title
stringlengths
7
246
abstract
stringlengths
3
3.31k
A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
With the increase of credit card usage, the volume of credit card misuse also has significantly increased. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part,we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.
Meta-Learning Approaches for a One-Shot Collective-Decision Aggregation: Correctly Choosing how to Choose Correctly
Aggregating successfully the choices regarding a given decision problem made by the multiple collective members into a single solution is essential for exploiting the collective's intelligence and for effective crowdsourcing. There are various aggregation techniques, some of which come down to a simple and sometimes effective deterministic aggregation rule. However, it has been shown that the efficiency of those techniques is unstable under varying conditions and within different domains. Other methods mainly rely on learning from the decision-makers previous responses or the availability of additional information about them. In this study, we present two one-shot machine-learning-based aggregation approaches. The first predicts, given multiple features about the collective's choices, including meta-cognitive ones, which aggregation method will be best for a given case. The second directly predicts which decision is optimal, given, among other things, the selection made by each method. We offer a meta-cognitive feature-engineering approach for characterizing a collective decision-making case in a context-sensitive fashion. In addition, we offer a new aggregation method, the Devil's-Advocate aggregator, to deal with cases in which standard aggregation methods are predicted to fail. Experimental results show that using either of our proposed approaches increases the percentage of successfully aggregated cases (i.e., cases in which the correct answer is returned) significantly, compared to the uniform application of each rule-based aggregation method. We also demonstrate the importance of the Devil's Advocate aggregator.
U2-ONet: A Two-level Nested Octave U-structure with Multiscale Attention Mechanism for Moving Instances Segmentation
Most scenes in practical applications are dynamic scenes containing moving objects, so segmenting accurately moving objects is crucial for many computer vision applications. In order to efficiently segment out all moving objects in the scene, regardless of whether the object has a predefined semantic label, we propose a two-level nested Octave U-structure network with a multiscale attention mechanism called U2-ONet. Each stage of U2-ONet is filled with our newly designed Octave ReSidual U-block (ORSU) to enhance the ability to obtain more context information at different scales while reducing spatial redundancy of feature maps. In order to efficiently train our multi-scale deep network, we introduce a hierarchical training supervision strategy that calculates the loss at each level while adding a knowledge matching loss to keep the optimization consistency. Experimental results show that our method achieves state-of-the-art performance in several general moving objects segmentation datasets.
Global Normalization for Streaming Speech Recognition in a Modular Framework
We introduce the Globally Normalized Autoregressive Transducer (GNAT) for addressing the label bias problem in streaming speech recognition. Our solution admits a tractable exact computation of the denominator for the sequence-level normalization. Through theoretical and empirical results, we demonstrate that by switching to a globally normalized model, the word error rate gap between streaming and non-streaming speech-recognition models can be greatly reduced (by more than 50\% on the Librispeech dataset). This model is developed in a modular framework which encompasses all the common neural speech recognition models. The modularity of this framework enables controlled comparison of modelling choices and creation of new models.
A Computational Theory of Learning Flexible Reward-Seeking Behavior with Place Cells
An important open question in computational neuroscience is how various spatially tuned neurons, such as place cells, are used to support the learning of reward-seeking behavior of an animal. Existing computational models either lack biological plausibility or fall short of behavioral flexibility when environments change. In this paper, we propose a computational theory that achieves behavioral flexibility with better biological plausibility. We first train a mixture of Gaussian distributions to model the ensemble of firing fields of place cells. Then we propose a Hebbian-like rule to learn the synaptic strength matrix among place cells. This matrix is interpreted as the transition rate matrix of a continuous time Markov chain to generate the sequential replay of place cells. During replay, the synaptic strengths from place cells to medium spiny neurons (MSN) are learned by a temporal-difference like rule to store place-reward associations. After replay, the activation of MSN will ramp up when an animal approaches the rewarding place, so the animal can move along the direction where the MSN activation is increasing to find the rewarding place. We implement our theory into a high-fidelity virtual rat in the MuJoCo physics simulator. In a complex maze, the rat shows significantly better learning efficiency and behavioral flexibility than a rat that implements a neuroscience-inspired reinforcement learning algorithm, deep Q-network.
SalientSleepNet: Multimodal Salient Wave Detection Network for Sleep Staging
Sleep staging is fundamental for sleep assessment and disease diagnosis. Although previous attempts to classify sleep stages have achieved high classification performance, several challenges remain open: 1) How to effectively extract salient waves in multimodal sleep data; 2) How to capture the multi-scale transition rules among sleep stages; 3) How to adaptively seize the key role of specific modality for sleep staging. To address these challenges, we propose SalientSleepNet, a multimodal salient wave detection network for sleep staging. Specifically, SalientSleepNet is a temporal fully convolutional network based on the $\rm U^2$-Net architecture that is originally proposed for salient object detection in computer vision. It is mainly composed of two independent $\rm U^2$-like streams to extract the salient features from multimodal data, respectively. Meanwhile, the multi-scale extraction module is designed to capture multi-scale transition rules among sleep stages. Besides, the multimodal attention module is proposed to adaptively capture valuable information from multimodal data for the specific sleep stage. Experiments on the two datasets demonstrate that SalientSleepNet outperforms the state-of-the-art baselines. It is worth noting that this model has the least amount of parameters compared with the existing deep neural network models.
Word Representations, Tree Models and Syntactic Functions
Word representations induced from models with discrete latent variables (e.g.\ HMMs) have been shown to be beneficial in many NLP applications. In this work, we exploit labeled syntactic dependency trees and formalize the induction problem as unsupervised learning of tree-structured hidden Markov models. Syntactic functions are used as additional observed variables in the model, influencing both transition and emission components. Such syntactic information can potentially lead to capturing more fine-grain and functional distinctions between words, which, in turn, may be desirable in many NLP applications. We evaluate the word representations on two tasks -- named entity recognition and semantic frame identification. We observe improvements from exploiting syntactic function information in both cases, and the results rivaling those of state-of-the-art representation learning methods. Additionally, we revisit the relationship between sequential and unlabeled-tree models and find that the advantage of the latter is not self-evident.
Competitive Gradient Optimization
We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO ), a gradient-based method that incorporates the interactions between the two players in zero-sum games for optimization updates. We provide continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, CGO predecessors degenerate to their gradient descent ascent (GDA) variants. We provide a rate of convergence to stationary points and further propose a generalized class of $\alpha$-coherent function for which we provide convergence analysis. We show that for strictly $\alpha$-coherent functions, our algorithm convergences to a saddle point. Moreover, we propose optimistic CGO (OCGO), an optimistic variant, for which we show convergence rate to saddle points in $\alpha$-coherent class of functions.
Image Embedding of PMU Data for Deep Learning towards Transient Disturbance Classification
This paper presents a study on power grid disturbance classification by Deep Learning (DL). A real synchrophasor set composing of three different types of disturbance events from the Frequency Monitoring Network (FNET) is used. An image embedding technique called Gramian Angular Field is applied to transform each time series of event data to a two-dimensional image for learning. Two main DL algorithms, i.e. CNN (Convolutional Neural Network) and RNN (Recurrent Neural Network) are tested and compared with two widely used data mining tools, the Support Vector Machine and Decision Tree. The test results demonstrate the superiority of the both DL algorithms over other methods in the application of power system transient disturbance classification.
On the approximation of a matrix
Let $F^{*}$ be an approximation of a given $(a \times b)$ matrix $F$ derived by methods that are not randomized. We prove that for a given $F$ and $F^{*}$, $H$ and $T$ can be computed by randomized algorithm such that $(HT)$ is an approximation of $F$ better than $F^{*}$.
Exploration in Interactive Personalized Music Recommendation: A Reinforcement Learning Approach
Current music recommender systems typically act in a greedy fashion by recommending songs with the highest user ratings. Greedy recommendation, however, is suboptimal over the long term: it does not actively gather information on user preferences and fails to recommend novel songs that are potentially interesting. A successful recommender system must balance the needs to explore user preferences and to exploit this information for recommendation. This paper presents a new approach to music recommendation by formulating this exploration-exploitation trade-off as a reinforcement learning task called the multi-armed bandit. To learn user preferences, it uses a Bayesian model, which accounts for both audio content and the novelty of recommendations. A piecewise-linear approximation to the model and a variational inference algorithm are employed to speed up Bayesian inference. One additional benefit of our approach is a single unified model for both music recommendation and playlist generation. Both simulation results and a user study indicate strong potential for the new approach.
Symbolic Abstractions From Data: A PAC Learning Approach
Symbolic control techniques aim to satisfy complex logic specifications. A critical step in these techniques is the construction of a symbolic (discrete) abstraction, a finite-state system whose behaviour mimics that of a given continuous-state system. The methods used to compute symbolic abstractions, however, require knowledge of an accurate closed-form model. To generalize them to systems with unknown dynamics, we present a new data-driven approach that does not require closed-form dynamics, instead relying only the ability to evaluate successors of each state under given inputs. To provide guarantees for the learned abstraction, we use the Probably Approximately Correct (PAC) statistical framework. We first introduce a PAC-style behavioural relationship and an appropriate refinement procedure. We then show how the symbolic abstraction can be constructed to satisfy this new behavioural relationship. Moreover, we provide PAC bounds that dictate the number of data required to guarantee a prescribed level of accuracy and confidence. Finally, we present an illustrative example.
Do Not Mask What You Do Not Need to Mask: a Parser-Free Virtual Try-On
The 2D virtual try-on task has recently attracted a great interest from the research community, for its direct potential applications in online shopping as well as for its inherent and non-addressed scientific challenges. This task requires fitting an in-shop cloth image on the image of a person, which is highly challenging because it involves cloth warping, image compositing, and synthesizing. Casting virtual try-on into a supervised task faces a difficulty: available datasets are composed of pairs of pictures (cloth, person wearing the cloth). Thus, we have no access to ground-truth when the cloth on the person changes. State-of-the-art models solve this by masking the cloth information on the person with both a human parser and a pose estimator. Then, image synthesis modules are trained to reconstruct the person image from the masked person image and the cloth image. This procedure has several caveats: firstly, human parsers are prone to errors; secondly, it is a costly pre-processing step, which also has to be applied at inference time; finally, it makes the task harder than it is since the mask covers information that should be kept such as hands or accessories. In this paper, we propose a novel student-teacher paradigm where the teacher is trained in the standard way (reconstruction) before guiding the student to focus on the initial task (changing the cloth). The student additionally learns from an adversarial loss, which pushes it to follow the distribution of the real images. Consequently, the student exploits information that is masked to the teacher. A student trained without the adversarial loss would not use this information. Also, getting rid of both human parser and pose estimator at inference time allows obtaining a real-time virtual try-on.
Entropic Risk Constrained Soft-Robust Policy Optimization
Having a perfect model to compute the optimal policy is often infeasible in reinforcement learning. It is important in high-stakes domains to quantify and manage risk induced by model uncertainties. Entropic risk measure is an exponential utility-based convex risk measure that satisfies many reasonable properties. In this paper, we propose an entropic risk constrained policy gradient and actor-critic algorithms that are risk-averse to the model uncertainty. We demonstrate the usefulness of our algorithms on several problem domains.
Addressing Model Vulnerability to Distributional Shifts over Image Transformation Sets
We are concerned with the vulnerability of computer vision models to distributional shifts. We formulate a combinatorial optimization problem that allows evaluating the regions in the image space where a given model is more vulnerable, in terms of image transformations applied to the input, and face it with standard search algorithms. We further embed this idea in a training procedure, where we define new data augmentation rules according to the image transformations that the current model is most vulnerable to, over iterations. An empirical evaluation on classification and semantic segmentation problems suggests that the devised algorithm allows to train models that are more robust against content-preserving image manipulations and, in general, against distributional shifts.
File mapping Rule-based DBMS and Natural Language Processing
This paper describes the system of storage, extract and processing of information structured similarly to the natural language. For recursive inference the system uses the rules having the same representation, as the data. The environment of storage of information is provided with the File Mapping (SHM) mechanism of operating system. In the paper the main principles of construction of dynamic data structure and language for record of the inference rules are stated; the features of available implementation are considered and the description of the application realizing semantic information retrieval on the natural language is given.
CoNet: Collaborative Cross Networks for Cross-Domain Recommendation
The cross-domain recommendation technique is an effective way of alleviating the data sparse issue in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. In contrast to the matrix factorization based cross-domain techniques, our method is deep transfer learning, which can learn complex user-item interaction relationships. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is thoroughly evaluated on two large real-world datasets. It outperforms baselines by relative improvements of 7.84\% in NDCG. We demonstrate the necessity of adaptively selecting representations to transfer. Our model can reduce tens of thousands training examples comparing with non-transfer methods and still has the competitive performance with them.
Circuit Complexity of Visual Search
We study computational hardness of feature and conjunction search through the lens of circuit complexity. Let $x = (x_1, ... , x_n)$ (resp., $y = (y_1, ... , y_n)$) be Boolean variables each of which takes the value one if and only if a neuron at place $i$ detects a feature (resp., another feature). We then simply formulate the feature and conjunction search as Boolean functions ${\rm FTR}_n(x) = \bigvee_{i=1}^n x_i$ and ${\rm CONJ}_n(x, y) = \bigvee_{i=1}^n x_i \wedge y_i$, respectively. We employ a threshold circuit or a discretized circuit (such as a sigmoid circuit or a ReLU circuit with discretization) as our models of neural networks, and consider the following four computational resources: [i] the number of neurons (size), [ii] the number of levels (depth), [iii] the number of active neurons outputting non-zero values (energy), and [iv] synaptic weight resolution (weight). We first prove that any threshold circuit $C$ of size $s$, depth $d$, energy $e$ and weight $w$ satisfies $\log rk(M_C) \le ed (\log s + \log w + \log n)$, where $rk(M_C)$ is the rank of the communication matrix $M_C$ of a $2n$-variable Boolean function that $C$ computes. Since ${\rm CONJ}_n$ has rank $2^n$, we have $n \le ed (\log s + \log w + \log n)$. Thus, an exponential lower bound on the size of even sublinear-depth threshold circuits exists if the energy and weight are sufficiently small. Since ${\rm FTR}_n$ is computable independently of $n$, our result suggests that computational capacity for the feature and conjunction search are different. We also show that the inequality is tight up to a constant factor if $ed = o(n/ \log n)$. We next show that a similar inequality holds for any discretized circuit. Thus, if we regard the number of gates outputting non-zero values as a measure for sparse activity, our results suggest that larger depth helps neural networks to acquire sparse activity.
Learning from Multiple Outlooks
We propose a novel problem formulation of learning a single task when the data are provided in different feature spaces. Each such space is called an outlook, and is assumed to contain both labeled and unlabeled data. The objective is to take advantage of the data from all the outlooks to better classify each of the outlooks. We devise an algorithm that computes optimal affine mappings from different outlooks to a target outlook by matching moments of the empirical distributions. We further derive a probabilistic interpretation of the resulting algorithm and a sample complexity bound indicating how many samples are needed to adequately find the mapping. We report the results of extensive experiments on activity recognition tasks that show the value of the proposed approach in boosting performance.
eCNN: A Block-Based and Highly-Parallel CNN Accelerator for Edge Inference
Convolutional neural networks (CNNs) have recently demonstrated superior quality for computational imaging applications. Therefore, they have great potential to revolutionize the image pipelines on cameras and displays. However, it is difficult for conventional CNN accelerators to support ultra-high-resolution videos at the edge due to their considerable DRAM bandwidth and power consumption. Therefore, finding a further memory- and computation-efficient microarchitecture is crucial to speed up this coming revolution. In this paper, we approach this goal by considering the inference flow, network model, instruction set, and processor design jointly to optimize hardware performance and image quality. We apply a block-based inference flow which can eliminate all the DRAM bandwidth for feature maps and accordingly propose a hardware-oriented network model, ERNet, to optimize image quality based on hardware constraints. Then we devise a coarse-grained instruction set architecture, FBISA, to support power-hungry convolution by massive parallelism. Finally,we implement an embedded processor---eCNN---which accommodates to ERNet and FBISA with a flexible processing architecture. Layout results show that it can support high-quality ERNets for super-resolution and denoising at up to 4K Ultra-HD 30 fps while using only DDR-400 and consuming 6.94W on average. By comparison, the state-of-the-art Diffy uses dual-channel DDR3-2133 and consumes 54.3W to support lower-quality VDSR at Full HD 30 fps. Lastly, we will also present application examples of high-performance style transfer and object recognition to demonstrate the flexibility of eCNN.
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
We propose a novel method for computing exact pointwise robustness of deep neural networks for all convex $\ell_p$ norms. Our algorithm, GeoCert, finds the largest $\ell_p$ ball centered at an input point $x_0$, within which the output class of a given neural network with ReLU nonlinearities remains unchanged. We relate the problem of computing pointwise robustness of these networks to that of computing the maximum norm ball with a fixed center that can be contained in a non-convex polytope. This is a challenging problem in general, however we show that there exists an efficient algorithm to compute this for polyhedral complices. Further we show that piecewise linear neural networks partition the input space into a polyhedral complex. Our algorithm has the ability to almost immediately output a nontrivial lower bound to the pointwise robustness which is iteratively improved until it ultimately becomes tight. We empirically show that our approach generates distance lower bounds that are tighter compared to prior work, under moderate time constraints.
Supervised Hierarchical Clustering with Exponential Linkage
In supervised clustering, standard techniques for learning a pairwise dissimilarity function often suffer from a discrepancy between the training and clustering objectives, leading to poor cluster quality. Rectifying this discrepancy necessitates matching the procedure for training the dissimilarity function to the clustering algorithm. In this paper, we introduce a method for training the dissimilarity function in a way that is tightly coupled with hierarchical clustering, in particular single linkage. However, the appropriate clustering algorithm for a given dataset is often unknown. Thus we introduce an approach to supervised hierarchical clustering that smoothly interpolates between single, average, and complete linkage, and we give a training procedure that simultaneously learns a linkage function and a dissimilarity function. We accomplish this with a novel Exponential Linkage function that has a learnable parameter that controls the interpolation. In experiments on four datasets, our joint training procedure consistently matches or outperforms the next best training procedure/linkage function pair and gives up to 8 points improvement in dendrogram purity over discrepant pairs.
Modeling Irregularly Sampled Clinical Time Series
While the volume of electronic health records (EHR) data continues to grow, it remains rare for hospital systems to capture dense physiological data streams, even in the data-rich intensive care unit setting. Instead, typical EHR records consist of sparse and irregularly observed multivariate time series, which are well understood to present particularly challenging problems for machine learning methods. In this paper, we present a new deep learning architecture for addressing this problem based on the use of a semi-parametric interpolation network followed by the application of a prediction network. The interpolation network allows for information to be shared across multiple dimensions during the interpolation stage, while any standard deep learning model can be used for the prediction network. We investigate the performance of this architecture on the problems of mortality and length of stay prediction.
LRTA: A Transparent Neural-Symbolic Reasoning Framework with Modular Supervision for Visual Question Answering
The predominant approach to visual question answering (VQA) relies on encoding the image and question with a "black-box" neural encoder and decoding a single token as the answer like "yes" or "no". Despite this approach's strong quantitative results, it struggles to come up with intuitive, human-readable forms of justification for the prediction process. To address this insufficiency, we reformulate VQA as a full answer generation task, which requires the model to justify its predictions in natural language. We propose LRTA [Look, Read, Think, Answer], a transparent neural-symbolic reasoning framework for visual question answering that solves the problem step-by-step like humans and provides human-readable form of justification at each step. Specifically, LRTA learns to first convert an image into a scene graph and parse a question into multiple reasoning instructions. It then executes the reasoning instructions one at a time by traversing the scene graph using a recurrent neural-symbolic execution module. Finally, it generates a full answer to the given question with natural language justifications. Our experiments on GQA dataset show that LRTA outperforms the state-of-the-art model by a large margin (43.1% v.s. 28.0%) on the full answer generation task. We also create a perturbed GQA test set by removing linguistic cues (attributes and relations) in the questions for analyzing whether a model is having a smart guess with superficial data correlations. We show that LRTA makes a step towards truly understanding the question while the state-of-the-art model tends to learn superficial correlations from the training data.
DPM: A deep learning PDE augmentation method (with application to large-eddy simulation)
Machine learning for scientific applications faces the challenge of limited data. We propose a framework that leverages a priori known physics to reduce overfitting when training on relatively small datasets. A deep neural network is embedded in a partial differential equation (PDE) that expresses the known physics and learns to describe the corresponding unknown or unrepresented physics from the data. Crafted as such, the neural network can also provide corrections for erroneously represented physics, such as discretization errors associated with the PDE's numerical solution. Once trained, the deep learning PDE model (DPM) can make out-of-sample predictions for new physical parameters, geometries, and boundary conditions. Our approach optimizes over the functional form of the PDE. Estimating the embedded neural network requires optimizing over the entire PDE, which itself is a function of the neural network. Adjoint partial differential equations are used to efficiently calculate the high-dimensional gradient of the objective function with respect to the neural network parameters. A stochastic adjoint method (SAM), similar in spirit to stochastic gradient descent, further accelerates training. The approach is demonstrated and evaluated for turbulence predictions using large-eddy simulation (LES), a filtered version of the Navier--Stokes equation containing unclosed sub-filter-scale terms. The DPM outperforms the widely-used constant-coefficient and dynamic Smagorinsky models, even for filter sizes so large that these established models become qualitatively incorrect. It also significantly outperforms a priori trained models, which do not account for the full PDE. A relaxation of the discrete enforcement of the divergence-free constraint is also considered, instead allowing the DPM to approximately enforce incompressibility physics.
Toward Foundation Models for Earth Monitoring: Proposal for a Climate Change Benchmark
Recent progress in self-supervision shows that pre-training large neural networks on vast amounts of unsupervised data can lead to impressive increases in generalisation for downstream tasks. Such models, recently coined as foundation models, have been transformational to the field of natural language processing. While similar models have also been trained on large corpuses of images, they are not well suited for remote sensing data. To stimulate the development of foundation models for Earth monitoring, we propose to develop a new benchmark comprised of a variety of downstream tasks related to climate change. We believe that this can lead to substantial improvements in many existing applications and facilitate the development of new applications. This proposal is also a call for collaboration with the aim of developing a better evaluation process to mitigate potential downsides of foundation models for Earth monitoring.
Fuzzy Logic Based Logical Query Answering on Knowledge Graphs
Answering complex First-Order Logical (FOL) queries on large-scale incomplete knowledge graphs (KGs) is an important yet challenging task. Recent advances embed logical queries and KG entities in the same space and conduct query answering via dense similarity search. However, most logical operators designed in previous studies do not satisfy the axiomatic system of classical logic, limiting their performance. Moreover, these logical operators are parameterized and thus require many complex FOL queries as training data, which are often arduous to collect or even inaccessible in most real-world KGs. We thus present FuzzQE, a fuzzy logic based logical query embedding framework for answering FOL queries over KGs. FuzzQE follows fuzzy logic to define logical operators in a principled and learning-free manner, where only entity and relation embeddings require learning. FuzzQE can further benefit from labeled complex logical queries for training. Extensive experiments on two benchmark datasets demonstrate that FuzzQE provides significantly better performance in answering FOL queries compared to state-of-the-art methods. In addition, FuzzQE trained with only KG link prediction can achieve comparable performance to those trained with extra complex query data.
Robust Training of Social Media Image Classification Models for Rapid Disaster Response
Images shared on social media help crisis managers gain situational awareness and assess incurred damages, among other response tasks. As the volume and velocity of such content are typically high, real-time image classification has become an urgent need for a faster disaster response. Recent advances in computer vision and deep neural networks have enabled the development of models for real-time image classification for a number of tasks, including detecting crisis incidents, filtering irrelevant images, classifying images into specific humanitarian categories, and assessing the severity of the damage. To develop robust real-time models, it is necessary to understand the capability of the publicly available pre-trained models for these tasks, which remains to be under-explored in the crisis informatics literature. In this study, we address such limitations by investigating ten different network architectures for four different tasks using the largest publicly available datasets for these tasks. We also explore various data augmentation strategies, semi-supervised techniques, and a multitask learning setup. In our extensive experiments, we achieve promising results.
Deep Gaussian Processes for geophysical parameter retrieval
This paper introduces deep Gaussian processes (DGPs) for geophysical parameter retrieval. Unlike the standard full GP model, the DGP accounts for complicated (modular, hierarchical) processes, provides an efficient solution that scales well to large datasets, and improves prediction accuracy over standard full and sparse GP models. We give empirical evidence of performance for estimation of surface dew point temperature from infrared sounding data.
People counting system for retail analytics using edge AI
Developments in IoT applications are playing an important role in our day-to-day life, starting from business predictions to self driving cars. One of the area, most influenced by the field of AI and IoT is retail analytics. In Retail Analytics, Conversion Rates - a metric which is most often used by retail stores to measure how many people have visited the store and how many purchases has happened. This retail conversion rate assess the marketing operations, increasing stock, store outlet and running promotions ..etc. Our project intends to build a cost-effective people counting system with AI at Edge, where it calculates Conversion rates using total number of people counted by the system and number of transactions for the day, which helps in providing analytical insights for retail store optimization with a very minimum hardware requirements.
Appliance-Level Monitoring with Micro-Moment Smart Plugs
Human population are striving against energy-related issues that not only affects society and the development of the world, but also causes global warming. A variety of broad approaches have been developed by both industry and the research community. However, there is an ever increasing need for comprehensive, end-to-end solutions aimed at transforming human behavior rather than device metrics and benchmarks. In this paper, a micro-moment-based smart plug system is proposed as part of a larger multi-appliance energy efficiency program. The smart plug, which includes two sub-units: the power consumption unit and environmental monitoring unit collect energy consumption of appliances along with contextual information, such as temperature, humidity, luminosity and room occupancy respectively. The plug also allows home automation capability. With the accompanying mobile application, end-users can visualize energy consumption data along with ambient environmental information. Current implementation results show that the proposed system delivers cost-effective deployment while maintaining adequate computation and wireless performance.
Adversarial Robustness: What fools you makes you stronger
We prove an exponential separation for the sample complexity between the standard PAC-learning model and a version of the Equivalence-Query-learning model. We then show that this separation has interesting implications for adversarial robustness. We explore a vision of designing an adaptive defense that in the presence of an attacker computes a model that is provably robust. In particular, we show how to realize this vision in a simplified setting. In order to do so, we introduce a notion of a strong adversary: he is not limited by the type of perturbations he can apply but when presented with a classifier can repetitively generate different adversarial examples. We explain why this notion is interesting to study and use it to prove the following. There exists an efficient adversarial-learning-like scheme such that for every strong adversary $\mathbf{A}$ it outputs a classifier that (a) cannot be strongly attacked by $\mathbf{A}$, or (b) has error at most $\epsilon$. In both cases our scheme uses exponentially (in $\epsilon$) fewer samples than what the PAC bound requires.
A Coupled Random Projection Approach to Large-Scale Canonical Polyadic Decomposition
We propose a novel algorithm for the computation of canonical polyadic decomposition (CPD) of large-scale tensors. The proposed algorithm generalizes the random projection (RAP) technique, which is often used to compute large-scale decompositions, from one single projection to multiple but coupled random projections (CoRAP). The proposed CoRAP technique yields a set of tensors that together admits a coupled CPD (C-CPD) and a C-CPD algorithm is then used to jointly decompose these tensors. The results of C-CPD are finally fused to obtain factor matrices of the original large-scale data tensor. As more data samples are jointly exploited via C-CPD, the proposed CoRAP based CPD is more accurate than RAP based CPD. Experiments are provided to illustrate the performance of the proposed approach.
The Taboo Trap: Behavioural Detection of Adversarial Samples
Deep Neural Networks (DNNs) have become a powerful toolfor a wide range of problems. Yet recent work has found an increasing variety of adversarial samplesthat can fool them. Most existing detection mechanisms against adversarial attacksimpose significant costs, either by using additional classifiers to spot adversarial samples, or by requiring the DNN to be restructured. In this paper, we introduce a novel defence. We train our DNN so that, as long as it is workingas intended on the kind of inputs we expect, its behavior is constrained, in that some set of behaviors are taboo. If it is exposed to adversarial samples, they will often cause a taboo behavior, which we can detect. Taboos can be both subtle and diverse, so their choice can encode and hide information. It is a well-established design principle that the security of a system should not depend on the obscurity of its design, but on some variable (the key) which can differ between implementations and bechanged as necessary. We discuss how taboos can be used to equip a classifier with just such a key, and how to tune the keying mechanism to adversaries of various capabilities. We evaluate the performance of a prototype against a wide range of attacks and show how our simple defense can defend against cheap attacks at scale with zero run-time computation overhead, making it a suitable defense method for IoT devices.
Learnability Can Be Independent of ZFC Axioms: Explanations and Implications
In Ben-David et al.'s "Learnability Can Be Undecidable," they prove an independence result in theoretical machine learning. In particular, they define a new type of learnability, called Estimating The Maximum (EMX) learnability. They argue that this type of learnability fits in with other notions such as PAC learnability, Vapnik's statistical learning setting, and other general learning settings. However, using some set-theoretic techniques, they show that some learning problems in the EMX setting are independent of ZFC. Specifically they prove that ZFC cannot prove or disprove EMX learnability of the finite subsets on the [0,1] interval. Moreover, the way they prove it shows that there can be no characteristic dimension for EMX; and, hence, for general learning settings. Here, I will explain their findings, discuss some limitations on those findings, and offer some suggestions about how to excise that undecidability. Parts 2-3 will explain the results of the paper, part 4-5 will discuss some limitations and next steps, and I will conclude in part 6.
Deep Echo State Networks with Uncertainty Quantification for Spatio-Temporal Forecasting
Long-lead forecasting for spatio-temporal systems can often entail complex nonlinear dynamics that are difficult to specify it a priori. Current statistical methodologies for modeling these processes are often highly parameterized and thus, challenging to implement from a computational perspective. One potential parsimonious solution to this problem is a method from the dynamical systems and engineering literature referred to as an echo state network (ESN). ESN models use so-called {\it reservoir computing} to efficiently compute recurrent neural network (RNN) forecasts. Moreover, so-called "deep" models have recently been shown to be successful at predicting high-dimensional complex nonlinear processes, particularly those with multiple spatial and temporal scales of variability (such as we often find in spatio-temporal environmental data). Here we introduce a deep ensemble ESN (D-EESN) model. We present two versions of this model for spatio-temporal processes that both produce forecasts and associated measures of uncertainty. The first approach utilizes a bootstrap ensemble framework and the second is developed within a hierarchical Bayesian framework (BD-EESN). This more general hierarchical Bayesian framework naturally accommodates non-Gaussian data types and multiple levels of uncertainties. The methodology is first applied to a data set simulated from a novel non-Gaussian multiscale Lorenz-96 dynamical system simulation model and then to a long-lead United States (U.S.) soil moisture forecasting application.
Action Schema Networks: Generalised Policies with Deep Learning
In this paper, we introduce the Action Schema Network (ASNet): a neural network architecture for learning generalised policies for probabilistic planning problems. By mimicking the relational structure of planning problems, ASNets are able to adopt a weight-sharing scheme which allows the network to be applied to any problem from a given planning domain. This allows the cost of training the network to be amortised over all problems in that domain. Further, we propose a training method which balances exploration and supervised training on small problems to produce a policy which remains robust when evaluated on larger problems. In experiments, we show that ASNet's learning capability allows it to significantly outperform traditional non-learning planners in several challenging domains.
The ArtBench Dataset: Benchmarking Generative Models with Artworks
We introduce ArtBench-10, the first class-balanced, high-quality, cleanly annotated, and standardized dataset for benchmarking artwork generation. It comprises 60,000 images of artwork from 10 distinctive artistic styles, with 5,000 training images and 1,000 testing images per style. ArtBench-10 has several advantages over previous artwork datasets. Firstly, it is class-balanced while most previous artwork datasets suffer from the long tail class distributions. Secondly, the images are of high quality with clean annotations. Thirdly, ArtBench-10 is created with standardized data collection, annotation, filtering, and preprocessing procedures. We provide three versions of the dataset with different resolutions ($32\times32$, $256\times256$, and original image size), formatted in a way that is easy to be incorporated by popular machine learning frameworks. We also conduct extensive benchmarking experiments using representative image synthesis models with ArtBench-10 and present in-depth analysis. The dataset is available at https://github.com/liaopeiyuan/artbench under a Fair Use license.
Waterfall Bandits: Learning to Sell Ads Online
A popular approach to selling online advertising is by a waterfall, where a publisher makes sequential price offers to ad networks for an inventory, and chooses the winner in that order. The publisher picks the order and prices to maximize her revenue. A traditional solution is to learn the demand model and then subsequently solve the optimization problem for the given demand model. This will incur a linear regret. We design an online learning algorithm for solving this problem, which interleaves learning and optimization, and prove that this algorithm has sublinear regret. We evaluate the algorithm on both synthetic and real-world data, and show that it quickly learns high quality pricing strategies. This is the first principled study of learning a waterfall design online by sequential experimentation.
Anomaly Detection in Multi-Agent Trajectories for Automated Driving
Human drivers can recognise fast abnormal driving situations to avoid accidents. Similar to humans, automated vehicles are supposed to perform anomaly detection. In this work, we propose the spatio-temporal graph auto-encoder for learning normal driving behaviours. Our innovation is the ability to jointly learn multiple trajectories of a dynamic number of agents. To perform anomaly detection, we first estimate a density function of the learned trajectory feature representation and then detect anomalies in low-density regions. Due to the lack of multi-agent trajectory datasets for anomaly detection in automated driving, we introduce our dataset using a driving simulator for normal and abnormal manoeuvres. Our evaluations show that our approach learns the relation between different agents and delivers promising results compared to the related works. The code, simulation and the dataset are publicly available on https://github.com/againerju/maad_highway.
Dual Decomposition of Convex Optimization Layers for Consistent Attention in Medical Images
A key concern in integrating machine learning models in medicine is the ability to interpret their reasoning. Popular explainability methods have demonstrated satisfactory results in natural image recognition, yet in medical image analysis, many of these approaches provide partial and noisy explanations. Recently, attention mechanisms have shown compelling results both in their predictive performance and in their interpretable qualities. A fundamental trait of attention is that it leverages salient parts of the input which contribute to the model's prediction. To this end, our work focuses on the explanatory value of attention weight distributions. We propose a multi-layer attention mechanism that enforces consistent interpretations between attended convolutional layers using convex optimization. We apply duality to decompose the consistency constraints between the layers by reparameterizing their attention probability distributions. We further suggest learning the dual witness by optimizing with respect to our objective; thus, our implementation uses standard back-propagation, hence it is highly efficient. While preserving predictive performance, our proposed method leverages weakly annotated medical imaging data and provides complete and faithful explanations to the model's prediction.
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing
Graph Neural Networks (GNNs) have proven to excel in predictive modeling tasks where the underlying data is a graph. However, as GNNs are extensively used in human-centered applications, the issue of fairness has arisen. While edge deletion is a common method used to promote fairness in GNNs, it fails to consider when data is inherently missing fair connections. In this work we consider the unexplored method of edge addition, accompanied by deletion, to promote fairness. We propose two model-agnostic algorithms to perform edge editing: a brute force approach and a continuous approximation approach, FairEdit. FairEdit performs efficient edge editing by leveraging gradient information of a fairness loss to find edges that improve fairness. We find that FairEdit outperforms standard training for many data sets and GNN methods, while performing comparably to many state-of-the-art methods, demonstrating FairEdit's ability to improve fairness across many domains and models.
Text-to-Image Synthesis Based on Machine Generated Captions
Text to Image Synthesis refers to the process of automatic generation of a photo-realistic image starting from a given text and is revolutionizing many real-world applications. In order to perform such process it is necessary to exploit datasets containing captioned images, meaning that each image is associated with one (or more) captions describing it. Despite the abundance of uncaptioned images datasets, the number of captioned datasets is limited. To address this issue, in this paper we propose an approach capable of generating images starting from a given text using conditional GANs trained on uncaptioned images dataset. In particular, uncaptioned images are fed to an Image Captioning Module to generate the descriptions. Then, the GAN Module is trained on both the input image and the machine-generated caption. To evaluate the results, the performance of our solution is compared with the results obtained by the unconditional GAN. For the experiments, we chose to use the uncaptioned dataset LSUN bedroom. The results obtained in our study are preliminary but still promising.
Near-separable Non-negative Matrix Factorization with $\ell_1$- and Bregman Loss Functions
Recently, a family of tractable NMF algorithms have been proposed under the assumption that the data matrix satisfies a separability condition Donoho & Stodden (2003); Arora et al. (2012). Geometrically, this condition reformulates the NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. In this paper, we develop several extensions of the conical hull procedures of Kumar et al. (2013) for robust ($\ell_1$) approximations and Bregman divergences. Our methods inherit all the advantages of Kumar et al. (2013) including scalability and noise-tolerance. We show that on foreground-background separation problems in computer vision, robust near-separable NMFs match the performance of Robust PCA, considered state of the art on these problems, with an order of magnitude faster training time. We also demonstrate applications in exemplar selection settings.
Making Convolutions Resilient via Algorithm-Based Error Detection Techniques
The ability of Convolutional Neural Networks (CNNs) to accurately process real-time telemetry has boosted their use in safety-critical and high-performance computing systems. As such systems require high levels of resilience to errors, CNNs must execute correctly in the presence of hardware faults. Full duplication provides the needed assurance but incurs a prohibitive 100% overhead. Algorithmic techniques are known to offer low-cost solutions, but the practical feasibility and performance of such techniques have never been studied for CNN deployment platforms (e.g., TensorFlow or TensorRT on GPUs). In this paper, we focus on algorithmically verifying Convolutions, which are the most resource-demanding operations in CNNs. We use checksums to verify convolutions, adding a small amount of redundancy, far less than full-duplication. We first identify the challenges that arise in employing Algorithm-Based Error Detection (ABED) for Convolutions in optimized inference platforms that fuse multiple network layers and use reduced-precision operations, and demonstrate how to overcome them. We propose and evaluate variations of ABED techniques that offer implementation complexity, runtime overhead, and coverage trade-offs. Results show that ABED can detect all transient hardware errors that might otherwise corrupt output and does so while incurring low runtime overheads (6-23%), offering at least 1.6X throughput to workloads compared to full duplication.
Encoding Frequency Constraints in Preventive Unit Commitment Using Deep Learning with Region-of-Interest Active Sampling
With the increasing penetration of renewable energy, frequency response and its security are of significant concerns for reliable power system operations. Frequency-constrained unit commitment (FCUC) is proposed to address this challenge. Despite existing efforts in modeling frequency characteristics in unit commitment (UC), current strategies can only handle oversimplified low-order frequency response models and do not consider wide-range operating conditions. This paper presents a generic data-driven framework for FCUC under high renewable penetration. Deep neural networks (DNNs) are trained to predict the frequency response using real data or high-fidelity simulation data. Next, the DNN is reformulated as a set of mixed-integer linear constraints to be incorporated into the ordinary UC formulation. In the data generation phase, all possible power injections are considered, and a region-of-interests active sampling is proposed to include power injection samples with frequency nadirs closer to the UFLC threshold, which significantly enhances the accuracy of frequency constraints in FCUC. The proposed FCUC is verified on the the IEEE 39-bus system. Then, a full-order dynamic model simulation using PSS/E verifies the effectiveness of FCUC in frequency-secure generator commitments.
Combining Heterogeneous Classifiers for Relational Databases
Most enterprise data is distributed in multiple relational databases with expert-designed schema. Using traditional single-table machine learning techniques over such data not only incur a computational penalty for converting to a 'flat' form (mega-join), even the human-specified semantic information present in the relations is lost. In this paper, we present a practical, two-phase hierarchical meta-classification algorithm for relational databases with a semantic divide and conquer approach. We propose a recursive, prediction aggregation technique over heterogeneous classifiers applied on individual database tables. The proposed algorithm was evaluated on three diverse datasets, namely TPCH, PKDD and UCI benchmarks and showed considerable reduction in classification time without any loss of prediction accuracy.
Two-sample Test using Projected Wasserstein Distance: Breaking the Curse of Dimensionality
We develop a projected Wasserstein distance for the two-sample test, a fundamental problem in statistics and machine learning: given two sets of samples, to determine whether they are from the same distribution. In particular, we aim to circumvent the curse of dimensionality in Wasserstein distance: when the dimension is high, it has diminishing testing power, which is inherently due to the slow concentration property of Wasserstein metrics in the high dimension space. A key contribution is to couple optimal projection to find the low dimensional linear mapping to maximize the Wasserstein distance between projected probability distributions. We characterize the theoretical property of the finite-sample convergence rate on IPMs and present practical algorithms for computing this metric. Numerical examples validate our theoretical results.
Regularization Techniques for Learning with Matrices
There is growing body of learning problems for which it is natural to organize the parameters into matrix, so as to appropriately regularize the parameters under some matrix norm (in order to impose some more sophisticated prior knowledge). This work describes and analyzes a systematic method for constructing such matrix-based, regularization methods. In particular, we focus on how the underlying statistical properties of a given problem can help us decide which regularization function is appropriate. Our methodology is based on the known duality fact: that a function is strongly convex with respect to some norm if and only if its conjugate function is strongly smooth with respect to the dual norm. This result has already been found to be a key component in deriving and analyzing several learning algorithms. We demonstrate the potential of this framework by deriving novel generalization and regret bounds for multi-task learning, multi-class learning, and kernel learning.
Robust MIMO Detection using Hypernetworks with Learned Regularizers
Optimal symbol detection in multiple-input multiple-output (MIMO) systems is known to be an NP-hard problem. Recently, there has been a growing interest to get reasonably close to the optimal solution using neural networks while keeping the computational complexity in check. However, existing work based on deep learning shows that it is difficult to design a generic network that works well for a variety of channels. In this work, we propose a method that tries to strike a balance between symbol error rate (SER) performance and generality of channels. Our method is based on hypernetworks that generate the parameters of a neural network-based detector that works well on a specific channel. We propose a general framework by regularizing the training of the hypernetwork with some pre-trained instances of the channel-specific method. Through numerical experiments, we show that our proposed method yields high performance for a set of prespecified channel realizations while generalizing well to all channels drawn from a specific distribution.
Vision Transformer for Learning Driving Policies in Complex Multi-Agent Environments
Driving in a complex urban environment is a difficult task that requires a complex decision policy. In order to make informed decisions, one needs to gain an understanding of the long-range context and the importance of other vehicles. In this work, we propose to use Vision Transformer (ViT) to learn a driving policy in urban settings with birds-eye-view (BEV) input images. The ViT network learns the global context of the scene more effectively than with earlier proposed Convolutional Neural Networks (ConvNets). Furthermore, ViT's attention mechanism helps to learn an attention map for the scene which allows the ego car to determine which surrounding cars are important to its next decision. We demonstrate that a DQN agent with a ViT backbone outperforms baseline algorithms with ConvNet backbones pre-trained in various ways. In particular, the proposed method helps reinforcement learning algorithms to learn faster, with increased performance and less data than baselines.
Non-Exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks
Supervised learning, while deployed in real-life scenarios, often encounters instances of unknown classes. Conventional algorithms for training a supervised learning model do not provide an option to detect such instances, so they miss-classify such instances with 100% probability. Open Set Recognition (OSR) and Non-Exhaustive Learning (NEL) are potential solutions to overcome this problem. Most existing methods of OSR first classify members of existing classes and then identify instances of new classes. However, many of the existing methods of OSR only makes a binary decision, i.e., they only identify the existence of the unknown class. Hence, such methods cannot distinguish test instances belonging to incremental unseen classes. On the other hand, the majority of NEL methods often make a parametric assumption over the data distribution, which either fail to return good results, due to the reason that real-life complex datasets may not follow a well-known data distribution. In this paper, we propose a new online non-exhaustive learning model, namely, Non-Exhaustive Gaussian Mixture Generative Adversarial Networks (NE-GM-GAN) to address these issues. Our proposed model synthesizes Gaussian mixture based latent representation over a deep generative model, such as GAN, for incremental detection of instances of emerging classes in the test data. Extensive experimental results on several benchmark datasets show that NE-GM-GAN significantly outperforms the state-of-the-art methods in detecting instances of novel classes in streaming data.
Finite-Time Analysis and Restarting Scheme for Linear Two-Time-Scale Stochastic Approximation
Motivated by their broad applications in reinforcement learning, we study the linear two-time-scale stochastic approximation, an iterative method using two different step sizes for finding the solutions of a system of two equations. Our main focus is to characterize the finite-time complexity of this method under time-varying step sizes and Markovian noise. In particular, we show that the mean square errors of the variables generated by the method converge to zero at a sublinear rate $\Ocal(k^{2/3})$, where $k$ is the number of iterations. We then improve the performance of this method by considering the restarting scheme, where we restart the algorithm after every predetermined number of iterations. We show that using this restarting method the complexity of the algorithm under time-varying step sizes is as good as the one using constant step sizes, but still achieving an exact converge to the desired solution. Moreover, the restarting scheme also helps to prevent the step sizes from getting too small, which is useful for the practical implementation of the linear two-time-scale stochastic approximation.
Sparse Semi-supervised Heterogeneous Interbattery Bayesian Analysis
The Bayesian approach to feature extraction, known as factor analysis (FA), has been widely studied in machine learning to obtain a latent representation of the data. An adequate selection of the probabilities and priors of these bayesian models allows the model to better adapt to the data nature (i.e. heterogeneity, sparsity), obtaining a more representative latent space. The objective of this article is to propose a general FA framework capable of modelling any problem. To do so, we start from the Bayesian Inter-Battery Factor Analysis (BIBFA) model, enhancing it with new functionalities to be able to work with heterogeneous data, include feature selection, and handle missing values as well as semi-supervised problems. The performance of the proposed model, Sparse Semi-supervised Heterogeneous Interbattery Bayesian Analysis (SSHIBA) has been tested on 4 different scenarios to evaluate each one of its novelties, showing not only a great versatility and an interpretability gain, but also outperforming most of the state-of-the-art algorithms.
Accelerated Alternating Projections for Robust Principal Component Analysis
We study robust PCA for the fully observed setting, which is about separating a low rank matrix $\boldsymbol{L}$ and a sparse matrix $\boldsymbol{S}$ from their sum $\boldsymbol{D}=\boldsymbol{L}+\boldsymbol{S}$. In this paper, a new algorithm, dubbed accelerated alternating projections, is introduced for robust PCA which significantly improves the computational efficiency of the existing alternating projections proposed in [Netrapalli, Praneeth, et al., 2014] when updating the low rank factor. The acceleration is achieved by first projecting a matrix onto some low dimensional subspace before obtaining a new estimate of the low rank matrix via truncated SVD. Exact recovery guarantee has been established which shows linear convergence of the proposed algorithm. Empirical performance evaluations establish the advantage of our algorithm over other state-of-the-art algorithms for robust PCA.
ICSML: Industrial Control Systems Machine Learning Inference Framework natively executing on IEC 61131-3 compliant devices
Industrial Control Systems (ICS) have played a catalytic role in enabling the 4th Industrial Revolution. ICS devices like Programmable Logic Controllers (PLCs), automate, monitor, and control critical processes in industrial, energy, and commercial environments. The convergence of traditional Operational Technology (OT) with Information Technology (IT) has opened a new and unique threat landscape. This has inspired defense research that focuses heavily on Machine Learning (ML) based anomaly detection methods that run on external IT hardware, which means an increase in costs and the further expansion of the threat landscape. To remove this requirement, we introduce the ICS machine learning inference framework (ICSML) which enables the execution of ML model inference natively on the PLC. ICSML is implemented in IEC 61131-3 code and provides several optimizations to bypass the limitations imposed by the domain-specific languages. Therefore, it works \emph{on every PLC without the need for vendor support}. ICSML provides a complete set of components for the creation of full ML models similarly to established ML frameworks. We run a series of benchmarks studying memory and performance and compare our solution to the TFLite inference framework. At the same time, we develop domain-specific model optimizations to improve the efficiency of ICSML. To demonstrate the abilities of ICSML, we evaluate a case study of a real defense for process-aware attacks targeting a desalination plant.
Molecular CT: Unifying Geometry and Representation Learning for Molecules at Different Scales
Deep learning is changing many areas in molecular physics, and it has shown great potential to deliver new solutions to challenging molecular modeling problems. Along with this trend arises the increasing demand of expressive and versatile neural network architectures which are compatible with molecular systems. A new deep neural network architecture, Molecular Configuration Transformer (Molecular CT), is introduced for this purpose. Molecular CT is composed of a relation-aware encoder module and a computationally universal geometry learning unit, thus able to account for the relational constraints between particles meanwhile scalable to different particle numbers and invariant w.r.t. the trans-rotational transforms. The computational efficiency and universality make Molecular CT versatile for a variety of molecular learning scenarios and especially appealing for transferable representation learning across different molecular systems. As examples, we show that Molecular CT enables representational learning for molecular systems at different scales, and achieves comparable or improved results on common benchmarks using a more light-weighted structure compared to baseline models.
Classifications based on response times for detecting early-stage Alzheimer's disease
Introduction- This paper mainly describes a way to detect with high accuracy patients with early-stage Alzheimer's disease (ES-AD) versus healthy control (HC) subjects, from datasets built with handwriting and drawing task records. Method- The proposed approach uses subject's response times. An optimal subset of tasks is first selected with a "Support Vector Machine" (SVM) associated with a grid search. Mixtures of Gaussian distributions defined in the space of task durations are then used to reproduce and explain the results of the SVM. Finally, a surprisingly simple and efficient ad hoc classification algorithm is deduced from the Gaussian mixtures. Results- The solution presented in this paper makes two or even four times fewer errors than the best results of the state of the art concerning the classification HC/ES-AD from handwriting and drawing tasks. Discussion- The best SVM learning model reaches a high accuracy for this classification but its learning capacity is too large to ensure a low overfitting risk regarding the small size of the dataset. The proposed ad hoc classification algorithm only requires to optimize three real-parameters. It should therefore benefit from a good generalization ability.
STaR: Bootstrapping Reasoning With Reasoning
Generating step-by-step "chain-of-thought" rationales improves language model performance on complex reasoning tasks like mathematics or commonsense question-answering. However, inducing language model rationale generation currently requires either constructing massive rationale datasets or sacrificing accuracy by using only few-shot inference. We propose a technique to iteratively leverage a small number of rationale examples and a large dataset without rationales, to bootstrap the ability to perform successively more complex reasoning. This technique, the "Self-Taught Reasoner" (STaR), relies on a simple loop: generate rationales to answer many questions, prompted with a few rationale examples; if the generated answers are wrong, try again to generate a rationale given the correct answer; fine-tune on all the rationales that ultimately yielded correct answers; repeat. We show that STaR significantly improves performance on multiple datasets compared to a model fine-tuned to directly predict final answers, and performs comparably to fine-tuning a 30$\times$ larger state-of-the-art language model on CommensenseQA. Thus, STaR lets a model improve itself by learning from its own generated reasoning.
Backdoor Attacks to Graph Neural Networks
In this work, we propose the first backdoor attack to graph neural networks (GNN). Specifically, we propose a \emph{subgraph based backdoor attack} to GNN for graph classification. In our backdoor attack, a GNN classifier predicts an attacker-chosen target label for a testing graph once a predefined subgraph is injected to the testing graph. Our empirical results on three real-world graph datasets show that our backdoor attacks are effective with a small impact on a GNN's prediction accuracy for clean testing graphs. Moreover, we generalize a randomized smoothing based certified defense to defend against our backdoor attacks. Our empirical results show that the defense is effective in some cases but ineffective in other cases, highlighting the needs of new defenses for our backdoor attacks.
RUM: network Representation learning throUgh Multi-level structural information preservation
We have witnessed the discovery of many techniques for network representation learning in recent years, ranging from encoding the context in random walks to embedding the lower order connections, to finding latent space representations with auto-encoders. However, existing techniques are looking mostly into the local structures in a network, while higher-level properties such as global community structures are often neglected. We propose a novel network representations learning model framework called RUM (network Representation learning throUgh Multi-level structural information preservation). In RUM, we incorporate three essential aspects of a node that capture a network's characteristics in multiple levels: a node's affiliated local triads, its neighborhood relationships, and its global community affiliations. Therefore the framework explicitly and comprehensively preserves the structural information of a network, extending the encoding process both to the local end of the structural information spectrum and to the global end. The framework is also flexible enough to take various community discovery algorithms as its preprocessor. Empirical results show that the representations learned by RUM have demonstrated substantial performance advantages in real-life tasks.
Data preprocessing to mitigate bias: A maximum entropy based approach
Data containing human or social attributes may over- or under-represent groups with respect to salient social attributes such as gender or race, which can lead to biases in downstream applications. This paper presents an algorithmic framework that can be used as a data preprocessing method towards mitigating such bias. Unlike prior work, it can efficiently learn distributions over large domains, controllably adjust the representation rates of protected groups and achieve target fairness metrics such as statistical parity, yet remains close to the empirical distribution induced by the given dataset. Our approach leverages the principle of maximum entropy - amongst all distributions satisfying a given set of constraints, we should choose the one closest in KL-divergence to a given prior. While maximum entropy distributions can succinctly encode distributions over large domains, they can be difficult to compute. Our main contribution is an instantiation of this framework for our set of constraints and priors, which encode our bias mitigation goals, and that runs in time polynomial in the dimension of the data. Empirically, we observe that samples from the learned distribution have desired representation rates and statistical rates, and when used for training a classifier incurs only a slight loss in accuracy while maintaining fairness properties.
A Note on the Convergence of Mirrored Stein Variational Gradient Descent under $(L_0,L_1)-$Smoothness Condition
In this note, we establish a descent lemma for the population limit Mirrored Stein Variational Gradient Method~(MSVGD). This descent lemma does not rely on the path information of MSVGD but rather on a simple assumption for the mirrored distribution $\nabla\Psi_{\#}\pi\propto\exp(-V)$. Our analysis demonstrates that MSVGD can be applied to a broader class of constrained sampling problems with non-smooth $V$. We also investigate the complexity of the population limit MSVGD in terms of dimension $d$.
A Hierarchical Reasoning Graph Neural Network for The Automatic Scoring of Answer Transcriptions in Video Job Interviews
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning
In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are fundamental to high-performance digital design. Unlike prior methods, our approach designs solutions tabula rasa purely through learning with synthesis in the loop. We design a grid-based state-action representation and an RL environment for constructing legal prefix circuits. Deep Convolutional RL agents trained on this environment produce prefix adder circuits that Pareto-dominate existing baselines with up to 16.0% and 30.2% lower area for the same delay in the 32b and 64b settings respectively. We observe that agents trained with open-source synthesis tools and cell library can design adder circuits that achieve lower area and delay than commercial tool adders in an industrial cell library.
Inference-optimized AI and high performance computing for gravitational wave detection at scale
We introduce an ensemble of artificial intelligence models for gravitational wave detection that we trained in the Summit supercomputer using 32 nodes, equivalent to 192 NVIDIA V100 GPUs, within 2 hours. Once fully trained, we optimized these models for accelerated inference using NVIDIA TensorRT. We deployed our inference-optimized AI ensemble in the ThetaGPU supercomputer at Argonne Leadership Computer Facility to conduct distributed inference. Using the entire ThetaGPU supercomputer, consisting of 20 nodes each of which has 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome CPUs, our NVIDIA TensorRT-optimized AI ensemble processed an entire month of advanced LIGO data (including Hanford and Livingston data streams) within 50 seconds. Our inference-optimized AI ensemble retains the same sensitivity of traditional AI models, namely, it identifies all known binary black hole mergers previously identified in this advanced LIGO dataset and reports no misclassifications, while also providing a 3X inference speedup compared to traditional artificial intelligence models. We used time slides to quantify the performance of our AI ensemble to process up to 5 years worth of advanced LIGO data. In this synthetically enhanced dataset, our AI ensemble reports an average of one misclassification for every month of searched advanced LIGO data. We also present the receiver operating characteristic curve of our AI ensemble using this 5 year long advanced LIGO dataset. This approach provides the required tools to conduct accelerated, AI-driven gravitational wave detection at scale.
Predicting Vehicle Behaviors Over An Extended Horizon Using Behavior Interaction Network
Anticipating possible behaviors of traffic participants is an essential capability of autonomous vehicles. Many behavior detection and maneuver recognition methods only have a very limited prediction horizon that leaves inadequate time and space for planning. To avoid unsatisfactory reactive decisions, it is essential to count long-term future rewards in planning, which requires extending the prediction horizon. In this paper, we uncover that clues to vehicle behaviors over an extended horizon can be found in vehicle interaction, which makes it possible to anticipate the likelihood of a certain behavior, even in the absence of any clear maneuver pattern. We adopt a recurrent neural network (RNN) for observation encoding, and based on that, we propose a novel vehicle behavior interaction network (VBIN) to capture the vehicle interaction from the hidden states and connection feature of each interaction pair. The output of our method is a probabilistic likelihood of multiple behavior classes, which matches the multimodal and uncertain nature of the distant future. A systematic comparison of our method against two state-of-the-art methods and another two baseline methods on a publicly available real highway dataset is provided, showing that our method has superior accuracy and advanced capability for interaction modeling.
Social Distancing is Good for Points too!
The nearest-neighbor rule is a well-known classification technique that, given a training set P of labeled points, classifies any unlabeled query point with the label of its closest point in P. The nearest-neighbor condensation problem aims to reduce the training set without harming the accuracy of the nearest-neighbor rule. FCNN is the most popular algorithm for condensation. It is heuristic in nature, and theoretical results for it are scarce. In this paper, we settle the question of whether reasonable upper-bounds can be proven for the size of the subset selected by FCNN. First, we show that the algorithm can behave poorly when points are too close to each other, forcing it to select many more points than necessary. We then successfully modify the algorithm to avoid such cases, thus imposing that selected points should "keep some distance". This modification is sufficient to prove useful upper-bounds, along with approximation guarantees for the algorithm.
MatchingGAN: Matching-based Few-shot Image Generation
To generate new images for a given category, most deep generative models require abundant training images from this category, which are often too expensive to acquire. To achieve the goal of generation based on only a few images, we propose matching-based Generative Adversarial Network (GAN) for few-shot generation, which includes a matching generator and a matching discriminator. Matching generator can match random vectors with a few conditional images from the same category and generate new images for this category based on the fused features. The matching discriminator extends conventional GAN discriminator by matching the feature of generated image with the fused feature of conditional images. Extensive experiments on three datasets demonstrate the effectiveness of our proposed method.
Regret Minimization in Stochastic Contextual Dueling Bandits
We consider the problem of stochastic $K$-armed dueling bandit in the contextual setting, where at each round the learner is presented with a context set of $K$ items, each represented by a $d$-dimensional feature vector, and the goal of the learner is to identify the best arm of each context sets. However, unlike the classical contextual bandit setup, our framework only allows the learner to receive item feedback in terms of their (noisy) pariwise preferences--famously studied as dueling bandits which is practical interests in various online decision making scenarios, e.g. recommender systems, information retrieval, tournament ranking, where it is easier to elicit the relative strength of the items instead of their absolute scores. However, to the best of our knowledge this work is the first to consider the problem of regret minimization of contextual dueling bandits for potentially infinite decision spaces and gives provably optimal algorithms along with a matching lower bound analysis. We present two algorithms for the setup with respective regret guarantees $\tilde O(d\sqrt{T})$ and $\tilde O(\sqrt{dT \log K})$. Subsequently we also show that $\Omega(\sqrt {dT})$ is actually the fundamental performance limit for this problem, implying the optimality of our second algorithm. However the analysis of our first algorithm is comparatively simpler, and it is often shown to outperform the former empirically. Finally, we corroborate all the theoretical results with suitable experiments.
Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nystr\"om method
The Column Subset Selection Problem (CSSP) and the Nystr\"om method are among the leading tools for constructing small low-rank approximations of large datasets in machine learning and scientific computing. A fundamental question in this area is: how well can a data subset of size k compete with the best rank k approximation? We develop techniques which exploit spectral properties of the data matrix to obtain improved approximation guarantees which go beyond the standard worst-case analysis. Our approach leads to significantly better bounds for datasets with known rates of singular value decay, e.g., polynomial or exponential decay. Our analysis also reveals an intriguing phenomenon: the approximation factor as a function of k may exhibit multiple peaks and valleys, which we call a multiple-descent curve. A lower bound we establish shows that this behavior is not an artifact of our analysis, but rather it is an inherent property of the CSSP and Nystr\"om tasks. Finally, using the example of a radial basis function (RBF) kernel, we show that both our improved bounds and the multiple-descent curve can be observed on real datasets simply by varying the RBF parameter.
Accented Speech Recognition Inspired by Human Perception
While improvements have been made in automatic speech recognition performance over the last several years, machines continue to have significantly lower performance on accented speech than humans. In addition, the most significant improvements on accented speech primarily arise by overwhelming the problem with hundreds or even thousands of hours of data. Humans typically require much less data to adapt to a new accent. This paper explores methods that are inspired by human perception to evaluate possible performance improvements for recognition of accented speech, with a specific focus on recognizing speech with a novel accent relative to that of the training data. Our experiments are run on small, accessible datasets that are available to the research community. We explore four methodologies: pre-exposure to multiple accents, grapheme and phoneme-based pronunciations, dropout (to improve generalization to a novel accent), and the identification of the layers in the neural network that can specifically be associated with accent modeling. Our results indicate that methods based on human perception are promising in reducing WER and understanding how accented speech is modeled in neural networks for novel accents.
Accelerating SGD with momentum for over-parameterized learning
Nesterov SGD is widely used for training modern neural networks and other machine learning models. Yet, its advantages over SGD have not been theoretically clarified. Indeed, as we show in our paper, both theoretically and empirically, Nesterov SGD with any parameter selection does not in general provide acceleration over ordinary SGD. Furthermore, Nesterov SGD may diverge for step sizes that ensure convergence of ordinary SGD. This is in contrast to the classical results in the deterministic scenario, where the same step size ensures accelerated convergence of the Nesterov's method over optimal gradient descent. To address the non-acceleration issue, we introduce a compensation term to Nesterov SGD. The resulting algorithm, which we call MaSS, converges for same step sizes as SGD. We prove that MaSS obtains an accelerated convergence rates over SGD for any mini-batch size in the linear setting. For full batch, the convergence rate of MaSS matches the well-known accelerated rate of the Nesterov's method. We also analyze the practically important question of the dependence of the convergence rate and optimal hyper-parameters on the mini-batch size, demonstrating three distinct regimes: linear scaling, diminishing returns and saturation. Experimental evaluation of MaSS for several standard architectures of deep networks, including ResNet and convolutional networks, shows improved performance over SGD, Nesterov SGD and Adam.
Variance Reduced Stochastic Gradient Descent with Neighbors
Stochastic Gradient Descent (SGD) is a workhorse in machine learning, yet its slow convergence can be a computational bottleneck. Variance reduction techniques such as SAG, SVRG and SAGA have been proposed to overcome this weakness, achieving linear convergence. However, these methods are either based on computations of full gradients at pivot points, or on keeping per data point corrections in memory. Therefore speed-ups relative to SGD may need a minimal number of epochs in order to materialize. This paper investigates algorithms that can exploit neighborhood structure in the training data to share and re-use information about past stochastic gradients across data points, which offers advantages in the transient optimization phase. As a side-product we provide a unified convergence analysis for a family of variance reduction algorithms, which we call memorization algorithms. We provide experimental results supporting our theory.
The Block Point Process Model for Continuous-Time Event-Based Dynamic Networks
We consider the problem of analyzing timestamped relational events between a set of entities, such as messages between users of an on-line social network. Such data are often analyzed using static or discrete-time network models, which discard a significant amount of information by aggregating events over time to form network snapshots. In this paper, we introduce a block point process model (BPPM) for continuous-time event-based dynamic networks. The BPPM is inspired by the well-known stochastic block model (SBM) for static networks. We show that networks generated by the BPPM follow an SBM in the limit of a growing number of nodes. We use this property to develop principled and efficient local search and variational inference procedures initialized by regularized spectral clustering. We fit BPPMs with exponential Hawkes processes to analyze several real network data sets, including a Facebook wall post network with over 3,500 nodes and 130,000 events.
MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments
Multi-agent navigation in dynamic environments is of great industrial value when deploying a large scale fleet of robot to real-world applications. This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method to learn an effective local planning policy in mixed dynamic environments. Reinforcement learning-based methods usually suffer performance degradation on long-horizon tasks with goal-conditioned sparse rewards, so we decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner, which increases agents' performance in large environments. Moreover, most existing multi-agent planning approaches assume either perfect information of the surrounding environment or homogeneity of nearby dynamic agents, which may not hold in practice. Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption. To ensure multi-agent training stability and performance, we propose an evolutionary training approach that can be easily scaled to large and complex environments. Experiments show that MAPPER is able to achieve higher success rates and more stable performance when exposed to a large number of non-cooperative dynamic obstacles compared with traditional reaction-based planner LRA* and the state-of-the-art learning-based method.
It's not Rocket Science : Interpreting Figurative Language in Narratives
Figurative language is ubiquitous in English. Yet, the vast majority of NLP research focuses on literal language. Existing text representations by design rely on compositionality, while figurative language is often non-compositional. In this paper, we study the interpretation of two non-compositional figurative languages (idioms and similes). We collected datasets of fictional narratives containing a figurative expression along with crowd-sourced plausible and implausible continuations relying on the correct interpretation of the expression. We then trained models to choose or generate the plausible continuation. Our experiments show that models based solely on pre-trained language models perform substantially worse than humans on these tasks. We additionally propose knowledge-enhanced models, adopting human strategies for interpreting figurative language types : inferring meaning from the context and relying on the constituent words' literal meanings. The knowledge-enhanced models improve the performance on both the discriminative and generative tasks, further bridging the gap from human performance.
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst
Our goal is to train a policy for autonomous driving via imitation learning that is robust enough to drive a real vehicle. We find that standard behavior cloning is insufficient for handling complex driving scenarios, even when we leverage a perception system for preprocessing the input and a controller for executing the output on the car: 30 million examples are still not enough. We propose exposing the learner to synthesized data in the form of perturbations to the expert's driving, which creates interesting situations such as collisions and/or going off the road. Rather than purely imitating all data, we augment the imitation loss with additional losses that penalize undesirable events and encourage progress -- the perturbations then provide an important signal for these losses and lead to robustness of the learned model. We show that the ChauffeurNet model can handle complex situations in simulation, and present ablation experiments that emphasize the importance of each of our proposed changes and show that the model is responding to the appropriate causal factors. Finally, we demonstrate the model driving a car in the real world.
Randomized Iterative Algorithms for Fisher Discriminant Analysis
Fisher discriminant analysis (FDA) is a widely used method for classification and dimensionality reduction. When the number of predictor variables greatly exceeds the number of observations, one of the alternatives for conventional FDA is regularized Fisher discriminant analysis (RFDA). In this paper, we present a simple, iterative, sketching-based algorithm for RFDA that comes with provable accuracy guarantees when compared to the conventional approach. Our analysis builds upon two simple structural results that boil down to randomized matrix multiplication, a fundamental and well-understood primitive of randomized linear algebra. We analyze the behavior of RFDA when the ridge leverage and the standard leverage scores are used to select predictor variables and we prove that accurate approximations can be achieved by a sample whose size depends on the effective degrees of freedom of the RFDA problem. Our results yield significant improvements over existing approaches and our empirical evaluations support our theoretical analyses.
KENN: Enhancing Deep Neural Networks by Leveraging Knowledge for Time Series Forecasting
End-to-end data-driven machine learning methods often have exuberant requirements in terms of quality and quantity of training data which are often impractical to fulfill in real-world applications. This is specifically true in time series domain where problems like disaster prediction, anomaly detection, and demand prediction often do not have a large amount of historical data. Moreover, relying purely on past examples for training can be sub-optimal since in doing so we ignore one very important domain i.e knowledge, which has its own distinct advantages. In this paper, we propose a novel knowledge fusion architecture, Knowledge Enhanced Neural Network (KENN), for time series forecasting that specifically aims towards combining strengths of both knowledge and data domains while mitigating their individual weaknesses. We show that KENN not only reduces data dependency of the overall framework but also improves performance by producing predictions that are better than the ones produced by purely knowledge and data driven domains. We also compare KENN with state-of-the-art forecasting methods and show that predictions produced by KENN are significantly better even when trained on only 50\% of the data.
Size Independent Neural Transfer for RDDL Planning
Neural planners for RDDL MDPs produce deep reactive policies in an offline fashion. These scale well with large domains, but are sample inefficient and time-consuming to train from scratch for each new problem. To mitigate this, recent work has studied neural transfer learning, so that a generic planner trained on other problems of the same domain can rapidly transfer to a new problem. However, this approach only transfers across problems of the same size. We present the first method for neural transfer of RDDL MDPs that can transfer across problems of different sizes. Our architecture has two key innovations to achieve size independence: (1) a state encoder, which outputs a fixed length state embedding by max pooling over varying number of object embeddings, (2) a single parameter-tied action decoder that projects object embeddings into action probabilities for the final policy. On the two challenging RDDL domains of SysAdmin and Game Of Life, our approach powerfully transfers across problem sizes and has superior learning curves over training from scratch.
Always-On, Sub-300-nW, Event-Driven Spiking Neural Network based on Spike-Driven Clock-Generation and Clock- and Power-Gating for an Ultra-Low-Power Intelligent Device
Always-on artificial intelligent (AI) functions such as keyword spotting (KWS) and visual wake-up tend to dominate total power consumption in ultra-low power devices. A key observation is that the signals to an always-on function are sparse in time, which a spiking neural network (SNN) classifier can leverage for power savings, because the switching activity and power consumption of SNNs tend to scale with spike rate. Toward this goal, we present a novel SNN classifier architecture for always-on functions, demonstrating sub-300nW power consumption at the competitive inference accuracy for a KWS and other always-on classification workloads.
An Experimental Evaluation on Deepfake Detection using Deep Face Recognition
Significant advances in deep learning have obtained hallmark accuracy rates for various computer vision applications. However, advances in deep generative models have also led to the generation of very realistic fake content, also known as deepfakes, causing a threat to privacy, democracy, and national security. Most of the current deepfake detection methods are deemed as a binary classification problem in distinguishing authentic images or videos from fake ones using two-class convolutional neural networks (CNNs). These methods are based on detecting visual artifacts, temporal or color inconsistencies produced by deep generative models. However, these methods require a large amount of real and fake data for model training and their performance drops significantly in cross dataset evaluation with samples generated using advanced deepfake generation techniques. In this paper, we thoroughly evaluate the efficacy of deep face recognition in identifying deepfakes, using different loss functions and deepfake generation techniques. Experimental investigations on challenging Celeb-DF and FaceForensics++ deepfake datasets suggest the efficacy of deep face recognition in identifying deepfakes over two-class CNNs and the ocular modality. Reported results suggest a maximum Area Under Curve (AUC) of 0.98 and an Equal Error Rate (EER) of 7.1% in detecting deepfakes using face recognition on the Celeb-DF dataset. This EER is lower by 16.6% compared to the EER obtained for the two-class CNN and the ocular modality on the Celeb-DF dataset. Further on the FaceForensics++ dataset, an AUC of 0.99 and EER of 2.04% were obtained. The use of biometric facial recognition technology has the advantage of bypassing the need for a large amount of fake data for model training and obtaining better generalizability to evolving deepfake creation techniques.
Supervector Compression Strategies to Speed up I-Vector System Development
The front-end factor analysis (FEFA), an extension of principal component analysis (PPCA) tailored to be used with Gaussian mixture models (GMMs), is currently the prevalent approach to extract compact utterance-level features (i-vectors) for automatic speaker verification (ASV) systems. Little research has been conducted comparing FEFA to the conventional PPCA applied to maximum a posteriori (MAP) adapted GMM supervectors. We study several alternative methods, including PPCA, factor analysis (FA), and two supervised approaches, supervised PPCA (SPPCA) and the recently proposed probabilistic partial least squares (PPLS), to compress MAP-adapted GMM supervectors. The resulting i-vectors are used in ASV tasks with a probabilistic linear discriminant analysis (PLDA) back-end. We experiment on two different datasets, on the telephone condition of NIST SRE 2010 and on the recent VoxCeleb corpus collected from YouTube videos containing celebrity interviews recorded in various acoustical and technical conditions. The results suggest that, in terms of ASV accuracy, the supervector compression approaches are on a par with FEFA. The supervised approaches did not result in improved performance. In comparison to FEFA, we obtained more than hundred-fold (100x) speedups in the total variability model (TVM) training using the PPCA and FA supervector compression approaches.
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Prototype-based methods use interpretable representations to address the black-box nature of deep learning models, in contrast to post-hoc explanation methods that only approximate such models. We propose the Neural Prototype Tree (ProtoTree), an intrinsically interpretable deep learning method for fine-grained image recognition. ProtoTree combines prototype learning with decision trees, and thus results in a globally interpretable model by design. Additionally, ProtoTree can locally explain a single prediction by outlining a decision path through the tree. Each node in our binary tree contains a trainable prototypical part. The presence or absence of this learned prototype in an image determines the routing through a node. Decision making is therefore similar to human reasoning: Does the bird have a red throat? And an elongated beak? Then it's a hummingbird! We tune the accuracy-interpretability trade-off using ensemble methods, pruning and binarizing. We apply pruning without sacrificing accuracy, resulting in a small tree with only 8 learned prototypes along a path to classify a bird from 200 species. An ensemble of 5 ProtoTrees achieves competitive accuracy on the CUB-200- 2011 and Stanford Cars data sets. Code is available at https://github.com/M-Nauta/ProtoTree
Analysis of Regularized Learning in Banach Spaces
This article presents a new way to study the theory of regularized learning for generalized data in Banach spaces including representer theorems and convergence theorems. The generalized data are composed of linear functionals and real scalars as the input and output elements to represent the discrete information of different local models. By the extension of the classical machine learning, the empirical risks are computed by the generalized data and the loss functions. According to the techniques of regularization, the exact solutions are approximated globally by minimizing the regularized empirical risks over the Banach spaces. The existence and convergence of the approximate solutions are guaranteed by the relative compactness of the generalized input data in the predual spaces of the Banach spaces.
Democratic Source Coding: An Optimal Fixed-Length Quantization Scheme for Distributed Optimization Under Communication Constraints
The communication cost of distributed optimization algorithms is a major bottleneck in their scalability. This work considers a parameter-server setting in which the worker is constrained to communicate information to the server using only $R$ bits per dimension. We show that $\mathbf{democratic}$ $\mathbf{embeddings}$ from random matrix theory are significantly useful for designing efficient and optimal vector quantizers that respect this bit budget. The resulting polynomial complexity source coding schemes are used to design distributed optimization algorithms with convergence rates matching the minimax optimal lower bounds for (i) Smooth and Strongly-Convex objectives with access to an Exact Gradient oracle, as well as (ii) General Convex and Non-Smooth objectives with access to a Noisy Subgradient oracle. We further propose a relaxation of this coding scheme which is nearly minimax optimal. Numerical simulations validate our theoretical claims.
Deriving Autism Spectrum Disorder Functional Networks from RS-FMRI Data using Group ICA and Dictionary Learning
The objective of this study is to derive functional networks for the autism spectrum disorder (ASD) population using the group ICA and dictionary learning model together and to classify ASD and typically developing (TD) participants using the functional connectivity calculated from the derived functional networks. In our experiments, the ASD functional networks were derived from resting-state functional magnetic resonance imaging (rs-fMRI) data. We downloaded a total of 120 training samples, including 58 ASD and 62 TD participants, which were obtained from the public repository: Autism Brain Imaging Data Exchange I (ABIDE I). Our methodology and results have five main parts. First, we utilize a group ICA model to extract functional networks from the ASD group and rank the top 20 regions of interest (ROIs). Second, we utilize a dictionary learning model to extract functional networks from the ASD group and rank the top 20 ROIs. Third, we merged the 40 selected ROIs from the two models together as the ASD functional networks. Fourth, we generate three corresponding masks based on the 20 selected ROIs from group ICA, the 20 ROIs selected from dictionary learning, and the 40 combined ROIs selected from both. Finally, we extract ROIs for all training samples using the above three masks, and the calculated functional connectivity was used as features for ASD and TD classification. The classification results showed that the functional networks derived from ICA and dictionary learning together outperform those derived from a single ICA model or a single dictionary learning model.
Cascaded Structure Tensor Framework for Robust Identification of Heavily Occluded Baggage Items from Multi-Vendor X-ray Scans
In the last two decades, luggage scanning has globally become one of the prime aviation security concerns. Manual screening of the baggage items is a cumbersome, subjective and inefficient process. Hence, many researchers have developed Xray imagery-based autonomous systems to address these shortcomings. However, to the best of our knowledge, there is no framework, up to now, that can recognize heavily occluded and cluttered baggage items from multi-vendor X-ray scans. This paper presents a cascaded structure tensor framework which can automatically extract and recognize suspicious items irrespective of their position and orientation in the multi-vendor X-ray scans. The proposed framework is unique, as it intelligently extracts each object by iteratively picking contour based transitional information from different orientations and uses only a single feedforward convolutional neural network for the recognition. The proposed framework has been rigorously tested on publicly available GDXray and SIXray datasets containing a total of 1,067,381 X-ray scans where it significantly outperformed the state-of-the-art solutions by achieving the mean average precision score of 0.9343 and 0.9595 for extracting and recognizing suspicious items from GDXray and SIXray scans, respectively. Furthermore, the proposed framework has achieved 15.78% better time
LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving
Testing autonomous driving algorithms on real autonomous vehicles is extremely costly and many researchers and developers in the field cannot afford a real car and the corresponding sensors. Although several free and open-source autonomous driving stacks, such as Autoware and Apollo are available, choices of open-source simulators to use with them are limited. In this paper, we introduce the LGSVL Simulator which is a high fidelity simulator for autonomous driving. The simulator engine provides end-to-end, full-stack simulation which is ready to be hooked up to Autoware and Apollo. In addition, simulator tools are provided with the core simulation engine which allow users to easily customize sensors, create new types of controllable objects, replace some modules in the core simulator, and create digital twins of particular environments.
Smart "Predict, then Optimize"
Many real-world analytics problems involve two significant challenges: prediction and optimization. Due to the typically complex nature of each challenge, the standard paradigm is predict-then-optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in the downstream optimization problem. In contrast, we propose a new and very general framework, called Smart "Predict, then Optimize" (SPO), which directly leverages the optimization problem structure, i.e., its objective and constraints, for designing better prediction models. A key component of our framework is the SPO loss function which measures the decision error induced by a prediction. Training a prediction model with respect to the SPO loss is computationally challenging, and thus we derive, using duality theory, a convex surrogate loss function which we call the SPO+ loss. Most importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral, convex, or even mixed-integer optimization problem with a linear objective. Numerical experiments on shortest path and portfolio optimization problems show that the SPO framework can lead to significant improvement under the predict-then-optimize paradigm, in particular when the prediction model being trained is misspecified. We find that linear models trained using SPO+ loss tend to dominate random forest algorithms, even when the ground truth is highly nonlinear.
Slow-varying Dynamics Assisted Temporal Capsule Network for Machinery Remaining Useful Life Estimation
Capsule network (CapsNet) acts as a promising alternative to the typical convolutional neural network, which is the dominant network to develop the remaining useful life (RUL) estimation models for mechanical equipment. Although CapsNet comes with an impressive ability to represent the entities' hierarchical relationships through a high-dimensional vector embedding, it fails to capture the long-term temporal correlation of run-to-failure time series measured from degraded mechanical equipment. On the other hand, the slow-varying dynamics, which reveals the low-frequency information hidden in mechanical dynamical behaviour, is overlooked in the existing RUL estimation models, limiting the utmost ability of advanced networks. To address the aforementioned concerns, we propose a Slow-varying Dynamics assisted Temporal CapsNet (SD-TemCapsNet) to simultaneously learn the slow-varying dynamics and temporal dynamics from measurements for accurate RUL estimation. First, in light of the sensitivity of fault evolution, slow-varying features are decomposed from normal raw data to convey the low-frequency components corresponding to the system dynamics. Next, the long short-term memory (LSTM) mechanism is introduced into CapsNet to capture the temporal correlation of time series. To this end, experiments conducted on an aircraft engine and a milling machine verify that the proposed SD-TemCapsNet outperforms the mainstream methods. In comparison with CapsNet, the estimation accuracy of the aircraft engine with four different scenarios has been improved by 10.17%, 24.97%, 3.25%, and 13.03% concerning the index root mean squared error, respectively. Similarly, the estimation accuracy of the milling machine has been improved by 23.57% compared to LSTM and 19.54% compared to CapsNet.
Uncertainty-Aware Data Aggregation for Deep Imitation Learning
Estimating statistical uncertainties allows autonomous agents to communicate their confidence during task execution and is important for applications in safety-critical domains such as autonomous driving. In this work, we present the uncertainty-aware imitation learning (UAIL) algorithm for improving end-to-end control systems via data aggregation. UAIL applies Monte Carlo Dropout to estimate uncertainty in the control output of end-to-end systems, using states where it is uncertain to selectively acquire new training data. In contrast to prior data aggregation algorithms that force human experts to visit sub-optimal states at random, UAIL can anticipate its own mistakes and switch control to the expert in order to prevent visiting a series of sub-optimal states. Our experimental results from simulated driving tasks demonstrate that our proposed uncertainty estimation method can be leveraged to reliably predict infractions. Our analysis shows that UAIL outperforms existing data aggregation algorithms on a series of benchmark tasks.
See through Gradients: Image Batch Recovery via GradInversion
Training deep neural networks requires gradient estimation from data batches to update parameters. Gradients per parameter are averaged over a set of data and this has been presumed to be safe for privacy-preserving training in joint, collaborative, and federated learning applications. Prior work only showed the possibility of recovering input data given gradients under very restrictive conditions - a single input point, or a network with no non-linearities, or a small 32x32 px input batch. Therefore, averaging gradients over larger batches was thought to be safe. In this work, we introduce GradInversion, using which input images from a larger batch (8 - 48 images) can also be recovered for large networks such as ResNets (50 layers), on complex datasets such as ImageNet (1000 classes, 224x224 px). We formulate an optimization task that converts random noise into natural images, matching gradients while regularizing image fidelity. We also propose an algorithm for target class label recovery given gradients. We further propose a group consistency regularization framework, where multiple agents starting from different random seeds work together to find an enhanced reconstruction of original data batch. We show that gradients encode a surprisingly large amount of information, such that all the individual images can be recovered with high fidelity via GradInversion, even for complex datasets, deep networks, and large batch sizes.
Visualizing the Relationship Between Encoded Linguistic Information and Task Performance
Probing is popular to analyze whether linguistic information can be captured by a well-trained deep neural model, but it is hard to answer how the change of the encoded linguistic information will affect task performance. To this end, we study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality. Its key idea is to obtain a set of models which are Pareto-optimal in terms of both objectives. From this viewpoint, we propose a method to optimize the Pareto-optimal models by formalizing it as a multi-objective optimization problem. We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances. Experimental results demonstrate that the proposed method is better than a baseline method. Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance, because the model architecture is also an important factor.
One Positive Label is Sufficient: Single-Positive Multi-Label Learning with Label Enhancement
Multi-label learning (MLL) learns from the examples each associated with multiple labels simultaneously, where the high cost of annotating all relevant labels for each training example is challenging for real-world applications. To cope with the challenge, we investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label and show that one can successfully learn a theoretically grounded multi-label classifier for the problem. In this paper, a novel SPMLL method named {\proposed}, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed. Specifically, an unbiased risk estimator is derived, which could be guaranteed to approximately converge to the optimal risk minimizer of fully supervised learning and shows that one positive label of each instance is sufficient to train the predictive model. Then, the corresponding empirical risk estimator is established via recovering the latent soft label as a label enhancement process, where the posterior density of the latent soft labels is approximate to the variational Beta density parameterized by an inference model. Experiments on benchmark datasets validate the effectiveness of the proposed method.
Game Redesign in No-regret Game Playing
We study the game redesign problem in which an external designer has the ability to change the payoff function in each round, but incurs a design cost for deviating from the original game. The players apply no-regret learning algorithms to repeatedly play the changed games with limited feedback. The goals of the designer are to (i) incentivize all players to take a specific target action profile frequently; and (ii) incur small cumulative design cost. We present game redesign algorithms with the guarantee that the target action profile is played in T-o(T) rounds while incurring only o(T) cumulative design cost. Game redesign describes both positive and negative applications: a benevolent designer who incentivizes players to take a target action profile with better social welfare compared to the solution of the original game, or a malicious attacker whose target action profile benefits themselves but not the players. Simulations on four classic games confirm the effectiveness of our proposed redesign algorithms.
Adaptive Cut Selection in Mixed-Integer Linear Programming
Cut selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.
Primary Tumor and Inter-Organ Augmentations for Supervised Lymph Node Colon Adenocarcinoma Metastasis Detection
The scarcity of labeled data is a major bottleneck for developing accurate and robust deep learning-based models for histopathology applications. The problem is notably prominent for the task of metastasis detection in lymph nodes, due to the tissue's low tumor-to-non-tumor ratio, resulting in labor- and time-intensive annotation processes for the pathologists. This work explores alternatives on how to augment the training data for colon carcinoma metastasis detection when there is limited or no representation of the target domain. Through an exhaustive study of cross-validated experiments with limited training data availability, we evaluate both an inter-organ approach utilizing already available data for other tissues, and an intra-organ approach, utilizing the primary tumor. Both these approaches result in little to no extra annotation effort. Our results show that these data augmentation strategies can be an efficient way of increasing accuracy on metastasis detection, but fore-most increase robustness.
Generalized Label Enhancement with Sample Correlations
Recently, label distribution learning (LDL) has drawn much attention in machine learning, where LDL model is learned from labelel instances. Different from single-label and multi-label annotations, label distributions describe the instance by multiple labels with different intensities and accommodate to more general scenes. Since most existing machine learning datasets merely provide logical labels, label distributions are unavailable in many real-world applications. To handle this problem, we propose two novel label enhancement methods, i.e., Label Enhancement with Sample Correlations (LESC) and generalized Label Enhancement with Sample Correlations (gLESC). More specifically, LESC employs a low-rank representation of samples in the feature space, and gLESC leverages a tensor multi-rank minimization to further investigate the sample correlations in both the feature space and label space. Benefitting from the sample correlations, the proposed methods can boost the performance of label enhancement. Extensive experiments on 14 benchmark datasets demonstrate the effectiveness and superiority of our methods.