = 1 if aval.dtype.orders_tensor_core else ctx.arrival_multiplier rs += Resources( barrier_counts=collections.Counter([ mgpu.Barrier( aval.dtype.num_arrivals * multiplier, *aval.shape ) ]) ) continue if isinstance(aval.dtype, gpu_core.ClusterBarrierType): collective_dims = jax.tree.map( lambda axis: _resolve_cluster_axis(ctx.axis_names, axis), aval.dtype.collective_axes, ) rs += Resources( barrier_counts=collections.Counter( [mgpu.ClusterBarrier(collective_dims, aval.dtype.num_arrivals, *aval.shape)] ) ) continue assert isinstance(aval, state_types.AbstractRef) if aval.memory_space == gpu_core.TMEM: if len(aval.shape) != 2: raise ValueError(f"TMEM allocations must be 2D. Got {aval.shape}") # Estimate columns used. if isinstance(aval, gpu_core.AbstractRefUnion): assert aval.shape[0] == 128 cols_used = aval.shape[1] else: cols_used = aval.layout.cols_in_shape( aval.shape, dtypes.itemsize_bits(aval.dtype) ) if aval.collective: rs += Resources(tmem_collective_scratch_cols=cols_used) else: rs += Resources(tmem_scratch_cols=cols_used) elif aval.memory_space == gpu_core.SMEM: rs += Resources( smem_scratch_bytes=aval.size * dtypes.itemsize_bits(aval.dtype) // 8 ) elif aval.memory_space == gpu_core.REGS: # Don't need to allocate anything. pass elif aval.memory_space == gpu_core.GMEM and jnp.issubdtype(aval.dtype, pallas_core.semaphore): if _is_block_local_scope(collective_axes, ctx.axis_names): rs += Resources(scoped_gmem_semaphores={collective_axes: aval.size}) else: raise ValueError( "Only thread-collective allocations are supported in run_scoped. To" " allocate global semaphores, use pl.get_global." ) else: raise NotImplementedError( f"Unsupported memory space: {aval.memory_space}") return rs + _estimate_resources(ctx, jaxpr) REDUCE_SCRATCH_ELEMS = 128 * 2 # vector of 2 elements per lane in each WG @_register_resource_estimator(lax.reduce_sum_p) @_register_resource_estimator(lax.reduce_max_p) def _reduce_resource_estimator( ctx: ResourceEstimatorContext, x_aval: jax_core.ShapedArray, *, axes, **kwargs ) -> Resources: del ctx, axes # Unused. # We don't need SMEM for some reductions, but it depends on the layout, so we # conservatively request the maximum scratch space we might need. return Resources(smem_scratch_bytes=REDUCE_SCRATCH_ELEMS * x_aval.dtype.itemsize) @dataclasses.dataclass(frozen=True)
ResourceEstimator
python
encode__httpx
httpx/_exceptions.py
{ "start": 3754, "end": 3848 }
class ____(NetworkError): """ Failed to receive data from the network. """
ReadError
python
scikit-learn__scikit-learn
sklearn/ensemble/_bagging.py
{ "start": 8550, "end": 23682 }
class ____(BaseEnsemble, metaclass=ABCMeta): """Base class for Bagging meta-estimator. Warning: This class should not be used directly. Use derived classes instead. """ _parameter_constraints: dict = { "estimator": [HasMethods(["fit", "predict"]), None], "n_estimators": [Interval(Integral, 1, None, closed="left")], "max_samples": [ Interval(Integral, 1, None, closed="left"), Interval(RealNotInt, 0, 1, closed="right"), ], "max_features": [ Interval(Integral, 1, None, closed="left"), Interval(RealNotInt, 0, 1, closed="right"), ], "bootstrap": ["boolean"], "bootstrap_features": ["boolean"], "oob_score": ["boolean"], "warm_start": ["boolean"], "n_jobs": [None, Integral], "random_state": ["random_state"], "verbose": ["verbose"], } @abstractmethod def __init__( self, estimator=None, n_estimators=10, *, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0, ): super().__init__( estimator=estimator, n_estimators=n_estimators, ) self.max_samples = max_samples self.max_features = max_features self.bootstrap = bootstrap self.bootstrap_features = bootstrap_features self.oob_score = oob_score self.warm_start = warm_start self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose @_fit_context( # BaseBagging.estimator is not validated yet prefer_skip_nested_validation=False ) def fit(self, X, y, sample_weight=None, **fit_params): """Build a Bagging ensemble of estimators from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. y : array-like of shape (n_samples,) The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Used as probabilities to sample the training set. Note that the expected frequency semantics for the `sample_weight` parameter are only fulfilled when sampling with replacement `bootstrap=True`. **fit_params : dict Parameters to pass to the underlying estimators. .. versionadded:: 1.5 Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : object Fitted estimator. """ _raise_for_params(fit_params, self, "fit") # Convert data (X is required to be 2d and indexable) X, y = validate_data( self, X, y, accept_sparse=["csr", "csc"], dtype=None, ensure_all_finite=False, multi_output=True, ) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=None) if not self.bootstrap: warn( f"When fitting {self.__class__.__name__} with sample_weight " f"it is recommended to use bootstrap=True, got {self.bootstrap}." ) return self._fit( X, y, max_samples=self.max_samples, sample_weight=sample_weight, **fit_params, ) def _parallel_args(self): return {} def _fit( self, X, y, max_samples=None, max_depth=None, check_input=True, sample_weight=None, **fit_params, ): """Build a Bagging ensemble of estimators from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The training input samples. Sparse matrices are accepted only if they are supported by the base estimator. y : array-like of shape (n_samples,) The target values (class labels in classification, real numbers in regression). max_samples : int or float, default=None Argument to use instead of self.max_samples. max_depth : int, default=None Override value used when constructing base estimator. Only supported if the base estimator has a max_depth parameter. check_input : bool, default=True Override value used when fitting base estimator. Only supported if the base estimator has a check_input parameter for fit function. If the meta-estimator already checks the input, set this value to False to prevent redundant input validation. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. **fit_params : dict, default=None Parameters to pass to the :term:`fit` method of the underlying estimator. Returns ------- self : object Fitted estimator. """ random_state = check_random_state(self.random_state) # Remap output n_samples = X.shape[0] self._n_samples = n_samples y = self._validate_y(y) # Check parameters self._validate_estimator(self._get_estimator()) if _routing_enabled(): routed_params = process_routing(self, "fit", **fit_params) else: routed_params = Bunch() routed_params.estimator = Bunch(fit=fit_params) if max_depth is not None: self.estimator_.max_depth = max_depth # Validate max_samples if max_samples is None: max_samples = self.max_samples if not isinstance(max_samples, numbers.Integral): if sample_weight is None: max_samples = max(int(max_samples * X.shape[0]), 1) else: sw_sum = np.sum(sample_weight) if sw_sum <= 1: raise ValueError( f"The total sum of sample weights is {sw_sum}, which prevents " "resampling with a fractional value for max_samples=" f"{max_samples}. Either pass max_samples as an integer or " "use a larger sample_weight." ) max_samples = max(int(max_samples * sw_sum), 1) if not self.bootstrap and max_samples > X.shape[0]: raise ValueError( f"Effective max_samples={max_samples} must be <= n_samples=" f"{X.shape[0]} to be able to sample without replacement." ) # Store validated integer row sampling value self._max_samples = max_samples # Validate max_features if isinstance(self.max_features, numbers.Integral): max_features = self.max_features elif isinstance(self.max_features, float): max_features = int(self.max_features * self.n_features_in_) if max_features > self.n_features_in_: raise ValueError("max_features must be <= n_features") max_features = max(1, int(max_features)) # Store validated integer feature sampling value self._max_features = max_features # Store sample_weight (needed in _get_estimators_indices). Note that # we intentionally do not materialize `sample_weight=None` as an array # of ones to avoid unnecessarily cluttering trained estimator pickles. self._sample_weight = sample_weight # Other checks if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available if bootstrap=True") if self.warm_start and self.oob_score: raise ValueError("Out of bag estimate only available if warm_start=False") if hasattr(self, "oob_score_") and self.warm_start: del self.oob_score_ if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] self.estimators_features_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError( "n_estimators=%d must be larger or equal to " "len(estimators_)=%d when warm_start==True" % (self.n_estimators, len(self.estimators_)) ) elif n_more_estimators == 0: warn( "Warm-start fitting without increasing n_estimators does not " "fit new trees." ) return self # Parallel loop n_jobs, n_estimators, starts = _partition_estimators( n_more_estimators, self.n_jobs ) total_n_estimators = sum(n_estimators) # Advance random state to state after training # the first n_estimators if self.warm_start and len(self.estimators_) > 0: random_state.randint(MAX_INT, size=len(self.estimators_)) seeds = random_state.randint(MAX_INT, size=n_more_estimators) self._seeds = seeds all_results = Parallel( n_jobs=n_jobs, verbose=self.verbose, **self._parallel_args() )( delayed(_parallel_build_estimators)( n_estimators[i], self, X, y, sample_weight, seeds[starts[i] : starts[i + 1]], total_n_estimators, verbose=self.verbose, check_input=check_input, fit_params=routed_params.estimator.fit, ) for i in range(n_jobs) ) # Reduce self.estimators_ += list( itertools.chain.from_iterable(t[0] for t in all_results) ) self.estimators_features_ += list( itertools.chain.from_iterable(t[1] for t in all_results) ) if self.oob_score: self._set_oob_score(X, y) return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y(self, y): if len(y.shape) == 1 or y.shape[1] == 1: return column_or_1d(y, warn=True) return y def _get_estimators_indices(self): # Get drawn indices along both sample and feature axes for seed in self._seeds: # Operations accessing random_state must be performed identically # to those in `_parallel_build_estimators()` feature_indices, sample_indices = _generate_bagging_indices( seed, self.bootstrap_features, self.bootstrap, self.n_features_in_, self._n_samples, self._max_features, self._max_samples, self._sample_weight, ) yield feature_indices, sample_indices @property def estimators_samples_(self): """ The subset of drawn samples for each base estimator. Returns a dynamically generated list of indices identifying the samples used for fitting each member of the ensemble, i.e., the in-bag samples. Note: the list is re-created at each call to the property in order to reduce the object memory footprint by not storing the sampling data. Thus fetching the property may be slower than expected. """ return [sample_indices for _, sample_indices in self._get_estimators_indices()] def get_metadata_routing(self): """Get metadata routing of this object. Please check :ref:`User Guide <metadata_routing>` on how the routing mechanism works. .. versionadded:: 1.5 Returns ------- routing : MetadataRouter A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating routing information. """ router = MetadataRouter(owner=self) method_mapping = MethodMapping() method_mapping.add(caller="fit", callee="fit").add( caller="decision_function", callee="decision_function" ) # the router needs to be built depending on whether the sub-estimator has a # `predict_proba` method (as BaggingClassifier decides dynamically at runtime): if hasattr(self._get_estimator(), "predict_proba"): ( method_mapping.add(caller="predict", callee="predict_proba").add( caller="predict_proba", callee="predict_proba" ) ) else: ( method_mapping.add(caller="predict", callee="predict").add( caller="predict_proba", callee="predict" ) ) # the router needs to be built depending on whether the sub-estimator has a # `predict_log_proba` method (as BaggingClassifier decides dynamically at # runtime): if hasattr(self._get_estimator(), "predict_log_proba"): method_mapping.add(caller="predict_log_proba", callee="predict_log_proba") else: # if `predict_log_proba` is not available in BaggingClassifier's # sub-estimator, the routing should go to its `predict_proba` if it is # available or else to its `predict` method; according to how # `sample_weight` is passed to the respective methods dynamically at # runtime: if hasattr(self._get_estimator(), "predict_proba"): method_mapping.add(caller="predict_log_proba", callee="predict_proba") else: method_mapping.add(caller="predict_log_proba", callee="predict") router.add(estimator=self._get_estimator(), method_mapping=method_mapping) return router @abstractmethod def _get_estimator(self): """Resolve which estimator to return.""" def __sklearn_tags__(self): tags = super().__sklearn_tags__() tags.input_tags.sparse = get_tags(self._get_estimator()).input_tags.sparse tags.input_tags.allow_nan = get_tags(self._get_estimator()).input_tags.allow_nan return tags
BaseBagging
python
django-guardian__django-guardian
example_project/articles/tests.py
{ "start": 372, "end": 3840 }
class ____(TestCase): def setUp(self): self.article = Article.objects.create(title="foo-title", slug="foo-slug", content="bar-content") self.factory = RequestFactory() self.user = get_user_model().objects.create_user("joe", "joe@doe.com", "doe") self.client.login(username="joe", password="doe") def test_list_permitted(self): request = self.factory.get("/") request.user = self.user assign_perm("articles.view_article", self.user, self.article) assign_perm("articles.delete_article", self.user, self.article) view = ArticleListView.as_view() response = view(request) response.render() self.assertContains(response, "foo-title") def test_list_denied(self): request = self.factory.get("/") request.user = self.user view = ArticleListView.as_view() response = view(request) response.render() self.assertNotContains(response, "foo-title") def test_create_permitted(self): request = self.factory.get("/~create") request.user = self.user assign_perm("articles.add_article", self.user) view = ArticleCreateView.as_view() response = view(request) self.assertEqual(response.status_code, 200) def test_create_denied(self): request = self.factory.get("/~create") request.user = self.user view = ArticleCreateView.as_view() response = view(request) self.assertEqual(response.status_code, 302) def test_detail_permitted(self): request = self.factory.get("/foo/") request.user = self.user assign_perm("articles.view_article", self.user, self.article) view = ArticleDetailView.as_view() response = view(request, slug="foo-slug") self.assertEqual(response.status_code, 200) def test_detail_denied(self): request = self.factory.get("/foo/") request.user = self.user view = ArticleDetailView.as_view() response = view(request, slug="foo-slug") self.assertEqual(response.status_code, 302) def test_update_permitted(self): request = self.factory.get("/") request.user = self.user assign_perm("articles.view_article", self.user, self.article) assign_perm("articles.change_article", self.user, self.article) view = ArticleUpdateView.as_view() response = view(request, slug="foo-slug") self.assertEqual(response.status_code, 200) def test_update_denied(self): request = self.factory.get("/") request.user = self.user view = ArticleUpdateView.as_view() response = view(request, slug="foo-slug") self.assertEqual(response.status_code, 302) def test_delete_permitted(self): request = self.factory.get("/foo-slug/~delete") request.user = self.user assign_perm("articles.view_article", self.user, self.article) assign_perm("articles.delete_article", self.user, self.article) view = ArticleDeleteView.as_view() response = view(request, slug="foo-slug") self.assertEqual(response.status_code, 200) def test_delete_denied(self): request = self.factory.get("/foo/~delete") request.user = self.user view = ArticleDeleteView.as_view() response = view(request, slug="foo-slug") self.assertEqual(response.status_code, 302)
ViewUserTestCase
python
getsentry__sentry
src/sentry/runner/commands/backup.py
{ "start": 7733, "end": 8059 }
class ____(Printer): """ A printer that only asks for confirmations, and is otherwise silent. """ def confirm( self, text: str, *, default: bool | None = None, err: bool = False, ) -> bool: return click.confirm(text, default=default, err=err)
InputOnlyPrinter
python
zarr-developers__zarr-python
src/zarr/core/indexing.py
{ "start": 41324, "end": 46673 }
class ____(Indexer): sel_shape: tuple[int, ...] selection: CoordinateSelectionNormalized sel_sort: npt.NDArray[np.intp] | None chunk_nitems_cumsum: npt.NDArray[np.intp] chunk_rixs: npt.NDArray[np.intp] chunk_mixs: tuple[npt.NDArray[np.intp], ...] shape: tuple[int, ...] chunk_shape: tuple[int, ...] drop_axes: tuple[int, ...] def __init__( self, selection: CoordinateSelection, shape: tuple[int, ...], chunk_grid: ChunkGrid ) -> None: chunk_shape = get_chunk_shape(chunk_grid) cdata_shape: tuple[int, ...] if shape == (): cdata_shape = (1,) else: cdata_shape = tuple(math.ceil(s / c) for s, c in zip(shape, chunk_shape, strict=True)) nchunks = reduce(operator.mul, cdata_shape, 1) # some initial normalization selection_normalized = cast("CoordinateSelectionNormalized", ensure_tuple(selection)) selection_normalized = tuple( np.asarray([i]) if is_integer(i) else i for i in selection_normalized ) selection_normalized = cast( "CoordinateSelectionNormalized", replace_lists(selection_normalized) ) # validation if not is_coordinate_selection(selection_normalized, shape): raise IndexError( "invalid coordinate selection; expected one integer " "(coordinate) array per dimension of the target array, " f"got {selection!r}" ) # handle wraparound, boundscheck for dim_sel, dim_len in zip(selection_normalized, shape, strict=True): # handle wraparound wraparound_indices(dim_sel, dim_len) # handle out of bounds boundscheck_indices(dim_sel, dim_len) # compute chunk index for each point in the selection chunks_multi_index = tuple( dim_sel // dim_chunk_len for (dim_sel, dim_chunk_len) in zip(selection_normalized, chunk_shape, strict=True) ) # broadcast selection - this will raise error if array dimensions don't match selection_broadcast = tuple(np.broadcast_arrays(*selection_normalized)) chunks_multi_index_broadcast = np.broadcast_arrays(*chunks_multi_index) # remember shape of selection, because we will flatten indices for processing sel_shape = selection_broadcast[0].shape or (1,) # flatten selection selection_broadcast = tuple(dim_sel.reshape(-1) for dim_sel in selection_broadcast) chunks_multi_index_broadcast = tuple( dim_chunks.reshape(-1) for dim_chunks in chunks_multi_index_broadcast ) # ravel chunk indices chunks_raveled_indices = np.ravel_multi_index( chunks_multi_index_broadcast, dims=cdata_shape ) # group points by chunk if np.any(np.diff(chunks_raveled_indices) < 0): # optimisation, only sort if needed sel_sort = np.argsort(chunks_raveled_indices) selection_broadcast = tuple(dim_sel[sel_sort] for dim_sel in selection_broadcast) else: sel_sort = None shape = selection_broadcast[0].shape or (1,) # precompute number of selected items for each chunk chunk_nitems = np.bincount(chunks_raveled_indices, minlength=nchunks) chunk_nitems_cumsum = np.cumsum(chunk_nitems) # locate the chunks we need to process chunk_rixs = np.nonzero(chunk_nitems)[0] # unravel chunk indices chunk_mixs = np.unravel_index(chunk_rixs, cdata_shape) object.__setattr__(self, "sel_shape", sel_shape) object.__setattr__(self, "selection", selection_broadcast) object.__setattr__(self, "sel_sort", sel_sort) object.__setattr__(self, "chunk_nitems_cumsum", chunk_nitems_cumsum) object.__setattr__(self, "chunk_rixs", chunk_rixs) object.__setattr__(self, "chunk_mixs", chunk_mixs) object.__setattr__(self, "chunk_shape", chunk_shape) object.__setattr__(self, "shape", shape) object.__setattr__(self, "drop_axes", ()) def __iter__(self) -> Iterator[ChunkProjection]: # iterate over chunks for i, chunk_rix in enumerate(self.chunk_rixs): chunk_coords = tuple(m[i] for m in self.chunk_mixs) if chunk_rix == 0: start = 0 else: start = self.chunk_nitems_cumsum[chunk_rix - 1] stop = self.chunk_nitems_cumsum[chunk_rix] out_selection: slice | npt.NDArray[np.intp] if self.sel_sort is None: out_selection = slice(start, stop) else: out_selection = self.sel_sort[start:stop] chunk_offsets = tuple( dim_chunk_ix * dim_chunk_len for dim_chunk_ix, dim_chunk_len in zip(chunk_coords, self.chunk_shape, strict=True) ) chunk_selection = tuple( dim_sel[start:stop] - dim_chunk_offset for (dim_sel, dim_chunk_offset) in zip(self.selection, chunk_offsets, strict=True) ) is_complete_chunk = False # TODO yield ChunkProjection(chunk_coords, chunk_selection, out_selection, is_complete_chunk) @dataclass(frozen=True)
CoordinateIndexer
python
scipy__scipy
scipy/interpolate/tests/test_bsplines.py
{ "start": 65121, "end": 71946 }
class ____: # # Test make_lsq_spline # rng = np.random.RandomState(1234) n, k = 13, 3 x = np.sort(rng.random(n)) y = rng.random(n) t = _augknt(np.linspace(x[0], x[-1], 7), k) @parametrize_lsq_methods def test_lstsq(self, method): # check LSQ construction vs a full matrix version x, y, t, k = self.x, self.y, self.t, self.k c0, AY = make_lsq_full_matrix(x, y, t, k) b = make_lsq_spline(x, y, t, k, method=method) xp_assert_close(b.c, c0) assert b.c.shape == (t.size - k - 1,) # also check against numpy.lstsq aa, yy = AY c1, _, _, _ = np.linalg.lstsq(aa, y, rcond=-1) xp_assert_close(b.c, c1) @parametrize_lsq_methods def test_weights(self, method, xp): # weights = 1 is same as None x, y, t, k = *map(xp.asarray, (self.x, self.y, self.t)), self.k w = xp.ones_like(x) b = make_lsq_spline(x, y, t, k, method=method) b_w = make_lsq_spline(x, y, t, k, w=w, method=method) xp_assert_close(b.t, b_w.t, atol=1e-14) xp_assert_close(b.c, b_w.c, atol=1e-14) assert b.k == b_w.k def test_weights_same(self, xp): # both methods treat weights x, y, t, k = *map(xp.asarray, (self.x, self.y, self.t)), self.k w = np.random.default_rng(1234).uniform(size=x.shape[0]) w = xp.asarray(w) b_ne = make_lsq_spline(x, y, t, k, w=w, method="norm-eq") b_qr = make_lsq_spline(x, y, t, k, w=w, method="qr") b_no_w = make_lsq_spline(x, y, t, k, method="qr") xp_assert_close(b_ne.c, b_qr.c, atol=1e-14) assert not xp.all(xp.abs(b_no_w.c - b_qr.c) < 1e-14) @parametrize_lsq_methods def test_multiple_rhs(self, method, xp): x, t, k, n = *map(xp.asarray, (self.x, self.t)), self.k, self.n rng = np.random.RandomState(1234) y = rng.random(size=(n, 5, 6, 7)) y = xp.asarray(y) b = make_lsq_spline(x, y, t, k, method=method) assert b.c.shape == (t.shape[0] - k - 1, 5, 6, 7) @parametrize_lsq_methods def test_multiple_rhs_2(self, method, xp): x, t, k, n = *map(xp.asarray, (self.x, self.t)), self.k, self.n nrhs = 3 rng = np.random.RandomState(1234) y = rng.random(size=(n, nrhs)) y = xp.asarray(y) b = make_lsq_spline(x, y, t, k, method=method) bb = [make_lsq_spline(x, y[:, i], t, k, method=method) for i in range(nrhs)] coefs = xp.stack([bb[i].c for i in range(nrhs)]).T xp_assert_close(coefs, b.c, atol=1e-15) def test_multiple_rhs_3(self, xp): x, t, k, n = *map(xp.asarray, (self.x, self.t)), self.k, self.n nrhs = 3 y = np.random.random(size=(n, nrhs)) y = xp.asarray(y) b_qr = make_lsq_spline(x, y, t, k, method="qr") b_neq = make_lsq_spline(x, y, t, k, method="norm-eq") xp_assert_close(b_qr.c, b_neq.c, atol=1e-15) @parametrize_lsq_methods def test_complex(self, method, xp): # cmplx-valued `y` x, t, k = *map(xp.asarray, (self.x, self.t)), self.k yc = xp.asarray(self.y * (1. + 2.j)) b = make_lsq_spline(x, yc, t, k, method=method) b_re = make_lsq_spline(x, xp.real(yc), t, k, method=method) b_im = make_lsq_spline(x, xp.imag(yc), t, k, method=method) xp_assert_close(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15) def test_complex_2(self, xp): # test complex-valued y with y.ndim > 1 x, t, k = *map(xp.asarray, (self.x, self.t)), self.k yc = xp.asarray(self.y * (1. + 2.j)) yc = xp.stack((yc, yc), axis=1) b = make_lsq_spline(x, yc, t, k) b_re = make_lsq_spline(x, xp.real(yc), t, k) b_im = make_lsq_spline(x, xp.imag(yc), t, k) xp_assert_close(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15) # repeat with num_trailing_dims > 1 : yc.shape[1:] = (2, 2) yc = xp.stack((yc, yc), axis=1) b = make_lsq_spline(x, yc, t, k) b_re = make_lsq_spline(x, xp.real(yc), t, k) b_im = make_lsq_spline(x, xp.imag(yc), t, k) xp_assert_close(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15) @parametrize_lsq_methods def test_int_xy(self, method): x = np.arange(10).astype(int) y = np.arange(10).astype(int) t = _augknt(x, k=1) # Cython chokes on "buffer type mismatch" make_lsq_spline(x, y, t, k=1, method=method) @parametrize_lsq_methods def test_f32_xy(self, method): x = np.arange(10, dtype=np.float32) y = np.arange(10, dtype=np.float32) t = _augknt(x, k=1) spl_f32 = make_lsq_spline(x, y, t, k=1, method=method) spl_f64 = make_lsq_spline( x.astype(float), y.astype(float), t.astype(float), k=1, method=method ) x2 = (x[1:] + x[:-1]) / 2.0 xp_assert_close(spl_f32(x2), spl_f64(x2), atol=1e-15) @parametrize_lsq_methods def test_sliced_input(self, method): # Cython code chokes on non C contiguous arrays xx = np.linspace(-1, 1, 100) x = xx[::3] y = xx[::3] t = _augknt(x, 1) make_lsq_spline(x, y, t, k=1, method=method) @parametrize_lsq_methods def test_checkfinite(self, method): # check_finite defaults to True; nans and such trigger a ValueError x = np.arange(12).astype(float) y = x**2 t = _augknt(x, 3) for z in [np.nan, np.inf, -np.inf]: y[-1] = z assert_raises(ValueError, make_lsq_spline, x, y, t, method=method) @parametrize_lsq_methods def test_read_only(self, method): # Check that make_lsq_spline works with read only arrays x, y, t = self.x, self.y, self.t x.setflags(write=False) y.setflags(write=False) t.setflags(write=False) make_lsq_spline(x=x, y=y, t=t, method=method) @pytest.mark.parametrize('k', list(range(1, 7))) def test_qr_vs_norm_eq(self, k): # check that QR and normal eq solutions match x, y = self.x, self.y t = _augknt(np.linspace(x[0], x[-1], 7), k) spl_norm_eq = make_lsq_spline(x, y, t, k=k, method='norm-eq') spl_qr = make_lsq_spline(x, y, t, k=k, method='qr') xx = (x[1:] + x[:-1]) / 2.0 xp_assert_close(spl_norm_eq(xx), spl_qr(xx), atol=1e-15) def test_duplicates(self): # method="qr" can handle duplicated data points x = np.repeat(self.x, 2) y = np.repeat(self.y, 2) spl_1 = make_lsq_spline(self.x, self.y, self.t, k=3, method='qr') spl_2 = make_lsq_spline(x, y, self.t, k=3, method='qr') xx = (x[1:] + x[:-1]) / 2.0 xp_assert_close(spl_1(xx), spl_2(xx), atol=1e-15)
TestLSQ
python
pytorch__pytorch
test/torch_np/numpy_tests/core/test_numeric.py
{ "start": 26880, "end": 34529 }
class ____(TestCase): def check_promotion_cases(self, promote_func): # tests that the scalars get coerced correctly. b = np.bool_(0) i8, i16, i32, i64 = np.int8(0), np.int16(0), np.int32(0), np.int64(0) u8 = np.uint8(0) f32, f64 = np.float32(0), np.float64(0) c64, c128 = np.complex64(0), np.complex128(0) # coercion within the same kind assert_equal(promote_func(i8, i16), np.dtype(np.int16)) assert_equal(promote_func(i32, i8), np.dtype(np.int32)) assert_equal(promote_func(i16, i64), np.dtype(np.int64)) assert_equal(promote_func(f32, f64), np.dtype(np.float64)) assert_equal(promote_func(c128, c64), np.dtype(np.complex128)) # coercion between kinds assert_equal(promote_func(b, i32), np.dtype(np.int32)) assert_equal(promote_func(b, u8), np.dtype(np.uint8)) assert_equal(promote_func(i8, u8), np.dtype(np.int16)) assert_equal(promote_func(u8, i32), np.dtype(np.int32)) assert_equal(promote_func(f32, i16), np.dtype(np.float32)) assert_equal(promote_func(f32, c64), np.dtype(np.complex64)) assert_equal(promote_func(c128, f32), np.dtype(np.complex128)) # coercion between scalars and 1-D arrays assert_equal(promote_func(np.array([b]), i8), np.dtype(np.int8)) assert_equal(promote_func(np.array([b]), u8), np.dtype(np.uint8)) assert_equal(promote_func(np.array([b]), i32), np.dtype(np.int32)) assert_equal(promote_func(c64, np.array([f64])), np.dtype(np.complex128)) assert_equal( promote_func(np.complex64(3j), np.array([f64])), np.dtype(np.complex128) ) # coercion between scalars and 1-D arrays, where # the scalar has greater kind than the array assert_equal(promote_func(np.array([b]), f64), np.dtype(np.float64)) assert_equal(promote_func(np.array([b]), i64), np.dtype(np.int64)) assert_equal(promote_func(np.array([i8]), f64), np.dtype(np.float64)) def check_promotion_cases_2(self, promote_func): # these are failing because of the "scalars do not upcast arrays" rule # Two first tests (i32 + f32 -> f64, and i64+f32 -> f64) xfail # until ufuncs implement the proper type promotion (ufunc loops?) i8, i32, i64 = np.int8(0), np.int32(0), np.int64(0) f32, f64 = np.float32(0), np.float64(0) c128 = np.complex128(0) assert_equal(promote_func(i32, f32), np.dtype(np.float64)) assert_equal(promote_func(i64, f32), np.dtype(np.float64)) assert_equal(promote_func(np.array([i8]), i64), np.dtype(np.int8)) assert_equal(promote_func(f64, np.array([f32])), np.dtype(np.float32)) # float and complex are treated as the same "kind" for # the purposes of array-scalar promotion, so that you can do # (0j + float32array) to get a complex64 array instead of # a complex128 array. assert_equal(promote_func(np.array([f32]), c128), np.dtype(np.complex64)) def test_coercion(self): def res_type(a, b): return np.add(a, b).dtype self.check_promotion_cases(res_type) # Use-case: float/complex scalar * bool/int8 array # shouldn't narrow the float/complex type for a in [np.array([True, False]), np.array([-3, 12], dtype=np.int8)]: b = 1.234 * a assert_equal(b.dtype, np.dtype("f8"), f"array type {a.dtype}") b = np.float64(1.234) * a assert_equal(b.dtype, np.dtype("f8"), f"array type {a.dtype}") b = np.float32(1.234) * a assert_equal(b.dtype, np.dtype("f4"), f"array type {a.dtype}") b = np.float16(1.234) * a assert_equal(b.dtype, np.dtype("f2"), f"array type {a.dtype}") b = 1.234j * a assert_equal(b.dtype, np.dtype("c16"), f"array type {a.dtype}") b = np.complex128(1.234j) * a assert_equal(b.dtype, np.dtype("c16"), f"array type {a.dtype}") b = np.complex64(1.234j) * a assert_equal(b.dtype, np.dtype("c8"), f"array type {a.dtype}") # The following use-case is problematic, and to resolve its # tricky side-effects requires more changes. # # Use-case: (1-t)*a, where 't' is a boolean array and 'a' is # a float32, shouldn't promote to float64 # # a = np.array([1.0, 1.5], dtype=np.float32) # t = np.array([True, False]) # b = t*a # assert_equal(b, [1.0, 0.0]) # assert_equal(b.dtype, np.dtype('f4')) # b = (1-t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) # # Probably ~t (bitwise negation) is more proper to use here, # but this is arguably less intuitive to understand at a glance, and # would fail if 't' is actually an integer array instead of boolean: # # b = (~t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) @xpassIfTorchDynamo_np # (reason="'Scalars do not upcast arrays' rule") def test_coercion_2(self): def res_type(a, b): return np.add(a, b).dtype self.check_promotion_cases_2(res_type) def test_result_type(self): self.check_promotion_cases(np.result_type) @skip(reason="array(None) not supported") def test_tesult_type_2(self): assert_(np.result_type(None) == np.dtype(None)) @skip(reason="no endianness in dtypes") def test_promote_types_endian(self): # promote_types should always return native-endian types assert_equal(np.promote_types("<i8", "<i8"), np.dtype("i8")) assert_equal(np.promote_types(">i8", ">i8"), np.dtype("i8")) def test_can_cast(self): assert_(np.can_cast(np.int32, np.int64)) assert_(np.can_cast(np.float64, complex)) assert_(not np.can_cast(complex, float)) assert_(np.can_cast("i8", "f8")) assert_(not np.can_cast("i8", "f4")) assert_(np.can_cast("i8", "i8", "no")) @skip(reason="no endianness in dtypes") def test_can_cast_2(self): assert_(not np.can_cast("<i8", ">i8", "no")) assert_(np.can_cast("<i8", ">i8", "equiv")) assert_(not np.can_cast("<i4", ">i8", "equiv")) assert_(np.can_cast("<i4", ">i8", "safe")) assert_(not np.can_cast("<i8", ">i4", "safe")) assert_(np.can_cast("<i8", ">i4", "same_kind")) assert_(not np.can_cast("<i8", ">u4", "same_kind")) assert_(np.can_cast("<i8", ">u4", "unsafe")) assert_raises(TypeError, np.can_cast, "i4", None) assert_raises(TypeError, np.can_cast, None, "i4") # Also test keyword arguments assert_(np.can_cast(from_=np.int32, to=np.int64)) @xpassIfTorchDynamo_np # (reason="value-based casting?") def test_can_cast_values(self): # gh-5917 for dt in [np.int8, np.int16, np.int32, np.int64] + [ np.uint8, np.uint16, np.uint32, np.uint64, ]: ii = np.iinfo(dt) assert_(np.can_cast(ii.min, dt)) assert_(np.can_cast(ii.max, dt)) assert_(not np.can_cast(ii.min - 1, dt)) assert_(not np.can_cast(ii.max + 1, dt)) for dt in [np.float16, np.float32, np.float64, np.longdouble]: fi = np.finfo(dt) assert_(np.can_cast(fi.min, dt)) assert_(np.can_cast(fi.max, dt)) # Custom exception class to test exception propagation in fromiter
TestTypes
python
wandb__wandb
wandb/vendor/pygments/formatters/img.py
{ "start": 1420, "end": 7329 }
class ____(object): """ Manages a set of fonts: normal, italic, bold, etc... """ def __init__(self, font_name, font_size=14): self.font_name = font_name self.font_size = font_size self.fonts = {} self.encoding = None if sys.platform.startswith('win'): if not font_name: self.font_name = DEFAULT_FONT_NAME_WIN self._create_win() elif sys.platform.startswith('darwin'): if not font_name: self.font_name = DEFAULT_FONT_NAME_MAC self._create_mac() else: if not font_name: self.font_name = DEFAULT_FONT_NAME_NIX self._create_nix() def _get_nix_font_path(self, name, style): proc = subprocess.Popen(['fc-list', "%s:style=%s" % (name, style), 'file'], stdout=subprocess.PIPE, stderr=None) stdout, _ = proc.communicate() if proc.returncode == 0: lines = stdout.splitlines() for line in lines: if line.startswith(b'Fontconfig warning:'): continue path = line.decode().strip().strip(':') if path: return path return None def _create_nix(self): for name in STYLES['NORMAL']: path = self._get_nix_font_path(self.font_name, name) if path is not None: self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) break else: raise FontNotFound('No usable fonts named: "%s"' % self.font_name) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): for stylename in STYLES[style]: path = self._get_nix_font_path(self.font_name, stylename) if path is not None: self.fonts[style] = ImageFont.truetype(path, self.font_size) break else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] def _get_mac_font_path(self, font_map, name, style): return font_map.get((name + ' ' + style).strip().lower()) def _create_mac(self): font_map = {} for font_dir in (os.path.join(os.getenv("HOME"), 'Library/Fonts/'), '/Library/Fonts/', '/System/Library/Fonts/'): font_map.update( ((os.path.splitext(f)[0].lower(), os.path.join(font_dir, f)) for f in os.listdir(font_dir) if f.lower().endswith('ttf'))) for name in STYLES['NORMAL']: path = self._get_mac_font_path(font_map, self.font_name, name) if path is not None: self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) break else: raise FontNotFound('No usable fonts named: "%s"' % self.font_name) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): for stylename in STYLES[style]: path = self._get_mac_font_path(font_map, self.font_name, stylename) if path is not None: self.fonts[style] = ImageFont.truetype(path, self.font_size) break else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] def _lookup_win(self, key, basename, styles, fail=False): for suffix in ('', ' (TrueType)'): for style in styles: try: valname = '%s%s%s' % (basename, style and ' '+style, suffix) val, _ = _winreg.QueryValueEx(key, valname) return val except EnvironmentError: continue else: if fail: raise FontNotFound('Font %s (%s) not found in registry' % (basename, styles[0])) return None def _create_win(self): try: key = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, r'Software\Microsoft\Windows NT\CurrentVersion\Fonts') except EnvironmentError: try: key = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, r'Software\Microsoft\Windows\CurrentVersion\Fonts') except EnvironmentError: raise FontNotFound('Can\'t open Windows font registry key') try: path = self._lookup_win(key, self.font_name, STYLES['NORMAL'], True) self.fonts['NORMAL'] = ImageFont.truetype(path, self.font_size) for style in ('ITALIC', 'BOLD', 'BOLDITALIC'): path = self._lookup_win(key, self.font_name, STYLES[style]) if path: self.fonts[style] = ImageFont.truetype(path, self.font_size) else: if style == 'BOLDITALIC': self.fonts[style] = self.fonts['BOLD'] else: self.fonts[style] = self.fonts['NORMAL'] finally: _winreg.CloseKey(key) def get_char_size(self): """ Get the character size. """ return self.fonts['NORMAL'].getsize('M') def get_font(self, bold, oblique): """ Get the font based on bold and italic flags. """ if bold and oblique: return self.fonts['BOLDITALIC'] elif bold: return self.fonts['BOLD'] elif oblique: return self.fonts['ITALIC'] else: return self.fonts['NORMAL']
FontManager
python
rapidsai__cudf
python/cudf/cudf/core/dtypes.py
{ "start": 5273, "end": 12720 }
class ____(_BaseDtype): """ Type for categorical data with the categories and orderedness. Parameters ---------- categories : sequence, optional Must be unique, and must not contain any nulls. The categories are stored in an Index, and if an index is provided the dtype of that index will be used. ordered : bool or None, default False Whether or not this categorical is treated as a ordered categorical. None can be used to maintain the ordered value of existing categoricals when used in operations that combine categoricals, e.g. astype, and will resolve to False if there is no existing ordered to maintain. Attributes ---------- categories ordered Methods ------- from_pandas to_pandas Examples -------- >>> import cudf >>> dtype = cudf.CategoricalDtype(categories=['b', 'a'], ordered=True) >>> cudf.Series(['a', 'b', 'a', 'c'], dtype=dtype) 0 a 1 b 2 a 3 <NA> dtype: category Categories (2, object): ['b' < 'a'] """ def __init__(self, categories=None, ordered: bool | None = False) -> None: if not (ordered is None or isinstance(ordered, bool)): raise ValueError("ordered must be a boolean or None") self._categories = self._init_categories(categories) self._ordered = ordered @property def categories(self) -> Index: """ An ``Index`` containing the unique categories allowed. Examples -------- >>> import cudf >>> dtype = cudf.CategoricalDtype(categories=['b', 'a'], ordered=True) >>> dtype.categories Index(['b', 'a'], dtype='object') """ if self._categories is None: col = cudf.core.column.column_empty(0, dtype=CUDF_STRING_DTYPE) else: col = self._categories return cudf.Index._from_column(col) @property def type(self): return self._categories.dtype.type @property def name(self): return "category" @property def str(self): return "|O08" @property def ordered(self) -> bool | None: """ Whether the categories have an ordered relationship. """ return self._ordered @classmethod def from_pandas(cls, dtype: pd.CategoricalDtype) -> "CategoricalDtype": """ Convert a ``pandas.CategrocialDtype`` to ``cudf.CategoricalDtype`` Examples -------- >>> import cudf >>> import pandas as pd >>> pd_dtype = pd.CategoricalDtype(categories=['b', 'a'], ordered=True) >>> pd_dtype CategoricalDtype(categories=['b', 'a'], ordered=True, categories_dtype=object) >>> cudf_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) >>> cudf_dtype CategoricalDtype(categories=['b', 'a'], ordered=True, categories_dtype=object) """ warnings.warn( "from_pandas is deprecated and will be removed in a future version. " "Pass the pandas.CategoricalDtype categories and ordered to the CategoricalDtype constructor instead.", FutureWarning, ) return CategoricalDtype( categories=dtype.categories, ordered=dtype.ordered ) def to_pandas(self) -> pd.CategoricalDtype: """ Convert a ``cudf.CategoricalDtype`` to ``pandas.CategoricalDtype`` Examples -------- >>> import cudf >>> dtype = cudf.CategoricalDtype(categories=['b', 'a'], ordered=True) >>> dtype CategoricalDtype(categories=['b', 'a'], ordered=True, categories_dtype=object) >>> dtype.to_pandas() CategoricalDtype(categories=['b', 'a'], ordered=True, categories_dtype=object) """ if self._categories is None: categories = None elif self._categories.dtype.kind == "f": categories = self._categories.dropna().to_pandas() else: categories = self._categories.to_pandas() return pd.CategoricalDtype(categories=categories, ordered=self.ordered) def _init_categories(self, categories: Any) -> ColumnBase | None: if categories is None: return categories from cudf.api.types import is_scalar if is_scalar(categories): raise ValueError("categories must be a list-like object") if len(categories) == 0 and not isinstance( getattr(categories, "dtype", None), (IntervalDtype, pd.IntervalDtype), ): dtype = CUDF_STRING_DTYPE else: dtype = None column = cudf.core.column.as_column(categories, dtype=dtype) if isinstance(column.dtype, CategoricalDtype): return column.categories # type: ignore[attr-defined] else: return column def _internal_eq(self, other: Dtype, strict=True) -> bool: if isinstance(other, str): return other == self.name elif other is self: return True elif not isinstance(other, self.__class__): return False elif other.ordered is None and other._categories is None: # other is equivalent to the string "category" return True elif self._categories is None or other._categories is None: return self._categories is other._categories elif self.ordered or other.ordered: return (self.ordered == other.ordered) and self._categories.equals( other._categories ) else: left_cats = self._categories right_cats = other._categories if left_cats.dtype != right_cats.dtype: return False if len(left_cats) != len(right_cats): return False if self.ordered in {None, False} and other.ordered in { None, False, }: if strict: return left_cats.equals(right_cats) else: return left_cats.sort_values().equals( right_cats.sort_values() ) return self.ordered == other.ordered and left_cats.equals( right_cats ) def __eq__(self, other: Dtype) -> bool: return self._internal_eq(other, strict=False) def construct_from_string(self): raise NotImplementedError() def serialize(self): header = {} header["ordered"] = self.ordered frames = [] if self.categories is not None: categories_header, categories_frames = ( self.categories.device_serialize() ) header["categories"] = categories_header frames.extend(categories_frames) header["frame_count"] = len(frames) return header, frames @classmethod def deserialize(cls, header, frames): _check_type(cls, header, frames) ordered = header["ordered"] categories_header = header["categories"] categories_frames = frames categories = Serializable.device_deserialize( categories_header, categories_frames ) return cls(categories=categories, ordered=ordered) def __repr__(self): return self.to_pandas().__repr__()
CategoricalDtype
python
pytest-dev__pytest
src/_pytest/reports.py
{ "start": 16483, "end": 23230 }
class ____(TerminalRepr): def __init__(self, msg: str) -> None: self.longrepr = msg def toterminal(self, out: TerminalWriter) -> None: out.line(self.longrepr, red=True) def pytest_report_to_serializable( report: CollectReport | TestReport, ) -> dict[str, Any] | None: if isinstance(report, TestReport | CollectReport): data = report._to_json() data["$report_type"] = report.__class__.__name__ return data # TODO: Check if this is actually reachable. return None # type: ignore[unreachable] def pytest_report_from_serializable( data: dict[str, Any], ) -> CollectReport | TestReport | None: if "$report_type" in data: if data["$report_type"] == "TestReport": return TestReport._from_json(data) elif data["$report_type"] == "CollectReport": return CollectReport._from_json(data) assert False, "Unknown report_type unserialize data: {}".format( data["$report_type"] ) return None def _report_to_json(report: BaseReport) -> dict[str, Any]: """Return the contents of this report as a dict of builtin entries, suitable for serialization. This was originally the serialize_report() function from xdist (ca03269). """ def serialize_repr_entry( entry: ReprEntry | ReprEntryNative, ) -> dict[str, Any]: data = dataclasses.asdict(entry) for key, value in data.items(): if hasattr(value, "__dict__"): data[key] = dataclasses.asdict(value) entry_data = {"type": type(entry).__name__, "data": data} return entry_data def serialize_repr_traceback(reprtraceback: ReprTraceback) -> dict[str, Any]: result = dataclasses.asdict(reprtraceback) result["reprentries"] = [ serialize_repr_entry(x) for x in reprtraceback.reprentries ] return result def serialize_repr_crash( reprcrash: ReprFileLocation | None, ) -> dict[str, Any] | None: if reprcrash is not None: return dataclasses.asdict(reprcrash) else: return None def serialize_exception_longrepr(rep: BaseReport) -> dict[str, Any]: assert rep.longrepr is not None # TODO: Investigate whether the duck typing is really necessary here. longrepr = cast(ExceptionRepr, rep.longrepr) result: dict[str, Any] = { "reprcrash": serialize_repr_crash(longrepr.reprcrash), "reprtraceback": serialize_repr_traceback(longrepr.reprtraceback), "sections": longrepr.sections, } if isinstance(longrepr, ExceptionChainRepr): result["chain"] = [] for repr_traceback, repr_crash, description in longrepr.chain: result["chain"].append( ( serialize_repr_traceback(repr_traceback), serialize_repr_crash(repr_crash), description, ) ) else: result["chain"] = None return result d = report.__dict__.copy() if hasattr(report.longrepr, "toterminal"): if hasattr(report.longrepr, "reprtraceback") and hasattr( report.longrepr, "reprcrash" ): d["longrepr"] = serialize_exception_longrepr(report) else: d["longrepr"] = str(report.longrepr) else: d["longrepr"] = report.longrepr for name in d: if isinstance(d[name], os.PathLike): d[name] = os.fspath(d[name]) elif name == "result": d[name] = None # for now return d def _report_kwargs_from_json(reportdict: dict[str, Any]) -> dict[str, Any]: """Return **kwargs that can be used to construct a TestReport or CollectReport instance. This was originally the serialize_report() function from xdist (ca03269). """ def deserialize_repr_entry(entry_data): data = entry_data["data"] entry_type = entry_data["type"] if entry_type == "ReprEntry": reprfuncargs = None reprfileloc = None reprlocals = None if data["reprfuncargs"]: reprfuncargs = ReprFuncArgs(**data["reprfuncargs"]) if data["reprfileloc"]: reprfileloc = ReprFileLocation(**data["reprfileloc"]) if data["reprlocals"]: reprlocals = ReprLocals(data["reprlocals"]["lines"]) reprentry: ReprEntry | ReprEntryNative = ReprEntry( lines=data["lines"], reprfuncargs=reprfuncargs, reprlocals=reprlocals, reprfileloc=reprfileloc, style=data["style"], ) elif entry_type == "ReprEntryNative": reprentry = ReprEntryNative(data["lines"]) else: _report_unserialization_failure(entry_type, TestReport, reportdict) return reprentry def deserialize_repr_traceback(repr_traceback_dict): repr_traceback_dict["reprentries"] = [ deserialize_repr_entry(x) for x in repr_traceback_dict["reprentries"] ] return ReprTraceback(**repr_traceback_dict) def deserialize_repr_crash(repr_crash_dict: dict[str, Any] | None): if repr_crash_dict is not None: return ReprFileLocation(**repr_crash_dict) else: return None if ( reportdict["longrepr"] and "reprcrash" in reportdict["longrepr"] and "reprtraceback" in reportdict["longrepr"] ): reprtraceback = deserialize_repr_traceback( reportdict["longrepr"]["reprtraceback"] ) reprcrash = deserialize_repr_crash(reportdict["longrepr"]["reprcrash"]) if reportdict["longrepr"]["chain"]: chain = [] for repr_traceback_data, repr_crash_data, description in reportdict[ "longrepr" ]["chain"]: chain.append( ( deserialize_repr_traceback(repr_traceback_data), deserialize_repr_crash(repr_crash_data), description, ) ) exception_info: ExceptionChainRepr | ReprExceptionInfo = ExceptionChainRepr( chain ) else: exception_info = ReprExceptionInfo( reprtraceback=reprtraceback, reprcrash=reprcrash, ) for section in reportdict["longrepr"]["sections"]: exception_info.addsection(*section) reportdict["longrepr"] = exception_info return reportdict
CollectErrorRepr
python
explosion__spaCy
spacy/lang/fo/__init__.py
{ "start": 375, "end": 471 }
class ____(Language): lang = "fo" Defaults = FaroeseDefaults __all__ = ["Faroese"]
Faroese
python
allegroai__clearml
clearml/backend_api/services/v2_23/queues.py
{ "start": 58854, "end": 61173 }
class ____(Request): """ Gets the next task from the top of the queue (FIFO). The task entry is removed from the queue. :param queue: Queue id :type queue: str :param get_task_info: If set then additional task info is returned :type get_task_info: bool :param task: Task company ID :type task: str """ _service = "queues" _action = "get_next_task" _version = "2.23" _schema = { "definitions": {}, "properties": { "get_task_info": { "default": False, "description": "If set then additional task info is returned", "type": "boolean", }, "queue": {"description": "Queue id", "type": "string"}, "task": {"description": "Task company ID", "type": "string"}, }, "required": ["queue"], "type": "object", } def __init__( self, queue: str, get_task_info: Optional[bool] = False, task: Optional[str] = None, **kwargs: Any ) -> None: super(GetNextTaskRequest, self).__init__(**kwargs) self.queue = queue self.get_task_info = get_task_info self.task = task @schema_property("queue") def queue(self) -> str: return self._property_queue @queue.setter def queue(self, value: str) -> None: if value is None: self._property_queue = None return self.assert_isinstance(value, "queue", six.string_types) self._property_queue = value @schema_property("get_task_info") def get_task_info(self) -> Optional[bool]: return self._property_get_task_info @get_task_info.setter def get_task_info(self, value: Optional[bool]) -> None: if value is None: self._property_get_task_info = None return self.assert_isinstance(value, "get_task_info", (bool,)) self._property_get_task_info = value @schema_property("task") def task(self) -> Optional[str]: return self._property_task @task.setter def task(self, value: Optional[str]) -> None: if value is None: self._property_task = None return self.assert_isinstance(value, "task", six.string_types) self._property_task = value
GetNextTaskRequest
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/roots/mutation.py
{ "start": 32186, "end": 32746 }
class ____(graphene.Mutation): """Toggle asset auto materializing on or off.""" Output = graphene.NonNull(graphene.Boolean) class Meta: name = "SetAutoMaterializedPausedMutation" class Arguments: paused = graphene.Argument(graphene.NonNull(graphene.Boolean)) @capture_error @check_permission(Permissions.TOGGLE_AUTO_MATERIALIZE) def mutate(self, graphene_info, paused: bool): set_auto_materialize_paused(graphene_info.context.instance, paused) return paused
GrapheneSetAutoMaterializePausedMutation
python
walkccc__LeetCode
solutions/2192. All Ancestors of a Node in a Directed Acyclic Graph/2192-2.py
{ "start": 0, "end": 674 }
class ____: def getAncestors(self, n: int, edges: list[list[int]]) -> list[list[int]]: ans = [set() for _ in range(n)] graph = [[] for _ in range(n)] inDegrees = [0] * n # Build the graph. for u, v in edges: graph[u].append(v) inDegrees[v] += 1 # Perform topological sorting. q = collections.deque([i for i, d in enumerate(inDegrees) if d == 0]) while q: for _ in range(len(q)): u = q.popleft() for v in graph[u]: ans[v].add(u) ans[v].update(ans[u]) inDegrees[v] -= 1 if inDegrees[v] == 0: q.append(v) return [sorted(nodes) for nodes in ans]
Solution
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/nn_ops/morphological_ops_test.py
{ "start": 12198, "end": 20997 }
class ____(test.TestCase): def _VerifyValues(self, image, kernel, strides, rates, padding, out, use_gpu): """Verifies the output values of the erosion function. Args: image: Input tensor with shape: [batch, in_height, in_width, channels]. kernel: Filter tensor with shape: [filter_height, filter_width, channels]. strides: Output strides, specified as [stride_height, stride_width]. rates: Atrous rates, specified as [rate_height, rate_width]. padding: Padding type. out: Expected output. use_gpu: Whether we are running on GPU. """ strides = [1] + strides + [1] rates = [1] + rates + [1] with self.cached_session(use_gpu=use_gpu): out_tensor = nn_ops.erosion2d( constant_op.constant(image), constant_op.constant(kernel), strides=strides, rates=rates, padding=padding, name="erosion2d") self.assertAllClose(out, self.evaluate(out_tensor)) def _testErosionValidPadding(self, use_gpu): # [1, 2, 2, 1] image = [[[[.1], [.2]], [[.3], [.4]]]] # [2, 2, 1] kernel = [[[.4], [.3]], [[.1], [.0]]] # [1, 1, 1, 1] out = [[[[.0]]]] self._VerifyValues( image, kernel, strides=[1, 1], rates=[1, 1], padding="VALID", out=out, use_gpu=use_gpu) def _testErosionSamePadding(self, use_gpu): # [1, 2, 2, 1] image = [[[[.1], [.2]], [[.3], [.4]]]] # [2, 2, 1] kernel = [[[.4], [.3]], [[.1], [.0]]] # [1, 2, 2, 1] out = [[[[.0], [.1]], [[.3], [.4]]]] self._VerifyValues( image, kernel, strides=[1, 1], rates=[1, 1], padding="SAME", out=out, use_gpu=use_gpu) def _testErosionSamePaddingDepth(self, use_gpu): # [1, 2, 2, 3] image = [[[[.1, .2, .0], [.2, .3, .1]], [[.3, .4, .2], [.4, .5, .3]]]] # [2, 2, 3] kernel = [[[.4, .5, .3], [.3, .4, .2]], [[.1, .2, .0], [.0, .1, -.1]]] # [1, 2, 2, 3] out = [[[[.0, .0, .0], [.1, .1, .1]], [[.3, .3, .3], [.4, .4, .4]]]] self._VerifyValues( image, kernel, strides=[1, 1], rates=[1, 1], padding="SAME", out=out, use_gpu=use_gpu) def _testErosionSamePaddingBatch(self, use_gpu): # [2, 2, 2, 1] image = [[[[.1], [.2]], [[.3], [.4]]], [[[.2], [.3]], [[.4], [.5]]]] # [2, 2, 1] kernel = [[[.4], [.3]], [[.1], [.0]]] # [2, 2, 2, 1] out = [[[[.0], [.1]], [[.3], [.4]]], [[[.1], [.2]], [[.4], [.5]]]] self._VerifyValues( image, kernel, strides=[1, 1], rates=[1, 1], padding="SAME", out=out, use_gpu=use_gpu) def _testErosionValidPaddingNonSquareWindow(self, use_gpu): # [1, 2, 2, 1] image = [[[[.1], [.2]], [[.3], [.4]]]] # [1, 2, 1] kernel = [[[.4], [.3]]] # [1, 2, 1, 1] out = [[[[-.2]], [[.0]]]] self._VerifyValues( image, kernel, strides=[1, 1], rates=[1, 1], padding="VALID", out=out, use_gpu=use_gpu) def _testErosionSamePaddingRate(self, use_gpu): # [1, 3, 3, 1] image = [[[[.1], [.2], [.3]], [[.4], [.5], [.6]], [[.7], [.8], [.9]]]] # [2, 2, 1] kernel = [[[.4], [.3]], [[.1], [.2]]] # Because rate = 2.0, the effective kernel is [3, 3, 1]: # kernel_eff = [[[.4], [.0], [.3]], # [[.0], [.0], [.0]], # [[.1], [.0], [.2]]] # [1, 3, 3, 1] out = [[[[.1], [.1], [.2]], [[0.1], [-.1], [.0]], [[.4], [.2], [.3]]]] self._VerifyValues( image, kernel, strides=[1, 1], rates=[2, 2], padding="SAME", out=out, use_gpu=use_gpu) def _testErosionValidPaddingUnevenStride(self, use_gpu): # [1, 3, 3, 1] image = [[[[.1], [.2], [.3], [.4]], [[.5], [.6], [.7], [.8]], [[.9], [1.0], [1.1], [1.2]]]] # [2, 2, 1] kernel = [[[.4], [.3]], [[.1], [.2]]] # [1, 2, 2, 1] out = [[[[-.1], [.1]], [[.3], [.5]]]] self._VerifyValues( image, kernel, strides=[1, 2], rates=[1, 1], padding="VALID", out=out, use_gpu=use_gpu) def testErosion(self): for use_gpu in True, False: self._testErosionValidPadding(use_gpu) self._testErosionSamePadding(use_gpu) self._testErosionSamePaddingDepth(use_gpu) self._testErosionSamePaddingBatch(use_gpu) self._testErosionValidPaddingNonSquareWindow(use_gpu) self._testErosionSamePaddingRate(use_gpu) self._testErosionValidPaddingUnevenStride(use_gpu) def _ConstructAndTestGradient(self, image_shape, kernel_shape, strides, rates, padding, use_gpu): """Verifies the gradients of the erosion function. Args: image_shape: Input shape, [batch, in_height, in_width, channels]. kernel_shape: Filter shape, [filter_height, filter_width, channels]. strides: Output strides, specified as [stride_height, stride_width]. rates: Atrous rates, specified as [rate_height, rate_width]. padding: Padding type. use_gpu: Whether we are running on GPU. """ assert image_shape[3] == kernel_shape[2] np.random.seed(1) # Make it reproducible. image = np.random.random_sample(image_shape).astype(np.float32) kernel = np.random.random_sample(kernel_shape).astype(np.float32) strides = [1] + strides + [1] rates = [1] + rates + [1] image_tensor = constant_op.constant(image, shape=image_shape, name="input") kernel_tensor = constant_op.constant( kernel, shape=kernel_shape, name="filter") def compute_erosion2d(image_tensor, kernel_tensor): return nn_ops.erosion2d( image_tensor, kernel_tensor, strides=strides, rates=rates, padding=padding, name="erosion2d") with test_util.device(use_gpu=use_gpu): with self.cached_session(): # Small delta is necessary for argmax to remain the same. err1 = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient( lambda x: compute_erosion2d(x, kernel_tensor), [image_tensor])) err2 = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient( lambda x: compute_erosion2d(image_tensor, x), [kernel_tensor])) err = max(err1, err2) print("Erosion gradient error = %f" % err) self.assertLess(err, 1e-4) def _testErosionGradValidPadding_1x1x1(self, use_gpu): self._ConstructAndTestGradient( image_shape=[1, 3, 3, 1], kernel_shape=[1, 1, 1], strides=[1, 1], rates=[1, 1], padding="VALID", use_gpu=use_gpu) def _testErosionGradSamePadding_1x1x1(self, use_gpu): self._ConstructAndTestGradient( image_shape=[1, 3, 3, 1], kernel_shape=[1, 1, 1], strides=[1, 1], rates=[1, 1], padding="SAME", use_gpu=use_gpu) def _testErosionGradSamePadding_1x1x2(self, use_gpu): self._ConstructAndTestGradient( image_shape=[1, 3, 3, 2], kernel_shape=[1, 1, 2], strides=[1, 1], rates=[1, 1], padding="SAME", use_gpu=use_gpu) def _testErosionGradValidPadding_2x2x1(self, use_gpu): self._ConstructAndTestGradient( image_shape=[1, 3, 3, 1], kernel_shape=[2, 2, 1], strides=[1, 1], rates=[1, 1], padding="VALID", use_gpu=use_gpu) def _testErosionGradSamePadding_2x2x1(self, use_gpu): self._ConstructAndTestGradient( image_shape=[1, 3, 3, 1], kernel_shape=[2, 2, 1], strides=[1, 1], rates=[1, 1], padding="SAME", use_gpu=use_gpu) def _testErosionGradSamePaddingBatch_2x2x1(self, use_gpu): self._ConstructAndTestGradient( image_shape=[4, 3, 3, 1], kernel_shape=[2, 2, 1], strides=[1, 1], rates=[1, 1], padding="SAME", use_gpu=use_gpu) def _testErosionGradSamePadding_2x2x4(self, use_gpu): self._ConstructAndTestGradient( image_shape=[1, 3, 3, 4], kernel_shape=[2, 2, 4], strides=[1, 1], rates=[1, 1], padding="SAME", use_gpu=use_gpu) def testErosionGrad(self): for use_gpu in True, False: self._testErosionGradValidPadding_1x1x1(use_gpu) self._testErosionGradSamePadding_1x1x1(use_gpu) self._testErosionGradSamePadding_1x1x2(use_gpu) self._testErosionGradValidPadding_2x2x1(use_gpu) self._testErosionGradSamePadding_2x2x1(use_gpu) self._testErosionGradSamePaddingBatch_2x2x1(use_gpu) self._testErosionGradSamePadding_2x2x4(use_gpu) if __name__ == "__main__": test.main()
ErosionTest
python
realpython__materials
gemini-cli/todolist/src/todolist/exporter.py
{ "start": 282, "end": 417 }
class ____(TypedDict, total=False): indent: int | str | None separators: tuple[str, str] | None sort_keys: bool
FormatOptions
python
tensorflow__tensorflow
tensorflow/python/training/server_lib.py
{ "start": 18031, "end": 21276 }
class ____: """Represent a collection of device filters for the remote workers in cluster. NOTE: this is an experimental API and subject to changes. Set device filters for selective jobs and tasks. For each remote worker, the device filters are a list of strings. When any filters are present, the remote worker will ignore all devices which do not match any of its filters. Each filter can be partially specified, e.g. "/job:ps", "/job:worker/replica:3", etc. Note that a device is always visible to the worker it is located on. For example, to set the device filters for a parameter server cluster: ```python cdf = tf.config.experimental.ClusterDeviceFilters() for i in range(num_workers): cdf.set_device_filters('worker', i, ['/job:ps']) for i in range(num_ps): cdf.set_device_filters('ps', i, ['/job:worker']) tf.config.experimental_connect_to_cluster(cluster_def, cluster_device_filters=cdf) ``` The device filters can be partically specified. For remote tasks that do not have device filters specified, all devices will be visible to them. """ def __init__(self): # `_device_filters` is a dict mapping job names to job device filters. # Job device filters further maps task IDs to task device filters. # Task device filters are a list of strings, each one is a device filter. self._device_filters = {} # Serialized protobuf for cluster device filters. self._cluster_device_filters = None def set_device_filters(self, job_name, task_index, device_filters): """Set the device filters for given job name and task id.""" assert all(isinstance(df, str) for df in device_filters) self._device_filters.setdefault(job_name, {}) self._device_filters[job_name][task_index] = [df for df in device_filters] # Due to updates in data, invalidate the serialized proto cache. self._cluster_device_filters = None def _as_cluster_device_filters(self): """Returns a serialized protobuf of cluster device filters.""" if self._cluster_device_filters: return self._cluster_device_filters self._make_cluster_device_filters() return self._cluster_device_filters def _make_cluster_device_filters(self): """Creates `ClusterDeviceFilters` proto based on the `_device_filters`. Raises: TypeError: If `_device_filters` is not a dictionary mapping strings to a map of task indices and device filters. """ self._cluster_device_filters = device_filters_pb2.ClusterDeviceFilters() # Sort by job_name to produce deterministic protobufs. for job_name, tasks in sorted(self._device_filters.items()): try: job_name = compat.as_bytes(job_name) except TypeError: raise TypeError("Job name %r must be bytes or unicode" % job_name) jdf = self._cluster_device_filters.jobs.add() jdf.name = job_name for i, task_device_filters in sorted(tasks.items()): for tdf in task_device_filters: try: tdf = compat.as_bytes(tdf) except TypeError: raise TypeError("Device filter %r must be bytes or unicode" % tdf) jdf.tasks[i].device_filters.append(tdf)
ClusterDeviceFilters
python
getsentry__sentry
src/sentry_plugins/heroku/plugin.py
{ "start": 5175, "end": 7807 }
class ____(CorePluginMixin, ReleaseTrackingPlugin): author = "Sentry Team" author_url = "https://github.com/getsentry" title = "Heroku" slug = "heroku" description = "Integrate Heroku release tracking." required_field = "repository" feature_descriptions = [ FeatureDescription( """ Integrate Heroku release tracking. """, IntegrationFeatures.DEPLOYMENT, ) ] def can_enable_for_projects(self) -> bool: return True def can_configure_for_project(self, project) -> bool: return True def has_project_conf(self) -> bool: return True def get_conf_key(self) -> str: return "heroku" def get_config(self, project, user=None, initial=None, add_additional_fields: bool = False): repo_list = list(Repository.objects.filter(organization_id=project.organization_id)) if not ProjectOption.objects.get_value(project=project, key="heroku:repository"): choices = [("", "select a repo")] else: choices = [] choices.extend([(repo.name, repo.name) for repo in repo_list]) webhook_secret = self.get_option("webhook_secret", project) secret_field = get_secret_field_config( webhook_secret, "Enter the webhook signing secret shown after running the Heroku CLI command.", ) secret_field.update( { "name": "webhook_secret", "label": "Webhook Secret", "required": False, } ) return [ { "name": "repository", "label": "Respository", "type": "select", "required": True, "choices": choices, "help": "Select which repository you would like to be associated with this project", }, { "name": "environment", "label": "Deploy Environment", "type": "text", "required": False, "default": "production", "help": "Specify an environment name for your Heroku deploys", }, secret_field, ] def get_release_doc_html(self, hook_url): return f""" <p>Add a Sentry release webhook to automatically track new releases.</p> <pre class="clippy">heroku webhooks:add -i api:release -l notify -u {hook_url} -a YOUR_APP_NAME</pre> """ def get_release_hook(self) -> type[HerokuReleaseHook]: return HerokuReleaseHook
HerokuPlugin
python
pytorch__pytorch
torch/ao/quantization/fx/_model_report/model_report_visualizer.py
{ "start": 411, "end": 32667 }
class ____: r""" The ModelReportVisualizer class aims to provide users a way to visualize some of the statistics that were generated by the ModelReport API. However, at a higher level, the class aims to provide some level of visualization of statistics to PyTorch in order to make it easier to parse data and diagnose any potential issues with data or a specific model. With respect to the visualizations, the ModelReportVisualizer class currently supports several methods of visualizing data. Supported Visualization Methods Include: - Table format - Plot format (line graph) - Histogram format For all of the existing visualization methods, there is the option to filter data based on: - A module fqn prefix - Feature [required for the plot and histogram] * :attr:`generated_reports` The reports generated by the ModelReport class in the structure below Ensure sure that features that are the same across different report contain the same name Ensure that objects representing the same features are the same type / dimension (where applicable) Note: Currently, the ModelReportVisualizer class supports visualization of data generated by the ModelReport class. However, this structure is extensible and should allow the visualization of other information as long as the information is structured in the following general format: Report Structure -- module_fqn [module with attached detectors] | -- feature keys [not every detector extracts same information] [same collected info has same keys, unless can be specific to detector] The goal behind the class is that the generated visualizations can be used in conjunction with the generated report for people to get a better understanding of issues and what the fix might be. It is also just to provide a good visualization platform, since it might be hard to parse through the ModelReport returned dictionary as that grows in size. General Use Flow Expected 1.) Initialize ModelReport object with reports of interest by passing in initialized detector objects 2.) Prepare your model with prepare_fx 3.) Call model_report.prepare_detailed_calibration on your model to add relevant observers 4.) Calibrate your model with data 5.) Call model_report.generate_report on your model to generate report and optionally remove added observers 6.) Use output of model_report.generate_report to initialize ModelReportVisualizer instance 7.) Use instance to view different views of data as desired, applying filters as needed 8.) Either see the super detailed information or just the actual printed or shown table / plot / histogram """ # keys for table dict TABLE_TENSOR_KEY = "tensor_level_info" TABLE_CHANNEL_KEY = "channel_level_info" # Constants for header vals NUM_NON_FEATURE_TENSOR_HEADERS = 2 NUM_NON_FEATURE_CHANNEL_HEADERS = 3 # Constants for row index in header CHANNEL_NUM_INDEX = 2 def __init__(self, generated_reports: OrderedDict[str, Any]): r""" Initializes the ModelReportVisualizer instance with the necessary reports. Args: generated_reports (Dict[str, Any]): The reports generated by the ModelReport class can also be a dictionary generated in another manner, as long as format is same """ self.generated_reports = generated_reports def get_all_unique_module_fqns(self) -> set[str]: r""" The purpose of this method is to provide a user the set of all module_fqns so that if they wish to use some of the filtering capabilities of the ModelReportVisualizer class, they don't need to manually parse the generated_reports dictionary to get this information. Returns all the unique module fqns present in the reports the ModelReportVisualizer instance was initialized with. """ # returns the keys of the ordered dict return set(self.generated_reports.keys()) def get_all_unique_feature_names( self, plottable_features_only: bool = True ) -> set[str]: r""" The purpose of this method is to provide a user the set of all feature names so that if they wish to use the filtering capabilities of the generate_table_view(), or use either of the generate_plot_view() or generate_histogram_view(), they don't need to manually parse the generated_reports dictionary to get this information. Args: plottable_features_only (bool): True if the user is only looking for plottable features, False otherwise plottable features are those that are tensor values Default: True (only return those feature names that are plottable) Returns all the unique module fqns present in the reports the ModelReportVisualizer instance was initialized with. """ unique_feature_names = set() for module_fqn in self.generated_reports: # get dict of the features feature_dict: dict[str, Any] = self.generated_reports[module_fqn] # loop through features for feature_name in feature_dict: # if we need plottable, ensure type of val is tensor if ( not plottable_features_only or type(feature_dict[feature_name]) is torch.Tensor ): unique_feature_names.add(feature_name) # return our compiled set of unique feature names return unique_feature_names def _get_filtered_data( self, feature_filter: str, module_fqn_filter: str ) -> OrderedDict[str, Any]: r""" Filters the data and returns it in the same ordered dictionary format so the relevant views can be displayed. Args: feature_filter (str): The feature filter, if we want to filter the set of data to only include a certain set of features that include feature_filter If feature = "", then we do not filter based on any features module_fqn_filter (str): The filter on prefix for the module fqn. All modules that have fqn with this prefix will be included If module_fqn_filter = "" we do not filter based on module fqn, and include all modules First, the data is filtered based on module_fqn, and then filtered based on feature Returns an OrderedDict (sorted in order of model) mapping: module_fqns -> feature_names -> values """ # create return dict filtered_dict: OrderedDict[str, Any] = OrdDict() for module_fqn in self.generated_reports: # first filter based on module if module_fqn_filter == "" or module_fqn_filter in module_fqn: # create entry for module and loop through features filtered_dict[module_fqn] = {} module_reports = self.generated_reports[module_fqn] for feature_name in module_reports: # check if filtering on features and do so if desired if feature_filter == "" or feature_filter in feature_name: filtered_dict[module_fqn][feature_name] = module_reports[ feature_name ] # we have populated the filtered dict, and must return it return filtered_dict def _generate_tensor_table( self, filtered_data: OrderedDict[str, dict[str, Any]], tensor_features: list[str], ) -> tuple[list, list]: r""" Takes in the filtered data and features list and generates the tensor headers and table Currently meant to generate the headers and table for both the tensor information. Args: filtered_data (OrderedDict[str, Dict[str, Any]]): An OrderedDict (sorted in order of model) mapping: module_fqns -> feature_names -> values tensor_features (List[str]): A list of the tensor level features Returns a tuple with: A list of the headers of the tensor table A list of lists containing the table information row by row The 0th index row will contain the headers of the columns The rest of the rows will contain data """ # now we compose the tensor information table tensor_table: list[list[Any]] = [] tensor_headers: list[str] = [] # append the table row to the table only if we have features if len(tensor_features) > 0: # now we add all the data for index, module_fqn in enumerate(filtered_data): # we make a new row for the tensor table tensor_table_row = [index, module_fqn] for feature in tensor_features: # we iterate in same order of added features if feature in filtered_data[module_fqn]: # add value if applicable to module feature_val = filtered_data[module_fqn][feature] else: # add that it is not applicable feature_val = "Not Applicable" # if it's a tensor we want to extract val if isinstance(feature_val, torch.Tensor): feature_val = feature_val.item() # we add to our list of values # pyrefly: ignore [bad-argument-type] tensor_table_row.append(feature_val) tensor_table.append(tensor_table_row) # add row of headers of we actually have something, otherwise just empty if len(tensor_table) != 0: tensor_headers = ["idx", "layer_fqn"] + tensor_features return (tensor_headers, tensor_table) def _generate_channels_table( self, filtered_data: OrderedDict[str, Any], channel_features: list[str], num_channels: int, ) -> tuple[list, list]: r""" Takes in the filtered data and features list and generates the channels headers and table Currently meant to generate the headers and table for both the channels information. Args: filtered_data (OrderedDict[str, Any]): An OrderedDict (sorted in order of model) mapping: module_fqns -> feature_names -> values channel_features (List[str]): A list of the channel level features num_channels (int): Number of channels in the channel data Returns a tuple with: A list of the headers of the channel table A list of lists containing the table information row by row The 0th index row will contain the headers of the columns The rest of the rows will contain data """ # now we compose the table for the channel information table channel_table: list[list[Any]] = [] channel_headers: list[str] = [] # counter to keep track of number of entries in channel_table_entry_counter: int = 0 if len(channel_features) > 0: # now we add all channel data for module_fqn in filtered_data: # we iterate over all channels for channel in range(num_channels): # we make a new row for the channel new_channel_row = [channel_table_entry_counter, module_fqn, channel] for feature in channel_features: if feature in filtered_data[module_fqn]: # add value if applicable to module feature_val = filtered_data[module_fqn][feature][channel] else: # add that it is not applicable feature_val = "Not Applicable" # if it's a tensor we want to extract val if type(feature_val) is torch.Tensor: feature_val = feature_val.item() # add value to channel specific row # pyrefly: ignore [bad-argument-type] new_channel_row.append(feature_val) # add to table and increment row index counter channel_table.append(new_channel_row) channel_table_entry_counter += 1 # add row of headers of we actually have something, otherwise just empty if len(channel_table) != 0: channel_headers = ["idx", "layer_fqn", "channel"] + channel_features return (channel_headers, channel_table) def generate_filtered_tables( self, feature_filter: str = "", module_fqn_filter: str = "" ) -> dict[str, tuple[list, list]]: r""" Takes in optional filter values and generates two tables with desired information. The generated tables are presented in both a list-of-lists format The reason for the two tables are that they handle different things: 1.) the first table handles all tensor level information 2.) the second table handles and displays all channel based information The reasoning for this is that having all the info in one table can make it ambiguous which collected statistics are global, and which are actually per-channel, so it's better to split it up into two tables. This also makes the information much easier to digest given the plethora of statistics collected Tensor table columns: idx layer_fqn feature_1 feature_2 feature_3 .... feature_n ---- --------- --------- --------- --------- --------- Per-Channel table columns: idx layer_fqn channel feature_1 feature_2 feature_3 .... feature_n ---- --------- ------- --------- --------- --------- --------- Args: feature_filter (str, optional): Filters the features presented to only those that contain this filter substring Default = "", results in all the features being printed module_fqn_filter (str, optional): Only includes modules that contains this string Default = "", results in all the modules in the reports to be visible in the table Returns a dictionary with two keys: (Dict[str, Tuple[List, List]]) A dict containing two keys: "tensor_level_info", "channel_level_info" Each key maps to a tuple with: A list of the headers of each table A list of lists containing the table information row by row The 0th index row will contain the headers of the columns The rest of the rows will contain data Example Use: >>> # xdoctest: +SKIP("undefined variables") >>> mod_report_visualizer.generate_filtered_tables( ... feature_filter="per_channel_min", module_fqn_filter="block1" ... ) # generates table with per_channel_min info for all modules in block 1 of the model """ # first get the filtered data filtered_data: OrderedDict[str, Any] = self._get_filtered_data( feature_filter, module_fqn_filter ) # now we split into tensor and per-channel data tensor_features: set[str] = set() channel_features: set[str] = set() # keep track of the number of channels we have num_channels: int = 0 for module_fqn in filtered_data: for feature_name in filtered_data[module_fqn]: # get the data for that specific feature feature_data = filtered_data[module_fqn][feature_name] # check if not zero dim tensor is_tensor: bool = isinstance(feature_data, torch.Tensor) is_not_zero_dim: bool = is_tensor and len(feature_data.shape) != 0 if is_not_zero_dim or isinstance(feature_data, list): # works means per channel channel_features.add(feature_name) num_channels = len(feature_data) else: # means is per-tensor tensor_features.add(feature_name) # we make them lists for iteration purposes tensor_features_list: list[str] = sorted(tensor_features) channel_features_list: list[str] = sorted(channel_features) # get the tensor info tensor_headers, tensor_table = self._generate_tensor_table( filtered_data, tensor_features_list ) # get the channel info channel_headers, channel_table = self._generate_channels_table( filtered_data, channel_features_list, num_channels ) # let's now create the dictionary to return table_dict = { self.TABLE_TENSOR_KEY: (tensor_headers, tensor_table), self.TABLE_CHANNEL_KEY: (channel_headers, channel_table), } # return the two tables return table_dict def generate_table_visualization( self, feature_filter: str = "", module_fqn_filter: str = "" ): r""" Takes in optional filter values and prints out formatted tables of the information. The reason for the two tables printed out instead of one large one are that they handle different things: 1.) the first table handles all tensor level information 2.) the second table handles and displays all channel based information The reasoning for this is that having all the info in one table can make it ambiguous which collected statistics are global, and which are actually per-channel, so it's better to split it up into two tables. This also makes the information much easier to digest given the plethora of statistics collected Tensor table columns: idx layer_fqn feature_1 feature_2 feature_3 .... feature_n ---- --------- --------- --------- --------- --------- Per-Channel table columns: idx layer_fqn channel feature_1 feature_2 feature_3 .... feature_n ---- --------- ------- --------- --------- --------- --------- Args: feature_filter (str, optional): Filters the features presented to only those that contain this filter substring Default = "", results in all the features being printed module_fqn_filter (str, optional): Only includes modules that contains this string Default = "", results in all the modules in the reports to be visible in the table Example Use: >>> # xdoctest: +SKIP("undefined variables") >>> mod_report_visualizer.generate_table_visualization( ... feature_filter="per_channel_min", module_fqn_filter="block1" ... ) >>> # prints out neatly formatted table with per_channel_min info >>> # for all modules in block 1 of the model """ # see if we got tabulate if not got_tabulate: print("Make sure to install tabulate and try again.") return None # get the table dict and the specific tables of interest table_dict = self.generate_filtered_tables(feature_filter, module_fqn_filter) tensor_headers, tensor_table = table_dict[self.TABLE_TENSOR_KEY] channel_headers, channel_table = table_dict[self.TABLE_CHANNEL_KEY] # get the table string and print it out # now we have populated the tables for each one # let's create the strings to be returned table_str = "" # the tables will have some headers columns that are non-feature # ex. table index, module name, channel index, etc. # we want to look at header columns for features, that come after those headers if len(tensor_headers) > self.NUM_NON_FEATURE_TENSOR_HEADERS: # if we have at least one tensor level feature to be added we add tensor table table_str += "Tensor Level Information \n" table_str += tabulate(tensor_table, headers=tensor_headers) if len(channel_headers) > self.NUM_NON_FEATURE_CHANNEL_HEADERS: # if we have at least one channel level feature to be added we add tensor table table_str += "\n\n Channel Level Information \n" table_str += tabulate(channel_table, headers=channel_headers) # if no features at all, let user know if table_str == "": table_str = "No data points to generate table with." print(table_str) def _get_plottable_data( self, feature_filter: str, module_fqn_filter: str ) -> tuple[list, list[list], bool]: r""" Takes in the feature filters and module filters and outputs the x and y data for plotting Args: feature_filter (str): Filters the features presented to only those that contain this filter substring module_fqn_filter (str): Only includes modules that contains this string Returns a tuple of three elements The first is a list containing relevant x-axis data The second is a list containing the corresponding y-axis data If the data is per channel """ # get the table dict and the specific tables of interest table_dict = self.generate_filtered_tables(feature_filter, module_fqn_filter) tensor_headers, tensor_table = table_dict[self.TABLE_TENSOR_KEY] channel_headers, channel_table = table_dict[self.TABLE_CHANNEL_KEY] # make sure it is only 1 feature that is being plotted # get the number of features in each of these tensor_info_features_count = ( len(tensor_headers) - ModelReportVisualizer.NUM_NON_FEATURE_TENSOR_HEADERS ) channel_info_features_count = ( len(channel_headers) - ModelReportVisualizer.NUM_NON_FEATURE_CHANNEL_HEADERS ) # see if valid tensor or channel plot is_valid_per_tensor_plot: bool = tensor_info_features_count == 1 is_valid_per_channel_plot: bool = channel_info_features_count == 1 # offset should either be one of tensor or channel table or neither feature_column_offset = ModelReportVisualizer.NUM_NON_FEATURE_TENSOR_HEADERS table = tensor_table # if a per_channel plot, we have different offset and table if is_valid_per_channel_plot: feature_column_offset = ( ModelReportVisualizer.NUM_NON_FEATURE_CHANNEL_HEADERS ) table = channel_table x_data: list = [] y_data: list[list] = [] # the feature will either be a tensor feature or channel feature if is_valid_per_tensor_plot: for table_row_num, row in enumerate(table): # get x_value to append x_val_to_append = table_row_num # the index of the feature will the 0 + num non feature columns tensor_feature_index = feature_column_offset row_value = row[tensor_feature_index] if type(row_value) is not str: x_data.append(x_val_to_append) y_data.append(row_value) elif is_valid_per_channel_plot: # gather the x_data and multiple y_data # calculate the number of channels num_channels: int = max(row[self.CHANNEL_NUM_INDEX] for row in table) + 1 # separate data list per channel y_data.extend([] for _ in range(num_channels)) for table_row_num, row in enumerate(table): # get x_value to append x_val_to_append = table_row_num current_channel = row[ self.CHANNEL_NUM_INDEX ] # initially chose current channel new_module_index: int = table_row_num // num_channels x_val_to_append = new_module_index # the index of the feature will the 0 + num non feature columns tensor_feature_index = feature_column_offset row_value = row[tensor_feature_index] if type(row_value) is not str: # only append if new index we are appending if len(x_data) == 0 or x_data[-1] != x_val_to_append: x_data.append(x_val_to_append) # append value for that channel y_data[current_channel].append(row_value) else: # more than one feature was chosen error_str = "Make sure to pick only a single feature with your filter to plot a graph." error_str += " We recommend calling get_all_unique_feature_names() to find unique feature names." error_str += " Pick one of those features to plot." raise ValueError(error_str) # return x, y values, and if data is per-channel return (x_data, y_data, is_valid_per_channel_plot) def generate_plot_visualization( self, feature_filter: str, module_fqn_filter: str = "" ): r""" Takes in a feature and optional module_filter and plots of the desired data. For per channel features, it averages the value across the channels and plots a point per module. The reason for this is that for models with hundreds of channels, it can be hard to differentiate one channel line from another, and so the point of generating a single average point per module is to give a sense of general trends that encourage further deep dives. Note: Only features in the report that have tensor value data are plottable by this class When the tensor information is plotted, it will plot: idx as the x val, feature value as the y_val When the channel information is plotted, it will plot: the first idx of each module as the x val, feature value as the y_val [for each channel] The reason for this is that we want to be able to compare values across the channels for same layer, and it will be hard if values are staggered by idx This means each module is represented by only 1 x value Args: feature_filter (str): Filters the features presented to only those that contain this filter substring module_fqn_filter (str, optional): Only includes modules that contains this string Default = "", results in all the modules in the reports to be visible in the table Example Use: >>> # xdoctest: +SKIP("undefined variables") >>> mod_report_visualizer.generate_plot_visualization( ... feature_filter="per_channel_min", module_fqn_filter="block1" ... ) >>> # outputs line plot of per_channel_min information for all >>> # modules in block1 of model each channel gets it's own line, >>> # and it's plotted across the in-order modules on the x-axis """ # checks if we have matplotlib and let's user know to install it if don't if not got_matplotlib: print("make sure to install matplotlib and try again.") return None # get the x and y data and if per channel x_data, y_data, data_per_channel = self._get_plottable_data( feature_filter, module_fqn_filter ) # plot based on whether data is per channel or not ax = plt.subplot() ax.set_ylabel(feature_filter) ax.set_title(feature_filter + " Plot") plt.xticks(x_data) # only show ticks for actual points if data_per_channel: ax.set_xlabel("First idx of module") # set the legend as well # plot a single line that is average of the channel values num_modules = len( y_data[0] ) # all y_data have same length, so get num modules num_channels = len( y_data ) # we want num channels to be able to calculate average later avg_vals = [ sum(y_data[:][index]) / num_channels for index in range(num_modules) ] # plot the three things we measured ax.plot( x_data, avg_vals, label=f"Average Value Across {num_channels} Channels" ) ax.legend(loc="upper right") else: ax.set_xlabel("idx") ax.plot(x_data, y_data) # actually show the plot plt.show() def generate_histogram_visualization( self, feature_filter: str, module_fqn_filter: str = "", num_bins: int = 10 ): r""" Takes in a feature and optional module_filter and plots the histogram of desired data. Note: Only features in the report that have tensor value data can be viewed as a histogram If you want to plot a histogram from all the channel values of a specific feature for a specific model, make sure to specify both the model and the feature properly in the filters and you should be able to see a distribution of the channel data Args: feature_filter (str, optional): Filters the features presented to only those that contain this filter substring Default = "", results in all the features being printed module_fqn_filter (str, optional): Only includes modules that contains this string Default = "", results in all the modules in the reports to be visible in the table num_bins (int, optional): The number of bins to create the histogram with Default = 10, the values will be split into 10 equal sized bins Example Use: >>> # xdoctest: +SKIP >>> mod_report_visualizer.generategenerate_histogram_visualization_plot_visualization( ... feature_filter="per_channel_min", module_fqn_filter="block1" ... ) # outputs histogram of per_channel_min information for all modules in block1 of model information is gathered across all channels for all modules in block 1 for the per_channel_min and is displayed in a histogram of equally sized bins """ # checks if we have matplotlib and let's user know to install it if don't if not got_matplotlib: print("make sure to install matplotlib and try again.") return None # get the x and y data and if per channel _x_data, y_data, data_per_channel = self._get_plottable_data( feature_filter, module_fqn_filter ) # for histogram, we just care about plotting the y data # plot based on whether data is per channel or not ax = plt.subplot() ax.set_xlabel(feature_filter) ax.set_ylabel("Frequency") ax.set_title(feature_filter + " Histogram") if data_per_channel: # set the legend as well # combine all the data all_data = [] for channel_info in y_data: all_data.extend(channel_info) _val, bins, _ = plt.hist( all_data, bins=num_bins, stacked=True, rwidth=0.8, ) plt.xticks(bins) else: _val, bins, _ = plt.hist( y_data, bins=num_bins, stacked=False, rwidth=0.8, ) plt.xticks(bins) plt.show()
ModelReportVisualizer
python
plotly__plotly.py
plotly/graph_objs/image/_legendgrouptitle.py
{ "start": 233, "end": 2925 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "image" _path_str = "image.legendgrouptitle" _valid_props = {"font", "text"} @property def font(self): """ Sets this legend group's title font. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.image.legendgrouptitle.Font` - A dict of string/value properties that will be passed to the Font constructor Returns ------- plotly.graph_objs.image.legendgrouptitle.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val @property def text(self): """ Sets the title of the legend group. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["text"] @text.setter def text(self, val): self["text"] = val @property def _prop_descriptions(self): return """\ font Sets this legend group's title font. text Sets the title of the legend group. """ def __init__(self, arg=None, font=None, text=None, **kwargs): """ Construct a new Legendgrouptitle object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.image.Legendgrouptitle` font Sets this legend group's title font. text Sets the title of the legend group. Returns ------- Legendgrouptitle """ super().__init__("legendgrouptitle") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.image.Legendgrouptitle constructor must be a dict or an instance of :class:`plotly.graph_objs.image.Legendgrouptitle`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("font", arg, font) self._set_property("text", arg, text) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Legendgrouptitle
python
mlflow__mlflow
tests/tensorflow/test_tensorflow2_autolog.py
{ "start": 17795, "end": 52385 }
class ____: def __init__(self, data, target, batch_size): self.data = data self.target = target self.batch_size = batch_size self.ptr = 0 def __next__(self): if self.ptr >= len(self.data): raise StopIteration idx = self.ptr % len(self.data) self.ptr += 1 return ( self.data[idx : idx + self.batch_size, 0], self.data[idx : idx + self.batch_size, 1], ), self.target[idx : idx + self.batch_size] def __iter__(self): return self @pytest.mark.parametrize( "generate_data", [ __tf_dataset_multi_input, __SequenceMultiInput, functools.partial(__generator_multi_input, np.random.rand(2, 10), np.random.rand(10)), functools.partial(__GeneratorClassMultiInput, np.random.rand(10, 2), np.random.rand(10, 1)), ], ) @pytest.mark.parametrize("batch_size", [5, 10]) def test_tf_keras_autolog_implicit_batch_size_works_multi_input(generate_data, batch_size): mlflow.tensorflow.autolog() input1 = tf.keras.Input(shape=(1,)) input2 = tf.keras.Input(shape=(1,)) concat = tf.keras.layers.Concatenate()([input1, input2]) output = tf.keras.layers.Dense(1, activation="sigmoid")(concat) model = tf.keras.models.Model(inputs=[input1, input2], outputs=output) model.compile(loss="mse") # 'x' passed as arg model.fit(generate_data(batch_size), verbose=0) assert mlflow.last_active_run().data.params["batch_size"] == str(batch_size) # 'x' passed as kwarg model.fit(x=generate_data(batch_size), verbose=0) assert mlflow.last_active_run().data.params["batch_size"] == str(batch_size) @pytest.mark.skipif( Version(tf.__version__) < Version("2.1.4"), reason="Does not support passing of generator classes as `x` in `fit`", ) @pytest.mark.parametrize( "generator", [ __generator, pytest.param( __GeneratorClass, marks=pytest.mark.skipif( Version(tf.__version__).release >= (2, 15) and "TF_USE_LEGACY_KERAS" not in os.environ, reason="does not support", ), ), ], ) @pytest.mark.parametrize("batch_size", [2, 3, 6]) def test_tf_keras_autolog_implicit_batch_size_for_generator_dataset_without_side_effects( generator, batch_size, ): from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential data = np.array([[1, 2, 3], [3, 2, 1], [2, 2, 2], [10, 20, 30], [30, 20, 10], [20, 20, 20]]) target = np.array([[1], [3], [2], [11], [13], [12]]) model = Sequential() model.add( Dense( 5, input_dim=3, activation="relu", kernel_initializer="zeros", bias_initializer="zeros" ) ) model.add(Dense(1, kernel_initializer="zeros", bias_initializer="zeros")) model.compile(loss="mae", optimizer="adam", metrics=["mse"]) mlflow.autolog() actual_mse = model.fit(generator(data, target, batch_size), verbose=0).history["mse"][-1] mlflow.autolog(disable=True) expected_mse = model.fit(generator(data, target, batch_size), verbose=0).history["mse"][-1] np.testing.assert_allclose(actual_mse, expected_mse, atol=1) assert mlflow.last_active_run().data.params["batch_size"] == str(batch_size) def test_tf_keras_autolog_succeeds_for_tf_datasets_lacking_batch_size_info(): X_train = np.random.rand(100, 100) y_train = np.random.randint(0, 10, 100) train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)) train_ds = train_ds.batch(50) train_ds = train_ds.cache().prefetch(buffer_size=5) assert not hasattr(train_ds, "_batch_size") model = tf.keras.Sequential() model.add(tf.keras.Input((100,))) model.add(tf.keras.layers.Dense(256, activation="relu")) model.add(tf.keras.layers.Dropout(rate=0.4)) model.add(tf.keras.layers.Dense(10, activation="sigmoid")) model.compile( loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), optimizer="Adam", metrics=["accuracy"], ) mlflow.tensorflow.autolog() model.fit(train_ds, epochs=100) assert mlflow.last_active_run().data.params["batch_size"] == "None" def test_tf_keras_autolog_records_metrics_for_last_epoch(random_train_data, random_one_hot_labels): num_training_epochs = 17 mlflow.tensorflow.autolog(log_every_epoch=True) model = create_tf_keras_model() with mlflow.start_run() as run: model.fit( random_train_data, random_one_hot_labels, epochs=num_training_epochs, initial_epoch=0, ) client = MlflowClient() run_metrics = client.get_run(run.info.run_id).data.metrics assert "accuracy" in run_metrics all_epoch_acc = client.get_metric_history(run.info.run_id, "accuracy") assert len(all_epoch_acc) == num_training_epochs def test_tf_keras_autolog_logs_metrics_for_single_epoch_training( random_train_data, random_one_hot_labels ): """ tf.Keras exhibits inconsistent epoch indexing behavior in comparison with other TF2 APIs (e.g., tf.Estimator). tf.Keras uses zero-indexing for epochs, while other APIs use one-indexing. Accordingly, this test verifies that metrics are produced in the boundary case where a model is trained for a single epoch, ensuring that we don't miss the zero index in the tf.Keras case. """ mlflow.tensorflow.autolog() model = create_tf_keras_model() with mlflow.start_run() as run: model.fit(random_train_data, random_one_hot_labels, epochs=1) client = MlflowClient() run_metrics = client.get_run(run.info.run_id).data.metrics assert "accuracy" in run_metrics assert "loss" in run_metrics def test_tf_keras_autolog_names_positional_parameters_correctly( random_train_data, random_one_hot_labels ): mlflow.tensorflow.autolog() data = random_train_data labels = random_one_hot_labels model = create_tf_keras_model() with mlflow.start_run(): # Pass `batch_size` as a positional argument for testing purposes model.fit(data, labels, 8, epochs=10, steps_per_epoch=1) run_id = mlflow.active_run().info.run_id client = MlflowClient() run_info = client.get_run(run_id) assert run_info.data.params.get("batch_size") == "8" @pytest.mark.parametrize("initial_epoch", [0, 10]) def test_tf_keras_autolog_model_can_load_from_artifact(tf_keras_random_data_run, random_train_data): run, _ = tf_keras_random_data_run client = MlflowClient() artifacts = client.list_artifacts(run.info.run_id) artifacts = (x.path for x in artifacts) assert "tensorboard_logs" in artifacts model = mlflow.tensorflow.load_model("runs:/" + run.info.run_id + "/model") model.predict(random_train_data) def get_tf_keras_random_data_run_with_callback( random_train_data, random_one_hot_labels, callback, restore_weights, patience, initial_epoch, log_models, ): mlflow.tensorflow.autolog(log_models=log_models) data = random_train_data labels = random_one_hot_labels model = create_tf_keras_model() if callback == "early": # min_delta is set as such to guarantee early stopping callback = tf.keras.callbacks.EarlyStopping( monitor="loss", patience=patience, min_delta=99999999, restore_best_weights=restore_weights, verbose=1, ) else: class CustomCallback(tf.keras.callbacks.Callback): def on_train_end(self, logs=None): pass callback = CustomCallback() history = model.fit( data, labels, epochs=initial_epoch + 10, callbacks=[callback], initial_epoch=initial_epoch ) client = MlflowClient() return client.get_run(client.search_runs(["0"])[0].info.run_id), history, callback @pytest.fixture def tf_keras_random_data_run_with_callback( random_train_data, random_one_hot_labels, callback, restore_weights, patience, initial_epoch, log_models, ): return get_tf_keras_random_data_run_with_callback( random_train_data, random_one_hot_labels, callback, restore_weights, patience, initial_epoch, log_models=log_models, ) @pytest.mark.parametrize("log_models", [True, False]) @pytest.mark.parametrize("restore_weights", [True]) @pytest.mark.parametrize("callback", ["early"]) @pytest.mark.parametrize("patience", [0, 1, 5]) @pytest.mark.parametrize("initial_epoch", [0, 10]) def test_tf_keras_autolog_early_stop_logs( tf_keras_random_data_run_with_callback, initial_epoch, log_models ): run, history, callback = tf_keras_random_data_run_with_callback metrics = run.data.metrics params = run.data.params assert "patience" in params assert params["patience"] == str(callback.patience) assert "monitor" in params assert params["monitor"] == "loss" assert "verbose" not in params assert "mode" not in params assert "stopped_epoch" in metrics assert "restored_epoch" in metrics restored_epoch = int(metrics["restored_epoch"]) # In this test, the best epoch is always the first epoch because the early stopping callback # never observes a loss improvement due to an extremely large `min_delta` value assert restored_epoch == initial_epoch assert "loss" in history.history client = MlflowClient() metric_history = client.get_metric_history(run.info.run_id, "loss") # Check that MLflow has logged the metrics of the "best" model, in addition to per-epoch metrics loss = history.history["loss"] assert len(metric_history) == len(loss) + 1 steps, values = map(list, zip(*[(m.step, m.value) for m in metric_history])) # Check that MLflow has logged the correct steps assert steps == [*history.epoch, callback.stopped_epoch + 1] # Check that MLflow has logged the correct metric values np.testing.assert_allclose(values, [*loss, callback.best]) artifacts = [f.path for f in client.list_artifacts(run.info.run_id)] assert "tensorboard_logs" in artifacts # Check metrics are logged to the LoggedModel if log_models: logged_model = mlflow.last_logged_model() assert logged_model is not None assert {metric.key: metric.value for metric in logged_model.metrics} == metrics @pytest.mark.parametrize("log_models", [False]) @pytest.mark.parametrize("restore_weights", [True]) @pytest.mark.parametrize("callback", ["early"]) @pytest.mark.parametrize("patience", [11]) @pytest.mark.parametrize("initial_epoch", [0, 10]) def test_tf_keras_autolog_early_stop_no_stop_does_not_log(tf_keras_random_data_run_with_callback): run, history, callback = tf_keras_random_data_run_with_callback metrics = run.data.metrics params = run.data.params assert "patience" in params assert params["patience"] == str(callback.patience) assert "monitor" in params assert params["monitor"] == "loss" assert "verbose" not in params assert "mode" not in params assert "stopped_epoch" not in metrics assert "restored_epoch" not in metrics assert "loss" in history.history num_of_epochs = len(history.history["loss"]) client = MlflowClient() metric_history = client.get_metric_history(run.info.run_id, "loss") # Check the test epoch numbers are correct assert num_of_epochs == 10 assert len(metric_history) == num_of_epochs @pytest.mark.parametrize("log_models", [False]) @pytest.mark.parametrize("restore_weights", [False]) @pytest.mark.parametrize("callback", ["early"]) @pytest.mark.parametrize("patience", [5]) @pytest.mark.parametrize("initial_epoch", [0, 10]) def test_tf_keras_autolog_early_stop_no_restore_doesnt_log(tf_keras_random_data_run_with_callback): run, history, callback = tf_keras_random_data_run_with_callback metrics = run.data.metrics params = run.data.params assert "patience" in params assert params["patience"] == str(callback.patience) assert "monitor" in params assert params["monitor"] == "loss" assert "verbose" not in params assert "mode" not in params assert "stopped_epoch" in metrics assert "restored_epoch" not in metrics assert "loss" in history.history num_of_epochs = len(history.history["loss"]) client = MlflowClient() metric_history = client.get_metric_history(run.info.run_id, "loss") # Check the test epoch numbers are correct assert num_of_epochs == callback.patience + 1 assert len(metric_history) == num_of_epochs @pytest.mark.parametrize("log_models", [False]) @pytest.mark.parametrize("restore_weights", [False]) @pytest.mark.parametrize("callback", ["not-early"]) @pytest.mark.parametrize("patience", [5]) @pytest.mark.parametrize("initial_epoch", [0, 10]) def test_tf_keras_autolog_non_early_stop_callback_no_log(tf_keras_random_data_run_with_callback): run, history = tf_keras_random_data_run_with_callback[:-1] metrics = run.data.metrics params = run.data.params assert "patience" not in params assert "monitor" not in params assert "verbose" not in params assert "mode" not in params assert "stopped_epoch" not in metrics assert "restored_epoch" not in metrics assert "loss" in history.history num_of_epochs = len(history.history["loss"]) client = MlflowClient() metric_history = client.get_metric_history(run.info.run_id, "loss") # Check the test epoch numbers are correct assert num_of_epochs == 10 assert len(metric_history) == num_of_epochs @pytest.mark.parametrize("positional", [True, False]) def test_tf_keras_autolog_does_not_mutate_original_callbacks_list( tmp_path, random_train_data, random_one_hot_labels, positional ): """ TensorFlow autologging passes new callbacks to the `fit()` / `fit_generator()` function. If preexisting user-defined callbacks already exist, these new callbacks are added to the user-specified ones. This test verifies that the new callbacks are added to the without permanently mutating the original list of callbacks. """ mlflow.tensorflow.autolog() tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=tmp_path) callbacks = [tensorboard_callback] model = create_tf_keras_model() data = random_train_data labels = random_one_hot_labels if positional: model.fit(data, labels, None, 10, 1, callbacks) else: model.fit(data, labels, epochs=10, callbacks=callbacks) assert len(callbacks) == 1 assert callbacks == [tensorboard_callback] def test_tf_keras_autolog_does_not_delete_logging_directory_for_tensorboard_callback( tmp_path, random_train_data, random_one_hot_labels ): tensorboard_callback_logging_dir_path = str(tmp_path.joinpath("tb_logs")) tensorboard_callback = tf.keras.callbacks.TensorBoard( tensorboard_callback_logging_dir_path, histogram_freq=0 ) mlflow.tensorflow.autolog() data = random_train_data labels = random_one_hot_labels model = create_tf_keras_model() model.fit(data, labels, epochs=10, callbacks=[tensorboard_callback]) assert os.path.exists(tensorboard_callback_logging_dir_path) def test_tf_keras_autolog_logs_to_and_deletes_temporary_directory_when_tensorboard_callback_absent( tmp_path, random_train_data, random_one_hot_labels ): from mlflow.tensorflow import _TensorBoardLogDir mlflow.tensorflow.autolog() mock_log_dir_inst = _TensorBoardLogDir( location=str(tmp_path.joinpath("tb_logging")), is_temp=True ) with patch("mlflow.tensorflow._TensorBoardLogDir", autospec=True) as mock_log_dir_class: mock_log_dir_class.return_value = mock_log_dir_inst data = random_train_data labels = random_one_hot_labels model = create_tf_keras_model() model.fit(data, labels, epochs=10) assert not os.path.exists(mock_log_dir_inst.location) def get_text_vec_model(train_samples): # Taken from: https://github.com/mlflow/mlflow/issues/3910 try: from tensorflow.keras.layers.experimental.preprocessing import TextVectorization except ModuleNotFoundError: from tensorflow.keras.layers import TextVectorization VOCAB_SIZE = 10 SEQUENCE_LENGTH = 16 EMBEDDING_DIM = 16 vectorizer_layer = TextVectorization( max_tokens=VOCAB_SIZE, output_mode="int", output_sequence_length=SEQUENCE_LENGTH, ) vectorizer_layer.adapt(train_samples) model = tf.keras.Sequential( [ vectorizer_layer, tf.keras.layers.Embedding( VOCAB_SIZE, EMBEDDING_DIM, name="embedding", mask_zero=True, ), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(16, activation="relu"), tf.keras.layers.Dense(1, activation="tanh"), ] ) model.compile(optimizer="adam", loss="mse", metrics=["mae"]) return model @pytest.mark.skipif( Version(tf.__version__) < Version("2.3.0"), reason=( "Deserializing a model with `TextVectorization` and `Embedding` " "fails in tensorflow < 2.3.0. See this issue: " "https://github.com/tensorflow/tensorflow/issues/38250." ), ) def test_autolog_text_vec_model(tmp_path): """ Verifies autolog successfully saves a model that can't be saved in the H5 format """ mlflow.tensorflow.autolog() train_samples = tf.convert_to_tensor(["this is an example", "another example"]) train_labels = np.array([0.4, 0.2]) model = get_text_vec_model(train_samples) with mlflow.start_run() as run: model.fit(train_samples, train_labels, epochs=1) loaded_model = mlflow.tensorflow.load_model("runs:/" + run.info.run_id + "/model") np.testing.assert_array_equal(loaded_model.predict(train_samples), model.predict(train_samples)) def test_tf_keras_model_autolog_registering_model(random_train_data, random_one_hot_labels): registered_model_name = "test_autolog_registered_model" mlflow.tensorflow.autolog(registered_model_name=registered_model_name) with mlflow.start_run(): model = create_tf_keras_model() model.fit(random_train_data, random_one_hot_labels, epochs=10) registered_model = MlflowClient().get_registered_model(registered_model_name) assert registered_model.name == registered_model_name def test_fluent_autolog_with_tf_keras_logs_expected_content( random_train_data, random_one_hot_labels ): """ Guards against previously-exhibited issues where using the fluent `mlflow.autolog()` API with `tf.keras` Models did not work due to conflicting patches set by both the `mlflow.tensorflow.autolog()` and the `mlflow.keras.autolog()` APIs. """ mlflow.autolog() model = create_tf_keras_model() with mlflow.start_run() as run: model.fit(random_train_data, random_one_hot_labels, epochs=10) client = MlflowClient() run_data = client.get_run(run.info.run_id).data assert "accuracy" in run_data.metrics assert "epochs" in run_data.params def test_callback_is_picklable(): cb = MlflowCallback() pickle.dumps(cb) tb = _TensorBoard() pickle.dumps(tb) @pytest.mark.skipif( Version(tf.__version__) < Version("2.1.0"), reason="This test requires tensorflow >= 2.1.0" ) def test_tf_keras_autolog_distributed_training(random_train_data, random_one_hot_labels): # Ref: https://www.tensorflow.org/tutorials/distribute/keras mlflow.tensorflow.autolog() with tf.distribute.MirroredStrategy().scope(): model = create_tf_keras_model() fit_params = {"epochs": 10, "batch_size": 10} with mlflow.start_run() as run: model.fit(random_train_data, random_one_hot_labels, **fit_params) client = MlflowClient() assert client.get_run(run.info.run_id).data.params.keys() >= fit_params.keys() def test_import_tensorflow_with_fluent_autolog_enables_tensorflow_autologging(): mlflow.autolog() import tensorflow # noqa: F401 assert not autologging_is_disabled(mlflow.tensorflow.FLAVOR_NAME) def _assert_autolog_infers_model_signature_correctly(input_sig_spec, output_sig_spec): logged_model = mlflow.last_logged_model() ml_model_path = os.path.join(logged_model.artifact_location, "MLmodel") with open(ml_model_path) as f: data = yaml.safe_load(f) assert data is not None assert "signature" in data signature = data["signature"] assert signature is not None assert "inputs" in signature assert "outputs" in signature assert json.loads(signature["inputs"]) == input_sig_spec assert json.loads(signature["outputs"]) == output_sig_spec def _assert_keras_autolog_input_example_load_and_predict_with_nparray(random_train_data): logged_model = mlflow.last_logged_model() model_conf = Model.load(logged_model.model_uri) input_example = _read_example(model_conf, logged_model.model_uri) np.testing.assert_array_almost_equal(input_example, random_train_data[:5]) pyfunc_model = mlflow.pyfunc.load_model(logged_model.model_uri) pyfunc_model.predict(input_example) def test_keras_autolog_input_example_load_and_predict_with_nparray( random_train_data, random_one_hot_labels ): mlflow.tensorflow.autolog(log_input_examples=True, log_model_signatures=True) initial_model = create_tf_keras_model() with mlflow.start_run(): initial_model.fit(random_train_data, random_one_hot_labels) _assert_keras_autolog_input_example_load_and_predict_with_nparray(random_train_data) def test_keras_autolog_infers_model_signature_correctly_with_nparray( random_train_data, random_one_hot_labels ): mlflow.tensorflow.autolog(log_model_signatures=True) initial_model = create_tf_keras_model() with mlflow.start_run(): initial_model.fit(random_train_data, random_one_hot_labels) _assert_autolog_infers_model_signature_correctly( [{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 4]}}], [{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1, 3]}}], ) @pytest.mark.skipif( Version(tf.__version__) < Version("2.1.0"), reason="tf.data.Dataset inputs are unsupported for input example logging in TensorFlow < 2.1.0", ) def test_keras_autolog_input_example_load_and_predict_with_tf_dataset(fashion_mnist_tf_dataset): mlflow.tensorflow.autolog(log_input_examples=True, log_model_signatures=True) fashion_mnist_model = _create_fashion_mnist_model() with mlflow.start_run(): fashion_mnist_model.fit(fashion_mnist_tf_dataset) logged_model = mlflow.last_logged_model() model_conf = Model.load(logged_model.model_uri) input_example = _read_example(model_conf, logged_model.model_uri) pyfunc_model = mlflow.pyfunc.load_model(logged_model.model_uri) pyfunc_model.predict(input_example) @pytest.mark.skipif( Version(tf.__version__) < Version("2.1.0"), reason="tf.data.Dataset inputs are unsupported for signature logging in TensorFlow < 2.1.0", ) def test_keras_autolog_infers_model_signature_correctly_with_tf_dataset(fashion_mnist_tf_dataset): mlflow.tensorflow.autolog(log_model_signatures=True) fashion_mnist_model = _create_fashion_mnist_model() with mlflow.start_run(): fashion_mnist_model.fit(fashion_mnist_tf_dataset) _assert_autolog_infers_model_signature_correctly( [{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 28, 28]}}], [{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1, 10]}}], ) def test_keras_autolog_input_example_load_and_predict_with_dict( random_train_dict_mapping, random_one_hot_labels ): mlflow.tensorflow.autolog(log_input_examples=True, log_model_signatures=True) model = _create_model_for_dict_mapping() with mlflow.start_run(): model.fit(random_train_dict_mapping, random_one_hot_labels) logged_model = mlflow.last_logged_model() model_conf = Model.load(logged_model.model_uri) input_example = _read_example(model_conf, logged_model.model_uri) for k, v in random_train_dict_mapping.items(): np.testing.assert_array_almost_equal(input_example[k], np.take(v, range(0, 5))) pyfunc_model = mlflow.pyfunc.load_model(logged_model.model_uri) pyfunc_model.predict(input_example) def test_keras_autolog_infers_model_signature_correctly_with_dict( random_train_dict_mapping, random_one_hot_labels ): mlflow.tensorflow.autolog(log_model_signatures=True) model = _create_model_for_dict_mapping() with mlflow.start_run(): model.fit(random_train_dict_mapping, random_one_hot_labels) _assert_autolog_infers_model_signature_correctly( [ {"name": "a", "type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1]}}, {"name": "b", "type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1]}}, {"name": "c", "type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1]}}, {"name": "d", "type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1]}}, ], [{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1, 3]}}], ) def test_keras_autolog_input_example_load_and_predict_with_keras_sequence(keras_data_gen_sequence): mlflow.tensorflow.autolog(log_input_examples=True, log_model_signatures=True) model = create_tf_keras_model() with mlflow.start_run(): model.fit(keras_data_gen_sequence) _assert_keras_autolog_input_example_load_and_predict_with_nparray( keras_data_gen_sequence[:][0][:5] ) def test_keras_autolog_infers_model_signature_correctly_with_keras_sequence( keras_data_gen_sequence, ): mlflow.tensorflow.autolog(log_model_signatures=True) initial_model = create_tf_keras_model() with mlflow.start_run(): initial_model.fit(keras_data_gen_sequence) _assert_autolog_infers_model_signature_correctly( [{"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 4]}}], [{"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1, 3]}}], ) def test_keras_autolog_load_saved_hdf5_model(keras_data_gen_sequence): mlflow.tensorflow.autolog(keras_model_kwargs={"save_format": "h5"}) model = create_tf_keras_model() with mlflow.start_run(): model.fit(keras_data_gen_sequence) logged_model = mlflow.last_logged_model() assert Path(logged_model.artifact_location, "data", "model.h5").exists() def test_keras_autolog_logs_model_signature_by_default(keras_data_gen_sequence): mlflow.autolog() initial_model = create_tf_keras_model() initial_model.fit(keras_data_gen_sequence) logged_model = mlflow.last_logged_model() mlmodel_path = f"{logged_model.artifact_location}/MLmodel" with open(mlmodel_path) as f: mlmodel_contents = yaml.safe_load(f) assert "signature" in mlmodel_contents.keys() signature = mlmodel_contents["signature"] assert signature is not None assert "inputs" in signature assert "outputs" in signature assert json.loads(signature["inputs"]) == [ {"type": "tensor", "tensor-spec": {"dtype": "float64", "shape": [-1, 4]}} ] assert json.loads(signature["outputs"]) == [ {"type": "tensor", "tensor-spec": {"dtype": "float32", "shape": [-1, 3]}} ] def test_extract_tf_keras_input_example_unsupported_type_returns_None(): from mlflow.tensorflow.autologging import extract_tf_keras_input_example extracted_data = extract_tf_keras_input_example([1, 2, 4, 5]) assert extracted_data is None, ( "Keras input data extraction function should have " "returned None as input type is not supported." ) def test_extract_input_example_from_tf_input_fn_unsupported_type_returns_None(): from mlflow.tensorflow.autologging import extract_tf_keras_input_example extracted_data = extract_tf_keras_input_example(lambda: [1, 2, 4, 5]) assert extracted_data is None, ( "Tensorflow's input_fn training data extraction should have" " returned None as input type is not supported." ) @pytest.mark.skipif( Version(tf.__version__) < Version("2.6.0"), reason=("TensorFlow only has a hard dependency on Keras in version >= 2.6.0"), ) def test_import_keras_model_trigger_import_tensorflow(): # This test is for guarding importing keras model will trigger importing tensorflow # Because in Keras>=2.6, the keras autologging patching is installed by # `mlflow.tensorflow.autolog`, suppose user enable autolog by `mlflow.autolog()`, # and then import keras, if keras does not trigger importing tensorflow, # then the keras autologging patching cannot be installed. py_executable = sys.executable _exec_cmd( [ py_executable, "-c", "from keras import Model; import sys; assert 'tensorflow' in sys.modules", ] ) def test_autolog_throw_error_on_explicit_mlflow_callback(keras_data_gen_sequence): mlflow.tensorflow.autolog() model = create_tf_keras_model() with mlflow.start_run() as run: with pytest.raises(MlflowException, match="MLflow autologging must be turned off*"): model.fit(keras_data_gen_sequence, callbacks=[MlflowCallback(run)]) def test_autolog_correct_logging_frequency(random_train_data, random_one_hot_labels): logging_freq = 5 num_epochs = 2 batch_size = 10 mlflow.tensorflow.autolog(log_every_epoch=False, log_every_n_steps=logging_freq) initial_model = create_tf_keras_model() with mlflow.start_run() as run: initial_model.fit( random_train_data, random_one_hot_labels, batch_size=batch_size, epochs=num_epochs, ) client = MlflowClient() loss_history = client.get_metric_history(run.info.run_id, "loss") assert len(loss_history) == num_epochs * (len(random_train_data) // batch_size) // logging_freq def test_automatic_checkpoint_per_epoch_callback(random_train_data, random_one_hot_labels): mlflow.tensorflow.autolog( checkpoint=True, checkpoint_monitor=None, checkpoint_mode=None, checkpoint_save_best_only=False, checkpoint_save_weights_only=False, checkpoint_save_freq="epoch", ) model = create_tf_keras_model() with mlflow.start_run() as run: model.fit(random_train_data, random_one_hot_labels, epochs=1) run_id = run.info.run_id logged_metrics = mlflow.artifacts.load_dict( f"runs:/{run_id}/checkpoints/epoch_0/checkpoint_metrics.json" ) assert set(logged_metrics) == {"epoch", "loss", "accuracy", "global_step"} assert logged_metrics["epoch"] == 0 assert logged_metrics["global_step"] == 5 pred_result = model.predict(random_train_data) pred_result2 = load_checkpoint(run_id=run_id).predict(random_train_data) np.testing.assert_array_almost_equal(pred_result, pred_result2) pred_result3 = load_checkpoint(run_id=run_id, epoch=0).predict(random_train_data) np.testing.assert_array_almost_equal(pred_result, pred_result3) def test_automatic_checkpoint_per_epoch_save_weight_only_callback( random_train_data, random_one_hot_labels ): mlflow.tensorflow.autolog( checkpoint=True, checkpoint_monitor=None, checkpoint_mode=None, checkpoint_save_best_only=False, checkpoint_save_weights_only=True, checkpoint_save_freq="epoch", ) model = create_tf_keras_model() with mlflow.start_run() as run: model.fit(random_train_data, random_one_hot_labels, epochs=1) run_id = run.info.run_id logged_metrics = mlflow.artifacts.load_dict( f"runs:/{run_id}/checkpoints/epoch_0/checkpoint_metrics.json" ) assert set(logged_metrics) == {"epoch", "loss", "accuracy", "global_step"} assert logged_metrics["epoch"] == 0 assert logged_metrics["global_step"] == 5 model2 = create_tf_keras_model() pred_result = model.predict(random_train_data) pred_result2 = load_checkpoint(model=model2, run_id=run_id).predict(random_train_data) np.testing.assert_array_almost_equal(pred_result, pred_result2) def test_automatic_checkpoint_per_3_steps_callback(random_train_data, random_one_hot_labels): mlflow.tensorflow.autolog( checkpoint=True, checkpoint_monitor=None, checkpoint_mode=None, checkpoint_save_best_only=False, checkpoint_save_weights_only=False, checkpoint_save_freq=3, ) model = create_tf_keras_model() with mlflow.start_run() as run: model.fit(random_train_data, random_one_hot_labels, epochs=1) run_id = run.info.run_id logged_metrics = mlflow.artifacts.load_dict( f"runs:/{run_id}/checkpoints/global_step_3/checkpoint_metrics.json" ) assert set(logged_metrics) == {"epoch", "loss", "accuracy", "global_step"} assert logged_metrics["epoch"] == 0 assert logged_metrics["global_step"] == 3 assert isinstance(load_checkpoint(run_id=run_id), tf.keras.Sequential) assert isinstance(load_checkpoint(run_id=run_id, global_step=3), tf.keras.Sequential) def test_automatic_checkpoint_per_3_steps_save_best_only_callback( random_train_data, random_one_hot_labels ): mlflow.tensorflow.autolog( checkpoint=True, checkpoint_monitor="loss", checkpoint_mode="min", checkpoint_save_best_only=True, checkpoint_save_weights_only=False, checkpoint_save_freq=3, ) model = create_tf_keras_model() with mlflow.start_run() as run: model.fit( random_train_data, random_one_hot_labels, epochs=1, ) run_id = run.info.run_id logged_metrics = mlflow.artifacts.load_dict( f"runs:/{run_id}/checkpoints/latest_checkpoint_metrics.json" ) assert set(logged_metrics) == {"epoch", "loss", "accuracy", "global_step"} assert logged_metrics["epoch"] == 0 assert logged_metrics["global_step"] == 3 assert isinstance(load_checkpoint(run_id=run_id), tf.keras.Sequential)
__GeneratorClassMultiInput
python
airbytehq__airbyte
airbyte-integrations/connectors/destination-chroma/destination_chroma/indexer.py
{ "start": 684, "end": 5108 }
class ____(Indexer): def __init__(self, config: ChromaIndexingConfigModel): super().__init__(config) self.collection_name = config.collection_name def check(self): collection_name_validation_error = is_valid_collection_name(self.collection_name) if collection_name_validation_error: return collection_name_validation_error auth_method = self.config.auth_method if auth_method.mode == "persistent_client" and not auth_method.path.startswith("/local/"): return "Path must be prefixed with /local" client = self._get_client() try: heartbeat = client.heartbeat() if not heartbeat: return "Chroma client server is not alive" collection = client.get_or_create_collection(name=self.collection_name) count = collection.count() if count != 0 and not count: return f"unable to get or create collection with name {self.collection_name}" return except Exception as e: return format_exception(e) finally: del client def delete(self, delete_ids, namespace, stream): if len(delete_ids) > 0: self._delete_by_filter(field_name=METADATA_RECORD_ID_FIELD, field_values=delete_ids) def index(self, document_chunks, namespace, stream): entities = [] for i in range(len(document_chunks)): chunk = document_chunks[i] entities.append( { "id": str(uuid.uuid4()), "embedding": chunk.embedding, "metadata": self._normalize(chunk.metadata), "document": chunk.page_content if chunk.page_content is not None else "", } ) self._write_data(entities) def pre_sync(self, catalog: ConfiguredAirbyteCatalog) -> None: self.client = self._get_client() streams_to_overwrite = [ create_stream_identifier(stream.stream) for stream in catalog.streams if stream.destination_sync_mode == DestinationSyncMode.overwrite ] if len(streams_to_overwrite): self._delete_by_filter(field_name=METADATA_STREAM_FIELD, field_values=streams_to_overwrite) def _get_client(self): auth_method = self.config.auth_method if auth_method.mode == "persistent_client": path = auth_method.path client = chromadb.PersistentClient(path=path) return client elif auth_method.mode == "http_client": host = auth_method.host port = auth_method.port ssl = auth_method.ssl username = auth_method.username password = auth_method.password if username and password: settings = Settings( chroma_client_auth_provider="chromadb.auth.basic.BasicAuthClientProvider", chroma_client_auth_credentials=f"{username}:{password}", ) client = chromadb.HttpClient(settings=settings, host=host, port=port, ssl=ssl) else: client = chromadb.HttpClient(host=host, port=port, ssl=ssl) return client return def _delete_by_filter(self, field_name, field_values): collection = self.client.get_collection(name=self.collection_name) where_filter = {field_name: {"$in": field_values}} collection.delete(where=where_filter) def _normalize(self, metadata: dict) -> dict: result = {} for key, value in metadata.items(): if isinstance(value, (str, int, float, bool)): result[key] = value else: # JSON encode all other types result[key] = json.dumps(value) return result def _write_data(self, entities): ids = [entity["id"] for entity in entities] embeddings = [entity["embedding"] for entity in entities] if not any(embeddings): embeddings = None metadatas = [entity["metadata"] for entity in entities] documents = [entity["document"] for entity in entities] collection = self.client.get_collection(name=self.collection_name) collection.add(ids=ids, embeddings=embeddings, metadatas=metadatas, documents=documents)
ChromaIndexer
python
gevent__gevent
src/greentest/3.14/test__interpreters.py
{ "start": 3743, "end": 3976 }
class ____(TestBase): def test_import_in_interpreter(self): _run_output( _interpreters.create(), 'import _interpreters', ) ################################## # interpreter tests
ModuleTests
python
weaviate__weaviate-python-client
weaviate/client.py
{ "start": 9216, "end": 9835 }
class ____: def __init__( self, ) -> None: raise ValueError( """ Python client v3 `weaviate.Client(...)` has been removed. Upgrade your code to use Python client v4 `weaviate.WeaviateClient` connections and methods. - For Python Client v4 usage, see: https://weaviate.io/developers/weaviate/client-libraries/python - For code migration, see: https://weaviate.io/developers/weaviate/client-libraries/python/v3_v4_migration If you have to use v3 code, install the v3 client and pin the v3 dependency in your requirements file: `weaviate-client>=3.26.7;<4.0.0`""" )
Client
python
apache__airflow
providers/opensearch/tests/system/opensearch/example_opensearch.py
{ "start": 1613, "end": 4310 }
class ____(Document): log_group_id = Integer() logger = Text() message = Text() class Index: name = INDEX_NAME def save(self, **kwargs): super().save(**kwargs) def load_connections(): # Connections needed for this example dag to finish from airflow.models import Connection c = Connection( conn_id="opensearch_test", conn_type="opensearch", host="127.0.0.1", login="test", password="test" ) envvar = f"AIRFLOW_CONN_{c.conn_id.upper()}" os.environ[envvar] = c.get_uri() with DAG( dag_id=DAG_ID, start_date=datetime(2021, 1, 1), schedule="@once", catchup=False, tags=["example"], default_args=default_args, description="Examples of OpenSearch Operators", ) as dag: # [START howto_operator_opensearch_create_index] create_index = OpenSearchCreateIndexOperator( task_id="create_index", index_name=INDEX_NAME, index_body={"settings": {"index": {"number_of_shards": 1}}}, ) # [END howto_operator_opensearch_create_index] # [START howto_operator_opensearch_add_document] add_document_by_args = OpenSearchAddDocumentOperator( task_id="add_document_with_args", index_name=INDEX_NAME, doc_id=1, document={"log_group_id": 1, "logger": "python", "message": "hello world"}, ) add_document_by_class = OpenSearchAddDocumentOperator( task_id="add_document_by_class", doc_class=LogDocument(log_group_id=2, logger="airflow", message="hello airflow"), ) # [END howto_operator_opensearch_add_document] # [START howto_operator_opensearch_query] search_low_level = OpenSearchQueryOperator( task_id="low_level_query", index_name="system_test", query={"query": {"bool": {"must": {"match": {"message": "hello world"}}}}}, ) search = Search() search._index = [INDEX_NAME] search_object = search.filter("term", logger="airflow").query("match", message="hello airflow") search_high_level = OpenSearchQueryOperator(task_id="high_level_query", search_object=search_object) # [END howto_operator_opensearch_query] chain(create_index, add_document_by_class, add_document_by_args, search_high_level, search_low_level) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest) test_run = get_test_run(dag)
LogDocument
python
chroma-core__chroma
chromadb/test/conftest.py
{ "start": 27770, "end": 28126 }
class ____(AsyncAdminClient): pass @pytest.fixture(scope="function") def api(system: System) -> Generator[ServerAPI, None, None]: system.reset_state() api = system.instance(ServerAPI) if isinstance(api, AsyncFastAPI): transformed = async_class_to_sync(api) yield transformed else: yield api
AsyncAdminClientSync
python
kamyu104__LeetCode-Solutions
Python/find-the-maximum-length-of-a-good-subsequence-i.py
{ "start": 665, "end": 1180 }
class ____(object): def maximumLength(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ dp = [collections.defaultdict(int) for _ in xrange(k+1)] result = [0]*(k+1) for x in nums: for i in reversed(xrange(k+1)): dp[i][x] = max(dp[i][x], result[i-1] if i-1 >= 0 else 0)+1 result[i] = max(result[i], dp[i][x]) return result[k] # Time: O(n^2 * k) # Space: O(n * k) # dp
Solution2
python
pypa__pip
src/pip/_vendor/urllib3/exceptions.py
{ "start": 1657, "end": 2194 }
class ____(RequestError): """Raised when the maximum number of retries is exceeded. :param pool: The connection pool :type pool: :class:`~urllib3.connectionpool.HTTPConnectionPool` :param string url: The requested Url :param exceptions.Exception reason: The underlying error """ def __init__(self, pool, url, reason=None): self.reason = reason message = "Max retries exceeded with url: %s (Caused by %r)" % (url, reason) RequestError.__init__(self, pool, url, message)
MaxRetryError
python
openai__gym
gym/envs/mujoco/humanoidstandup_v4.py
{ "start": 109, "end": 21674 }
class ____(MujocoEnv, utils.EzPickle): """ ### Description This environment is based on the environment introduced by Tassa, Erez and Todorov in ["Synthesis and stabilization of complex behaviors through online trajectory optimization"](https://ieeexplore.ieee.org/document/6386025). The 3D bipedal robot is designed to simulate a human. It has a torso (abdomen) with a pair of legs and arms. The legs each consist of two links, and so the arms (representing the knees and elbows respectively). The environment starts with the humanoid laying on the ground, and then the goal of the environment is to make the humanoid standup and then keep it standing by applying torques on the various hinges. ### Action Space The agent take a 17-element vector for actions. The action space is a continuous `(action, ...)` all in `[-1, 1]`, where `action` represents the numerical torques applied at the hinge joints. | Num | Action | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit | | --- | ---------------------------------------------------------------------------------- | ----------- | ----------- | -------------------------------- | ----- | ------------ | | 0 | Torque applied on the hinge in the y-coordinate of the abdomen | -0.4 | 0.4 | hip_1 (front_left_leg) | hinge | torque (N m) | | 1 | Torque applied on the hinge in the z-coordinate of the abdomen | -0.4 | 0.4 | angle_1 (front_left_leg) | hinge | torque (N m) | | 2 | Torque applied on the hinge in the x-coordinate of the abdomen | -0.4 | 0.4 | hip_2 (front_right_leg) | hinge | torque (N m) | | 3 | Torque applied on the rotor between torso/abdomen and the right hip (x-coordinate) | -0.4 | 0.4 | right_hip_x (right_thigh) | hinge | torque (N m) | | 4 | Torque applied on the rotor between torso/abdomen and the right hip (z-coordinate) | -0.4 | 0.4 | right_hip_z (right_thigh) | hinge | torque (N m) | | 5 | Torque applied on the rotor between torso/abdomen and the right hip (y-coordinate) | -0.4 | 0.4 | right_hip_y (right_thigh) | hinge | torque (N m) | | 6 | Torque applied on the rotor between the right hip/thigh and the right shin | -0.4 | 0.4 | right_knee | hinge | torque (N m) | | 7 | Torque applied on the rotor between torso/abdomen and the left hip (x-coordinate) | -0.4 | 0.4 | left_hip_x (left_thigh) | hinge | torque (N m) | | 8 | Torque applied on the rotor between torso/abdomen and the left hip (z-coordinate) | -0.4 | 0.4 | left_hip_z (left_thigh) | hinge | torque (N m) | | 9 | Torque applied on the rotor between torso/abdomen and the left hip (y-coordinate) | -0.4 | 0.4 | left_hip_y (left_thigh) | hinge | torque (N m) | | 10 | Torque applied on the rotor between the left hip/thigh and the left shin | -0.4 | 0.4 | left_knee | hinge | torque (N m) | | 11 | Torque applied on the rotor between the torso and right upper arm (coordinate -1) | -0.4 | 0.4 | right_shoulder1 | hinge | torque (N m) | | 12 | Torque applied on the rotor between the torso and right upper arm (coordinate -2) | -0.4 | 0.4 | right_shoulder2 | hinge | torque (N m) | | 13 | Torque applied on the rotor between the right upper arm and right lower arm | -0.4 | 0.4 | right_elbow | hinge | torque (N m) | | 14 | Torque applied on the rotor between the torso and left upper arm (coordinate -1) | -0.4 | 0.4 | left_shoulder1 | hinge | torque (N m) | | 15 | Torque applied on the rotor between the torso and left upper arm (coordinate -2) | -0.4 | 0.4 | left_shoulder2 | hinge | torque (N m) | | 16 | Torque applied on the rotor between the left upper arm and left lower arm | -0.4 | 0.4 | left_elbow | hinge | torque (N m) | ### Observation Space The state space consists of positional values of different body parts of the Humanoid, followed by the velocities of those individual parts (their derivatives) with all the positions ordered before all the velocities. **Note:** The x- and y-coordinates of the torso are being omitted to produce position-agnostic behavior in policies The observation is a `ndarray` with shape `(376,)` where the elements correspond to the following: | Num | Observation | Min | Max | Name (in corresponding XML file) | Joint | Unit | | --- | --------------------------------------------------------------------------------------------------------------- | ---- | --- | -------------------------------- | ----- | -------------------------- | | 0 | z-coordinate of the torso (centre) | -Inf | Inf | root | free | position (m) | | 1 | x-orientation of the torso (centre) | -Inf | Inf | root | free | angle (rad) | | 2 | y-orientation of the torso (centre) | -Inf | Inf | root | free | angle (rad) | | 3 | z-orientation of the torso (centre) | -Inf | Inf | root | free | angle (rad) | | 4 | w-orientation of the torso (centre) | -Inf | Inf | root | free | angle (rad) | | 5 | z-angle of the abdomen (in lower_waist) | -Inf | Inf | abdomen_z | hinge | angle (rad) | | 6 | y-angle of the abdomen (in lower_waist) | -Inf | Inf | abdomen_y | hinge | angle (rad) | | 7 | x-angle of the abdomen (in pelvis) | -Inf | Inf | abdomen_x | hinge | angle (rad) | | 8 | x-coordinate of angle between pelvis and right hip (in right_thigh) | -Inf | Inf | right_hip_x | hinge | angle (rad) | | 9 | z-coordinate of angle between pelvis and right hip (in right_thigh) | -Inf | Inf | right_hip_z | hinge | angle (rad) | | 10 | y-coordinate of angle between pelvis and right hip (in right_thigh) | -Inf | Inf | right_hip_y | hinge | angle (rad) | | 11 | angle between right hip and the right shin (in right_knee) | -Inf | Inf | right_knee | hinge | angle (rad) | | 12 | x-coordinate of angle between pelvis and left hip (in left_thigh) | -Inf | Inf | left_hip_x | hinge | angle (rad) | | 13 | z-coordinate of angle between pelvis and left hip (in left_thigh) | -Inf | Inf | left_hip_z | hinge | angle (rad) | | 14 | y-coordinate of angle between pelvis and left hip (in left_thigh) | -Inf | Inf | left_hip_y | hinge | angle (rad) | | 15 | angle between left hip and the left shin (in left_knee) | -Inf | Inf | left_knee | hinge | angle (rad) | | 16 | coordinate-1 (multi-axis) angle between torso and right arm (in right_upper_arm) | -Inf | Inf | right_shoulder1 | hinge | angle (rad) | | 17 | coordinate-2 (multi-axis) angle between torso and right arm (in right_upper_arm) | -Inf | Inf | right_shoulder2 | hinge | angle (rad) | | 18 | angle between right upper arm and right_lower_arm | -Inf | Inf | right_elbow | hinge | angle (rad) | | 19 | coordinate-1 (multi-axis) angle between torso and left arm (in left_upper_arm) | -Inf | Inf | left_shoulder1 | hinge | angle (rad) | | 20 | coordinate-2 (multi-axis) angle between torso and left arm (in left_upper_arm) | -Inf | Inf | left_shoulder2 | hinge | angle (rad) | | 21 | angle between left upper arm and left_lower_arm | -Inf | Inf | left_elbow | hinge | angle (rad) | | 22 | x-coordinate velocity of the torso (centre) | -Inf | Inf | root | free | velocity (m/s) | | 23 | y-coordinate velocity of the torso (centre) | -Inf | Inf | root | free | velocity (m/s) | | 24 | z-coordinate velocity of the torso (centre) | -Inf | Inf | root | free | velocity (m/s) | | 25 | x-coordinate angular velocity of the torso (centre) | -Inf | Inf | root | free | anglular velocity (rad/s) | | 26 | y-coordinate angular velocity of the torso (centre) | -Inf | Inf | root | free | anglular velocity (rad/s) | | 27 | z-coordinate angular velocity of the torso (centre) | -Inf | Inf | root | free | anglular velocity (rad/s) | | 28 | z-coordinate of angular velocity of the abdomen (in lower_waist) | -Inf | Inf | abdomen_z | hinge | anglular velocity (rad/s) | | 29 | y-coordinate of angular velocity of the abdomen (in lower_waist) | -Inf | Inf | abdomen_y | hinge | anglular velocity (rad/s) | | 30 | x-coordinate of angular velocity of the abdomen (in pelvis) | -Inf | Inf | abdomen_x | hinge | aanglular velocity (rad/s) | | 31 | x-coordinate of the angular velocity of the angle between pelvis and right hip (in right_thigh) | -Inf | Inf | right_hip_x | hinge | anglular velocity (rad/s) | | 32 | z-coordinate of the angular velocity of the angle between pelvis and right hip (in right_thigh) | -Inf | Inf | right_hip_z | hinge | anglular velocity (rad/s) | | 33 | y-coordinate of the angular velocity of the angle between pelvis and right hip (in right_thigh) | -Inf | Inf | right_hip_y | hinge | anglular velocity (rad/s) | | 35 | angular velocity of the angle between right hip and the right shin (in right_knee) | -Inf | Inf | right_knee | hinge | anglular velocity (rad/s) | | 36 | x-coordinate of the angular velocity of the angle between pelvis and left hip (in left_thigh) | -Inf | Inf | left_hip_x | hinge | anglular velocity (rad/s) | | 37 | z-coordinate of the angular velocity of the angle between pelvis and left hip (in left_thigh) | -Inf | Inf | left_hip_z | hinge | anglular velocity (rad/s) | | 38 | y-coordinate of the angular velocity of the angle between pelvis and left hip (in left_thigh) | -Inf | Inf | left_hip_y | hinge | anglular velocity (rad/s) | | 39 | angular velocity of the angle between left hip and the left shin (in left_knee) | -Inf | Inf | left_knee | hinge | anglular velocity (rad/s) | | 40 | coordinate-1 (multi-axis) of the angular velocity of the angle between torso and right arm (in right_upper_arm) | -Inf | Inf | right_shoulder1 | hinge | anglular velocity (rad/s) | | 41 | coordinate-2 (multi-axis) of the angular velocity of the angle between torso and right arm (in right_upper_arm) | -Inf | Inf | right_shoulder2 | hinge | anglular velocity (rad/s) | | 42 | angular velocity of the angle between right upper arm and right_lower_arm | -Inf | Inf | right_elbow | hinge | anglular velocity (rad/s) | | 43 | coordinate-1 (multi-axis) of the angular velocity of the angle between torso and left arm (in left_upper_arm) | -Inf | Inf | left_shoulder1 | hinge | anglular velocity (rad/s) | | 44 | coordinate-2 (multi-axis) of the angular velocity of the angle between torso and left arm (in left_upper_arm) | -Inf | Inf | left_shoulder2 | hinge | anglular velocity (rad/s) | | 45 | angular velocitty of the angle between left upper arm and left_lower_arm | -Inf | Inf | left_elbow | hinge | anglular velocity (rad/s) | Additionally, after all the positional and velocity based values in the table, the state_space consists of (in order): - *cinert:* Mass and inertia of a single rigid body relative to the center of mass (this is an intermediate result of transition). It has shape 14*10 (*nbody * 10*) and hence adds to another 140 elements in the state space. - *cvel:* Center of mass based velocity. It has shape 14 * 6 (*nbody * 6*) and hence adds another 84 elements in the state space - *qfrc_actuator:* Constraint force generated as the actuator force. This has shape `(23,)` *(nv * 1)* and hence adds another 23 elements to the state space. - *cfrc_ext:* This is the center of mass based external force on the body. It has shape 14 * 6 (*nbody * 6*) and hence adds to another 84 elements in the state space. where *nbody* stands for the number of bodies in the robot and *nv* stands for the number of degrees of freedom (*= dim(qvel)*) The (x,y,z) coordinates are translational DOFs while the orientations are rotational DOFs expressed as quaternions. One can read more about free joints on the [Mujoco Documentation](https://mujoco.readthedocs.io/en/latest/XMLreference.html). **Note:** HumanoidStandup-v4 environment no longer has the following contact forces issue. If using previous HumanoidStandup versions from v4, there have been reported issues that using a Mujoco-Py version > 2.0 results in the contact forces always being 0. As such we recommend to use a Mujoco-Py version < 2.0 when using the Humanoid environment if you would like to report results with contact forces (if contact forces are not used in your experiments, you can use version > 2.0). ### Rewards The reward consists of three parts: - *uph_cost*: A reward for moving upward (in an attempt to stand up). This is not a relative reward which measures how much upward it has moved from the last timestep, but it is an absolute reward which measures how much upward the Humanoid has moved overall. It is measured as *(z coordinate after action - 0)/(atomic timestep)*, where *z coordinate after action* is index 0 in the state/index 2 in the table, and *atomic timestep* is the time for one frame of movement even though the simulation has a framerate of 5 (done in order to inflate rewards a little for faster learning). - *quad_ctrl_cost*: A negative reward for penalising the humanoid if it has too large of a control force. If there are *nu* actuators/controls, then the control has shape `nu x 1`. It is measured as *0.1 **x** sum(control<sup>2</sup>)*. - *quad_impact_cost*: A negative reward for penalising the humanoid if the external contact force is too large. It is calculated as *min(0.5 * 0.000001 * sum(external contact force<sup>2</sup>), 10)*. The total reward returned is ***reward*** *=* *uph_cost + 1 - quad_ctrl_cost - quad_impact_cost* ### Starting State All observations start in state (0.0, 0.0, 0.105, 1.0, 0.0 ... 0.0) with a uniform noise in the range of [-0.01, 0.01] added to the positional and velocity values (values in the table) for stochasticity. Note that the initial z coordinate is intentionally selected to be low, thereby indicating a laying down humanoid. The initial orientation is designed to make it face forward as well. ### Episode End The episode ends when any of the following happens: 1. Truncation: The episode duration reaches a 1000 timesteps 2. Termination: Any of the state space values is no longer finite ### Arguments No additional arguments are currently supported. ``` env = gym.make('HumanoidStandup-v4') ``` There is no v3 for HumanoidStandup, unlike the robot environments where a v3 and beyond take gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc. ### Version History * v4: all mujoco environments now use the mujoco bindings in mujoco>=2.1.3 * v3: support for gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc. rgb rendering comes from tracking camera (so agent does not run away from screen) * v2: All continuous control environments now use mujoco_py >= 1.50 * v1: max_time_steps raised to 1000 for robot based tasks. Added reward_threshold to environments. * v0: Initial versions release (1.0.0) """ metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 67, } def __init__(self, **kwargs): observation_space = Box( low=-np.inf, high=np.inf, shape=(376,), dtype=np.float64 ) MujocoEnv.__init__( self, "humanoidstandup.xml", 5, observation_space=observation_space, **kwargs ) utils.EzPickle.__init__(self, **kwargs) def _get_obs(self): data = self.data return np.concatenate( [ data.qpos.flat[2:], data.qvel.flat, data.cinert.flat, data.cvel.flat, data.qfrc_actuator.flat, data.cfrc_ext.flat, ] ) def step(self, a): self.do_simulation(a, self.frame_skip) pos_after = self.data.qpos[2] data = self.data uph_cost = (pos_after - 0) / self.model.opt.timestep quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum() quad_impact_cost = 0.5e-6 * np.square(data.cfrc_ext).sum() quad_impact_cost = min(quad_impact_cost, 10) reward = uph_cost - quad_ctrl_cost - quad_impact_cost + 1 if self.render_mode == "human": self.render() return ( self._get_obs(), reward, False, False, dict( reward_linup=uph_cost, reward_quadctrl=-quad_ctrl_cost, reward_impact=-quad_impact_cost, ), ) def reset_model(self): c = 0.01 self.set_state( self.init_qpos + self.np_random.uniform(low=-c, high=c, size=self.model.nq), self.init_qvel + self.np_random.uniform( low=-c, high=c, size=self.model.nv, ), ) return self._get_obs() def viewer_setup(self): assert self.viewer is not None self.viewer.cam.trackbodyid = 1 self.viewer.cam.distance = self.model.stat.extent * 1.0 self.viewer.cam.lookat[2] = 0.8925 self.viewer.cam.elevation = -20
HumanoidStandupEnv
python
ansible__ansible
test/lib/ansible_test/_util/controller/sanity/yamllint/yamllinter.py
{ "start": 675, "end": 2320 }
class ____(SafeConstructor): """Yaml Safe Constructor that knows about Ansible tags.""" def construct_yaml_unsafe(self, node): """Construct an unsafe tag.""" return self._resolve_and_construct_object(node) def construct_yaml_vault(self, node): """Construct a vault tag.""" ciphertext = self._resolve_and_construct_object(node) if not isinstance(ciphertext, str): raise ConstructorError(problem=f"the {node.tag!r} tag requires a string value", problem_mark=node.start_mark) return ciphertext def _resolve_and_construct_object(self, node): # use a copied node to avoid mutating existing node and tripping the recursion check in construct_object copied_node = copy.copy(node) # repeat implicit resolution process to determine the proper tag for the value in the unsafe node copied_node.tag = t.cast(BaseResolver, self).resolve(type(node), node.value, (True, False)) # pylint: disable=no-member # re-entrant call using the correct tag # non-deferred construction of hierarchical nodes so the result is a fully realized object, and so our stateful unsafe propagation behavior works return self.construct_object(copied_node, deep=True) TestConstructor.add_constructor( '!unsafe', TestConstructor.construct_yaml_unsafe) # type: ignore[type-var] TestConstructor.add_constructor( '!vault', TestConstructor.construct_yaml_vault) # type: ignore[type-var] TestConstructor.add_constructor( '!vault-encrypted', TestConstructor.construct_yaml_vault) # type: ignore[type-var]
TestConstructor
python
wandb__wandb
wandb/apis/paginator.py
{ "start": 621, "end": 720 }
class ____(Protocol): def execute(self, *args: Any, **kwargs: Any) -> dict[str, Any]: ...
_Client
python
ray-project__ray
python/ray/train/v2/_internal/execution/storage.py
{ "start": 1238, "end": 10599 }
class ____(LocalFileSystem): """LocalFileSystem wrapper to exclude files according to patterns. Args: root_path: Root path to strip when matching with the exclude pattern. Ex: root_path="/tmp/a/b/c", exclude=["*a*"], will exclude /tmp/a/b/c/_a_.txt but not ALL of /tmp/a/*. exclude: List of patterns that are applied to files returned by ``self.find()``. If a file path matches this pattern, it will be excluded. """ def __init__(self, root_path: Path, exclude: List[str], **kwargs): super().__init__(**kwargs) self._exclude = exclude self._root_path = root_path @property def fsid(self): return "_excluding_local" def _should_exclude(self, path: str) -> bool: """Return True if `path` (relative to `root_path`) matches any of the `self._exclude` patterns.""" path = Path(path) relative_path = path.relative_to(self._root_path).as_posix() match_candidates = [relative_path] if path.is_dir(): # Everything is in posix path format ('/') match_candidates.append(relative_path + "/") for excl in self._exclude: if any(fnmatch.fnmatch(candidate, excl) for candidate in match_candidates): return True return False def find(self, path, maxdepth=None, withdirs=False, detail=False, **kwargs): """Call parent find() and exclude from result.""" paths = super().find( path, maxdepth=maxdepth, withdirs=withdirs, detail=detail, **kwargs ) if detail: return { path: out for path, out in paths.items() if not self._should_exclude(path) } else: return [path for path in paths if not self._should_exclude(path)] def _pyarrow_fs_copy_files( source, destination, source_filesystem=None, destination_filesystem=None, **kwargs ): if isinstance(destination_filesystem, pyarrow.fs.S3FileSystem): # Workaround multi-threading issue with pyarrow. Note that use_threads=True # is safe for download, just not for uploads, see: # https://github.com/apache/arrow/issues/32372 kwargs.setdefault("use_threads", False) # Use a large chunk size to speed up large checkpoint transfers. kwargs.setdefault("chunk_size", 64 * 1024 * 1024) return pyarrow.fs.copy_files( source, destination, source_filesystem=source_filesystem, destination_filesystem=destination_filesystem, **kwargs, ) # TODO(justinvyu): Add unit tests for all these utils. def delete_fs_path(fs: pyarrow.fs.FileSystem, fs_path: str): """Deletes (fs, fs_path) or raises FileNotFoundError if it doesn't exist.""" is_dir = _is_directory(fs, fs_path) try: if is_dir: fs.delete_dir(fs_path) else: fs.delete_file(fs_path) except Exception: logger.exception(f"Caught exception when deleting path at ({fs}, {fs_path}):") def _download_from_fs_path( fs: pyarrow.fs.FileSystem, fs_path: str, local_path: str, filelock: bool = True, ): """Downloads a directory or file from (fs, fs_path) to a local path. If fs_path points to a directory: - The full directory contents are downloaded directly into `local_path`, rather than to a subdirectory of `local_path`. If fs_path points to a file: - The file is downloaded to `local_path`, which is expected to be a file path. If the download fails, the `local_path` contents are cleaned up before raising, if the directory did not previously exist. NOTE: This method creates `local_path`'s parent directories if they do not already exist. If the download fails, this does NOT clean up all the parent directories that were created. Args: fs: The filesystem to download from. fs_path: The filesystem path (either a directory or a file) to download. local_path: The local path to download to. filelock: Whether to require a file lock before downloading, useful for multiple downloads to the same directory that may be happening in parallel. Raises: FileNotFoundError: if (fs, fs_path) doesn't exist. """ _local_path = Path(local_path).resolve() exists_before = _local_path.exists() if _is_directory(fs=fs, fs_path=fs_path): _local_path.mkdir(parents=True, exist_ok=True) else: _local_path.parent.mkdir(parents=True, exist_ok=True) try: if filelock: with TempFileLock(f"{os.path.normpath(local_path)}.lock"): _pyarrow_fs_copy_files(fs_path, local_path, source_filesystem=fs) else: _pyarrow_fs_copy_files(fs_path, local_path, source_filesystem=fs) except Exception as e: # Clean up the directory if downloading was unsuccessful if not exists_before: shutil.rmtree(local_path, ignore_errors=True) raise e def _upload_to_fs_path( local_path: str, fs: pyarrow.fs.FileSystem, fs_path: str, exclude: Optional[List[str]] = None, ) -> None: """Uploads a local directory or file to (fs, fs_path). NOTE: This will create all necessary parent directories at the destination. Args: local_path: The local path to upload. fs: The filesystem to upload to. fs_path: The filesystem path where the dir/file will be uploaded to. exclude: A list of filename matches to exclude from upload. This includes all files under subdirectories as well. This pattern will match with the relative paths of all files under `local_path`. Ex: ["*.png"] to exclude all .png images. """ if not exclude: # TODO(justinvyu): uploading a single file doesn't work # (since we always create a directory at fs_path) _create_directory(fs=fs, fs_path=fs_path) _pyarrow_fs_copy_files(local_path, fs_path, destination_filesystem=fs) return _upload_to_uri_with_exclude_fsspec( local_path=local_path, fs=fs, fs_path=fs_path, exclude=exclude ) def _upload_to_uri_with_exclude_fsspec( local_path: str, fs: "pyarrow.fs", fs_path: str, exclude: Optional[List[str]] ) -> None: local_fs = _ExcludingLocalFilesystem(root_path=local_path, exclude=exclude) handler = pyarrow.fs.FSSpecHandler(local_fs) source_fs = pyarrow.fs.PyFileSystem(handler) _create_directory(fs=fs, fs_path=fs_path) _pyarrow_fs_copy_files( local_path, fs_path, source_filesystem=source_fs, destination_filesystem=fs ) def _list_at_fs_path( fs: pyarrow.fs.FileSystem, fs_path: str, file_filter: Callable[[pyarrow.fs.FileInfo], bool] = lambda x: True, ) -> List[str]: """Returns the list of filenames at (fs, fs_path), similar to os.listdir. If the path doesn't exist, returns an empty list. """ selector = pyarrow.fs.FileSelector(fs_path, allow_not_found=True, recursive=False) return [ os.path.relpath(file_info.path.lstrip("/"), start=fs_path.lstrip("/")) for file_info in fs.get_file_info(selector) if file_filter(file_info) ] def _exists_at_fs_path(fs: pyarrow.fs.FileSystem, fs_path: str) -> bool: """Returns True if (fs, fs_path) exists.""" valid = fs.get_file_info(fs_path) return valid.type != pyarrow.fs.FileType.NotFound def _is_directory(fs: pyarrow.fs.FileSystem, fs_path: str) -> bool: """Checks if (fs, fs_path) is a directory or a file. Raises: FileNotFoundError: if (fs, fs_path) doesn't exist. """ file_info = fs.get_file_info(fs_path) if file_info.type == pyarrow.fs.FileType.NotFound: raise FileNotFoundError(f"Path not found: ({fs}, {fs_path})") return not file_info.is_file def _create_directory(fs: pyarrow.fs.FileSystem, fs_path: str) -> None: """Create directory at (fs, fs_path). Some external filesystems require directories to already exist, or at least the `netloc` to be created (e.g. PyArrows ``mock://`` filesystem). Generally this should be done before and outside of Ray applications. This utility is thus primarily used in testing, e.g. of ``mock://` URIs. """ try: fs.create_dir(fs_path) except Exception: logger.exception( f"Caught exception when creating directory at ({fs}, {fs_path}):" ) def get_fs_and_path( storage_path: Union[str, os.PathLike], storage_filesystem: Optional[pyarrow.fs.FileSystem] = None, ) -> Tuple[pyarrow.fs.FileSystem, str]: """Returns the fs and path from a storage path and an optional custom fs. Args: storage_path: A storage path or URI. (ex: s3://bucket/path or /tmp/ray_results) storage_filesystem: A custom filesystem to use. If not provided, this will be auto-resolved by pyarrow. If provided, the storage_path is assumed to be prefix-stripped already, and must be a valid path on the filesystem. """ storage_path = str(storage_path) if storage_filesystem: return storage_filesystem, storage_path return pyarrow.fs.FileSystem.from_uri(storage_path) @DeveloperAPI
_ExcludingLocalFilesystem
python
tensorflow__tensorflow
tensorflow/tools/compatibility/all_renames_v2_test.py
{ "start": 888, "end": 1219 }
class ____(test_util.TensorFlowTestCase): def test_no_identity_renames(self): identity_renames = [ old_name for old_name, new_name in all_renames_v2.symbol_renames.items() if old_name == new_name ] self.assertEmpty(identity_renames) if __name__ == "__main__": test_lib.main()
AllRenamesV2Test
python
eriklindernoren__ML-From-Scratch
mlfromscratch/deep_learning/layers.py
{ "start": 17213, "end": 18978 }
class ____(Layer): """Adds rows and columns of constant values to the input. Expects the input to be of shape (batch_size, channels, height, width) Parameters: ----------- padding: tuple The amount of padding along the height and width dimension of the input. If (pad_h, pad_w) the same symmetric padding is applied along height and width dimension. If ((pad_h0, pad_h1), (pad_w0, pad_w1)) the specified padding is added to beginning and end of the height and width dimension. padding_value: int or tuple The value the is added as padding. """ def __init__(self, padding, padding_value=0): self.padding = padding self.trainable = True if not isinstance(padding[0], tuple): self.padding = ((padding[0], padding[0]), padding[1]) if not isinstance(padding[1], tuple): self.padding = (self.padding[0], (padding[1], padding[1])) self.padding_value = padding_value def forward_pass(self, X, training=True): output = np.pad(X, pad_width=((0,0), (0,0), self.padding[0], self.padding[1]), mode="constant", constant_values=self.padding_value) return output def backward_pass(self, accum_grad): pad_top, pad_left = self.padding[0][0], self.padding[1][0] height, width = self.input_shape[1], self.input_shape[2] accum_grad = accum_grad[:, :, pad_top:pad_top+height, pad_left:pad_left+width] return accum_grad def output_shape(self): new_height = self.input_shape[1] + np.sum(self.padding[0]) new_width = self.input_shape[2] + np.sum(self.padding[1]) return (self.input_shape[0], new_height, new_width)
ConstantPadding2D
python
py-pdf__pypdf
pypdf/_protocols.py
{ "start": 1432, "end": 1714 }
class ____(PdfCommonDocProtocol, Protocol): @property @abstractmethod def xref(self) -> dict[int, dict[int, Any]]: ... # pragma: no cover @property @abstractmethod def trailer(self) -> dict[str, Any]: ... # pragma: no cover
PdfReaderProtocol
python
apache__airflow
providers/edge3/src/airflow/providers/edge3/worker_api/datamodels.py
{ "start": 3712, "end": 4027 }
class ____(BaseModel): """Queues that a worker supports to run jobs on.""" queues: Annotated[ list[str] | None, Field( None, description="List of queues the worker is pulling jobs from. If not provided, worker pulls from all queues.", ), ]
WorkerQueuesBase
python
google__jax
tests/lax_numpy_indexing_test.py
{ "start": 1603, "end": 18044 }
class ____(typing.NamedTuple): shape: tuple[int, ...] indexer: Any out_shape: tuple[int, ...] | None = None def check_grads(f, args, order, atol=None, rtol=None, eps=None): # TODO(mattjj,dougalm): add higher-order check default_tol = 1e-6 if config.enable_x64.value else 1e-2 atol = atol or default_tol rtol = rtol or default_tol eps = eps or default_tol jtu.check_jvp(f, partial(jax.jvp, f), args, atol, rtol, eps) jtu.check_vjp(f, partial(jax.vjp, f), args, atol, rtol, eps) STATIC_INDEXING_TESTS = [ ("OneIntIndex", [ IndexSpec(shape=(3,), indexer=1, out_shape=()), IndexSpec(shape=(3, 3), indexer=0, out_shape=(3,)), IndexSpec(shape=(3, 4, 5), indexer=2, out_shape=(4, 5)), IndexSpec(shape=(3,), indexer=-1, out_shape=()), IndexSpec(shape=(3,), indexer=-2, out_shape=()), ]), ("TwoIntIndices", [ IndexSpec(shape=(3, 3), indexer=(2, 1), out_shape=()), IndexSpec(shape=(3, 4, 5), indexer=(1, 2), out_shape=(5,)), IndexSpec(shape=(3, 4, 5), indexer=(-1, 2), out_shape=(5,)), ]), ("ThreeIntIndices", [ IndexSpec(shape=(3, 4, 5), indexer=(1, 2, 3), out_shape=()), ]), ("OneSliceIndex", [ IndexSpec(shape=(10,), indexer=slice(1, 3), out_shape=(2,)), IndexSpec(shape=(10,), indexer=slice(1, -1), out_shape=(8,)), IndexSpec(shape=(10,), indexer=slice(None, -1), out_shape=(9,)), IndexSpec(shape=(10,), indexer=slice(None, None, None), out_shape=(10,)), IndexSpec(shape=(10, 8), indexer=slice(1, 3), out_shape=(2, 8)), IndexSpec(shape=(10, 8), indexer=slice(1, None), out_shape=(9, 8)), IndexSpec(shape=(10, 8), indexer=slice(None, 3), out_shape=(3, 8)), IndexSpec(shape=(10, 8), indexer=slice(-3, None), out_shape=(3, 8)), ]), ("OneSliceIndexNegativeStride", [ IndexSpec(shape=(10,), indexer=slice(3, 1, -1), out_shape=(2,)), IndexSpec(shape=(10,), indexer=slice(1, 8, -1), out_shape=(0,)), IndexSpec(shape=(10,), indexer=slice(None, 1, -2), out_shape=(4,)), IndexSpec(shape=(10,), indexer=slice(None, None, -1), out_shape=(10,)), IndexSpec(shape=(10, 8), indexer=slice(3, 1, -1), out_shape=(2, 8)), IndexSpec(shape=(10, 8), indexer=slice(0, 8, -1), out_shape=(0, 8)), IndexSpec(shape=(10, 8), indexer=slice(None, None, -1), out_shape=(10, 8)), ]), ("SliceIndexClamping", [ IndexSpec(shape=(10,), indexer=slice(2, 11, 1), out_shape=(8,)), IndexSpec(shape=(10,), indexer=slice(11, 12, 1), out_shape=(0,)), IndexSpec(shape=(10,), indexer=slice(-11, -2, 1), out_shape=(8,)), IndexSpec(shape=(10,), indexer=slice(-2, -12, -1), out_shape=(9,)), IndexSpec(shape=(10,), indexer=slice(12, -12, -1), out_shape=(10,)), ]), ("OneSliceIndexNonUnitStride", [ IndexSpec(shape=(10,), indexer=slice(0, 8, 2), out_shape=(4,)), IndexSpec(shape=(10,), indexer=slice(0, 8, 3), out_shape=(3,)), IndexSpec(shape=(10,), indexer=slice(1, 3, 2), out_shape=(1,)), IndexSpec(shape=(10,), indexer=slice(1, None, 2), out_shape=(5,)), IndexSpec(shape=(10,), indexer=slice(None, 1, -2), out_shape=(4,)), IndexSpec(shape=(10, 8), indexer=slice(1, 8, 3), out_shape=(3, 8)), IndexSpec(shape=(10, 8), indexer=slice(None, None, 2), out_shape=(5, 8)), IndexSpec(shape=(10, 8), indexer=slice(None, 1, -2), out_shape=(4, 8)), IndexSpec(shape=(10, 8), indexer=slice(None, None, -2), out_shape=(5, 8)), ]), ("TwoSliceIndices", [ IndexSpec(shape=(10, 8), indexer=(slice(1, 3), slice(0, 2)), out_shape=(2, 2)), IndexSpec(shape=(10, 8), indexer=(slice(1, None), slice(None, 2)), out_shape=(9, 2)), IndexSpec(shape=(10, 8), indexer=(slice(None, None, -1), slice(None, 2)), out_shape=(10, 2)), IndexSpec(shape=(10, 8, 3), indexer=(slice(1, 3), slice(0, 2)), out_shape=(2, 2, 3)), IndexSpec(shape=(10, 8, 3), indexer=(slice(1, 3), slice(0, None)), out_shape=(2, 8, 3)), IndexSpec(shape=(10, 8, 3), indexer=(slice(1, None), slice(0, 2)), out_shape=(9, 2, 3)), ]), ("OneColonIndex", [ IndexSpec(shape=(3,), indexer=slice(None), out_shape=(3,)), IndexSpec(shape=(3, 4), indexer=slice(None), out_shape=(3, 4)), ]), ("MultipleColonIndices", [ IndexSpec(shape=(3, 4), indexer=(slice(None), slice(None)), out_shape=(3, 4)), IndexSpec(shape=(3, 4, 5), indexer=(slice(None), slice(None)), out_shape=(3, 4, 5)), ]), ("MixedSliceIndices", [ IndexSpec(shape=(10, 4), indexer=(slice(None), slice(0, 2)), out_shape=(10, 2)), IndexSpec(shape=(10, 4), indexer=(1, slice(None)), out_shape=(4,)), ]), ("EllipsisIndex", [ IndexSpec(shape=(3,), indexer=Ellipsis, out_shape=(3,)), IndexSpec(shape=(3, 4), indexer=Ellipsis, out_shape=(3, 4)), IndexSpec(shape=(3, 4, 5), indexer=(0, Ellipsis), out_shape=(4, 5)), IndexSpec(shape=(3, 4, 5), indexer=(Ellipsis, 2, 3), out_shape=(3,)), ]), ("NoneIndex", [ IndexSpec(shape=(), indexer=None, out_shape=(1,)), IndexSpec(shape=(), indexer=(None, None), out_shape=(1, 1)), IndexSpec(shape=(), indexer=(Ellipsis, None), out_shape=(1,)), IndexSpec(shape=(3,), indexer=None, out_shape=(1, 3)), IndexSpec(shape=(3, 4), indexer=None, out_shape=(1, 3, 4)), IndexSpec(shape=(3, 4), indexer=(Ellipsis, None), out_shape=(3, 4, 1)), IndexSpec(shape=(3, 4), indexer=(0, None, Ellipsis), out_shape=(1, 4)), IndexSpec(shape=(3, 4, 5), indexer=(1, None, Ellipsis), out_shape=(1, 4, 5)), ]), ("EmptyIndex", [ IndexSpec(shape=(), indexer=(), out_shape=()), IndexSpec(shape=(3,), indexer=(), out_shape=(3,)), IndexSpec(shape=(3, 4), indexer=(), out_shape=(3, 4)), ]), ("TupleOfIntAndSliceAndIntArray", [ IndexSpec(shape=(3, 2, 3), indexer=(0, slice(None), np.arange(3)), out_shape=(3, 2)), IndexSpec(shape=(3, 2, 3), indexer=(np.int32(1), slice(None), np.arange(3)), out_shape=(3, 2)), IndexSpec(shape=(3, 2, 3), indexer=(np.array(2), slice(None), np.arange(3)), out_shape=(3, 2)), ]), ] STATIC_INDEXING_OUT_OF_BOUNDS_TESTS = [ ("OneIntIndex", [ IndexSpec(shape=(3,), indexer=-4, out_shape=()), IndexSpec(shape=(3, 3), indexer=3, out_shape=(3,)), IndexSpec(shape=(3, 4, 5), indexer=4, out_shape=(4, 5)), ]), ("TwoIntIndices", [ IndexSpec(shape=(3, 3), indexer=(2, -4), out_shape=()), IndexSpec(shape=(3, 4, 5), indexer=(3, 2), out_shape=()), IndexSpec(shape=(3, 4, 5), indexer=(-4, 4), out_shape=(5,)), ]), ] ADVANCED_INDEXING_TESTS = [ ("One1DIntArrayIndex", [ IndexSpec(shape=(3,), indexer=np.array([0, 1]), out_shape=(2,)), IndexSpec(shape=(3, 3), indexer=np.array([1, 2, 1]), out_shape=(3, 3)), IndexSpec(shape=(3, 4, 5), indexer=np.array([0, 2, 0, 1]), out_shape=(4, 4, 5)), IndexSpec(shape=(3,), indexer=np.array([-1, 1]), out_shape=(2,)), IndexSpec(shape=(3,), indexer=np.array([-2, -1]), out_shape=(2,)), IndexSpec(shape=(0,), indexer=np.array([], dtype=np.int32), out_shape=(0,)), ]), ("One2DIntArrayIndex", [ IndexSpec(shape=(3,), indexer=np.array([[0, 0]]),out_shape=(1, 2)), IndexSpec(shape=(3, 3), indexer=np.array([[1, 2, 1], [0, 1, -1]]), out_shape=(2, 3, 3)), IndexSpec(shape=(3, 4, 5), indexer=np.array([[0, 2, 0, 1], [-1, -2, 1, 0]]), out_shape=(2, 4, 4, 5)), ]), ("Two1DIntArrayIndicesNoBroadcasting", [ IndexSpec(shape=(3, 3), indexer=(np.array([0, 1]), np.array([1, 2])), out_shape=(2,)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 2, 0, 1]), np.array([-1, 0, -1, 2])), out_shape=(4, 5)), ]), ("Two1DIntArrayIndicesWithBroadcasting", [ IndexSpec(shape=(3, 3), indexer=(np.array([[0, 1]]), np.array([1, 2])), out_shape=(1, 2)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([[0, 2, 0, 1]]), np.array([-1, 0, -1, 2])), out_shape=(1, 4, 5)), ]), ("ArrayOfInts", [ IndexSpec(shape=(3,), indexer=np.array([0, 1, 0]), out_shape=(3,)), IndexSpec(shape=(3, 4, 5), indexer=np.array([ 0, -1]), out_shape=(2, 4, 5)), ]), ("TupleOfListsOfPythonInts", [ IndexSpec(shape=(3, 4, 5), indexer=([0, 1],), out_shape=(2, 4, 5)), IndexSpec(shape=(3, 4, 5), indexer=([[0], [-1]], [[2, 3, 0, 3]]), out_shape=(2, 4, 5)), ]), ("TupleOfPythonIntsAndIntArrays", [ IndexSpec(shape=(3, 4, 5), indexer=(0, np.array([0, 1])), out_shape=(2, 5)), IndexSpec(shape=(3, 4, 5), indexer=(0, 1, np.array([[2, 3, 0, 3]])), out_shape=(1, 4)), ]), ("TupleOfListsOfPythonIntsAndIntArrays", [ IndexSpec(shape=(3, 4, 5), indexer=([0, 1], np.array([0])), out_shape=(2, 5)), IndexSpec(shape=(3, 4, 5), indexer=([[0], [-1]], np.array([[2, 3, 0, 3]])), out_shape=(2, 4, 5)), ]), ] ADVANCED_INDEXING_TESTS_NO_REPEATS = [ ("One1DIntArrayIndex", [ IndexSpec(shape=(3,), indexer=np.array([0, 1]), out_shape=(2,)), IndexSpec(shape=(3, 3), indexer=np.array([1, 2, 0]), out_shape=(3, 3)), IndexSpec(shape=(3, 4, 5), indexer=np.array([0, 2, 1]), out_shape=(3, 4, 5)), IndexSpec(shape=(3,), indexer=np.array([-1, 1]), out_shape=(2,)), IndexSpec(shape=(3,), indexer=np.array([-2, -1]), out_shape=(2,)), IndexSpec(shape=(0,), indexer=np.array([], dtype=np.int32), out_shape=(0,)), ]), ("One2DIntArrayIndex", [ IndexSpec(shape=(3,), indexer=np.array([[0, 1]]), out_shape=(1, 2)), IndexSpec(shape=(6, 6), indexer=np.array([[1, 2, 0], [3, 4, -1]]), out_shape=(2, 3, 6)), ]), ("Two1DIntArrayIndicesNoBroadcasting", [ IndexSpec(shape=(3, 3), indexer=(np.array([0, 1]), np.array([1, 2])), out_shape=(2,)), IndexSpec(shape=(4, 5, 6), indexer=(np.array([0, 2, 1, 3]), np.array([-1, 0, -2, 1])), out_shape=(4, 6)), ]), ("Two1DIntArrayIndicesWithBroadcasting", [ IndexSpec(shape=(3, 3), indexer=(np.array([[0, 1]]), np.array([1, 2])), out_shape=(1, 2)), IndexSpec(shape=(4, 5, 6), indexer=(np.array([[0, 2, -1, 1]]), np.array([-1, 0, -2, 2])), out_shape=(1, 4, 6)), ]), ("ArrayOfInts", [ IndexSpec(shape=(3,), indexer=np.array([0, 2, 1]), out_shape=(3,)), IndexSpec(shape=(3, 4, 5), indexer=np.array([ 0, -1]), out_shape=(2, 4, 5)), ]), ("TupleOfListsOfPythonInts", [ IndexSpec(shape=(3, 4, 5), indexer=([0, 1],), out_shape=(2, 4, 5)), IndexSpec(shape=(3, 4, 5), indexer=([[0], [-1]], [[2, 3, 0]]), out_shape=(2, 3, 5)), ]), ("TupleOfPythonIntsAndIntArrays", [ IndexSpec(shape=(3, 4, 5), indexer=(0, np.array([0, 1])), out_shape=(2, 5)), IndexSpec(shape=(3, 4, 5), indexer=(0, 1, np.array([[2, 3, 0]])), out_shape=(1, 3)), ]), ("TupleOfListsOfPythonIntsAndIntArrays", [ IndexSpec(shape=(3, 4, 5), indexer=([0, 1], np.array([0])), out_shape=(2, 5)), IndexSpec(shape=(3, 4, 5), indexer=([[0], [-1]], np.array([[2, 3, 0]])), out_shape=(2, 3, 5)), ]), ] ADVANCED_INDEXING_TESTS_NO_REPEATS_SORTED = [ ("One1DIntArrayIndex", [ IndexSpec(shape=(3,), indexer=np.array([0, 1]), out_shape=(2,)), IndexSpec(shape=(3, 3), indexer=np.array([0, 1, 2]), out_shape=(3, 3)), IndexSpec(shape=(3, 4, 5), indexer=np.array([0, 1, 2]), out_shape=(3, 4, 5)), IndexSpec(shape=(3,), indexer=np.array([-1, 1]), out_shape=(2,)), IndexSpec(shape=(3,), indexer=np.array([-2, -1]), out_shape=(2,)), IndexSpec(shape=(0,), indexer=np.array([], dtype=np.int32), out_shape=(0,)), ]), ("One2DIntArrayIndex", [ IndexSpec(shape=(3,), indexer=np.array([[0, 1]]), out_shape=(1, 2)), IndexSpec(shape=(6, 6), indexer=np.array([[-1, 0, 1], [ 2, 3, 4]]), out_shape=(2, 3, 6)), ]), ("Two1DIntArrayIndicesNoBroadcasting", [ IndexSpec(shape=(3, 3), indexer=(np.array([0, 1]), np.array([1, 2])), out_shape=(2,)), IndexSpec(shape=(4, 5, 6), indexer=(np.array([0, 1, 2, 3]), np.array([-2, -1, 0, 1])), out_shape=(4, 6)), ]), ("Two1DIntArrayIndicesWithBroadcasting", [ IndexSpec(shape=(3, 3), indexer=(np.array([[0, 1]]), np.array([1, 2])), out_shape=(1, 2)), IndexSpec(shape=(4, 5, 6), indexer=(np.array([[-1, 0, 1, 2]]), np.array([-2, -1, 0, 2])), out_shape=(1, 4, 6)), ]), ("TupleOfListsOfPythonInts", [ IndexSpec(shape=(3, 4, 5), indexer=([0, 1],), out_shape=(2, 4, 5)), IndexSpec(shape=(3, 4, 5), indexer=([[0], [-1]], [[0, 2, 3]]), out_shape=(2, 3, 5)), ]), ("TupleOfPythonIntsAndIntArrays", [ IndexSpec(shape=(3, 4, 5), indexer=(0, np.array([0, 1])), out_shape=(2, 5)), IndexSpec(shape=(3, 4, 5), indexer=(0, 1, np.array([[0, 2, 3]])), out_shape=(1, 3)), ]), ("TupleOfListsOfPythonIntsAndIntArrays", [ IndexSpec(shape=(3, 4, 5), indexer=([0, 1], np.array([0])), out_shape=(2, 5)), IndexSpec(shape=(3, 4, 5), indexer=([[0], [-1]], np.array([[0, 2, 3]])), out_shape=(2, 3, 5)), ]), ] MIXED_ADVANCED_INDEXING_TESTS_NO_REPEATS = [ ("SlicesAndOneIntArrayIndex", [ IndexSpec(shape=(2, 3), indexer=(np.array([0, 1]), slice(1, 2)), out_shape=(2, 1)), IndexSpec(shape=(2, 3), indexer=(slice(0, 2), np.array([0, 2])), out_shape=(2, 2)), IndexSpec(shape=(3, 4, 5), indexer=(Ellipsis, np.array([0, 2]), slice(None)), out_shape=(3, 2, 5)), IndexSpec(shape=(3, 4, 5), indexer=(Ellipsis, np.array([[0, 2], [1, 3]]), slice(None)), out_shape=(3, 2, 2, 5)), ]), ("SlicesAndTwoIntArrayIndices", [ IndexSpec(shape=(3, 4, 5), indexer=(Ellipsis, np.array([0, 2]), np.array([-1, 2])), out_shape=(3, 2)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 2]), Ellipsis, np.array([-1, 2])), out_shape=(2, 4)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 2]), np.array([-1, 2]), Ellipsis), out_shape=(2, 5)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 2]), np.array([-1, 2]), slice(1, 3)), out_shape=(2, 2)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 2]), slice(1, 3), np.array([-1, 2])), out_shape=(2, 2)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([ 0, 2, -2]), slice(None, None, 2), np.array([-1, 2, 1])), out_shape=(3, 2)), ]), ("NonesAndIntArrayIndices", [ IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 2]), None, np.array([-1, 2])), out_shape=(2, 1, 5)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 2]), None, None, np.array([-1, 2])), out_shape=(2, 1, 1, 5)), IndexSpec(shape=(3, 4, 5), indexer=(Ellipsis, np.array([0, 2]), None, None, np.array([-1, 2])), out_shape=(2, 3, 1, 1)), ]), ("IntArrayWithInt32Type", [ IndexSpec(shape=(3, 4), indexer=(Ellipsis, np.array(1, dtype=np.int32)), out_shape=(3,)), ]), ("EllipsisWithArrayIndices", [ IndexSpec(shape=(3, 4, 5), indexer=(np.array([0, 1]), ..., np.array([0, 1])), out_shape=(2, 4)), IndexSpec(shape=(3, 4, 5), indexer=(slice(None), np.array([0, 1]), ..., np.array([0, 1])), out_shape=(2, 3)), IndexSpec(shape=(3, 4, 5), indexer=(slice(None), ..., np.array([0, 1]), np.array([0, 1])), out_shape=(3, 2)), ]), ] MIXED_ADVANCED_INDEXING_TESTS = MIXED_ADVANCED_INDEXING_TESTS_NO_REPEATS + [ ("SlicesAndOneIntArrayIndex", [ IndexSpec(shape=(3, 4, 5), indexer=(Ellipsis, np.array([[0, 2], [1, 1]]), slice(None)), out_shape=(3, 2, 2, 5)), ]), ("SlicesAndTwoIntArrayIndices", [ IndexSpec(shape=(3, 4, 5), indexer=(np.array([ 0, 2, -2]), slice(None, None, 2), np.array([-1, 2, -1])), out_shape=(3, 2)), IndexSpec(shape=(3, 4, 5), indexer=(np.array([[0, 2], [2, 0]]), Ellipsis, np.array([[1, 0], [1, 0]])), out_shape=(2, 2, 4)), ]), ] MODES = ["clip", "drop", "promise_in_bounds"]
IndexSpec
python
google__flatbuffers
grpc/examples/python/greeter/greeter_grpc.fb.py
{ "start": 529, "end": 1433 }
class ____(object): """Interface exported by the server.""" def SayHello(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SayManyHellos(self, request, context): context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_GreeterServicer_to_server(servicer, server): rpc_method_handlers = { 'SayHello': grpc.unary_unary_rpc_method_handler(servicer.SayHello), 'SayManyHellos': grpc.unary_stream_rpc_method_handler( servicer.SayManyHellos ), } generic_handler = grpc.method_handlers_generic_handler( 'models.Greeter', rpc_method_handlers ) server.add_generic_rpc_handlers((generic_handler,))
GreeterServicer
python
explosion__spaCy
spacy/lang/ko/__init__.py
{ "start": 684, "end": 3063 }
class ____(DummyTokenizer): def __init__(self, vocab: Vocab): self.vocab = vocab self._mecab = try_mecab_import() # type: ignore[func-returns-value] self._mecab_tokenizer = None @property def mecab_tokenizer(self): # This is a property so that initializing a pipeline with blank:ko is # possible without actually requiring mecab-ko, e.g. to run # `spacy init vectors ko` for a pipeline that will have a different # tokenizer in the end. The languages need to match for the vectors # to be imported and there's no way to pass a custom config to # `init vectors`. if self._mecab_tokenizer is None: self._mecab_tokenizer = self._mecab("-F%f[0],%f[7]") return self._mecab_tokenizer def __reduce__(self): return KoreanTokenizer, (self.vocab,) def __call__(self, text: str) -> Doc: dtokens = list(self.detailed_tokens(text)) surfaces = [dt["surface"] for dt in dtokens] doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces))) for token, dtoken in zip(doc, dtokens): first_tag, sep, eomi_tags = dtoken["tag"].partition("+") token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미) if token.tag_ in TAG_MAP: token.pos = TAG_MAP[token.tag_][POS] else: token.pos = X token.lemma_ = dtoken["lemma"] doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens] return doc def detailed_tokens(self, text: str) -> Iterator[Dict[str, Any]]: # 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3], # 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], * for node in self.mecab_tokenizer.parse(text, as_nodes=True): if node.is_eos(): break surface = node.surface feature = node.feature tag, _, expr = feature.partition(",") lemma, _, remainder = expr.partition("/") if lemma == "*": lemma = surface yield {"surface": surface, "lemma": lemma, "tag": tag} def score(self, examples): validate_examples(examples, "KoreanTokenizer.score") return Scorer.score_tokenization(examples)
KoreanTokenizer
python
pytorch__pytorch
torch/utils/data/datapipes/datapipe.py
{ "start": 10131, "end": 10223 }
class ____(IterDataPipe): def _is_dfpipe(self) -> bool: return True
DFIterDataPipe
python
walkccc__LeetCode
solutions/48. Rotate Image/48-2.py
{ "start": 0, "end": 404 }
class ____: def rotate(self, matrix: list[list[int]]) -> None: for mn in range(len(matrix) // 2): mx = len(matrix) - mn - 1 for i in range(mn, mx): offset = i - mn top = matrix[mn][i] matrix[mn][i] = matrix[mx - offset][mn] matrix[mx - offset][mn] = matrix[mx][mx - offset] matrix[mx][mx - offset] = matrix[i][mx] matrix[i][mx] = top
Solution
python
great-expectations__great_expectations
contrib/great_expectations_zipcode_expectations/great_expectations_zipcode_expectations/expectations/expect_column_values_to_be_valid_oregon_zip.py
{ "start": 1735, "end": 4062 }
class ____(ColumnMapExpectation): """Expect values in this column to be valid Oregon zipcodes. See https://pypi.org/project/zipcodes/ for more information. """ # These examples will be shown in the public gallery. # They will also be executed as unit tests for your Expectation. examples = [ { "data": { "valid_oregon_zip": ["97001", "97321", "97733", "97920"], "invalid_oregon_zip": ["-10000", "1234", "99999", "25487"], }, "tests": [ { "title": "basic_positive_test", "exact_match_out": False, "include_in_gallery": True, "in": {"column": "valid_oregon_zip"}, "out": {"success": True}, }, { "title": "basic_negative_test", "exact_match_out": False, "include_in_gallery": True, "in": {"column": "invalid_oregon_zip"}, "out": {"success": False}, }, ], } ] # This is the id string of the Metric used by this Expectation. # For most Expectations, it will be the same as the `condition_metric_name` defined in your Metric class above. map_metric = "column_values.valid_oregon_zip" # This is a list of parameter names that can affect whether the Expectation evaluates to True or False success_keys = ("mostly",) # This dictionary contains default values for any parameters that should have default values default_kwarg_values = {} # This object contains metadata for display in the public Gallery library_metadata = { "maturity": "experimental", # "experimental", "beta", or "production" "tags": [ "hackathon", "typed-entities", ], # Tags for this Expectation in the Gallery "contributors": [ # Github handles for all contributors to this Expectation. "@luismdiaz01", "@derekma73", # Don't forget to add your github handle here! ], "requirements": ["zipcodes"], } if __name__ == "__main__": ExpectColumnValuesToBeValidOregonZip().print_diagnostic_checklist()
ExpectColumnValuesToBeValidOregonZip
python
pytorch__pytorch
test/dynamo/test_graph_deduplication.py
{ "start": 17221, "end": 50910 }
class ____(torch.nn.Module): def forward(self, primals_1: "f32[10, 10]", primals_2: "f32[10, 20]"): add: "f32[10, 20]" = torch.ops.aten.add.Tensor(primals_2, 2); primals_2 = None sum_1: "f32[]" = torch.ops.aten.sum.default(add); add = None partitioned_fw_subgraph_0_0 = self.partitioned_fw_subgraph_0_0 invoke_subgraph_4 = torch.ops.higher_order.invoke_subgraph(partitioned_fw_subgraph_0_0, 'partitioned_fw_subgraph_0_0', primals_1, sum_1); partitioned_fw_subgraph_0_0 = sum_1 = None getitem: "f32[]" = invoke_subgraph_4[0]; invoke_subgraph_4 = None add_1: "f32[]" = torch.ops.aten.add.Tensor(getitem, 2); getitem = None sum_2: "f32[]" = torch.ops.aten.sum.default(add_1); add_1 = None partitioned_fw_subgraph_0_1 = self.partitioned_fw_subgraph_0_0 invoke_subgraph_6 = torch.ops.higher_order.invoke_subgraph(partitioned_fw_subgraph_0_1, 'partitioned_fw_subgraph_0_0', primals_1, sum_2); partitioned_fw_subgraph_0_1 = primals_1 = sum_2 = None getitem_1: "f32[]" = invoke_subgraph_6[0]; invoke_subgraph_6 = None return (getitem_1,) class partitioned_fw_subgraph_0_0(torch.nn.Module): def forward(self, primals_0: "f32[10, 10]", primals_1: "f32[]"): add: "f32[10, 10]" = torch.ops.aten.add.Tensor(primals_0, 1); primals_0 = None sum_1: "f32[]" = torch.ops.aten.sum.default(add); add = None add_1: "f32[]" = torch.ops.aten.add.Tensor(sum_1, primals_1); sum_1 = primals_1 = None return (add_1,) """, ) def test_input_mutation(self): def inner_fn2(x, y): x0 = x + 1 y0 = y + 1 x.add_(x0) y.add_(y0) return x.sum() + y.sum() def fn(x, y): x0 = torch.sin(x) o2 = inner_fn2(x0, y) o3 = inner_fn2(x0.clone(), y.clone()) return o2 + o3 x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) x_clone = x.clone() y_clone = y.clone() ref_result = fn(x, y) result, graphs, fw_graphs = self.run_and_return_graphs(fn, x_clone, y_clone) torch.allclose(ref_result, result) self.assertEqual(len(graphs), 1) self.assertEqual(len(fw_graphs), 1) self.assertExpectedInline( graph_str(fw_graphs[0]), """\ class <lambda>(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): sin: "f32[10, 10]" = torch.ops.aten.sin.default(arg0_1); arg0_1 = None add: "f32[10, 10]" = torch.ops.aten.add.Tensor(sin, 1) add_1: "f32[10, 20]" = torch.ops.aten.add.Tensor(arg1_1, 1) add_2: "f32[10, 10]" = torch.ops.aten.add.Tensor(sin, add); sin = add = None add_3: "f32[10, 20]" = torch.ops.aten.add.Tensor(arg1_1, add_1); add_1 = None clone: "f32[10, 10]" = torch.ops.aten.clone.default(add_2) clone_1: "f32[10, 20]" = torch.ops.aten.clone.default(add_3) add_4: "f32[10, 10]" = torch.ops.aten.add.Tensor(clone, 1) add_5: "f32[10, 20]" = torch.ops.aten.add.Tensor(clone_1, 1) add_6: "f32[10, 10]" = torch.ops.aten.add.Tensor(clone, add_4); clone = add_4 = None add_7: "f32[10, 20]" = torch.ops.aten.add.Tensor(clone_1, add_5); clone_1 = add_5 = None repeated_subgraph0 = self.repeated_subgraph0 invoke_subgraph = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0, 'subgraph_0', add_2, add_3); repeated_subgraph0 = add_2 = None getitem: "f32[]" = invoke_subgraph[0]; invoke_subgraph = None repeated_subgraph0_1 = self.repeated_subgraph0 invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0_1, 'subgraph_0', add_6, add_7); repeated_subgraph0_1 = add_6 = add_7 = None getitem_1: "f32[]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None add_8: "f32[]" = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None copy_: "f32[10, 20]" = torch.ops.aten.copy_.default(arg1_1, add_3); arg1_1 = add_3 = copy_ = None return (add_8,) class repeated_subgraph0(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): sum_1: "f32[]" = torch.ops.aten.sum.default(arg0_1); arg0_1 = None sum_2: "f32[]" = torch.ops.aten.sum.default(arg1_1); arg1_1 = None add: "f32[]" = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None return (add,) """, ) def test_input_aliasing(self): def inner_fn(x, y): x0 = x.view(x.size()) return x0.view(x.size()) def inner_fn2(x, y): x = x * 2 y = y * 2 return x.sum() + y.sum() def fn(x, y): o0 = inner_fn(x, y) o1 = inner_fn(x, y) o2 = inner_fn2(x, y) o3 = inner_fn2(x, y) return o0 + o1 + o2.sum() + o3.sum() x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) x_clone = x.clone() y_clone = y.clone() ref_result = fn(x, y) result, graphs, fw_graphs = self.run_and_return_graphs(fn, x_clone, y_clone) torch.allclose(ref_result, result) self.assertEqual(len(graphs), 1) self.assertEqual(len(fw_graphs), 1) self.assertExpectedInline( graph_str(fw_graphs[0]), """\ class <lambda>(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): view: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_1: "f32[10, 10]" = torch.ops.aten.view.default(view, [10, 10]); view = None view_2: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_3: "f32[10, 10]" = torch.ops.aten.view.default(view_2, [10, 10]); view_2 = None add: "f32[10, 10]" = torch.ops.aten.add.Tensor(view_1, view_3); view_1 = view_3 = None repeated_subgraph0 = self.repeated_subgraph0 invoke_subgraph = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0 = None getitem: "f32[]" = invoke_subgraph[0]; invoke_subgraph = None sum_1: "f32[]" = torch.ops.aten.sum.default(getitem); getitem = None add_1: "f32[10, 10]" = torch.ops.aten.add.Tensor(add, sum_1); add = sum_1 = None repeated_subgraph0_1 = self.repeated_subgraph0 invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0_1, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0_1 = arg0_1 = arg1_1 = None getitem_1: "f32[]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None sum_2: "f32[]" = torch.ops.aten.sum.default(getitem_1); getitem_1 = None add_2: "f32[10, 10]" = torch.ops.aten.add.Tensor(add_1, sum_2); add_1 = sum_2 = None return (add_2,) class repeated_subgraph0(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): mul: "f32[10, 10]" = torch.ops.aten.mul.Tensor(arg0_1, 2); arg0_1 = None mul_1: "f32[10, 20]" = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None sum_1: "f32[]" = torch.ops.aten.sum.default(mul); mul = None sum_2: "f32[]" = torch.ops.aten.sum.default(mul_1); mul_1 = None add: "f32[]" = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None return (add,) """, ) def test_cycle_detection_no_cycle(self): mod = self.run_and_get_simple_graph() self.assertExpectedInline( _detect_cycles(mod.graph, {}), """no cycle detected""" ) def test_cycle_detection_single_node(self): def fn(x, y): x0 = x + 1 y0 = y + 2 z = x0.sum() + y0.sum() return z x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) _, _, fw_graphs = self.run_and_return_graphs(fn, x, y) mod = fw_graphs[0] add_node = next(n for n in mod.graph.nodes if n.name == "add") add_2 = next(n for n in mod.graph.nodes if n.name == "add_2") args = add_node.args add_node.args = (args[0], add_2) self.assertExpectedInline( _detect_cycles(mod.graph, {add_2: OrderedSet([add_2])}), """cycle detected in path: deque([output, add_2, add_2])""", ) def test_cycle_detection_two_node(self): def fn(x, y): x0 = x + 1 y0 = y + 2 z = x0.sum() + y0.sum() return z x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) _, _, fw_graphs = self.run_and_return_graphs(fn, x, y) mod = fw_graphs[0] add_node = next(n for n in mod.graph.nodes if n.name == "add") add_2 = next(n for n in mod.graph.nodes if n.name == "add_2") args = add_node.args add_node.args = (args[0], add_2) self.assertExpectedInline( _detect_cycles( mod.graph, {add_2: OrderedSet([add_node]), add_node: OrderedSet([add_2])}, ), """cycle detected in path: deque([output, add_2, add, add_2])""", ) def test_cycle_detection_arg_and_additional_deps(self): def fn(x, y): x0 = x + 1 y0 = y + 2 z = x0.sum() + y0.sum() return z x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) _, _, fw_graphs = self.run_and_return_graphs(fn, x, y) mod = fw_graphs[0] add_node = next(n for n in mod.graph.nodes if n.name == "add") add_2 = next(n for n in mod.graph.nodes if n.name == "add_2") args = add_node.args add_node.args = (args[0], add_2) self.assertExpectedInline( _detect_cycles(mod.graph, {add_2: OrderedSet([add_node])}), """cycle detected in path: deque([output, add_2, add, add_2])""", ) def test_cycle_detection_simple(self): mod = self.run_and_get_simple_graph() add_node = next(n for n in mod.graph.nodes if n.name == "add") add_2 = next(n for n in mod.graph.nodes if n.name == "add_2") args = add_node.args add_node.args = (args[0], add_2) self.assertExpectedInline( _detect_cycles(mod.graph, {}), """cycle detected in path: deque([output, add_2, sum_1, add, add_2])""", ) def test_cycle_detection_complex(self): def inner_fn(x, y): x0 = x.view(x.size()) return x0.view(x.size()) def inner_fn2(x, y): x = x * 2 y = y * 2 return x.sum() + y.sum() def fn(x, y): o0 = inner_fn(x, y) o1 = inner_fn(x, y) o2 = inner_fn2(x, y) o3 = inner_fn2(x, y) return o0 + o1 + o2.sum() + o3.sum() x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) x_clone = x.clone() y_clone = y.clone() _, _, fw_graphs = self.run_and_return_graphs(fn, x_clone, y_clone) mod = fw_graphs[0] invoke_subgraph_node = next( n for n in mod.graph.nodes if n.name == "invoke_subgraph" ) add_2 = next(n for n in mod.graph.nodes if n.name == "add_2") args = invoke_subgraph_node.args invoke_subgraph_node.args = (add_2, args[1]) self.assertExpectedInline( _detect_cycles(mod.graph, {}), """cycle detected in path: deque([output, add_2, add_1, sum_1, getitem, invoke_subgraph, add_2])""", ) def test_autocast_ordering(self): from torch._dynamo.graph_deduplication import ( _populate_additional_deps, _stable_topological_sort, ) def inner_fn(x, y): x0 = x.view(x.size()) return x0.view(x.size()) def inner_fn2(x, y): x = x * 2 y = y * 2 return x.sum() + y.sum() def fn(x, y): o0 = inner_fn(x, y) o1 = inner_fn(x, y) o2 = inner_fn2(x, y) o3 = inner_fn2(x, y) return o0 + o1 + o2.sum() + o3.sum() x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) x_clone = x.clone() y_clone = y.clone() _, _, fw_graphs = self.run_and_return_graphs(fn, x_clone, y_clone) mod = fw_graphs[0] def get_node(name): return next(n for n in mod.graph.nodes if n.name == name) sum_1 = get_node("sum_1") enter_autocast = mod.graph.call_function(torch.amp._enter_autocast) sum_1.append(enter_autocast) sum_2 = get_node("sum_2") exit_autocast = mod.graph.call_function(torch.amp._exit_autocast) sum_2.append(exit_autocast) additional_deps = _populate_additional_deps(mod.graph, {}) invoke_subgraph = get_node("invoke_subgraph") invoke_subgraph.append(enter_autocast) getitem_1 = get_node("getitem_1") getitem_1.append(exit_autocast) self.assertExpectedInline( graph_str(mod), """\ class <lambda>(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): view: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_1: "f32[10, 10]" = torch.ops.aten.view.default(view, [10, 10]); view = None view_2: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_3: "f32[10, 10]" = torch.ops.aten.view.default(view_2, [10, 10]); view_2 = None add: "f32[10, 10]" = torch.ops.aten.add.Tensor(view_1, view_3); view_1 = view_3 = None repeated_subgraph0 = self.repeated_subgraph0 invoke_subgraph = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0 = None _enter_autocast = torch.amp.autocast_mode._enter_autocast(); _enter_autocast = None getitem: "f32[]" = invoke_subgraph[0]; invoke_subgraph = None sum_1: "f32[]" = torch.ops.aten.sum.default(getitem); getitem = None add_1: "f32[10, 10]" = torch.ops.aten.add.Tensor(add, sum_1); add = sum_1 = None repeated_subgraph0_1 = self.repeated_subgraph0 invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0_1, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0_1 = arg0_1 = arg1_1 = None getitem_1: "f32[]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None _exit_autocast = torch.amp.autocast_mode._exit_autocast(); _exit_autocast = None sum_2: "f32[]" = torch.ops.aten.sum.default(getitem_1); getitem_1 = None add_2: "f32[10, 10]" = torch.ops.aten.add.Tensor(add_1, sum_2); add_1 = sum_2 = None return (add_2,) class repeated_subgraph0(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): mul: "f32[10, 10]" = torch.ops.aten.mul.Tensor(arg0_1, 2); arg0_1 = None mul_1: "f32[10, 20]" = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None sum_1: "f32[]" = torch.ops.aten.sum.default(mul); mul = None sum_2: "f32[]" = torch.ops.aten.sum.default(mul_1); mul_1 = None add: "f32[]" = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None return (add,) """, ) _stable_topological_sort(mod.graph, additional_deps) self.assertExpectedInline( graph_str(mod), """\ class <lambda>(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): view: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_1: "f32[10, 10]" = torch.ops.aten.view.default(view, [10, 10]); view = None view_2: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_3: "f32[10, 10]" = torch.ops.aten.view.default(view_2, [10, 10]); view_2 = None add: "f32[10, 10]" = torch.ops.aten.add.Tensor(view_1, view_3); view_1 = view_3 = None repeated_subgraph0 = self.repeated_subgraph0 invoke_subgraph = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0 = None getitem: "f32[]" = invoke_subgraph[0]; invoke_subgraph = None sum_1: "f32[]" = torch.ops.aten.sum.default(getitem); getitem = None _enter_autocast = torch.amp.autocast_mode._enter_autocast(); _enter_autocast = None add_1: "f32[10, 10]" = torch.ops.aten.add.Tensor(add, sum_1); add = sum_1 = None repeated_subgraph0_1 = self.repeated_subgraph0 invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0_1, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0_1 = arg0_1 = arg1_1 = None getitem_1: "f32[]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None sum_2: "f32[]" = torch.ops.aten.sum.default(getitem_1); getitem_1 = None _exit_autocast = torch.amp.autocast_mode._exit_autocast(); _exit_autocast = None add_2: "f32[10, 10]" = torch.ops.aten.add.Tensor(add_1, sum_2); add_1 = sum_2 = None return (add_2,) class repeated_subgraph0(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): mul: "f32[10, 10]" = torch.ops.aten.mul.Tensor(arg0_1, 2); arg0_1 = None mul_1: "f32[10, 20]" = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None sum_1: "f32[]" = torch.ops.aten.sum.default(mul); mul = None sum_2: "f32[]" = torch.ops.aten.sum.default(mul_1); mul_1 = None add: "f32[]" = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None return (add,) """, ) def test_output_nodes_last(self): from torch._dynamo.graph_deduplication import _stable_topological_sort def inner_fn(x, y): x0 = x.view(x.size()) return x0.view(x.size()) def inner_fn2(x, y): x = x * 2 y = y * 2 return x.sum() + y.sum() def fn(x, y): o0 = inner_fn(x, y) o1 = inner_fn(x, y) o2 = inner_fn2(x, y) o3 = inner_fn2(x, y) return o0 + o1 + o2.sum() + o3.sum() x = torch.rand(10, 10, requires_grad=False) y = torch.rand(10, 20, requires_grad=False) x_clone = x.clone() y_clone = y.clone() _, _, fw_graphs = self.run_and_return_graphs(fn, x_clone, y_clone) mod = fw_graphs[0] output = next(n for n in mod.graph.nodes if n.op == "output") add_2 = next(n for n in mod.graph.nodes if n.name == "sum_2") add_2.append(output) self.assertExpectedInline( graph_str(mod), """\ class <lambda>(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): view: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_1: "f32[10, 10]" = torch.ops.aten.view.default(view, [10, 10]); view = None view_2: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_3: "f32[10, 10]" = torch.ops.aten.view.default(view_2, [10, 10]); view_2 = None add: "f32[10, 10]" = torch.ops.aten.add.Tensor(view_1, view_3); view_1 = view_3 = None repeated_subgraph0 = self.repeated_subgraph0 invoke_subgraph = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0 = None getitem: "f32[]" = invoke_subgraph[0]; invoke_subgraph = None sum_1: "f32[]" = torch.ops.aten.sum.default(getitem); getitem = None add_1: "f32[10, 10]" = torch.ops.aten.add.Tensor(add, sum_1); add = sum_1 = None repeated_subgraph0_1 = self.repeated_subgraph0 invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0_1, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0_1 = arg0_1 = arg1_1 = None getitem_1: "f32[]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None sum_2: "f32[]" = torch.ops.aten.sum.default(getitem_1); getitem_1 = None return (add_2,) add_2: "f32[10, 10]" = torch.ops.aten.add.Tensor(add_1, sum_2); add_1 = sum_2 = None class repeated_subgraph0(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): mul: "f32[10, 10]" = torch.ops.aten.mul.Tensor(arg0_1, 2); arg0_1 = None mul_1: "f32[10, 20]" = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None sum_1: "f32[]" = torch.ops.aten.sum.default(mul); mul = None sum_2: "f32[]" = torch.ops.aten.sum.default(mul_1); mul_1 = None add: "f32[]" = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None return (add,) """, ) _stable_topological_sort(mod.graph, {}) self.assertExpectedInline( graph_str(mod), """\ class <lambda>(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): view: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_1: "f32[10, 10]" = torch.ops.aten.view.default(view, [10, 10]); view = None view_2: "f32[10, 10]" = torch.ops.aten.view.default(arg0_1, [10, 10]) view_3: "f32[10, 10]" = torch.ops.aten.view.default(view_2, [10, 10]); view_2 = None add: "f32[10, 10]" = torch.ops.aten.add.Tensor(view_1, view_3); view_1 = view_3 = None repeated_subgraph0 = self.repeated_subgraph0 invoke_subgraph = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0 = None getitem: "f32[]" = invoke_subgraph[0]; invoke_subgraph = None sum_1: "f32[]" = torch.ops.aten.sum.default(getitem); getitem = None add_1: "f32[10, 10]" = torch.ops.aten.add.Tensor(add, sum_1); add = sum_1 = None repeated_subgraph0_1 = self.repeated_subgraph0 invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0_1, 'subgraph_0', arg0_1, arg1_1); repeated_subgraph0_1 = arg0_1 = arg1_1 = None getitem_1: "f32[]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None sum_2: "f32[]" = torch.ops.aten.sum.default(getitem_1); getitem_1 = None add_2: "f32[10, 10]" = torch.ops.aten.add.Tensor(add_1, sum_2); add_1 = sum_2 = None return (add_2,) class repeated_subgraph0(torch.nn.Module): def forward(self, arg0_1: "f32[10, 10]", arg1_1: "f32[10, 20]"): mul: "f32[10, 10]" = torch.ops.aten.mul.Tensor(arg0_1, 2); arg0_1 = None mul_1: "f32[10, 20]" = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None sum_1: "f32[]" = torch.ops.aten.sum.default(mul); mul = None sum_2: "f32[]" = torch.ops.aten.sum.default(mul_1); mul_1 = None add: "f32[]" = torch.ops.aten.add.Tensor(sum_1, sum_2); sum_1 = sum_2 = None return (add,) """, ) def test_mutation_ordering(self): from torch._dynamo.graph_deduplication import _stable_topological_sort def inner_fn(x, y): x0 = x.view(x.size()) return x0.view(x.size()) def inner_fn2(x, y): x = x * 2 y = y * 2 return x.sum() + y.sum() def fn(x, y): o0 = inner_fn(x, y) o1 = inner_fn(x, y) x.add_(x) o2 = inner_fn2(x, y) y.mul_(y) o3 = inner_fn2(x, y) return o0 + o1 + o2.sum() + o3.sum() x = torch.rand(10, 10) y = torch.rand(10, 20) x_clone = x.clone() y_clone = y.clone() graph, _ = extract_graph_and_tracker(fn, x_clone, y_clone) def graph_code(graph): return graph.python_code("self").src def get_node(name): return next(n for n in graph.nodes if n.name == name) self.assertExpectedInline( graph_code(graph), """\ def forward(self, L_x_ : torch.Tensor, L_y_ : torch.Tensor): subgraph_0 = self.subgraph_0 l_x_ = L_x_ l_y_ = L_y_ x0 = l_x_.view((10, 10)) o0 = x0.view((10, 10)); x0 = None x0_1 = l_x_.view((10, 10)) o1 = x0_1.view((10, 10)); x0_1 = None add_ = l_x_.add_(l_x_); add_ = None add_2 = o0 + o1; o0 = o1 = None invoke_subgraph = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_) mul_ = l_y_.mul_(l_y_); mul_ = None getitem = invoke_subgraph[0]; invoke_subgraph = None sum_5 = getitem.sum(); getitem = None add_3 = add_2 + sum_5; add_2 = sum_5 = None invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_); subgraph_0 = l_x_ = l_y_ = None getitem_1 = invoke_subgraph_1[0]; invoke_subgraph_1 = None sum_6 = getitem_1.sum(); getitem_1 = None add_4 = add_3 + sum_6; add_3 = sum_6 = None return (add_4,) """, ) # Shuffle nodes in the graph add_ = get_node("add_") mul_ = get_node("mul_") o1 = get_node("o1") o1.append(mul_) add_2 = get_node("add_2") add_2.append(add_) self.assertExpectedInline( graph_code(graph), """\ def forward(self, L_x_ : torch.Tensor, L_y_ : torch.Tensor): subgraph_0 = self.subgraph_0 l_x_ = L_x_ l_y_ = L_y_ x0 = l_x_.view((10, 10)) o0 = x0.view((10, 10)); x0 = None x0_1 = l_x_.view((10, 10)) o1 = x0_1.view((10, 10)); x0_1 = None mul_ = l_y_.mul_(l_y_); mul_ = None add_2 = o0 + o1; o0 = o1 = None add_ = l_x_.add_(l_x_); add_ = None invoke_subgraph = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_) getitem = invoke_subgraph[0]; invoke_subgraph = None sum_5 = getitem.sum(); getitem = None add_3 = add_2 + sum_5; add_2 = sum_5 = None invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_); subgraph_0 = l_x_ = l_y_ = None getitem_1 = invoke_subgraph_1[0]; invoke_subgraph_1 = None sum_6 = getitem_1.sum(); getitem_1 = None add_4 = add_3 + sum_6; add_3 = sum_6 = None return (add_4,) """, ) _stable_topological_sort( graph, torch._dynamo.graph_deduplication.last_node_to_additional_deps ) self.assertExpectedInline( graph_code(graph), """\ def forward(self, L_x_ : torch.Tensor, L_y_ : torch.Tensor): subgraph_0 = self.subgraph_0 l_x_ = L_x_ l_y_ = L_y_ x0 = l_x_.view((10, 10)) o0 = x0.view((10, 10)); x0 = None x0_1 = l_x_.view((10, 10)) o1 = x0_1.view((10, 10)); x0_1 = None add_2 = o0 + o1; o0 = o1 = None add_ = l_x_.add_(l_x_); add_ = None invoke_subgraph = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_) mul_ = l_y_.mul_(l_y_); mul_ = None getitem = invoke_subgraph[0]; invoke_subgraph = None sum_5 = getitem.sum(); getitem = None add_3 = add_2 + sum_5; add_2 = sum_5 = None invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_); subgraph_0 = l_x_ = l_y_ = None getitem_1 = invoke_subgraph_1[0]; invoke_subgraph_1 = None sum_6 = getitem_1.sum(); getitem_1 = None add_4 = add_3 + sum_6; add_3 = sum_6 = None return (add_4,) """, ) def test_tuple_return(self): @allow_in_graph def tuple_return(x, y): return x, y def inner_fn(x, y): x0 = x + x + 1 y0 = y + y + 1 return tuple_return(x0, y0) def fn(x0, x1, x2, y0, y1, y2): x0 = inner_fn(x0, y0) x1 = inner_fn(x1, y1) x2 = inner_fn(x2, y2) return x0, x1, x2 fn_opt = torch.compile(fn, fullgraph=True) inps = [torch.rand(10, 10) for _ in range(6)] result_compiled = fn_opt(*inps) result_eager = fn(*inps) self.assertEqual(result_compiled, result_eager) def test_tuple_inputs(self): with ( torch._dynamo.config.patch("use_graph_deduplication", False), torch._dynamo.config.patch("track_nodes_for_deduplication", True), ): def inner(x, y): x0, x1 = torch.split(x, 5) return x0 + x1 + y def fn(x, y): o1 = inner(x, y) o2 = inner(x, y) o3 = inner(x, y) o4 = inner(x, y) return o1.sum() + o2.sum() + o3.sum() + o4.sum() graph, tracker = extract_graph_and_tracker( fn, torch.rand(10, 10), torch.rand(5, 10) ) class MockOutputGraph: def __init__(self): self.graph = graph self.region_tracker = tracker self.nn_modules = FakeRootModule({}) def install_subgraph(self, name, subgraph): return "" splits = [ n for n in graph.nodes if n.op == "call_function" and n.target is torch.split ] for split in splits: tracker.node_to_duplicates.pop(split) apply_graph_deduplication(MockOutputGraph()) self.assertExpectedInline( graph, """\ graph(): %_unnamed : [num_users=4] = get_attr[target=] %l_x_ : torch.Tensor [num_users=4] = placeholder[target=L_x_] %l_y_ : torch.Tensor [num_users=4] = placeholder[target=L_y_] %split : [num_users=2] = call_function[target=torch.functional.split](args = (%l_x_, 5), kwargs = {}) %x0 : [num_users=1] = call_function[target=operator.getitem](args = (%split, 0), kwargs = {}) %x1 : [num_users=1] = call_function[target=operator.getitem](args = (%split, 1), kwargs = {}) %split_1 : [num_users=2] = call_function[target=torch.functional.split](args = (%l_x_, 5), kwargs = {}) %x0_1 : [num_users=1] = call_function[target=operator.getitem](args = (%split_1, 0), kwargs = {}) %x1_1 : [num_users=1] = call_function[target=operator.getitem](args = (%split_1, 1), kwargs = {}) %split_2 : [num_users=2] = call_function[target=torch.functional.split](args = (%l_x_, 5), kwargs = {}) %x0_2 : [num_users=1] = call_function[target=operator.getitem](args = (%split_2, 0), kwargs = {}) %x1_2 : [num_users=1] = call_function[target=operator.getitem](args = (%split_2, 1), kwargs = {}) %split_3 : [num_users=2] = call_function[target=torch.functional.split](args = (%l_x_, 5), kwargs = {}) %x0_3 : [num_users=1] = call_function[target=operator.getitem](args = (%split_3, 0), kwargs = {}) %x1_3 : [num_users=1] = call_function[target=operator.getitem](args = (%split_3, 1), kwargs = {}) %invoke_subgraph : [num_users=1] = call_function[target=torch.ops.higher_order.invoke_subgraph](args = (%_unnamed, , %x0, %x1, %l_y_), kwargs = {}) %getitem_8 : [num_users=1] = call_function[target=operator.getitem](args = (%invoke_subgraph, 0), kwargs = {}) %sum_1 : [num_users=1] = call_method[target=sum](args = (%getitem_8,), kwargs = {}) %invoke_subgraph_1 : [num_users=1] = call_function[target=torch.ops.higher_order.invoke_subgraph](args = (%_unnamed, , %x0_1, %x1_1, %l_y_), kwargs = {}) %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%invoke_subgraph_1, 0), kwargs = {}) %sum_2 : [num_users=1] = call_method[target=sum](args = (%getitem_9,), kwargs = {}) %add_8 : [num_users=1] = call_function[target=operator.add](args = (%sum_1, %sum_2), kwargs = {}) %invoke_subgraph_2 : [num_users=1] = call_function[target=torch.ops.higher_order.invoke_subgraph](args = (%_unnamed, , %x0_2, %x1_2, %l_y_), kwargs = {}) %getitem_10 : [num_users=1] = call_function[target=operator.getitem](args = (%invoke_subgraph_2, 0), kwargs = {}) %sum_3 : [num_users=1] = call_method[target=sum](args = (%getitem_10,), kwargs = {}) %add_9 : [num_users=1] = call_function[target=operator.add](args = (%add_8, %sum_3), kwargs = {}) %invoke_subgraph_3 : [num_users=1] = call_function[target=torch.ops.higher_order.invoke_subgraph](args = (%_unnamed, , %x0_3, %x1_3, %l_y_), kwargs = {}) %getitem_11 : [num_users=1] = call_function[target=operator.getitem](args = (%invoke_subgraph_3, 0), kwargs = {}) %sum_4 : [num_users=1] = call_method[target=sum](args = (%getitem_11,), kwargs = {}) %add_10 : [num_users=1] = call_function[target=operator.add](args = (%add_9, %sum_4), kwargs = {}) return (add_10,)""", ) def test_param_transfer_to_submodule(self): def inner_fn(x, y): return x + y + y + x def fn(x0, x1, x2, y0, y1, y2): x0 = inner_fn(x0, y0) x1 = inner_fn(x1, y1) x2 = inner_fn(x2, y2) return x0.sum() + x1.sum() + x2.sum() fn_opt = torch.compile(fn, fullgraph=True) args = [torch.rand(10, 10) for _ in range(6)] for arg in args: torch._dynamo.mark_static_address(arg) fn_opt(*args) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
GraphModule
python
eventlet__eventlet
tests/timer_test.py
{ "start": 113, "end": 1018 }
class ____(TestCase): def test_copy(self): t = timer.Timer(0, lambda: None) t2 = t.copy() assert t.seconds == t2.seconds assert t.tpl == t2.tpl assert t.called == t2.called def test_schedule(self): hub = hubs.get_hub() # clean up the runloop, preventing side effects from previous tests # on this thread if hub.running: hub.abort() eventlet.sleep(0) called = [] # t = timer.Timer(0, lambda: (called.append(True), hub.abort())) # t.schedule() # let's have a timer somewhere in the future; make sure abort() still works hubs.get_hub().schedule_call_global(0, lambda: (called.append(True), hub.abort())) hub.default_sleep = lambda: 0.0 hub.switch() assert called assert not hub.running if __name__ == '__main__': main()
TestTimer
python
run-llama__llama_index
llama-index-integrations/tools/llama-index-tools-brightdata/tests/test_tools_brightdata.py
{ "start": 243, "end": 2662 }
class ____(unittest.TestCase): def test_class_inheritance(self): """Test that BrightDataToolSpec inherits from BaseToolSpec.""" names_of_base_classes = [b.__name__ for b in BrightDataToolSpec.__mro__] self.assertIn(BaseToolSpec.__name__, names_of_base_classes) def test_initialization(self): """Test that the class initializes correctly.""" tool = BrightDataToolSpec(api_key="test_key", zone="test_zone") self.assertEqual(tool._api_key, "test_key") self.assertEqual(tool._zone, "test_zone") self.assertEqual(tool._endpoint, "https://api.brightdata.com/request") @patch("requests.post") def test_scrape_as_markdown_success(self, mock_post): """Test successful scraping.""" # Mock the response mock_response = MagicMock() mock_response.status_code = 200 mock_response.text = "# Markdown Content\n\nThis is a test." mock_post.return_value = mock_response tool = BrightDataToolSpec(api_key="test_key") result = tool.scrape_as_markdown("https://example.com") self.assertEqual(result.text, "# Markdown Content\n\nThis is a test.") self.assertEqual(result.metadata, {"url": "https://example.com"}) mock_post.assert_called_once() call_args = mock_post.call_args self.assertEqual(call_args[0][0], "https://api.brightdata.com/request") payload = json.loads(call_args[1]["data"]) self.assertEqual(payload["url"], "https://example.com") self.assertEqual(payload["zone"], "unblocker") # default value self.assertEqual(payload["format"], "raw") self.assertEqual(payload["data_format"], "markdown") headers = call_args[1]["headers"] self.assertEqual(headers["Authorization"], "Bearer test_key") @patch("requests.post") def test_scrape_as_markdown_failure(self, mock_post): """Test failed scraping.""" mock_response = MagicMock() mock_response.status_code = 403 mock_response.text = "Access denied" mock_post.return_value = mock_response tool = BrightDataToolSpec(api_key="test_key") with pytest.raises(Exception) as context: tool.scrape_as_markdown("https://example.com") self.assertIn("Failed to scrape: 403", str(context.value)) if __name__ == "__main__": unittest.main()
TestBrightDataToolSpec
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/hooks/batch_waiters.py
{ "start": 1466, "end": 10958 }
class ____(BatchClientHook): """ A utility to manage waiters for AWS Batch services. .. code-block:: python import random from airflow.providers.amazon.aws.operators.batch_waiters import BatchWaiters # to inspect default waiters waiters = BatchWaiters() config = waiters.default_config # type: Dict waiter_names = waiters.list_waiters() # -> ["JobComplete", "JobExists", "JobRunning"] # The default_config is a useful stepping stone to creating custom waiters, e.g. custom_config = waiters.default_config # this is a deepcopy # modify custom_config['waiters'] as necessary and get a new instance: waiters = BatchWaiters(waiter_config=custom_config) waiters.waiter_config # check the custom configuration (this is a deepcopy) waiters.list_waiters() # names of custom waiters # During the init for BatchWaiters, the waiter_config is used to build a waiter_model; # and note that this only occurs during the class init, to avoid any accidental mutations # of waiter_config leaking into the waiter_model. waiters.waiter_model # -> botocore.waiter.WaiterModel object # The waiter_model is combined with the waiters.client to get a specific waiter # and the details of the config on that waiter can be further modified without any # accidental impact on the generation of new waiters from the defined waiter_model, e.g. waiters.get_waiter("JobExists").config.delay # -> 5 waiter = waiters.get_waiter("JobExists") # -> botocore.waiter.Batch.Waiter.JobExists object waiter.config.delay = 10 waiters.get_waiter("JobExists").config.delay # -> 5 as defined by waiter_model # To use a specific waiter, update the config and call the `wait()` method for jobId, e.g. waiter = waiters.get_waiter("JobExists") # -> botocore.waiter.Batch.Waiter.JobExists object waiter.config.delay = random.uniform(1, 10) # seconds waiter.config.max_attempts = 10 waiter.wait(jobs=[jobId]) .. seealso:: - https://www.2ndwatch.com/blog/use-waiters-boto3-write/ - https://github.com/boto/botocore/blob/develop/botocore/waiter.py - https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#waiters - https://github.com/boto/botocore/tree/develop/botocore/data/ec2/2016-11-15 - https://github.com/boto/botocore/issues/1915 :param waiter_config: a custom waiter configuration for AWS Batch services :param aws_conn_id: connection id of AWS credentials / region name. If None, credential boto3 strategy will be used (https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html). :param region_name: region name to use in AWS client. Override the AWS region in connection (if provided) """ def __init__(self, *args, waiter_config: dict | None = None, **kwargs) -> None: super().__init__(*args, **kwargs) self._default_config: dict | None = None self._waiter_config = waiter_config or self.default_config self._waiter_model = botocore.waiter.WaiterModel(self._waiter_config) @property def default_config(self) -> dict: """ An immutable default waiter configuration. :return: a waiter configuration for AWS Batch services """ if self._default_config is None: config_path = Path(__file__).with_name("batch_waiters.json").resolve() with open(config_path) as config_file: self._default_config = json.load(config_file) return deepcopy(self._default_config) # avoid accidental mutation @property def waiter_config(self) -> dict: """ An immutable waiter configuration for this instance; a ``deepcopy`` is returned by this property. During the init for BatchWaiters, the waiter_config is used to build a waiter_model and this only occurs during the class init, to avoid any accidental mutations of waiter_config leaking into the waiter_model. :return: a waiter configuration for AWS Batch services """ return deepcopy(self._waiter_config) # avoid accidental mutation @property def waiter_model(self) -> botocore.waiter.WaiterModel: """ A configured waiter model used to generate waiters on AWS Batch services. :return: a waiter model for AWS Batch services """ return self._waiter_model def get_waiter( self, waiter_name: str, parameters: dict[str, str] | None = None, config_overrides: dict[str, Any] | None = None, deferrable: bool = False, client=None, ) -> botocore.waiter.Waiter: """ Get an AWS Batch service waiter, using the configured ``.waiter_model``. The ``.waiter_model`` is combined with the ``.client`` to get a specific waiter and the properties of that waiter can be modified without any accidental impact on the generation of new waiters from the ``.waiter_model``, e.g. .. code-block:: python waiters.get_waiter("JobExists").config.delay # -> 5 waiter = waiters.get_waiter("JobExists") # a new waiter object waiter.config.delay = 10 waiters.get_waiter("JobExists").config.delay # -> 5 as defined by waiter_model To use a specific waiter, update the config and call the `wait()` method for jobId, e.g. .. code-block:: python import random waiter = waiters.get_waiter("JobExists") # a new waiter object waiter.config.delay = random.uniform(1, 10) # seconds waiter.config.max_attempts = 10 waiter.wait(jobs=[jobId]) :param waiter_name: The name of the waiter. The name should match the name (including the casing) of the key name in the waiter model file (typically this is CamelCasing); see ``.list_waiters``. :param parameters: unused, just here to match the method signature in base_aws :param config_overrides: unused, just here to match the method signature in base_aws :param deferrable: unused, just here to match the method signature in base_aws :param client: unused, just here to match the method signature in base_aws :return: a waiter object for the named AWS Batch service """ return botocore.waiter.create_waiter_with_client(waiter_name, self.waiter_model, self.client) def list_waiters(self) -> list[str]: """ List the waiters in a waiter configuration for AWS Batch services. :return: waiter names for AWS Batch services """ return self.waiter_model.waiter_names def wait_for_job( self, job_id: str, delay: int | float | None = None, get_batch_log_fetcher: Callable[[str], AwsTaskLogFetcher | None] | None = None, ) -> None: """ Wait for Batch job to complete. This assumes that the ``.waiter_model`` is configured using some variation of the ``.default_config`` so that it can generate waiters with the following names: "JobExists", "JobRunning" and "JobComplete". :param job_id: a Batch job ID :param delay: A delay before polling for job status :param get_batch_log_fetcher: A method that returns batch_log_fetcher of type AwsTaskLogFetcher or None when the CloudWatch log stream hasn't been created yet. :raises: AirflowException .. note:: This method adds a small random jitter to the ``delay`` (+/- 2 sec, >= 1 sec). Using a random interval helps to avoid AWS API throttle limits when many concurrent tasks request job-descriptions. It also modifies the ``max_attempts`` to use the ``sys.maxsize``, which allows Airflow to manage the timeout on waiting. """ self.delay(delay) try: waiter = self.get_waiter("JobExists") waiter.config.delay = self.add_jitter(waiter.config.delay, width=2, minima=1) waiter.config.max_attempts = sys.maxsize # timeout is managed by Airflow waiter.wait(jobs=[job_id]) waiter = self.get_waiter("JobRunning") waiter.config.delay = self.add_jitter(waiter.config.delay, width=2, minima=1) waiter.config.max_attempts = sys.maxsize # timeout is managed by Airflow waiter.wait(jobs=[job_id]) batch_log_fetcher = None try: if get_batch_log_fetcher: batch_log_fetcher = get_batch_log_fetcher(job_id) if batch_log_fetcher: batch_log_fetcher.start() waiter = self.get_waiter("JobComplete") waiter.config.delay = self.add_jitter(waiter.config.delay, width=2, minima=1) waiter.config.max_attempts = sys.maxsize # timeout is managed by Airflow waiter.wait(jobs=[job_id]) finally: if batch_log_fetcher: batch_log_fetcher.stop() batch_log_fetcher.join() except (botocore.exceptions.ClientError, botocore.exceptions.WaiterError) as err: raise AirflowException(err)
BatchWaitersHook
python
spack__spack
var/spack/test_repos/spack_repo/builtin_mock/packages/wrong_variant_in_depends_on/package.py
{ "start": 216, "end": 511 }
class ____(Package): """This package has a wrong variant spelled in a depends_on.""" homepage = "http://www.example.com" url = "http://www.example.com/b-1.0.tar.gz" version("1.0", md5="0123456789abcdef0123456789abcdef") depends_on("pkg-b+doesnotexist")
WrongVariantInDependsOn
python
kamyu104__LeetCode-Solutions
Python/get-the-maximum-score.py
{ "start": 33, "end": 814 }
class ____(object): def maxSum(self, nums1, nums2): """ :type nums1: List[int] :type nums2: List[int] :rtype: int """ MOD = 10**9+7 i, j = 0, 0 result, sum1, sum2 = 0, 0, 0, while i != len(nums1) or j != len(nums2): if i != len(nums1) and (j == len(nums2) or nums1[i] < nums2[j]): sum1 += nums1[i] i += 1 elif j != len(nums2) and (i == len(nums1) or nums1[i] > nums2[j]): sum2 += nums2[j] j += 1 else: result = (result + (max(sum1, sum2) + nums1[i])) % MOD sum1, sum2 = 0, 0 i += 1 j += 1 return (result + max(sum1, sum2)) % MOD
Solution
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/protocol43.py
{ "start": 551, "end": 872 }
class ____(Protocol): def __add__(self: A, other: A) -> A: ... T2 = TypeVar("T2", bound=HasAdd2) def merge_element_lists2(a: Sequence[T2], b: Sequence[T2]) -> Sequence[T2]: retval: Sequence[T2] = [] for a_elem in a: for b_elem in b: retval.append(a_elem + b_elem) return retval
HasAdd2
python
rapidsai__cudf
python/cudf_polars/cudf_polars/experimental/rapidsmpf/utils.py
{ "start": 2116, "end": 3915 }
class ____: """ A pair of channels for metadata and table data. This abstraction ensures that metadata and data are kept separate, avoiding ordering issues and making the code more type-safe. Attributes ---------- metadata : Channel for metadata. data : Channel for table data chunks. Notes ----- This is a placeholder implementation. The metadata channel exists but is not used yet. Metadata handling will be fully implemented in follow-up work. """ metadata: Channel[ArbitraryChunk] data: Channel[TableChunk] @classmethod def create(cls, context: Context) -> ChannelPair: """Create a new ChannelPair with fresh channels.""" return cls( metadata=context.create_channel(), data=context.create_channel(), ) async def send_metadata(self, ctx: Context, metadata: Metadata) -> None: """ Send metadata and drain the metadata channel. Parameters ---------- ctx : The streaming context. metadata : The metadata to send. """ msg = Message(0, ArbitraryChunk(metadata)) await self.metadata.send(ctx, msg) await self.metadata.drain(ctx) async def recv_metadata(self, ctx: Context) -> Metadata: """ Receive metadata from the metadata channel. Parameters ---------- ctx : The streaming context. Returns ------- ChunkMetadata The metadata, or None if channel is drained. """ msg = await self.metadata.recv(ctx) assert msg is not None, f"Expected Metadata message, got {msg}." return ArbitraryChunk.from_message(msg).release()
ChannelPair
python
ethereum__web3.py
ens/base_ens.py
{ "start": 568, "end": 3490 }
class ____: w3: Union["AsyncWeb3[Any]", "Web3"] = None ens: Union["Contract", "AsyncContract"] = None _resolver_contract: type["Contract"] | type["AsyncContract"] = None _reverse_resolver_contract: type["Contract"] | type["AsyncContract"] = None @property def strict_bytes_type_checking(self) -> bool: return self.w3.strict_bytes_type_checking @strict_bytes_type_checking.setter def strict_bytes_type_checking(self, strict_bytes_type_check: bool) -> None: self.w3.strict_bytes_type_checking = strict_bytes_type_check @staticmethod @wraps(label_to_hash) def labelhash(label: str) -> HexBytes: return label_to_hash(label) @staticmethod @wraps(raw_name_to_hash) def namehash(name: str) -> HexBytes: return raw_name_to_hash(name) @staticmethod @wraps(normalize_name) def nameprep(name: str) -> str: return normalize_name(name) @staticmethod @wraps(is_valid_name) def is_valid_name(name: str) -> bool: return is_valid_name(name) @staticmethod @wraps(address_to_reverse_domain) def reverse_domain(address: ChecksumAddress) -> str: return address_to_reverse_domain(address) @staticmethod def parent(name: str) -> str: """ Part of ENSIP-10. Returns the parent of a given ENS name, or the empty string if the ENS name does not have a parent. e.g. - parent('1.foo.bar.eth') = 'foo.bar.eth' - parent('foo.bar.eth') = 'bar.eth' - parent('foo.eth') = 'eth' - parent('eth') is defined as the empty string '' :param name: an ENS name :return: the parent for the provided ENS name :rtype: str """ if not name: return "" labels = name.split(".") return "" if len(labels) == 1 else ".".join(labels[1:]) def _decode_ensip10_resolve_data( self, contract_call_result: bytes, extended_resolver: Union["Contract", "AsyncContract"], fn_name: str, ) -> Any: # avoid getting 2 resolver functions named `addr` func = ( extended_resolver.get_function_by_signature("addr(bytes32)") if fn_name == "addr" else extended_resolver.get_function_by_name(fn_name) ) output_types = get_abi_output_types(func.abi) decoded = self.w3.codec.decode(output_types, contract_call_result) # if decoding a single value, return that value - else, return the tuple return decoded[0] if len(decoded) == 1 else decoded def _type_aware_resolver( self, address: ChecksumAddress, func: str, ) -> Union["Contract", "AsyncContract"]: return ( self._reverse_resolver_contract(address=address) if func == "name" else self._resolver_contract(address=address) )
BaseENS
python
ray-project__ray
python/ray/tune/stopper/stopper.py
{ "start": 1723, "end": 3079 }
class ____(Stopper): """Combine several stoppers via 'OR'. Args: *stoppers: Stoppers to be combined. Examples: >>> import numpy as np >>> from ray import tune >>> from ray.tune.stopper import ( ... CombinedStopper, ... MaximumIterationStopper, ... TrialPlateauStopper, ... ) >>> >>> stopper = CombinedStopper( ... MaximumIterationStopper(max_iter=10), ... TrialPlateauStopper(metric="my_metric"), ... ) >>> def train_fn(config): ... for i in range(15): ... tune.report({"my_metric": np.random.normal(0, 1 - i / 15)}) ... >>> tuner = tune.Tuner( ... train_fn, ... run_config=tune.RunConfig(stop=stopper), ... ) >>> print("[ignore]"); result_grid = tuner.fit() # doctest: +ELLIPSIS [ignore]... >>> all(result.metrics["training_iteration"] <= 20 for result in result_grid) True """ def __init__(self, *stoppers: Stopper): self._stoppers = stoppers def __call__(self, trial_id: str, result: Dict[str, Any]) -> bool: return any(s(trial_id, result) for s in self._stoppers) def stop_all(self) -> bool: return any(s.stop_all() for s in self._stoppers)
CombinedStopper
python
h5py__h5py
h5py/tests/test_file.py
{ "start": 29623, "end": 30739 }
class ____(TestCase): """ Feature: Create file that switches on SWMR mode """ def test_file_mode_generalizes(self): fname = self.mktemp() fid = File(fname, 'w', libver='latest') g = fid.create_group('foo') # fid and group member file attribute should have the same mode assert fid.mode == g.file.mode == 'r+' fid.swmr_mode = True # fid and group member file attribute should still be 'r+' # even though file intent has changed assert fid.mode == g.file.mode == 'r+' fid.close() def test_swmr_mode_consistency(self): fname = self.mktemp() fid = File(fname, 'w', libver='latest') g = fid.create_group('foo') assert fid.swmr_mode == g.file.swmr_mode == False fid.swmr_mode = True # This setter should affect both fid and group member file attribute assert fid.swmr_mode == g.file.swmr_mode == True fid.close() @pytest.mark.skipif("HDF5_USE_FILE_LOCKING" in os.environ, reason="HDF5_USE_FILE_LOCKING env. var. is set")
TestSWMRMode
python
eriklindernoren__ML-From-Scratch
mlfromscratch/deep_learning/optimizers.py
{ "start": 869, "end": 1580 }
class ____(): def __init__(self, learning_rate=0.001, momentum=0.4): self.learning_rate = learning_rate self.momentum = momentum self.w_updt = np.array([]) def update(self, w, grad_func): # Calculate the gradient of the loss a bit further down the slope from w approx_future_grad = np.clip(grad_func(w - self.momentum * self.w_updt), -1, 1) # Initialize on first update if not self.w_updt.any(): self.w_updt = np.zeros(np.shape(w)) self.w_updt = self.momentum * self.w_updt + self.learning_rate * approx_future_grad # Move against the gradient to minimize loss return w - self.w_updt
NesterovAcceleratedGradient
python
pennersr__django-allauth
allauth/headless/account/views.py
{ "start": 7234, "end": 8579 }
class ____(APIView): input_class = VerifyPhoneInput def handle(self, request, *args, **kwargs): self.stage = LoginStageController.enter(request, PhoneVerificationStage.key) if self.stage: self.process = ( flows.phone_verification.PhoneVerificationStageProcess.resume( self.stage ) ) else: if not request.user.is_authenticated: return ConflictResponse(request) self.process = ( flows.phone_verification.ChangePhoneVerificationProcess.resume(request) ) if not self.process: return ConflictResponse(request) return super().handle(request, *args, **kwargs) def get_input_kwargs(self): return { "code": self.process.code, "user": self.process.user, "phone": self.process.phone, } def handle_invalid_input(self, input: VerifyPhoneInput): self.process.record_invalid_attempt() return super().handle_invalid_input(input) def post(self, request, *args, **kwargs): self.process.finish() response = None if self.stage: response = self.stage.exit() return AuthenticationResponse.from_response(request, response)
VerifyPhoneView
python
django__django
tests/i18n/test_extraction.py
{ "start": 42812, "end": 43915 }
class ____(ExtractorTests): PO_FILE_PT = "locale/pt/LC_MESSAGES/django.po" PO_FILE_DE = "locale/de/LC_MESSAGES/django.po" PO_FILE_KO = "locale/ko/LC_MESSAGES/django.po" LOCALES = ["pt", "de", "ch"] def test_multiple_locales(self): management.call_command("makemessages", locale=["pt", "de"], verbosity=0) self.assertTrue(os.path.exists(self.PO_FILE_PT)) self.assertTrue(os.path.exists(self.PO_FILE_DE)) def test_all_locales(self): """ When the `locale` flag is absent, all dirs from the parent locale dir are considered as language directories, except if the directory doesn't start with two letters (which excludes __pycache__, .gitignore, etc.). """ os.mkdir(os.path.join("locale", "_do_not_pick")) # Excluding locales that do not compile management.call_command("makemessages", exclude=["ja", "es_AR"], verbosity=0) self.assertTrue(os.path.exists(self.PO_FILE_KO)) self.assertFalse(os.path.exists("locale/_do_not_pick/LC_MESSAGES/django.po"))
MultipleLocaleExtractionTests
python
pandas-dev__pandas
asv_bench/benchmarks/io/json.py
{ "start": 6359, "end": 9004 }
class ____(BaseIO): fname = "__test__.json" def setup(self): N = 10**5 ncols = 5 index = date_range("20000101", periods=N, freq="h") timedeltas = timedelta_range(start=1, periods=N, freq="s") datetimes = date_range(start=1, periods=N, freq="s") ints = np.random.randint(100000000, size=N) longints = sys.maxsize * np.random.randint(100000000, size=N) floats = np.random.randn(N) strings = Index([f"i-{i}" for i in range(N)], dtype=object) self.df = DataFrame(np.random.randn(N, ncols), index=np.arange(N)) self.df_date_idx = DataFrame(np.random.randn(N, ncols), index=index) self.df_td_int_ts = DataFrame( { "td_1": timedeltas, "td_2": timedeltas, "int_1": ints, "int_2": ints, "ts_1": datetimes, "ts_2": datetimes, }, index=index, ) self.df_int_floats = DataFrame( { "int_1": ints, "int_2": ints, "int_3": ints, "float_1": floats, "float_2": floats, "float_3": floats, }, index=index, ) self.df_int_float_str = DataFrame( { "int_1": ints, "int_2": ints, "float_1": floats, "float_2": floats, "str_1": strings, "str_2": strings, }, index=index, ) self.df_longint_float_str = DataFrame( { "longint_1": longints, "longint_2": longints, "float_1": floats, "float_2": floats, "str_1": strings, "str_2": strings, }, index=index, ) def time_floats_with_int_idex_lines(self): self.df.to_json(self.fname, orient="records", lines=True) def time_floats_with_dt_index_lines(self): self.df_date_idx.to_json(self.fname, orient="records", lines=True) def time_delta_int_tstamp_lines(self): self.df_td_int_ts.to_json(self.fname, orient="records", lines=True) def time_float_int_lines(self): self.df_int_floats.to_json(self.fname, orient="records", lines=True) def time_float_int_str_lines(self): self.df_int_float_str.to_json(self.fname, orient="records", lines=True) def time_float_longint_str_lines(self): self.df_longint_float_str.to_json(self.fname, orient="records", lines=True)
ToJSONLines
python
openai__openai-python
src/openai/types/responses/tool_choice_shell_param.py
{ "start": 220, "end": 353 }
class ____(TypedDict, total=False): type: Required[Literal["shell"]] """The tool to call. Always `shell`."""
ToolChoiceShellParam
python
jmcnamara__XlsxWriter
xlsxwriter/test/comparison/test_chart_bar09.py
{ "start": 315, "end": 1363 }
class ____(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_bar09.xlsx") def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "bar", "subtype": "stacked"}) chart.axis_ids = [40274560, 40295040] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series({"values": "=Sheet1!$A$1:$A$5"}) chart.add_series({"values": "=Sheet1!$B$1:$B$5"}) chart.add_series({"values": "=Sheet1!$C$1:$C$5"}) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
TestCompareXLSXFiles
python
kamyu104__LeetCode-Solutions
Python/find-the-integer-added-to-array-i.py
{ "start": 37, "end": 246 }
class ____(object): def addedInteger(self, nums1, nums2): """ :type nums1: List[int] :type nums2: List[int] :rtype: int """ return max(nums2)-max(nums1)
Solution
python
astropy__astropy
astropy/coordinates/tests/test_representation_arithmetic.py
{ "start": 41302, "end": 43671 }
class ____: """Test copied from SphericalDifferential, so less extensive.""" def setup_method(self): s = CylindricalRepresentation( rho=[1, 2, 3] * u.kpc, phi=[0.0, 90.0, 315.0] * u.deg, z=[3, 2, 1] * u.kpc ) self.s = s self.e = s.unit_vectors() self.sf = s.scale_factors() def test_name(self): assert CylindricalDifferential.name == "cylindrical" assert CylindricalDifferential.name in DIFFERENTIAL_CLASSES def test_simple_differentials(self): s, e, sf = self.s, self.e, self.sf o_rho = CylindricalDifferential(1.0 * u.mpc, 0.0 * u.arcsec, 0.0 * u.kpc) o_rhoc = o_rho.to_cartesian(base=s) assert_quantity_allclose(o_rhoc[0].xyz, [1.0e-6, 0.0, 0.0] * u.kpc) s_rho = s + 1.0 * u.mpc * sf["rho"] * e["rho"] assert_representation_allclose(o_rhoc, s_rho - s, atol=1e-10 * u.kpc) s_rho2 = s + o_rho assert_representation_allclose(s_rho2, s_rho) o_phi = CylindricalDifferential(0.0 * u.kpc, 1.0 * u.arcsec, 0.0 * u.kpc) o_phic = o_phi.to_cartesian(base=s) o_phi2 = CylindricalDifferential.from_cartesian(o_phic, base=s) assert_quantity_allclose(o_phi.d_rho, o_phi2.d_rho, atol=1.0 * u.npc) assert_quantity_allclose(o_phi.d_phi, o_phi2.d_phi, atol=1.0 * u.narcsec) assert_quantity_allclose(o_phi.d_z, o_phi2.d_z, atol=1.0 * u.npc) # simple check by hand for first element. assert_quantity_allclose( o_phic[0].xyz, [0.0, np.pi / 180.0 / 3600.0, 0.0] * u.kpc ) # check all using unit vectors and scale factors. s_phi = s + 1.0 * u.arcsec * sf["phi"] * e["phi"] assert_representation_allclose(o_phic, s_phi - s, atol=1e-10 * u.kpc) o_z = CylindricalDifferential(0.0 * u.kpc, 0.0 * u.arcsec, 1.0 * u.mpc) o_zc = o_z.to_cartesian(base=s) assert_quantity_allclose(o_zc[0].xyz, [0.0, 0.0, 1.0e-6] * u.kpc) s_z = s + 1.0 * u.mpc * sf["z"] * e["z"] assert_representation_allclose(o_zc, s_z - s, atol=1e-10 * u.kpc) s_z2 = s + o_z assert_representation_allclose(s_z2, s_z) def test_differential_init_errors(self): with pytest.raises(u.UnitsError): CylindricalDifferential(1.0 * u.pc, 1.0 * u.arcsec, 3.0 * u.km / u.s)
TestCylindricalDifferential
python
davidhalter__jedi
test/completion/arrays.py
{ "start": 1991, "end": 2349 }
class ____(): def __init__(self): self.a = (str()).upper() #? str() C().a # ----------------- # imbalanced sides # ----------------- (f, g) = (1,) #? int() f #? [] g. (f, g, h) = (1,'') #? int() f #? str() g #? [] h. (f1, g1) = 1 #? [] f1. #? [] g1. (f, g) = (1,'',1.0) #? int() f #? str() g # ----------------- # setitem # -----------------
C
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 1047520, "end": 1048187 }
class ____(sgqlc.types.Type): """Autogenerated return type of UpdateTopics""" __schema__ = github_schema __field_names__ = ("client_mutation_id", "invalid_topic_names", "repository") client_mutation_id = sgqlc.types.Field(String, graphql_name="clientMutationId") """A unique identifier for the client performing the mutation.""" invalid_topic_names = sgqlc.types.Field(sgqlc.types.list_of(sgqlc.types.non_null(String)), graphql_name="invalidTopicNames") """Names of the provided topics that are not valid.""" repository = sgqlc.types.Field("Repository", graphql_name="repository") """The updated repository."""
UpdateTopicsPayload
python
HypothesisWorks__hypothesis
hypothesis-python/src/hypothesis/extra/django/_impl.py
{ "start": 1727, "end": 8977 }
class ____(HypothesisTestCase, dst.StaticLiveServerTestCase): pass @defines_strategy() def from_model( model: type[ModelT], /, **field_strategies: st.SearchStrategy | EllipsisType ) -> st.SearchStrategy[ModelT]: """Return a strategy for examples of ``model``. .. warning:: Hypothesis creates saved models. This will run inside your testing transaction when using the test runner, but if you use the dev console this will leave debris in your database. ``model`` must be an subclass of :class:`~django:django.db.models.Model`. Strategies for fields may be passed as keyword arguments, for example ``is_staff=st.just(False)``. In order to support models with fields named "model", this is a positional-only parameter. Hypothesis can often infer a strategy based the field type and validators, and will attempt to do so for any required fields. No strategy will be inferred for an :class:`~django:django.db.models.AutoField`, nullable field, foreign key, or field for which a keyword argument is passed to ``from_model()``. For example, a Shop type with a foreign key to Company could be generated with:: shop_strategy = from_model(Shop, company=from_model(Company)) Like for :func:`~hypothesis.strategies.builds`, you can pass ``...`` (:obj:`python:Ellipsis`) as a keyword argument to infer a strategy for a field which has a default value instead of using the default. """ if not issubclass(model, dm.Model): raise InvalidArgument(f"{model=} must be a subtype of Model") fields_by_name = {f.name: f for f in model._meta.concrete_fields} for name, value in sorted(field_strategies.items()): if value is ...: field_strategies[name] = from_field(fields_by_name[name]) for name, field in sorted(fields_by_name.items()): if ( name not in field_strategies and not field.auto_created and not isinstance(field, dm.AutoField) and not isinstance(field, getattr(dm, "GeneratedField", ())) and field.default is dm.fields.NOT_PROVIDED ): field_strategies[name] = from_field(field) for field in field_strategies: if model._meta.get_field(field).primary_key: # The primary key is generated as part of the strategy. We # want to find any existing row with this primary key and # overwrite its contents. kwargs = {field: field_strategies.pop(field)} kwargs["defaults"] = st.fixed_dictionaries(field_strategies) # type: ignore return _models_impl(st.builds(model.objects.update_or_create, **kwargs)) # The primary key is not generated as part of the strategy, so we # just match against any row that has the same value for all # fields. return _models_impl(st.builds(model.objects.get_or_create, **field_strategies)) @st.composite def _models_impl(draw, strat): """Handle the nasty part of drawing a value for models()""" try: return draw(strat)[0] except IntegrityError: reject() @defines_strategy() def from_form( form: type[df.Form], form_kwargs: dict | None = None, **field_strategies: st.SearchStrategy | EllipsisType, ) -> st.SearchStrategy[df.Form]: """Return a strategy for examples of ``form``. ``form`` must be an subclass of :class:`~django:django.forms.Form`. Strategies for fields may be passed as keyword arguments, for example ``is_staff=st.just(False)``. Hypothesis can often infer a strategy based the field type and validators, and will attempt to do so for any required fields. No strategy will be inferred for a disabled field or field for which a keyword argument is passed to ``from_form()``. This function uses the fields of an unbound ``form`` instance to determine field strategies, any keyword arguments needed to instantiate the unbound ``form`` instance can be passed into ``from_form()`` as a dict with the keyword ``form_kwargs``. E.g.:: shop_strategy = from_form(Shop, form_kwargs={"company_id": 5}) Like for :func:`~hypothesis.strategies.builds`, you can pass ``...`` (:obj:`python:Ellipsis`) as a keyword argument to infer a strategy for a field which has a default value instead of using the default. """ # currently unsupported: # ComboField # FilePathField # ImageField form_kwargs = form_kwargs or {} if not issubclass(form, df.BaseForm): raise InvalidArgument(f"{form=} must be a subtype of Form") # Forms are a little bit different from models. Model classes have # all their fields defined, whereas forms may have different fields # per-instance. So, we ought to instantiate the form and get the # fields from the instance, thus we need to accept the kwargs for # instantiation as well as the explicitly defined strategies unbound_form = form(**form_kwargs) fields_by_name = {} for name, field in unbound_form.fields.items(): if isinstance(field, df.MultiValueField): # PS: So this is a little strange, but MultiValueFields must # have their form data encoded in a particular way for the # values to actually be picked up by the widget instances' # ``value_from_datadict``. # E.g. if a MultiValueField named 'mv_field' has 3 # sub-fields then the ``value_from_datadict`` will look for # 'mv_field_0', 'mv_field_1', and 'mv_field_2'. Here I'm # decomposing the individual sub-fields into the names that # the form validation process expects for i, _field in enumerate(field.fields): fields_by_name[f"{name}_{i}"] = _field else: fields_by_name[name] = field for name, value in sorted(field_strategies.items()): if value is ...: field_strategies[name] = from_field(fields_by_name[name]) for name, field in sorted(fields_by_name.items()): if name not in field_strategies and not field.disabled: field_strategies[name] = from_field(field) # files are handled a bit specially in forms. A Form accepts two arguments: # `data` and `files`. The former is for normal fields, and the latter is for # file fields. # see https://docs.djangoproject.com/en/5.1/ref/forms/api/#binding-uploaded-files. data_strategies: dict[str, Any] = {} file_strategies: dict[str, Any] = {} for name, field in field_strategies.items(): form_field = fields_by_name[name] dictionary = ( file_strategies if isinstance(form_field, df.FileField) else data_strategies ) dictionary[name] = field return _forms_impl( st.builds( partial(form, **form_kwargs), # type: ignore data=st.fixed_dictionaries(data_strategies), files=st.fixed_dictionaries(file_strategies), ) ) @st.composite def _forms_impl(draw, strat): """Handle the nasty part of drawing a value for from_form()""" try: return draw(strat) except ValidationError: reject()
StaticLiveServerTestCase
python
kamyu104__LeetCode-Solutions
Python/minimum-number-of-coins-for-fruits.py
{ "start": 1300, "end": 1655 }
class ____(object): def minimumCoins(self, prices): """ :type prices: List[int] :rtype: int """ dp = [float("inf")]*(len(prices)+1) dp[0] = 0 for i in xrange(len(prices)): for j in xrange(i//2, i+1): dp[i+1] = min(dp[i+1], dp[j]+prices[j]) return dp[-1]
Solution3
python
fluentpython__example-code
20-descriptor/descriptorkinds_dump.py
{ "start": 4669, "end": 4846 }
class ____: # <4> """an overriding descriptor without ``__get__``""" def __set__(self, instance, value): print_args('set', self, instance, value)
OverridingNoGet
python
Textualize__textual
tests/test_on.py
{ "start": 4038, "end": 9002 }
class ____(Widget): @dataclass class Parent(Message): sender: MessageSender @property def control(self) -> MessageSender: return self.sender class Child(Parent): pass def post_parent(self) -> None: self.post_message(self.Parent(self)) def post_child(self) -> None: self.post_message(self.Child(self)) async def test_fire_on_inherited_message() -> None: """Handlers should fire when descendant messages are posted.""" posted: list[str] = [] class InheritTestApp(App[None]): def compose(self) -> ComposeResult: yield MessageSender() @on(MessageSender.Parent) def catch_parent(self) -> None: posted.append("parent") @on(MessageSender.Child) def catch_child(self) -> None: posted.append("child") def on_mount(self) -> None: self.query_one(MessageSender).post_parent() self.query_one(MessageSender).post_child() async with InheritTestApp().run_test(): pass assert posted == ["parent", "child", "parent"] async def test_fire_inherited_on_single_handler() -> None: """Test having parent/child messages on a single handler.""" posted: list[str] = [] class InheritTestApp(App[None]): def compose(self) -> ComposeResult: yield MessageSender() @on(MessageSender.Parent) @on(MessageSender.Child) def catch_either(self, event: MessageSender.Parent) -> None: posted.append(f"either {event.__class__.__name__}") def on_mount(self) -> None: self.query_one(MessageSender).post_parent() self.query_one(MessageSender).post_child() async with InheritTestApp().run_test(): pass assert posted == ["either Parent", "either Child"] async def test_fire_inherited_on_single_handler_multi_selector() -> None: """Test having parent/child messages on a single handler but with different selectors.""" posted: list[str] = [] class InheritTestApp(App[None]): def compose(self) -> ComposeResult: yield MessageSender(classes="a b") @on(MessageSender.Parent, ".y") @on(MessageSender.Child, ".y") @on(MessageSender.Parent, ".a.b") @on(MessageSender.Child, ".a.b") @on(MessageSender.Parent, ".a") @on(MessageSender.Child, ".a") @on(MessageSender.Parent, ".b") @on(MessageSender.Child, ".b") @on(MessageSender.Parent, ".x") @on(MessageSender.Child, ".x") def catch_either(self, event: MessageSender.Parent) -> None: posted.append(f"either {event.__class__.__name__}") @on(MessageSender.Child, ".a, .x") def catch_selector_list_one_miss(self, event: MessageSender.Parent) -> None: posted.append(f"selector list one miss {event.__class__.__name__}") @on(MessageSender.Child, ".a, .b") def catch_selector_list_two_hits(self, event: MessageSender.Parent) -> None: posted.append(f"selector list two hits {event.__class__.__name__}") @on(MessageSender.Child, ".a.b") def catch_selector_combined_hits(self, event: MessageSender.Parent) -> None: posted.append(f"combined hits {event.__class__.__name__}") @on(MessageSender.Child, ".a.x") def catch_selector_combined_miss(self, event: MessageSender.Parent) -> None: posted.append(f"combined miss {event.__class__.__name__}") def on_mount(self) -> None: self.query_one(MessageSender).post_parent() self.query_one(MessageSender).post_child() async with InheritTestApp().run_test(): pass assert posted == [ "either Parent", "either Child", "selector list one miss Child", "selector list two hits Child", "combined hits Child", ] async def test_fire_inherited_and_on_methods() -> None: posted: list[str] = [] class OnAndOnTestApp(App[None]): def compose(self) -> ComposeResult: yield MessageSender() def on_message_sender_parent(self) -> None: posted.append("on_message_sender_parent") @on(MessageSender.Parent) def catch_parent(self) -> None: posted.append("catch_parent") def on_message_sender_child(self) -> None: posted.append("on_message_sender_child") @on(MessageSender.Child) def catch_child(self) -> None: posted.append("catch_child") def on_mount(self) -> None: self.query_one(MessageSender).post_parent() self.query_one(MessageSender).post_child() async with OnAndOnTestApp().run_test(): pass assert posted == [ "catch_parent", "on_message_sender_parent", "catch_child", "catch_parent", "on_message_sender_child", ]
MessageSender
python
rapidsai__cudf
python/cudf_polars/cudf_polars/dsl/ir.py
{ "start": 97820, "end": 98603 }
class ____(IR): """Slice a dataframe.""" __slots__ = ("length", "offset") _non_child = ("schema", "offset", "length") offset: int """Start of the slice.""" length: int | None """Length of the slice.""" def __init__(self, schema: Schema, offset: int, length: int | None, df: IR): self.schema = schema self.offset = offset self.length = length self._non_child_args = (offset, length) self.children = (df,) @classmethod @log_do_evaluate @nvtx_annotate_cudf_polars(message="Slice") def do_evaluate( cls, offset: int, length: int, df: DataFrame, *, context: IRExecutionContext ) -> DataFrame: """Evaluate and return a dataframe.""" return df.slice((offset, length))
Slice
python
wandb__wandb
wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/kqueue.py
{ "start": 9976, "end": 12033 }
class ____(object): """ A kevent descriptor convenience data structure to keep together: * kevent * directory status * path * file descriptor :param path: Path string for which a kevent descriptor will be created. :param is_directory: ``True`` if the path refers to a directory; ``False`` otherwise. :type is_directory: ``bool`` """ def __init__(self, path, is_directory): self._path = absolute_path(path) self._is_directory = is_directory self._fd = os.open(path, WATCHDOG_OS_OPEN_FLAGS) self._kev = select.kevent(self._fd, filter=WATCHDOG_KQ_FILTER, flags=WATCHDOG_KQ_EV_FLAGS, fflags=WATCHDOG_KQ_FFLAGS) @property def fd(self): """OS file descriptor for the kevent descriptor.""" return self._fd @property def path(self): """The path associated with the kevent descriptor.""" return self._path @property def kevent(self): """The kevent object associated with the kevent descriptor.""" return self._kev @property def is_directory(self): """Determines whether the kevent descriptor refers to a directory. :returns: ``True`` or ``False`` """ return self._is_directory def close(self): """ Closes the file descriptor associated with a kevent descriptor. """ try: os.close(self.fd) except OSError: pass @property def key(self): return (self.path, self.is_directory) def __eq__(self, descriptor): return self.key == descriptor.key def __ne__(self, descriptor): return self.key != descriptor.key def __hash__(self): return hash(self.key) def __repr__(self): return "<KeventDescriptor: path=%s, is_directory=%s>"\ % (self.path, self.is_directory)
KeventDescriptor
python
kamyu104__LeetCode-Solutions
Python/minimum-number-of-operations-to-make-all-array-elements-equal-to-1.py
{ "start": 78, "end": 724 }
class ____(object): def minOperations(self, nums): """ :type nums: List[int] :rtype: int """ def gcd(a, b): while b: a, b = b, a%b return a cnt = nums.count(1) if cnt: return len(nums)-cnt result = float("inf") for i in xrange(len(nums)): g = nums[i] for j in range(i+1, len(nums)): g = gcd(g, nums[j]) if g == 1: result = min(result, j-i) break return result+(len(nums)-1) if result != float("inf") else -1
Solution
python
getsentry__sentry
src/sentry/api/serializers/models/event.py
{ "start": 4933, "end": 5520 }
class ____(TypedDict): id: str groupID: str | None eventID: str projectID: str message: str | None title: str location: str | None user: EventUserApiContext | None tags: list[EventTag] platform: str dateReceived: datetime | None contexts: dict[str, Any] | None size: int | None entries: list[Any] dist: str | None sdk: dict[str, str] context: dict[str, Any] | None packages: dict[str, Any] type: str metadata: Any errors: list[Any] occurrence: Any _meta: dict[str, Any]
BaseEventSerializerResponse
python
mlflow__mlflow
mlflow/legacy_databricks_cli/configure/provider.py
{ "start": 6827, "end": 7224 }
class ____: """ Responsible for providing hostname and authentication information to make API requests against the Databricks REST API. This method should generally return None if it cannot provide credentials, in order to facilitate chanining of providers. """ __metaclass__ = ABCMeta @abstractmethod def get_config(self): pass
DatabricksConfigProvider
python
spyder-ide__spyder
spyder/plugins/application/container.py
{ "start": 3228, "end": 33847 }
class ____(PluginMainContainer): sig_report_issue_requested = Signal() """ Signal to request reporting an issue to Github. """ sig_load_log_file = Signal(str) """ Signal to load a log file """ sig_new_file_requested = Signal() """ Signal to request that a new file be created in a suitable plugin. """ sig_open_file_in_plugin_requested = Signal(str) """ Signal to request that given file is opened in a suitable plugin. Arguments --------- filename : str """ sig_open_file_using_dialog_requested = Signal() """ Signal to request that the Open File dialog is shown to open a file. """ sig_open_last_closed_requested = Signal() """ Signal to request that the last closed file be opened again. """ sig_save_file_requested = Signal() """ Signal to request that the current file be saved. """ sig_save_all_requested = Signal() """ Signal to request that all files in the current plugin be saved. """ sig_save_file_as_requested = Signal() """ Signal to request that the current file be saved under a different name. """ sig_save_copy_as_requested = Signal() """ Signal to request that copy of current file be saved under a new name. """ sig_revert_file_requested = Signal() """ Signal to request that the current file be reverted from disk. """ sig_close_file_requested = Signal() """ Signal to request that the current file be closed. """ sig_close_all_requested = Signal() """ Signal to request that all open files be closed. """ sig_undo_requested = Signal() """ Signal to request an undo operation. """ sig_redo_requested = Signal() """ Signal to request a redo operation. """ sig_cut_requested = Signal() """ Signal to request a cut operation. """ sig_copy_requested = Signal() """ Signal to request a copy operation. """ sig_paste_requested = Signal() """ Signal to request a paste operation. """ sig_select_all_requested = Signal() """ Signal to request that all text is selected. """ sig_find_requested = Signal() """ Signal to request to find text. """ sig_find_next_requested = Signal() """ Signal to request to find the next text occurrence. """ sig_find_previous_requested = Signal() """ Signal to request to find the previous text occurrence. """ sig_replace_requested = Signal() """ Signal to request to replace a text occurrence. """ def __init__(self, name, plugin, parent=None): super().__init__(name, plugin, parent) # Keep track of dpi message self.current_dpi = None self.dpi_messagebox = None # Keep track of list of recent files self.recent_files = self.get_conf('recent_files', []) # ---- PluginMainContainer API # ------------------------------------------------------------------------- def setup(self): # Compute dependencies in a thread to not block the interface. self.dependencies_thread = QThread(None) self.dependencies_dialog = DependenciesDialog(self) # Attributes self.dialog_manager = DialogManager() self.inapp_appeal_status = InAppAppealStatus(self) # Actions # Documentation actions self.documentation_action = self.create_action( ApplicationActions.SpyderDocumentationAction, text=_("Spyder documentation"), icon=self.create_icon("DialogHelpButton"), triggered=lambda: start_file(__docs_url__), context=Qt.ApplicationShortcut, register_shortcut=True, shortcut_context="_") spyder_video_url = ("https://www.youtube.com/playlist" "?list=PLPonohdiDqg9epClEcXoAPUiK0pN5eRoc") self.video_action = self.create_action( ApplicationActions.SpyderDocumentationVideoAction, text=_("Tutorial videos"), icon=self.create_icon("VideoIcon"), triggered=lambda: start_file(spyder_video_url)) # Support actions self.trouble_action = self.create_action( ApplicationActions.SpyderTroubleshootingAction, _("Troubleshooting guide"), triggered=lambda: start_file(__trouble_url__)) self.report_action = self.create_action( ConsoleActions.SpyderReportAction, _("Report issue..."), icon=self.create_icon('bug'), triggered=self.sig_report_issue_requested) self.dependencies_action = self.create_action( ApplicationActions.SpyderDependenciesAction, _("Dependency status"), triggered=self.show_dependencies, icon=self.create_icon('advanced')) self.support_group_action = self.create_action( ApplicationActions.SpyderSupportAction, _("Spyder Google group"), triggered=lambda: start_file(__forum_url__)) self.create_action( ApplicationActions.HelpSpyderAction, _("Help Spyder..."), icon=self.create_icon("inapp_appeal"), triggered=self.inapp_appeal_status.show_appeal ) # About action self.about_action = self.create_action( ApplicationActions.SpyderAbout, _("About %s") % "Spyder", icon=self.create_icon('MessageBoxInformation'), triggered=self.show_about, menurole=QAction.AboutRole) # Tools actions if os.name == 'nt': tip = _("Show and edit current user environment variables in " "Windows registry (i.e. for all sessions)") else: tip = _("Show current user environment variables (i.e. for all " "sessions)") self.user_env_action = self.create_action( ApplicationActions.SpyderUserEnvVariables, _("User environment variables"), icon=self.create_icon('environment'), tip=tip, triggered=self.show_user_env_variables) # Application base actions self.restart_action = self.create_action( ApplicationActions.SpyderRestart, _("&Restart"), icon=self.create_icon('restart'), tip=_("Restart"), triggered=self.restart_normal, context=Qt.ApplicationShortcut, shortcut_context="_", register_shortcut=True) self.restart_debug_action = self.create_action( ApplicationActions.SpyderRestartDebug, _("&Restart in debug mode"), tip=_("Restart in debug mode"), triggered=self.restart_debug, context=Qt.ApplicationShortcut, shortcut_context="_", register_shortcut=True) # File actions self.new_action = self.create_action( ApplicationActions.NewFile, text=_("&New file..."), icon=self.create_icon('filenew'), tip=_("New file"), triggered=self.sig_new_file_requested.emit, shortcut_context="main", register_shortcut=True ) self.open_action = self.create_action( ApplicationActions.OpenFile, text=_("&Open..."), icon=self.create_icon('fileopen'), tip=_("Open file"), triggered=self.sig_open_file_using_dialog_requested.emit, shortcut_context="main", register_shortcut=True ) self.open_last_closed_action = self.create_action( ApplicationActions.OpenLastClosed, text=_("O&pen last closed"), tip=_("Open last closed"), triggered=self.sig_open_last_closed_requested.emit, shortcut_context="main", register_shortcut=True ) self.recent_files_menu = self.create_menu( ApplicationPluginMenus.RecentFilesMenu, title=_("Open &recent") ) self.recent_files_menu.aboutToShow.connect( self.update_recent_files_menu ) self.max_recent_action = self.create_action( ApplicationActions.MaxRecentFiles, text=_("Maximum number of recent files..."), triggered=self.change_max_recent_files ) self.clear_recent_action = self.create_action( ApplicationActions.ClearRecentFiles, text=_("Clear this list"), tip=_("Clear recent files list"), triggered=self.clear_recent_files ) self.save_action = self.create_action( ApplicationActions.SaveFile, text=_("&Save"), icon=self.create_icon('filesave'), tip=_("Save file"), triggered=self.sig_save_file_requested.emit, shortcut_context="main", register_shortcut=True ) self.save_all_action = self.create_action( ApplicationActions.SaveAll, text=_("Sav&e all"), icon=self.create_icon('save_all'), tip=_("Save all files"), triggered=self.sig_save_all_requested.emit, shortcut_context="main", register_shortcut=True ) self.save_as_action = self.create_action( ApplicationActions.SaveAs, text=_("Save &as"), icon=self.create_icon('filesaveas'), tip=_("Save current file as..."), triggered=self.sig_save_file_as_requested.emit, shortcut_context="main", register_shortcut=True ) self.save_copy_as_action = self.create_action( ApplicationActions.SaveCopyAs, text=_("Save copy as..."), icon=self.create_icon('filesaveas'), tip=_("Save copy of current file as..."), triggered=self.sig_save_copy_as_requested.emit ) self.revert_action = self.create_action( ApplicationActions.RevertFile, text=_("&Revert"), icon=self.create_icon('revert'), tip=_("Revert file from disk"), triggered=self.sig_revert_file_requested.emit ) self.close_file_action = self.create_action( ApplicationActions.CloseFile, text=_("&Close"), icon=self.create_icon('fileclose'), tip=_("Close current file"), triggered=self.sig_close_file_requested.emit ) self.close_all_action = self.create_action( ApplicationActions.CloseAll, text=_("C&lose all"), icon=ima.icon('filecloseall'), tip=_("Close all opened files"), triggered=self.sig_close_all_requested.emit, shortcut_context="main", register_shortcut=True ) # Edit actions self.undo_action = self.create_action( ApplicationActions.Undo, text=_('Undo'), icon=self.create_icon('undo'), triggered=self.sig_undo_requested.emit, shortcut_context="main", register_shortcut=True ) self.redo_action = self.create_action( ApplicationActions.Redo, text=_('Redo'), icon=self.create_icon('redo'), triggered=self.sig_redo_requested.emit, shortcut_context="main", register_shortcut=True ) self.cut_action = self.create_action( ApplicationActions.Cut, text=_('Cut'), icon=self.create_icon('editcut'), triggered=self.sig_cut_requested.emit, shortcut_context="main", register_shortcut=True ) self.copy_action = self.create_action( ApplicationActions.Copy, text=_('Copy'), icon=self.create_icon('editcopy'), triggered=self.sig_copy_requested.emit, shortcut_context="main", register_shortcut=True ) self.paste_action = self.create_action( ApplicationActions.Paste, text=_('Paste'), icon=self.create_icon('editpaste'), triggered=self.sig_paste_requested.emit, shortcut_context="main", register_shortcut=True ) self.select_all_action = self.create_action( ApplicationActions.SelectAll, text=_('Select All'), icon=self.create_icon('selectall'), triggered=self.sig_select_all_requested.emit, shortcut_context="main", register_shortcut=True ) # Search actions self.find_action = self.create_action( ApplicationActions.FindText, text=_("&Find text"), icon=self.create_icon('find'), tip=_("Find text"), triggered=self.sig_find_requested, shortcut_context="find_replace", ) self.find_next_action = self.create_action( ApplicationActions.FindNext, text=_("Find &next"), icon=self.create_icon('findnext'), triggered=self.sig_find_next_requested, shortcut_context="find_replace", ) self.find_previous_action = self.create_action( ApplicationActions.FindPrevious, text=_("Find &previous"), icon=ima.icon('findprevious'), triggered=self.sig_find_previous_requested, shortcut_context="find_replace", ) self.replace_action = self.create_action( ApplicationActions.ReplaceText, text=_("&Replace text"), icon=ima.icon('replace'), tip=_("Replace text"), triggered=self.sig_replace_requested, shortcut_context="find_replace", ) # Debug logs if get_debug_level() >= 2: self.menu_debug_logs = self.create_menu( ApplicationPluginMenus.DebugLogsMenu, _("Debug logs") ) # The menu can't be built at startup because Completions can # start after Application. self.menu_debug_logs.aboutToShow.connect( self.create_debug_log_actions) # File types and filters used by the Open dialog self.edit_filetypes = None self.edit_filters = None def update_actions(self): pass # ---- Other functionality # ------------------------------------------------------------------------- def on_close(self): """To call from Spyder when the plugin is closed.""" self.dialog_manager.close_all() self.set_conf('recent_files', self.recent_files) if self.dependencies_thread is not None: self.dependencies_thread.quit() self.dependencies_thread.wait() @Slot() def show_about(self): """Show Spyder About dialog.""" abt = AboutDialog(self) abt.show() @Slot() def show_user_env_variables(self): """Show Windows current user environment variables.""" self.dialog_manager.show(UserEnvDialog(self)) # ---- Dependencies # ------------------------------------------------------------------------- def _set_dependencies(self): if dependencies.DEPENDENCIES: self.dependencies_dialog.set_data(dependencies.DEPENDENCIES) @Slot() def show_dependencies(self): """Show Spyder Dependencies dialog.""" self.dependencies_dialog.show() def _compute_dependencies(self): """Compute dependencies without errors.""" # Skip error when trying to register dependencies several times. # This can happen if the user tries to display the dependencies # dialog before dependencies_thread has finished. try: dependencies.declare_dependencies() except ValueError: pass def compute_dependencies(self): """Compute dependencies.""" self.dependencies_thread.run = self._compute_dependencies self.dependencies_thread.finished.connect( self.report_missing_dependencies) self.dependencies_thread.finished.connect(self._set_dependencies) # This avoids computing missing deps before the window is fully up dependencies_timer = QTimer(self) dependencies_timer.setInterval(30000) dependencies_timer.setSingleShot(True) dependencies_timer.timeout.connect(self.dependencies_thread.start) dependencies_timer.start() @Slot() def report_missing_dependencies(self): """Show a QMessageBox with a list of missing hard dependencies.""" missing_deps = dependencies.missing_dependencies() if missing_deps: InstallerMissingDependencies(missing_deps) # We change '<br>' by '\n', in order to replace the '<' # that appear in our deps by '&lt' (to not break html # formatting) and finally we restore '<br>' again. missing_deps = (missing_deps.replace('<br>', '\n'). replace('<', '&lt;').replace('\n', '<br>')) message = ( _("<b>You have missing dependencies!</b>" "<br><br><tt>%s</tt><br>" "<b>Please install them to avoid this message.</b>" "<br><br>" "<i>Note</i>: Spyder could work without some of these " "dependencies, however to have a smooth experience when " "using Spyder we <i>strongly</i> recommend you to install " "all the listed missing dependencies.<br><br>" "Failing to install these dependencies might result in bugs." " Please be sure that any found bugs are not the direct " "result of missing dependencies, prior to reporting a new " "issue." ) % missing_deps ) message_box = QMessageBox(self) message_box.setIcon(QMessageBox.Critical) message_box.setAttribute(Qt.WA_DeleteOnClose) message_box.setAttribute(Qt.WA_ShowWithoutActivating) message_box.setStandardButtons(QMessageBox.Ok) message_box.setWindowModality(Qt.NonModal) message_box.setWindowTitle(_('Error')) message_box.setText(message) message_box.show() # ---- Restart # ------------------------------------------------------------------------- @Slot() def restart_normal(self): """Restart in standard mode.""" os.environ['SPYDER_DEBUG'] = '' self.sig_restart_requested.emit() @Slot() def restart_debug(self): """Restart in debug mode.""" box = QMessageBox(self) box.setWindowTitle(_("Question")) box.setIcon(QMessageBox.Question) box.setText( _("Which debug mode do you want Spyder to restart in?") ) button_verbose = QPushButton(_('Verbose')) button_minimal = QPushButton(_('Minimal')) box.addButton(button_verbose, QMessageBox.AcceptRole) box.addButton(button_minimal, QMessageBox.AcceptRole) box.setStandardButtons(QMessageBox.Cancel) box.exec_() if box.clickedButton() == button_minimal: os.environ['SPYDER_DEBUG'] = '2' elif box.clickedButton() == button_verbose: os.environ['SPYDER_DEBUG'] = '3' else: return self.sig_restart_requested.emit() # ---- File actions # ------------------------------------------------------------------------- def open_file_using_dialog(self, filename: Optional[str], basedir: str): """ Show Open File dialog and open the selected file. Parameters ---------- filename : Optional[str] Name of currently active file. This is used to set the selected name filter for the Open File dialog. basedir : str Directory initially displayed in the Open File dialog. """ if self.edit_filetypes is None: self.edit_filetypes = get_edit_filetypes() if self.edit_filters is None: self.edit_filters = get_edit_filters() self.sig_redirect_stdio_requested.emit(False) if filename is not None: selectedfilter = get_filter( self.edit_filetypes, osp.splitext(filename)[1] ) else: selectedfilter = '' filenames = [] if not running_under_pytest(): # See: spyder-ide/spyder#3291 if sys.platform == 'darwin': dialog = QFileDialog( parent=self, caption=_("Open file"), directory=basedir, ) dialog.setNameFilters(self.edit_filters.split(';;')) dialog.setOption(QFileDialog.HideNameFilterDetails, True) dialog.setFilter( QDir.AllDirs | QDir.Files | QDir.Drives | QDir.Hidden ) dialog.setFileMode(QFileDialog.ExistingFiles) if dialog.exec_(): filenames = dialog.selectedFiles() else: filenames, _sf = getopenfilenames( self, _("Open file"), basedir, self.edit_filters, selectedfilter=selectedfilter, options=QFileDialog.HideNameFilterDetails, ) else: # Use a Qt (i.e. scriptable) dialog for pytest dialog = QFileDialog( self, _("Open file"), options=QFileDialog.DontUseNativeDialog ) if dialog.exec_(): filenames = dialog.selectedFiles() self.sig_redirect_stdio_requested.emit(True) for filename in filenames: filename = osp.normpath(filename) self.sig_open_file_in_plugin_requested.emit(filename) def add_recent_file(self, fname: str) -> None: """ Add file to the list of recent files. This function adds the given file name to the list of recent files, which is used in the `File > Open recent` menu. The function ensures that the list has no duplicates and it is no longer than the maximum length. """ if fname in self.recent_files: self.recent_files.remove(fname) self.recent_files.insert(0, fname) if len(self.recent_files) > self.get_conf('max_recent_files'): self.recent_files.pop(-1) def clear_recent_files(self) -> None: """ Clear list of recent files. """ self.recent_files = [] def update_recent_files_menu(self): """ Update recent files menu Add menu items for all the recent files to the menu. Also add items for setting the maximum number and for clearing the list. This function is called before the menu is about to be shown. """ self.recent_files_menu.clear_actions() recent_files = [ fname for fname in self.recent_files if osp.isfile(fname) ] for fname in recent_files: icon = ima.get_icon_by_extension_or_type(fname, scale_factor=1.0) action = self.create_action( name=f'Recent file {fname}', text=fname, icon=icon, triggered=functools.partial( self.sig_open_file_in_plugin_requested.emit, fname ) ) self.recent_files_menu.add_action( action, section='recent_files_section', omit_id=True, before_section='recent_files_actions_section' ) self.clear_recent_action.setEnabled(len(recent_files) > 0) for menu_action in (self.max_recent_action, self.clear_recent_action): self.recent_files_menu.add_action( menu_action, section='recent_files_actions_section' ) self.recent_files_menu.render() def change_max_recent_files(self) -> None: """ Change the maximum length of the list of recent files. """ mrf, valid = QInputDialog.getInt( self, _('Editor'), _('Maximum number of recent files'), self.get_conf('max_recent_files'), 1, 35 ) if valid: self.set_conf('max_recent_files', mrf) # ---- Log files # ------------------------------------------------------------------------- def create_debug_log_actions(self): """Create an action for each lsp and debug log file.""" self.menu_debug_logs.clear_actions() files = [os.environ['SPYDER_DEBUG_FILE']] files += glob.glob(os.path.join(get_conf_path('lsp_logs'), '*.log')) debug_logs_actions = [] for file in files: action = self.create_action( file, os.path.basename(file), tip=file, triggered=lambda _, file=file: self.load_log_file(file), overwrite=True, register_action=False ) debug_logs_actions.append(action) # Add Spyder log on its own section self.add_item_to_menu( debug_logs_actions[0], self.menu_debug_logs, section=LogsMenuSections.SpyderLogSection ) # Add LSP logs for action in debug_logs_actions[1:]: self.add_item_to_menu( action, self.menu_debug_logs, section=LogsMenuSections.LSPLogsSection ) # Render menu self.menu_debug_logs.render() def load_log_file(self, file): """Load log file in editor""" self.sig_load_log_file.emit(file) # ---- DPI changes # ------------------------------------------------------------------------- def set_window(self, window): """Set window property of main window.""" self._window = window def handle_new_screen(self, new_screen): """Connect DPI signals for new screen.""" if new_screen is not None: new_screen_dpi = new_screen.logicalDotsPerInch() if self.current_dpi != new_screen_dpi: self.show_dpi_change_message(new_screen_dpi) else: new_screen.logicalDotsPerInchChanged.connect( self.show_dpi_change_message) def handle_dpi_change_response(self, result, dpi): """Handle dpi change message dialog result.""" if self.dpi_messagebox.is_checked(): self.set_conf('show_dpi_message', False) self.dpi_messagebox = None if result == 0: # Restart button was clicked # Activate HDPI auto-scaling option since is needed for a # proper display when using OS scaling self.set_conf('normal_screen_resolution', False) self.set_conf('high_dpi_scaling', True) self.set_conf('high_dpi_custom_scale_factor', False) self.sig_restart_requested.emit() else: # Update current dpi for future checks self.current_dpi = dpi def show_dpi_change_message(self, dpi): """Show message to restart Spyder since the DPI scale changed.""" if not self.get_conf('show_dpi_message'): return if self.current_dpi != dpi: # Check the window state to not show the message if the window # is in fullscreen mode. window = self._window.windowHandle() if (window.windowState() == Qt.WindowFullScreen and sys.platform == 'darwin'): return if self.get_conf('high_dpi_scaling'): return if self.dpi_messagebox is not None: self.dpi_messagebox.activateWindow() self.dpi_messagebox.raise_() return self.dpi_messagebox = MessageCheckBox(icon=QMessageBox.Warning, parent=self) self.dpi_messagebox.set_checkbox_text(_("Don't show again.")) self.dpi_messagebox.set_checked(False) self.dpi_messagebox.set_check_visible(True) self.dpi_messagebox.setText( _ ("A monitor scale change was detected. <br><br>" "We recommend restarting Spyder to ensure that it's properly " "displayed. If you don't want to do that, please be sure to " "activate the option<br><br><tt>Enable auto high DPI scaling" "</tt><br><br>in <tt>Preferences > Application > " "Interface</tt>, in case Spyder is not displayed " "correctly.<br><br>" "Do you want to restart Spyder?")) self.dpi_messagebox.addButton(_('Restart now'), QMessageBox.NoRole) dismiss_button = self.dpi_messagebox.addButton( _('Dismiss'), QMessageBox.NoRole) self.dpi_messagebox.setDefaultButton(dismiss_button) self.dpi_messagebox.finished.connect( lambda result: self.handle_dpi_change_response(result, dpi)) self.dpi_messagebox.open() # Show dialog always in the primary screen to prevent not being # able to see it if a screen gets disconnected while # in suspended state. See spyder-ide/spyder#16390 dpi_messagebox_width = self.dpi_messagebox.rect().width() dpi_messagebox_height = self.dpi_messagebox.rect().height() screen_geometry = QGuiApplication.primaryScreen().geometry() x = (screen_geometry.width() - dpi_messagebox_width) / 2 y = (screen_geometry.height() - dpi_messagebox_height) / 2 # Convert coordinates to int to avoid a TypeError in Python 3.10 # Fixes spyder-ide/spyder#17677 self.dpi_messagebox.move(int(x), int(y)) self.dpi_messagebox.adjustSize()
ApplicationContainer
python
pennersr__django-allauth
allauth/account/views.py
{ "start": 18829, "end": 20162 }
class ____(AjaxCapableProcessFormViewMixin, NextRedirectMixin, FormView): template_name = "account/password_set." + app_settings.TEMPLATE_EXTENSION form_class = SetPasswordForm def get_form_class(self): return get_form_class(app_settings.FORMS, "set_password", self.form_class) @sensitive_post_parameters_m def dispatch(self, request, *args, **kwargs): if self.request.user.has_usable_password(): return HttpResponseRedirect(reverse("account_change_password")) return super().dispatch(request, *args, **kwargs) def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs["user"] = self.request.user return kwargs def get_default_success_url(self): return get_adapter().get_password_change_redirect_url(self.request) def form_valid(self, form): form.save() flows.password_change.finalize_password_set(self.request, form.user) return super().form_valid(form) def get_context_data(self, **kwargs): ret = super().get_context_data(**kwargs) # NOTE: For backwards compatibility ret["password_set_form"] = ret.get("form") # (end NOTE) return ret password_set = PasswordSetView.as_view() @method_decorator(login_not_required, name="dispatch")
PasswordSetView
python
Textualize__textual
src/textual/highlight.py
{ "start": 324, "end": 4835 }
class ____: """Contains the style definition for user with the highlight method.""" STYLES: dict[TokenType, str] = { Token.Comment: "$text 60%", Token.Error: "$text-error on $error-muted", Token.Generic.Strong: "bold", Token.Generic.Emph: "italic", Token.Generic.Error: "$text-error on $error-muted", Token.Generic.Heading: "$text-primary underline", Token.Generic.Subheading: "$text-primary", Token.Keyword: "$text-accent", Token.Keyword.Constant: "bold $text-success 80%", Token.Keyword.Namespace: "$text-error", Token.Keyword.Type: "bold", Token.Literal.Number: "$text-warning", Token.Literal.String.Backtick: "$text 60%", Token.Literal.String: "$text-success 90%", Token.Literal.String.Doc: "$text-success 80% italic", Token.Literal.String.Double: "$text-success 90%", Token.Name: "$text-primary", Token.Name.Attribute: "$text-warning", Token.Name.Builtin: "$text-accent", Token.Name.Builtin.Pseudo: "italic", Token.Name.Class: "$text-warning bold", Token.Name.Constant: "$text-error", Token.Name.Decorator: "$text-primary bold", Token.Name.Function: "$text-warning underline", Token.Name.Function.Magic: "$text-warning underline", Token.Name.Tag: "$text-primary bold", Token.Name.Variable: "$text-secondary", Token.Number: "$text-warning", Token.Operator: "bold", Token.Operator.Word: "bold $text-error", Token.String: "$text-success", Token.Whitespace: "", } def guess_language(code: str, path: str | None) -> str: """Guess the language based on the code and path. The result may be used in the [highlight][textual.highlight.highlight] function. Args: code: The code to guess from. path: A path to the code. Returns: The language, suitable for use with Pygments. """ if path and os.path.splitext(path)[-1] == ".tcss": # A special case for TCSS files which aren't known outside of Textual return "scss" lexer: Lexer | None = None lexer_name = "default" if code: if path: try: lexer = guess_lexer_for_filename(path, code) except ClassNotFound: pass if lexer is None: from pygments.lexers import guess_lexer try: lexer = guess_lexer(code) except Exception: pass if not lexer and path: try: _, ext = os.path.splitext(path) if ext: extension = ext.lstrip(".").lower() lexer = get_lexer_by_name(extension) except ClassNotFound: pass if lexer: if lexer.aliases: lexer_name = lexer.aliases[0] else: lexer_name = lexer.name return lexer_name def highlight( code: str, *, language: str | None = None, path: str | None = None, theme: type[HighlightTheme] = HighlightTheme, tab_size: int = 8, ) -> Content: """Apply syntax highlighting to a string. Args: code: A string to highlight. language: The language to highlight. theme: A HighlightTheme class (type not instance). tab_size: Number of spaces in a tab. Returns: A Content instance which may be used in a widget. """ if not language: language = guess_language(code, path) assert language is not None code = "\n".join(code.splitlines()) try: lexer = get_lexer_by_name( language, stripnl=False, ensurenl=True, tabsize=tab_size, ) except ClassNotFound: lexer = get_lexer_by_name( "text", stripnl=False, ensurenl=True, tabsize=tab_size, ) token_start = 0 spans: list[Span] = [] styles = theme.STYLES for token_type, token in lexer.get_tokens(code): token_end = token_start + len(token) while True: if style := styles.get(token_type): spans.append(Span(token_start, token_end, style)) break if (token_type := token_type.parent) is None: break token_start = token_end highlighted_code = Content(code, spans=spans).stylize_before("$text") return highlighted_code
HighlightTheme
python
langchain-ai__langchain
libs/core/langchain_core/tracers/core.py
{ "start": 885, "end": 23330 }
class ____(ABC): """Abstract base class for tracers. This class provides common methods, and reusable methods for tracers. """ log_missing_parent: bool = True def __init__( self, *, _schema_format: Literal[ "original", "streaming_events", "original+chat" ] = "original", **kwargs: Any, ) -> None: """Initialize the tracer. Args: _schema_format: Primarily changes how the inputs and outputs are handled. For internal use only. This API will change. - 'original' is the format used by all current tracers. This format is slightly inconsistent with respect to inputs and outputs. - 'streaming_events' is used for supporting streaming events, for internal usage. It will likely change in the future, or be deprecated entirely in favor of a dedicated async tracer for streaming events. - 'original+chat' is a format that is the same as 'original' except it does NOT raise an attribute error on_chat_model_start **kwargs: Additional keyword arguments that will be passed to the superclass. """ super().__init__(**kwargs) self._schema_format = _schema_format # For internal use only API will change. self.run_map: dict[str, Run] = {} """Map of run ID to run. Cleared on run end.""" self.order_map: dict[UUID, tuple[UUID, str]] = {} """Map of run ID to (trace_id, dotted_order). Cleared when tracer GCed.""" @abstractmethod def _persist_run(self, run: Run) -> Coroutine[Any, Any, None] | None: """Persist a run.""" @staticmethod def _add_child_run( parent_run: Run, child_run: Run, ) -> None: """Add child run to a chain run or tool run.""" parent_run.child_runs.append(child_run) @staticmethod def _get_stacktrace(error: BaseException) -> str: """Get the stacktrace of the parent error.""" msg = repr(error) try: tb = traceback.format_exception(error) return (msg + "\n\n".join(tb)).strip() except: # noqa: E722 return msg def _start_trace(self, run: Run) -> Coroutine[Any, Any, None] | None: # type: ignore[return] current_dotted_order = run.start_time.strftime("%Y%m%dT%H%M%S%fZ") + str(run.id) if run.parent_run_id: if parent := self.order_map.get(run.parent_run_id): run.trace_id, run.dotted_order = parent run.dotted_order += "." + current_dotted_order if parent_run := self.run_map.get(str(run.parent_run_id)): self._add_child_run(parent_run, run) else: if self.log_missing_parent: logger.debug( "Parent run %s not found for run %s. Treating as a root run.", run.parent_run_id, run.id, ) run.parent_run_id = None run.trace_id = run.id run.dotted_order = current_dotted_order else: run.trace_id = run.id run.dotted_order = current_dotted_order self.order_map[run.id] = (run.trace_id, run.dotted_order) self.run_map[str(run.id)] = run def _get_run(self, run_id: UUID, run_type: str | set[str] | None = None) -> Run: try: run = self.run_map[str(run_id)] except KeyError as exc: msg = f"No indexed run ID {run_id}." raise TracerException(msg) from exc if isinstance(run_type, str): run_types: set[str] | None = {run_type} else: run_types = run_type if run_types is not None and run.run_type not in run_types: msg = ( f"Found {run.run_type} run at ID {run_id}, " f"but expected {run_types} run." ) raise TracerException(msg) return run def _create_chat_model_run( self, serialized: dict[str, Any], messages: list[list[BaseMessage]], run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Create a chat model run.""" if self._schema_format not in {"streaming_events", "original+chat"}: # Please keep this un-implemented for backwards compatibility. # When it's unimplemented old tracers that use the "original" format # fallback on the on_llm_start method implementation if they # find that the on_chat_model_start method is not implemented. # This can eventually be cleaned up by writing a "modern" tracer # that has all the updated schema changes corresponding to # the "streaming_events" format. msg = ( f"Chat model tracing is not supported in " f"for {self._schema_format} format." ) raise NotImplementedError(msg) start_time = datetime.now(timezone.utc) if metadata: kwargs.update({"metadata": metadata}) return Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, inputs={"messages": [[dumpd(msg) for msg in batch] for batch in messages]}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, # WARNING: This is valid ONLY for streaming_events. # run_type="llm" is what's used by virtually all tracers. # Changing this to "chat_model" may break triggering on_llm_start run_type="chat_model", tags=tags, name=name, # type: ignore[arg-type] ) def _create_llm_run( self, serialized: dict[str, Any], prompts: list[str], run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Create a llm run.""" start_time = datetime.now(timezone.utc) if metadata: kwargs.update({"metadata": metadata}) return Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, # TODO: Figure out how to expose kwargs here inputs={"prompts": prompts}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, run_type="llm", tags=tags or [], name=name, # type: ignore[arg-type] ) def _llm_run_with_token_event( self, token: str, run_id: UUID, chunk: GenerationChunk | ChatGenerationChunk | None = None, parent_run_id: UUID | None = None, # noqa: ARG002 ) -> Run: """Append token event to LLM run and return the run.""" llm_run = self._get_run(run_id, run_type={"llm", "chat_model"}) event_kwargs: dict[str, Any] = {"token": token} if chunk: event_kwargs["chunk"] = chunk llm_run.events.append( { "name": "new_token", "time": datetime.now(timezone.utc), "kwargs": event_kwargs, }, ) return llm_run def _llm_run_with_retry_event( self, retry_state: RetryCallState, run_id: UUID, ) -> Run: llm_run = self._get_run(run_id) retry_d: dict[str, Any] = { "slept": retry_state.idle_for, "attempt": retry_state.attempt_number, } if retry_state.outcome is None: retry_d["outcome"] = "N/A" elif retry_state.outcome.failed: retry_d["outcome"] = "failed" exception = retry_state.outcome.exception() retry_d["exception"] = str(exception) retry_d["exception_type"] = exception.__class__.__name__ else: retry_d["outcome"] = "success" retry_d["result"] = str(retry_state.outcome.result()) llm_run.events.append( { "name": "retry", "time": datetime.now(timezone.utc), "kwargs": retry_d, }, ) return llm_run def _complete_llm_run(self, response: LLMResult, run_id: UUID) -> Run: llm_run = self._get_run(run_id, run_type={"llm", "chat_model"}) if getattr(llm_run, "outputs", None) is None: llm_run.outputs = {} else: llm_run.outputs = cast("dict[str, Any]", llm_run.outputs) if not llm_run.extra.get("__omit_auto_outputs", False): llm_run.outputs.update(response.model_dump()) for i, generations in enumerate(response.generations): for j, generation in enumerate(generations): output_generation = llm_run.outputs["generations"][i][j] if "message" in output_generation: output_generation["message"] = dumpd( cast("ChatGeneration", generation).message ) llm_run.end_time = datetime.now(timezone.utc) llm_run.events.append({"name": "end", "time": llm_run.end_time}) return llm_run def _errored_llm_run( self, error: BaseException, run_id: UUID, response: LLMResult | None = None ) -> Run: llm_run = self._get_run(run_id, run_type={"llm", "chat_model"}) llm_run.error = self._get_stacktrace(error) if response: if getattr(llm_run, "outputs", None) is None: llm_run.outputs = {} else: llm_run.outputs = cast("dict[str, Any]", llm_run.outputs) if not llm_run.extra.get("__omit_auto_outputs", False): llm_run.outputs.update(response.model_dump()) for i, generations in enumerate(response.generations): for j, generation in enumerate(generations): output_generation = llm_run.outputs["generations"][i][j] if "message" in output_generation: output_generation["message"] = dumpd( cast("ChatGeneration", generation).message ) llm_run.end_time = datetime.now(timezone.utc) llm_run.events.append({"name": "error", "time": llm_run.end_time}) return llm_run def _create_chain_run( self, serialized: dict[str, Any], inputs: dict[str, Any], run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, run_type: str | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Create a chain Run.""" start_time = datetime.now(timezone.utc) if metadata: kwargs.update({"metadata": metadata}) return Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, inputs=self._get_chain_inputs(inputs), extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, child_runs=[], run_type=run_type or "chain", name=name, # type: ignore[arg-type] tags=tags or [], ) def _get_chain_inputs(self, inputs: Any) -> Any: """Get the inputs for a chain run.""" if self._schema_format in {"original", "original+chat"}: return inputs if isinstance(inputs, dict) else {"input": inputs} if self._schema_format == "streaming_events": return { "input": inputs, } msg = f"Invalid format: {self._schema_format}" raise ValueError(msg) def _get_chain_outputs(self, outputs: Any) -> Any: """Get the outputs for a chain run.""" if self._schema_format in {"original", "original+chat"}: return outputs if isinstance(outputs, dict) else {"output": outputs} if self._schema_format == "streaming_events": return { "output": outputs, } msg = f"Invalid format: {self._schema_format}" raise ValueError(msg) def _complete_chain_run( self, outputs: dict[str, Any], run_id: UUID, inputs: dict[str, Any] | None = None, ) -> Run: """Update a chain run with outputs and end time.""" chain_run = self._get_run(run_id) if getattr(chain_run, "outputs", None) is None: chain_run.outputs = {} if not chain_run.extra.get("__omit_auto_outputs", False): cast("dict[str, Any]", chain_run.outputs).update( self._get_chain_outputs(outputs) ) chain_run.end_time = datetime.now(timezone.utc) chain_run.events.append({"name": "end", "time": chain_run.end_time}) if inputs is not None: chain_run.inputs = self._get_chain_inputs(inputs) return chain_run def _errored_chain_run( self, error: BaseException, inputs: dict[str, Any] | None, run_id: UUID, ) -> Run: chain_run = self._get_run(run_id) chain_run.error = self._get_stacktrace(error) chain_run.end_time = datetime.now(timezone.utc) chain_run.events.append({"name": "error", "time": chain_run.end_time}) if inputs is not None: chain_run.inputs = self._get_chain_inputs(inputs) return chain_run def _create_tool_run( self, serialized: dict[str, Any], input_str: str, run_id: UUID, tags: list[str] | None = None, parent_run_id: UUID | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, inputs: dict[str, Any] | None = None, **kwargs: Any, ) -> Run: """Create a tool run.""" start_time = datetime.now(timezone.utc) if metadata: kwargs.update({"metadata": metadata}) if self._schema_format in {"original", "original+chat"}: inputs = {"input": input_str} elif self._schema_format == "streaming_events": inputs = {"input": inputs} else: msg = f"Invalid format: {self._schema_format}" raise AssertionError(msg) return Run( id=run_id, parent_run_id=parent_run_id, serialized=serialized, # Wrapping in dict since Run requires a dict object. inputs=inputs, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, child_runs=[], run_type="tool", tags=tags or [], name=name, # type: ignore[arg-type] ) def _complete_tool_run( self, output: dict[str, Any], run_id: UUID, ) -> Run: """Update a tool run with outputs and end time.""" tool_run = self._get_run(run_id, run_type="tool") if getattr(tool_run, "outputs", None) is None: tool_run.outputs = {} if not tool_run.extra.get("__omit_auto_outputs", False): cast("dict[str, Any]", tool_run.outputs).update({"output": output}) tool_run.end_time = datetime.now(timezone.utc) tool_run.events.append({"name": "end", "time": tool_run.end_time}) return tool_run def _errored_tool_run( self, error: BaseException, run_id: UUID, ) -> Run: """Update a tool run with error and end time.""" tool_run = self._get_run(run_id, run_type="tool") tool_run.error = self._get_stacktrace(error) tool_run.end_time = datetime.now(timezone.utc) tool_run.events.append({"name": "error", "time": tool_run.end_time}) return tool_run def _create_retrieval_run( self, serialized: dict[str, Any], query: str, run_id: UUID, parent_run_id: UUID | None = None, tags: list[str] | None = None, metadata: dict[str, Any] | None = None, name: str | None = None, **kwargs: Any, ) -> Run: """Create a retrieval run.""" start_time = datetime.now(timezone.utc) if metadata: kwargs.update({"metadata": metadata}) return Run( id=run_id, name=name or "Retriever", parent_run_id=parent_run_id, serialized=serialized, inputs={"query": query}, extra=kwargs, events=[{"name": "start", "time": start_time}], start_time=start_time, tags=tags, child_runs=[], run_type="retriever", ) def _complete_retrieval_run( self, documents: Sequence[Document], run_id: UUID, ) -> Run: """Update a retrieval run with outputs and end time.""" retrieval_run = self._get_run(run_id, run_type="retriever") if getattr(retrieval_run, "outputs", None) is None: retrieval_run.outputs = {} if not retrieval_run.extra.get("__omit_auto_outputs", False): cast("dict[str, Any]", retrieval_run.outputs).update( {"documents": documents} ) retrieval_run.end_time = datetime.now(timezone.utc) retrieval_run.events.append({"name": "end", "time": retrieval_run.end_time}) return retrieval_run def _errored_retrieval_run( self, error: BaseException, run_id: UUID, ) -> Run: retrieval_run = self._get_run(run_id, run_type="retriever") retrieval_run.error = self._get_stacktrace(error) retrieval_run.end_time = datetime.now(timezone.utc) retrieval_run.events.append({"name": "error", "time": retrieval_run.end_time}) return retrieval_run def __deepcopy__(self, memo: dict) -> _TracerCore: """Return self deepcopied.""" return self def __copy__(self) -> _TracerCore: """Return self copied.""" return self def _end_trace(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """End a trace for a run. Args: run: The run. """ return None def _on_run_create(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process a run upon creation. Args: run: The created run. """ return None def _on_run_update(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process a run upon update. Args: run: The updated run. """ return None def _on_llm_start(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the LLM Run upon start. Args: run: The LLM run. """ return None def _on_llm_new_token( self, run: Run, # noqa: ARG002 token: str, # noqa: ARG002 chunk: GenerationChunk | ChatGenerationChunk | None, # noqa: ARG002 ) -> Coroutine[Any, Any, None] | None: """Process new LLM token. Args: run: The LLM run. token: The new token. chunk: Optional chunk. """ return None def _on_llm_end(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the LLM Run. Args: run: The LLM run. """ return None def _on_llm_error(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the LLM Run upon error. Args: run: The LLM run. """ return None def _on_chain_start(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Chain Run upon start. Args: run: The chain run. """ return None def _on_chain_end(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Chain Run. Args: run: The chain run. """ return None def _on_chain_error(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Chain Run upon error. Args: run: The chain run. """ return None def _on_tool_start(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Tool Run upon start. Args: run: The tool run. """ return None def _on_tool_end(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Tool Run. Args: run: The tool run. """ return None def _on_tool_error(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Tool Run upon error. Args: run: The tool run. """ return None def _on_chat_model_start(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Chat Model Run upon start. Args: run: The chat model run. """ return None def _on_retriever_start(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Retriever Run upon start. Args: run: The retriever run. """ return None def _on_retriever_end(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Retriever Run. Args: run: The retriever run. """ return None def _on_retriever_error(self, run: Run) -> Coroutine[Any, Any, None] | None: # noqa: ARG002 """Process the Retriever Run upon error. Args: run: The retriever run. """ return None
_TracerCore
python
weaviate__weaviate-python-client
weaviate/backup/backup_location.py
{ "start": 418, "end": 550 }
class ____(_BackupLocationConfig): """The dynamic location of a backup for S3.""" path: str bucket: str
_BackupLocationS3
python
plotly__plotly.py
plotly/graph_objs/bar/marker/colorbar/_tickformatstop.py
{ "start": 233, "end": 8529 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "bar.marker.colorbar" _path_str = "bar.marker.colorbar.tickformatstop" _valid_props = {"dtickrange", "enabled", "name", "templateitemname", "value"} @property def dtickrange(self): """ range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list """ return self["dtickrange"] @dtickrange.setter def dtickrange(self, val): self["dtickrange"] = val @property def enabled(self): """ Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["enabled"] @enabled.setter def enabled(self, val): self["enabled"] = val @property def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val @property def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"] @templateitemname.setter def templateitemname(self, val): self["templateitemname"] = val @property def value(self): """ string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["value"] @value.setter def value(self, val): self["value"] = val @property def _prop_descriptions(self): return """\ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """ def __init__( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs, ): """ Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.bar.marker.col orbar.Tickformatstop` dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop """ super().__init__("tickformatstops") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.bar.marker.colorbar.Tickformatstop constructor must be a dict or an instance of :class:`plotly.graph_objs.bar.marker.colorbar.Tickformatstop`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("dtickrange", arg, dtickrange) self._set_property("enabled", arg, enabled) self._set_property("name", arg, name) self._set_property("templateitemname", arg, templateitemname) self._set_property("value", arg, value) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Tickformatstop