language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
joke2k__faker
tests/providers/test_person.py
{ "start": 15865, "end": 17585 }
class ____(unittest.TestCase): """Tests person in the en-IE locale""" def setUp(self): self.fake = Faker("en-ie") self.provider = EnIEProvider Faker.seed(0) def test_first_name(self): # General first name name = self.fake.first_name() assert name self.assertIsInstance(name, str) assert name in self.provider.first_names # Females first name name = self.fake.first_name_female() assert name self.assertIsInstance(name, str) assert name in self.provider.first_names assert name in self.provider.first_names_female # Male first name name = self.fake.first_name_male() assert name self.assertIsInstance(name, str) assert name in self.provider.first_names assert name in self.provider.first_names_male def test_last_name(self): assert not hasattr(self.provider, "last_names_male") assert not hasattr(self.provider, "last_names_female") # All last names apply for all genders. assert hasattr(self.provider, "last_names") # General last name. name = self.fake.last_name() assert name self.assertIsInstance(name, str) assert name in self.provider.last_names # Females last name. name = self.fake.last_name_female() assert name self.assertIsInstance(name, str) assert name in self.provider.last_names assert name in self.provider.last_names # Male last name. name = self.fake.last_name_male() assert name self.assertIsInstance(name, str) assert name in self.provider.last_names
TestEnIE
python
altair-viz__altair
altair/vegalite/v6/schema/core.py
{ "start": 1570929, "end": 1571815 }
class ____(VegaLiteSchema): """ ValueDefnumberwidthheightExprRef schema wrapper. Definition object for a constant value (primitive value or gradient definition) of an encoding channel. Parameters ---------- value : dict, float, :class:`ExprRef`, Literal['height', 'width'] A constant value in visual domain (e.g., ``"red"`` / ``"#0099ff"`` / `gradient definition <https://vega.github.io/vega-lite/docs/types.html#gradient>`__ for color, values between ``0`` to ``1`` for opacity). """ _schema = {"$ref": '#/definitions/ValueDef<(number|"width"|"height"|ExprRef)>'} def __init__( self, value: Optional[ float | Parameter | SchemaBase | Literal["height", "width"] | Map ] = Undefined, **kwds, ): super().__init__(value=value, **kwds)
ValueDefnumberwidthheightExprRef
python
pyca__cryptography
tests/x509/test_x509.py
{ "start": 207238, "end": 216384 }
class ____: @pytest.mark.supported( only_if=lambda backend: backend.signature_hash_supported( hashes.SHA1() ), skip_message="Does not support SHA-1 signature.", ) def test_load_dsa_cert(self, backend): cert = _load_cert( os.path.join("x509", "custom", "dsa_selfsigned_ca.pem"), x509.load_pem_x509_certificate, ) assert isinstance(cert.signature_hash_algorithm, hashes.SHA1) public_key = cert.public_key() assert isinstance(public_key, dsa.DSAPublicKey) assert cert.signature_algorithm_parameters is None num = public_key.public_numbers() assert num.y == int( "4c08bfe5f2d76649c80acf7d431f6ae2124b217abc8c9f6aca776ddfa94" "53b6656f13e543684cd5f6431a314377d2abfa068b7080cb8ddc065afc2" "dea559f0b584c97a2b235b9b69b46bc6de1aed422a6f341832618bcaae2" "198aba388099dafb05ff0b5efecb3b0ae169a62e1c72022af50ae68af3b" "033c18e6eec1f7df4692c456ccafb79cc7e08da0a5786e9816ceda651d6" "1b4bb7b81c2783da97cea62df67af5e85991fdc13aff10fc60e06586386" "b96bb78d65750f542f86951e05a6d81baadbcd35a2e5cad4119923ae6a2" "002091a3d17017f93c52970113cdc119970b9074ca506eac91c3dd37632" "5df4af6b3911ef267d26623a5a1c5df4a6d13f1c", 16, ) assert num.parameter_numbers.g == int( "4b7ced71dc353965ecc10d441a9a06fc24943a32d66429dd5ef44d43e67" "d789d99770aec32c0415dc92970880872da45fef8dd1e115a3e4801387b" "a6d755861f062fd3b6e9ea8e2641152339b828315b1528ee6c7b79458d2" "1f3db973f6fc303f9397174c2799dd2351282aa2d8842c357a73495bbaa" "c4932786414c55e60d73169f5761036fba29e9eebfb049f8a3b1b7cee6f" "3fbfa136205f130bee2cf5b9c38dc1095d4006f2e73335c07352c64130a" "1ab2b89f13b48f628d3cc3868beece9bb7beade9f830eacc6fa241425c0" "b3fcc0df416a0c89f7bf35668d765ec95cdcfbe9caff49cfc156c668c76" "fa6247676a6d3ac945844a083509c6a1b436baca", 16, ) assert num.parameter_numbers.p == int( "bfade6048e373cd4e48b677e878c8e5b08c02102ae04eb2cb5c46a523a3" "af1c73d16b24f34a4964781ae7e50500e21777754a670bd19a7420d6330" "84e5556e33ca2c0e7d547ea5f46a07a01bf8669ae3bdec042d9b2ae5e6e" "cf49f00ba9dac99ab6eff140d2cedf722ee62c2f9736857971444c25d0a" "33d2017dc36d682a1054fe2a9428dda355a851ce6e6d61e03e419fd4ca4" "e703313743d86caa885930f62ed5bf342d8165627681e9cc3244ba72aa2" "2148400a6bbe80154e855d042c9dc2a3405f1e517be9dea50562f56da93" "f6085f844a7e705c1f043e65751c583b80d29103e590ccb26efdaa0893d" "833e36468f3907cfca788a3cb790f0341c8a31bf", 16, ) assert num.parameter_numbers.q == int( "822ff5d234e073b901cf5941f58e1f538e71d40d", 16 ) def test_load_dsa_cert_null_alg_params(self, backend): """ This test verifies that we successfully load certificates with encoded null parameters in the signature AlgorithmIdentifier. This is invalid, but all versions of Java less than 21 generate certificates with this encoding so we need to tolerate it at the moment. """ with pytest.warns(utils.DeprecatedIn41): cert = _load_cert( os.path.join("x509", "custom", "dsa_null_alg_params.pem"), x509.load_pem_x509_certificate, ) assert isinstance(cert.signature_hash_algorithm, hashes.SHA256) assert isinstance(cert.public_key(), dsa.DSAPublicKey) def test_signature(self, backend): cert = _load_cert( os.path.join("x509", "custom", "dsa_selfsigned_ca.pem"), x509.load_pem_x509_certificate, ) assert cert.signature == binascii.unhexlify( b"302c021425c4a84a936ab311ee017d3cbd9a3c650bb3ae4a02145d30c64b4326" b"86bdf925716b4ed059184396bcce" ) r, s = decode_dss_signature(cert.signature) assert r == 215618264820276283222494627481362273536404860490 assert s == 532023851299196869156027211159466197586787351758 def test_tbs_certificate_bytes(self, backend): cert = _load_cert( os.path.join("x509", "custom", "dsa_selfsigned_ca.pem"), x509.load_pem_x509_certificate, ) assert cert.tbs_certificate_bytes == binascii.unhexlify( b"3082051aa003020102020900a37352e0b2142f86300906072a8648ce3804033" b"067310b3009060355040613025553310e300c06035504081305546578617331" b"0f300d0603550407130641757374696e3121301f060355040a1318496e74657" b"26e6574205769646769747320507479204c7464311430120603550403130b50" b"79434120445341204341301e170d3134313132373035313431375a170d31343" b"13232373035313431375a3067310b3009060355040613025553310e300c0603" b"55040813055465786173310f300d0603550407130641757374696e3121301f0" b"60355040a1318496e7465726e6574205769646769747320507479204c746431" b"1430120603550403130b50794341204453412043413082033a3082022d06072" b"a8648ce380401308202200282010100bfade6048e373cd4e48b677e878c8e5b" b"08c02102ae04eb2cb5c46a523a3af1c73d16b24f34a4964781ae7e50500e217" b"77754a670bd19a7420d633084e5556e33ca2c0e7d547ea5f46a07a01bf8669a" b"e3bdec042d9b2ae5e6ecf49f00ba9dac99ab6eff140d2cedf722ee62c2f9736" b"857971444c25d0a33d2017dc36d682a1054fe2a9428dda355a851ce6e6d61e0" b"3e419fd4ca4e703313743d86caa885930f62ed5bf342d8165627681e9cc3244" b"ba72aa22148400a6bbe80154e855d042c9dc2a3405f1e517be9dea50562f56d" b"a93f6085f844a7e705c1f043e65751c583b80d29103e590ccb26efdaa0893d8" b"33e36468f3907cfca788a3cb790f0341c8a31bf021500822ff5d234e073b901" b"cf5941f58e1f538e71d40d028201004b7ced71dc353965ecc10d441a9a06fc2" b"4943a32d66429dd5ef44d43e67d789d99770aec32c0415dc92970880872da45" b"fef8dd1e115a3e4801387ba6d755861f062fd3b6e9ea8e2641152339b828315" b"b1528ee6c7b79458d21f3db973f6fc303f9397174c2799dd2351282aa2d8842" b"c357a73495bbaac4932786414c55e60d73169f5761036fba29e9eebfb049f8a" b"3b1b7cee6f3fbfa136205f130bee2cf5b9c38dc1095d4006f2e73335c07352c" b"64130a1ab2b89f13b48f628d3cc3868beece9bb7beade9f830eacc6fa241425" b"c0b3fcc0df416a0c89f7bf35668d765ec95cdcfbe9caff49cfc156c668c76fa" b"6247676a6d3ac945844a083509c6a1b436baca0382010500028201004c08bfe" b"5f2d76649c80acf7d431f6ae2124b217abc8c9f6aca776ddfa9453b6656f13e" b"543684cd5f6431a314377d2abfa068b7080cb8ddc065afc2dea559f0b584c97" b"a2b235b9b69b46bc6de1aed422a6f341832618bcaae2198aba388099dafb05f" b"f0b5efecb3b0ae169a62e1c72022af50ae68af3b033c18e6eec1f7df4692c45" b"6ccafb79cc7e08da0a5786e9816ceda651d61b4bb7b81c2783da97cea62df67" b"af5e85991fdc13aff10fc60e06586386b96bb78d65750f542f86951e05a6d81" b"baadbcd35a2e5cad4119923ae6a2002091a3d17017f93c52970113cdc119970" b"b9074ca506eac91c3dd376325df4af6b3911ef267d26623a5a1c5df4a6d13f1" b"ca381cc3081c9301d0603551d0e04160414a4fb887a13fcdeb303bbae9a1dec" b"a72f125a541b3081990603551d2304819130818e8014a4fb887a13fcdeb303b" b"bae9a1deca72f125a541ba16ba4693067310b3009060355040613025553310e" b"300c060355040813055465786173310f300d0603550407130641757374696e3" b"121301f060355040a1318496e7465726e657420576964676974732050747920" b"4c7464311430120603550403130b5079434120445341204341820900a37352e" b"0b2142f86300c0603551d13040530030101ff" ) assert cert.signature_hash_algorithm is not None public_key = cert.public_key() assert isinstance(public_key, dsa.DSAPublicKey) public_key.verify( cert.signature, cert.tbs_certificate_bytes, cert.signature_hash_algorithm, ) def test_verify_directly_issued_by_dsa(self, backend): issuer_private_key = DSA_KEY_3072.private_key() subject_private_key = DSA_KEY_2048.private_key() ca, cert = _generate_ca_and_leaf( issuer_private_key, subject_private_key ) cert.verify_directly_issued_by(ca) def test_verify_directly_issued_by_dsa_bad_sig(self, backend): issuer_private_key = DSA_KEY_3072.private_key() subject_private_key = DSA_KEY_2048.private_key() ca, cert = _generate_ca_and_leaf( issuer_private_key, subject_private_key ) cert_bad_sig = _break_cert_sig(cert) with pytest.raises(InvalidSignature): cert_bad_sig.verify_directly_issued_by(ca) @pytest.mark.supported( only_if=lambda backend: backend.dsa_supported(), skip_message="Does not support DSA.", ) @pytest.mark.supported( only_if=lambda backend: backend.signature_hash_supported(hashes.SHA1()), skip_message="Does not support SHA-1 signature.", )
TestDSACertificate
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/enumGenNextValue1.py
{ "start": 329, "end": 414 }
class ____(EnumC): x = auto() reveal_type(EnumD.x.value, expected_text="str")
EnumD
python
kamyu104__LeetCode-Solutions
Python/course-schedule-ii.py
{ "start": 968, "end": 1782 }
class ____(object): def findOrder(self, numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: List[int] """ adj = collections.defaultdict(list) in_degree = collections.Counter() for u, v in prerequisites: in_degree[u] += 1 adj[v].append(u) result = [] stk = [u for u in xrange(numCourses) if u not in in_degree] while stk: u = stk.pop() result.append(u) for v in adj[u]: in_degree[v] -= 1 if in_degree[v] == 0: stk.append(v) return result if len(result) == numCourses else [] # Time: O(|V| + |E|) # Space: O(|E|) import collections # dfs solution
Solution2
python
kamyu104__LeetCode-Solutions
Python/double-a-number-represented-as-a-linked-list.py
{ "start": 43, "end": 465 }
class ____(object): def doubleIt(self, head): """ :type head: Optional[ListNode] :rtype: Optional[ListNode] """ if head.val >= 5: head = ListNode(0, head) curr = head while curr: curr.val = (curr.val*2)%10 if curr.next and curr.next.val >= 5: curr.val += 1 curr = curr.next return head
Solution
python
spyder-ide__spyder
spyder/plugins/profiler/confpage.py
{ "start": 315, "end": 1092 }
class ____(PluginConfigPage): def setup_page(self): switch_to_plugin_cb = self.create_checkbox( _("Open profiler when profiling finishes"), "switch_to_plugin", tip=_( "This option switches to the profiler plugin " "when a profiling has ended." ), ) slow_spin = self.create_spinbox( _("Maximum number of items displayed with large local time"), "", 'n_slow_children', min_=1, max_=1000, step=1 ) vlayout = QVBoxLayout() vlayout.addWidget(switch_to_plugin_cb) vlayout.addWidget(slow_spin) vlayout.addStretch(1) self.setLayout(vlayout)
ProfilerConfigPage
python
cookiecutter__cookiecutter
cookiecutter/main.py
{ "start": 7636, "end": 8046 }
class ____: # noqa: N801 def __init__(self, repo_dir: Path | str) -> None: self._repo_dir = f"{repo_dir}" if isinstance(repo_dir, Path) else repo_dir def __enter__(self) -> None: self._path = copy(sys.path) sys.path.append(self._repo_dir) def __exit__(self, _type, _value, _traceback): # type: ignore[no-untyped-def] sys.path = self._path
_patch_import_path_for_repo
python
dagster-io__dagster
python_modules/dagster/dagster_tests/storage_tests/test_defs_state_storage.py
{ "start": 333, "end": 663 }
class ____(TestDefsStateStorage): """Tests the default state storage implementation.""" __test__ = True @pytest.fixture(name="storage", scope="function") def state_storage(self): with instance_for_test() as instance: yield check.not_none(instance.defs_state_storage)
TestDefaultDefsStateStorage
python
apache__airflow
providers/tableau/tests/unit/tableau/operators/test_tableau.py
{ "start": 1070, "end": 7754 }
class ____: """ Test class for TableauOperator """ def setup_method(self): self.mocked_workbooks = [] self.mock_datasources = [] for i in range(3): mock_workbook = Mock() mock_workbook.id = i mock_workbook.name = f"wb_{i}" self.mocked_workbooks.append(mock_workbook) mock_datasource = Mock() mock_datasource.id = i mock_datasource.name = f"ds_{i}" self.mock_datasources.append(mock_datasource) self.kwargs = { "site_id": "test_site", "task_id": "task", "dag": None, "match_with": "name", "method": "refresh", } @patch("airflow.providers.tableau.operators.tableau.TableauHook") def test_execute_workbooks(self, mock_tableau_hook): """ Test Execute Workbooks """ mock_tableau_hook.get_all = Mock(return_value=self.mocked_workbooks) mock_tableau_hook.return_value.__enter__ = Mock(return_value=mock_tableau_hook) operator = TableauOperator(blocking_refresh=False, find="wb_2", resource="workbooks", **self.kwargs) job_id = operator.execute(context={}) mock_tableau_hook.server.workbooks.refresh.assert_called_once_with(2) assert mock_tableau_hook.server.workbooks.refresh.return_value.id == job_id @patch("airflow.providers.tableau.operators.tableau.TableauHook") def test_execute_workbooks_blocking(self, mock_tableau_hook): """ Test execute workbooks blocking """ mock_signed_in = [False] def mock_hook_enter(): mock_signed_in[0] = True return mock_tableau_hook def mock_hook_exit(exc_type, exc_val, exc_tb): mock_signed_in[0] = False def mock_wait_for_state(job_id, target_state, check_interval): if not mock_signed_in[0]: raise Exception("Not signed in") return True mock_tableau_hook.return_value.__enter__ = Mock(side_effect=mock_hook_enter) mock_tableau_hook.return_value.__exit__ = Mock(side_effect=mock_hook_exit) mock_tableau_hook.wait_for_state = Mock(side_effect=mock_wait_for_state) mock_tableau_hook.get_all = Mock(return_value=self.mocked_workbooks) mock_tableau_hook.server.jobs.get_by_id = Mock( return_value=Mock(finish_code=TableauJobFinishCode.SUCCESS.value) ) operator = TableauOperator(find="wb_2", resource="workbooks", **self.kwargs) job_id = operator.execute(context={}) mock_tableau_hook.server.workbooks.refresh.assert_called_once_with(2) assert mock_tableau_hook.server.workbooks.refresh.return_value.id == job_id mock_tableau_hook.wait_for_state.assert_called_once_with( job_id=job_id, check_interval=20, target_state=TableauJobFinishCode.SUCCESS ) @patch("airflow.providers.tableau.operators.tableau.TableauHook") def test_execute_missing_workbook(self, mock_tableau_hook): """ Test execute missing workbook """ mock_tableau_hook.get_all = Mock(return_value=self.mocked_workbooks) mock_tableau_hook.return_value.__enter__ = Mock(return_value=mock_tableau_hook) operator = TableauOperator(find="test", resource="workbooks", **self.kwargs) with pytest.raises(AirflowException): operator.execute({}) @patch("airflow.providers.tableau.operators.tableau.TableauHook") def test_execute_datasources(self, mock_tableau_hook): """ Test Execute datasources """ mock_tableau_hook.get_all = Mock(return_value=self.mock_datasources) mock_tableau_hook.return_value.__enter__ = Mock(return_value=mock_tableau_hook) operator = TableauOperator(blocking_refresh=False, find="ds_2", resource="datasources", **self.kwargs) job_id = operator.execute(context={}) mock_tableau_hook.server.datasources.refresh.assert_called_once_with(2) assert mock_tableau_hook.server.datasources.refresh.return_value.id == job_id @patch("airflow.providers.tableau.operators.tableau.TableauHook") def test_execute_datasources_blocking(self, mock_tableau_hook): """ Test execute datasources blocking """ mock_signed_in = [False] def mock_hook_enter(): mock_signed_in[0] = True return mock_tableau_hook def mock_hook_exit(exc_type, exc_val, exc_tb): mock_signed_in[0] = False def mock_wait_for_state(job_id, target_state, check_interval): if not mock_signed_in[0]: raise Exception("Not signed in") return True mock_tableau_hook.return_value.__enter__ = Mock(side_effect=mock_hook_enter) mock_tableau_hook.return_value.__exit__ = Mock(side_effect=mock_hook_exit) mock_tableau_hook.wait_for_state = Mock(side_effect=mock_wait_for_state) mock_tableau_hook.get_all = Mock(return_value=self.mock_datasources) operator = TableauOperator(find="ds_2", resource="datasources", **self.kwargs) job_id = operator.execute(context={}) mock_tableau_hook.server.datasources.refresh.assert_called_once_with(2) assert mock_tableau_hook.server.datasources.refresh.return_value.id == job_id mock_tableau_hook.wait_for_state.assert_called_once_with( job_id=job_id, check_interval=20, target_state=TableauJobFinishCode.SUCCESS ) @patch("airflow.providers.tableau.operators.tableau.TableauHook") def test_execute_missing_datasource(self, mock_tableau_hook): """ Test execute missing datasource """ mock_tableau_hook.get_all = Mock(return_value=self.mock_datasources) mock_tableau_hook.return_value.__enter__ = Mock(return_value=mock_tableau_hook) operator = TableauOperator(find="test", resource="datasources", **self.kwargs) with pytest.raises(AirflowException): operator.execute({}) def test_execute_unavailable_resource(self): """ Test execute unavailable resource """ operator = TableauOperator(resource="test", find="test", **self.kwargs) with pytest.raises(AirflowException): operator.execute({}) def test_get_resource_id(self): """ Test get resource id """ resource_id = "res_id" operator = TableauOperator(resource="task", find=resource_id, method="run", task_id="t", dag=None) assert operator._get_resource_id(resource_id) == resource_id
TestTableauOperator
python
kamyu104__LeetCode-Solutions
Python/transformed-array.py
{ "start": 37, "end": 260 }
class ____(object): def constructTransformedArray(self, nums): """ :type nums: List[int] :rtype: List[int] """ return [nums[(i+nums[i])%len(nums)] for i in xrange(len(nums))]
Solution
python
apache__airflow
airflow-core/tests/unit/api_fastapi/core_api/routes/public/test_extra_links.py
{ "start": 2146, "end": 11488 }
class ____: dag_id = "TEST_DAG_ID" dag_run_id = "TEST_DAG_RUN_ID" task_single_link = "TEST_SINGLE_LINK" task_multiple_links = "TEST_MULTIPLE_LINKS" task_mapped = "TEST_MAPPED_TASK" default_time = timezone.datetime(2020, 1, 1) plugin_name = "test_plugin" @staticmethod def _clear_db(): clear_db_dags() clear_db_runs() clear_db_xcom() @pytest.fixture(autouse=True) def setup(self, test_client, dag_maker, request, session) -> None: """ Setup extra links for testing. :return: Dictionary with event extra link names with their corresponding link as the links. """ self._clear_db() self.dag = self._create_dag(dag_maker) dag_bag = DBDagBag() test_client.app.dependency_overrides[dag_bag_from_app] = lambda: dag_bag dag_maker.create_dagrun( run_id=self.dag_run_id, logical_date=self.default_time, run_type=DagRunType.MANUAL, state=DagRunState.SUCCESS, data_interval=(timezone.datetime(2020, 1, 1), timezone.datetime(2020, 1, 2)), run_after=timezone.datetime(2020, 1, 2), triggered_by=DagRunTriggeredByType.TEST, ) def teardown_method(self) -> None: self._clear_db() def _create_dag(self, dag_maker): with dag_maker( dag_id=self.dag_id, schedule=None, default_args={"start_date": self.default_time}, serialized=True ) as dag: CustomOperator(task_id=self.task_single_link, bash_command="TEST_LINK_VALUE") CustomOperator( task_id=self.task_multiple_links, bash_command=["TEST_LINK_VALUE_1", "TEST_LINK_VALUE_2"] ) _ = CustomOperator.partial(task_id=self.task_mapped).expand( bash_command=["TEST_LINK_VALUE_1", "TEST_LINK_VALUE_2"] ) return dag @pytest.mark.parametrize( ("url", "expected_status_code", "expected_response"), [ pytest.param( "/dags/INVALID/dagRuns/TEST_DAG_RUN_ID/taskInstances/TEST_SINGLE_LINK/links", 404, {"detail": "The Dag with ID: `INVALID` was not found"}, id="missing_dag", ), pytest.param( "/dags/TEST_DAG_ID/dagRuns/TEST_DAG_RUN_ID/taskInstances/INVALID/links", 404, {"detail": "Task with ID = INVALID not found"}, id="missing_task", ), ], ) def test_should_respond_404(self, test_client, url, expected_status_code, expected_response): response = test_client.get(url) assert response.status_code == expected_status_code assert response.json() == expected_response def test_should_respond_200(self, test_client, session): XCom.set( key="search_query", value="TEST_LINK_VALUE", task_id=self.task_single_link, dag_id=self.dag_id, run_id=self.dag_run_id, ) XCom.set( key="_link_CustomOpLink", value="http://google.com/custom_base_link?search=TEST_LINK_VALUE", task_id=self.task_single_link, dag_id=self.dag_id, run_id=self.dag_run_id, ) response = test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_single_link}/links", ) assert response.status_code == 200 assert ( response.json() == ExtraLinkCollectionResponse( extra_links={"Google Custom": "http://google.com/custom_base_link?search=TEST_LINK_VALUE"}, total_entries=1, ).model_dump() ) def test_should_respond_200_missing_xcom(self, test_client): response = test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_single_link}/links", ) assert response.status_code == 200 assert ( response.json() == ExtraLinkCollectionResponse(extra_links={"Google Custom": None}, total_entries=1).model_dump() ) def test_should_respond_200_multiple_links(self, test_client, session): XCom.set( key="search_query", value=["TEST_LINK_VALUE_1", "TEST_LINK_VALUE_2"], task_id=self.task_multiple_links, dag_id=self.dag.dag_id, run_id=self.dag_run_id, session=session, ) XCom.set( key="bigquery_1", value="https://console.cloud.google.com/bigquery?j=TEST_LINK_VALUE_1", task_id=self.task_multiple_links, dag_id=self.dag_id, run_id=self.dag_run_id, session=session, ) XCom.set( key="bigquery_2", value="https://console.cloud.google.com/bigquery?j=TEST_LINK_VALUE_2", task_id=self.task_multiple_links, dag_id=self.dag_id, run_id=self.dag_run_id, session=session, ) session.commit() response = test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_multiple_links}/links", ) assert response.status_code == 200 assert ( response.json() == ExtraLinkCollectionResponse( extra_links={ "BigQuery Console #1": "https://console.cloud.google.com/bigquery?j=TEST_LINK_VALUE_1", "BigQuery Console #2": "https://console.cloud.google.com/bigquery?j=TEST_LINK_VALUE_2", }, total_entries=2, ).model_dump() ) def test_should_respond_200_multiple_links_missing_xcom(self, test_client): response = test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_multiple_links}/links", ) assert response.status_code == 200 assert ( response.json() == ExtraLinkCollectionResponse( extra_links={"BigQuery Console #1": None, "BigQuery Console #2": None}, total_entries=2, ).model_dump() ) @pytest.mark.mock_plugin_manager(plugins=[AirflowPluginWithOperatorLinks]) def test_should_respond_200_support_plugins(self, test_client): response = test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_single_link}/links", ) assert response, response.status_code == 200 assert ( response.json() == ExtraLinkCollectionResponse( extra_links={ "Google Custom": None, "Google": "https://www.google.com", "S3": ("https://s3.amazonaws.com/airflow-logs/TEST_DAG_ID/TEST_SINGLE_LINK/"), }, total_entries=3, ).model_dump() ) def test_should_respond_200_mapped_task_instance(self, test_client, session): for map_index, value in enumerate(["TEST_LINK_VALUE_1", "TEST_LINK_VALUE_2"]): XCom.set( key="search_query", value=value, task_id=self.task_mapped, dag_id=self.dag_id, run_id=self.dag_run_id, map_index=map_index, ) XCom.set( key="_link_CustomOpLink", value=f"http://google.com/custom_base_link?search={value}", task_id=self.task_mapped, dag_id=self.dag_id, run_id=self.dag_run_id, map_index=map_index, ) session.commit() response = test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_mapped}/links", params={"map_index": map_index}, ) assert response.status_code == 200 assert ( response.json() == ExtraLinkCollectionResponse( extra_links={"Google Custom": f"http://google.com/custom_base_link?search={value}"}, total_entries=1, ).model_dump() ) def test_should_respond_401_unauthenticated(self, unauthenticated_test_client): response = unauthenticated_test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_single_link}/links", ) assert response.status_code == 401 def test_should_respond_403_unauthorized(self, unauthorized_test_client): response = unauthorized_test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_single_link}/links", ) assert response.status_code == 403 def test_should_respond_404_invalid_map_index(self, test_client): response = test_client.get( f"/dags/{self.dag_id}/dagRuns/{self.dag_run_id}/taskInstances/{self.task_mapped}/links", params={"map_index": 4}, ) assert response.status_code == 404 assert response.json() == {"detail": "TaskInstance not found"}
TestGetExtraLinks
python
pytorch__pytorch
test/test_cuda_multigpu.py
{ "start": 967, "end": 50725 }
class ____(TestCase): FIFTY_MIL_CYCLES = 50000000 def _check_memory_stat_consistency(self): snapshot = torch.cuda.memory_snapshot() expected_each_device = collections.defaultdict( lambda: collections.defaultdict(int) ) for segment in snapshot: expandable = segment["is_expandable"] expected = expected_each_device[segment["device"]] pool_str = segment["segment_type"] + "_pool" if not expandable: expected["segment.all.current"] += 1 expected["segment." + pool_str + ".current"] += 1 expected["allocated_bytes.all.current"] += segment["allocated_size"] expected["allocated_bytes." + pool_str + ".current"] += segment[ "allocated_size" ] expected["reserved_bytes.all.current"] += segment["total_size"] expected["reserved_bytes." + pool_str + ".current"] += segment["total_size"] expected["active_bytes.all.current"] += segment["active_size"] expected["active_bytes." + pool_str + ".current"] += segment["active_size"] expected["requested_bytes.all.current"] += segment["requested_size"] expected["requested_bytes." + pool_str + ".current"] += segment[ "requested_size" ] sum_requested = 0 is_split = len(segment["blocks"]) > 1 for block in segment["blocks"]: if block["state"] == "active_allocated": expected["allocation.all.current"] += 1 expected["allocation." + pool_str + ".current"] += 1 if block["state"].startswith("active_"): sum_requested += block["requested_size"] expected["active.all.current"] += 1 expected["active." + pool_str + ".current"] += 1 if block["state"] == "inactive" and is_split and not expandable: expected["inactive_split.all.current"] += 1 expected["inactive_split." + pool_str + ".current"] += 1 expected["inactive_split_bytes.all.current"] += block["size"] expected["inactive_split_bytes." + pool_str + ".current"] += block[ "size" ] self.assertEqual(sum_requested, segment["requested_size"]) for device, expected in expected_each_device.items(): stats = torch.cuda.memory_stats(device) for k, v in expected.items(): self.assertEqual(v, stats[k]) def test_cuda_synchronize(self): torch.cuda.synchronize() torch.cuda.synchronize("cuda") torch.cuda.synchronize("cuda:0") torch.cuda.synchronize(0) torch.cuda.synchronize(torch.device("cuda:0")) if TEST_MULTIGPU: torch.cuda.synchronize("cuda:1") torch.cuda.synchronize(1) torch.cuda.synchronize(torch.device("cuda:1")) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"): torch.cuda.synchronize(torch.device("cpu")) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"): torch.cuda.synchronize("cpu") @staticmethod def _test_memory_stats_generator(self, device=None, N=35): if device is None: device = torch.cuda.current_device() m0 = torch.cuda.memory_allocated(device) last_m_arr = [torch.cuda.memory_allocated(device)] max_m_arr = [torch.cuda.max_memory_allocated(device)] last_r_arr = [torch.cuda.memory_reserved(device)] max_r_arr = [torch.cuda.max_memory_reserved(device)] def alloc(*size): with torch.cuda.device(device): # NOTE: do **not** use methods that can have additional # memory overhead, e.g., inplace random sampling methods. # they can leave some memory occupied even after being # deallocated, e.g., initialized RNG state, causing some # memory checks below to fail. return torch.cuda.FloatTensor(*size) def assert_change(comp=1, empty_cache=False, reset_peak=False): # comp > 0: increased # comp = 0: equal # comp < 0: decreased new_m = torch.cuda.memory_allocated(device) new_max_m = torch.cuda.max_memory_allocated(device) if comp > 0: self.assertGreater(new_m, last_m_arr[0]) elif comp < 0: self.assertLess(new_m, last_m_arr[0]) else: self.assertEqual(new_m, last_m_arr[0]) self.assertLessEqual(new_m, new_max_m) self.assertGreaterEqual(new_max_m, max_m_arr[0]) last_m_arr[0] = new_m max_m_arr[0] = new_max_m new_r = torch.cuda.memory_reserved(device) new_max_r = torch.cuda.max_memory_reserved(device) # emptying cache may happen (due to allocation or empty_cache), so # we can't assert new_c >= last_c self.assertLessEqual(new_r, new_max_r) self.assertGreaterEqual(new_max_r, max_r_arr[0]) last_r_arr[0] = new_r max_r_arr[0] = new_max_r stat_key_n_sync = "num_sync_all_streams" stat_key_n_alloc = "num_device_alloc" stat_key_n_free = "num_device_free" if empty_cache: num_sync_1 = torch.cuda.memory_stats(device).get(stat_key_n_sync, -1) self.assertGreaterEqual(num_sync_1, 0) num_alloc_1 = torch.cuda.memory_stats(device).get(stat_key_n_alloc, -1) # if current memory usage is greater than zero we must have # allocated something self.assertGreaterEqual(num_alloc_1, 0 if new_m == 0 else 1) num_free_1 = torch.cuda.memory_stats(device).get(stat_key_n_free, -1) self.assertGreaterEqual(num_free_1, 0) # empty_cache will enforce the call of release_cached_blocks torch.cuda.empty_cache() num_sync_2 = torch.cuda.memory_stats(device).get(stat_key_n_sync, -1) self.assertEqual(num_sync_1 + 1, num_sync_2) num_alloc_2 = torch.cuda.memory_stats(device).get(stat_key_n_alloc, -1) self.assertGreaterEqual(num_alloc_2, num_alloc_1) num_free_2 = torch.cuda.memory_stats(device).get(stat_key_n_free, -1) self.assertGreaterEqual(num_free_2, num_free_1) new_r = torch.cuda.memory_reserved(device) new_max_r = torch.cuda.max_memory_reserved(device) self.assertLessEqual(new_r, last_r_arr[0]) self.assertLessEqual(new_r, new_max_r) self.assertEqual(new_max_r, max_r_arr[0]) last_r_arr[0] = new_r if reset_peak: torch.cuda.reset_peak_memory_stats(device) self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0]) self.assertEqual(torch.cuda.max_memory_allocated(device), last_m_arr[0]) max_m_arr[0] = last_m_arr[0] self.assertEqual(torch.cuda.memory_reserved(device), last_r_arr[0]) self.assertEqual(torch.cuda.max_memory_reserved(device), last_r_arr[0]) max_r_arr[0] = last_r_arr[0] assert_change(0) assert_change(0, reset_peak=True) assert_change(0, empty_cache=True) assert_change(0, reset_peak=True) assert_change(0) yield tensors1 = [alloc(1), alloc(10, 20), alloc(200, 300, 2000)] m1 = torch.cuda.memory_allocated(device) assert_change(1) yield tensors2 = [] for i in range(1, int(N / 2) + 1): # small ones tensors2.append(alloc(i, i * 4)) assert_change(1) yield for i in range(5, int(N / 2) + 5): # large ones tensors2.append(alloc(i, i * 7, i * 9, i * 11)) assert_change(1, reset_peak=(i % 2 == 0)) yield tensors2.append(alloc(0, 0, 0)) assert_change(0) yield permute = [] for i in torch.randperm(len(tensors2)): permute.append(tensors2[i]) assert_change(0) yield del tensors2 assert_change(0) yield tensors2 = permute assert_change(0) yield del permute assert_change(0, reset_peak=True) yield for i in range(int(N / 2)): x = tensors2[i].numel() del tensors2[i] assert_change(-x) # in case that tensors2[i] is empty yield for i in range(2, int(2 * N / 3) + 2): tensors2.append(alloc(i, i * 3, i * 8)) assert_change(1) yield del tensors2 assert_change(-1, reset_peak=True) assert_change(0) self.assertEqual(torch.cuda.memory_allocated(device), m1) yield True del tensors1 assert_change(-1, reset_peak=True) self.assertEqual(torch.cuda.memory_allocated(device), m0) # test empty_cache and reset_peak assert_change(0, empty_cache=True) assert_change(0, reset_peak=True) @unittest.skipIf(TEST_CUDAMALLOCASYNC, "temporarily disabled") @serialTest() def test_memory_stats(self): gc.collect() torch.cuda.empty_cache() for _ in self._test_memory_stats_generator(self): self._check_memory_stat_consistency() @unittest.skipIf(TEST_CUDAMALLOCASYNC, "temporarily disabled") @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_memory_stats_multigpu(self): # advance a generator with a end flag def advance(gen, end): if not end: try: next(gen) except StopIteration: end = True return end # interlace torch.cuda.empty_cache() gen0 = self._test_memory_stats_generator(self, device="cuda:0", N=35) gen1 = self._test_memory_stats_generator( self, device=torch.device("cuda:1"), N=35 ) end0 = end1 = False while not (end0 and end1): end0 = advance(gen0, end0) end1 = advance(gen1, end1) # semi-random order torch.cuda.empty_cache() gen0 = self._test_memory_stats_generator(self, device=0, N=35) gen1 = self._test_memory_stats_generator( self, device=torch.device("cuda:1"), N=35 ) end0 = end1 = False while not (end0 and end1): end0 = advance(gen0, end0) if not end0: gen1_max_times = torch.LongTensor(1).random_(0, 3)[0] else: gen1_max_times = torch.inf t = 0 while t < gen1_max_times and not end1: end1 = advance(gen1, end1) t += 1 @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_autogpu(self): x = torch.randn(5, 5).cuda() y = torch.randn(5, 5).cuda() self.assertEqual(x.get_device(), 0) self.assertEqual(x.get_device(), 0) with torch.cuda.device(1): z = torch.randn(5, 5).cuda() self.assertEqual(z.get_device(), 1) q = x.add(y) self.assertEqual(q.get_device(), 0) w = torch.randn(5, 5).cuda() self.assertEqual(w.get_device(), 1) self.assertEqual(y.cuda().get_device(), 1) z = z.cuda() self.assertEqual(z.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_new(self): x = torch.randn(3, 3).cuda() self.assertEqual(x.new([0, 1, 2]).get_device(), 0) self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1) with torch.cuda.device(1): self.assertEqual(x.new([0, 1, 2]).get_device(), 0) self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_copy_device(self): x = torch.randn(5, 5).cuda() with torch.cuda.device(1): y = x.cuda() self.assertEqual(y.get_device(), 1) self.assertIs(y.cuda(), y) z = y.cuda(0) self.assertEqual(z.get_device(), 0) self.assertIs(z.cuda(0), z) x = torch.randn(5, 5) with torch.cuda.device(1): y = x.cuda() self.assertEqual(y.get_device(), 1) self.assertIs(y.cuda(), y) z = y.cuda(0) self.assertEqual(z.get_device(), 0) self.assertIs(z.cuda(0), z) def _test_copy_sync_current_stream(self, x, y): x_plus_one = x + 1 s0 = torch.cuda.Stream(device=x.device) s1 = torch.cuda.Stream(device=y.device) s2 = torch.cuda.Stream(device=x.device) s3 = torch.cuda.Stream(device=y.device) # same dst stream different src streams with torch.cuda.stream(s0): torch.cuda._sleep(TestCudaMultiGPU.FIFTY_MIL_CYCLES) with torch.cuda.stream(s1): y.copy_(x_plus_one) with torch.cuda.stream(s2), torch.cuda.stream(s1): y.copy_(x) s1.synchronize() # The copy() is synchronized on the current streams of both src and dst. # In the above test, the _sleep() op on s0 will not block the copy() on # s2, but both copies are synchronized on s1 in the dst device. Hence, # x is copied to y after x_plus_one is copied to y. If x and y are on # the same device, both copy() ops are synchronized on s1. self.assertEqual(y, x) # same src stream different dst streams with torch.cuda.stream(s1): torch.cuda._sleep(TestCudaMultiGPU.FIFTY_MIL_CYCLES) with torch.cuda.stream(s0): y.copy_(x_plus_one) with torch.cuda.stream(s3), torch.cuda.stream(s0): y.copy_(x) s0.synchronize() # Similarly, both copy() ops are synchronized on s0. self.assertEqual(y, x) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_copy_streams(self): d0 = torch.device("cuda:0") x0 = torch.zeros(5, 5, device=d0) d1 = torch.device("cuda:1") x1 = torch.zeros(5, 5, device=d1) self._test_copy_sync_current_stream(x0, x1) x2 = torch.zeros(5, 5, device=d0) self._test_copy_sync_current_stream(x0, x2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_cat_autogpu(self): x = torch.randn(4, 4).cuda(1) y = torch.randn(4, 4).cuda(1) z = torch.cat([x, y], 0) self.assertEqual(z.get_device(), x.get_device()) @unittest.skipIf(torch.cuda.device_count() >= 10, "Loading a cuda:9 tensor") def test_load_nonexistent_device(self): # Setup: create a serialized file object with a 'cuda:9' restore location tensor = torch.randn(2, device="cuda") buf = io.BytesIO() torch.save(tensor, buf) # NB: this might not work in the future if serialization changes buf = io.BytesIO(buf.getvalue().replace(b"cuda:0", b"cuda:9")) msg = r"Attempting to deserialize object on CUDA device 9" with self.assertRaisesRegex(RuntimeError, msg): _ = torch.load(buf) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_serialization_remap(self): x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)] def gpu_remap(storage, location): if location == "cuda:1": return storage.cuda(0) with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f, map_location=gpu_remap) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_serialization_remap_dict(self): x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)] with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f, map_location={"cuda:1": "cuda:0"}) for original, copy in zip(x, x_copy): self.assertEqual(copy, original) self.assertIs(type(copy), type(original)) self.assertEqual(copy.get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_multigpu_storage_clone(self): x = torch.randn(4, 4, device="cuda:1").storage() y = x.clone() self.assertEqual(x.get_device(), y.get_device()) for t in ["byte", "char", "short", "int", "long", "half", "double"]: self.assertEqual(getattr(x, t)().get_device(), x.get_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_cuda_set_device(self): x = torch.randn(5, 5) with torch.cuda.device(1): self.assertEqual(x.cuda().get_device(), 1) torch.cuda.set_device(0) self.assertEqual(x.cuda().get_device(), 0) with torch.cuda.device(1): self.assertEqual(x.cuda().get_device(), 1) self.assertEqual(x.cuda().get_device(), 0) torch.cuda.set_device(1) self.assertEqual(x.cuda().get_device(), 0) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_current_stream(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream(device=1) s2 = torch.cuda.current_stream(device=0) self.assertEqual(d0, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(s0, s2) with torch.cuda.device(d1): s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream(1) s2 = torch.cuda.current_stream(d0) self.assertEqual(d1, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(s0, s1) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but got: cpu"): torch.cuda.current_stream(torch.device("cpu")) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") @skipCUDANonDefaultStreamIf(True) def test_default_stream(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") with torch.cuda.device(d0): s0 = torch.cuda.default_stream() with torch.cuda.device(d1): s1 = torch.cuda.default_stream() s2 = torch.cuda.default_stream(device=0) s3 = torch.cuda.default_stream(d1) self.assertEqual(d0, s0.device) self.assertEqual(d1, s1.device) self.assertEqual(d0, s2.device) self.assertEqual(d1, s3.device) self.assertEqual(s0, s2) self.assertEqual(s1, s3) with torch.cuda.device(d0): self.assertEqual(torch.cuda.current_stream(), s0) with torch.cuda.device(d1): self.assertEqual(torch.cuda.current_stream(), s1) with self.assertRaisesRegex(ValueError, "Expected a cuda device, but got: cpu"): torch.cuda.default_stream(torch.device("cpu")) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_event_device(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") e0 = torch.cuda.Event() self.assertEqual(None, e0.device) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.Stream() e1 = s1.record_event() self.assertEqual(s0.device, torch.device("cuda:0")) self.assertEqual(e0.device, torch.device("cuda:0")) self.assertEqual(s1.device, torch.device("cuda:1")) self.assertEqual(e1.device, torch.device("cuda:1")) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_context(self): s0 = torch.cuda.current_stream() s1 = torch.cuda.Stream(device=1) s2 = torch.cuda.Stream(device=0) with torch.cuda.device(s1.device): prev_stream_on_cuda1 = torch.cuda.current_stream() self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) with torch.cuda.stream(s1): self.assertEqual(torch.cuda.current_stream(), s1) self.assertEqual(1, torch.cuda.current_device()) with torch.cuda.stream(s2): self.assertEqual(torch.cuda.current_stream(), s2) self.assertEqual(0, torch.cuda.current_device()) with torch.cuda.stream(s0): self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) self.assertEqual(torch.cuda.current_stream(), s2) self.assertEqual(0, torch.cuda.current_device()) self.assertEqual(torch.cuda.current_stream(), s1) self.assertEqual(1, torch.cuda.current_device()) with torch.cuda.device(s1.device): self.assertEqual(prev_stream_on_cuda1, torch.cuda.current_stream()) self.assertEqual(torch.cuda.current_stream(), s0) self.assertEqual(0, torch.cuda.current_device()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu(self): default_stream = torch.cuda.current_stream() self.assertEqual(default_stream.device, torch.device("cuda:0")) stream = torch.cuda.Stream(device=1) self.assertEqual(stream.device, torch.device("cuda:1")) with torch.cuda.device(1): self.assertEqual(torch.cuda.current_stream().device, torch.device("cuda:1")) self.assertNotEqual(torch.cuda.current_stream(), default_stream) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu_query(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") torch.cuda.synchronize(d0) torch.cuda.synchronize(d1) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() with torch.cuda.device(d1): s1 = torch.cuda.current_stream() torch.cuda._sleep(TestCudaMultiGPU.FIFTY_MIL_CYCLES) self.assertTrue(s0.query()) self.assertFalse(s1.query()) with torch.cuda.device(d0): self.assertTrue(s0.query()) self.assertFalse(s1.query()) with torch.cuda.device(d1): self.assertTrue(s0.query()) self.assertFalse(s1.query()) # deliberately using a different device with torch.cuda.device(d0): s1.synchronize() self.assertTrue(s0.query()) self.assertTrue(s1.query()) with torch.cuda.device(d0): self.assertTrue(s0.query()) self.assertTrue(s1.query()) with torch.cuda.device(d1): self.assertTrue(s0.query()) self.assertTrue(s1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_streams_multi_gpu_eq(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") with torch.cuda.device(d0): s0 = torch.cuda.current_stream() s1 = torch.cuda.current_stream() with torch.cuda.device(d1): s2 = torch.cuda.current_stream() s3 = torch.cuda.current_stream() self.assertTrue(s0 == s0) self.assertTrue(s0 == s1) self.assertTrue(s2 == s2) self.assertTrue(s2 == s3) self.assertFalse(s0 == s2) self.assertFalse(s1 == s3) self.assertEqual(s0.device, s1.device) self.assertEqual(s0.cuda_stream, s1.cuda_stream) self.assertEqual(s2.device, s3.device) self.assertEqual(s2.cuda_stream, s3.cuda_stream) self.assertNotEqual(s0.device, s3.device) self.assertEqual(hash(s0), hash(s1)) self.assertEqual(hash(s2), hash(s3)) self.assertNotEqual(hash(s0), hash(s3)) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_streams_priority(self): low, high = torch.cuda.Stream.priority_range() s0 = torch.cuda.Stream(device=0, priority=low) self.assertEqual(low, s0.priority) self.assertEqual(torch.device("cuda:0"), s0.device) s1 = torch.cuda.Stream(device=1, priority=high) self.assertEqual(high, s1.priority) self.assertEqual(torch.device("cuda:1"), s1.device) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_tensor_device(self): self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 0) self.assertEqual(torch.cuda.FloatTensor(1, device=1).get_device(), 1) with torch.cuda.device(1): self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 1) self.assertEqual(torch.cuda.FloatTensor(1, device=0).get_device(), 0) self.assertEqual(torch.cuda.FloatTensor(1, device=None).get_device(), 1) @staticmethod def _stream_synchronize(self, spin_time_cycles): s = torch.cuda.current_stream() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) e_tik.record(s) torch.cuda._sleep(spin_time_cycles) e_tok.record(s) s.synchronize() self.assertTrue(s.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _event_synchronize(self, spin_time_cycles): s = torch.cuda.current_stream() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) e_tik.record(s) torch.cuda._sleep(spin_time_cycles) s.record_event(e_tok) e_tok.synchronize() self.assertTrue(s.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _event_wait(self, spin_time_cycles): s0 = torch.cuda.current_stream() s1 = torch.cuda.Stream() e_tik = torch.cuda.Event(blocking=True, enable_timing=True) e_tok = torch.cuda.Event(blocking=True, enable_timing=True) e_tik.record(s0) torch.cuda._sleep(spin_time_cycles - 10) e_sync = torch.cuda.Event(blocking=True) e_sync.record() e_sync.wait(s1) with torch.cuda.stream(s1): torch.cuda._sleep(10) s1.synchronize() e_tok.record() e_tok.synchronize() self.assertTrue(s0.query()) self.assertTrue(s1.query()) self.assertTrue(e_sync.query()) # not necessary to check e_tik and e_tok, as elapsed_time would throw # exception if otherwise. return e_tik.elapsed_time(e_tok) @staticmethod def _test_stream_event_nogil(self, sync_func, p2c, c2p): with torch.cuda.device("cuda:1"): c2p.put(0) p2c.get() c2p.put(sync_func(self, TestCudaMultiGPU.FIFTY_MIL_CYCLES)) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_stream_event_nogil(self): for sync_func in [ TestCudaMultiGPU._stream_synchronize, TestCudaMultiGPU._event_synchronize, TestCudaMultiGPU._event_wait, ]: p2c = queue.Queue() c2p = queue.Queue() e_tik = torch.cuda.Event(enable_timing=True) e_tok = torch.cuda.Event(enable_timing=True) t = threading.Thread( target=TestCudaMultiGPU._test_stream_event_nogil, args=(self, sync_func, p2c, c2p), ) t.daemon = True t.start() c2p.get() with torch.cuda.device("cuda:0"): e_tik.record() p2c.put(0) parent_time = sync_func(self, TestCudaMultiGPU.FIFTY_MIL_CYCLES) child_time = c2p.get() e_tok.record() e_tok.synchronize() total_time = e_tik.elapsed_time(e_tok) # Without GIL, synchronizations in parent and child threads can # overlap. The total execution time should be a little bit longer # than spinning fifty million cycles and much shorter than twice of # that. However, testing absolute execution time is not reliable as # it may vary on different hardware in different environments. # Therefore, this test uses relative comparisons, checking if the # sum of parent and child threads execution time is greater than the # real execution time by least 30%. self.assertGreater(parent_time + child_time, total_time * 1.3) # This test is flaky for ROCm, see issue #62602 @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_events_wait(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") torch.cuda.synchronize(d0) torch.cuda.synchronize(d1) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() torch.cuda._sleep(TestCudaMultiGPU.FIFTY_MIL_CYCLES) e0 = torch.cuda.Event() s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.current_stream() self.assertFalse(s0.query()) self.assertTrue(s1.query()) s1.wait_event(e0) s1.synchronize() self.assertTrue(e0.query()) self.assertTrue(s0.query()) self.assertTrue(s1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_events_multi_gpu_query(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e0 = s0.record_event() s0.synchronize() with torch.cuda.device(d1): s1 = torch.cuda.current_stream() torch.cuda._sleep(TestCudaMultiGPU.FIFTY_MIL_CYCLES) e1 = s1.record_event() self.assertTrue(e0.query()) self.assertFalse(e1.query()) with torch.cuda.device(d0): self.assertTrue(e0.query()) self.assertFalse(e1.query()) with torch.cuda.device(d1): self.assertTrue(e0.query()) self.assertFalse(e1.query()) # deliberately using a different device with torch.cuda.device(d0): e1.synchronize() self.assertTrue(e0.query()) self.assertTrue(e1.query()) with torch.cuda.device(d0): self.assertTrue(e0.query()) self.assertTrue(e1.query()) with torch.cuda.device(d1): self.assertTrue(e0.query()) self.assertTrue(e1.query()) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_events_multi_gpu_elapsed_time(self): d0 = torch.device("cuda:0") d1 = torch.device("cuda:1") with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e0 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(10) s0.record_event(e0) with torch.cuda.device(d1): s1 = torch.cuda.current_stream() e1 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(TestCudaMultiGPU.FIFTY_MIL_CYCLES) s1.record_event(e1) e0.synchronize() e1.synchronize() with torch.cuda.device(d0): with self.assertRaises(RuntimeError): self.assertGreater(e0.elapsed_time(e1), 0) with torch.cuda.device(d1): with self.assertRaises(RuntimeError): self.assertGreater(e0.elapsed_time(e1), 0) with torch.cuda.device(d0): s0 = torch.cuda.current_stream() e2 = torch.cuda.Event(enable_timing=True) torch.cuda._sleep(TestCudaMultiGPU.FIFTY_MIL_CYCLES) s0.record_event(e2) s0.synchronize() self.assertGreater(e0.elapsed_time(e2), 0) # deliberately calling from a different device with torch.cuda.device(d1): self.assertGreater(e0.elapsed_time(e2), 0) @contextlib.contextmanager def _get_external_stream(self, device): cudart = torch.cuda.cudart() stream = ctypes.c_ulonglong(0) stream_p = ctypes.POINTER(ctypes.c_void_p)(stream) stream_p_int = ctypes.cast(stream_p, ctypes.c_void_p).value with device: try: out = cudart.cudaStreamCreate(stream_p_int) self.assertEqual(out, 0) self.assertNotEqual(stream.value, 0) yield stream.value finally: out = cudart.cudaStreamDestroy(stream.value) self.assertEqual(out, 0) def test_external_streams(self): device = torch.cuda.device(0) with self._get_external_stream(device) as stream_v: ext_stream = torch.cuda.ExternalStream(stream_v) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) ext_stream = torch.cuda.get_stream_from_external(stream_v, device) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU") def test_external_streams_multi_device(self): device = torch.cuda.device(1) with self._get_external_stream(device) as stream_v: ext_stream = torch.cuda.ExternalStream(stream_v, device=device) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) ext_stream = torch.cuda.get_stream_from_external(stream_v, device) self.assertEqual(stream_v, ext_stream.cuda_stream) self.assertEqual(ext_stream.device.index, device.idx) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_caching_pinned_memory_multi_gpu(self): # checks that the events preventing pinned memory from being reused # too early are recorded on the correct GPU cycles_per_ms = get_cycles_per_ms() t = torch.FloatTensor([1]).pin_memory() ptr = t.data_ptr() gpu_tensor0 = torch.cuda.FloatTensor([0], device=0) gpu_tensor1 = torch.cuda.FloatTensor([0], device=1) with torch.cuda.device(1): torch.cuda._sleep(int(1000 * cycles_per_ms)) # delay the copy by 1s gpu_tensor1.copy_(t, non_blocking=True) del t t = torch.FloatTensor([2]).pin_memory() self.assertNotEqual(t.data_ptr(), ptr, msg="allocation reused too soon") with torch.cuda.device(0): gpu_tensor0.copy_(t, non_blocking=True) self.assertEqual(gpu_tensor1[0], 1) self.assertEqual(gpu_tensor0[0], 2) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_get_set_rng_state_all(self): states = torch.cuda.get_rng_state_all() before0 = torch.cuda.FloatTensor(100, device=0).normal_() before1 = torch.cuda.FloatTensor(100, device=1).normal_() torch.cuda.set_rng_state_all(states) after0 = torch.cuda.FloatTensor(100, device=0).normal_() after1 = torch.cuda.FloatTensor(100, device=1).normal_() self.assertEqual(before0, after0, atol=0, rtol=0) self.assertEqual(before1, after1, atol=0, rtol=0) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_rng_state_offset(self): before = torch.cuda.get_rng_state() torch.cuda._set_rng_state_offset(100) offset = torch.cuda._get_rng_state_offset() torch.cuda.set_rng_state(before) self.assertEqual(offset, 100) # Verifies that mem_get_info works, including when called for a different device def test_mem_get_info(self): def _test(device: Union[str, int, torch.device]): # Prevent PyTorch from reusing the allocated memory torch.cuda.empty_cache() torch.cuda.synchronize() before_free_bytes, before_available_bytes = torch.cuda.mem_get_info(device) # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms t = torch.randn(1024 * 1024 * 8, device=device) # noqa: F841 if IS_JETSON: # w/o syncing, mem_get_info will run before memory allocated has actually increased. # This race condition causes consistent failure torch.cuda.synchronize() after_free_bytes, after_available_bytes = torch.cuda.mem_get_info(device) self.assertLess(after_free_bytes, before_free_bytes) self.assertEqual(before_available_bytes, after_available_bytes) # Test calls with different device representations _test(0) _test(torch.device("cuda")) _test(torch.device("cuda:0")) _test("cuda") _test("cuda:0") if TEST_MULTIGPU: _test(1) _test(torch.device("cuda:1")) _test("cuda:1") # Test that wrap_with_cuda_memory_check successfully detects leak def test_cuda_memory_leak_detection(self): l = [] @self.wrap_with_cuda_memory_check def no_leak(): pass @self.wrap_with_cuda_memory_check def leak_gpu0(): # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:0"))) no_leak() regex = r"CUDA driver API confirmed .+ on device 0.+" if IS_JETSON: try: leak_gpu0() except RuntimeError as e: import re assert re.match(regex, str(e)), str(e) + "\n does not match: \n" + regex else: # assertRaisesRegex does not pass with Python for Jetson, # even though the RuntimeError matches regex using re.match with self.assertRaisesRegex(RuntimeError, regex): leak_gpu0() if TEST_MULTIGPU: @self.wrap_with_cuda_memory_check def leak_gpu1(): # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:1"))) with self.assertRaisesRegex( RuntimeError, r"CUDA driver API confirmed .+ on device 1.+" ): leak_gpu1() @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_streaming_backwards_device_transfer(self): # This function must run with non-default current streams on all devices, otherwise it's meaningless. # The intention is to test that to()'s backward (CopyBackward) interacts properly with the # synchronization logic in torch/csrc/autograd/input_buffer.cpp. dev0 = torch.device("cuda:0") dev1 = torch.device("cuda:1") # Unfortunately I need to make the tensors largeish. # Bigger tensors = longer D2D transfers = more likely to expose races. size = 2**26 a = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True) b = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True) # Here to_backward_recipient = a*b is used only once, so MulBackward's InputBuffer slot only expects 1 input. # This tests the situation where we don't call InputBuffer::accumulate for MulBackward's InputBuffer. to_backward_recipient = a * b s = to_backward_recipient.to(device="cuda:0").sum() torch.cuda.synchronize(device=dev0) torch.cuda.synchronize(device=dev1) s.backward() self.assertTrue(a.grad.sum().item() == size) self.assertTrue(b.grad.sum().item() == size) # Here to_backward_recipient = a*b is used twice, so MulBackward's InputBuffer slot expects 2 inputs. # This tests the situation where we do call InputBuffer::accumulate for MulBackward's InputBuffer. a.grad = None b.grad = None to_backward_recipient = a * b # Multiply by 2 here so to's backward creates gradient values that are different from the case above, # to mitigate weirdness if the caching allocator happens to reuse memory regions that were populated # with 1s by the case above s0 = to_backward_recipient.to(device="cuda:0").sum() * 2.0 s1 = to_backward_recipient.to(device="cuda:0").sum() * 2.0 torch.cuda.synchronize(device=dev0) torch.cuda.synchronize(device=dev1) s0.backward(retain_graph=True) s1.backward() self.assertTrue(a.grad.sum().item() == 4 * size) self.assertTrue(b.grad.sum().item() == 4 * size) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") @unittest.skipIf(IS_SANDCASTLE or IS_REMOTE_GPU, "Does not work on Sandcastle") def test_cuda_init_race(self): # See https://github.com/pytorch/pytorch/issues/16559 import subprocess subprocess.check_call( [ sys.executable, "-c", """\ import torch import threading def worker(rank): torch.tensor([1.]).cuda(rank) t1 = threading.Thread(target=worker, args=(0,)) t2 = threading.Thread(target=worker, args=(1,)) t1.start() t2.start() """, ] ) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_device_as_key(self): # Ensure that different instances of "device" objects that point to the same device # are treated as identical keys by dicts. GradScaler relies on this behavior, and may # error otherwise in a way that's difficult to detect (a silent performance hit). d = {} t = torch.empty((1,), device="cuda:0") dev0a = torch.device("cuda:0") dev0b = torch.device("cuda:0") dev1a = torch.device("cuda:1") dev1b = torch.device("cuda:1") self.assertTrue(hash(dev0a) == hash(dev0b)) self.assertTrue(hash(dev1a) == hash(dev1b)) d[dev0a] = "0a" d[dev0b] = "0b" self.assertTrue(len(d) == 1) self.assertTrue(d[dev0a] == "0b") d[t.device] = "t" self.assertTrue(len(d) == 1) self.assertTrue(d[dev0a] == "t") d[dev1a] = "1a" d[dev1b] = "1b" self.assertTrue(len(d) == 2) self.assertTrue(d[dev1a] == "1b") @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_scale(self): scaler = torch.amp.GradScaler(device="cuda", init_scale=2.0) t0 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0") t1 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:1") # Create some nested iterables of tensors on different devices. outputs = ( t1.clone(), (t0.clone(), t1.clone()), [t0.clone(), (t1.clone(), t0.clone())], ) outputs = scaler.scale(outputs) self.assertTrue( outputs[0] == 8.0 and outputs[1][0] == 8.0 and outputs[1][1] == 8.0 and outputs[2][0] == 8.0 and outputs[2][1][0] == 8.0 and outputs[2][1][1] == 8.0 ) self.assertTrue(scaler._scale.device == t1.device) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_grad_scaling_multigpu(self): # Same as above, but runs some of the models on device 1. # GradScaler should transparently handle losses and gradients on multiple devices. # This test could be combined with the test above, but I think it makes sense to treat # multi-GPU operations separately. dev0 = torch.device("cuda:0") dev1 = torch.device("cuda:1") for enabled in True, False: ( mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter, ) = _create_scaling_case() ( mod_control1, mod_scaling1, opt_control1, opt_scaling1, ) = _create_scaling_models_optimizers(device=dev1) scaler = torch.amp.GradScaler( device="cuda", init_scale=128.0, growth_factor=2.0, enabled=enabled, growth_interval=1, ) def run(model0, model1, optimizer0, optimizer1, try_scaling_api): for i, (input, target) in enumerate(data): optimizer0.zero_grad() optimizer1.zero_grad() output0 = model0(input) output1 = model1(input.to(dev1)) loss0 = loss_fn(0.3 * output0 + 0.7 * output1.to(dev0), target) loss1 = loss_fn( 0.6 * output0.to(dev1) - 0.4 * output1, target.to(dev1) ) if try_scaling_api: scaler.scale(loss0).backward(retain_graph=True) scaler.scale(loss1).backward() if i == skip_iter and scaler.is_enabled(): model1[1].weight.grad.data.fill_(float("inf")) # As an additional stress test, separately unscale for one of the optimizers. scaler.unscale_(optimizer0) scaler.step(optimizer0) scaler.step(optimizer1) # Make sure the found_infs were collected properly across optimizers and devices. if scaler.is_enabled(): self.assertTrue( len(scaler._found_inf_per_device(optimizer0)) == 1 ) self.assertTrue( len(scaler._found_inf_per_device(optimizer1)) == 1 ) self.assertTrue( scaler._found_inf_per_device(optimizer0)[dev0].item() == 0.0 ) self.assertTrue( scaler._found_inf_per_device(optimizer1)[dev1].item() == float(i == skip_iter) ) scaler.update() else: loss0.backward(retain_graph=True) loss1.backward() optimizer0.step() if (not scaler.is_enabled()) or (i != skip_iter): optimizer1.step() run(mod_control0, mod_control1, opt_control0, opt_control1, False) run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True) # The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once. self.assertTrue( scaler.get_scale() == ( 128.0 * scaler.get_growth_factor() ** 3 * scaler.get_backoff_factor() ** 1 ) if enabled else 1.0 ) # Copy mod_control1 and mod_scaling1 back the device 0 for comparison mod_control1.to(dev0) mod_scaling1.to(dev0) for c, s in zip( chain(mod_control0.parameters(), mod_control1.parameters()), chain(mod_scaling0.parameters(), mod_scaling1.parameters()), ): self.assertEqual(c, s, rtol=1e-5, atol=1e-7) @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs") def test_cuda_device_memory_allocated(self): from torch.cuda import memory_allocated device_count = torch.cuda.device_count() current_alloc = [memory_allocated(idx) for idx in range(device_count)] _x = torch.ones(10, device="cuda:0") self.assertGreater(memory_allocated(0), current_alloc[0]) self.assertTrue( all( memory_allocated(torch.cuda.device(idx)) == current_alloc[idx] for idx in range(1, device_count) ) )
TestCudaMultiGPU
python
PyCQA__pylint
examples/deprecation_checker.py
{ "start": 1936, "end": 4245 }
class ____(DeprecatedMixin, BaseChecker): """Class implementing deprecation checker.""" # DeprecatedMixin class is Mixin class implementing logic for searching deprecated methods and functions. # The list of deprecated methods/functions is defined by the implementing class via # deprecated_methods callback. DeprecatedMixin class is overriding attributes of BaseChecker hence must # be specified *before* BaseChecker in list of base classes. # The name defines a custom section of the config for this checker. name = "deprecated" # Register messages emitted by the checker. msgs = { **DeprecatedMixin.DEPRECATED_METHOD_MESSAGE, **DeprecatedMixin.DEPRECATED_ARGUMENT_MESSAGE, } def deprecated_methods(self) -> set[str]: """Callback method called by DeprecatedMixin for every method/function found in the code. Returns: collections.abc.Container of deprecated function/method names. """ return {"mymodule.deprecated_function", "mymodule.MyClass.deprecated_method"} def deprecated_arguments(self, method: str) -> tuple[tuple[int | None, str], ...]: """Callback returning the deprecated arguments of method/function. Returns: collections.abc.Iterable in form: ((POSITION1, PARAM1), (POSITION2: PARAM2) ...) where * POSITIONX - position of deprecated argument PARAMX in function definition. If argument is keyword-only, POSITIONX should be None. * PARAMX - name of the deprecated argument. """ if method == "mymodule.myfunction": # myfunction() has two deprecated arguments: # * deprecated_arg1 defined at 2nd position and # * deprecated_arg2 defined at 5th position. return ((2, "deprecated_arg1"), (5, "deprecated_arg2")) if method == "mymodule.MyClass.mymethod": # mymethod() has two deprecated arguments: # * deprecated1 defined at 2nd position and # * deprecated2 defined at 4th position. return ((2, "deprecated1"), (4, "deprecated2")) return () def register(linter: PyLinter) -> None: linter.register_checker(DeprecationChecker(linter))
DeprecationChecker
python
chroma-core__chroma
chromadb/api/types.py
{ "start": 59033, "end": 59127 }
class ____: enabled: bool config: IntInvertedIndexConfig @dataclass
IntInvertedIndexType
python
rapidsai__cudf
python/cudf/cudf/core/join/_join_helpers.py
{ "start": 1140, "end": 1363 }
class ____(_Indexer): def get(self, obj: DataFrame) -> ColumnBase: return obj._data[self.name] def set(self, obj: DataFrame, value: ColumnBase): obj._data.set_by_label(self.name, value)
_ColumnIndexer
python
altair-viz__altair
altair/vegalite/v6/schema/channels.py
{ "start": 838725, "end": 839464 }
class ____(ValueChannelMixin, core.PositionValueDef): """ ThetaValue schema wrapper. Definition object for a constant value (primitive value or gradient definition) of an encoding channel. Parameters ---------- value : dict, float, :class:`ExprRef`, Literal['height', 'width'] A constant value in visual domain (e.g., ``"red"`` / ``"#0099ff"`` / `gradient definition <https://vega.github.io/vega-lite/docs/types.html#gradient>`__ for color, values between ``0`` to ``1`` for opacity). """ _class_is_valid_at_instantiation = False _encoding_name = "theta" def __init__(self, value, **kwds): super().__init__(value=value, **kwds) @with_property_setters
ThetaValue
python
PyCQA__pyflakes
pyflakes/test/test_imports.py
{ "start": 265, "end": 3814 }
class ____(TestCase): def test_import_basic(self): binding = Importation('a', None, 'a') assert binding.source_statement == 'import a' assert str(binding) == 'a' def test_import_as(self): binding = Importation('c', None, 'a') assert binding.source_statement == 'import a as c' assert str(binding) == 'a as c' def test_import_submodule(self): binding = SubmoduleImportation('a.b', None) assert binding.source_statement == 'import a.b' assert str(binding) == 'a.b' def test_import_submodule_as(self): # A submodule import with an as clause is not a SubmoduleImportation binding = Importation('c', None, 'a.b') assert binding.source_statement == 'import a.b as c' assert str(binding) == 'a.b as c' def test_import_submodule_as_source_name(self): binding = Importation('a', None, 'a.b') assert binding.source_statement == 'import a.b as a' assert str(binding) == 'a.b as a' def test_importfrom_relative(self): binding = ImportationFrom('a', None, '.', 'a') assert binding.source_statement == 'from . import a' assert str(binding) == '.a' def test_importfrom_relative_parent(self): binding = ImportationFrom('a', None, '..', 'a') assert binding.source_statement == 'from .. import a' assert str(binding) == '..a' def test_importfrom_relative_with_module(self): binding = ImportationFrom('b', None, '..a', 'b') assert binding.source_statement == 'from ..a import b' assert str(binding) == '..a.b' def test_importfrom_relative_with_module_as(self): binding = ImportationFrom('c', None, '..a', 'b') assert binding.source_statement == 'from ..a import b as c' assert str(binding) == '..a.b as c' def test_importfrom_member(self): binding = ImportationFrom('b', None, 'a', 'b') assert binding.source_statement == 'from a import b' assert str(binding) == 'a.b' def test_importfrom_submodule_member(self): binding = ImportationFrom('c', None, 'a.b', 'c') assert binding.source_statement == 'from a.b import c' assert str(binding) == 'a.b.c' def test_importfrom_member_as(self): binding = ImportationFrom('c', None, 'a', 'b') assert binding.source_statement == 'from a import b as c' assert str(binding) == 'a.b as c' def test_importfrom_submodule_member_as(self): binding = ImportationFrom('d', None, 'a.b', 'c') assert binding.source_statement == 'from a.b import c as d' assert str(binding) == 'a.b.c as d' def test_importfrom_star(self): binding = StarImportation('a.b', None) assert binding.source_statement == 'from a.b import *' assert str(binding) == 'a.b.*' def test_importfrom_star_relative(self): binding = StarImportation('.b', None) assert binding.source_statement == 'from .b import *' assert str(binding) == '.b.*' def test_importfrom_future(self): binding = FutureImportation('print_function', None, None) assert binding.source_statement == 'from __future__ import print_function' assert str(binding) == '__future__.print_function' def test_unusedImport_underscore(self): """ The magic underscore var should be reported as unused when used as an import alias. """ self.flakes('import fu as _', m.UnusedImport)
TestImportationObject
python
tornadoweb__tornado
tornado/test/httpserver_test.py
{ "start": 9644, "end": 11066 }
class ____(RequestHandler): def prepare(self): self.errors = {} # type: Dict[str, str] fields = [ ("method", str), ("uri", str), ("version", str), ("remote_ip", str), ("protocol", str), ("host", str), ("path", str), ("query", str), ] for field, expected_type in fields: self.check_type(field, getattr(self.request, field), expected_type) self.check_type("header_key", list(self.request.headers.keys())[0], str) self.check_type("header_value", list(self.request.headers.values())[0], str) self.check_type("cookie_key", list(self.request.cookies.keys())[0], str) self.check_type( "cookie_value", list(self.request.cookies.values())[0].value, str ) # secure cookies self.check_type("arg_key", list(self.request.arguments.keys())[0], str) self.check_type("arg_value", list(self.request.arguments.values())[0][0], bytes) def post(self): self.check_type("body", self.request.body, bytes) self.write(self.errors) def get(self): self.write(self.errors) def check_type(self, name, obj, expected_type): actual_type = type(obj) if expected_type != actual_type: self.errors[name] = f"expected {expected_type}, got {actual_type}"
TypeCheckHandler
python
doocs__leetcode
solution/3300-3399/3319.K-th Largest Perfect Subtree Size in Binary Tree/Solution.py
{ "start": 192, "end": 726 }
class ____: def kthLargestPerfectSubtree(self, root: Optional[TreeNode], k: int) -> int: def dfs(root: Optional[TreeNode]) -> int: if root is None: return 0 l, r = dfs(root.left), dfs(root.right) if l < 0 or l != r: return -1 cnt = l + r + 1 nums.append(cnt) return cnt nums = [] dfs(root) if len(nums) < k: return -1 nums.sort(reverse=True) return nums[k - 1]
Solution
python
pypa__pipenv
pipenv/patched/pip/_internal/req/req_file.py
{ "start": 14931, "end": 20324 }
class ____(Exception): def __init__(self, msg: str) -> None: self.msg = msg def build_parser() -> optparse.OptionParser: """ Return a parser for parsing requirement lines """ parser = optparse.OptionParser(add_help_option=False) option_factories = SUPPORTED_OPTIONS + SUPPORTED_OPTIONS_REQ for option_factory in option_factories: option = option_factory() parser.add_option(option) # By default optparse sys.exits on parsing errors. We want to wrap # that in our own exception. def parser_exit(self: Any, msg: str) -> "NoReturn": raise OptionParsingError(msg) # NOTE: mypy disallows assigning to a method # https://github.com/python/mypy/issues/2427 parser.exit = parser_exit # type: ignore return parser def join_lines(lines_enum: ReqFileLines) -> ReqFileLines: """Joins a line ending in '\' with the previous line (except when following comments). The joined line takes on the index of the first line. """ primary_line_number = None new_line: List[str] = [] for line_number, line in lines_enum: if not line.endswith("\\") or COMMENT_RE.match(line): if COMMENT_RE.match(line): # this ensures comments are always matched later line = " " + line if new_line: new_line.append(line) assert primary_line_number is not None yield primary_line_number, "".join(new_line) new_line = [] else: yield line_number, line else: if not new_line: primary_line_number = line_number new_line.append(line.strip("\\")) # last line contains \ if new_line: assert primary_line_number is not None yield primary_line_number, "".join(new_line) # TODO: handle space after '\'. def ignore_comments(lines_enum: ReqFileLines) -> ReqFileLines: """ Strips comments and filter empty lines. """ for line_number, line in lines_enum: line = COMMENT_RE.sub("", line) line = line.strip() if line: yield line_number, line def expand_env_variables(lines_enum: ReqFileLines) -> ReqFileLines: """Replace all environment variables that can be retrieved via `os.getenv`. The only allowed format for environment variables defined in the requirement file is `${MY_VARIABLE_1}` to ensure two things: 1. Strings that contain a `$` aren't accidentally (partially) expanded. 2. Ensure consistency across platforms for requirement files. These points are the result of a discussion on the `github pull request #3514 <https://github.com/pypa/pip/pull/3514>`_. Valid characters in variable names follow the `POSIX standard <http://pubs.opengroup.org/onlinepubs/9699919799/>`_ and are limited to uppercase letter, digits and the `_` (underscore). """ for line_number, line in lines_enum: for env_var, var_name in ENV_VAR_RE.findall(line): value = os.getenv(var_name) if not value: continue line = line.replace(env_var, value) yield line_number, line def get_file_content(url: str, session: "PipSession") -> Tuple[str, str]: """Gets the content of a file; it may be a filename, file: URL, or http: URL. Returns (location, content). Content is unicode. Respects # -*- coding: declarations on the retrieved files. :param url: File path or url. :param session: PipSession instance. """ scheme = urllib.parse.urlsplit(url).scheme # Pip has special support for file:// URLs (LocalFSAdapter). if scheme in ["http", "https", "file"]: # Delay importing heavy network modules until absolutely necessary. from pipenv.patched.pip._internal.network.utils import raise_for_status resp = session.get(url) raise_for_status(resp) return resp.url, resp.text # Assume this is a bare path. try: with open(url, "rb") as f: raw_content = f.read() except OSError as exc: raise InstallationError(f"Could not open requirements file: {exc}") content = _decode_req_file(raw_content, url) return url, content def _decode_req_file(data: bytes, url: str) -> str: for bom, encoding in BOMS: if data.startswith(bom): return data[len(bom) :].decode(encoding) for line in data.split(b"\n")[:2]: if line[0:1] == b"#": result = PEP263_ENCODING_RE.search(line) if result is not None: encoding = result.groups()[0].decode("ascii") return data.decode(encoding) try: return data.decode(DEFAULT_ENCODING) except UnicodeDecodeError: locale_encoding = locale.getpreferredencoding(False) or sys.getdefaultencoding() logging.warning( "unable to decode data from %s with default encoding %s, " "falling back to encoding from locale: %s. " "If this is intentional you should specify the encoding with a " "PEP-263 style comment, e.g. '# -*- coding: %s -*-'", url, DEFAULT_ENCODING, locale_encoding, locale_encoding, ) return data.decode(locale_encoding)
OptionParsingError
python
kamyu104__LeetCode-Solutions
Python/lexicographically-smallest-negated-permutation-that-sums-to-target.py
{ "start": 52, "end": 734 }
class ____(object): def lexSmallestNegatedPerm(self, n, target): """ :type n: int :type target: int :rtype: List[int] """ def count(x): return (x+1)*x//2 total = count(n) if abs(target) > total or (target-total)%2: return [] result = [0]*n left, right = 0, n-1 for i in reversed(xrange(1, n+1)): if target-(-i) <= count(i-1): target -= -i result[left] = -i left += 1 else: target -= i result[right] = i right -= 1 return result
Solution
python
huggingface__transformers
src/transformers/models/idefics/modeling_idefics.py
{ "start": 37644, "end": 48729 }
class ____(IdeficsPreTrainedModel): """ Transformer decoder consisting of `config.num_hidden_layers` layers. Each layer is a [`IdeficsDecoderLayer`] Args: config: IdeficsConfig """ def __init__(self, config: IdeficsConfig): super().__init__(config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = IdeficsDecoupledEmbedding( num_embeddings=config.vocab_size, num_additional_embeddings=config.additional_vocab_size, embedding_dim=config.hidden_size, partially_freeze=config.freeze_text_layers, padding_idx=self.padding_idx, ) self.image_size = config.vision_config.image_size self.vision_config = config.vision_config # The module using it is not a PreTrainedModel subclass so we need this self.vision_config._attn_implementation = config._attn_implementation self.vision_model = IdeficsVisionTransformer(config.vision_config) # Perceiver Resampler if config.use_resampler: perceiver_config = config.perceiver_config self.perceiver_resampler = IdeficsPerceiverResampler( config, config.vision_config.embed_dim, perceiver_config.resampler_depth, perceiver_config.resampler_n_heads, perceiver_config.resampler_head_dim, perceiver_config.resampler_n_latents, ) self.layers = nn.ModuleList( [IdeficsDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) self.cross_layer_interval = config.cross_layer_interval num_cross_layers = config.num_hidden_layers // self.cross_layer_interval self.gated_cross_attn_layers = nn.ModuleList( [IdeficsGatedCrossAttentionLayer(config, layer_idx=i) for i in range(num_cross_layers)] ) self.gradient_checkpointing = False self.norm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) # Initialize weights and apply final processing self.post_init() self.freeze_relevant_params(config) def freeze_relevant_params(self, config=None): if config is None: config = self.config if config.freeze_text_layers: self.freeze_text_layers(config.freeze_text_module_exceptions) if config.freeze_vision_layers: freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions) def freeze_text_layers(self, module_exceptions=[]): for module in [self.layers, self.norm]: freeze_model(module, module_exceptions=module_exceptions) def freeze_vision_layers(self, module_exceptions=[]): freeze_model(self.vision_model, module_exceptions=module_exceptions) @check_model_inputs() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, image_encoder_embeddings: Optional[torch.FloatTensor] = None, perceiver_embeddings: Optional[torch.FloatTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, IdeficsBaseModelOutputWithPast]: r""" image_encoder_embeddings (`torch.FloatTensor`, *optional*): The output of the image encoder. perceiver_embeddings (`torch.FloatTensor`, *optional*): The output of the perceiver resampler. image_attention_mask (`torch.LongTensor`, *optional*): The attention mask for the image encoder. """ device = input_ids.device if input_ids is not None else inputs_embeds.device if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache(config=self.config) batch_size, seq_length, _ = inputs_embeds.shape past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 seq_length_with_past = seq_length + past_key_values_length if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + inputs_embeds.shape[1], device=inputs_embeds.device ) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) position_ids = position_ids[:, -seq_length:] elif position_ids is None: position_ids = cache_position.unsqueeze(0) if sum(x is None for x in [pixel_values, image_encoder_embeddings, perceiver_embeddings]) != 2: raise ValueError( "Exactly 1 of pixel_values, image_encoder_embeddings or perceiver_embeddings has to be not-None." ) elif pixel_values is not None: pixel_values = pixel_values.to(dtype=self.dtype, device=device) # fp16 compatibility batch_size, num_images = pixel_values.shape[:2] pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) # Get sequence from the vision encoder image_hidden_states = self.vision_model( pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding ).last_hidden_state elif image_encoder_embeddings is not None: batch_size, num_images, image_seq_len, image_hidden_size = image_encoder_embeddings.size() image_hidden_states = image_encoder_embeddings.to(dtype=self.dtype, device=device) image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size) if self.config.use_resampler: if perceiver_embeddings is None: perceiver_embeddings = self.perceiver_resampler(image_hidden_states) image_seq_len, image_hidden_size = perceiver_embeddings.size(1), perceiver_embeddings.size(2) else: batch_size, num_images, image_seq_len, image_hidden_size = perceiver_embeddings.size() image_hidden_states = perceiver_embeddings elif perceiver_embeddings is None: image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) else: raise ValueError("If `perceiver_embeddings` are passed, use_resampler should be True") image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) # # Hack to use the model in full language modeling mode # image_attention_mask = torch.zeros(batch_size, seq_length, 1, dtype=torch.long, device=image_hidden_states.device) # Make image_attention_mask compatible with hidden states text_seq_len = image_attention_mask.size(1) image_attention_mask = image_attention_mask.unsqueeze(-1) image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) if image_hidden_states is not None: image_batch_size, image_sequence_length, _ = image_hidden_states.size() image_hidden_shape = (image_batch_size, image_sequence_length) if image_attention_mask is None: image_attention_mask = torch.ones(image_hidden_shape, device=device) image_attention_mask = self.invert_attention_mask(image_attention_mask) else: image_attention_mask = None # cross_attention_gate: # For any tokens attending to no images, the hidden_states coming out of the cross-attention should be zeroed-out. # `image_attention_mask` has shape [bsz, 1, num_images, hidden_size] with elements equal to either 0.0 or a very negative number. # If any of the elements are 0.0, then the token is attending to at least one image and the gate value is 1. Otherwise the gate value is 0. # `cross_attention_gate` has shape [bsz, seq_len] with elements equal to either 0.0 or 1.0. cross_attention_gate = ((((image_attention_mask == 0.0).any(dim=-1)).to(dtype=self.dtype)).squeeze(dim=1)).to( device ) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds for idx, decoder_layer in enumerate(self.layers): # TODO(ls): Add cross attention values to respective lists if idx % self.cross_layer_interval == 0: cross_attn_block = self.gated_cross_attn_layers[idx // self.cross_layer_interval] hidden_states = cross_attn_block( hidden_states, causal_mask, image_hidden_states, image_attention_mask=image_attention_mask, cross_attention_gate=cross_attention_gate, past_key_values=None, # not implemented **kwargs, ) hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) hidden_states = self.norm(hidden_states) image_hidden_states = image_hidden_states.view(batch_size, num_images, image_seq_len, image_hidden_size) return IdeficsBaseModelOutputWithPast( last_hidden_state=hidden_states, image_hidden_states=image_hidden_states, past_key_values=past_key_values, )
IdeficsModel
python
nedbat__coveragepy
tests/test_report_common.py
{ "start": 6255, "end": 10598 }
class ____(CoverageTest): """Tests of Jinja-like behavior. Jinja2 compiles a template into Python code, and then runs the Python code to render the template. But during rendering, it uses the template name (for example, "template.j2") as the file name, not the Python code file name. Then during reporting, we will try to parse template.j2 as Python code. If the file can be parsed, it's included in the report (as a Python file!). If it can't be parsed, then it's not included in the report. These tests confirm that code doesn't raise an exception (as reported in #1553), and that the current (incorrect) behavior remains stable. Ideally, good.j2 wouldn't be listed at all, since we can't report on it accurately. See https://github.com/coveragepy/coveragepy/issues/1553 for more detail, and https://github.com/coveragepy/coveragepy/issues/1623 for an issue about this behavior. """ def make_files(self) -> None: """Create test files: two Jinja templates, and data from rendering them.""" # A Jinja2 file that is syntactically acceptable Python (though it wont run). self.make_file( "good.j2", """\ {{ data }} line2 line3 """, ) # A Jinja2 file that is a Python syntax error. self.make_file( "bad.j2", """\ This is data: {{ data }}. line 2 line 3 """, ) self.make_data_file( lines={ abs_file("good.j2"): [1, 3, 5, 7, 9], abs_file("bad.j2"): [1, 3, 5, 7, 9], }, ) def test_report(self) -> None: self.make_files() cov = coverage.Coverage() cov.load() cov.report(show_missing=True) expected = textwrap.dedent("""\ Name Stmts Miss Cover Missing --------------------------------------- good.j2 3 1 67% 2 --------------------------------------- TOTAL 3 1 67% """) assert expected == self.stdout() def test_html(self) -> None: self.make_files() cov = coverage.Coverage() cov.load() cov.html_report() contains( "htmlcov/index.html", """\ <tbody> <tr class="region"> <td class="name"><a href="good_j2.html">good.j2</a></td> <td class="spacer">&nbsp;</td> <td>3</td> <td>1</td> <td>0</td> <td class="spacer">&nbsp;</td> <td data-ratio="2 3">67%</td> </tr> </tbody>""", ) doesnt_contain("htmlcov/index.html", "bad.j2") def test_xml(self) -> None: self.make_files() cov = coverage.Coverage() cov.load() cov.xml_report() contains("coverage.xml", 'filename="good.j2"') contains( "coverage.xml", '<line number="1" hits="1"/>', '<line number="2" hits="0"/>', '<line number="3" hits="1"/>', ) doesnt_contain("coverage.xml", 'filename="bad.j2"') doesnt_contain("coverage.xml", '<line number="4"') def test_json(self) -> None: self.make_files() cov = coverage.Coverage() cov.load() cov.json_report() contains( "coverage.json", # Notice the .json report claims lines in good.j2 executed that # don't even exist in good.j2... '"files": {"good.j2": {"executed_lines": [1, 3, 5, 7, 9], ' + '"summary": {"covered_lines": 2, "num_statements": 3', ) doesnt_contain("coverage.json", "bad.j2") def test_lcov(self) -> None: self.make_files() cov = coverage.Coverage() cov.load() cov.lcov_report() with open("coverage.lcov", encoding="utf-8") as lcov: actual = lcov.read() expected = textwrap.dedent("""\ SF:good.j2 DA:1,1 DA:2,0 DA:3,1 LF:3 LH:2 end_of_record """) assert expected == actual
ReportWithJinjaTest
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 539774, "end": 540212 }
class ____(sgqlc.types.Type): """Autogenerated return type of CreateProject""" __schema__ = github_schema __field_names__ = ("client_mutation_id", "project") client_mutation_id = sgqlc.types.Field(String, graphql_name="clientMutationId") """A unique identifier for the client performing the mutation.""" project = sgqlc.types.Field("Project", graphql_name="project") """The new project."""
CreateProjectPayload
python
pypa__pipenv
pipenv/vendor/packaging/_elffile.py
{ "start": 673, "end": 3282 }
class ____: """ Representation of an ELF executable. """ def __init__(self, f: IO[bytes]) -> None: self._f = f try: ident = self._read("16B") except struct.error: raise ELFInvalid("unable to parse identification") magic = bytes(ident[:4]) if magic != b"\x7fELF": raise ELFInvalid(f"invalid magic: {magic!r}") self.capacity = ident[4] # Format for program header (bitness). self.encoding = ident[5] # Data structure encoding (endianness). try: # e_fmt: Format for program header. # p_fmt: Format for section header. # p_idx: Indexes to find p_type, p_offset, and p_filesz. e_fmt, self._p_fmt, self._p_idx = { (1, 1): ("<HHIIIIIHHH", "<IIIIIIII", (0, 1, 4)), # 32-bit LSB. (1, 2): (">HHIIIIIHHH", ">IIIIIIII", (0, 1, 4)), # 32-bit MSB. (2, 1): ("<HHIQQQIHHH", "<IIQQQQQQ", (0, 2, 5)), # 64-bit LSB. (2, 2): (">HHIQQQIHHH", ">IIQQQQQQ", (0, 2, 5)), # 64-bit MSB. }[(self.capacity, self.encoding)] except KeyError: raise ELFInvalid( f"unrecognized capacity ({self.capacity}) or " f"encoding ({self.encoding})" ) try: ( _, self.machine, # Architecture type. _, _, self._e_phoff, # Offset of program header. _, self.flags, # Processor-specific flags. _, self._e_phentsize, # Size of section. self._e_phnum, # Number of sections. ) = self._read(e_fmt) except struct.error as e: raise ELFInvalid("unable to parse machine and section information") from e def _read(self, fmt: str) -> tuple[int, ...]: return struct.unpack(fmt, self._f.read(struct.calcsize(fmt))) @property def interpreter(self) -> str | None: """ The path recorded in the ``PT_INTERP`` section header. """ for index in range(self._e_phnum): self._f.seek(self._e_phoff + self._e_phentsize * index) try: data = self._read(self._p_fmt) except struct.error: continue if data[self._p_idx[0]] != 3: # Not PT_INTERP. continue self._f.seek(data[self._p_idx[1]]) return os.fsdecode(self._f.read(data[self._p_idx[2]])).strip("\0") return None
ELFFile
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/decorator1.py
{ "start": 368, "end": 466 }
class ____: @Wrapper def __init__(self, **kwargs): print(f"{kwargs}") Foo(bar=3)
Foo
python
kamyu104__LeetCode-Solutions
Python/rotate-image.py
{ "start": 31, "end": 613 }
class ____(object): # @param matrix, a list of lists of integers # @return a list of lists of integers def rotate(self, matrix): n = len(matrix) # anti-diagonal mirror for i in xrange(n): for j in xrange(n - i): matrix[i][j], matrix[n-1-j][n-1-i] = matrix[n-1-j][n-1-i], matrix[i][j] # horizontal mirror for i in xrange(n / 2): for j in xrange(n): matrix[i][j], matrix[n-1-i][j] = matrix[n-1-i][j], matrix[i][j] return matrix # Time: O(n^2) # Space: O(n^2)
Solution
python
django__django
django/contrib/postgres/operations.py
{ "start": 2805, "end": 2936 }
class ____(CreateExtension): def __init__(self, hints=None): super().__init__("btree_gin", hints=hints)
BtreeGinExtension
python
huggingface__transformers
src/transformers/models/video_llava/modeling_video_llava.py
{ "start": 5855, "end": 6857 }
class ____(PreTrainedModel): config: VideoLlavaConfig base_model_prefix = "model" input_modalities = ("image", "video", "text") supports_gradient_checkpointing = True _no_split_modules = ["VideoLlavaVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True _can_compile_fullgraph = True _supports_attention_backend = True @torch.no_grad() def _init_weights(self, module): super()._init_weights(module) std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): init.normal_(module.class_embedding, mean=0.0, std=std) @auto_docstring( custom_intro=""" The VideoLlava model which consists of a vision backbone and a language model without language modeling head. """, )
VideoLlavaPreTrainedModel
python
pandas-dev__pandas
pandas/tests/indexes/interval/test_indexing.py
{ "start": 1747, "end": 2250 }
class ____: def test_where(self, listlike_box): klass = listlike_box idx = IntervalIndex.from_breaks(range(11), closed="right") cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected)
TestWhere
python
django-crispy-forms__django-crispy-forms
crispy_forms/bootstrap.py
{ "start": 34054, "end": 35471 }
class ____(Field): """ Layout object for rendering fields as Inline in bootstrap. Attributes ---------- template : str The default template which this Layout Object will be rendered with. attrs : dict Attributes to be applied to the field. These are converted into html attributes. e.g. ``data_id: 'test'`` in the attrs dict will become ``data-id='test'`` on the field's ``<input>``. Parameters ---------- *fields : str Usually a single field, but can be any number of fields, to be rendered with the same attributes applied. css_class : str, optional CSS classes to be applied to the field. These are added to any classes included in the ``attrs`` dict. By default ``None``. wrapper_class: str, optional CSS classes to be used when rendering the Field. This class is usually applied to the ``<div>`` which wraps the Field's ``<label>`` and ``<input>`` tags. By default ``None``. template : str, optional Overrides the default template, if provided. By default ``None``. **kwargs : dict, optional Additional attributes are converted into key="value", pairs. These attributes are added to the ``<div>``. Examples -------- Example:: InlineField('field_name') """ template = "%s/layout/inline_field.html"
InlineField
python
redis__redis-py
redis/commands/search/suggestion.py
{ "start": 466, "end": 1612 }
class ____: """ Internal class used to parse results from the `SUGGET` command. This needs to consume either 1, 2, or 3 values at a time from the return value depending on what objects were requested """ def __init__(self, with_scores: bool, with_payloads: bool, ret) -> None: self.with_scores = with_scores self.with_payloads = with_payloads if with_scores and with_payloads: self.sugsize = 3 self._scoreidx = 1 self._payloadidx = 2 elif with_scores: self.sugsize = 2 self._scoreidx = 1 elif with_payloads: self.sugsize = 2 self._payloadidx = 1 else: self.sugsize = 1 self._scoreidx = -1 self._sugs = ret def __iter__(self): for i in range(0, len(self._sugs), self.sugsize): ss = self._sugs[i] score = float(self._sugs[i + self._scoreidx]) if self.with_scores else 1.0 payload = self._sugs[i + self._payloadidx] if self.with_payloads else None yield Suggestion(ss, score, payload)
SuggestionParser
python
apache__airflow
task-sdk/src/airflow/sdk/definitions/_internal/templater.py
{ "start": 1879, "end": 8628 }
class ____: """ This renders the template fields of object. :meta private: """ # For derived classes to define which fields will get jinjaified. template_fields: Collection[str] # Defines which files extensions to look for in the templated fields. template_ext: Sequence[str] def get_template_env(self, dag: DAG | None = None) -> jinja2.Environment: """Fetch a Jinja template environment from the Dag or instantiate empty environment if no Dag.""" # This is imported locally since Jinja2 is heavy and we don't need it # for most of the functionalities. It is imported by get_template_env() # though, so we don't need to put this after the 'if dag' check. if dag: return dag.get_template_env(force_sandboxed=False) return SandboxedEnvironment(cache_size=0) def prepare_template(self) -> None: """ Execute after the templated fields get replaced by their content. If you need your object to alter the content of the file before the template is rendered, it should override this method to do so. """ def resolve_template_files(self) -> None: """Get the content of files for template_field / template_ext.""" if self.template_ext: for field in self.template_fields: content = getattr(self, field, None) if isinstance(content, str) and content.endswith(tuple(self.template_ext)): env = self.get_template_env() try: setattr(self, field, env.loader.get_source(env, content)[0]) # type: ignore except Exception: log.exception("Failed to resolve template field %r", field) elif isinstance(content, list): env = self.get_template_env() for i, item in enumerate(content): if isinstance(item, str) and item.endswith(tuple(self.template_ext)): try: content[i] = env.loader.get_source(env, item)[0] # type: ignore except Exception: log.exception("Failed to get source %s", item) self.prepare_template() def _do_render_template_fields( self, parent: Any, template_fields: Iterable[str], context: Context, jinja_env: jinja2.Environment, seen_oids: set[int], ) -> None: for attr_name in template_fields: value = getattr(parent, attr_name) rendered_content = self.render_template( value, context, jinja_env, seen_oids, ) if rendered_content: setattr(parent, attr_name, rendered_content) def _render(self, template, context, dag=None) -> Any: if dag and dag.render_template_as_native_obj: return render_template_as_native(template, context) return render_template_to_string(template, context) def render_template( self, content: Any, context: Context, jinja_env: jinja2.Environment | None = None, seen_oids: set[int] | None = None, ) -> Any: """ Render a templated string. If *content* is a collection holding multiple templated strings, strings in the collection will be templated recursively. :param content: Content to template. Only strings can be templated (may be inside a collection). :param context: Dict with values to apply on templated content :param jinja_env: Jinja environment. Can be provided to avoid re-creating Jinja environments during recursion. :param seen_oids: template fields already rendered (to avoid *RecursionError* on circular dependencies) :return: Templated content """ # "content" is a bad name, but we're stuck to it being public API. value = content del content if seen_oids is not None: oids = seen_oids else: oids = set() if id(value) in oids: return value if not jinja_env: jinja_env = self.get_template_env() if isinstance(value, str): if value.endswith(tuple(self.template_ext)): # A filepath. template = jinja_env.get_template(value) else: template = jinja_env.from_string(value) return self._render(template, context) if isinstance(value, ObjectStoragePath): return self._render_object_storage_path(value, context, jinja_env) if resolve := getattr(value, "resolve", None): return resolve(context) # Fast path for common built-in collections. if value.__class__ is tuple: return tuple(self.render_template(element, context, jinja_env, oids) for element in value) if isinstance(value, tuple): # Special case for named tuples. return value.__class__(*(self.render_template(el, context, jinja_env, oids) for el in value)) if isinstance(value, list): return [self.render_template(element, context, jinja_env, oids) for element in value] if isinstance(value, dict): return {k: self.render_template(v, context, jinja_env, oids) for k, v in value.items()} if isinstance(value, set): return {self.render_template(element, context, jinja_env, oids) for element in value} # More complex collections. self._render_nested_template_fields(value, context, jinja_env, oids) return value def _render_object_storage_path( self, value: ObjectStoragePath, context: Context, jinja_env: jinja2.Environment ) -> ObjectStoragePath: serialized_path = value.serialize() path_version = value.__version__ serialized_path["path"] = self._render(jinja_env.from_string(serialized_path["path"]), context) return value.deserialize(data=serialized_path, version=path_version) def _render_nested_template_fields( self, value: Any, context: Context, jinja_env: jinja2.Environment, seen_oids: set[int], ) -> None: if id(value) in seen_oids: return seen_oids.add(id(value)) try: nested_template_fields = value.template_fields except AttributeError: # content has no inner template fields return self._do_render_template_fields(value, nested_template_fields, context, jinja_env, seen_oids)
Templater
python
geekcomputers__Python
diceV2_dynamic.py
{ "start": 120, "end": 2689 }
class ____: def __init__(self): self.sideCount = 6 def setSides(self, sides): if sides > 3: self.sides = sides else: print( "This absolutely shouldn't ever happen. The programmer sucks or someone " "has tweaked with code they weren't supposed to touch!" ) def roll(self): return random.randint(1, self.sides) # ===================================================================== # Checks to make sure that the input is actually an integer. # This implementation can be improved greatly of course. def checkInput(sides): try: if int(sides) != 0: if ( float(sides) % int(sides) == 0 ): # excludes the possibility of inputted floats being rounded. return int(sides) else: return int(sides) except ValueError: print("Invalid input!") return None # Picks a number that is at least of a certain size. # That means in this program, the dices being possible to use in 3 dimensional space. def pickNumber(item, question_string, lower_limit): while True: item = input(question_string) item = checkInput(item) if type(item) == int: if item <= lower_limit: print("Input too low!") continue else: return item # Main-function of the program that sets up the dices for the user as they want them. def getDices(): dices = [] sides = None diceAmount = None sideLowerLimit = 3 # Do Not Touch! diceLowerLimit = 1 # Do Not Touch! sides = pickNumber(sides, "How many sides will the dices have?: ", sideLowerLimit) diceAmount = pickNumber( diceAmount, "How many dices will do you want?: ", diceLowerLimit ) for i in range(0, diceAmount): d = Dice() d.setSides(sides) dices.append(d) return dices # ================================================================= # Output section. def output(): dices = getDices() input("Do you wanna roll? press enter") cont = True while cont: rollOutput = "" for dice in dices: rollOutput = rollOutput + str(dice.roll()) + ", " rollOutput = rollOutput[:-2] print(rollOutput) print("do you want to roll again?") ans = input("press enter to continue, and [exit] to exit") if ans == "exit": cont = False if __name__ == "__main__": output()
Dice
python
ansible__ansible
lib/ansible/module_utils/facts/system/caps.py
{ "start": 840, "end": 2409 }
class ____(BaseFactCollector): name = 'caps' _fact_ids = set(['system_capabilities', 'system_capabilities_enforced']) # type: t.Set[str] def collect(self, module=None, collected_facts=None): rc = -1 facts_dict = {'system_capabilities_enforced': 'N/A', 'system_capabilities': 'N/A'} if module: capsh_path = module.get_bin_path('capsh') if capsh_path: # NOTE: -> get_caps_data()/parse_caps_data() for easier mocking -akl try: rc, out, err = module.run_command([capsh_path, "--print"], errors='surrogate_then_replace', handle_exceptions=False) except OSError as ex: module.error_as_warning('Could not query system capabilities.', exception=ex) if rc == 0: enforced_caps = [] enforced = 'NA' for line in out.splitlines(): if len(line) < 1: continue if line.startswith('Current:'): if line.split(':')[1].strip() == '=ep': enforced = 'False' else: enforced = 'True' enforced_caps = [i.strip() for i in line.split('=')[1].split(',')] facts_dict['system_capabilities_enforced'] = enforced facts_dict['system_capabilities'] = enforced_caps return facts_dict
SystemCapabilitiesFactCollector
python
encode__django-rest-framework
tests/test_generics.py
{ "start": 14643, "end": 14768 }
class ____(generics.ListCreateAPIView): serializer_class = ClassASerializer queryset = ClassA.objects.all()
ExampleView
python
doocs__leetcode
solution/2600-2699/2662.Minimum Cost of a Path With Special Roads/Solution.py
{ "start": 0, "end": 644 }
class ____: def minimumCost( self, start: List[int], target: List[int], specialRoads: List[List[int]] ) -> int: def dist(x1: int, y1: int, x2: int, y2: int) -> int: return abs(x1 - x2) + abs(y1 - y2) q = [(0, start[0], start[1])] vis = set() ans = inf while q: d, x, y = heappop(q) if (x, y) in vis: continue vis.add((x, y)) ans = min(ans, d + dist(x, y, *target)) for x1, y1, x2, y2, cost in specialRoads: heappush(q, (d + dist(x, y, x1, y1) + cost, x2, y2)) return ans
Solution
python
airbytehq__airbyte
airbyte-integrations/connectors/source-shopify/source_shopify/streams/base_streams.py
{ "start": 7389, "end": 13106 }
class ____(ShopifyStream, ABC): # Setting the check point interval to the limit of the records output state_checkpoint_interval = 250 def __init__(self, config: Dict): super().__init__(config) # _filter_checkpointed_cursor used to checkpoint streams with cursor field - ID in job.get_adjusted_job_end self._filter_checkpointed_cursor = None @property def filter_by_state_checkpoint(self) -> bool: """ This filtering flag stands to guarantee for the NestedSubstreams to emit the STATE correctly, when we have the abnormal STATE distance between Parent and Substream """ return False # Setting the default cursor field for all streams cursor_field = "updated_at" deleted_cursor_field = "deleted_at" _checkpoint_cursor = None @property def default_state_comparison_value(self) -> Union[int, str]: # certain streams are using `id` field as `cursor_field`, which requires to use `int` type, # but many other use `str` values for this, we determine what to use based on `cursor_field` value return 0 if self.cursor_field == "id" else "" def get_updated_state( self, current_stream_state: MutableMapping[str, Any], latest_record: Mapping[str, Any] ) -> MutableMapping[str, Any]: last_record_value = latest_record.get(self.cursor_field) or self.default_state_comparison_value current_state_value = current_stream_state.get(self.cursor_field) or self.default_state_comparison_value return {self.cursor_field: max(last_record_value, current_state_value)} @stream_state_cache.cache_stream_state def request_params( self, stream_state: Optional[Mapping[str, Any]] = None, next_page_token: Optional[Mapping[str, Any]] = None, **kwargs ) -> MutableMapping[str, Any]: params = super().request_params(stream_state=stream_state, next_page_token=next_page_token, **kwargs) # If there is a next page token then we should only send pagination-related parameters. if not next_page_token: params["order"] = f"{self.order_field} asc" if stream_state: params[self.filter_field] = stream_state.get(self.cursor_field) return params def track_checkpoint_cursor(self, record_value: Union[str, int], filter_record_value: Optional[str] = None) -> None: """ Tracks _checkpoint_cursor value (values from cursor field) and _filter_checkpointed_cursor value (value from filter field). _filter_checkpointed_cursor value is only used when cursor field is ID for streams like Customer Address etc. When after canceled/failed job source tries to adjust stream slice (see ShopifyBulkManager._adjust_slice_end()). """ if self.filter_by_state_checkpoint: # set checkpoint cursor if not self._checkpoint_cursor: self._checkpoint_cursor = self.default_state_comparison_value # track checkpoint cursor if str(record_value) >= str(self._checkpoint_cursor): self._checkpoint_cursor = record_value if filter_record_value: if not self._filter_checkpointed_cursor or str(filter_record_value) >= str(self._filter_checkpointed_cursor): self._filter_checkpointed_cursor = filter_record_value def should_checkpoint(self, index: int) -> bool: return self.filter_by_state_checkpoint and index >= self.state_checkpoint_interval # Parse the `records` with respect to the `stream_state` for the `Incremental refresh` # cases where we slice the stream, the endpoints for those classes don't accept any other filtering, # but they provide us with the updated_at field in most cases, so we used that as incremental filtering during the order slicing. def filter_records_newer_than_state( self, stream_state: Optional[Mapping[str, Any]] = None, records_slice: Optional[Iterable[Mapping]] = None, ) -> Iterable: # Getting records >= state if stream_state: state_value = stream_state.get(self.cursor_field, self.default_state_comparison_value) for index, record in enumerate(records_slice, 1): if self.cursor_field in record: record_value = record.get(self.cursor_field, self.default_state_comparison_value) filter_record_value = record.get(self.filter_field) if self.filter_field else None self.track_checkpoint_cursor(record_value, filter_record_value) if record_value: if record_value >= state_value: yield record else: if self.should_checkpoint(index): yield record else: # old entities could have cursor field in place, but set to null self.logger.warning( f"Stream `{self.name}`, Record ID: `{record.get(self.primary_key)}` cursor value is: {record_value}, record is emitted without state comparison" ) yield record else: # old entities could miss the cursor field self.logger.warning( f"Stream `{self.name}`, Record ID: `{record.get(self.primary_key)}` missing cursor field: {self.cursor_field}, record is emitted without state comparison" ) yield record else: yield from records_slice
IncrementalShopifyStream
python
matplotlib__matplotlib
lib/mpl_toolkits/axisartist/floating_axes.py
{ "start": 3829, "end": 4371 }
class ____(ExtremeFinderSimple): # docstring inherited def __init__(self, extremes): """ This subclass always returns the same bounding box. Parameters ---------- extremes : (float, float, float, float) The bounding box that this helper always returns. """ x0, x1, y0, y1 = extremes self._tbbox = Bbox.from_extents(x0, y0, x1, y1) def _find_transformed_bbox(self, trans, bbox): # docstring inherited return self._tbbox
ExtremeFinderFixed
python
doocs__leetcode
solution/0900-0999/0969.Pancake Sorting/Solution.py
{ "start": 0, "end": 598 }
class ____: def pancakeSort(self, arr: List[int]) -> List[int]: def reverse(arr, j): i = 0 while i < j: arr[i], arr[j] = arr[j], arr[i] i, j = i + 1, j - 1 n = len(arr) ans = [] for i in range(n - 1, 0, -1): j = i while j > 0 and arr[j] != i + 1: j -= 1 if j < i: if j > 0: ans.append(j + 1) reverse(arr, j) ans.append(i + 1) reverse(arr, i) return ans
Solution
python
dagster-io__dagster
python_modules/libraries/dagster-aws/dagster_aws_tests/athena_tests/test_resources.py
{ "start": 218, "end": 3153 }
class ____(ResourceWithAthenaConfig): def get_client(self) -> FakeAthenaClient: return FakeAthenaClient( client=boto3.client("athena", region_name="us-east-1"), workgroup=self.workgroup, polling_interval=self.polling_interval, max_polls=self.max_polls, ) @pytest.fixture def mock_athena_client(mock_s3_resource): with mock_athena(): yield boto3.client("athena", region_name="us-east-1") def test_execute_query(mock_athena_client): athena = FakeAthenaClient(client=mock_athena_client) assert athena.execute_query("SELECT 1", fetch_results=True) == [("1",)] assert athena.execute_query( "SELECT * FROM foo", fetch_results=True, expected_results=[(1, None), (2, 3)] ) == [("1",), ("2", "3")] @pytest.mark.parametrize( "expected_states", [ ["SUCCEEDED"], ["QUEUED", "SUCCEEDED"], ["QUEUED", "RUNNING", "SUCCEEDED"], ["QUEUED", "QUEUED", "SUCCEEDED"], ["QUEUED", "RUNNING", "RUNNING", "SUCCEEDED"], ], ) def test_execute_query_state_transitions(mock_athena_client, expected_states): athena = FakeAthenaClient(client=mock_athena_client) athena.execute_query("SELECT 1", expected_states=expected_states) @pytest.mark.parametrize( "expected_states", [ ["FAILED"], ["CANCELLED"], ["QUEUED", "FAILED"], ["QUEUED", "RUNNING", "FAILED"], ["QUEUED", "CANCELLED"], ["QUEUED", "RUNNING", "CANCELLED"], ], ) def test_execute_query_raises(mock_athena_client, expected_states): athena = FakeAthenaClient(client=mock_athena_client) with pytest.raises(AthenaError, match="state change reason"): athena.execute_query("SELECT 1", expected_states=expected_states) def test_execute_query_timeout(mock_athena_client): athena = FakeAthenaClient(client=mock_athena_client, max_polls=1) with pytest.raises(AthenaTimeout): athena.execute_query("SELECT 1") def test_execute_query_succeeds_on_last_poll(mock_athena_client): athena = FakeAthenaClient(client=mock_athena_client, max_polls=1) athena.execute_query("SELECT 1", expected_states=["SUCCEEDED"]) def test_op(mock_athena_client) -> None: from dagster import build_op_context, op @op(required_resource_keys={"athena"}) def example_athena_op(context): return context.resources.athena.execute_query("SELECT 1", fetch_results=True) context = build_op_context(resources={"athena": fake_athena_resource}) assert example_athena_op(context) == [("1",)] def test_op_pythonic_resource(mock_athena_client) -> None: from dagster import op @op def example_athena_op(athena: TestAthenaClientResource): return athena.get_client().execute_query("SELECT 1", fetch_results=True) assert example_athena_op(athena=TestAthenaClientResource.configure_at_launch()) == [("1",)]
TestAthenaClientResource
python
huggingface__transformers
src/transformers/models/d_fine/modular_d_fine.py
{ "start": 54695, "end": 54741 }
class ____(RTDetrEncoder): pass
DFineEncoder
python
pandas-dev__pandas
pandas/tests/resample/test_period_index.py
{ "start": 1369, "end": 39512 }
class ____: @pytest.mark.parametrize("freq", ["2D", "1h", "2h"]) def test_asfreq(self, frame_or_series, freq): # GH 12884, 15944 obj = frame_or_series(range(5), index=period_range("2020-01-01", periods=5)) expected = obj.to_timestamp().resample(freq).asfreq() result = obj.to_timestamp().resample(freq).asfreq() tm.assert_almost_equal(result, expected) start = obj.index[0].to_timestamp(how="start") end = (obj.index[-1] + obj.index.freq).to_timestamp(how="start") new_index = date_range(start=start, end=end, freq=freq, inclusive="left") expected = obj.to_timestamp().reindex(new_index).to_period(freq) result = obj.resample(freq).asfreq() tm.assert_almost_equal(result, expected) result = obj.resample(freq).asfreq().to_timestamp().to_period() tm.assert_almost_equal(result, expected) def test_asfreq_fill_value(self): # test for fill value during resampling, issue 3715 index = period_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") s = Series(range(len(index)), index=index) new_index = date_range( s.index[0].to_timestamp(how="start"), (s.index[-1]).to_timestamp(how="start"), freq="1h", ) expected = s.to_timestamp().reindex(new_index, fill_value=4.0) result = s.to_timestamp().resample("1h").asfreq(fill_value=4.0) tm.assert_series_equal(result, expected) frame = s.to_frame("value") new_index = date_range( frame.index[0].to_timestamp(how="start"), (frame.index[-1]).to_timestamp(how="start"), freq="1h", ) expected = frame.to_timestamp().reindex(new_index, fill_value=3.0) result = frame.to_timestamp().resample("1h").asfreq(fill_value=3.0) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("freq", ["h", "12h", "2D", "W"]) @pytest.mark.parametrize("kwargs", [{"on": "date"}, {"level": "d"}]) def test_selection(self, freq, kwargs): # This is a bug, these should be implemented # GH 14008 index = period_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D") rng = np.arange(len(index), dtype=np.int64) df = DataFrame( {"date": index, "a": rng}, index=pd.MultiIndex.from_arrays([rng, index], names=["v", "d"]), ) msg = ( "Resampling from level= or on= selection with a PeriodIndex is " r"not currently supported, use \.set_index\(\.\.\.\) to " "explicitly set index" ) with pytest.raises(NotImplementedError, match=msg): df.resample(freq, **kwargs) @pytest.mark.parametrize("month", MONTHS) @pytest.mark.parametrize("meth", ["ffill", "bfill"]) @pytest.mark.parametrize("conv", ["start", "end"]) @pytest.mark.parametrize( ("offset", "period"), [("D", "D"), ("B", "B"), ("ME", "M"), ("QE", "Q")] ) def test_annual_upsample_cases( self, offset, period, conv, meth, month, simple_period_range_series ): ts = simple_period_range_series("1/1/1990", "12/31/1990", freq=f"Y-{month}") warn = FutureWarning if period == "B" else None msg = r"PeriodDtype\[B\] is deprecated" with tm.assert_produces_warning(warn, match=msg): result = getattr(ts.resample(period, convention=conv), meth)() expected = result.to_timestamp(period, how=conv) expected = expected.asfreq(offset, meth).to_period() tm.assert_series_equal(result, expected) def test_basic_downsample(self, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "6/30/1995", freq="M") result = ts.resample("Y-DEC").mean() expected = ts.groupby(ts.index.year).mean() expected.index = period_range("1/1/1990", "6/30/1995", freq="Y-DEC") tm.assert_series_equal(result, expected) # this is ok tm.assert_series_equal(ts.resample("Y-DEC").mean(), result) tm.assert_series_equal(ts.resample("Y").mean(), result) @pytest.mark.parametrize( "rule,expected_error_msg", [ ("Y-DEC", "<YearEnd: month=12>"), ("Q-MAR", "<QuarterEnd: startingMonth=3>"), ("M", "<MonthEnd>"), ("W-THU", "<Week: weekday=3>"), ], ) def test_not_subperiod(self, simple_period_range_series, rule, expected_error_msg): # These are incompatible period rules for resampling ts = simple_period_range_series("1/1/1990", "6/30/1995", freq="W-WED") msg = ( "Frequency <Week: weekday=2> cannot be resampled to " f"{expected_error_msg}, as they are not sub or super periods" ) with pytest.raises(IncompatibleFrequency, match=msg): ts.resample(rule).mean() @pytest.mark.parametrize("freq", ["D", "2D"]) def test_basic_upsample(self, freq, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "6/30/1995", freq="M") result = ts.resample("Y-DEC").mean() resampled = result.resample(freq, convention="end").ffill() expected = result.to_timestamp(freq, how="end") expected = expected.asfreq(freq, "ffill").to_period(freq) tm.assert_series_equal(resampled, expected) def test_upsample_with_limit(self): rng = period_range("1/1/2000", periods=5, freq="Y") ts = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) result = ts.resample("M", convention="end").ffill(limit=2) expected = ts.asfreq("M").reindex(result.index, method="ffill", limit=2) tm.assert_series_equal(result, expected) def test_annual_upsample(self, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "12/31/1995", freq="Y-DEC") df = DataFrame({"a": ts}) rdf = df.resample("D").ffill() exp = df["a"].resample("D").ffill() tm.assert_series_equal(rdf["a"], exp) def test_annual_upsample2(self): rng = period_range("2000", "2003", freq="Y-DEC") ts = Series([1, 2, 3, 4], index=rng) result = ts.resample("M").ffill() ex_index = period_range("2000-01", "2003-12", freq="M") expected = ts.asfreq("M", how="start").reindex(ex_index, method="ffill") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("month", MONTHS) @pytest.mark.parametrize("convention", ["start", "end"]) @pytest.mark.parametrize( ("offset", "period"), [("D", "D"), ("B", "B"), ("ME", "M")] ) def test_quarterly_upsample( self, month, offset, period, convention, simple_period_range_series ): freq = f"Q-{month}" ts = simple_period_range_series("1/1/1990", "12/31/1991", freq=freq) warn = FutureWarning if period == "B" else None msg = r"PeriodDtype\[B\] is deprecated" with tm.assert_produces_warning(warn, match=msg): result = ts.resample(period, convention=convention).ffill() expected = result.to_timestamp(period, how=convention) expected = expected.asfreq(offset, "ffill").to_period() tm.assert_series_equal(result, expected) @pytest.mark.parametrize("target", ["D", "B"]) @pytest.mark.parametrize("convention", ["start", "end"]) def test_monthly_upsample(self, target, convention, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "12/31/1995", freq="M") warn = None if target == "D" else FutureWarning msg = r"PeriodDtype\[B\] is deprecated" with tm.assert_produces_warning(warn, match=msg): result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, "ffill").to_period() tm.assert_series_equal(result, expected) def test_resample_basic(self): # GH3609 s = Series( range(100), index=date_range("20130101", freq="s", periods=100, name="idx"), dtype="float", ) s[10:30] = np.nan index = PeriodIndex( [Period("2013-01-01 00:00", "min"), Period("2013-01-01 00:01", "min")], name="idx", ) expected = Series([34.5, 79.5], index=index) result = s.to_period().resample("min").mean() tm.assert_series_equal(result, expected) result2 = s.resample("min").mean().to_period() tm.assert_series_equal(result2, expected) @pytest.mark.parametrize( "freq,expected_vals", [("M", [31, 29, 31, 9]), ("2M", [31 + 29, 31 + 9])] ) def test_resample_count(self, freq, expected_vals): # GH12774 series = Series(1, index=period_range(start="2000", periods=100)) result = series.resample(freq).count() expected_index = period_range( start="2000", freq=freq, periods=len(expected_vals) ) expected = Series(expected_vals, index=expected_index) tm.assert_series_equal(result, expected) def test_resample_same_freq(self, resample_method): # GH12770 series = Series(range(3), index=period_range(start="2000", periods=3, freq="M")) expected = series result = getattr(series.resample("M"), resample_method)() tm.assert_series_equal(result, expected) def test_resample_incompat_freq(self): msg = ( "Frequency <MonthEnd> cannot be resampled to <Week: weekday=6>, " "as they are not sub or super periods" ) pi = period_range(start="2000", periods=3, freq="M") ser = Series(range(3), index=pi) rs = ser.resample("W") with pytest.raises(IncompatibleFrequency, match=msg): # TODO: should this raise at the resample call instead of at the mean call? rs.mean() @pytest.mark.parametrize( "tz", [ zoneinfo.ZoneInfo("America/Los_Angeles"), dateutil.tz.gettz("America/Los_Angeles"), ], ) def test_with_local_timezone(self, tz): # see gh-5430 local_timezone = tz start = datetime( year=2013, month=11, day=1, hour=0, minute=0, tzinfo=timezone.utc ) # 1 day later end = datetime( year=2013, month=11, day=2, hour=0, minute=0, tzinfo=timezone.utc ) index = date_range(start, end, freq="h", name="idx") series = Series(1, index=index) series = series.tz_convert(local_timezone) msg = "Converting to PeriodArray/Index representation will drop timezone" with tm.assert_produces_warning(UserWarning, match=msg): result = series.resample("D").mean().to_period() # Create the expected series # Index is moved back a day with the timezone conversion from UTC to # Pacific expected_index = ( period_range(start=start, end=end, freq="D", name="idx") - offsets.Day() ) expected = Series(1.0, index=expected_index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "tz", [ zoneinfo.ZoneInfo("America/Los_Angeles"), dateutil.tz.gettz("America/Los_Angeles"), ], ) def test_resample_with_tz(self, tz, unit): # GH 13238 dti = date_range("2017-01-01", periods=48, freq="h", tz=tz, unit=unit) ser = Series(2, index=dti) result = ser.resample("D").mean() exp_dti = pd.DatetimeIndex( ["2017-01-01", "2017-01-02"], tz=tz, freq="D" ).as_unit(unit) expected = Series( 2.0, index=exp_dti, ) tm.assert_series_equal(result, expected) def test_resample_nonexistent_time_bin_edge(self): # GH 19375 index = date_range("2017-03-12", "2017-03-12 1:45:00", freq="15min") s = Series(np.zeros(len(index)), index=index) expected = s.tz_localize("US/Pacific") expected.index = pd.DatetimeIndex(expected.index, freq="900s") result = expected.resample("900s").mean() tm.assert_series_equal(result, expected) def test_resample_nonexistent_time_bin_edge2(self): # GH 23742 index = date_range(start="2017-10-10", end="2017-10-20", freq="1h") index = index.tz_localize("UTC").tz_convert("America/Sao_Paulo") df = DataFrame(data=list(range(len(index))), index=index) result = df.groupby(pd.Grouper(freq="1D")).count() expected = date_range( start="2017-10-09", end="2017-10-20", freq="D", tz="America/Sao_Paulo", nonexistent="shift_forward", inclusive="left", ) tm.assert_index_equal(result.index, expected) def test_resample_ambiguous_time_bin_edge(self): # GH 10117 idx = date_range( "2014-10-25 22:00:00", "2014-10-26 00:30:00", freq="30min", tz="Europe/London", ) expected = Series(np.zeros(len(idx)), index=idx) result = expected.resample("30min").mean() tm.assert_series_equal(result, expected) def test_fill_method_and_how_upsample(self): # GH2073 s = Series( np.arange(9, dtype="int64"), index=date_range("2010-01-01", periods=9, freq="QE"), ) last = s.resample("ME").ffill() both = s.resample("ME").ffill().resample("ME").last().astype("int64") tm.assert_series_equal(last, both) @pytest.mark.parametrize("day", DAYS) @pytest.mark.parametrize("target", ["D", "B"]) @pytest.mark.parametrize("convention", ["start", "end"]) def test_weekly_upsample(self, day, target, convention, simple_period_range_series): freq = f"W-{day}" ts = simple_period_range_series("1/1/1990", "07/31/1990", freq=freq) warn = None if target == "D" else FutureWarning msg = r"PeriodDtype\[B\] is deprecated" with tm.assert_produces_warning(warn, match=msg): result = ts.resample(target, convention=convention).ffill() expected = result.to_timestamp(target, how=convention) expected = expected.asfreq(target, "ffill").to_period() tm.assert_series_equal(result, expected) def test_resample_to_timestamps(self, simple_period_range_series): ts = simple_period_range_series("1/1/1990", "12/31/1995", freq="M") result = ts.resample("Y-DEC").mean().to_timestamp() expected = ts.resample("Y-DEC").mean().to_timestamp(how="start") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("month", MONTHS) def test_resample_to_quarterly(self, simple_period_range_series, month): ts = simple_period_range_series("1990", "1992", freq=f"Y-{month}") quar_ts = ts.resample(f"Q-{month}").ffill() stamps = ts.to_timestamp("D", how="start") qdates = period_range( ts.index[0].asfreq("D", "start"), ts.index[-1].asfreq("D", "end"), freq=f"Q-{month}", ) expected = stamps.reindex(qdates.to_timestamp("D", "s"), method="ffill") expected.index = qdates tm.assert_series_equal(quar_ts, expected) @pytest.mark.parametrize("how", ["start", "end"]) def test_resample_to_quarterly_start_end(self, simple_period_range_series, how): # conforms, but different month ts = simple_period_range_series("1990", "1992", freq="Y-JUN") result = ts.resample("Q-MAR", convention=how).ffill() expected = ts.asfreq("Q-MAR", how=how) expected = expected.reindex(result.index, method="ffill") # FIXME: don't leave commented-out # .to_timestamp('D') # expected = expected.resample('Q-MAR').ffill() tm.assert_series_equal(result, expected) def test_resample_fill_missing(self): rng = PeriodIndex([2000, 2005, 2007, 2009], freq="Y") s = Series(np.random.default_rng(2).standard_normal(4), index=rng) stamps = s.to_timestamp() filled = s.resample("Y").ffill() expected = stamps.resample("YE").ffill().to_period("Y") tm.assert_series_equal(filled, expected) def test_cant_fill_missing_dups(self): rng = PeriodIndex([2000, 2005, 2005, 2007, 2007], freq="Y") s = Series(np.random.default_rng(2).standard_normal(5), index=rng) msg = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=msg): s.resample("Y").ffill() def test_resample_5minute(self): rng = period_range("1/1/2000", "1/5/2000", freq="min") ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) expected = ts.to_timestamp().resample("5min").mean() result = ts.resample("5min").mean().to_timestamp() tm.assert_series_equal(result, expected) expected = expected.to_period("5min") result = ts.resample("5min").mean() tm.assert_series_equal(result, expected) result = ts.resample("5min").mean().to_timestamp().to_period() tm.assert_series_equal(result, expected) def test_upsample_daily_business_daily(self, simple_period_range_series): ts = simple_period_range_series("1/1/2000", "2/1/2000", freq="B") result = ts.resample("D").asfreq() expected = ts.asfreq("D").reindex(period_range("1/3/2000", "2/1/2000")) tm.assert_series_equal(result, expected) ts = simple_period_range_series("1/1/2000", "2/1/2000") result = ts.resample("h", convention="s").asfreq() exp_rng = period_range("1/1/2000", "2/1/2000 23:00", freq="h") expected = ts.asfreq("h", how="s").reindex(exp_rng) tm.assert_series_equal(result, expected) def test_resample_irregular_sparse(self): dr = date_range(start="1/1/2012", freq="5min", periods=1000) s = Series(np.array(100), index=dr) # subset the data. subset = s[:"2012-01-04 06:55"] result = subset.resample("10min").apply(len) expected = s.resample("10min").apply(len).loc[result.index] tm.assert_series_equal(result, expected) def test_resample_weekly_all_na(self): rng = date_range("1/1/2000", periods=10, freq="W-WED") ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) result = ts.resample("W-THU").asfreq() assert result.isna().all() result = ts.resample("W-THU").asfreq().ffill()[:-1] expected = ts.asfreq("W-THU").ffill() tm.assert_series_equal(result, expected) def test_resample_tz_localized(self, unit): dr = date_range(start="2012-4-13", end="2012-5-1", unit=unit) ts = Series(range(len(dr)), index=dr) ts_utc = ts.tz_localize("UTC") ts_local = ts_utc.tz_convert("America/Los_Angeles") result = ts_local.resample("W").mean() ts_local_naive = ts_local.copy() ts_local_naive.index = ts_local_naive.index.tz_localize(None) exp = ts_local_naive.resample("W").mean().tz_localize("America/Los_Angeles") exp.index = pd.DatetimeIndex(exp.index, freq="W") tm.assert_series_equal(result, exp) # it works result = ts_local.resample("D").mean() def test_resample_tz_localized2(self): # #2245 idx = date_range( "2001-09-20 15:59", "2001-09-20 16:00", freq="min", tz="Australia/Sydney" ) s = Series([1, 2], index=idx) # GH#61985 changed this to behave like "B" rather than "24h" result = s.resample("D", closed="right", label="right").mean() ex_index = date_range("2001-09-20", periods=2, freq="D", tz="Australia/Sydney") expected = Series([np.nan, 1.5], index=ex_index) tm.assert_series_equal(result, expected) # for good measure msg = "Converting to PeriodArray/Index representation will drop timezone " with tm.assert_produces_warning(UserWarning, match=msg): result = s.resample("D").mean().to_period() ex_index = period_range("2001-09-20", periods=1, freq="D") expected = Series([1.5], index=ex_index) tm.assert_series_equal(result, expected) def test_resample_tz_localized3(self): # GH 6397 # comparing an offset that doesn't propagate tz's rng = date_range("1/1/2011", periods=20000, freq="h") rng = rng.tz_localize("EST") ts = DataFrame(index=rng) ts["first"] = np.random.default_rng(2).standard_normal(len(rng)) ts["second"] = np.cumsum(np.random.default_rng(2).standard_normal(len(rng))) expected = DataFrame( { "first": ts.resample("YE").sum()["first"], "second": ts.resample("YE").mean()["second"], }, columns=["first", "second"], ) result = ( ts.resample("YE") .agg({"first": "sum", "second": "mean"}) .reindex(columns=["first", "second"]) ) tm.assert_frame_equal(result, expected) def test_closed_left_corner(self): # #1465 s = Series( np.random.default_rng(2).standard_normal(21), index=date_range(start="1/1/2012 9:30", freq="1min", periods=21), ) s.iloc[0] = np.nan result = s.resample("10min", closed="left", label="right").mean() exp = s[1:].resample("10min", closed="left", label="right").mean() tm.assert_series_equal(result, exp) result = s.resample("10min", closed="left", label="left").mean() exp = s[1:].resample("10min", closed="left", label="left").mean() ex_index = date_range(start="1/1/2012 9:30", freq="10min", periods=3) tm.assert_index_equal(result.index, ex_index) tm.assert_series_equal(result, exp) def test_quarterly_resampling(self): rng = period_range("2000Q1", periods=10, freq="Q-DEC") ts = Series(np.arange(10), index=rng) result = ts.resample("Y").mean() exp = ts.to_timestamp().resample("YE").mean().to_period() tm.assert_series_equal(result, exp) def test_resample_weekly_bug_1726(self): # 8/6/12 is a Monday ind = date_range(start="8/6/2012", end="8/26/2012", freq="D") n = len(ind) data = [[x] * 5 for x in range(n)] df = DataFrame(data, columns=["open", "high", "low", "close", "vol"], index=ind) # it works! df.resample("W-MON", closed="left", label="left").first() def test_resample_with_dst_time_change(self): # GH 15549 index = ( pd.DatetimeIndex([1457537600000000000, 1458059600000000000]) .tz_localize("UTC") .tz_convert("America/Chicago") ) df = DataFrame([1, 2], index=index) result = df.resample("12h", closed="right", label="right").last().ffill() expected_index_values = [ "2016-03-09 12:00:00-06:00", "2016-03-10 00:00:00-06:00", "2016-03-10 12:00:00-06:00", "2016-03-11 00:00:00-06:00", "2016-03-11 12:00:00-06:00", "2016-03-12 00:00:00-06:00", "2016-03-12 12:00:00-06:00", "2016-03-13 00:00:00-06:00", "2016-03-13 13:00:00-05:00", "2016-03-14 01:00:00-05:00", "2016-03-14 13:00:00-05:00", "2016-03-15 01:00:00-05:00", "2016-03-15 13:00:00-05:00", ] index = ( pd.to_datetime(expected_index_values, utc=True) .tz_convert("America/Chicago") .as_unit(index.unit) ) index = pd.DatetimeIndex(index, freq="12h") expected = DataFrame( [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0], index=index, ) tm.assert_frame_equal(result, expected) def test_resample_bms_2752(self): # GH2753 timeseries = Series( index=pd.bdate_range("20000101", "20000201"), dtype=np.float64 ) res1 = timeseries.resample("BMS").mean() res2 = timeseries.resample("BMS").mean().resample("B").mean() assert res1.index[0] == Timestamp("20000103") assert res1.index[0] == res2.index[0] @pytest.mark.xfail(reason="Commented out for more than 3 years. Should this work?") def test_monthly_convention_span(self): rng = period_range("2000-01", periods=3, freq="ME") ts = Series(np.arange(3), index=rng) # hacky way to get same thing exp_index = period_range("2000-01-01", "2000-03-31", freq="D") expected = ts.asfreq("D", how="end").reindex(exp_index) expected = expected.fillna(method="bfill") result = ts.resample("D").mean() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "from_freq, to_freq", [("D", "ME"), ("QE", "YE"), ("ME", "QE"), ("D", "W")] ) def test_default_right_closed_label(self, from_freq, to_freq): idx = date_range(start="8/15/2012", periods=100, freq=from_freq) df = DataFrame(np.random.default_rng(2).standard_normal((len(idx), 2)), idx) resampled = df.resample(to_freq).mean() tm.assert_frame_equal( resampled, df.resample(to_freq, closed="right", label="right").mean() ) @pytest.mark.parametrize( "from_freq, to_freq", [("D", "MS"), ("QE", "YS"), ("ME", "QS"), ("h", "D"), ("min", "h")], ) def test_default_left_closed_label(self, from_freq, to_freq): idx = date_range(start="8/15/2012", periods=100, freq=from_freq) df = DataFrame(np.random.default_rng(2).standard_normal((len(idx), 2)), idx) resampled = df.resample(to_freq).mean() tm.assert_frame_equal( resampled, df.resample(to_freq, closed="left", label="left").mean() ) def test_all_values_single_bin(self): # GH#2070 index = period_range(start="2012-01-01", end="2012-12-31", freq="M") ser = Series(np.random.default_rng(2).standard_normal(len(index)), index=index) result = ser.resample("Y").mean() tm.assert_almost_equal(result.iloc[0], ser.mean()) def test_evenly_divisible_with_no_extra_bins(self): # GH#4076 # when the frequency is evenly divisible, sometimes extra bins df = DataFrame( np.random.default_rng(2).standard_normal((9, 3)), index=date_range("2000-1-1", periods=9, unit="ns"), ) result = df.resample("5D").mean() expected = pd.concat([df.iloc[0:5].mean(), df.iloc[5:].mean()], axis=1).T expected.index = pd.DatetimeIndex( [Timestamp("2000-1-1"), Timestamp("2000-1-6")], dtype="M8[ns]", freq="5D" ) tm.assert_frame_equal(result, expected) def test_evenly_divisible_with_no_extra_bins2(self): index = date_range(start="2001-5-4", periods=28) df = DataFrame( [ { "REST_KEY": 1, "DLY_TRN_QT": 80, "DLY_SLS_AMT": 90, "COOP_DLY_TRN_QT": 30, "COOP_DLY_SLS_AMT": 20, } ] * 28 + [ { "REST_KEY": 2, "DLY_TRN_QT": 70, "DLY_SLS_AMT": 10, "COOP_DLY_TRN_QT": 50, "COOP_DLY_SLS_AMT": 20, } ] * 28, index=index.append(index), ).sort_index() index = date_range("2001-5-4", periods=4, freq="7D") expected = DataFrame( [ { "REST_KEY": 14, "DLY_TRN_QT": 14, "DLY_SLS_AMT": 14, "COOP_DLY_TRN_QT": 14, "COOP_DLY_SLS_AMT": 14, } ] * 4, index=index, ) result = df.resample("7D").count() tm.assert_frame_equal(result, expected) expected = DataFrame( [ { "REST_KEY": 21, "DLY_TRN_QT": 1050, "DLY_SLS_AMT": 700, "COOP_DLY_TRN_QT": 560, "COOP_DLY_SLS_AMT": 280, } ] * 4, index=index, ) result = df.resample("7D").sum() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("freq, period_mult", [("h", 24), ("12h", 2)]) def test_upsampling_ohlc(self, freq, period_mult): # GH 13083 pi = period_range(start="2000", freq="D", periods=10) s = Series(range(len(pi)), index=pi) expected = s.to_timestamp().resample(freq).ohlc().to_period(freq) # timestamp-based resampling doesn't include all sub-periods # of the last original period, so extend accordingly: new_index = period_range(start="2000", freq=freq, periods=period_mult * len(pi)) expected = expected.reindex(new_index) result = s.resample(freq).ohlc() tm.assert_frame_equal(result, expected) result = s.resample(freq).ohlc().to_timestamp().to_period() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "periods, values", [ ( [ pd.NaT, "1970-01-01 00:00:00", pd.NaT, "1970-01-01 00:00:02", "1970-01-01 00:00:03", ], [2, 3, 5, 7, 11], ), ( [ pd.NaT, pd.NaT, "1970-01-01 00:00:00", pd.NaT, pd.NaT, pd.NaT, "1970-01-01 00:00:02", "1970-01-01 00:00:03", pd.NaT, pd.NaT, ], [1, 2, 3, 5, 6, 8, 7, 11, 12, 13], ), ], ) @pytest.mark.parametrize( "freq, expected_values", [ ("1s", [3, np.nan, 7, 11]), ("2s", [3, (7 + 11) / 2]), ("3s", [(3 + 7) / 2, 11]), ], ) def test_resample_with_nat(self, periods, values, freq, expected_values): # GH 13224 index = PeriodIndex(periods, freq="s") frame = DataFrame(values, index=index) expected_index = period_range( "1970-01-01 00:00:00", periods=len(expected_values), freq=freq ) expected = DataFrame(expected_values, index=expected_index) result = frame.resample(freq).mean() tm.assert_frame_equal(result, expected) def test_resample_with_only_nat(self): # GH 13224 pi = PeriodIndex([pd.NaT] * 3, freq="s") frame = DataFrame([2, 3, 5], index=pi, columns=["a"]) expected_index = PeriodIndex(data=[], freq=pi.freq) expected = DataFrame(index=expected_index, columns=["a"], dtype="float64") result = frame.resample("1s").mean() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "start,end,start_freq,end_freq,offset", [ ("19910905", "19910909 03:00", "h", "24h", "10h"), ("19910905", "19910909 12:00", "h", "24h", "10h"), ("19910905", "19910909 23:00", "h", "24h", "10h"), ("19910905 10:00", "19910909", "h", "24h", "10h"), ("19910905 10:00", "19910909 10:00", "h", "24h", "10h"), ("19910905", "19910909 10:00", "h", "24h", "10h"), ("19910905 12:00", "19910909", "h", "24h", "10h"), ("19910905 12:00", "19910909 03:00", "h", "24h", "10h"), ("19910905 12:00", "19910909 12:00", "h", "24h", "10h"), ("19910905 12:00", "19910909 12:00", "h", "24h", "34h"), ("19910905 12:00", "19910909 12:00", "h", "17h", "10h"), ("19910905 12:00", "19910909 12:00", "h", "17h", "3h"), ("19910905", "19910913 06:00", "2h", "24h", "10h"), ("19910905", "19910905 01:39", "Min", "5Min", "3Min"), ("19910905", "19910905 03:18", "2Min", "5Min", "3Min"), ], ) def test_resample_with_offset(self, start, end, start_freq, end_freq, offset): # GH 23882 & 31809 pi = period_range(start, end, freq=start_freq) ser = Series(np.arange(len(pi)), index=pi) result = ser.resample(end_freq, offset=offset).mean() result = result.to_timestamp(end_freq) expected = ser.to_timestamp().resample(end_freq, offset=offset).mean() tm.assert_series_equal(result, expected) def test_resample_with_offset_month(self): # GH 23882 & 31809 pi = period_range("19910905 12:00", "19910909 1:00", freq="h") ser = Series(np.arange(len(pi)), index=pi) result = ser.resample("M").mean() result = result.to_timestamp("M") expected = ser.to_timestamp().resample("ME").mean() # TODO: is non-tick the relevant characteristic? (GH 33815) expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "first,last,freq,freq_to_offset,exp_first,exp_last", [ ("19910905", "19920406", "D", "D", "19910905", "19920406"), ("19910905 00:00", "19920406 06:00", "D", "D", "19910905", "19920406"), ( "19910905 06:00", "19920406 06:00", "h", "h", "19910905 06:00", "19920406 06:00", ), ("19910906", "19920406", "M", "ME", "1991-09", "1992-04"), ("19910831", "19920430", "M", "ME", "1991-08", "1992-04"), ("1991-08", "1992-04", "M", "ME", "1991-08", "1992-04"), ], ) def test_get_period_range_edges( self, first, last, freq, freq_to_offset, exp_first, exp_last ): first = Period(first) last = Period(last) exp_first = Period(exp_first, freq=freq) exp_last = Period(exp_last, freq=freq) freq = pd.tseries.frequencies.to_offset(freq_to_offset) result = _get_period_range_edges(first, last, freq) expected = (exp_first, exp_last) assert result == expected def test_sum_min_count(self): # GH 19974 index = date_range(start="2018", freq="ME", periods=6) data = np.ones(6) data[3:6] = np.nan s = Series(data, index).to_period() result = s.resample("Q").sum(min_count=1) expected = Series( [3.0, np.nan], index=PeriodIndex(["2018Q1", "2018Q2"], freq="Q-DEC") ) tm.assert_series_equal(result, expected) def test_resample_t_l_deprecated(self): # GH#52536 msg_t = "Invalid frequency: T" msg_l = "Invalid frequency: L" with pytest.raises(ValueError, match=msg_l): period_range( "2020-01-01 00:00:00 00:00", "2020-01-01 00:00:00 00:01", freq="L" ) rng_l = period_range( "2020-01-01 00:00:00 00:00", "2020-01-01 00:00:00 00:01", freq="ms" ) ser = Series(np.arange(len(rng_l)), index=rng_l) with pytest.raises(ValueError, match=msg_t): ser.resample("T").mean() @pytest.mark.parametrize( "freq, freq_depr, freq_depr_res", [ ("2Q", "2q", "2y"), ("2M", "2m", "2q"), ], ) def test_resample_lowercase_frequency_raises(self, freq, freq_depr, freq_depr_res): msg = f"Invalid frequency: {freq_depr}" with pytest.raises(ValueError, match=msg): period_range("2020-01-01", "2020-08-01", freq=freq_depr) msg = f"Invalid frequency: {freq_depr_res}" rng = period_range("2020-01-01", "2020-08-01", freq=freq) ser = Series(np.arange(len(rng)), index=rng) with pytest.raises(ValueError, match=msg): ser.resample(freq_depr_res).mean() @pytest.mark.parametrize( "offset", [ offsets.MonthBegin(), offsets.BYearBegin(2), offsets.BusinessHour(2), ], ) def test_asfreq_invalid_period_offset(self, offset, frame_or_series): # GH#55785 msg = re.escape(f"{offset} is not supported as period frequency") obj = frame_or_series(range(5), index=period_range("2020-01-01", periods=5)) with pytest.raises(ValueError, match=msg): obj.asfreq(freq=offset) @pytest.mark.parametrize( "freq", [ ("2ME"), ("2QE"), ("2QE-FEB"), ("2YE"), ("2YE-MAR"), ("2me"), ("2qe"), ("2ye-mar"), ], ) def test_resample_frequency_ME_QE_YE_raises(frame_or_series, freq): # GH#9586 msg = f"{freq[1:]} is not supported as period frequency" obj = frame_or_series(range(5), index=period_range("2020-01-01", periods=5)) msg = f"Invalid frequency: {freq}" with pytest.raises(ValueError, match=msg): obj.resample(freq) def test_corner_cases_period(simple_period_range_series): # miscellaneous test coverage len0pts = simple_period_range_series("2007-01", "2010-05", freq="M")[:0] # it works result = len0pts.resample("Y-DEC").mean() assert len(result) == 0 @pytest.mark.parametrize("freq", ["2BME", "2CBME", "2SME", "2BQE-FEB", "2BYE-MAR"]) def test_resample_frequency_invalid_freq(frame_or_series, freq): # GH#9586 msg = f"Invalid frequency: {freq}" obj = frame_or_series(range(5), index=period_range("2020-01-01", periods=5)) with pytest.raises(ValueError, match=msg): obj.resample(freq)
TestPeriodIndex
python
huggingface__transformers
src/transformers/models/megatron_bert/modeling_megatron_bert.py
{ "start": 52019, "end": 56771 }
class ____(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MegatronBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, MultipleChoiceModelOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) token_type_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, num_choices, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @auto_docstring
MegatronBertForMultipleChoice
python
scipy__scipy
scipy/signal/tests/test_signaltools.py
{ "start": 113436, "end": 114619 }
class ____: @skip_xp_backends(np_only=True, reason='list inputs are numpy specific') def test_array_like(self, xp): zi_expected = xp.asarray([5.0, -1.0]) zi = lfilter_zi([1.0, 0.0, 2.0], [1.0, -1.0, 0.5]) assert_array_almost_equal(zi, zi_expected) def test_basic(self, xp): a = xp.asarray([1.0, -1.0, 0.5]) b = xp.asarray([1.0, 0.0, 2.0]) zi_expected = xp.asarray([5.0, -1.0]) zi = lfilter_zi(b, a) assert_array_almost_equal(zi, zi_expected) def test_scale_invariance(self, xp): # Regression test. There was a bug in which b was not correctly # rescaled when a[0] was nonzero. b = xp.asarray([2.0, 8, 5]) a = xp.asarray([1.0, 1, 8]) zi1 = lfilter_zi(b, a) zi2 = lfilter_zi(2*b, 2*a) xp_assert_close(zi2, zi1, rtol=1e-12) @pytest.mark.parametrize('dtype', ['float32', 'float64']) def test_types(self, dtype, xp): dtype = getattr(xp, dtype) b = xp.zeros((8), dtype=dtype) a = xp.asarray([1], dtype=dtype) assert signal.lfilter_zi(b, a).dtype == dtype @make_xp_test_case(filtfilt, sosfiltfilt)
TestLFilterZI
python
wandb__wandb
wandb/vendor/pygments/lexers/templates.py
{ "start": 33402, "end": 34169 }
class ____(DelegatingLexer): """ A lexer that highlights javascript code in genshi text templates. """ name = 'JavaScript+Genshi Text' aliases = ['js+genshitext', 'js+genshi', 'javascript+genshitext', 'javascript+genshi'] alias_filenames = ['*.js'] mimetypes = ['application/x-javascript+genshi', 'text/x-javascript+genshi', 'text/javascript+genshi'] def __init__(self, **options): super(JavascriptGenshiLexer, self).__init__(JavascriptLexer, GenshiTextLexer, **options) def analyse_text(text): return GenshiLexer.analyse_text(text) - 0.05
JavascriptGenshiLexer
python
pytorch__pytorch
test/dynamo/cpython/3_13/typinganndata/mod_generics_cache.py
{ "start": 262, "end": 508 }
class ____(Generic[T]): class A(Generic[T]): pass my_inner_a1: 'B.A' my_inner_a2: A my_outer_a: 'A' # unless somebody calls get_type_hints with localns=B.__dict__ type Alias = int OldStyle = TypeAliasType("OldStyle", int)
B
python
sympy__sympy
sympy/matrices/kind.py
{ "start": 114, "end": 2843 }
class ____(Kind): """ Kind for all matrices in SymPy. Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``, but any expression representing the matrix can have this. Parameters ========== element_kind : Kind Kind of the element. Default is :class:`sympy.core.kind.NumberKind`, which means that the matrix contains only numbers. Examples ======== Any instance of matrix class has kind ``MatrixKind``: >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 2, 2) >>> A.kind MatrixKind(NumberKind) An expression representing a matrix may not be an instance of the Matrix class, but it will have kind ``MatrixKind``: >>> from sympy import MatrixExpr, Integral >>> from sympy.abc import x >>> intM = Integral(A, x) >>> isinstance(intM, MatrixExpr) False >>> intM.kind MatrixKind(NumberKind) Use ``isinstance()`` to check for ``MatrixKind`` without specifying the element kind. Use ``is`` to check the kind including the element kind: >>> from sympy import Matrix >>> from sympy.core import NumberKind >>> from sympy.matrices import MatrixKind >>> M = Matrix([1, 2]) >>> isinstance(M.kind, MatrixKind) True >>> M.kind is MatrixKind(NumberKind) True See Also ======== sympy.core.kind.NumberKind sympy.core.kind.UndefinedKind sympy.core.containers.TupleKind sympy.sets.sets.SetKind """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "MatrixKind(%s)" % self.element_kind @Mul._kind_dispatcher.register(_NumberKind, MatrixKind) def num_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. Do not need to dispatch in reversed order because KindDispatcher searches for this automatically. """ # Deal with Mul._kind_dispatcher's commutativity # XXX: this function is called with either k1 or k2 as MatrixKind because # the Mul kind dispatcher is commutative. Maybe it shouldn't be. Need to # swap the args here because NumberKind does not have an element_kind # attribute. if not isinstance(k2, MatrixKind): k1, k2 = k2, k1 elemk = Mul._kind_dispatcher(k1, k2.element_kind) return MatrixKind(elemk) @Mul._kind_dispatcher.register(MatrixKind, MatrixKind) def mat_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. """ elemk = Mul._kind_dispatcher(k1.element_kind, k2.element_kind) return MatrixKind(elemk)
MatrixKind
python
celery__celery
celery/canvas.py
{ "start": 55779, "end": 56072 }
class ____(_basemap): """Map operation for tasks, using star arguments.""" _task_name = 'celery.starmap' def __repr__(self): task, it = self._unpack_args(self.kwargs) return f'[{task.task}(*x) for x in {truncate(repr(it), 100)}]' @Signature.register_type()
xstarmap
python
huggingface__transformers
utils/check_docstrings.py
{ "start": 1672, "end": 58263 }
class ____: """Information about a single @auto_docstring decorated function or class.""" decorator_line: int # 1-based line number of the decorator def_line: int # 1-based line number of the def/class statement kind: str # 'function' or 'class' body_start_line: ( int # 1-based line number where body starts (for functions) or __init__ body start (for classes with __init__) ) args: list[str] # List of argument names (excluding self, *args, **kwargs) - for classes, these are __init__ args custom_args_text: str | None = None # custom_args string if provided in decorator # Class-specific fields (only populated when kind == 'class') has_init: bool = False # Whether the class has an __init__ method init_def_line: int | None = None # 1-based line number of __init__ def (if has_init) is_model_output: bool = False # Whether the class inherits from ModelOutput PATH_TO_REPO = Path(__file__).parent.parent.resolve() PATH_TO_TRANSFORMERS = Path("src").resolve() / "transformers" # This is to make sure the transformers module imported is the one in the repo. transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) OPTIONAL_KEYWORD = "*optional*" # Re pattern that catches args blocks in docstrings (with all variation around the name supported). _re_args = re.compile(r"^\s*(Args?|Arguments?|Attributes?|Params?|Parameters?):\s*$") # Re pattern that parses the start of an arg block: catches <name> (<description>) in those lines. _re_parse_arg = re.compile(r"^(\s*)(\S+)\s+\((.+)\)(?:\:|$)") # Re pattern that parses the end of a description of an arg (catches the default in *optional*, defaults to xxx). _re_parse_description = re.compile(r"\*optional\*, defaults to (.*)$") # Args that are always overridden in the docstring, for clarity we don't want to remove them from the docstring ALWAYS_OVERRIDE = ["labels"] # This is a temporary set of objects to ignore while we progressively fix them. Do not add anything here, fix the # docstrings instead. If formatting should be ignored for the docstring, you can put a comment # no-format on the # line before the docstring. OBJECTS_TO_IGNORE = { "ApertusConfig", "Mxfp4Config", "Qwen3OmniMoeConfig", "Exaone4Config", "SmolLM3Config", "Gemma3nVisionConfig", "Llama4Processor", # Deprecated "InputExample", "InputFeatures", # Missing arguments in the docstring "ASTFeatureExtractor", "AlbertModel", "AlbertTokenizerFast", "AlignTextModel", "AlignVisionConfig", "AudioClassificationPipeline", "AutoformerConfig", "AutomaticSpeechRecognitionPipeline", "BarkCoarseConfig", "BarkConfig", "BarkFineConfig", "BarkSemanticConfig", "BartConfig", "BartTokenizerFast", "BarthezTokenizerFast", "BeitModel", "BertConfig", "BertJapaneseTokenizer", "CohereTokenizer", "DebertaTokenizer", "FNetTokenizer", "FunnelTokenizer", "GPT2Tokenizer", "GPTNeoXTokenizer", "GemmaTokenizer", "HerbertTokenizer", "LayoutLMv2Tokenizer", "LayoutLMv3Tokenizer", "LayoutXLMTokenizer", "LlamaTokenizer", "LlamaTokenizerFast", "MBart50Tokenizer", "NougatTokenizer", "OpenAIGPTTokenizer", "PythonBackend", "ReformerTokenizer", "SeamlessM4TTokenizer", "SentencePieceBackend", "SplinterTokenizer", "TokenizersBackend", "UdopTokenizer", "WhisperTokenizer", "XGLMTokenizer", "XLMRobertaTokenizer", "AlbertTokenizer", "BarthezTokenizer", "BigBirdTokenizer", "BlenderbotTokenizer", "CamembertTokenizer", "CodeLlamaTokenizer", "CodeLlamaTokenizerFast", "BertModel", "BertTokenizerFast", "BigBirdConfig", "BigBirdForQuestionAnswering", "BigBirdModel", "BigBirdPegasusConfig", "BigBirdTokenizerFast", "BitImageProcessor", "BlenderbotConfig", "BlenderbotSmallConfig", "BlenderbotSmallTokenizerFast", "BlenderbotTokenizerFast", "Blip2VisionConfig", "BlipTextConfig", "BlipVisionConfig", "BloomConfig", "BLTConfig", "BLTPatcherConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", "BrosModel", "CamembertConfig", "CamembertModel", "CamembertTokenizerFast", "CanineModel", "CanineTokenizer", "ChineseCLIPTextModel", "ClapTextConfig", "ConditionalDetrConfig", "ConditionalDetrImageProcessor", "ConvBertConfig", "ConvBertTokenizerFast", "ConvNextConfig", "ConvNextV2Config", "CpmAntTokenizer", "CvtConfig", "CvtModel", "DeiTImageProcessor", "DPRReaderTokenizer", "DPRReaderTokenizerFast", "DPTModel", "Data2VecAudioConfig", "Data2VecTextConfig", "Data2VecTextModel", "Data2VecVisionModel", "DataCollatorForLanguageModeling", "DebertaConfig", "DebertaV2Config", "DebertaV2Tokenizer", "DebertaV2TokenizerFast", "DecisionTransformerConfig", "DeformableDetrConfig", "DeformableDetrImageProcessor", "DeiTModel", "DepthEstimationPipeline", "DetaConfig", "DetaImageProcessor", "DetrConfig", "DetrImageProcessor", "DinatModel", "DINOv3ConvNextConfig", "DINOv3ViTConfig", "DistilBertConfig", "DistilBertTokenizerFast", "DocumentQuestionAnsweringPipeline", "DonutSwinModel", "EarlyStoppingCallback", "EfficientFormerConfig", "EfficientFormerImageProcessor", "EfficientNetConfig", "ElectraConfig", "ElectraTokenizerFast", "EncoderDecoderModel", "ErnieMModel", "ErnieModel", "ErnieMTokenizer", "EsmConfig", "EsmModel", "FNetConfig", "FNetModel", "FNetTokenizerFast", "FSMTConfig", "FeatureExtractionPipeline", "FillMaskPipeline", "FlaubertConfig", "FlavaConfig", "FlavaForPreTraining", "FlavaImageModel", "FlavaImageProcessor", "FlavaMultimodalModel", "FlavaTextConfig", "FlavaTextModel", "FocalNetModel", "FunnelTokenizerFast", "GPTBigCodeConfig", "GPTJConfig", "GPTNeoXConfig", "GPTNeoXJapaneseConfig", "GPTNeoXTokenizerFast", "GPTSanJapaneseConfig", "GitConfig", "GitVisionConfig", "Glm4vVisionConfig", "Glm4vMoeVisionConfig", "GraphormerConfig", "GroupViTTextConfig", "GroupViTVisionConfig", "HerbertTokenizerFast", "HubertConfig", "HubertForCTC", "IBertConfig", "IBertModel", "IdeficsConfig", "IdeficsProcessor", "IJepaModel", "ImageClassificationPipeline", "ImageFeatureExtractionPipeline", "ImageGPTConfig", "ImageSegmentationPipeline", "ImageTextToTextPipeline", "AnyToAnyPipeline", "ImageToImagePipeline", "ImageToTextPipeline", "InformerConfig", "JukeboxPriorConfig", "JukeboxTokenizer", "LEDConfig", "LEDTokenizerFast", "LayoutLMForQuestionAnswering", "LayoutLMTokenizerFast", "LayoutLMv2Config", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2TokenizerFast", "LayoutLMv3Config", "LayoutLMv3ImageProcessor", "LayoutLMv3TokenizerFast", "LayoutXLMTokenizerFast", "LevitConfig", "LiltConfig", "LiltModel", "LongT5Config", "LongformerConfig", "LongformerModel", "LongformerTokenizerFast", "LukeModel", "LukeTokenizer", "LxmertTokenizerFast", "M2M100Config", "M2M100Tokenizer", "MarkupLMProcessor", "MaskGenerationPipeline", "MBart50TokenizerFast", "MBartConfig", "MCTCTFeatureExtractor", "MPNetConfig", "MPNetModel", "MPNetTokenizerFast", "MT5Config", "MT5TokenizerFast", "MarianConfig", "MarianTokenizer", "MarkupLMConfig", "MarkupLMModel", "MarkupLMTokenizer", "MarkupLMTokenizerFast", "Mask2FormerConfig", "MaskFormerConfig", "MaxTimeCriteria", "MegaConfig", "MegaModel", "MegatronBertConfig", "MegatronBertForPreTraining", "MegatronBertModel", "MLCDVisionConfig", "MobileBertConfig", "MobileBertModel", "MobileBertTokenizerFast", "MobileNetV1ImageProcessor", "MobileNetV1Model", "MobileNetV2ImageProcessor", "MobileNetV2Model", "MobileViTModel", "MobileViTV2Model", "MLukeTokenizer", "MraConfig", "MusicgenDecoderConfig", "MusicgenForConditionalGeneration", "MusicgenMelodyForConditionalGeneration", "MvpConfig", "MvpTokenizerFast", "MT5Tokenizer", "NatModel", "NerPipeline", "NezhaConfig", "NezhaModel", "NllbMoeConfig", "NllbTokenizer", "NllbTokenizerFast", "NystromformerConfig", "OPTConfig", "ObjectDetectionPipeline", "OneFormerProcessor", "OpenAIGPTTokenizerFast", "OpenLlamaConfig", "PLBartConfig", "ParakeetCTCConfig", "PegasusConfig", "PegasusTokenizer", "PegasusTokenizerFast", "PegasusXConfig", "PerceiverImageProcessor", "PerceiverModel", "PerceiverTokenizer", "PersimmonConfig", "Pipeline", "Pix2StructConfig", "Pix2StructTextConfig", "PLBartTokenizer", "Pop2PianoConfig", "PreTrainedTokenizer", "PreTrainedTokenizerBase", "PreTrainedTokenizerFast", "PrefixConstrainedLogitsProcessor", "ProphetNetConfig", "QDQBertConfig", "QDQBertModel", "QuestionAnsweringPipeline", "RagConfig", "RagModel", "RagRetriever", "RagSequenceForGeneration", "RagTokenForGeneration", "ReformerConfig", "ReformerTokenizerFast", "RegNetConfig", "RemBertConfig", "RemBertModel", "RemBertTokenizer", "RemBertTokenizerFast", "RetriBertConfig", "RetriBertTokenizerFast", "RoCBertConfig", "RoCBertModel", "RoCBertTokenizer", "RoFormerConfig", "RobertaConfig", "RobertaModel", "RobertaPreLayerNormConfig", "RobertaPreLayerNormModel", "RobertaTokenizerFast", "SEWConfig", "SEWDConfig", "SEWDForCTC", "SEWForCTC", "SamConfig", "SamPromptEncoderConfig", "SamHQConfig", "SamHQPromptEncoderConfig", "SeamlessM4TConfig", # use of unconventional markdown "SeamlessM4Tv2Config", # use of unconventional markdown "Seq2SeqTrainingArguments", "Speech2Text2Config", "Speech2Text2Tokenizer", "Speech2TextTokenizer", "SpeechEncoderDecoderModel", "SpeechT5Config", "SpeechT5Model", "SplinterConfig", "SplinterTokenizerFast", "SqueezeBertTokenizerFast", "SummarizationPipeline", "Swin2SRImageProcessor", "Swinv2Model", "SwitchTransformersConfig", "T5Config", "T5Tokenizer", "T5TokenizerFast", "TableQuestionAnsweringPipeline", "TableTransformerConfig", "TapasConfig", "TapasModel", "TapasTokenizer", "Text2TextGenerationPipeline", "TextClassificationPipeline", "TextGenerationPipeline", "TimeSeriesTransformerConfig", "TokenClassificationPipeline", "TrOCRConfig", "Phi4MultimodalProcessor", "TrainerState", "TrainingArguments", "TrajectoryTransformerConfig", "TranslationPipeline", "TvltImageProcessor", "UMT5Config", "UperNetConfig", "UperNetForSemanticSegmentation", "ViTHybridImageProcessor", "ViTHybridModel", "ViTMSNModel", "ViTModel", "VideoClassificationPipeline", "ViltConfig", "ViltForImagesAndTextClassification", "ViltModel", "VisionEncoderDecoderModel", "VisionTextDualEncoderModel", "VisualBertConfig", "VisualBertModel", "VisualQuestionAnsweringPipeline", "VitMatteForImageMatting", "VitsTokenizer", "VivitModel", "Wav2Vec2BertForCTC", "Wav2Vec2CTCTokenizer", "Wav2Vec2Config", "Wav2Vec2ConformerConfig", "Wav2Vec2ConformerForCTC", "Wav2Vec2FeatureExtractor", "Wav2Vec2PhonemeCTCTokenizer", "WavLMConfig", "WavLMForCTC", "WhisperConfig", "WhisperFeatureExtractor", "WhisperForAudioClassification", "XCLIPTextConfig", "XCLIPVisionConfig", "XGLMConfig", "XGLMModel", "XGLMTokenizerFast", "XLMConfig", "XLMProphetNetConfig", "XLMRobertaConfig", "XLMRobertaModel", "XLMRobertaTokenizerFast", "XLMRobertaXLConfig", "XLMRobertaXLModel", "XLNetConfig", "XLNetTokenizerFast", "XmodConfig", "XmodModel", "YolosImageProcessor", "YolosModel", "YosoConfig", "ZeroShotAudioClassificationPipeline", "ZeroShotClassificationPipeline", "ZeroShotImageClassificationPipeline", "ZeroShotObjectDetectionPipeline", "Llama4TextConfig", "BltConfig", "BltPatcherConfig", } # In addition to the objects above, we also ignore objects with certain prefixes. If you add an item to the list # below, make sure to add a comment explaining why. OBJECT_TO_IGNORE_PREFIXES = [ "_", # Private objects are not documented ] # Supported math operations when interpreting the value of defaults. MATH_OPERATORS = { ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor, ast.USub: op.neg, } def find_indent(line: str) -> int: """ Returns the number of spaces that start a line indent. """ search = re.search(r"^(\s*)(?:\S|$)", line) if search is None: return 0 return len(search.groups()[0]) def stringify_default(default: Any) -> str: """ Returns the string representation of a default value, as used in docstring: numbers are left as is, all other objects are in backtiks. Args: default (`Any`): The default value to process Returns: `str`: The string representation of that default. """ if isinstance(default, bool): # We need to test for bool first as a bool passes isinstance(xxx, (int, float)) return f"`{default}`" elif isinstance(default, enum.Enum): # We need to test for enum first as an enum with int values will pass isinstance(xxx, (int, float)) return f"`{str(default)}`" elif isinstance(default, int): return str(default) elif isinstance(default, float): result = str(default) return str(round(default, 2)) if len(result) > 6 else result elif isinstance(default, str): return str(default) if default.isnumeric() else f'`"{default}"`' elif isinstance(default, type): return f"`{default.__name__}`" else: return f"`{default}`" def eval_math_expression(expression: str) -> float | int | None: # Mainly taken from the excellent https://stackoverflow.com/a/9558001 """ Evaluate (safely) a mathematial expression and returns its value. Args: expression (`str`): The expression to evaluate. Returns: `Optional[Union[float, int]]`: Returns `None` if the evaluation fails in any way and the value computed otherwise. Example: ```py >>> eval_expr('2^6') 4 >>> eval_expr('2**6') 64 >>> eval_expr('1 + 2*3**(4^5) / (6 + -7)') -5.0 ``` """ try: return eval_node(ast.parse(expression, mode="eval").body) except TypeError: return def eval_node(node): if isinstance(node, ast.Constant) and type(node.value) in (int, float, complex): return node.value elif isinstance(node, ast.BinOp): # <left> <operator> <right> return MATH_OPERATORS[type(node.op)](eval_node(node.left), eval_node(node.right)) elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1 return MATH_OPERATORS[type(node.op)](eval_node(node.operand)) else: raise TypeError(node) def replace_default_in_arg_description(description: str, default: Any) -> str: """ Catches the default value in the description of an argument inside a docstring and replaces it by the value passed. Args: description (`str`): The description of an argument in a docstring to process. default (`Any`): The default value that would be in the docstring of that argument. Returns: `str`: The description updated with the new default value. """ # Lots of docstrings have `optional` or **opational** instead of *optional* so we do this fix here. description = description.replace("`optional`", OPTIONAL_KEYWORD) description = description.replace("**optional**", OPTIONAL_KEYWORD) if default is inspect._empty: # No default, make sure the description doesn't have any either idx = description.find(OPTIONAL_KEYWORD) if idx != -1: description = description[:idx].rstrip() if description.endswith(","): description = description[:-1].rstrip() elif default is None: # Default None are not written, we just set `*optional*`. If there is default that is not None specified in the # description, we do not erase it (as sometimes we set the default to `None` because the default is a mutable # object). idx = description.find(OPTIONAL_KEYWORD) if idx == -1: description = f"{description}, {OPTIONAL_KEYWORD}" elif re.search(r"defaults to `?None`?", description) is not None: len_optional = len(OPTIONAL_KEYWORD) description = description[: idx + len_optional] else: str_default = None # For numbers we may have a default that is given by a math operation (1/255 is really popular). We don't # want to replace those by their actual values. if isinstance(default, (int, float)) and re.search("defaults to `?(.*?)(?:`|$)", description) is not None: # Grab the default and evaluate it. current_default = re.search("defaults to `?(.*?)(?:`|$)", description).groups()[0] if default == eval_math_expression(current_default): try: # If it can be directly converted to the type of the default, it's a simple value str_default = str(type(default)(current_default)) except Exception: # Otherwise there is a math operator so we add a code block. str_default = f"`{current_default}`" elif isinstance(default, enum.Enum) and default.name == current_default.split(".")[-1]: # When the default is an Enum (this is often the case for PIL.Image.Resampling), and the docstring # matches the enum name, keep the existing docstring rather than clobbering it with the enum value. str_default = f"`{current_default}`" if str_default is None: str_default = stringify_default(default) # Make sure default match if OPTIONAL_KEYWORD not in description: description = f"{description}, {OPTIONAL_KEYWORD}, defaults to {str_default}" elif _re_parse_description.search(description) is None: idx = description.find(OPTIONAL_KEYWORD) len_optional = len(OPTIONAL_KEYWORD) description = f"{description[: idx + len_optional]}, defaults to {str_default}" else: description = _re_parse_description.sub(rf"*optional*, defaults to {str_default}", description) return description def get_default_description(arg: inspect.Parameter) -> str: """ Builds a default description for a parameter that was not documented. Args: arg (`inspect.Parameter`): The argument in the signature to generate a description for. Returns: `str`: The description. """ if arg.annotation is inspect._empty: arg_type = "<fill_type>" elif hasattr(arg.annotation, "__name__"): arg_type = arg.annotation.__name__ else: arg_type = str(arg.annotation) if arg.default is inspect._empty: return f"`{arg_type}`" elif arg.default is None: return f"`{arg_type}`, {OPTIONAL_KEYWORD}" else: str_default = stringify_default(arg.default) return f"`{arg_type}`, {OPTIONAL_KEYWORD}, defaults to {str_default}" def find_source_file(obj: Any) -> Path: """ Finds the source file of an object. Args: obj (`Any`): The object whose source file we are looking for. Returns: `Path`: The source file. """ module = obj.__module__ obj_file = PATH_TO_TRANSFORMERS for part in module.split(".")[1:]: obj_file = obj_file / part return obj_file.with_suffix(".py") def match_docstring_with_signature(obj: Any) -> tuple[str, str] | None: """ Matches the docstring of an object with its signature. Args: obj (`Any`): The object to process. Returns: `Optional[Tuple[str, str]]`: Returns `None` if there is no docstring or no parameters documented in the docstring, otherwise returns a tuple of two strings: the current documentation of the arguments in the docstring and the one matched with the signature. """ if len(getattr(obj, "__doc__", "")) == 0: # Nothing to do, there is no docstring. return # Read the docstring in the source code to see if there is a special command to ignore this object. try: source, _ = inspect.getsourcelines(obj) except OSError: source = [] # Find the line where the docstring starts idx = 0 while idx < len(source) and '"""' not in source[idx]: idx += 1 ignore_order = False if idx < len(source): line_before_docstring = source[idx - 1] # Match '# no-format' (allowing surrounding whitespaces) if re.search(r"^\s*#\s*no-format\s*$", line_before_docstring): # This object is ignored by the auto-docstring tool return # Match '# ignore-order' (allowing surrounding whitespaces) elif re.search(r"^\s*#\s*ignore-order\s*$", line_before_docstring): ignore_order = True # Read the signature. Skip on `TypedDict` objects for now. Inspect cannot # parse their signature ("no signature found for builtin type <class 'dict'>") if issubclass(obj, dict) and hasattr(obj, "__annotations__"): return signature = inspect.signature(obj).parameters obj_doc_lines = obj.__doc__.split("\n") # Get to the line where we start documenting arguments idx = 0 while idx < len(obj_doc_lines) and _re_args.search(obj_doc_lines[idx]) is None: idx += 1 if idx == len(obj_doc_lines): # Nothing to do, no parameters are documented. return if "kwargs" in signature and signature["kwargs"].annotation != inspect._empty: # Inspecting signature with typed kwargs is not supported yet. return indent = find_indent(obj_doc_lines[idx]) arguments = {} current_arg = None idx += 1 start_idx = idx # Keep going until the arg section is finished (nonempty line at the same indent level) or the end of the docstring. while idx < len(obj_doc_lines) and ( len(obj_doc_lines[idx].strip()) == 0 or find_indent(obj_doc_lines[idx]) > indent ): if find_indent(obj_doc_lines[idx]) == indent + 4: # New argument -> let's generate the proper doc for it re_search_arg = _re_parse_arg.search(obj_doc_lines[idx]) if re_search_arg is not None: _, name, description = re_search_arg.groups() current_arg = name if name in signature: default = signature[name].default if signature[name].kind is inspect._ParameterKind.VAR_KEYWORD: default = None new_description = replace_default_in_arg_description(description, default) else: new_description = description init_doc = _re_parse_arg.sub(rf"\1\2 ({new_description}):", obj_doc_lines[idx]) arguments[current_arg] = [init_doc] elif current_arg is not None: arguments[current_arg].append(obj_doc_lines[idx]) idx += 1 # We went too far by one (perhaps more if there are a lot of new lines) idx -= 1 if current_arg: while len(obj_doc_lines[idx].strip()) == 0: arguments[current_arg] = arguments[current_arg][:-1] idx -= 1 # And we went too far by one again. idx += 1 old_doc_arg = "\n".join(obj_doc_lines[start_idx:idx]) old_arguments = list(arguments.keys()) arguments = {name: "\n".join(doc) for name, doc in arguments.items()} # Add missing arguments with a template for name in set(signature.keys()) - set(arguments.keys()): arg = signature[name] # We ignore private arguments or *args/**kwargs (unless they are documented by the user) if name.startswith("_") or arg.kind in [ inspect._ParameterKind.VAR_KEYWORD, inspect._ParameterKind.VAR_POSITIONAL, ]: arguments[name] = "" else: arg_desc = get_default_description(arg) arguments[name] = " " * (indent + 4) + f"{name} ({arg_desc}): <fill_docstring>" # Arguments are sorted by the order in the signature unless a special comment is put. if ignore_order: new_param_docs = [arguments[name] for name in old_arguments if name in signature] missing = set(signature.keys()) - set(old_arguments) new_param_docs.extend([arguments[name] for name in missing if len(arguments[name]) > 0]) else: new_param_docs = [arguments[name] for name in signature if len(arguments[name]) > 0] new_doc_arg = "\n".join(new_param_docs) return old_doc_arg, new_doc_arg def fix_docstring(obj: Any, old_doc_args: str, new_doc_args: str): """ Fixes the docstring of an object by replacing its arguments documentation by the one matched with the signature. Args: obj (`Any`): The object whose dostring we are fixing. old_doc_args (`str`): The current documentation of the parameters of `obj` in the docstring (as returned by `match_docstring_with_signature`). new_doc_args (`str`): The documentation of the parameters of `obj` matched with its signature (as returned by `match_docstring_with_signature`). """ # Read the docstring in the source code and make sure we have the right part of the docstring source, line_number = inspect.getsourcelines(obj) # Get to the line where we start documenting arguments idx = 0 while idx < len(source) and _re_args.search(source[idx]) is None: idx += 1 if idx == len(source): # Args are not defined in the docstring of this object. This can happen when the docstring is inherited. # In this case, we are not trying to fix it on the child object. return # Get to the line where we stop documenting arguments indent = find_indent(source[idx]) idx += 1 start_idx = idx while idx < len(source) and (len(source[idx].strip()) == 0 or find_indent(source[idx]) > indent): idx += 1 idx -= 1 while len(source[idx].strip()) == 0: idx -= 1 idx += 1 # `old_doc_args` is built from `obj.__doc__`, which may have # different indentation than the raw source from `inspect.getsourcelines`. # We use `inspect.cleandoc` to remove indentation uniformly from both # strings before comparing them. source_args_as_str = "".join(source[start_idx:idx]) if inspect.cleandoc(source_args_as_str) != inspect.cleandoc(old_doc_args): # Args are not fully defined in the docstring of this object obj_file = find_source_file(obj) actual_args_section = source_args_as_str.rstrip() raise ValueError( f"Cannot fix docstring of {obj.__name__} in {obj_file} because the argument section in the source code " f"does not match the expected format. This usually happens when:\n" f"1. The argument section is not properly indented\n" f"2. The argument section contains unexpected formatting\n" f"3. The docstring parsing failed to correctly identify the argument boundaries\n\n" f"Expected argument section:\n{repr(old_doc_args)}\n\n" f"Actual argument section found:\n{repr(actual_args_section)}\n\n" ) obj_file = find_source_file(obj) with open(obj_file, "r", encoding="utf-8") as f: content = f.read() # Replace content lines = content.split("\n") prev_line_indentation = find_indent(lines[line_number + start_idx - 2]) # Now increase the indentation of every line in new_doc_args by prev_line_indentation new_doc_args = "\n".join([f"{' ' * prev_line_indentation}{line}" for line in new_doc_args.split("\n")]) lines = lines[: line_number + start_idx - 1] + [new_doc_args] + lines[line_number + idx - 1 :] print(f"Fixing the docstring of {obj.__name__} in {obj_file}.") with open(obj_file, "w", encoding="utf-8") as f: f.write("\n".join(lines)) def _find_docstring_end_line(lines, docstring_start_line): """Find the line number where a docstring ends. Only handles triple double quotes.""" if docstring_start_line is None or docstring_start_line < 0 or docstring_start_line >= len(lines): return None start_line = lines[docstring_start_line] if '"""' not in start_line: return None # Check if docstring starts and ends on the same line if start_line.count('"""') >= 2: return docstring_start_line # Find the closing triple quotes on subsequent lines for idx in range(docstring_start_line + 1, len(lines)): if '"""' in lines[idx]: return idx return len(lines) - 1 def _is_auto_docstring_decorator(dec): """Return True if the decorator expression corresponds to `@auto_docstring`.""" # Handle @auto_docstring(...) - unwrap the Call to get the function target = dec.func if isinstance(dec, ast.Call) else dec # Check if it's named "auto_docstring" return isinstance(target, ast.Name) and target.id == "auto_docstring" def _extract_function_args(func_node: ast.FunctionDef | ast.AsyncFunctionDef) -> list[str]: """Extract argument names from a function node, excluding 'self', *args, **kwargs.""" all_args = (func_node.args.posonlyargs or []) + func_node.args.args + func_node.args.kwonlyargs return [a.arg for a in all_args if a.arg != "self"] def find_matching_model_files(check_all: bool = False): """ Find all model files in the transformers repo that should be checked for @auto_docstring, excluding files with certain substrings. Returns: List of file paths. """ module_diff_files = None if not check_all: module_diff_files = set() repo = Repo(PATH_TO_REPO) # Diff from index to unstaged files for modified_file_diff in repo.index.diff(None): if modified_file_diff.a_path.startswith("src/transformers"): module_diff_files.add(os.path.join(PATH_TO_REPO, modified_file_diff.a_path)) # Diff from index to `main` for modified_file_diff in repo.index.diff(repo.refs.main.commit): if modified_file_diff.a_path.startswith("src/transformers"): module_diff_files.add(os.path.join(PATH_TO_REPO, modified_file_diff.a_path)) # quick escape route: if there are no module files in the diff, skip this check if len(module_diff_files) == 0: return None modeling_glob_pattern = os.path.join(PATH_TO_TRANSFORMERS, "models/**/modeling_**") potential_files = glob.glob(modeling_glob_pattern) image_processing_glob_pattern = os.path.join(PATH_TO_TRANSFORMERS, "models/**/image_processing_*_fast.py") potential_files += glob.glob(image_processing_glob_pattern) matching_files = [] for file_path in potential_files: if os.path.isfile(file_path): matching_files.append(file_path) if not check_all: # intersect with module_diff_files matching_files = sorted([file for file in matching_files if file in module_diff_files]) print(" Checking auto_docstrings in the following files:" + "\n - " + "\n - ".join(matching_files)) return matching_files def find_files_with_auto_docstring(matching_files, decorator="@auto_docstring"): """ From a list of files, return those that contain the @auto_docstring decorator. Fast path: simple substring presence check. """ auto_docstrings_files = [] for file_path in matching_files: try: with open(file_path, "r", encoding="utf-8") as f: source = f.read() except OSError: continue if decorator in source: auto_docstrings_files.append(file_path) return auto_docstrings_files def get_args_in_dataclass(lines, dataclass_content): dataclass_content = [line.split("#")[0] for line in dataclass_content] dataclass_content = "\n".join(dataclass_content) args_in_dataclass = re.findall(r"^ (\w+)(?:\s*:|\s*=|\s*$)", dataclass_content, re.MULTILINE) if "self" in args_in_dataclass: args_in_dataclass.remove("self") return args_in_dataclass def generate_new_docstring_for_signature( lines, args_in_signature, sig_end_line, docstring_start_line, arg_indent=" ", output_docstring_indent=8, custom_args_dict={}, source_args_doc=[ModelArgs, ImageProcessorArgs], ): """ Generalized docstring generator for a function or class signature. Args: lines: List of lines from the file. sig_start_line: Line index where the signature starts. sig_end_line: Line index where the signature ends. docstring_line: Line index where the docstring starts (or None if not present). arg_indent: Indentation for missing argument doc entries. Returns: new_docstring, sig_end_line, docstring_end (last docstring line index) """ # Extract and clean signature missing_docstring_args = [] docstring_args_ro_remove = [] fill_docstring_args = [] # Parse docstring if present args_docstring_dict = {} remaining_docstring = "" if docstring_start_line is not None: docstring_end_line = _find_docstring_end_line(lines, docstring_start_line) docstring_content = lines[docstring_start_line : docstring_end_line + 1] parsed_docstring, remaining_docstring = parse_docstring("\n".join(docstring_content)) args_docstring_dict.update(parsed_docstring) else: docstring_end_line = None # Remove pre-existing entries for *args and untyped **kwargs from the docstring # (No longer needed since *args are excluded from args_in_signature) # Remove args that are the same as the ones in the source args doc for arg in args_docstring_dict: if arg in get_args_doc_from_source(source_args_doc) and arg not in ALWAYS_OVERRIDE: source_arg_doc = get_args_doc_from_source(source_args_doc)[arg] if source_arg_doc["description"].strip("\n ") == args_docstring_dict[arg]["description"].strip("\n "): if source_arg_doc.get("shape") is not None and args_docstring_dict[arg].get("shape") is not None: if source_arg_doc.get("shape").strip("\n ") == args_docstring_dict[arg].get("shape").strip("\n "): docstring_args_ro_remove.append(arg) elif ( source_arg_doc.get("additional_info") is not None and args_docstring_dict[arg].get("additional_info") is not None ): if source_arg_doc.get("additional_info").strip("\n ") == args_docstring_dict[arg].get( "additional_info" ).strip("\n "): docstring_args_ro_remove.append(arg) else: docstring_args_ro_remove.append(arg) args_docstring_dict = { arg: args_docstring_dict[arg] for arg in args_docstring_dict if arg not in docstring_args_ro_remove } # Fill missing args for arg in args_in_signature: if ( arg not in args_docstring_dict and arg not in get_args_doc_from_source(source_args_doc) and arg not in custom_args_dict ): missing_docstring_args.append(arg) args_docstring_dict[arg] = { "type": "<fill_type>", "optional": False, "shape": None, "description": "\n <fill_docstring>", "default": None, "additional_info": None, } # Handle docstring of inherited args (for dataclasses) ordered_args_docstring_dict = OrderedDict( (arg, args_docstring_dict[arg]) for arg in args_docstring_dict if arg not in args_in_signature ) # Add args in the order of the signature ordered_args_docstring_dict.update( (arg, args_docstring_dict[arg]) for arg in args_in_signature if arg in args_docstring_dict ) # Build new docstring new_docstring = "" if len(ordered_args_docstring_dict) > 0 or remaining_docstring: new_docstring += 'r"""\n' for arg in ordered_args_docstring_dict: additional_info = ordered_args_docstring_dict[arg]["additional_info"] or "" custom_arg_description = ordered_args_docstring_dict[arg]["description"] if "<fill_docstring>" in custom_arg_description and arg not in missing_docstring_args: fill_docstring_args.append(arg) if custom_arg_description.endswith('"""'): custom_arg_description = "\n".join(custom_arg_description.split("\n")[:-1]) new_docstring += ( f"{arg} ({ordered_args_docstring_dict[arg]['type']}{additional_info}):{custom_arg_description}\n" ) close_docstring = True if remaining_docstring: if remaining_docstring.endswith('"""'): close_docstring = False end_docstring = "\n" if close_docstring else "" new_docstring += f"{set_min_indent(remaining_docstring, 0)}{end_docstring}" if close_docstring: new_docstring += '"""' new_docstring = set_min_indent(new_docstring, output_docstring_indent) return ( new_docstring, sig_end_line, docstring_end_line if docstring_end_line is not None else sig_end_line - 1, missing_docstring_args, fill_docstring_args, docstring_args_ro_remove, ) def generate_new_docstring_for_function( lines, item: DecoratedItem, custom_args_dict, ): """ Wrapper for function docstring generation using the generalized helper. """ sig_end_line = item.body_start_line - 1 # Convert to 0-based args_in_signature = item.args docstring_start_line = sig_end_line if '"""' in lines[sig_end_line] else None return generate_new_docstring_for_signature( lines, args_in_signature, sig_end_line, docstring_start_line, arg_indent=" ", custom_args_dict=custom_args_dict, ) def generate_new_docstring_for_class( lines, item: DecoratedItem, custom_args_dict, source: str, ): """ Wrapper for class docstring generation (via __init__) using the generalized helper. Returns the new docstring and relevant signature/docstring indices. """ # Use pre-extracted information from DecoratedItem (no need to search or re-parse!) if item.has_init: # Class has an __init__ method - use its args and body start sig_end_line = item.body_start_line - 1 # Convert from body start to sig end (0-based) args_in_signature = item.args output_docstring_indent = 8 source_args_doc = [ModelArgs, ImageProcessorArgs] elif item.is_model_output: # ModelOutput class - extract args from dataclass attributes current_line_end = item.def_line - 1 # Convert to 0-based sig_end_line = current_line_end + 1 docstring_end = _find_docstring_end_line(lines, sig_end_line) model_output_class_start = docstring_end + 1 if docstring_end is not None else sig_end_line - 1 model_output_class_end = model_output_class_start while model_output_class_end < len(lines) and ( lines[model_output_class_end].startswith(" ") or lines[model_output_class_end] == "" ): model_output_class_end += 1 dataclass_content = lines[model_output_class_start : model_output_class_end - 1] args_in_signature = get_args_in_dataclass(lines, dataclass_content) output_docstring_indent = 4 source_args_doc = [ModelOutputArgs] else: # Class has no __init__ and is not a ModelOutput - nothing to document return "", None, None, [], [], [] docstring_start_line = sig_end_line if '"""' in lines[sig_end_line] else None return generate_new_docstring_for_signature( lines, args_in_signature, sig_end_line, docstring_start_line, arg_indent="", custom_args_dict=custom_args_dict, output_docstring_indent=output_docstring_indent, source_args_doc=source_args_doc, ) def _build_ast_indexes(source: str) -> list[DecoratedItem]: """Parse source once and return list of all @auto_docstring decorated items. Returns: List of DecoratedItem objects, one for each @auto_docstring decorated function or class. """ tree = ast.parse(source) # First pass: collect top-level string variables (for resolving custom_args variable references) var_to_string: dict[str, str] = {} for node in tree.body: # Handle: ARGS = "some string" if isinstance(node, ast.Assign) and isinstance(node.value, ast.Constant): if isinstance(node.value.value, str): for target in node.targets: if isinstance(target, ast.Name): var_to_string[target.id] = node.value.value # Handle: ARGS: str = "some string" elif isinstance(node, ast.AnnAssign) and isinstance(node.value, ast.Constant): if isinstance(node.value.value, str) and isinstance(node.target, ast.Name): var_to_string[node.target.id] = node.value.value # Second pass: find all @auto_docstring decorated functions/classes decorated_items: list[DecoratedItem] = [] for node in ast.walk(tree): if not isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef)): continue # Find @auto_docstring decorator and extract custom_args if present decorator_line = None custom_args_text = None for dec in node.decorator_list: if not _is_auto_docstring_decorator(dec): continue decorator_line = dec.lineno # Extract custom_args from @auto_docstring(custom_args=...) if isinstance(dec, ast.Call): for kw in dec.keywords: if kw.arg == "custom_args": if isinstance(kw.value, ast.Constant) and isinstance(kw.value.value, str): custom_args_text = kw.value.value.strip() elif isinstance(kw.value, ast.Name): custom_args_text = var_to_string.get(kw.value.id, "").strip() break if decorator_line is None: # No @auto_docstring decorator found continue # Extract info for this decorated item kind = "class" if isinstance(node, ast.ClassDef) else "function" body_start_line = node.body[0].lineno if node.body else node.lineno + 1 # Extract function arguments (skip self, *args, **kwargs) arg_names = [] has_init = False init_def_line = None is_model_output = False if isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)): # For functions, extract args directly arg_names = _extract_function_args(node) elif isinstance(node, ast.ClassDef): # For classes, look for __init__ method and check if it's a ModelOutput # Check if class inherits from ModelOutput for base in node.bases: if isinstance(base, ast.Name) and "ModelOutput" in base.id: is_model_output = True break # Look for __init__ method in the class body for class_item in node.body: if isinstance(class_item, ast.FunctionDef) and class_item.name == "__init__": has_init = True init_def_line = class_item.lineno arg_names = _extract_function_args(class_item) # Update body_start_line to be the __init__ body start body_start_line = class_item.body[0].lineno if class_item.body else class_item.lineno + 1 break decorated_items.append( DecoratedItem( decorator_line=decorator_line, def_line=node.lineno, kind=kind, body_start_line=body_start_line, args=arg_names, custom_args_text=custom_args_text, has_init=has_init, init_def_line=init_def_line, is_model_output=is_model_output, ) ) return sorted(decorated_items, key=lambda x: x.decorator_line) def update_file_with_new_docstrings( candidate_file, lines, decorated_items: list[DecoratedItem], source: str, overwrite=False, ): """ For a given file, update the docstrings for all @auto_docstring candidates and write the new content. """ if not decorated_items: return [], [], [] missing_docstring_args_warnings = [] fill_docstring_args_warnings = [] docstring_args_ro_remove_warnings = [] # Build new file content by processing decorated items and unchanged sections content_base_file_new_lines = [] last_line_added = 0 # Track the last line we've already added to output (0-based) for index, item in enumerate(decorated_items): def_line_0 = item.def_line - 1 # Convert to 0-based # Parse custom_args if present custom_args_dict = {} if item.custom_args_text: custom_args_dict, _ = parse_docstring(item.custom_args_text) # Generate new docstring based on kind if item.kind == "function": ( new_docstring, sig_line_end, docstring_end, missing_docstring_args, fill_docstring_args, docstring_args_ro_remove, ) = generate_new_docstring_for_function(lines, item, custom_args_dict) else: # class ( new_docstring, sig_line_end, docstring_end, missing_docstring_args, fill_docstring_args, docstring_args_ro_remove, ) = generate_new_docstring_for_class(lines, item, custom_args_dict, source) # If sig_line_end is None, this item couldn't be processed (e.g., class with no __init__) # In this case, we don't modify anything and just continue to the next item if sig_line_end is None: continue # Add all lines from last processed line up to current def line content_base_file_new_lines += lines[last_line_added:def_line_0] # Collect warnings for arg in missing_docstring_args: missing_docstring_args_warnings.append(f" - {arg} line {def_line_0}") for arg in fill_docstring_args: fill_docstring_args_warnings.append(f" - {arg} line {def_line_0}") for arg in docstring_args_ro_remove: docstring_args_ro_remove_warnings.append(f" - {arg} line {def_line_0}") # Add lines from current def through signature content_base_file_new_lines += lines[def_line_0:sig_line_end] # Add new docstring if generated if new_docstring: content_base_file_new_lines += new_docstring.split("\n") # Update last_line_added to skip the old docstring last_line_added = (docstring_end + 1) if docstring_end is not None else sig_line_end # Add any remaining lines after the last decorated item content_base_file_new_lines += lines[last_line_added:] content_base_file_new = "\n".join(content_base_file_new_lines) if overwrite: with open(candidate_file, "w", encoding="utf-8") as f: f.write(content_base_file_new) return ( missing_docstring_args_warnings, fill_docstring_args_warnings, docstring_args_ro_remove_warnings, ) def check_auto_docstrings(overwrite: bool = False, check_all: bool = False): """ Check docstrings of all public objects that are decorated with `@auto_docstrings`. This function orchestrates the process by finding relevant files, scanning for decorators, generating new docstrings, and updating files as needed. """ # 1. Find all model files to check matching_files = find_matching_model_files(check_all) if matching_files is None: return # 2. Find files that contain the @auto_docstring decorator auto_docstrings_files = find_files_with_auto_docstring(matching_files) # 3. For each file, update docstrings for all candidates for candidate_file in auto_docstrings_files: with open(candidate_file, "r", encoding="utf-8") as f: content = f.read() lines = content.split("\n") # Parse file once to find all @auto_docstring decorated items decorated_items = _build_ast_indexes(content) if not decorated_items: continue # Update docstrings for all decorated items missing_docstring_args_warnings, fill_docstring_args_warnings, docstring_args_ro_remove_warnings = ( update_file_with_new_docstrings( candidate_file, lines, decorated_items, content, overwrite=overwrite, ) ) if missing_docstring_args_warnings: if not overwrite: print( "Some docstrings are missing. Run `make fix-copies` or `python utils/check_docstrings.py --fix_and_overwrite` to generate the docstring templates where needed." ) print(f"[ERROR] Missing docstring for the following arguments in {candidate_file}:") for warning in missing_docstring_args_warnings: print(warning) if docstring_args_ro_remove_warnings: if not overwrite: print( "Some docstrings are redundant with the ones in `auto_docstring.py` and will be removed. Run `make fix-copies` or `python utils/check_docstrings.py --fix_and_overwrite` to remove the redundant docstrings." ) print(f"[ERROR] Redundant docstring for the following arguments in {candidate_file}:") for warning in docstring_args_ro_remove_warnings: print(warning) if fill_docstring_args_warnings: print(f"[ERROR] Docstring needs to be filled for the following arguments in {candidate_file}:") for warning in fill_docstring_args_warnings: print(warning) if missing_docstring_args_warnings or docstring_args_ro_remove_warnings or fill_docstring_args_warnings: raise ValueError( "There was at least one problem when checking docstrings of objects decorated with @auto_docstring." ) def check_docstrings(overwrite: bool = False, check_all: bool = False): """ Check docstrings of all public objects that are callables and are documented. By default, only checks the diff. Args: overwrite (`bool`, *optional*, defaults to `False`): Whether to fix inconsistencies or not. check_all (`bool`, *optional*, defaults to `False`): Whether to check all files. """ module_diff_files = None if not check_all: module_diff_files = set() repo = Repo(PATH_TO_REPO) # Diff from index to unstaged files for modified_file_diff in repo.index.diff(None): if modified_file_diff.a_path.startswith("src/transformers"): module_diff_files.add(modified_file_diff.a_path) # Diff from index to `main` for modified_file_diff in repo.index.diff(repo.refs.main.commit): if modified_file_diff.a_path.startswith("src/transformers"): module_diff_files.add(modified_file_diff.a_path) # quick escape route: if there are no module files in the diff, skip this check if len(module_diff_files) == 0: return print(" Checking docstrings in the following files:" + "\n - " + "\n - ".join(module_diff_files)) failures = [] hard_failures = [] to_clean = [] for name in dir(transformers): # Skip objects that are private or not documented. if ( any(name.startswith(prefix) for prefix in OBJECT_TO_IGNORE_PREFIXES) or ignore_undocumented(name) or name in OBJECTS_TO_IGNORE ): continue obj = getattr(transformers, name) if not callable(obj) or not isinstance(obj, type) or getattr(obj, "__doc__", None) is None: continue # If we are checking against the diff, we skip objects that are not part of the diff. if module_diff_files is not None: object_file = find_source_file(getattr(transformers, name)) object_file_relative_path = "src/" + str(object_file).split("/src/")[1] if object_file_relative_path not in module_diff_files: continue # Check docstring try: result = match_docstring_with_signature(obj) if result is not None: old_doc, new_doc = result else: old_doc, new_doc = None, None except Exception as e: print(e) hard_failures.append(name) continue if old_doc != new_doc: if overwrite: fix_docstring(obj, old_doc, new_doc) else: failures.append(name) elif not overwrite and new_doc is not None and ("<fill_type>" in new_doc or "<fill_docstring>" in new_doc): to_clean.append(name) # Deal with errors error_message = "" if len(hard_failures) > 0: error_message += ( "The argument part of the docstrings of the following objects could not be processed, check they are " "properly formatted." ) error_message += "\n" + "\n".join([f"- {name}" for name in hard_failures]) if len(failures) > 0: error_message += ( "The following objects docstrings do not match their signature. Run `make fix-copies` to fix this. " "In some cases, this error may be raised incorrectly by the docstring checker. If you think this is the " "case, you can manually check the docstrings and then add the object name to `OBJECTS_TO_IGNORE` in " "`utils/check_docstrings.py`." ) error_message += "\n" + "\n".join([f"- {name}" for name in failures]) if len(to_clean) > 0: error_message += ( "The following objects docstrings contain templates you need to fix: search for `<fill_type>` or " "`<fill_docstring>`." ) error_message += "\n" + "\n".join([f"- {name}" for name in to_clean]) if len(error_message) > 0: error_message = "There was at least one problem when checking docstrings of public objects.\n" + error_message raise ValueError(error_message) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") parser.add_argument( "--check_all", action="store_true", help="Whether to check all files. By default, only checks the diff" ) args = parser.parse_args() check_auto_docstrings(overwrite=args.fix_and_overwrite, check_all=args.check_all) check_docstrings(overwrite=args.fix_and_overwrite, check_all=args.check_all)
DecoratedItem
python
charliermarsh__ruff
crates/ruff_linter/resources/test/fixtures/flake8_pyi/PYI034.py
{ "start": 4707, "end": 5100 }
class ____( typing.Iterator[int] ): # Y022 Use "collections.abc.Iterator[T]" instead of "typing.Iterator[T]" (PEP 585 syntax) def __iter__(self) -> Iterator[int]: ... # Y034 "__iter__" methods in classes like "BadIterator2" usually return "self" at runtime. Consider using "typing_extensions.Self" in "BadIterator2.__iter__", e.g. "def __iter__(self) -> Self: ..."
BadIterator2
python
mlflow__mlflow
mlflow/genai/judges/tools/types.py
{ "start": 747, "end": 1070 }
class ____: """Information about a single span.""" span_id: str name: str span_type: str start_time_ms: float end_time_ms: float duration_ms: float parent_id: str | None status: SpanStatus is_root: bool attribute_names: list[str] @experimental(version="3.5.0") @dataclass
SpanInfo
python
wandb__wandb
wandb/vendor/pygments/lexers/installers.py
{ "start": 9485, "end": 10870 }
class ____(RegexLexer): """ Lexer that highlights debian sources.list files. .. versionadded:: 0.7 """ name = 'Debian Sourcelist' aliases = ['sourceslist', 'sources.list', 'debsources'] filenames = ['sources.list'] mimetype = ['application/x-debian-sourceslist'] tokens = { 'root': [ (r'\s+', Text), (r'#.*?$', Comment), (r'^(deb(?:-src)?)(\s+)', bygroups(Keyword, Text), 'distribution') ], 'distribution': [ (r'#.*?$', Comment, '#pop'), (r'\$\(ARCH\)', Name.Variable), (r'[^\s$[]+', String), (r'\[', String.Other, 'escaped-distribution'), (r'\$', String), (r'\s+', Text, 'components') ], 'escaped-distribution': [ (r'\]', String.Other, '#pop'), (r'\$\(ARCH\)', Name.Variable), (r'[^\]$]+', String.Other), (r'\$', String.Other) ], 'components': [ (r'#.*?$', Comment, '#pop:2'), (r'$', Text, '#pop:2'), (r'\s+', Text), (r'\S+', Keyword.Pseudo), ] } def analyse_text(text): for line in text.splitlines(): line = line.strip() if line.startswith('deb ') or line.startswith('deb-src '): return True
SourcesListLexer
python
walkccc__LeetCode
solutions/2862. Maximum Element-Sum of a Complete Subset of Indices/2862.py
{ "start": 0, "end": 453 }
class ____: def maximumSum(self, nums: list[int]) -> int: ans = 0 oddPowerToSum = collections.Counter() def divideSquares(val: int) -> int: for num in range(2, val + 1): while val % (num * num) == 0: val //= (num * num) return val for i, num in enumerate(nums): oddPower = divideSquares(i + 1) oddPowerToSum[oddPower] += num ans = max(ans, oddPowerToSum[oddPower]) return ans
Solution
python
streamlit__streamlit
lib/streamlit/testing/v1/element_tree.py
{ "start": 15068, "end": 15603 }
class ____(Element): proto: ArrowProto = field(repr=False) def __init__(self, proto: ArrowProto, root: ElementTree) -> None: self.key = None self.proto = proto self.root = root self.type = "arrow_data_frame" @property def value(self) -> PandasDataframe: return dataframe_util.convert_arrow_bytes_to_pandas_df(self.proto.data) SingleDateValue: TypeAlias = date | datetime DateValue: TypeAlias = SingleDateValue | Sequence[SingleDateValue] | None @dataclass(repr=False)
Dataframe
python
django__django
tests/staticfiles_tests/test_storage.py
{ "start": 26475, "end": 26985 }
class ____(CollectionTestCase): run_collectstatic_in_setUp = False def test_collectstatistic_no_post_process_replaced_paths(self): stdout = StringIO() self.run_collectstatic(verbosity=1, stdout=stdout) self.assertIn("post-processed", stdout.getvalue()) @override_settings( STORAGES={ **settings.STORAGES, STATICFILES_STORAGE_ALIAS: { "BACKEND": "staticfiles_tests.storage.SimpleStorage", }, } )
TestCollectionNoPostProcessReplacedPaths
python
keras-team__keras
keras/src/quantizers/quantizers.py
{ "start": 23319, "end": 33630 }
class ____(Quantizer): """A class that handles the quantization of weights using GPTQ method. This class provides methods to find quantization parameters (scale and zero) for a given tensor and can be used to quantize weights in a GPTQ context. Args: weight_bits: (int) The number of bits to quantize to (e.g., 4). per_channel: (bool) A flag indicating whether quantization is applied per-channel (`True`) or per-tensor (`False`). Defaults to `False`. symmetric: (bool) A flag indicating whether symmetric (`True`) or asymmetric (`False`) quantization is used. Defaults to `False`. group_size: (int) The size of weight groups for quantization. A value of -1 indicates that grouping is not used. Defaults to -1. """ def __init__( self, config=GPTQConfig(tokenizer=None, dataset=None), compute_dtype="float32", ): Quantizer.__init__(self) self.weight_bits = config.weight_bits self.per_channel = config.per_channel self.symmetric = config.symmetric self.group_size = config.group_size self.compute_dtype = compute_dtype # These are now determined later by `find_params` self.scale = None self.zero = None self.maxq = None def find_params(self, input_tensor, weight=True): """Finds quantization parameters (scale and zero) for a given tensor.""" self.scale, self.zero, self.maxq = compute_quantization_parameters( input_tensor, bits=self.weight_bits, symmetric=self.symmetric, per_channel=self.per_channel, group_size=self.group_size, weight=weight, compute_dtype=self.compute_dtype, ) return self.scale, self.zero, self.maxq def get_config(self): config = super().get_config() config.update( { "weight_bits": self.weight_bits, "per_channel": self.per_channel, "symmetric": self.symmetric, "group_size": self.group_size, } ) return config @classmethod def from_config(cls, config): gptq = GPTQConfig( tokenizer=None, dataset=None, weight_bits=config["weight_bits"], per_channel=config["per_channel"], symmetric=config["symmetric"], group_size=config["group_size"], ) return cls(gptq) def compute_quantization_parameters( x, *, bits, symmetric=False, per_channel=False, group_size=-1, weight=False, compute_dtype="float32", ): """ Computes the scale and zero-point for quantization. This function calculates the scale and zero-point required for quantizing a given tensor `x` based on the specified parameters. It supports grouped, per-channel, per-tensor, symmetric, and asymmetric quantization - along with any combinations of these. Args: x: KerasTensor. The input tensor to quantize. bits: int. The number of bits to quantize to (e.g., 4). symmetric: bool. Whether to use symmetric quantization. per_channel: bool. Whether to quantize per channel. group_size: int. The group size for quantization. weight: bool. Whether the input tensor is a weight tensor. Returns: scale: KerasTensor. The scale tensor for quantization. zero: KerasTensor. The zero tensor for quantization. maxq: scalar. The maximum quantization value. """ if x is None: raise ValueError(f"Input tensor {x} cannot be None.") # For weights, we typically expect at least a 2D tensor. if weight and len(x.shape) < 2: raise ValueError( f"Input weight tensor {x} must have a rank of at " f"least 2, but got rank {len(x.shape)}." ) if ops.size(x) == 0: raise ValueError("Input tensor 'x' cannot be empty.") original_shape = x.shape if per_channel: if weight: if group_size != -1: input_reshaped = ops.reshape(x, [-1, group_size]) else: input_reshaped = ops.reshape(x, [original_shape[0], -1]) else: # per-tensor input_reshaped = ops.reshape(x, [1, -1]) # Find min/max values min_values = ops.min(input_reshaped, axis=1) max_values = ops.max(input_reshaped, axis=1) # Apply symmetric quantization logic if enabled if symmetric: max_values = ops.maximum(ops.abs(min_values), max_values) min_values = ops.where( ops.less(min_values, 0), ops.negative(max_values), min_values ) # Ensure range is not zero to avoid division errors zero_range = ops.equal(min_values, max_values) min_values = ops.where(zero_range, ops.subtract(min_values, 1), min_values) max_values = ops.where(zero_range, ops.add(max_values, 1), max_values) maxq = ops.cast(ops.subtract(ops.power(2, bits), 1), compute_dtype) # Calculate scale and zero-point scale = ops.divide(ops.subtract(max_values, min_values), maxq) if symmetric: zero = ops.full_like(scale, ops.divide(ops.add(maxq, 1), 2)) else: zero = ops.round(ops.divide(ops.negative(min_values), scale)) # Ensure scale is non-zero scale = ops.where(ops.less_equal(scale, 0), 1e-8, scale) if weight: # Per-channel, non-grouped case: simple reshape is correct. if per_channel and group_size == -1: scale = ops.reshape(scale, [-1, 1]) zero = ops.reshape(zero, [-1, 1]) elif not per_channel: num_rows = original_shape[0] scale = ops.tile(ops.reshape(scale, (1, 1)), (num_rows, 1)) zero = ops.tile(ops.reshape(zero, (1, 1)), (num_rows, 1)) if per_channel: scale = ops.reshape(scale, [-1, 1]) zero = ops.reshape(zero, [-1, 1]) zero = ops.cast(zero, "uint8") return scale, zero, maxq def quantize_with_zero_point(input_tensor, scale, zero, maxq): """Quantize a float tensor into discrete levels [0, maxq] using per-tensor/per-channel/grouped scaling. Returns `q` (same dtype as inputs/scales; float is fine) where values are in [0, maxq]. Args: input_tensor: KerasTensor. The input tensor to quantize. scale: KerasTensor. The scale tensor for quantization. zero: KerasTensor. The zero tensor for quantization. maxq: KerasTensor. The maximum quantization value. Returns: KerasTensor. The quantized tensor. """ # Guard against divide-by-zero epsilon = ops.cast(1e-8, dtype=scale.dtype) safe_scale = ops.where(ops.equal(scale, 0), epsilon, scale) quantized_tensor = ops.round( ops.add( ops.divide(input_tensor, safe_scale), ops.cast(zero, scale.dtype) ) ) quantized_tensor = ops.clip(quantized_tensor, 0, maxq) return quantized_tensor def dequantize_with_zero_point(input_tensor, scale, zero): """ Dequantizes a quantized tensor using the provided scale and zero tensors. Args: input_tensor: KerasTensor. The quantized tensor to dequantize. scale: KerasTensor. The scale tensor for dequantization. zero: KerasTensor. The zero tensor for dequantization. Returns: KerasTensor. The dequantized tensor. """ return ops.multiply( scale, ops.subtract(input_tensor, ops.cast(zero, scale.dtype)) ) def quantize_with_sz_map(weights_matrix, scale, zero, g_idx, maxq): """Quantize the weight matrix from group params. This function uses the provided scale and zero tensors to quantize the input weights_matrix according to the group indices. It maps each column of the weights_matrix to its corresponding group parameters and performs the quantization operation. Args: weights_matrix: 2D tensor of shape [out_features, in_features]. scale: Per-group scale tensor of shape [out_features, n_groups]. zero: Per-group zero-point tensor of shape [out_features, n_groups]. g_idx: Integer tensor of shape [in_features,] mapping each column to its group index. maxq: Scalar (float) representing the maximum integer quantization level (e.g., 2^bits - 1). Returns: A tensor with the same shape as `weights_matrix` containing the quantized weights produced using the provided group parameters. """ groups = ops.cast(g_idx, "int32") scale_cols = ops.take(scale, groups, axis=1) # [out_features, in_features] zero_cols = ops.take(zero, groups, axis=1) # [out_features, in_features] # Quantize elementwise, then cast to int return quantize_with_zero_point(weights_matrix, scale_cols, zero_cols, maxq) def dequantize_with_sz_map(weights_matrix, scale, zero, g_idx): """Rebuild a dequantized weight matrix from group params. This function uses the provided scale and zero tensors to dequantize the input weights_matrix according to the group indices. It maps each column of the weights_matrix to its corresponding group parameters and performs the dequantization operation. Args: weights_matrix: 2D tensor of shape [out_features, in_features]. scale: Per-group scale tensor of shape [out_features, n_groups]. zero: Per-group zero-point tensor of shape [out_features, n_groups]. g_idx: Integer tensor of shape [in_features,] mapping each column to its group index. maxq: Scalar (float) representing the maximum integer quantization level (e.g., 2^bits - 1). Returns: A tensor with the same shape as `weights_matrix` containing the dequantized weights produced using the provided group parameters. """ # Map group indices to scales and zeros groups = ops.cast(g_idx, "int32") scales_mapped = ops.take(scale, groups, axis=1) zeros_mapped = ops.take(zero, groups, axis=1) zeros_mapped = ops.cast(zeros_mapped, scales_mapped.dtype) quantized = ops.multiply( ops.subtract(weights_matrix, zeros_mapped), scales_mapped ) return quantized
GPTQQuantizer
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/paramNames1.py
{ "start": 1598, "end": 2116 }
class ____(type): def __new__(mcls): ... # This should not generate a error because the class derives # from type and is assumed to be a metaclass. def foo1(cls): return 3 # This should generate an error. def foo2(mcls): return 3 def foo3(self): return 3 @classmethod def foo4(cls): return 3 @classmethod def foo5(metacls): return 3 # This should generate an error. @classmethod def foo6(bar): return 3
Metaclass
python
etianen__django-reversion
tests/test_app/tests/test_commands.py
{ "start": 2669, "end": 3055 }
class ____(TestModelMixin, TestBase): databases = {"default", "postgres"} def testCreateInitialRevisionsModelDb(self): obj = TestModel.objects.db_manager("postgres").create() self.callCommand("createinitialrevisions", model_db="postgres") self.assertSingleRevision((obj,), comment="Initial version.", model_db="postgres")
CreateInitialRevisionsModelDbTest
python
getsentry__sentry
src/sentry/statistical_detectors/base.py
{ "start": 543, "end": 1175 }
class ____(ABC): @classmethod @abstractmethod def from_redis_dict(cls, data: Any) -> DetectorState: ... @abstractmethod def to_redis_dict(self) -> Mapping[str | bytes, bytes | float | int | str]: ... @abstractmethod def should_auto_resolve(self, target: float, rel_threshold: float) -> bool: ... @abstractmethod def should_escalate( self, baseline: float, regressed: float, min_change: float, rel_threshold: float ) -> bool: ... @classmethod @abstractmethod def empty(cls) -> DetectorState: ... @abstractmethod def get_moving_avg(self) -> float: ...
DetectorState
python
getsentry__sentry
src/sentry/auth/manager.py
{ "start": 378, "end": 1334 }
class ____: def __init__(self) -> None: self.__values: dict[str, type[Provider]] = {} def __iter__(self) -> Iterator[tuple[str, type[Provider]]]: yield from self.__values.items() def get(self, key: str, **kwargs: Any) -> Provider: try: cls = self.__values[key] except KeyError: raise ProviderNotRegistered(key) return cls(**kwargs) def exists(self, key: str) -> bool: return key in self.__values def register(self, cls: type[Provider]) -> None: self.__values[cls.key] = cls def unregister(self, cls: type[Provider]) -> None: try: if self.__values[cls.key] != cls: # don't allow unregistering of arbitrary provider raise ProviderNotRegistered(cls.key) except KeyError: # we gracefully handle a missing provider return del self.__values[cls.key]
ProviderManager
python
PyCQA__pylint
tests/functional/i/invalid/invalid_getnewargs/invalid_getnewargs_ex_returned.py
{ "start": 236, "end": 386 }
class ____: """__getnewargs_ex__ returns <type 'tuple'>""" def __getnewargs_ex__(self): return ((1,), {"2": "2"})
FirstGoodGetNewArgsEx
python
numpy__numpy
numpy/polynomial/tests/test_hermite_e.py
{ "start": 6188, "end": 10115 }
class ____: def test_hermeint(self): # check exceptions assert_raises(TypeError, herme.hermeint, [0], .5) assert_raises(ValueError, herme.hermeint, [0], -1) assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0]) assert_raises(ValueError, herme.hermeint, [0], lbnd=[0]) assert_raises(ValueError, herme.hermeint, [0], scl=[0]) assert_raises(TypeError, herme.hermeint, [0], axis=.5) # test integration of zero polynomial for i in range(2, 5): k = [0] * (i - 2) + [1] res = herme.hermeint([0], m=i, k=k) assert_almost_equal(res, [0, 1]) # check single integration with integration constant for i in range(5): scl = i + 1 pol = [0] * i + [1] tgt = [i] + [0] * i + [1 / scl] hermepol = herme.poly2herme(pol) hermeint = herme.hermeint(hermepol, m=1, k=[i]) res = herme.herme2poly(hermeint) assert_almost_equal(trim(res), trim(tgt)) # check single integration with integration constant and lbnd for i in range(5): scl = i + 1 pol = [0] * i + [1] hermepol = herme.poly2herme(pol) hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1) assert_almost_equal(herme.hermeval(-1, hermeint), i) # check single integration with integration constant and scaling for i in range(5): scl = i + 1 pol = [0] * i + [1] tgt = [i] + [0] * i + [2 / scl] hermepol = herme.poly2herme(pol) hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2) res = herme.herme2poly(hermeint) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with default k for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = herme.hermeint(tgt, m=1) res = herme.hermeint(pol, m=j) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with defined k for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = herme.hermeint(tgt, m=1, k=[k]) res = herme.hermeint(pol, m=j, k=list(range(j))) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with lbnd for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1) res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1) assert_almost_equal(trim(res), trim(tgt)) # check multiple integrations with scaling for i in range(5): for j in range(2, 5): pol = [0] * i + [1] tgt = pol[:] for k in range(j): tgt = herme.hermeint(tgt, m=1, k=[k], scl=2) res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2) assert_almost_equal(trim(res), trim(tgt)) def test_hermeint_axis(self): # check that axis keyword works c2d = np.random.random((3, 4)) tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T res = herme.hermeint(c2d, axis=0) assert_almost_equal(res, tgt) tgt = np.vstack([herme.hermeint(c) for c in c2d]) res = herme.hermeint(c2d, axis=1) assert_almost_equal(res, tgt) tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d]) res = herme.hermeint(c2d, k=3, axis=1) assert_almost_equal(res, tgt)
TestIntegral
python
apache__airflow
providers/apache/pinot/tests/unit/apache/pinot/hooks/test_pinot.py
{ "start": 7452, "end": 10151 }
class ____: def setup_method(self): self.conn = conn = mock.MagicMock() self.conn.host = "host" self.conn.port = "1000" self.conn.login = "" self.conn.password = "" self.conn.conn_type = "http" self.conn.extra_dejson = {"endpoint": "query/sql"} self.cur = mock.MagicMock(rowcount=0) self.conn.cursor.return_value = self.cur self.conn.__enter__.return_value = self.cur self.conn.__exit__.return_value = None class TestPinotDBApiHook(PinotDbApiHook): def get_conn(self): return conn def get_connection(self, conn_id): return conn self.db_hook = TestPinotDBApiHook def test_get_uri(self): """ Test on getting a pinot connection uri """ db_hook = self.db_hook() assert db_hook.get_uri() == "http://host:1000/query/sql" def test_get_conn(self): """ Test on getting a pinot connection """ conn = self.db_hook().get_conn() assert conn.host == "host" assert conn.port == "1000" assert conn.conn_type == "http" assert conn.extra_dejson.get("endpoint") == "query/sql" def test_get_records(self): statement = "SQL" result_sets = [("row1",), ("row2",)] self.cur.fetchall.return_value = result_sets assert result_sets == self.db_hook().get_records(statement) def test_get_first(self): statement = "SQL" result_sets = [("row1",), ("row2",)] self.cur.fetchone.return_value = result_sets[0] assert result_sets[0] == self.db_hook().get_first(statement) def test_get_df_pandas(self): statement = "SQL" column = "col" result_sets = [("row1",), ("row2",)] self.cur.description = [(column,)] self.cur.fetchall.return_value = result_sets df = self.db_hook().get_df(statement, df_type="pandas") assert column == df.columns[0] for i, item in enumerate(result_sets): assert item[0] == df.values.tolist()[i][0] def test_get_df_polars(self): statement = "SQL" column = "col" result_sets = [("row1",), ("row2",)] mock_execute = mock.MagicMock() mock_execute.description = [(column, None, None, None, None, None, None)] mock_execute.fetchall.return_value = result_sets self.cur.execute.return_value = mock_execute df = self.db_hook().get_df(statement, df_type="polars") assert column == df.columns[0] assert result_sets[0][0] == df.row(0)[0] assert result_sets[1][0] == df.row(1)[0]
TestPinotDbApiHook
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/sql/coercions.py
{ "start": 20067, "end": 20515 }
class ____(RoleImpl): __slots__ = () def _implicit_coercions( self, element: Any, resolved: Any, argname: Optional[str] = None, **kw: Any, ) -> Any: if isinstance(element, ExecutableOption): return element else: self._raise_for_expected(element, argname, resolved) def _literal_coercion(self, element, **kw): return element
ExecutableOptionImpl
python
redis__redis-py
redis/commands/core.py
{ "start": 226391, "end": 226962 }
class ____(ScriptCommands): async def script_debug(self, *args) -> None: return super().script_debug() def register_script( self: "redis.asyncio.client.Redis", script: ScriptTextT, ) -> AsyncScript: """ Register a Lua ``script`` specifying the ``keys`` it will touch. Returns a Script object that is callable and hides the complexity of deal with scripts, keys, and shas. This is the preferred way to work with Lua scripts. """ return AsyncScript(self, script)
AsyncScriptCommands
python
matplotlib__matplotlib
lib/matplotlib/dviread.py
{ "start": 48623, "end": 53486 }
class ____: @cache # A singleton. def __new__(cls): self = object.__new__(cls) self._proc = self._new_proc() return self def _new_proc(self): return subprocess.Popen( ["luatex", "--luaonly", str(cbook._get_data_path("kpsewhich.lua"))], # mktexpk logs to stderr; suppress that. stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, # Store generated pk fonts in our own cache. env={"MT_VARTEXFONTS": str(Path(mpl.get_cachedir(), "vartexfonts")), **os.environ}) def search(self, filename): if self._proc.poll() is not None: # Dead, restart it. self._proc = self._new_proc() self._proc.stdin.write(os.fsencode(filename) + b"\n") self._proc.stdin.flush() out = self._proc.stdout.readline().rstrip() return None if out == b"nil" else os.fsdecode(out) @lru_cache def find_tex_file(filename): """ Find a file in the texmf tree using kpathsea_. The kpathsea library, provided by most existing TeX distributions, both on Unix-like systems and on Windows (MikTeX), is invoked via a long-lived luatex process if luatex is installed, or via kpsewhich otherwise. .. _kpathsea: https://www.tug.org/kpathsea/ Parameters ---------- filename : str or path-like Raises ------ FileNotFoundError If the file is not found. """ # we expect these to always be ascii encoded, but use utf-8 # out of caution if isinstance(filename, bytes): filename = filename.decode('utf-8', errors='replace') try: lk = _LuatexKpsewhich() except FileNotFoundError: lk = None # Fallback to directly calling kpsewhich, as below. if lk: path = lk.search(filename) else: if sys.platform == 'win32': # On Windows only, kpathsea can use utf-8 for cmd args and output. # The `command_line_encoding` environment variable is set to force # it to always use utf-8 encoding. See Matplotlib issue #11848. kwargs = {'env': {**os.environ, 'command_line_encoding': 'utf-8'}, 'encoding': 'utf-8'} else: # On POSIX, run through the equivalent of os.fsdecode(). kwargs = {'env': {**os.environ}, 'encoding': sys.getfilesystemencoding(), 'errors': 'surrogateescape'} kwargs['env'].update( MT_VARTEXFONTS=str(Path(mpl.get_cachedir(), "vartexfonts"))) try: path = cbook._check_and_log_subprocess( ['kpsewhich', '-mktex=pk', filename], _log, **kwargs, ).rstrip('\n') except (FileNotFoundError, RuntimeError): path = None if path: return path else: raise FileNotFoundError( f"Matplotlib's TeX implementation searched for a file named " f"{filename!r} in your texmf tree, but could not find it") @lru_cache def _fontfile(cls, suffix, texname): return cls(find_tex_file(texname + suffix)) _tfmfile = partial(_fontfile, Tfm, ".tfm") _vffile = partial(_fontfile, Vf, ".vf") if __name__ == '__main__': import itertools from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("filename") parser.add_argument("dpi", nargs="?", type=float, default=None) parser.add_argument("-d", "--debug", action="store_true") args = parser.parse_args() if args.debug: logging.basicConfig(level=logging.DEBUG) def _print_fields(*args): print(" ".join(map("{:>11}".format, args))) with Dvi(args.filename, args.dpi) as dvi: for page in dvi: print(f"=== NEW PAGE === " f"(w: {page.width}, h: {page.height}, d: {page.descent})") print("--- GLYPHS ---") for font, group in itertools.groupby(page.text, lambda text: text.font): font_name = (font.texname.decode("utf8") if os.name == "nt" else os.fsdecode(font.texname)) if isinstance(font._metrics, Tfm): print(f"font: {font_name} at {font.resolve_path()}") else: print(f"font: {font_name}") print(f"scale: {font._scale / 2 ** 20}") _print_fields("x", "y", "glyph", "chr", "w") for text in group: _print_fields(text.x, text.y, text.glyph, text._as_unicode_or_name(), text.width) if page.boxes: print("--- BOXES ---") _print_fields("x", "y", "h", "w") for box in page.boxes: _print_fields(box.x, box.y, box.height, box.width)
_LuatexKpsewhich
python
crytic__slither
slither/detectors/attributes/locked_ether.py
{ "start": 529, "end": 4861 }
class ____(AbstractDetector): # pylint: disable=too-many-nested-blocks ARGUMENT = "locked-ether" HELP = "Contracts that lock ether" IMPACT = DetectorClassification.MEDIUM CONFIDENCE = DetectorClassification.HIGH WIKI = "https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether" WIKI_TITLE = "Contracts that lock Ether" WIKI_DESCRIPTION = "Contract with a `payable` function, but without a withdrawal capacity." # region wiki_exploit_scenario WIKI_EXPLOIT_SCENARIO = """ ```solidity pragma solidity 0.4.24; contract Locked{ function receive() payable public{ } } ``` Every Ether sent to `Locked` will be lost.""" # endregion wiki_exploit_scenario WIKI_RECOMMENDATION = "Remove the payable attribute or add a withdraw function." @staticmethod def do_no_send_ether(contract: Contract) -> bool: functions = contract.all_functions_called to_explore = functions explored = [] while to_explore: # pylint: disable=too-many-nested-blocks functions = to_explore explored += to_explore to_explore = [] for function in functions: calls = [ir.function.name for ir in function.internal_calls] if "suicide(address)" in calls or "selfdestruct(address)" in calls: return False for node in function.nodes: for ir in node.irs: if isinstance( ir, (Send, Transfer, HighLevelCall, LowLevelCall, NewContract), ): if ir.call_value and ir.call_value != 0: return False if isinstance(ir, (LowLevelCall)) and ir.function_name in [ "delegatecall", "callcode", ]: return False if isinstance(ir, SolidityCall): call_can_send_ether = ir.function in [ SolidityFunction( "delegatecall(uint256,uint256,uint256,uint256,uint256,uint256)" ), SolidityFunction( "callcode(uint256,uint256,uint256,uint256,uint256,uint256,uint256)" ), SolidityFunction( "call(uint256,uint256,uint256,uint256,uint256,uint256,uint256)" ), ] nonzero_call_value = call_can_send_ether and ( not isinstance(ir.arguments[2], Constant) or ir.arguments[2].value != 0 ) if nonzero_call_value: return False # If a new internal call or librarycall # Add it to the list to explore # InternalCall if to follow internal call in libraries if isinstance(ir, (InternalCall, LibraryCall)): if not ir.function in explored: to_explore.append(ir.function) return True def _detect(self) -> List[Output]: results = [] for contract in self.compilation_unit.contracts_derived: if contract.is_signature_only(): continue funcs_payable = [function for function in contract.functions if function.payable] if funcs_payable: if self.do_no_send_ether(contract): info: DETECTOR_INFO = ["Contract locking ether found:\n"] info += ["\tContract ", contract, " has payable functions:\n"] for function in funcs_payable: info += ["\t - ", function, "\n"] info += "\tBut does not have a function to withdraw the ether\n" json = self.generate_result(info) results.append(json) return results
LockedEther
python
charliermarsh__ruff
python/ruff-ecosystem/ruff_ecosystem/main.py
{ "start": 4571, "end": 5009 }
class ____(json.JSONEncoder): def default(self, o: object): if isinstance(o, Serializable): return o.jsonable() if dataclasses.is_dataclass(o): return dataclasses.asdict(o) if isinstance(o, set): return tuple(o) if isinstance(o, Path): return str(o) if isinstance(o, Exception): return str(o) return super().default(o)
JSONEncoder
python
PrefectHQ__prefect
tests/events/server/test_in_memory_ordering.py
{ "start": 22200, "end": 23044 }
class ____: def test_get_task_run_recorder_causal_ordering(self): """Test that the factory function returns the correct scoped instance.""" from prefect.server.events.ordering import get_task_run_recorder_causal_ordering CausalOrdering.clear_all_scopes() # Get instance from factory function ordering1 = get_task_run_recorder_causal_ordering() assert ordering1.scope == "task-run-recorder" assert isinstance(ordering1, CausalOrdering) # Multiple calls should return the same instance ordering2 = get_task_run_recorder_causal_ordering() assert ordering1 is ordering2 # Direct instantiation with same scope should return same instance ordering3 = CausalOrdering(scope="task-run-recorder") assert ordering1 is ordering3
TestFactoryFunction
python
graphql-python__graphene
graphene/relay/connection.py
{ "start": 2367, "end": 2429 }
class ____(ObjectTypeOptions): node = None
ConnectionOptions
python
pyca__cryptography
src/cryptography/x509/extensions.py
{ "start": 39109, "end": 41006 }
class ____(ExtensionType): oid = ExtensionOID.PRIVATE_KEY_USAGE_PERIOD def __init__( self, not_before: datetime.datetime | None, not_after: datetime.datetime | None, ) -> None: if ( not isinstance(not_before, datetime.datetime) and not_before is not None ): raise TypeError("not_before must be a datetime.datetime or None") if ( not isinstance(not_after, datetime.datetime) and not_after is not None ): raise TypeError("not_after must be a datetime.datetime or None") if not_before is None and not_after is None: raise ValueError( "At least one of not_before and not_after must not be None" ) if ( not_before is not None and not_after is not None and not_before > not_after ): raise ValueError("not_before must be before not_after") self._not_before = not_before self._not_after = not_after @property def not_before(self) -> datetime.datetime | None: return self._not_before @property def not_after(self) -> datetime.datetime | None: return self._not_after def __repr__(self) -> str: return ( f"<PrivateKeyUsagePeriod(not_before={self.not_before}, " f"not_after={self.not_after})>" ) def __eq__(self, other: object) -> bool: if not isinstance(other, PrivateKeyUsagePeriod): return NotImplemented return ( self.not_before == other.not_before and self.not_after == other.not_after ) def __hash__(self) -> int: return hash((self.not_before, self.not_after)) def public_bytes(self) -> bytes: return rust_x509.encode_extension_value(self)
PrivateKeyUsagePeriod
python
getsentry__sentry
src/sentry/issues/run.py
{ "start": 633, "end": 3812 }
class ____(ProcessingStrategyFactory[KafkaPayload]): def __init__( self, max_batch_size: int, max_batch_time: int, # not needed in batched-parallel mode num_processes: int | None = None, input_block_size: int | None = None, output_block_size: int | None = None, mode: Literal["batched-parallel", "parallel"] | None = None, ): super().__init__() self.max_batch_size = max_batch_size self.max_batch_time = max_batch_time self.input_block_size = input_block_size self.output_block_size = output_block_size self.batched = mode == "batched-parallel" # either use multi-process pool or a thread pool if self.batched: self.worker: ThreadPoolExecutor | None = ThreadPoolExecutor() self.pool: MultiprocessingPool | None = None else: # make sure num_processes is not None assert num_processes is not None self.pool = MultiprocessingPool(num_processes) self.worker = None def create_parallel_worker( self, commit: Commit, ) -> ProcessingStrategy[KafkaPayload]: assert self.pool is not None return run_task_with_multiprocessing( function=process_message, next_step=CommitOffsets(commit), max_batch_size=self.max_batch_size, max_batch_time=self.max_batch_time, pool=self.pool, input_block_size=self.input_block_size, output_block_size=self.output_block_size, ) def create_batched_parallel_worker(self, commit: Commit) -> ProcessingStrategy[KafkaPayload]: assert self.worker is not None batch_processor = RunTask( function=functools.partial(process_batch, self.worker), next_step=CommitOffsets(commit), ) return BatchStep( max_batch_size=self.max_batch_size, max_batch_time=self.max_batch_time, next_step=batch_processor, ) def create_with_partitions( self, commit: Commit, partitions: Mapping[Partition, int], ) -> ProcessingStrategy[KafkaPayload]: if self.batched: return self.create_batched_parallel_worker(commit) else: return self.create_parallel_worker(commit) def shutdown(self) -> None: if self.pool: self.pool.close() if self.worker: self.worker.shutdown() def process_message(message: Message[KafkaPayload]) -> None: from sentry.issues.occurrence_consumer import _process_message try: payload = orjson.loads(message.payload.value) _process_message(payload) except Exception: logger.exception("failed to process message payload") def process_batch(worker: ThreadPoolExecutor, messages: Message[ValuesBatch[KafkaPayload]]) -> None: from sentry.issues.occurrence_consumer import process_occurrence_batch try: process_occurrence_batch(worker, messages) except Exception: logger.exception("failed to process batch payload")
OccurrenceStrategyFactory
python
run-llama__llama_index
llama-index-core/llama_index/core/objects/table_node_mapping.py
{ "start": 402, "end": 549 }
class ____(BaseModel): """Lightweight representation of a SQL table.""" table_name: str context_str: Optional[str] = None
SQLTableSchema
python
getsentry__sentry
src/sentry/hybridcloud/rpc/__init__.py
{ "start": 628, "end": 892 }
class ____(Enum): def __eq__(self, other: Any) -> bool: value = other if isinstance(other, Enum): value = other.value return self.value == value def __hash__(self) -> int: return hash(self.value)
ValueEqualityEnum
python
sympy__sympy
sympy/physics/control/lti.py
{ "start": 144005, "end": 161725 }
class ____(MIMOLinearTimeInvariant): r""" A class for representing closed-loop feedback interconnection between two MIMO input/output systems. Parameters ========== sys1 : MIMOSeries, TransferFunctionMatrix, StateSpaceBase The MIMO system placed on the feedforward path. sys2 : MIMOSeries, TransferFunctionMatrix, StateSpaceBase The system placed on the feedback path (often a feedback controller). sign : int, optional The sign of feedback. Can either be ``1`` (for positive feedback) or ``-1`` (for negative feedback). Default value is `-1`. Raises ====== ValueError When ``sys1`` and ``sys2`` are not using the same complex variable of the Laplace transform or z-transform. Forward path model should have an equal number of inputs/outputs to the feedback path outputs/inputs. When product of ``sys1`` and ``sys2`` is not a square matrix. When the equivalent MIMO system is not invertible. TypeError When either ``sys1`` or ``sys2`` is not a ``MIMOSeries``, ``TransferFunctionMatrix`` or a ``StateSpaceBase`` object. Examples ======== >>> from sympy import Matrix, pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import StateSpace, TransferFunctionMatrix, MIMOFeedback >>> plant_mat = Matrix([[1, 1/s], [0, 1]]) >>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain >>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s) >>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s) >>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default) >>> pprint(feedback, use_unicode=False) / [1 1] [10 0 ] \-1 [1 1] | [- -] [-- - ] | [- -] | [1 s] [1 1 ] | [1 s] |I + [ ] *[ ] | * [ ] | [0 1] [0 10] | [0 1] | [- -] [- --] | [- -] \ [1 1]{t} [1 1 ]{t}/ [1 1]{t} To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method. >>> pprint(feedback.doit(), use_unicode=False) [1 1 ] [-- -----] [11 121*s] [ ] [0 1 ] [- -- ] [1 11 ]{t} To negate the ``MIMOFeedback`` object, use ``-`` operator. >>> neg_feedback = -feedback >>> pprint(neg_feedback.doit(), use_unicode=False) [-1 -1 ] [--- -----] [11 121*s] [ ] [ 0 -1 ] [ - --- ] [ 1 11 ]{t} ``MIMOFeedback`` can also be used to connect MIMO ``StateSpace`` systems. >>> A1 = Matrix([[4, 1], [2, -3]]) >>> B1 = Matrix([[5, 2], [-3, -3]]) >>> C1 = Matrix([[2, -4], [0, 1]]) >>> D1 = Matrix([[3, 2], [1, -1]]) >>> A2 = Matrix([[-3, 4, 2], [-1, -3, 0], [2, 5, 3]]) >>> B2 = Matrix([[1, 4], [-3, -3], [-2, 1]]) >>> C2 = Matrix([[4, 2, -3], [1, 4, 3]]) >>> D2 = Matrix([[-2, 4], [0, 1]]) >>> ss1 = StateSpace(A1, B1, C1, D1) >>> ss2 = StateSpace(A2, B2, C2, D2) >>> F1 = MIMOFeedback(ss1, ss2) >>> F1 MIMOFeedback(StateSpace(Matrix([ [4, 1], [2, -3]]), Matrix([ [ 5, 2], [-3, -3]]), Matrix([ [2, -4], [0, 1]]), Matrix([ [3, 2], [1, -1]])), StateSpace(Matrix([ [-3, 4, 2], [-1, -3, 0], [ 2, 5, 3]]), Matrix([ [ 1, 4], [-3, -3], [-2, 1]]), Matrix([ [4, 2, -3], [1, 4, 3]]), Matrix([ [-2, 4], [ 0, 1]])), -1) ``doit()`` can be used to find ``StateSpace`` equivalent for the system containing ``StateSpace`` objects. >>> F1.doit() StateSpace(Matrix([ [ 3, -3/4, -15/4, -37/2, -15], [ 7/2, -39/8, 9/8, 39/4, 9], [ 3, -41/4, -45/4, -51/2, -19], [-9/2, 129/8, 73/8, 171/4, 36], [-3/2, 47/8, 31/8, 85/4, 18]]), Matrix([ [-1/4, 19/4], [ 3/8, -21/8], [ 1/4, 29/4], [ 3/8, -93/8], [ 5/8, -35/8]]), Matrix([ [ 1, -15/4, -7/4, -21/2, -9], [1/2, -13/8, -13/8, -19/4, -3]]), Matrix([ [-1/4, 11/4], [ 1/8, 9/8]])) See Also ======== Feedback, MIMOSeries, MIMOParallel """ def __new__(cls, sys1, sys2, sign=-1): if not isinstance(sys1, (TransferFunctionMatrix, MIMOSeries, StateSpaceBase)): raise TypeError("Unsupported type for `sys1` in MIMO Feedback.") if not isinstance(sys2, (TransferFunctionMatrix, MIMOSeries, StateSpaceBase)): raise TypeError("Unsupported type for `sys2` in MIMO Feedback.") if sys1.num_inputs != sys2.num_outputs or \ sys1.num_outputs != sys2.num_inputs: raise ValueError(filldedent(""" Product of `sys1` and `sys2` must yield a square matrix.""")) if sign not in (-1, 1): raise ValueError(filldedent(""" Unsupported type for feedback. `sign` arg should either be 1 (positive feedback loop) or -1 (negative feedback loop).""")) obj = super().__new__(cls, sys1, sys2, _sympify(sign)) if sys1.is_StateSpace_object or sys2.is_StateSpace_object: obj.is_StateSpace_object = True else: if not _is_invertible(sys1, sys2, sign): raise ValueError("Non-Invertible system inputted.") obj.is_StateSpace_object = False if not obj.is_StateSpace_object and sys1.var != sys2.var: raise ValueError(filldedent(""" Both `sys1` and `sys2` should be using the same complex variable.""")) _check_time_compatibility([sys1, sys2]) obj._is_continuous = sys1.is_continuous return obj @property def sys1(self): r""" Returns the system placed on the feedforward path of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> F_1.sys1 TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [s + s + 1 1 ] [---------- - ] [ 2 s ] [s - s + 1 ] [ ] [ 2 ] [ 1 s + s + 1] [ - ----------] [ s 2 ] [ s - s + 1]{t} """ return self.args[0] @property def sys2(self): r""" Returns the feedback controller of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2, s**3 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2) >>> F_1.sys2 TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [ s 1] [---------- -] [ 3 1] [s - s + 1 ] [ ] [ 1 1] [ - -] [ 1 s]{t} """ return self.args[1] @property def var(self): r""" Returns the complex variable of the Laplace transform used by all the transfer functions involved in the MIMO feedback loop. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_1.var p """ return self.sys1.var @property def sign(self): r""" Returns the type of feedback interconnection of two models. ``1`` for Positive and ``-1`` for Negative. """ return self.args[2] @property def sensitivity(self): r""" Returns the sensitivity function matrix of the feedback loop. Sensitivity of a closed-loop system is the ratio of change in the open loop gain to the change in the closed loop gain. .. note:: This method would not return the complementary sensitivity function. Examples ======== >>> from sympy import pprint >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback >>> pprint(F_1.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ] [---------------------------- -----------------------------] [ 4 3 2 5 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p] [ ] [ 4 3 2 3 2 ] [ p - p - p + p 3*p - 6*p + 4*p - 1 ] [ -------------------------- -------------------------- ] [ 4 3 2 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ] >>> pprint(F_2.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1] [------------------------ --------------------------] [ 4 3 5 4 2 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ] [ ] [ 4 3 2 4 3 ] [ p - p - p + p 2*p - 3*p + 2*p - 1 ] [ ------------------- --------------------- ] [ 4 3 4 3 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ] """ _sys1_mat = self.sys1.doit()._expr_mat _sys2_mat = self.sys2.doit()._expr_mat return (eye(self.sys1.num_inputs) - \ self.sign*_sys1_mat*_sys2_mat).inv() @property def num_inputs(self): """Returns the number of inputs of the system.""" return self.sys1.num_inputs @property def num_outputs(self): """Returns the number of outputs of the system.""" return self.sys1.num_outputs def doit(self, cancel=True, expand=False, **hints): r""" Returns the resultant transfer function matrix obtained by the feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s, 1 - s, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(5, 1, s) >>> tf4 = TransferFunction(s - 1, s, s) >>> tf5 = TransferFunction(0, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> pprint(F_1, use_unicode=False) / [ s 1 ] [5 0] \-1 [ s 1 ] | [----- - ] [- -] | [----- - ] | [1 - s s ] [1 1] | [1 - s s ] |I - [ ] *[ ] | * [ ] | [ 5 s - 1] [0 0] | [ 5 s - 1] | [ - -----] [- -] | [ - -----] \ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t} >>> pprint(F_1.doit(), use_unicode=False) [ -s s - 1 ] [------- ----------- ] [6*s - 1 s*(6*s - 1) ] [ ] [5*s - 5 (s - 1)*(6*s + 24)] [------- ------------------] [6*s - 1 s*(6*s - 1) ]{t} If the user wants the resultant ``TransferFunctionMatrix`` object without canceling the common factors then the ``cancel`` kwarg should be passed ``False``. >>> pprint(F_1.doit(cancel=False), use_unicode=False) [ s*(s - 1) s - 1 ] [ ----------------- ----------- ] [ (1 - s)*(6*s - 1) s*(6*s - 1) ] [ ] [s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)] [----------------------------------- -----------------------------------] [ (1 - s)*(6*s - 1) 2 ] [ s *(6*s - 1) ]{t} If the user wants the expanded form of the resultant transfer function matrix, the ``expand`` kwarg should be passed as ``True``. >>> pprint(F_1.doit(expand=True), use_unicode=False) [ -s s - 1 ] [------- -------- ] [6*s - 1 2 ] [ 6*s - s ] [ ] [ 2 ] [5*s - 5 6*s + 18*s - 24] [------- ----------------] [6*s - 1 2 ] [ 6*s - s ]{t} """ if self.is_StateSpace_object: ss_class = StateSpace if self.is_continuous else DiscreteStateSpace sys1_ss = self.sys1.doit().rewrite(ss_class) sys2_ss = self.sys2.doit().rewrite(ss_class) A1, B1, C1, D1 = sys1_ss.A, sys1_ss.B, sys1_ss.C, sys1_ss.D A2, B2, C2, D2 = sys2_ss.A, sys2_ss.B, sys2_ss.C, sys2_ss.D # Create identity matrices I_inputs = eye(self.num_inputs) I_outputs = eye(self.num_outputs) # Compute F and its inverse F = I_inputs - self.sign * D2 * D1 E = F.inv() # Compute intermediate matrices E_D2 = E * D2 E_C2 = E * C2 T1 = I_outputs + self.sign * D1 * E_D2 T2 = I_inputs + self.sign * E_D2 * D1 A = Matrix.vstack( Matrix.hstack(A1 + self.sign * B1 * E_D2 * C1, self.sign * B1 * E_C2), Matrix.hstack(B2 * T1 * C1, A2 + self.sign * B2 * D1 * E_C2) ) B = Matrix.vstack(B1 * T2, B2 * D1 * T2) C = Matrix.hstack(T1 * C1, self.sign * D1 * E_C2) D = D1 * T2 return create_state_space(A, B, C, D, self.sampling_time) _mat = self.sensitivity * self.sys1.doit()._expr_mat _resultant_tfm = _to_TFM(_mat, self.var, self.sampling_time) if cancel: _resultant_tfm = _resultant_tfm.simplify() if expand: _resultant_tfm = _resultant_tfm.expand() return _resultant_tfm def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs): return self.doit() def __neg__(self): return MIMOFeedback(-self.sys1, -self.sys2, self.sign) @property def sampling_time(self): return self.sys1.sampling_time def _to_TFM(mat, var, sampling_time): """Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently""" if sampling_time == 0: to_tf = lambda expr: \ TransferFunction.from_rational_expression(expr,var) else: to_tf = lambda expr: \ DiscreteTransferFunction.from_rational_expression(expr,var, sampling_time) arg = [[to_tf(expr) for expr in row] for row in mat.tolist()] return TransferFunctionMatrix(arg)
MIMOFeedback
python
huggingface__transformers
src/transformers/models/beit/modeling_beit.py
{ "start": 41714, "end": 43156 }
class ____(nn.Module): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. in_channels (int): Input channels. channels (int): Channels after modules, before conv_seg. align_corners (bool): align_corners argument of F.interpolate. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: super().__init__() self.pool_scales = pool_scales self.align_corners = align_corners self.in_channels = in_channels self.channels = channels self.blocks = [] for i, pool_scale in enumerate(pool_scales): block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) self.blocks.append(block) self.add_module(str(i), block) def forward(self, x: torch.Tensor) -> list[torch.Tensor]: ppm_outs = [] for ppm in self.blocks: ppm_out = ppm(x) upsampled_ppm_out = nn.functional.interpolate( ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners ) ppm_outs.append(upsampled_ppm_out) return ppm_outs
BeitPyramidPoolingModule
python
getsentry__sentry
src/sentry/users/services/user/model.py
{ "start": 4807, "end": 4875 }
class ____(TypedDict): user_id: int email: str
UserIdEmailArgs
python
getsentry__sentry
src/sentry/notifications/utils/actions.py
{ "start": 161, "end": 920 }
class ____: name: str # Optional label. This falls back to name. label: str | None = None type: Literal["button", "select"] = "button" # If this is a button type, a url is required. url: str | None = None # If this is a select type, the selected value. value: str | None = None # Denotes the type of action, used for routing action_id: str | None = None style: Literal["primary", "danger", "default"] | None = None # TODO(mgaeta): Refactor this to be provider-agnostic selected_options: Sequence[Mapping[str, Any]] | None = None option_groups: Sequence[Mapping[str, Any]] | None = None block_id: str | None = None elements: Sequence[Mapping[str, Any]] | None = None @dataclass
MessageAction
python
anthropics__anthropic-sdk-python
src/anthropic/types/message_create_params.py
{ "start": 10398, "end": 10675 }
class ____(MessageCreateParamsBase, total=False): stream: Literal[False] """Whether to incrementally stream the response using server-sent events. See [streaming](https://docs.claude.com/en/api/messages-streaming) for details. """
MessageCreateParamsNonStreaming
python
ray-project__ray
python/ray/train/tests/test_iter_torch_batches_gpu.py
{ "start": 6297, "end": 6681 }
class ____(PandasBatchCollateFn): """Collate function that returns id and value as a tuple of tensors.""" def __call__(self, batch: pd.DataFrame) -> Tuple[torch.Tensor, torch.Tensor]: tensor_dict = convert_ndarray_batch_to_torch_tensor_batch( batch.to_dict("series") ) return tensor_dict["id"], tensor_dict["value"]
TuplePandasBatchCollateFn
python
pypa__warehouse
tests/unit/metrics/test_event_handlers.py
{ "start": 7283, "end": 7783 }
class ____: @pytest.mark.parametrize( ("matched_route", "route_tag"), [(None, "route:null"), (pretend.stub(name="foo"), "route:foo")], ) def test_emits_metric(self, pyramid_request, metrics, matched_route, route_tag): pyramid_request.matched_route = matched_route on_before_retry(pretend.stub(request=pyramid_request)) assert metrics.increment.calls == [ pretend.call("pyramid.request.retry", tags=[route_tag]) ]
TestOnBeforeRetry
python
streamlit__streamlit
lib/tests/streamlit/elements/button_test.py
{ "start": 3200, "end": 27180 }
class ____(DeltaGeneratorTestCase): """Test ability to marshall button protos.""" def test_button(self): """Test that it can be called.""" st.button("the label") c = self.get_delta_from_queue().new_element.button assert c.label == "the label" assert not c.default assert c.form_id == "" assert c.type == "secondary" assert not c.is_form_submitter assert not c.disabled @parameterized.expand( [ (name, command, type_) for name, command in get_button_command_matrix() if name != "page_link" for type_ in ["primary", "secondary", "tertiary"] ] ) def test_type(self, name: str, command: Callable[..., Any], type_: str): """Test that it can be called with type param.""" command(type=type_) c = getattr(self.get_delta_from_queue().new_element, name) assert c.type == type_ @parameterized.expand( [ (name, command, icon) for name, command in get_button_command_matrix() for icon in ["⚡", ":material/thumb_up:"] ] ) def test_icon(self, name: str, command: Callable[..., Any], icon: str): """Test that it can be called with an icon.""" command(icon=icon) c = getattr(self.get_delta_from_queue().new_element, name) assert c.icon == icon @parameterized.expand(get_button_command_matrix()) def test_just_disabled(self, name: str, command: Callable[..., Any]): """Test that it can be called with disabled param.""" command(disabled=True) c = getattr(self.get_delta_from_queue().new_element, name) assert c.disabled @parameterized.expand( [ (name, command) for name, command in get_button_command_matrix() if name in {"button", "download_button", "link_button"} ] ) def test_shortcut_serialization( self, name: str, command: Callable[..., Any] ) -> None: """Test that shortcuts are serialized for supported buttons.""" command(shortcut="Ctrl+K") proto = getattr(self.get_delta_from_queue().new_element, name) assert proto.shortcut == "ctrl+k" def test_cmd_shortcut_alias(self) -> None: """Test that Cmd shortcuts are normalized.""" st.button("the label", shortcut="Cmd+O") proto = self.get_delta_from_queue().new_element.button assert proto.shortcut == "cmd+o" @parameterized.expand( [ (name, command) for name, command in get_button_command_matrix() if name in {"button", "download_button", "link_button"} ] ) def test_shortcut_ignores_case_and_whitespace( self, name: str, command: Callable[..., Any] ) -> None: """Test that shortcuts ignore casing and extraneous whitespace.""" command(shortcut=" CtRl + OptIon + ShIfT + N ") proto = getattr(self.get_delta_from_queue().new_element, name) assert proto.shortcut == "ctrl+alt+shift+n" @parameterized.expand( [ (name, command) for name, command in get_button_command_matrix() if name in {"button", "download_button", "link_button"} ] ) def test_modifier_only_shortcuts_raise( self, name: str, command: Callable[..., Any] ) -> None: """Test that modifier-only shortcuts raise an exception.""" with pytest.raises(StreamlitAPIException): command(shortcut="ctrl") with pytest.raises(StreamlitAPIException): command(shortcut=" shift ") @parameterized.expand( [ ("upper_r", "R"), ("lower_r", "r"), ("shift_r", "Shift+R"), ("ctrl_c", "Ctrl+C"), ("cmd_c", "cmd+c"), ] ) def test_reserved_shortcuts_raise(self, _name: str, shortcut: str) -> None: """Test that reserved shortcuts raise an exception.""" with pytest.raises(StreamlitAPIException): st.button("reserved", shortcut=shortcut) def test_invalid_shortcut_raises(self) -> None: """Test that invalid shortcuts raise an exception.""" with pytest.raises(StreamlitAPIException): st.button("invalid", shortcut="A+B") def test_stable_id_button_with_key(self): """Test that the button ID is stable when a stable key is provided.""" with patch( "streamlit.elements.lib.utils._register_element_id", return_value=MagicMock(), ): st.button( label="Label 1", key="button_key", help="Help 1", type="secondary", disabled=False, width="content", on_click=lambda: st.write("Button clicked"), args=("arg1", "arg2"), kwargs={"kwarg1": "kwarg1"}, ) c1 = self.get_delta_from_queue().new_element.button id1 = c1.id st.button( label="Label 2", key="button_key", help="Help 2", type="primary", disabled=True, width="stretch", on_click=lambda: st.write("Other button clicked"), args=("arg_1", "arg_2"), kwargs={"kwarg_1": "kwarg_1"}, ) c2 = self.get_delta_from_queue().new_element.button id2 = c2.id assert id1 == id2 def test_stable_id_download_button_with_key(self): """Test that the download button ID is stable when a key is provided.""" with patch( "streamlit.elements.lib.utils._register_element_id", return_value=MagicMock(), ): st.download_button( label="Label 1", data="data1", file_name="file1.txt", mime="text/plain", key="download_button_key", help="Help 1", type="secondary", disabled=False, width="content", on_click=lambda: st.write("Button clicked"), args=("arg1", "arg2"), kwargs={"kwarg1": "kwarg1"}, ) c1 = self.get_delta_from_queue().new_element.download_button id1 = c1.id st.download_button( label="Label 2", data="data2", file_name="file2.txt", mime="text/csv", key="download_button_key", help="Help 2", type="primary", disabled=True, width="stretch", on_click=lambda: st.write("Other button clicked"), args=("arg_1", "arg_2"), kwargs={"kwarg_1": "kwarg_1"}, ) c2 = self.get_delta_from_queue().new_element.download_button id2 = c2.id assert id1 == id2 def test_use_container_width_true(self): """Test use_container_width=True is mapped to width='stretch'.""" for button_type, button_func, width in get_button_command_matrix( test_params=["stretch", "content", 200] ): with self.subTest(button_type, width=width): button_func( label=f"test_use_container_width_true {button_type} {width}", use_container_width=True, width=width, ) el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_STRETCH.value ) assert el.width_config.use_stretch is True with self.subTest("no width"): for button_type, button_func in get_button_command_matrix(): with self.subTest(button_type): button_func(use_container_width=True) el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_STRETCH.value ) assert el.width_config.use_stretch is True def test_use_container_width_false(self): """Test use_container_width=False is mapped to width='content'.""" for button_type, button_func, width in get_button_command_matrix( test_params=[ "stretch", "content", 200, ] ): with self.subTest(button_type, width=width): button_func( label=f"test_use_container_width_false {button_type} {width}", use_container_width=False, width=width, ) el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_CONTENT.value ) assert el.width_config.use_content is True with self.subTest("no width"): for button_type, button_func in get_button_command_matrix(): with self.subTest(button_type): button_func(use_container_width=False) el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_CONTENT.value ) assert el.width_config.use_content is True def test_cached_widget_replay_warning(self): """Test that a warning is shown when this widget is used inside a cached function.""" st.cache_data(lambda: st.button("the label"))() # The widget itself is still created, so we need to go back one element more: el = self.get_delta_from_queue(-2).new_element.exception assert el.type == "CachedWidgetWarning" assert el.is_warning def test_button_width_content(self): """Test button elements with width set to content.""" for button_type, button_func in get_button_command_matrix(): with self.subTest(button_type): button_func(width="content") el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_CONTENT.value ) assert el.width_config.use_content is True def test_button_width_stretch(self): """Test button elements with width set to stretch.""" for button_type, button_func in get_button_command_matrix(): with self.subTest(button_type): button_func(width="stretch") el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_STRETCH.value ) assert el.width_config.use_stretch is True def test_button_width_pixels(self): """Test button elements with width set to pixels.""" test_cases = get_button_command_matrix() for button_type, button_func in test_cases: with self.subTest(f"{button_type} with fixed width"): button_func(width=200) el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.PIXEL_WIDTH.value ) assert el.width_config.pixel_width == 200 def test_button_width_default(self): """Test button elements use content width by default.""" for button_type, button_func in get_button_command_matrix(): with self.subTest(button_type): button_func() el = self.get_delta_from_queue().new_element assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_CONTENT.value ) assert el.width_config.use_content is True def test_button_invalid_width(self): """Test button elements with invalid width values.""" test_cases = get_button_command_matrix( test_params=["invalid", -100, 0, 100.5, None] ) for button_type, button_func, width in test_cases: with self.subTest(f"{button_type} with width {width}"): with pytest.raises(StreamlitAPIException): button_func(width=width) @parameterized.expand( [ (name, command) for name, command in get_button_command_matrix() if name != "page_link" ] ) def test_invalid_type(self, name: str, command: Callable[..., Any]): """Test with invalid type parameter.""" with pytest.raises(StreamlitAPIException) as exc_info: command(type="invalid") assert 'must be "primary", "secondary", or "tertiary"' in str(exc_info.value) @parameterized.expand( [ (name, command, "help text 1") for name, command in get_button_command_matrix() ] + [ ( name, command, """ This is a multiline help text. It should be dedented properly. """, ) for name, command in get_button_command_matrix() ] ) def test_with_help(self, name: str, command: Callable[..., Any], help_text: str): """Test with help parameter.""" command(help=help_text) c = getattr(self.get_delta_from_queue().new_element, name) assert c.help == dedent(help_text) def test_download_button_in_form(self): """Test that download_button raises error when used in form.""" with st.form("test_form"): with pytest.raises(StreamlitAPIException) as exc_info: st.download_button("test", data="data") assert "can't be used in an `st.form()`" in str(exc_info.value) def test_button_serde_serialize(self): """Test ButtonSerde serialize method.""" from streamlit.elements.widgets.button import ButtonSerde serde = ButtonSerde() # Test serialization with True value assert serde.serialize(True) is True # Test serialization with False value assert serde.serialize(False) is False # Test serialization with non-boolean values assert serde.serialize(1) is True assert serde.serialize(0) is False assert serde.serialize("") is False assert serde.serialize("text") is True def test_page_link_in_sidebar(self): """Test that page_link in sidebar uses stretch width.""" # Create a mock sidebar that returns True for in_sidebar with patch("streamlit.elements.widgets.button.in_sidebar", return_value=True): st.sidebar.page_link("https://example.com", label="Test", width="content") el = self.get_delta_from_queue().new_element # Even though we specified content, it should be stretch in sidebar assert ( el.width_config.WhichOneof("width_spec") == WidthConfigFields.USE_STRETCH.value ) def test_page_link_with_path_object(self): """Test page_link with pathlib.Path object.""" # Create a mock context with pages ctx = MagicMock() ctx.main_script_path = "/app/main.py" ctx.pages_manager.get_pages.return_value = { "page1": { "script_path": "/app/pages/page1.py", "page_name": "Page 1", "url_pathname": "page1", "page_script_hash": "hash123", } } with patch( "streamlit.elements.widgets.button.get_script_run_ctx", return_value=ctx ): with patch( "streamlit.file_util.get_main_script_directory", return_value="/app" ): with patch("os.path.realpath", return_value="/app/pages/page1.py"): st.page_link(Path("pages/page1.py")) c = self.get_delta_from_queue().new_element.page_link assert c.page == "page1" assert c.page_script_hash == "hash123" assert c.label == "Page 1" def test_page_link_page_not_found(self): """Test page_link with non-existent page.""" ctx = MagicMock() ctx.main_script_path = "/app/main.py" ctx.pages_manager.get_pages.return_value = {} with patch( "streamlit.elements.widgets.button.get_script_run_ctx", return_value=ctx ): with patch( "streamlit.file_util.get_main_script_directory", return_value="/app" ): with patch( "os.path.realpath", return_value="/app/pages/nonexistent.py" ): with pytest.raises(StreamlitPageNotFoundError): st.page_link("pages/nonexistent.py") def test_page_link_with_streamlit_page(self): """Test page_link with StreamlitPage object.""" # Create a StreamlitPage manually without going through the constructor # that checks for file existence page = MagicMock(spec=StreamlitPage) page._page = Path("/app/page.py") page._title = "Test Page" page._icon = "🏠" page._url_path = "test-page" page._script_hash = "test_hash" page._default = False page.title = "Test Page" page.icon = "🏠" page.url_path = "test-page" ctx = MagicMock() with patch( "streamlit.elements.widgets.button.get_script_run_ctx", return_value=ctx ): st.page_link(page) c = self.get_delta_from_queue().new_element.page_link assert c.page == "test-page" assert c.page_script_hash == "test_hash" assert c.label == "Test Page" assert c.icon == "🏠" def test_marshall_file_with_text_io(self): """Test marshall_file with TextIOWrapper.""" # Create a TextIOWrapper text_io = io.TextIOWrapper(io.BytesIO(), encoding="utf-8", write_through=True) text_io.write("Hello, World!") text_io.seek(0) proto = DownloadButtonProto() marshall_file("test_coords", text_io, proto, None) # The mock runtime in DeltaGeneratorTestCase creates a real MediaFileManager assert proto.url.startswith("/media/") assert proto.url.endswith(".txt") def test_marshall_file_with_bytes_io(self): """Test marshall_file with BytesIO.""" bytes_data = io.BytesIO(b"Binary data") proto = DownloadButtonProto() marshall_file("test_coords", bytes_data, proto, None) # The mock runtime in DeltaGeneratorTestCase creates a real MediaFileManager assert proto.url.startswith("/media/") assert proto.url.endswith(".bin") def test_marshall_file_with_buffered_reader(self): """Test marshall_file with BufferedReader.""" # Create a temporary file to test BufferedReader with tempfile.NamedTemporaryFile(mode="wb", delete=False) as tmp: tmp.write(b"Test data") tmp_path = tmp.name try: with open(tmp_path, "rb") as f: proto = DownloadButtonProto() marshall_file("test_coords", f, proto, None) # The mock runtime in DeltaGeneratorTestCase creates a real MediaFileManager assert proto.url.startswith("/media/") assert proto.url.endswith(".bin") finally: os.unlink(tmp_path) def test_marshall_file_with_raw_io(self): """Test marshall_file with RawIOBase.""" # Create a custom RawIOBase for testing class MockRawIO(io.RawIOBase): def __init__(self, data): self.data = data self.pos = 0 def read(self, size=-1): if size == -1: result = self.data[self.pos :] self.pos = len(self.data) else: result = self.data[self.pos : self.pos + size] self.pos += len(result) return result def seek(self, pos, whence=0): if whence == 0: self.pos = pos return self.pos raw_io = MockRawIO(b"Raw IO data") proto = DownloadButtonProto() marshall_file("test_coords", raw_io, proto, None) # The mock runtime in DeltaGeneratorTestCase creates a real MediaFileManager assert proto.url.startswith("/media/") assert proto.url.endswith(".bin") def test_marshall_file_invalid_data_type(self): """Test marshall_file with invalid data type.""" proto = DownloadButtonProto() with pytest.raises(StreamlitAPIException) as exc_info: marshall_file("test_coords", {"invalid": "data"}, proto, None) assert "Invalid binary data format" in str(exc_info.value) def test_marshall_file_with_runtime(self): """Test marshall_file with runtime exists.""" # Mock runtime.exists() to return True mock_runtime = MagicMock() mock_runtime.exists.return_value = True mock_instance = MagicMock() mock_instance.media_file_mgr.add.return_value = "/media/test_file" mock_runtime.get_instance.return_value = mock_instance with patch("streamlit.elements.widgets.button.runtime", mock_runtime): proto = DownloadButtonProto() marshall_file("test_coords", "test data", proto, None, "test.txt") assert proto.url == "/media/test_file" mock_instance.media_file_mgr.add.assert_called_once() def test_marshall_file_empty_raw_io(self): """Test marshall_file with RawIOBase that returns None.""" class EmptyRawIO(io.RawIOBase): def read(self, size=-1): return None def seek(self, pos, whence=0): return 0 raw_io = EmptyRawIO() proto = DownloadButtonProto() # The mock runtime in DeltaGeneratorTestCase creates a real MediaFileManager # so the URL will be populated marshall_file("test_coords", raw_io, proto, None) # Empty data should result in an empty file being added assert proto.url.startswith("/media/") assert proto.url.endswith(".bin") def test_download_button_on_click_rerun(self): """Test download_button with on_click='rerun'.""" st.download_button("test", data="data", on_click="rerun") c = self.get_delta_from_queue().new_element.download_button assert c.ignore_rerun is False def test_download_button_on_click_none(self): """Test download_button with on_click=None (should behave like 'rerun').""" st.download_button("test", data="data", on_click=None) c = self.get_delta_from_queue().new_element.download_button assert c.ignore_rerun is False def test_download_button_on_click_callback(self): """Test download_button with callback function.""" def callback(): pass st.download_button("test", data="data", on_click=callback) c = self.get_delta_from_queue().new_element.download_button assert c.ignore_rerun is False
ButtonTest
python
GoogleCloudPlatform__python-docs-samples
dataflow/flex-templates/pipeline_with_dependencies/src/my_package/my_transforms.py
{ "start": 719, "end": 925 }
class ____(beam.DoFn): """Parses each line of input text into words.""" def process(self, element: str) -> Iterable[str]: return re.findall(r"[\w\']+", element, re.UNICODE)
WordExtractingDoFn
python
celery__celery
t/smoke/tests/test_tasks.py
{ "start": 594, "end": 4040 }
class ____(SuiteOperations): @pytest.fixture def default_worker_app(self, default_worker_app: Celery) -> Celery: app = default_worker_app app.conf.worker_prefetch_multiplier = 1 app.conf.worker_concurrency = 1 return app @pytest.mark.parametrize( "method,expected_error", [ (TaskTermination.Method.SIGKILL, WorkerLostError), (TaskTermination.Method.SYSTEM_EXIT, WorkerLostError), (TaskTermination.Method.DELAY_TIMEOUT, TimeLimitExceeded), # Exhausting the memory messes up the CI environment # (TaskTermination.Method.EXHAUST_MEMORY, WorkerLostError), ], ) def test_child_process_respawn( self, celery_setup: CeleryTestSetup, method: TaskTermination.Method, expected_error: Exception, ): pinfo_before = celery_setup.worker.get_running_processes_info( ["pid", "name"], filters={"name": "celery"}, ) with pytest.raises(expected_error): self.apply_self_termination_task(celery_setup.worker, method).get() # Allowing the worker to respawn the child process before we continue @retry( stop=stop_after_attempt(42), wait=wait_fixed(0.1), reraise=True, ) def wait_for_two_celery_processes(): pinfo_current = celery_setup.worker.get_running_processes_info( ["pid", "name"], filters={"name": "celery"}, ) if len(pinfo_current) != 2: assert False, f"Child process did not respawn with method: {method.name}" wait_for_two_celery_processes() pinfo_after = celery_setup.worker.get_running_processes_info( ["pid", "name"], filters={"name": "celery"}, ) pids_before = {item["pid"] for item in pinfo_before} pids_after = {item["pid"] for item in pinfo_after} assert len(pids_before | pids_after) == 3 @pytest.mark.parametrize( "method,expected_log,expected_exception_msg", [ ( TaskTermination.Method.SIGKILL, "Worker exited prematurely: signal 9 (SIGKILL)", None, ), ( TaskTermination.Method.SYSTEM_EXIT, "Worker exited prematurely: exitcode 1", None, ), ( TaskTermination.Method.DELAY_TIMEOUT, "Hard time limit (2s) exceeded for t.smoke.tasks.self_termination_delay_timeout", "TimeLimitExceeded(2,)", ), # Exhausting the memory messes up the CI environment # ( # TaskTermination.Method.EXHAUST_MEMORY, # "Worker exited prematurely: signal 9 (SIGKILL)", # None, # ), ], ) def test_terminated_task_logs_correct_error( self, celery_setup: CeleryTestSetup, method: TaskTermination.Method, expected_log: str, expected_exception_msg: str | None, ): try: self.apply_self_termination_task(celery_setup.worker, method).get() except Exception as err: assert expected_exception_msg or expected_log in str(err) celery_setup.worker.assert_log_exists(expected_log)
test_task_termination
python
scipy__scipy
scipy/cluster/tests/test_vq.py
{ "start": 6585, "end": 10174 }
class ____: def test_py_vq(self, xp): initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) # label1.dtype varies between int32 and int64 over platforms label1 = py_vq(xp.asarray(X), xp.asarray(initc))[0] xp_assert_equal(label1, xp.asarray(LABEL1, dtype=xp.int64), check_dtype=False) @pytest.mark.skipif(SCIPY_ARRAY_API, reason='`np.matrix` unsupported in array API mode') def test_py_vq_matrix(self): initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) # label1.dtype varies between int32 and int64 over platforms label1 = py_vq(matrix(X), matrix(initc))[0] assert_array_equal(label1, LABEL1) def test_vq(self, xp): initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) label1, _ = _vq.vq(X, initc) assert_array_equal(label1, LABEL1) _, _ = vq(xp.asarray(X), xp.asarray(initc)) @pytest.mark.skipif(SCIPY_ARRAY_API, reason='`np.matrix` unsupported in array API mode') def test_vq_matrix(self): initc = np.concatenate([[X[0]], [X[1]], [X[2]]]) label1, _ = _vq.vq(matrix(X), matrix(initc)) assert_array_equal(label1, LABEL1) _, _ = vq(matrix(X), matrix(initc)) def test_vq_1d(self, xp): # Test special rank 1 vq algo, python implementation. data = X[:, 0] initc = data[:3] a, b = _vq.vq(data, initc) data = xp.asarray(data) initc = xp.asarray(initc) ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis]) # ta.dtype varies between int32 and int64 over platforms xp_assert_equal(ta, xp.asarray(a, dtype=xp.int64), check_dtype=False) xp_assert_equal(tb, xp.asarray(b)) def test__vq_sametype(self): a = np.asarray([1.0, 2.0]) b = a.astype(np.float32) assert_raises(TypeError, _vq.vq, a, b) def test__vq_invalid_type(self): a = np.asarray([1, 2], dtype=int) assert_raises(TypeError, _vq.vq, a, a) def test_vq_large_nfeat(self, xp): X = np.random.rand(20, 20) code_book = np.random.rand(3, 20) codes0, dis0 = _vq.vq(X, code_book) codes1, dis1 = py_vq( xp.asarray(X), xp.asarray(code_book) ) xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5) # codes1.dtype varies between int32 and int64 over platforms xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False) X = X.astype(np.float32) code_book = code_book.astype(np.float32) codes0, dis0 = _vq.vq(X, code_book) codes1, dis1 = py_vq( xp.asarray(X), xp.asarray(code_book) ) xp_assert_close(dis1, xp.asarray(dis0, dtype=xp.float64), rtol=1e-5) # codes1.dtype varies between int32 and int64 over platforms xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False) def test_vq_large_features(self, xp): X = np.random.rand(10, 5) * 1000000 code_book = np.random.rand(2, 5) * 1000000 codes0, dis0 = _vq.vq(X, code_book) codes1, dis1 = py_vq( xp.asarray(X), xp.asarray(code_book) ) xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5) # codes1.dtype varies between int32 and int64 over platforms xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False) # Whole class skipped on GPU for now; # once pdist/cdist are hooked up for CuPy, more tests will work @make_xp_test_case(kmeans, kmeans2)
TestVq
python
astropy__astropy
astropy/units/tests/test_quantity_non_ufuncs.py
{ "start": 85332, "end": 92730 }
class ____: tested_module = np.lib.recfunctions @classmethod def setup_class(cls): cls.pv_dtype = np.dtype([("p", "f8"), ("v", "f8")]) cls.pv_t_dtype = np.dtype( [("pv", np.dtype([("pp", "f8"), ("vv", "f8")])), ("t", "f8")] ) cls.pv = np.array([(1.0, 0.25), (2.0, 0.5), (3.0, 0.75)], cls.pv_dtype) cls.pv_t = np.array( [((4.0, 2.5), 0.0), ((5.0, 5.0), 1.0), ((6.0, 7.5), 2.0)], cls.pv_t_dtype ) cls.pv_unit = u.StructuredUnit((u.km, u.km / u.s), ("p", "v")) cls.pv_t_unit = u.StructuredUnit((cls.pv_unit, u.s), ("pv", "t")) cls.q_pv = cls.pv << cls.pv_unit cls.q_pv_t = cls.pv_t << cls.pv_t_unit def test_structured_to_unstructured(self): # can't unstructure something with incompatible units with pytest.raises(u.UnitConversionError, match="'m'"): rfn.structured_to_unstructured(u.Quantity((0, 0.6), u.Unit("(eV, m)"))) # it works if all the units are equal struct = u.Quantity((0, 0, 0.6), u.Unit("(eV, eV, eV)")) unstruct = rfn.structured_to_unstructured(struct) assert_array_equal(unstruct, [0, 0, 0.6] * u.eV) # also if the units are convertible struct = u.Quantity((0, 0, 0.6), u.Unit("(eV, eV, keV)")) unstruct = rfn.structured_to_unstructured(struct) assert_array_equal(unstruct, [0, 0, 600] * u.eV) struct = u.Quantity((0, 0, 1.7827e-33), u.Unit("(eV, eV, g)")) with u.add_enabled_equivalencies(u.mass_energy()): unstruct = rfn.structured_to_unstructured(struct) u.allclose(unstruct, [0, 0, 1.0000214] * u.eV) # and if the dtype is nested struct = [(5, (400.0, 3e6))] * u.Unit("m, (cm, um)") unstruct = rfn.structured_to_unstructured(struct) assert_array_equal(unstruct, [[5, 4, 3]] * u.m) # For the other tests of ``structured_to_unstructured``, see # ``test_structured.TestStructuredQuantityFunctions.test_structured_to_unstructured`` def test_unstructured_to_structured(self): unstruct = [1, 2, 3] * u.m dtype = np.dtype([("f1", float), ("f2", float), ("f3", float)]) # It works. struct = rfn.unstructured_to_structured(unstruct, dtype=dtype) assert struct.unit == u.Unit("(m, m, m)") assert_array_equal(rfn.structured_to_unstructured(struct), unstruct) # Can't structure something that's already structured. with pytest.raises(ValueError, match="arr must have at least one dimension"): rfn.unstructured_to_structured(struct, dtype=dtype) # For the other tests of ``structured_to_unstructured``, see # ``test_structured.TestStructuredQuantityFunctions.test_unstructured_to_structured`` def test_merge_arrays_repeat_dtypes(self): # Cannot merge things with repeat dtypes. q1 = u.Quantity([(1,)], dtype=[("f1", float)]) q2 = u.Quantity([(1,)], dtype=[("f1", float)]) with pytest.raises(ValueError, match="field 'f1' occurs more than once"): rfn.merge_arrays((q1, q2)) @pytest.mark.parametrize("flatten", [True, False]) def test_merge_arrays(self, flatten): """Test `numpy.lib.recfunctions.merge_arrays`.""" # Merge single normal array. arr = rfn.merge_arrays(self.q_pv["p"], flatten=flatten) assert_array_equal(arr["f0"], self.q_pv["p"]) assert arr.unit == (u.km,) # Merge single structured array. arr = rfn.merge_arrays(self.q_pv, flatten=flatten) assert_array_equal(arr, self.q_pv) assert arr.unit == (u.km, u.km / u.s) # Merge 1-element tuple. arr = rfn.merge_arrays((self.q_pv,), flatten=flatten) assert np.array_equal(arr, self.q_pv) assert arr.unit == (u.km, u.km / u.s) def test_merge_array_nested_structure(self): # Merge 2-element tuples without flattening. arr = rfn.merge_arrays((self.q_pv, self.q_pv_t)) assert_array_equal(arr["f0"], self.q_pv) assert_array_equal(arr["f1"], self.q_pv_t) assert arr.unit == ((u.km, u.km / u.s), ((u.km, u.km / u.s), u.s)) # For a structured array, all elements should be treated as dimensionless. arr = rfn.merge_arrays((self.q_pv["p"], self.q_pv.value)) expected_value = rfn.merge_arrays((self.q_pv["p"].value, self.q_pv.value)) assert_array_equal(arr.value, expected_value) assert arr.unit == u.Unit((self.q_pv["p"].unit, (u.one, u.one))) def test_merge_arrays_flatten_nested_structure(self): # Merge 2-element tuple, flattening it. arr = rfn.merge_arrays((self.q_pv, self.q_pv_t), flatten=True) assert_array_equal(arr["p"], self.q_pv["p"]) assert_array_equal(arr["v"], self.q_pv["v"]) assert_array_equal(arr["pp"], self.q_pv_t["pv"]["pp"]) assert_array_equal(arr["vv"], self.q_pv_t["pv"]["vv"]) assert_array_equal(arr["t"], self.q_pv_t["t"]) assert arr.unit == (u.km, u.km / u.s, u.km, u.km / u.s, u.s) # For a structured array, all elements should be treated as dimensionless. arr = rfn.merge_arrays((self.q_pv["p"], self.q_pv.value), flatten=True) expected_value = rfn.merge_arrays( (self.q_pv["p"].value, self.q_pv.value), flatten=True ) assert_array_equal(arr.value, expected_value) assert arr.unit == u.Unit((self.q_pv["p"].unit, u.one, u.one)) def test_merge_arrays_asrecarray(self): with pytest.raises(ValueError, match="asrecarray=True is not supported."): rfn.merge_arrays(self.q_pv, asrecarray=True) def test_merge_arrays_usemask(self): with pytest.raises(ValueError, match="usemask=True is not supported."): rfn.merge_arrays(self.q_pv, usemask=True) @pytest.mark.parametrize("flatten", [True, False]) def test_merge_arrays_str(self, flatten): with pytest.raises( TypeError, match="the Quantity implementation cannot handle" ): rfn.merge_arrays((self.q_pv, np.array(["a", "b", "c"])), flatten=flatten) all_wrapped_functions = get_wrapped_functions( np, np.fft, np.linalg, np.lib.recfunctions ) if NUMPY_LT_2_2: # ref https://github.com/numpy/numpy/issues/27451 all_wrapped_functions |= SUPPORTED_NEP35_FUNCTIONS tested_functions = get_covered_functions(locals()) untested_functions = set() deprecated_functions = set() untested_functions |= deprecated_functions io_functions = {np.save, np.savez, np.savetxt, np.savez_compressed} untested_functions |= io_functions poly_functions = { np.poly, np.polyadd, np.polyder, np.polydiv, np.polyfit, np.polyint, np.polymul, np.polysub, np.polyval, np.roots, np.vander, } # fmt: skip untested_functions |= poly_functions rec_functions = { rfn.rec_append_fields, rfn.rec_drop_fields, rfn.rec_join, rfn.drop_fields, rfn.rename_fields, rfn.append_fields, rfn.join_by, rfn.repack_fields, rfn.apply_along_fields, rfn.assign_fields_by_name, rfn.stack_arrays, rfn.find_duplicates, rfn.recursive_fill_fields, rfn.require_fields, } # fmt: skip untested_functions |= rec_functions def test_testing_completeness(): assert not tested_functions.intersection(untested_functions) assert all_wrapped_functions == (tested_functions | untested_functions)
TestRecFunctions
python
scikit-learn__scikit-learn
sklearn/svm/_classes.py
{ "start": 52030, "end": 58252 }
class ____(RegressorMixin, BaseLibSVM): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- nu : float, default=0.5 An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. C : float, default=1.0 Penalty parameter C of the error term. For an intuitive visualization of the effects of scaling the regularization parameter C, see :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py`. kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, \ default='rbf' Specifies the kernel type to be used in the algorithm. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. For an intuitive visualization of different kernel types see See :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py` degree : int, default=3 Degree of the polynomial kernel function ('poly'). Must be non-negative. Ignored by all other kernels. gamma : {'scale', 'auto'} or float, default='scale' Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. - if ``gamma='scale'`` (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma, - if 'auto', uses 1 / n_features - if float, must be non-negative. .. versionchanged:: 0.22 The default value of ``gamma`` changed from 'auto' to 'scale'. coef0 : float, default=0.0 Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : bool, default=True Whether to use the shrinking heuristic. See the :ref:`User Guide <shrinking_svm>`. tol : float, default=1e-3 Tolerance for stopping criterion. cache_size : float, default=200 Specify the size of the kernel cache (in MB). verbose : bool, default=False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, default=-1 Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- coef_ : ndarray of shape (1, n_features) Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. dual_coef_ : ndarray of shape (1, n_SV) Coefficients of the support vector in the decision function. fit_status_ : int 0 if correctly fitted, 1 otherwise (will raise warning) intercept_ : ndarray of shape (1,) Constants in decision function. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int Number of iterations run by the optimization routine to fit the model. .. versionadded:: 1.1 n_support_ : ndarray of shape (1,), dtype=int32 Number of support vectors. shape_fit_ : tuple of int of shape (n_dimensions_of_X,) Array dimensions of training vector ``X``. support_ : ndarray of shape (n_SV,) Indices of support vectors. support_vectors_ : ndarray of shape (n_SV, n_features) Support vectors. See Also -------- NuSVC : Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR : Epsilon Support Vector Machine for regression implemented with libsvm. References ---------- .. [1] `LIBSVM: A Library for Support Vector Machines <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`_ .. [2] `Platt, John (1999). "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods" <https://citeseerx.ist.psu.edu/doc_view/pid/42e5ed832d4310ce4378c44d05570439df28a393>`_ Examples -------- >>> from sklearn.svm import NuSVR >>> from sklearn.pipeline import make_pipeline >>> from sklearn.preprocessing import StandardScaler >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> regr = make_pipeline(StandardScaler(), NuSVR(C=1.0, nu=0.1)) >>> regr.fit(X, y) Pipeline(steps=[('standardscaler', StandardScaler()), ('nusvr', NuSVR(nu=0.1))]) """ _impl = "nu_svr" _parameter_constraints: dict = {**BaseLibSVM._parameter_constraints} for unused_param in ["class_weight", "epsilon", "probability", "random_state"]: _parameter_constraints.pop(unused_param) def __init__( self, *, nu=0.5, C=1.0, kernel="rbf", degree=3, gamma="scale", coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1, ): super().__init__( kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0.0, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None, )
NuSVR
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/triggers/comprehend.py
{ "start": 1100, "end": 2531 }
class ____(AwsBaseWaiterTrigger): """ Trigger when a Comprehend pii entities detection job is complete. :param job_id: The id of the Comprehend pii entities detection job. :param waiter_delay: The amount of time in seconds to wait between attempts. (default: 120) :param waiter_max_attempts: The maximum number of attempts to be made. (default: 75) :param aws_conn_id: The Airflow connection used for AWS credentials. """ def __init__( self, *, job_id: str, waiter_delay: int = 120, waiter_max_attempts: int = 75, aws_conn_id: str | None = "aws_default", ) -> None: super().__init__( serialized_fields={"job_id": job_id}, waiter_name="pii_entities_detection_job_complete", waiter_args={"JobId": job_id}, failure_message="Comprehend start pii entities detection job failed.", status_message="Status of Comprehend start pii entities detection job is", status_queries=["PiiEntitiesDetectionJobProperties.JobStatus"], return_key="job_id", return_value=job_id, waiter_delay=waiter_delay, waiter_max_attempts=waiter_max_attempts, aws_conn_id=aws_conn_id, ) def hook(self) -> AwsGenericHook: return ComprehendHook(aws_conn_id=self.aws_conn_id)
ComprehendPiiEntitiesDetectionJobCompletedTrigger
python
django-import-export__django-import-export
tests/core/migrations/0010_uuidbook.py
{ "start": 104, "end": 636 }
class ____(migrations.Migration): dependencies = [ ("core", "0009_auto_20211111_0807"), ] operations = [ migrations.CreateModel( name="UUIDBook", fields=[ ( "id", models.UUIDField( primary_key=True, default=uuid.uuid4, editable=False ), ), ("name", models.CharField(max_length=100, verbose_name="Book name")), ], ), ]
Migration
python
davidhalter__jedi
jedi/inference/gradual/typing.py
{ "start": 13911, "end": 13957 }
class ____(BaseTypingInstance): pass
Generic
python
sympy__sympy
sympy/functions/elementary/miscellaneous.py
{ "start": 9694, "end": 21258 }
class ____(Expr, LatticeOp): def __new__(cls, *args, **assumptions): from sympy.core.parameters import global_parameters evaluate = assumptions.pop('evaluate', global_parameters.evaluate) args = (sympify(arg) for arg in args) # first standard filter, for cls.zero and cls.identity # also reshape Max(a, Max(b, c)) to Max(a, b, c) if evaluate: try: args = frozenset(cls._new_args_filter(args)) except ShortCircuit: return cls.zero # remove redundant args that are easily identified args = cls._collapse_arguments(args, **assumptions) # find local zeros args = cls._find_localzeros(args, **assumptions) args = frozenset(args) if not args: return cls.identity if len(args) == 1: return list(args).pop() # base creation obj = Expr.__new__(cls, *ordered(args), **assumptions) obj._argset = args return obj @classmethod def _collapse_arguments(cls, args, **assumptions): """Remove redundant args. Examples ======== >>> from sympy import Min, Max >>> from sympy.abc import a, b, c, d, e Any arg in parent that appears in any parent-like function in any of the flat args of parent can be removed from that sub-arg: >>> Min(a, Max(b, Min(a, c, d))) Min(a, Max(b, Min(c, d))) If the arg of parent appears in an opposite-than parent function in any of the flat args of parent that function can be replaced with the arg: >>> Min(a, Max(b, Min(c, d, Max(a, e)))) Min(a, Max(b, Min(a, c, d))) """ if not args: return args args = list(ordered(args)) if cls == Min: other = Max else: other = Min # find global comparable max of Max and min of Min if a new # value is being introduced in these args at position 0 of # the ordered args if args[0].is_number: sifted = mins, maxs = [], [] for i in args: for v in walk(i, Min, Max): if v.args[0].is_comparable: sifted[isinstance(v, Max)].append(v) small = Min.identity for i in mins: v = i.args[0] if v.is_number and (v < small) == True: small = v big = Max.identity for i in maxs: v = i.args[0] if v.is_number and (v > big) == True: big = v # at the point when this function is called from __new__, # there may be more than one numeric arg present since # local zeros have not been handled yet, so look through # more than the first arg if cls == Min: for arg in args: if not arg.is_number: break if (arg < small) == True: small = arg elif cls == Max: for arg in args: if not arg.is_number: break if (arg > big) == True: big = arg T = None if cls == Min: if small != Min.identity: other = Max T = small elif big != Max.identity: other = Min T = big if T is not None: # remove numerical redundancy for i in range(len(args)): a = args[i] if isinstance(a, other): a0 = a.args[0] if ((a0 > T) if other == Max else (a0 < T)) == True: args[i] = cls.identity # remove redundant symbolic args def do(ai, a): if not isinstance(ai, (Min, Max)): return ai cond = a in ai.args if not cond: return ai.func(*[do(i, a) for i in ai.args], evaluate=False) if isinstance(ai, cls): return ai.func(*[do(i, a) for i in ai.args if i != a], evaluate=False) return a for i, a in enumerate(args): args[i + 1:] = [do(ai, a) for ai in args[i + 1:]] # factor out common elements as for # Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z)) # and vice versa when swapping Min/Max -- do this only for the # easy case where all functions contain something in common; # trying to find some optimal subset of args to modify takes # too long def factor_minmax(args): is_other = lambda arg: isinstance(arg, other) other_args, remaining_args = sift(args, is_other, binary=True) if not other_args: return args # Min(Max(x, y, z), Max(x, y, u, v)) -> {x,y}, ({z}, {u,v}) arg_sets = [set(arg.args) for arg in other_args] common = set.intersection(*arg_sets) if not common: return args new_other_args = list(common) arg_sets_diff = [arg_set - common for arg_set in arg_sets] # If any set is empty after removing common then all can be # discarded e.g. Min(Max(a, b, c), Max(a, b)) -> Max(a, b) if all(arg_sets_diff): other_args_diff = [other(*s, evaluate=False) for s in arg_sets_diff] new_other_args.append(cls(*other_args_diff, evaluate=False)) other_args_factored = other(*new_other_args, evaluate=False) return remaining_args + [other_args_factored] if len(args) > 1: args = factor_minmax(args) return args @classmethod def _new_args_filter(cls, arg_sequence): """ Generator filtering args. first standard filter, for cls.zero and cls.identity. Also reshape ``Max(a, Max(b, c))`` to ``Max(a, b, c)``, and check arguments for comparability """ for arg in arg_sequence: # pre-filter, checking comparability of arguments if not isinstance(arg, Expr) or arg.is_extended_real is False or ( arg.is_number and not arg.is_comparable): raise ValueError("The argument '%s' is not comparable." % arg) if arg == cls.zero: raise ShortCircuit(arg) elif arg == cls.identity: continue elif arg.func == cls: yield from arg.args else: yield arg @classmethod def _find_localzeros(cls, values, **options): """ Sequentially allocate values to localzeros. When a value is identified as being more extreme than another member it replaces that member; if this is never true, then the value is simply appended to the localzeros. """ localzeros = set() for v in values: is_newzero = True localzeros_ = list(localzeros) for z in localzeros_: if id(v) == id(z): is_newzero = False else: con = cls._is_connected(v, z) if con: is_newzero = False if con is True or con == cls: localzeros.remove(z) localzeros.update([v]) if is_newzero: localzeros.update([v]) return localzeros @classmethod def _is_connected(cls, x, y): """ Check if x and y are connected somehow. """ for i in range(2): if x == y: return True t, f = Max, Min for op in "><": for j in range(2): try: if op == ">": v = x >= y else: v = x <= y except TypeError: return False # non-real arg if not v.is_Relational: return t if v else f t, f = f, t x, y = y, x x, y = y, x # run next pass with reversed order relative to start # simplification can be expensive, so be conservative # in what is attempted x = factor_terms(x - y) y = S.Zero return False def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da.is_zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = super().fdiff(i) l.append(df * da) return Add(*l) def _eval_rewrite_as_Abs(self, *args, **kwargs): from sympy.functions.elementary.complexes import Abs s = (args[0] + self.func(*args[1:]))/2 d = abs(args[0] - self.func(*args[1:]))/2 return (s + d if isinstance(self, Max) else s - d).rewrite(Abs) def evalf(self, n=15, **options): return self.func(*[a.evalf(n, **options) for a in self.args]) def n(self, *args, **kwargs): return self.evalf(*args, **kwargs) _eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args) _eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args) _eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args) _eval_is_complex = lambda s: _torf(i.is_complex for i in s.args) _eval_is_composite = lambda s: _torf(i.is_composite for i in s.args) _eval_is_even = lambda s: _torf(i.is_even for i in s.args) _eval_is_finite = lambda s: _torf(i.is_finite for i in s.args) _eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args) _eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args) _eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args) _eval_is_integer = lambda s: _torf(i.is_integer for i in s.args) _eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args) _eval_is_negative = lambda s: _torf(i.is_negative for i in s.args) _eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args) _eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args) _eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args) _eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args) _eval_is_odd = lambda s: _torf(i.is_odd for i in s.args) _eval_is_polar = lambda s: _torf(i.is_polar for i in s.args) _eval_is_positive = lambda s: _torf(i.is_positive for i in s.args) _eval_is_prime = lambda s: _torf(i.is_prime for i in s.args) _eval_is_rational = lambda s: _torf(i.is_rational for i in s.args) _eval_is_real = lambda s: _torf(i.is_real for i in s.args) _eval_is_extended_real = lambda s: _torf(i.is_extended_real for i in s.args) _eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args) _eval_is_zero = lambda s: _torf(i.is_zero for i in s.args)
MinMaxBase
python
getsentry__sentry
src/sentry/integrations/bitbucket_server/integration.py
{ "start": 7963, "end": 9315 }
class ____: """ Complete the OAuth dance by exchanging our request token into an access token. """ @method_decorator(csrf_exempt) def dispatch(self, request: HttpRequest, pipeline: IntegrationPipeline) -> HttpResponseBase: with IntegrationPipelineViewEvent( IntegrationPipelineViewType.OAUTH_CALLBACK, IntegrationDomain.SOURCE_CODE_MANAGEMENT, BitbucketServerIntegrationProvider.key, ).capture() as lifecycle: config = pipeline.fetch_state("installation_data") assert config is not None client = BitbucketServerSetupClient( config.get("url"), config.get("consumer_key"), config.get("private_key"), config.get("verify_ssl"), ) try: access_token = client.get_access_token( pipeline.fetch_state("request_token"), request.GET["oauth_token"] ) pipeline.bind_state("access_token", access_token) return pipeline.next_step() except ApiError as error: lifecycle.record_failure(str(error)) return pipeline.error( f"Could not fetch an access token from Bitbucket. {str(error)}" )
OAuthCallbackView
python
plotly__plotly.py
plotly/graph_objs/layout/map/_layer.py
{ "start": 235, "end": 24279 }
class ____(_BaseLayoutHierarchyType): _parent_path_str = "layout.map" _path_str = "layout.map.layer" _valid_props = { "below", "circle", "color", "coordinates", "fill", "line", "maxzoom", "minzoom", "name", "opacity", "source", "sourceattribution", "sourcelayer", "sourcetype", "symbol", "templateitemname", "type", "visible", } @property def below(self): """ Determines if the layer will be inserted before the layer with the specified ID. If omitted or set to '', the layer will be inserted above every existing layer. The 'below' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["below"] @below.setter def below(self, val): self["below"] = val @property def circle(self): """ The 'circle' property is an instance of Circle that may be specified as: - An instance of :class:`plotly.graph_objs.layout.map.layer.Circle` - A dict of string/value properties that will be passed to the Circle constructor Returns ------- plotly.graph_objs.layout.map.layer.Circle """ return self["circle"] @circle.setter def circle(self, val): self["circle"] = val @property def color(self): """ Sets the primary layer color. If `type` is "circle", color corresponds to the circle color (map.layer.paint.circle-color) If `type` is "line", color corresponds to the line color (map.layer.paint.line-color) If `type` is "fill", color corresponds to the fill color (map.layer.paint.fill-color) If `type` is "symbol", color corresponds to the icon color (map.layer.paint.icon-color) The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: see https://plotly.com/python/css-colors/ for a list Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val @property def coordinates(self): """ Sets the coordinates array contains [longitude, latitude] pairs for the image corners listed in clockwise order: top left, top right, bottom right, bottom left. Only has an effect for "image" `sourcetype`. The 'coordinates' property accepts values of any type Returns ------- Any """ return self["coordinates"] @coordinates.setter def coordinates(self, val): self["coordinates"] = val @property def fill(self): """ The 'fill' property is an instance of Fill that may be specified as: - An instance of :class:`plotly.graph_objs.layout.map.layer.Fill` - A dict of string/value properties that will be passed to the Fill constructor Returns ------- plotly.graph_objs.layout.map.layer.Fill """ return self["fill"] @fill.setter def fill(self, val): self["fill"] = val @property def line(self): """ The 'line' property is an instance of Line that may be specified as: - An instance of :class:`plotly.graph_objs.layout.map.layer.Line` - A dict of string/value properties that will be passed to the Line constructor Returns ------- plotly.graph_objs.layout.map.layer.Line """ return self["line"] @line.setter def line(self, val): self["line"] = val @property def maxzoom(self): """ Sets the maximum zoom level (map.layer.maxzoom). At zoom levels equal to or greater than the maxzoom, the layer will be hidden. The 'maxzoom' property is a number and may be specified as: - An int or float in the interval [0, 24] Returns ------- int|float """ return self["maxzoom"] @maxzoom.setter def maxzoom(self, val): self["maxzoom"] = val @property def minzoom(self): """ Sets the minimum zoom level (map.layer.minzoom). At zoom levels less than the minzoom, the layer will be hidden. The 'minzoom' property is a number and may be specified as: - An int or float in the interval [0, 24] Returns ------- int|float """ return self["minzoom"] @minzoom.setter def minzoom(self, val): self["minzoom"] = val @property def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val @property def opacity(self): """ Sets the opacity of the layer. If `type` is "circle", opacity corresponds to the circle opacity (map.layer.paint.circle- opacity) If `type` is "line", opacity corresponds to the line opacity (map.layer.paint.line-opacity) If `type` is "fill", opacity corresponds to the fill opacity (map.layer.paint.fill- opacity) If `type` is "symbol", opacity corresponds to the icon/text opacity (map.layer.paint.text-opacity) The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val @property def source(self): """ Sets the source data for this layer (map.layer.source). When `sourcetype` is set to "geojson", `source` can be a URL to a GeoJSON or a GeoJSON object. When `sourcetype` is set to "vector" or "raster", `source` can be a URL or an array of tile URLs. When `sourcetype` is set to "image", `source` can be a URL to an image. The 'source' property accepts values of any type Returns ------- Any """ return self["source"] @source.setter def source(self, val): self["source"] = val @property def sourceattribution(self): """ Sets the attribution for this source. The 'sourceattribution' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["sourceattribution"] @sourceattribution.setter def sourceattribution(self, val): self["sourceattribution"] = val @property def sourcelayer(self): """ Specifies the layer to use from a vector tile source (map.layer.source-layer). Required for "vector" source type that supports multiple layers. The 'sourcelayer' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["sourcelayer"] @sourcelayer.setter def sourcelayer(self, val): self["sourcelayer"] = val @property def sourcetype(self): """ Sets the source type for this layer, that is the type of the layer data. The 'sourcetype' property is an enumeration that may be specified as: - One of the following enumeration values: ['geojson', 'vector', 'raster', 'image'] Returns ------- Any """ return self["sourcetype"] @sourcetype.setter def sourcetype(self, val): self["sourcetype"] = val @property def symbol(self): """ The 'symbol' property is an instance of Symbol that may be specified as: - An instance of :class:`plotly.graph_objs.layout.map.layer.Symbol` - A dict of string/value properties that will be passed to the Symbol constructor Returns ------- plotly.graph_objs.layout.map.layer.Symbol """ return self["symbol"] @symbol.setter def symbol(self, val): self["symbol"] = val @property def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"] @templateitemname.setter def templateitemname(self, val): self["templateitemname"] = val @property def type(self): """ Sets the layer type, that is the how the layer data set in `source` will be rendered With `sourcetype` set to "geojson", the following values are allowed: "circle", "line", "fill" and "symbol". but note that "line" and "fill" are not compatible with Point GeoJSON geometries. With `sourcetype` set to "vector", the following values are allowed: "circle", "line", "fill" and "symbol". With `sourcetype` set to "raster" or "image", only the "raster" value is allowed. The 'type' property is an enumeration that may be specified as: - One of the following enumeration values: ['circle', 'line', 'fill', 'symbol', 'raster'] Returns ------- Any """ return self["type"] @type.setter def type(self, val): self["type"] = val @property def visible(self): """ Determines whether this layer is displayed The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["visible"] @visible.setter def visible(self, val): self["visible"] = val @property def _prop_descriptions(self): return """\ below Determines if the layer will be inserted before the layer with the specified ID. If omitted or set to '', the layer will be inserted above every existing layer. circle :class:`plotly.graph_objects.layout.map.layer.Circle` instance or dict with compatible properties color Sets the primary layer color. If `type` is "circle", color corresponds to the circle color (map.layer.paint.circle-color) If `type` is "line", color corresponds to the line color (map.layer.paint.line-color) If `type` is "fill", color corresponds to the fill color (map.layer.paint.fill- color) If `type` is "symbol", color corresponds to the icon color (map.layer.paint.icon-color) coordinates Sets the coordinates array contains [longitude, latitude] pairs for the image corners listed in clockwise order: top left, top right, bottom right, bottom left. Only has an effect for "image" `sourcetype`. fill :class:`plotly.graph_objects.layout.map.layer.Fill` instance or dict with compatible properties line :class:`plotly.graph_objects.layout.map.layer.Line` instance or dict with compatible properties maxzoom Sets the maximum zoom level (map.layer.maxzoom). At zoom levels equal to or greater than the maxzoom, the layer will be hidden. minzoom Sets the minimum zoom level (map.layer.minzoom). At zoom levels less than the minzoom, the layer will be hidden. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. opacity Sets the opacity of the layer. If `type` is "circle", opacity corresponds to the circle opacity (map.layer.paint.circle-opacity) If `type` is "line", opacity corresponds to the line opacity (map.layer.paint.line-opacity) If `type` is "fill", opacity corresponds to the fill opacity (map.layer.paint.fill-opacity) If `type` is "symbol", opacity corresponds to the icon/text opacity (map.layer.paint.text-opacity) source Sets the source data for this layer (map.layer.source). When `sourcetype` is set to "geojson", `source` can be a URL to a GeoJSON or a GeoJSON object. When `sourcetype` is set to "vector" or "raster", `source` can be a URL or an array of tile URLs. When `sourcetype` is set to "image", `source` can be a URL to an image. sourceattribution Sets the attribution for this source. sourcelayer Specifies the layer to use from a vector tile source (map.layer.source-layer). Required for "vector" source type that supports multiple layers. sourcetype Sets the source type for this layer, that is the type of the layer data. symbol :class:`plotly.graph_objects.layout.map.layer.Symbol` instance or dict with compatible properties templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. type Sets the layer type, that is the how the layer data set in `source` will be rendered With `sourcetype` set to "geojson", the following values are allowed: "circle", "line", "fill" and "symbol". but note that "line" and "fill" are not compatible with Point GeoJSON geometries. With `sourcetype` set to "vector", the following values are allowed: "circle", "line", "fill" and "symbol". With `sourcetype` set to "raster" or "image", only the "raster" value is allowed. visible Determines whether this layer is displayed """ def __init__( self, arg=None, below=None, circle=None, color=None, coordinates=None, fill=None, line=None, maxzoom=None, minzoom=None, name=None, opacity=None, source=None, sourceattribution=None, sourcelayer=None, sourcetype=None, symbol=None, templateitemname=None, type=None, visible=None, **kwargs, ): """ Construct a new Layer object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.map.Layer` below Determines if the layer will be inserted before the layer with the specified ID. If omitted or set to '', the layer will be inserted above every existing layer. circle :class:`plotly.graph_objects.layout.map.layer.Circle` instance or dict with compatible properties color Sets the primary layer color. If `type` is "circle", color corresponds to the circle color (map.layer.paint.circle-color) If `type` is "line", color corresponds to the line color (map.layer.paint.line-color) If `type` is "fill", color corresponds to the fill color (map.layer.paint.fill- color) If `type` is "symbol", color corresponds to the icon color (map.layer.paint.icon-color) coordinates Sets the coordinates array contains [longitude, latitude] pairs for the image corners listed in clockwise order: top left, top right, bottom right, bottom left. Only has an effect for "image" `sourcetype`. fill :class:`plotly.graph_objects.layout.map.layer.Fill` instance or dict with compatible properties line :class:`plotly.graph_objects.layout.map.layer.Line` instance or dict with compatible properties maxzoom Sets the maximum zoom level (map.layer.maxzoom). At zoom levels equal to or greater than the maxzoom, the layer will be hidden. minzoom Sets the minimum zoom level (map.layer.minzoom). At zoom levels less than the minzoom, the layer will be hidden. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. opacity Sets the opacity of the layer. If `type` is "circle", opacity corresponds to the circle opacity (map.layer.paint.circle-opacity) If `type` is "line", opacity corresponds to the line opacity (map.layer.paint.line-opacity) If `type` is "fill", opacity corresponds to the fill opacity (map.layer.paint.fill-opacity) If `type` is "symbol", opacity corresponds to the icon/text opacity (map.layer.paint.text-opacity) source Sets the source data for this layer (map.layer.source). When `sourcetype` is set to "geojson", `source` can be a URL to a GeoJSON or a GeoJSON object. When `sourcetype` is set to "vector" or "raster", `source` can be a URL or an array of tile URLs. When `sourcetype` is set to "image", `source` can be a URL to an image. sourceattribution Sets the attribution for this source. sourcelayer Specifies the layer to use from a vector tile source (map.layer.source-layer). Required for "vector" source type that supports multiple layers. sourcetype Sets the source type for this layer, that is the type of the layer data. symbol :class:`plotly.graph_objects.layout.map.layer.Symbol` instance or dict with compatible properties templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. type Sets the layer type, that is the how the layer data set in `source` will be rendered With `sourcetype` set to "geojson", the following values are allowed: "circle", "line", "fill" and "symbol". but note that "line" and "fill" are not compatible with Point GeoJSON geometries. With `sourcetype` set to "vector", the following values are allowed: "circle", "line", "fill" and "symbol". With `sourcetype` set to "raster" or "image", only the "raster" value is allowed. visible Determines whether this layer is displayed Returns ------- Layer """ super().__init__("layers") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.layout.map.Layer constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.map.Layer`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("below", arg, below) self._set_property("circle", arg, circle) self._set_property("color", arg, color) self._set_property("coordinates", arg, coordinates) self._set_property("fill", arg, fill) self._set_property("line", arg, line) self._set_property("maxzoom", arg, maxzoom) self._set_property("minzoom", arg, minzoom) self._set_property("name", arg, name) self._set_property("opacity", arg, opacity) self._set_property("source", arg, source) self._set_property("sourceattribution", arg, sourceattribution) self._set_property("sourcelayer", arg, sourcelayer) self._set_property("sourcetype", arg, sourcetype) self._set_property("symbol", arg, symbol) self._set_property("templateitemname", arg, templateitemname) self._set_property("type", arg, type) self._set_property("visible", arg, visible) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Layer
python
django__django
tests/admin_changelist/models.py
{ "start": 818, "end": 1014 }
class ____(models.Model): name = models.CharField(max_length=20) file = models.FileField(upload_to="documents/", blank=True, null=True) url = models.URLField(blank=True, null=True)
Genre
python
catalyst-team__catalyst
catalyst/data/sampler.py
{ "start": 3556, "end": 8599 }
class ____(Sampler): """ This kind of sampler can be used for both metric learning and classification task. BatchSampler with the given strategy for the C unique classes dataset: - Selection `num_classes` of C classes for each batch - Selection `num_samples` instances for each class in the batch The epoch ends after `num_batches`. So, the batch sise is `num_classes` * `num_samples`. One of the purposes of this sampler is to be used for forming triplets and pos/neg pairs inside the batch. To guarante existance of these pairs in the batch, `num_classes` and `num_samples` should be > 1. (1) This type of sampling can be found in the classical paper of Person Re-Id, where P (`num_classes`) equals 32 and K (`num_samples`) equals 4: `In Defense of the Triplet Loss for Person Re-Identification`_. Args: labels: list of classes labeles for each elem in the dataset num_classes: number of classes in a batch, should be > 1 num_samples: number of instances of each class in a batch, should be > 1 num_batches: number of batches in epoch (default = len(labels) // (num_classes * num_samples)) .. _In Defense of the Triplet Loss for Person Re-Identification: https://arxiv.org/abs/1703.07737 Python API examples: .. code-block:: python import os from torch import nn, optim from torch.utils.data import DataLoader from catalyst import dl from catalyst.data import ToTensor, BatchBalanceClassSampler from catalyst.contrib.datasets import MNIST train_data = MNIST(os.getcwd(), train=True, download=True) train_labels = train_data.targets.cpu().numpy().tolist() train_sampler = BatchBalanceClassSampler( train_labels, num_classes=10, num_samples=4) valid_data = MNIST(os.getcwd(), train=False) loaders = { "train": DataLoader(train_data, batch_sampler=train_sampler), "valid": DataLoader(valid_data, batch_size=32), } model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10)) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.02) runner = dl.SupervisedRunner() # model training runner.train( model=model, criterion=criterion, optimizer=optimizer, loaders=loaders, num_epochs=1, logdir="./logs", valid_loader="valid", valid_metric="loss", minimize_valid_metric=True, verbose=True, ) """ def __init__( self, labels: Union[List[int], np.ndarray], num_classes: int, num_samples: int, num_batches: int = None, ): """Sampler initialisation.""" super().__init__(labels) classes = set(labels) assert isinstance(num_classes, int) and isinstance(num_samples, int) assert (1 < num_classes <= len(classes)) and (1 < num_samples) assert all( n > 1 for n in Counter(labels).values() ), "Each class shoud contain at least 2 instances to fit (1)" labels = np.array(labels) self._labels = list(set(labels.tolist())) self._num_classes = num_classes self._num_samples = num_samples self._batch_size = self._num_classes * self._num_samples self._num_batches = num_batches or len(labels) // self._batch_size self.lbl2idx = { label: np.arange(len(labels))[labels == label].tolist() for label in set(labels) } @property def batch_size(self) -> int: """ Returns: this value should be used in DataLoader as batch size """ return self._batch_size @property def batches_in_epoch(self) -> int: """ Returns: number of batches in an epoch """ return self._num_batches def __len__(self) -> int: """ Returns: number of samples in an epoch """ return self._num_batches # * self._batch_size def __iter__(self) -> Iterator[int]: """ Returns: indeces for sampling dataset elems during an epoch """ indices = [] for _ in range(self._num_batches): batch_indices = [] classes_for_batch = random.sample(self._labels, self._num_classes) while self._num_classes != len(set(classes_for_batch)): classes_for_batch = random.sample(self._labels, self._num_classes) for cls_id in classes_for_batch: replace_flag = self._num_samples > len(self.lbl2idx[cls_id]) batch_indices += np.random.choice( self.lbl2idx[cls_id], self._num_samples, replace=replace_flag ).tolist() indices.append(batch_indices) return iter(indices)
BatchBalanceClassSampler
python
pypa__pipenv
pipenv/vendor/importlib_metadata/__init__.py
{ "start": 7357, "end": 8967 }
class ____(tuple): """ An immutable collection of selectable EntryPoint objects. """ __slots__ = () def __getitem__(self, name: str) -> EntryPoint: # type: ignore[override] # Work with str instead of int """ Get the EntryPoint in self matching name. """ try: return next(iter(self.select(name=name))) except StopIteration: raise KeyError(name) def __repr__(self): """ Repr with classname and tuple constructor to signal that we deviate from regular tuple behavior. """ return '%s(%r)' % (self.__class__.__name__, tuple(self)) def select(self, **params) -> EntryPoints: """ Select entry points from self that match the given parameters (typically group and/or name). """ return EntryPoints(ep for ep in self if py39.ep_matches(ep, **params)) @property def names(self) -> Set[str]: """ Return the set of all names of all entry points. """ return {ep.name for ep in self} @property def groups(self) -> Set[str]: """ Return the set of all groups of all entry points. """ return {ep.group for ep in self} @classmethod def _from_text_for(cls, text, dist): return cls(ep._for(dist) for ep in cls._from_text(text)) @staticmethod def _from_text(text): return ( EntryPoint(name=item.value.name, value=item.value.value, group=item.name) for item in Sectioned.section_pairs(text or '') )
EntryPoints
python
sphinx-doc__sphinx
sphinx/domains/c/_ast.py
{ "start": 20008, "end": 21031 }
class ____(ASTExpression): def __init__(self, typ: ASTType, expr: ASTExpression) -> None: self.typ = typ self.expr = expr def __eq__(self, other: object) -> bool: if not isinstance(other, ASTCastExpr): return NotImplemented return self.typ == other.typ and self.expr == other.expr def __hash__(self) -> int: return hash((self.typ, self.expr)) def _stringify(self, transform: StringifyTransform) -> str: res = ['('] res.extend(( transform(self.typ), ')', transform(self.expr), )) return ''.join(res) def describe_signature( self, signode: TextElement, mode: str, env: BuildEnvironment, symbol: Symbol ) -> None: signode += addnodes.desc_sig_punctuation('(', '(') self.typ.describe_signature(signode, mode, env, symbol) signode += addnodes.desc_sig_punctuation(')', ')') self.expr.describe_signature(signode, mode, env, symbol)
ASTCastExpr
python
joke2k__faker
faker/providers/automotive/de_CH/__init__.py
{ "start": 48, "end": 1151 }
class ____(AutomotiveProvider): """Implement automotive provider for ``de_CH`` locale. Sources: - https://de.wikipedia.org/wiki/Kontrollschild_(Schweiz)#Kantone """ __canton = ( ("AG", "%## ###"), ("AR", "%# ###"), ("AI", "%# ###"), ("BL", "%## ###"), ("BS", "%## ###"), ("BE", "%## ###"), ("FR", "%## ###"), ("GE", "%## ###"), ("GL", "%# ###"), ("GR", "%## ###"), ("JU", "%# ###"), ("LU", "%## ###"), ("NE", "%## ###"), ("NW", "%# ###"), ("OW", "%# ###"), ("SH", "%# ###"), ("SZ", "%## ###"), ("SO", "%## ###"), ("SG", "%## ###"), ("TI", "%## ###"), ("TG", "%## ###"), ("UR", "%# ###"), ("VD", "%## ###"), ("VS", "%## ###"), ("ZG", "%## ###"), ("ZH", "%## ###"), ) def license_plate(self) -> str: """Generate a license plate.""" plate: tuple = self.random_element(self.__canton) return f"{plate[0]}-{self.numerify(plate[1])}".strip()
Provider