id
stringlengths
14
16
text
stringlengths
45
2.73k
source
stringlengths
49
114
20444c3240ea-1
prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) _input = prompt.format_prompt(query=joke_query) output = model(_input.to_string()) parser.parse(output) Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!') # Here's another example, but with a compound typed field. class Actor(BaseModel): name: str = Field(description="name of an actor") film_names: List[str] = Field(description="list of names of films they starred in") actor_query = "Generate the filmography for a random actor." parser = PydanticOutputParser(pydantic_object=Actor) prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) _input = prompt.format_prompt(query=actor_query) output = model(_input.to_string()) parser.parse(output) Actor(name='Tom Hanks', film_names=['Forrest Gump', 'Saving Private Ryan', 'The Green Mile', 'Cast Away', 'Toy Story']) previous OutputFixingParser next RetryOutputParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/pydantic.html
c4ffd56654c2-0
.ipynb .pdf CommaSeparatedListOutputParser CommaSeparatedListOutputParser# Here’s another parser strictly less powerful than Pydantic/JSON parsing. from langchain.output_parsers import CommaSeparatedListOutputParser from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI output_parser = CommaSeparatedListOutputParser() format_instructions = output_parser.get_format_instructions() prompt = PromptTemplate( template="List five {subject}.\n{format_instructions}", input_variables=["subject"], partial_variables={"format_instructions": format_instructions} ) model = OpenAI(temperature=0) _input = prompt.format(subject="ice cream flavors") output = model(_input) output_parser.parse(output) ['Vanilla', 'Chocolate', 'Strawberry', 'Mint Chocolate Chip', 'Cookies and Cream'] previous Output Parsers next OutputFixingParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/comma_separated.html
849eeed8fa53-0
.ipynb .pdf Structured Output Parser Structured Output Parser# While the Pydantic/JSON parser is more powerful, we initially experimented data structures having text fields only. from langchain.output_parsers import StructuredOutputParser, ResponseSchema from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI Here we define the response schema we want to receive. response_schemas = [ ResponseSchema(name="answer", description="answer to the user's question"), ResponseSchema(name="source", description="source used to answer the user's question, should be a website.") ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) We now get a string that contains instructions for how the response should be formatted, and we then insert that into our prompt. format_instructions = output_parser.get_format_instructions() prompt = PromptTemplate( template="answer the users question as best as possible.\n{format_instructions}\n{question}", input_variables=["question"], partial_variables={"format_instructions": format_instructions} ) We can now use this to format a prompt to send to the language model, and then parse the returned result. model = OpenAI(temperature=0) _input = prompt.format_prompt(question="what's the capital of france") output = model(_input.to_string()) output_parser.parse(output) {'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'} And here’s an example of using this in a chat model chat_model = ChatOpenAI(temperature=0) prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("answer the users question as best as possible.\n{format_instructions}\n{question}")
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/structured.html
849eeed8fa53-1
], input_variables=["question"], partial_variables={"format_instructions": format_instructions} ) _input = prompt.format_prompt(question="what's the capital of france") output = chat_model(_input.to_messages()) output_parser.parse(output.content) {'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'} previous RetryOutputParser next Indexes By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/structured.html
f16da179eeb8-0
.ipynb .pdf LengthBased ExampleSelector LengthBased ExampleSelector# This ExampleSelector selects which examples to use based on length. This is useful when you are worried about constructing a prompt that will go over the length of the context window. For longer inputs, it will select fewer examples to include, while for shorter inputs it will select more. from langchain.prompts import PromptTemplate from langchain.prompts import FewShotPromptTemplate from langchain.prompts.example_selector import LengthBasedExampleSelector # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) example_selector = LengthBasedExampleSelector( # These are the examples it has available to choose from. examples=examples, # This is the PromptTemplate being used to format the examples. example_prompt=example_prompt, # This is the maximum length that the formatted examples should be. # Length is measured by the get_text_length function below. max_length=25, # This is the function used to get the length of a string, which is used # to determine which examples to include. It is commented out because # it is provided as a default value if none is specified.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/length_based.html
f16da179eeb8-1
# it is provided as a default value if none is specified. # get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x)) ) dynamic_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) # An example with small input, so it selects all examples. print(dynamic_prompt.format(adjective="big")) Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm Input: big Output: # An example with long input, so it selects only one example. long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else" print(dynamic_prompt.format(adjective=long_string)) Give the antonym of every input Input: happy Output: sad Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else Output: # You can add an example to an example selector as well. new_example = {"input": "big", "output": "small"} dynamic_prompt.example_selector.add_example(new_example) print(dynamic_prompt.format(adjective="enthusiastic")) Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/length_based.html
f16da179eeb8-2
Input: sunny Output: gloomy Input: windy Output: calm Input: big Output: small Input: enthusiastic Output: previous How to create a custom example selector next Maximal Marginal Relevance ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/length_based.html
d6d546624dc7-0
.ipynb .pdf Maximal Marginal Relevance ExampleSelector Maximal Marginal Relevance ExampleSelector# The MaxMarginalRelevanceExampleSelector selects examples based on a combination of which examples are most similar to the inputs, while also optimizing for diversity. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs, and then iteratively adding them while penalizing them for closeness to already selected examples. from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_selector = MaxMarginalRelevanceExampleSelector.from_examples( # This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. FAISS, # This is the number of examples to produce. k=2 ) mmr_prompt = FewShotPromptTemplate(
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/mmr.html
d6d546624dc7-1
k=2 ) mmr_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) # Input is a feeling, so should select the happy/sad example as the first one print(mmr_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: windy Output: calm Input: worried Output: # Let's compare this to what we would just get if we went solely off of similarity similar_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) similar_prompt.example_selector.k = 2 print(similar_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: windy Output: calm Input: worried Output: previous LengthBased ExampleSelector next NGram Overlap ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/mmr.html
5fe32a1c0cdb-0
.ipynb .pdf NGram Overlap ExampleSelector NGram Overlap ExampleSelector# The NGramOverlapExampleSelector selects and orders examples based on which examples are most similar to the input, according to an ngram overlap score. The ngram overlap score is a float between 0.0 and 1.0, inclusive. The selector allows for a threshold score to be set. Examples with an ngram overlap score less than or equal to the threshold are excluded. The threshold is set to -1.0, by default, so will not exclude any examples, only reorder them. Setting the threshold to 0.0 will exclude examples that have no ngram overlaps with the input. from langchain.prompts import PromptTemplate from langchain.prompts.example_selector.ngram_overlap import NGramOverlapExampleSelector from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] # These are examples of a fictional translation task. examples = [ {"input": "See Spot run.", "output": "Ver correr a Spot."}, {"input": "My dog barks.", "output": "Mi perro ladra."}, {"input": "Spot can run.", "output": "Spot puede correr."},
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
5fe32a1c0cdb-1
{"input": "Spot can run.", "output": "Spot puede correr."}, ] example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) example_selector = NGramOverlapExampleSelector( # These are the examples it has available to choose from. examples=examples, # This is the PromptTemplate being used to format the examples. example_prompt=example_prompt, # This is the threshold, at which selector stops. # It is set to -1.0 by default. threshold=-1.0, # For negative threshold: # Selector sorts examples by ngram overlap score, and excludes none. # For threshold greater than 1.0: # Selector excludes all examples, and returns an empty list. # For threshold equal to 0.0: # Selector sorts examples by ngram overlap score, # and excludes those with no ngram overlap with input. ) dynamic_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the Spanish translation of every input", suffix="Input: {sentence}\nOutput:", input_variables=["sentence"], ) # An example input with large ngram overlap with "Spot can run." # and no overlap with "My dog barks." print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: My dog barks.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
5fe32a1c0cdb-2
Output: Ver correr a Spot. Input: My dog barks. Output: Mi perro ladra. Input: Spot can run fast. Output: # You can add examples to NGramOverlapExampleSelector as well. new_example = {"input": "Spot plays fetch.", "output": "Spot juega a buscar."} example_selector.add_example(new_example) print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: Spot plays fetch. Output: Spot juega a buscar. Input: My dog barks. Output: Mi perro ladra. Input: Spot can run fast. Output: # You can set a threshold at which examples are excluded. # For example, setting threshold equal to 0.0 # excludes examples with no ngram overlaps with input. # Since "My dog barks." has no ngram overlaps with "Spot can run fast." # it is excluded. example_selector.threshold=0.0 print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: Spot plays fetch. Output: Spot juega a buscar. Input: Spot can run fast. Output: # Setting small nonzero threshold example_selector.threshold=0.09 print(dynamic_prompt.format(sentence="Spot can play fetch.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: Spot plays fetch. Output: Spot juega a buscar.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
5fe32a1c0cdb-3
Input: Spot plays fetch. Output: Spot juega a buscar. Input: Spot can play fetch. Output: # Setting threshold greater than 1.0 example_selector.threshold=1.0+1e-9 print(dynamic_prompt.format(sentence="Spot can play fetch.")) Give the Spanish translation of every input Input: Spot can play fetch. Output: previous Maximal Marginal Relevance ExampleSelector next Similarity ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
cffc3f9b9e08-0
.ipynb .pdf Similarity ExampleSelector Similarity ExampleSelector# The SemanticSimilarityExampleSelector selects examples based on which examples are most similar to the inputs. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs. from langchain.prompts.example_selector import SemanticSimilarityExampleSelector from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_selector = SemanticSimilarityExampleSelector.from_examples( # This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. Chroma, # This is the number of examples to produce. k=1 ) similar_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input",
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/similarity.html
cffc3f9b9e08-1
example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. # Input is a feeling, so should select the happy/sad example print(similar_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: worried Output: # Input is a measurement, so should select the tall/short example print(similar_prompt.format(adjective="fat")) Give the antonym of every input Input: happy Output: sad Input: fat Output: # You can add new examples to the SemanticSimilarityExampleSelector as well similar_prompt.example_selector.add_example({"input": "enthusiastic", "output": "apathetic"}) print(similar_prompt.format(adjective="joyful")) Give the antonym of every input Input: happy Output: sad Input: joyful Output: previous NGram Overlap ExampleSelector next Output Parsers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/similarity.html
a51ef4a9081a-0
.md .pdf How to create a custom example selector Contents Implement custom example selector Use custom example selector How to create a custom example selector# In this tutorial, we’ll create a custom example selector that selects every alternate example from a given list of examples. An ExampleSelector must implement two methods: An add_example method which takes in an example and adds it into the ExampleSelector A select_examples method which takes in input variables (which are meant to be user input) and returns a list of examples to use in the few shot prompt. Let’s implement a custom ExampleSelector that just selects two examples at random. Note Take a look at the current set of example selector implementations supported in LangChain here. Implement custom example selector# from langchain.prompts.example_selector.base import BaseExampleSelector from typing import Dict, List import numpy as np class CustomExampleSelector(BaseExampleSelector): def __init__(self, examples: List[Dict[str, str]]): self.examples = examples def add_example(self, example: Dict[str, str]) -> None: """Add new example to store for a key.""" self.examples.append(example) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on the inputs.""" return np.random.choice(self.examples, size=2, replace=False) Use custom example selector# examples = [ {"foo": "1"}, {"foo": "2"}, {"foo": "3"} ] # Initialize example selector. example_selector = CustomExampleSelector(examples) # Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '2'}, {'foo': '3'}], dtype=object)
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html
a51ef4a9081a-1
# Add new example to the set of examples example_selector.add_example({"foo": "4"}) example_selector.examples # -> [{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}] # Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '1'}, {'foo': '4'}], dtype=object) previous Example Selectors next LengthBased ExampleSelector Contents Implement custom example selector Use custom example selector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html
74751a4d3c88-0
.rst .pdf How-To Guides Contents Types Usage How-To Guides# Types# The first set of examples all highlight different types of memory. ConversationBufferMemory ConversationBufferWindowMemory Entity Memory Conversation Knowledge Graph Memory ConversationSummaryMemory ConversationSummaryBufferMemory ConversationTokenBufferMemory VectorStore-Backed Memory Usage# The examples here all highlight how to use memory in different ways. How to add Memory to an LLMChain How to add memory to a Multi-Input Chain How to add Memory to an Agent Adding Message Memory backed by a database to an Agent How to customize conversational memory How to create a custom Memory class Motörhead Memory How to use multiple memory classes in the same chain Postgres Chat Message History Redis Chat Message History previous Getting Started next ConversationBufferMemory Contents Types Usage By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/how_to_guides.html
4bfadebce600-0
.ipynb .pdf Getting Started Contents ChatMessageHistory ConversationBufferMemory Using in a chain Saving Message History Getting Started# This notebook walks through how LangChain thinks about memory. Memory involves keeping a concept of state around throughout a user’s interactions with an language model. A user’s interactions with a language model are captured in the concept of ChatMessages, so this boils down to ingesting, capturing, transforming and extracting knowledge from a sequence of chat messages. There are many different ways to do this, each of which exists as its own memory type. In general, for each type of memory there are two ways to understanding using memory. These are the standalone functions which extract information from a sequence of messages, and then there is the way you can use this type of memory in a chain. Memory can return multiple pieces of information (for example, the most recent N messages and a summary of all previous messages). The returned information can either be a string or a list of messages. In this notebook, we will walk through the simplest form of memory: “buffer” memory, which just involves keeping a buffer of all prior messages. We will show how to use the modular utility functions here, then show how it can be used in a chain (both returning a string as well as a list of messages). ChatMessageHistory# One of the core utility classes underpinning most (if not all) memory modules is the ChatMessageHistory class. This is a super lightweight wrapper which exposes convienence methods for saving Human messages, AI messages, and then fetching them all. You may want to use this class directly if you are managing memory outside of a chain. from langchain.memory import ChatMessageHistory history = ChatMessageHistory() history.add_user_message("hi!") history.add_ai_message("whats up?") history.messages [HumanMessage(content='hi!', additional_kwargs={}),
https://python.langchain.com/en/latest/modules/memory/getting_started.html
4bfadebce600-1
history.messages [HumanMessage(content='hi!', additional_kwargs={}), AIMessage(content='whats up?', additional_kwargs={})] ConversationBufferMemory# We now show how to use this simple concept in a chain. We first showcase ConversationBufferMemory which is just a wrapper around ChatMessageHistory that extracts the messages in a variable. We can first extract it as a string. from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory() memory.chat_memory.add_user_message("hi!") memory.chat_memory.add_ai_message("whats up?") memory.load_memory_variables({}) {'history': 'Human: hi!\nAI: whats up?'} We can also get the history as a list of messages memory = ConversationBufferMemory(return_messages=True) memory.chat_memory.add_user_message("hi!") memory.chat_memory.add_ai_message("whats up?") memory.load_memory_variables({}) {'history': [HumanMessage(content='hi!', additional_kwargs={}), AIMessage(content='whats up?', additional_kwargs={})]} Using in a chain# Finally, let’s take a look at using this in a chain (setting verbose=True so we can see the prompt). from langchain.llms import OpenAI from langchain.chains import ConversationChain llm = OpenAI(temperature=0) conversation = ConversationChain( llm=llm, verbose=True, memory=ConversationBufferMemory() ) conversation.predict(input="Hi there!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI:
https://python.langchain.com/en/latest/modules/memory/getting_started.html
4bfadebce600-2
Current conversation: Human: Hi there! AI: > Finished chain. " Hi there! It's nice to meet you. How can I help you today?" conversation.predict(input="I'm doing well! Just having a conversation with an AI.") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI: Hi there! It's nice to meet you. How can I help you today? Human: I'm doing well! Just having a conversation with an AI. AI: > Finished chain. " That's great! It's always nice to have a conversation with someone new. What would you like to talk about?" conversation.predict(input="Tell me about yourself.") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI: Hi there! It's nice to meet you. How can I help you today? Human: I'm doing well! Just having a conversation with an AI. AI: That's great! It's always nice to have a conversation with someone new. What would you like to talk about? Human: Tell me about yourself. AI: > Finished chain.
https://python.langchain.com/en/latest/modules/memory/getting_started.html
4bfadebce600-3
Human: Tell me about yourself. AI: > Finished chain. " Sure! I'm an AI created to help people with their everyday tasks. I'm programmed to understand natural language and provide helpful information. I'm also constantly learning and updating my knowledge base so I can provide more accurate and helpful answers." Saving Message History# You may often have to save messages, and then load them to use again. This can be done easily by first converting the messages to normal python dictionaries, saving those (as json or something) and then loading those. Here is an example of doing that. import json from langchain.memory import ChatMessageHistory from langchain.schema import messages_from_dict, messages_to_dict history = ChatMessageHistory() history.add_user_message("hi!") history.add_ai_message("whats up?") dicts = messages_to_dict(history.messages) dicts [{'type': 'human', 'data': {'content': 'hi!', 'additional_kwargs': {}}}, {'type': 'ai', 'data': {'content': 'whats up?', 'additional_kwargs': {}}}] new_messages = messages_from_dict(dicts) new_messages [HumanMessage(content='hi!', additional_kwargs={}), AIMessage(content='whats up?', additional_kwargs={})] And that’s it for the getting started! There are plenty of different types of memory, check out our examples to see them all previous Memory next How-To Guides Contents ChatMessageHistory ConversationBufferMemory Using in a chain Saving Message History By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/getting_started.html
832c10a81ef8-0
.ipynb .pdf ConversationTokenBufferMemory Contents Using in a chain ConversationTokenBufferMemory# ConversationTokenBufferMemory keeps a buffer of recent interactions in memory, and uses token length rather than number of interactions to determine when to flush interactions. Let’s first walk through how to use the utilities from langchain.memory import ConversationTokenBufferMemory from langchain.llms import OpenAI llm = OpenAI() memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=10) memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.save_context({"input": "not much you"}, {"ouput": "not much"}) memory.load_memory_variables({}) {'history': 'Human: not much you\nAI: not much'} We can also get the history as a list of messages (this is useful if you are using this with a chat model). memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=10, return_messages=True) memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.save_context({"input": "not much you"}, {"ouput": "not much"}) Using in a chain# Let’s walk through an example, again setting verbose=True so we can see the prompt. from langchain.chains import ConversationChain conversation_with_summary = ConversationChain( llm=llm, # We set a very low max_token_limit for the purposes of testing. memory=ConversationTokenBufferMemory(llm=OpenAI(), max_token_limit=60), verbose=True ) conversation_with_summary.predict(input="Hi, what's up?") > Entering new ConversationChain chain... Prompt after formatting:
https://python.langchain.com/en/latest/modules/memory/types/token_buffer.html
832c10a81ef8-1
> Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: > Finished chain. " Hi there! I'm doing great, just enjoying the day. How about you?" conversation_with_summary.predict(input="Just working on writing some documentation!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: Hi there! I'm doing great, just enjoying the day. How about you? Human: Just working on writing some documentation! AI: > Finished chain. ' Sounds like a productive day! What kind of documentation are you writing?' conversation_with_summary.predict(input="For LangChain! Have you heard of it?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: Hi there! I'm doing great, just enjoying the day. How about you? Human: Just working on writing some documentation! AI: Sounds like a productive day! What kind of documentation are you writing?
https://python.langchain.com/en/latest/modules/memory/types/token_buffer.html
832c10a81ef8-2
AI: Sounds like a productive day! What kind of documentation are you writing? Human: For LangChain! Have you heard of it? AI: > Finished chain. " Yes, I have heard of LangChain! It is a decentralized language-learning platform that connects native speakers and learners in real time. Is that the documentation you're writing about?" # We can see here that the buffer is updated conversation_with_summary.predict(input="Haha nope, although a lot of people confuse it for that") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: For LangChain! Have you heard of it? AI: Yes, I have heard of LangChain! It is a decentralized language-learning platform that connects native speakers and learners in real time. Is that the documentation you're writing about? Human: Haha nope, although a lot of people confuse it for that AI: > Finished chain. " Oh, I see. Is there another language learning platform you're referring to?" previous ConversationSummaryBufferMemory next VectorStore-Backed Memory Contents Using in a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/token_buffer.html
66b795720ee1-0
.ipynb .pdf ConversationSummaryBufferMemory Contents Using in a chain ConversationSummaryBufferMemory# ConversationSummaryBufferMemory combines the last two ideas. It keeps a buffer of recent interactions in memory, but rather than just completely flushing old interactions it compiles them into a summary and uses both. Unlike the previous implementation though, it uses token length rather than number of interactions to determine when to flush interactions. Let’s first walk through how to use the utilities from langchain.memory import ConversationSummaryBufferMemory from langchain.llms import OpenAI llm = OpenAI() memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=10) memory.save_context({"input": "hi"}, {"output": "whats up"}) memory.save_context({"input": "not much you"}, {"output": "not much"}) memory.load_memory_variables({}) {'history': 'System: \nThe human says "hi", and the AI responds with "whats up".\nHuman: not much you\nAI: not much'} We can also get the history as a list of messages (this is useful if you are using this with a chat model). memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=10, return_messages=True) memory.save_context({"input": "hi"}, {"output": "whats up"}) memory.save_context({"input": "not much you"}, {"output": "not much"}) We can also utilize the predict_new_summary method directly. messages = memory.chat_memory.messages previous_summary = "" memory.predict_new_summary(messages, previous_summary) '\nThe human and AI state that they are not doing much.' Using in a chain# Let’s walk through an example, again setting verbose=True so we can see the prompt. from langchain.chains import ConversationChain conversation_with_summary = ConversationChain(
https://python.langchain.com/en/latest/modules/memory/types/summary_buffer.html
66b795720ee1-1
from langchain.chains import ConversationChain conversation_with_summary = ConversationChain( llm=llm, # We set a very low max_token_limit for the purposes of testing. memory=ConversationSummaryBufferMemory(llm=OpenAI(), max_token_limit=40), verbose=True ) conversation_with_summary.predict(input="Hi, what's up?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: > Finished chain. " Hi there! I'm doing great. I'm learning about the latest advances in artificial intelligence. What about you?" conversation_with_summary.predict(input="Just working on writing some documentation!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: Hi there! I'm doing great. I'm spending some time learning about the latest developments in AI technology. How about you? Human: Just working on writing some documentation! AI: > Finished chain. ' That sounds like a great use of your time. Do you have experience with writing documentation?' # We can see here that there is a summary of the conversation and then some previous interactions conversation_with_summary.predict(input="For LangChain! Have you heard of it?") > Entering new ConversationChain chain...
https://python.langchain.com/en/latest/modules/memory/types/summary_buffer.html
66b795720ee1-2
> Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: System: The human asked the AI what it was up to and the AI responded that it was learning about the latest developments in AI technology. Human: Just working on writing some documentation! AI: That sounds like a great use of your time. Do you have experience with writing documentation? Human: For LangChain! Have you heard of it? AI: > Finished chain. " No, I haven't heard of LangChain. Can you tell me more about it?" # We can see here that the summary and the buffer are updated conversation_with_summary.predict(input="Haha nope, although a lot of people confuse it for that") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: System: The human asked the AI what it was up to and the AI responded that it was learning about the latest developments in AI technology. The human then mentioned they were writing documentation, to which the AI responded that it sounded like a great use of their time and asked if they had experience with writing documentation. Human: For LangChain! Have you heard of it? AI: No, I haven't heard of LangChain. Can you tell me more about it? Human: Haha nope, although a lot of people confuse it for that AI: > Finished chain.
https://python.langchain.com/en/latest/modules/memory/types/summary_buffer.html
66b795720ee1-3
AI: > Finished chain. ' Oh, okay. What is LangChain?' previous ConversationSummaryMemory next ConversationTokenBufferMemory Contents Using in a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/summary_buffer.html
893127a7bad9-0
.ipynb .pdf VectorStore-Backed Memory Contents Initialize your VectorStore Create your the VectorStoreRetrieverMemory Using in a chain VectorStore-Backed Memory# VectorStoreRetrieverMemory stores memories in a VectorDB and queries the top-K most “salient” docs every time it is called. This differs from most of the other Memory classes in that it doesn’t explicitly track the order of interactions. In this case, the “docs” are previous conversation snippets. This can be useful to refer to relevant pieces of information that the AI was told earlier in the conversation. from datetime import datetime from langchain.embeddings.openai import OpenAIEmbeddings from langchain.llms import OpenAI from langchain.memory import VectorStoreRetrieverMemory from langchain.chains import ConversationChain from langchain.prompts import PromptTemplate Initialize your VectorStore# Depending on the store you choose, this step may look different. Consult the relevant VectorStore documentation for more details. import faiss from langchain.docstore import InMemoryDocstore from langchain.vectorstores import FAISS embedding_size = 1536 # Dimensions of the OpenAIEmbeddings index = faiss.IndexFlatL2(embedding_size) embedding_fn = OpenAIEmbeddings().embed_query vectorstore = FAISS(embedding_fn, index, InMemoryDocstore({}), {}) Create your the VectorStoreRetrieverMemory# The memory object is instantiated from any VectorStoreRetriever. # In actual usage, you would set `k` to be a higher value, but we use k=1 to show that # the vector lookup still returns the semantically relevant information retriever = vectorstore.as_retriever(search_kwargs=dict(k=1)) memory = VectorStoreRetrieverMemory(retriever=retriever)
https://python.langchain.com/en/latest/modules/memory/types/vectorstore_retriever_memory.html
893127a7bad9-1
memory = VectorStoreRetrieverMemory(retriever=retriever) # When added to an agent, the memory object can save pertinent information from conversations or used tools memory.save_context({"input": "My favorite food is pizza"}, {"output": "thats good to know"}) memory.save_context({"input": "My favorite sport is soccer"}, {"output": "..."}) memory.save_context({"input": "I don't the Celtics"}, {"output": "ok"}) # # Notice the first result returned is the memory pertaining to tax help, which the language model deems more semantically relevant # to a 1099 than the other documents, despite them both containing numbers. print(memory.load_memory_variables({"prompt": "what sport should i watch?"})["history"]) input: My favorite sport is soccer output: ... Using in a chain# Let’s walk through an example, again setting verbose=True so we can see the prompt. llm = OpenAI(temperature=0) # Can be any valid LLM _DEFAULT_TEMPLATE = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Relevant pieces of previous conversation: {history} (You do not need to use these pieces of information if not relevant) Current conversation: Human: {input} AI:""" PROMPT = PromptTemplate( input_variables=["history", "input"], template=_DEFAULT_TEMPLATE ) conversation_with_summary = ConversationChain( llm=llm, prompt=PROMPT, # We set a very low max_token_limit for the purposes of testing. memory=memory, verbose=True )
https://python.langchain.com/en/latest/modules/memory/types/vectorstore_retriever_memory.html
893127a7bad9-2
memory=memory, verbose=True ) conversation_with_summary.predict(input="Hi, my name is Perry, what's up?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Relevant pieces of previous conversation: input: My favorite food is pizza output: thats good to know (You do not need to use these pieces of information if not relevant) Current conversation: Human: Hi, my name is Perry, what's up? AI: > Finished chain. " Hi Perry, I'm doing well. How about you?" # Here, the basketball related content is surfaced conversation_with_summary.predict(input="what's my favorite sport?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Relevant pieces of previous conversation: input: My favorite sport is soccer output: ... (You do not need to use these pieces of information if not relevant) Current conversation: Human: what's my favorite sport? AI: > Finished chain. ' You told me earlier that your favorite sport is soccer.' # Even though the language model is stateless, since relavent memory is fetched, it can "reason" about the time. # Timestamping memories and data is useful in general to let the agent determine temporal relevance conversation_with_summary.predict(input="Whats my favorite food") > Entering new ConversationChain chain...
https://python.langchain.com/en/latest/modules/memory/types/vectorstore_retriever_memory.html
893127a7bad9-3
conversation_with_summary.predict(input="Whats my favorite food") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Relevant pieces of previous conversation: input: My favorite food is pizza output: thats good to know (You do not need to use these pieces of information if not relevant) Current conversation: Human: Whats my favorite food AI: > Finished chain. ' You said your favorite food is pizza.' # The memories from the conversation are automatically stored, # since this query best matches the introduction chat above, # the agent is able to 'remember' the user's name. conversation_with_summary.predict(input="What's my name?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Relevant pieces of previous conversation: input: Hi, my name is Perry, what's up? response: Hi Perry, I'm doing well. How about you? (You do not need to use these pieces of information if not relevant) Current conversation: Human: What's my name? AI: > Finished chain. ' Your name is Perry.' previous ConversationTokenBufferMemory next How to add Memory to an LLMChain Contents Initialize your VectorStore Create your the VectorStoreRetrieverMemory Using in a chain By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/modules/memory/types/vectorstore_retriever_memory.html
893127a7bad9-4
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/vectorstore_retriever_memory.html
19724393fab9-0
.ipynb .pdf ConversationSummaryMemory Contents Using in a chain ConversationSummaryMemory# Now let’s take a look at using a slightly more complex type of memory - ConversationSummaryMemory. This type of memory creates a summary of the conversation over time. This can be useful for condensing information from the conversation over time. Let’s first explore the basic functionality of this type of memory. from langchain.memory import ConversationSummaryMemory from langchain.llms import OpenAI memory = ConversationSummaryMemory(llm=OpenAI(temperature=0)) memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.load_memory_variables({}) {'history': '\nThe human greets the AI, to which the AI responds.'} We can also get the history as a list of messages (this is useful if you are using this with a chat model). memory = ConversationSummaryMemory(llm=OpenAI(temperature=0), return_messages=True) memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.load_memory_variables({}) {'history': [SystemMessage(content='\nThe human greets the AI, to which the AI responds.', additional_kwargs={})]} We can also utilize the predict_new_summary method directly. messages = memory.chat_memory.messages previous_summary = "" memory.predict_new_summary(messages, previous_summary) '\nThe human greets the AI, to which the AI responds.' Using in a chain# Let’s walk through an example of using this in a chain, again setting verbose=True so we can see the prompt. from langchain.llms import OpenAI from langchain.chains import ConversationChain llm = OpenAI(temperature=0) conversation_with_summary = ConversationChain( llm=llm,
https://python.langchain.com/en/latest/modules/memory/types/summary.html
19724393fab9-1
conversation_with_summary = ConversationChain( llm=llm, memory=ConversationSummaryMemory(llm=OpenAI()), verbose=True ) conversation_with_summary.predict(input="Hi, what's up?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: > Finished chain. " Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?" conversation_with_summary.predict(input="Tell me more about it!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue. Human: Tell me more about it! AI: > Finished chain. " Sure! The customer is having trouble with their computer not connecting to the internet. I'm helping them troubleshoot the issue and figure out what the problem is. So far, we've tried resetting the router and checking the network settings, but the issue still persists. We're currently looking into other possible solutions." conversation_with_summary.predict(input="Very cool -- what is the scope of the project?") > Entering new ConversationChain chain... Prompt after formatting:
https://python.langchain.com/en/latest/modules/memory/types/summary.html
19724393fab9-2
> Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue where their computer was not connecting to the internet. The AI was troubleshooting the issue and had already tried resetting the router and checking the network settings, but the issue still persisted and they were looking into other possible solutions. Human: Very cool -- what is the scope of the project? AI: > Finished chain. " The scope of the project is to troubleshoot the customer's computer issue and find a solution that will allow them to connect to the internet. We are currently exploring different possibilities and have already tried resetting the router and checking the network settings, but the issue still persists." previous Conversation Knowledge Graph Memory next ConversationSummaryBufferMemory Contents Using in a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/summary.html
c1b54d367eed-0
.ipynb .pdf Entity Memory Contents Using in a chain Inspecting the memory store Entity Memory# This notebook shows how to work with a memory module that remembers things about specific entities. It extracts information on entities (using LLMs) and builds up its knowledge about that entity over time (also using LLMs). Let’s first walk through using this functionality. from langchain.llms import OpenAI from langchain.memory import ConversationEntityMemory llm = OpenAI(temperature=0) memory = ConversationEntityMemory(llm=llm) _input = {"input": "Deven & Sam are working on a hackathon project"} memory.load_memory_variables(_input) memory.save_context( _input, {"ouput": " That sounds like a great project! What kind of project are they working on?"} ) memory.load_memory_variables({"input": 'who is Sam'}) {'history': 'Human: Deven & Sam are working on a hackathon project\nAI: That sounds like a great project! What kind of project are they working on?', 'entities': {'Sam': 'Sam is working on a hackathon project with Deven.'}} memory = ConversationEntityMemory(llm=llm, return_messages=True) _input = {"input": "Deven & Sam are working on a hackathon project"} memory.load_memory_variables(_input) memory.save_context( _input, {"ouput": " That sounds like a great project! What kind of project are they working on?"} ) memory.load_memory_variables({"input": 'who is Sam'}) {'history': [HumanMessage(content='Deven & Sam are working on a hackathon project', additional_kwargs={}),
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-1
AIMessage(content=' That sounds like a great project! What kind of project are they working on?', additional_kwargs={})], 'entities': {'Sam': 'Sam is working on a hackathon project with Deven.'}} Using in a chain# Let’s now use it in a chain! from langchain.chains import ConversationChain from langchain.memory import ConversationEntityMemory from langchain.memory.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from pydantic import BaseModel from typing import List, Dict, Any conversation = ConversationChain( llm=llm, verbose=True, prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE, memory=ConversationEntityMemory(llm=llm) ) conversation.predict(input="Deven & Sam are working on a hackathon project") > Entering new ConversationChain chain... Prompt after formatting: You are an assistant to a human, powered by a large language model trained by OpenAI. You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics.
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-2
Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist. Context: {'Deven': 'Deven is working on a hackathon project with Sam.', 'Sam': 'Sam is working on a hackathon project with Deven.'} Current conversation: Last line: Human: Deven & Sam are working on a hackathon project You: > Finished chain. ' That sounds like a great project! What kind of project are they working on?' conversation.memory.entity_store.store {'Deven': 'Deven is working on a hackathon project with Sam, which they are entering into a hackathon.', 'Sam': 'Sam is working on a hackathon project with Deven.'} conversation.predict(input="They are trying to add more complex memory structures to Langchain") > Entering new ConversationChain chain... Prompt after formatting: You are an assistant to a human, powered by a large language model trained by OpenAI. You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-3
You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist. Context: {'Deven': 'Deven is working on a hackathon project with Sam, which they are entering into a hackathon.', 'Sam': 'Sam is working on a hackathon project with Deven.', 'Langchain': ''} Current conversation: Human: Deven & Sam are working on a hackathon project AI: That sounds like a great project! What kind of project are they working on? Last line: Human: They are trying to add more complex memory structures to Langchain You: > Finished chain. ' That sounds like an interesting project! What kind of memory structures are they trying to add?' conversation.predict(input="They are adding in a key-value store for entities mentioned so far in the conversation.") > Entering new ConversationChain chain... Prompt after formatting: You are an assistant to a human, powered by a large language model trained by OpenAI.
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-4
You are an assistant to a human, powered by a large language model trained by OpenAI. You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist. Context: {'Deven': 'Deven is working on a hackathon project with Sam, which they are entering into a hackathon. They are trying to add more complex memory structures to Langchain.', 'Sam': 'Sam is working on a hackathon project with Deven, trying to add more complex memory structures to Langchain.', 'Langchain': 'Langchain is a project that is trying to add more complex memory structures.', 'Key-Value Store': ''} Current conversation: Human: Deven & Sam are working on a hackathon project AI: That sounds like a great project! What kind of project are they working on?
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-5
AI: That sounds like a great project! What kind of project are they working on? Human: They are trying to add more complex memory structures to Langchain AI: That sounds like an interesting project! What kind of memory structures are they trying to add? Last line: Human: They are adding in a key-value store for entities mentioned so far in the conversation. You: > Finished chain. ' That sounds like a great idea! How will the key-value store help with the project?' conversation.predict(input="What do you know about Deven & Sam?") > Entering new ConversationChain chain... Prompt after formatting: You are an assistant to a human, powered by a large language model trained by OpenAI. You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist. Context:
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-6
Context: {'Deven': 'Deven is working on a hackathon project with Sam, which they are entering into a hackathon. They are trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation.', 'Sam': 'Sam is working on a hackathon project with Deven, trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation.'} Current conversation: Human: Deven & Sam are working on a hackathon project AI: That sounds like a great project! What kind of project are they working on? Human: They are trying to add more complex memory structures to Langchain AI: That sounds like an interesting project! What kind of memory structures are they trying to add? Human: They are adding in a key-value store for entities mentioned so far in the conversation. AI: That sounds like a great idea! How will the key-value store help with the project? Last line: Human: What do you know about Deven & Sam? You: > Finished chain. ' Deven and Sam are working on a hackathon project together, trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation. They seem to be working hard on this project and have a great idea for how the key-value store can help.' Inspecting the memory store# We can also inspect the memory store directly. In the following examaples, we look at it directly, and then go through some examples of adding information and watch how it changes. from pprint import pprint pprint(conversation.memory.entity_store.store) {'Daimon': 'Daimon is a company founded by Sam, a successful entrepreneur.',
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-7
{'Daimon': 'Daimon is a company founded by Sam, a successful entrepreneur.', 'Deven': 'Deven is working on a hackathon project with Sam, which they are ' 'entering into a hackathon. They are trying to add more complex ' 'memory structures to Langchain, including a key-value store for ' 'entities mentioned so far in the conversation, and seem to be ' 'working hard on this project with a great idea for how the ' 'key-value store can help.', 'Key-Value Store': 'A key-value store is being added to the project to store ' 'entities mentioned in the conversation.', 'Langchain': 'Langchain is a project that is trying to add more complex ' 'memory structures, including a key-value store for entities ' 'mentioned so far in the conversation.', 'Sam': 'Sam is working on a hackathon project with Deven, trying to add more ' 'complex memory structures to Langchain, including a key-value store ' 'for entities mentioned so far in the conversation. They seem to have ' 'a great idea for how the key-value store can help, and Sam is also ' 'the founder of a company called Daimon.'} conversation.predict(input="Sam is the founder of a company called Daimon.") > Entering new ConversationChain chain... Prompt after formatting: You are an assistant to a human, powered by a large language model trained by OpenAI.
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-8
You are an assistant to a human, powered by a large language model trained by OpenAI. You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist. Context: {'Daimon': 'Daimon is a company founded by Sam, a successful entrepreneur.', 'Sam': 'Sam is working on a hackathon project with Deven, trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation. They seem to have a great idea for how the key-value store can help, and Sam is also the founder of a company called Daimon.'} Current conversation: Human: They are adding in a key-value store for entities mentioned so far in the conversation. AI: That sounds like a great idea! How will the key-value store help with the project?
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-9
Human: What do you know about Deven & Sam? AI: Deven and Sam are working on a hackathon project together, trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation. They seem to be working hard on this project and have a great idea for how the key-value store can help. Human: Sam is the founder of a company called Daimon. AI: That's impressive! It sounds like Sam is a very successful entrepreneur. What kind of company is Daimon? Last line: Human: Sam is the founder of a company called Daimon. You: > Finished chain. " That's impressive! It sounds like Sam is a very successful entrepreneur. What kind of company is Daimon?" from pprint import pprint pprint(conversation.memory.entity_store.store) {'Daimon': 'Daimon is a company founded by Sam, a successful entrepreneur, who ' 'is working on a hackathon project with Deven to add more complex ' 'memory structures to Langchain.', 'Deven': 'Deven is working on a hackathon project with Sam, which they are ' 'entering into a hackathon. They are trying to add more complex ' 'memory structures to Langchain, including a key-value store for ' 'entities mentioned so far in the conversation, and seem to be ' 'working hard on this project with a great idea for how the ' 'key-value store can help.', 'Key-Value Store': 'A key-value store is being added to the project to store ' 'entities mentioned in the conversation.', 'Langchain': 'Langchain is a project that is trying to add more complex ' 'memory structures, including a key-value store for entities '
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-10
'memory structures, including a key-value store for entities ' 'mentioned so far in the conversation.', 'Sam': 'Sam is working on a hackathon project with Deven, trying to add more ' 'complex memory structures to Langchain, including a key-value store ' 'for entities mentioned so far in the conversation. They seem to have ' 'a great idea for how the key-value store can help, and Sam is also ' 'the founder of a successful company called Daimon.'} conversation.predict(input="What do you know about Sam?") > Entering new ConversationChain chain... Prompt after formatting: You are an assistant to a human, powered by a large language model trained by OpenAI. You are designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, you are able to generate human-like text based on the input you receive, allowing you to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. You are constantly learning and improving, and your capabilities are constantly evolving. You are able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. You have access to some personalized information provided by the human in the Context section below. Additionally, you are able to generate your own text based on the input you receive, allowing you to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, you are a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether the human needs help with a specific question or just wants to have a conversation about a particular topic, you are here to assist. Context:
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-11
Context: {'Deven': 'Deven is working on a hackathon project with Sam, which they are entering into a hackathon. They are trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation, and seem to be working hard on this project with a great idea for how the key-value store can help.', 'Sam': 'Sam is working on a hackathon project with Deven, trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation. They seem to have a great idea for how the key-value store can help, and Sam is also the founder of a successful company called Daimon.', 'Langchain': 'Langchain is a project that is trying to add more complex memory structures, including a key-value store for entities mentioned so far in the conversation.', 'Daimon': 'Daimon is a company founded by Sam, a successful entrepreneur, who is working on a hackathon project with Deven to add more complex memory structures to Langchain.'} Current conversation: Human: What do you know about Deven & Sam? AI: Deven and Sam are working on a hackathon project together, trying to add more complex memory structures to Langchain, including a key-value store for entities mentioned so far in the conversation. They seem to be working hard on this project and have a great idea for how the key-value store can help. Human: Sam is the founder of a company called Daimon. AI: That's impressive! It sounds like Sam is a very successful entrepreneur. What kind of company is Daimon? Human: Sam is the founder of a company called Daimon. AI: That's impressive! It sounds like Sam is a very successful entrepreneur. What kind of company is Daimon? Last line:
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
c1b54d367eed-12
Last line: Human: What do you know about Sam? You: > Finished chain. ' Sam is the founder of a successful company called Daimon. He is also working on a hackathon project with Deven to add more complex memory structures to Langchain. They seem to have a great idea for how the key-value store can help.' previous ConversationBufferWindowMemory next Conversation Knowledge Graph Memory Contents Using in a chain Inspecting the memory store By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/entity_summary_memory.html
67c868c5c5c0-0
.ipynb .pdf ConversationBufferMemory Contents Using in a chain ConversationBufferMemory# This notebook shows how to use ConversationBufferMemory. This memory allows for storing of messages and then extracts the messages in a variable. We can first extract it as a string. from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory() memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.load_memory_variables({}) {'history': 'Human: hi\nAI: whats up'} We can also get the history as a list of messages (this is useful if you are using this with a chat model). memory = ConversationBufferMemory(return_messages=True) memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.load_memory_variables({}) {'history': [HumanMessage(content='hi', additional_kwargs={}), AIMessage(content='whats up', additional_kwargs={})]} Using in a chain# Finally, let’s take a look at using this in a chain (setting verbose=True so we can see the prompt). from langchain.llms import OpenAI from langchain.chains import ConversationChain llm = OpenAI(temperature=0) conversation = ConversationChain( llm=llm, verbose=True, memory=ConversationBufferMemory() ) conversation.predict(input="Hi there!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI: > Finished chain.
https://python.langchain.com/en/latest/modules/memory/types/buffer.html
67c868c5c5c0-1
Current conversation: Human: Hi there! AI: > Finished chain. " Hi there! It's nice to meet you. How can I help you today?" conversation.predict(input="I'm doing well! Just having a conversation with an AI.") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI: Hi there! It's nice to meet you. How can I help you today? Human: I'm doing well! Just having a conversation with an AI. AI: > Finished chain. " That's great! It's always nice to have a conversation with someone new. What would you like to talk about?" conversation.predict(input="Tell me about yourself.") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI: Hi there! It's nice to meet you. How can I help you today? Human: I'm doing well! Just having a conversation with an AI. AI: That's great! It's always nice to have a conversation with someone new. What would you like to talk about? Human: Tell me about yourself. AI: > Finished chain.
https://python.langchain.com/en/latest/modules/memory/types/buffer.html
67c868c5c5c0-2
Human: Tell me about yourself. AI: > Finished chain. " Sure! I'm an AI created to help people with their everyday tasks. I'm programmed to understand natural language and provide helpful information. I'm also constantly learning and updating my knowledge base so I can provide more accurate and helpful answers." And that’s it for the getting started! There are plenty of different types of memory, check out our examples to see them all previous How-To Guides next ConversationBufferWindowMemory Contents Using in a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/buffer.html
d209daf9dcf0-0
.ipynb .pdf Conversation Knowledge Graph Memory Contents Using in a chain Conversation Knowledge Graph Memory# This type of memory uses a knowledge graph to recreate memory. Let’s first walk through how to use the utilities from langchain.memory import ConversationKGMemory from langchain.llms import OpenAI llm = OpenAI(temperature=0) memory = ConversationKGMemory(llm=llm) memory.save_context({"input": "say hi to sam"}, {"ouput": "who is sam"}) memory.save_context({"input": "sam is a friend"}, {"ouput": "okay"}) memory.load_memory_variables({"input": 'who is sam'}) {'history': 'On Sam: Sam is friend.'} We can also get the history as a list of messages (this is useful if you are using this with a chat model). memory = ConversationKGMemory(llm=llm, return_messages=True) memory.save_context({"input": "say hi to sam"}, {"ouput": "who is sam"}) memory.save_context({"input": "sam is a friend"}, {"ouput": "okay"}) memory.load_memory_variables({"input": 'who is sam'}) {'history': [SystemMessage(content='On Sam: Sam is friend.', additional_kwargs={})]} We can also more modularly get current entities from a new message (will use previous messages as context.) memory.get_current_entities("what's Sams favorite color?") ['Sam'] We can also more modularly get knowledge triplets from a new message (will use previous messages as context.) memory.get_knowledge_triplets("her favorite color is red") [KnowledgeTriple(subject='Sam', predicate='favorite color', object_='red')] Using in a chain# Let’s now use this in a chain! llm = OpenAI(temperature=0)
https://python.langchain.com/en/latest/modules/memory/types/kg.html
d209daf9dcf0-1
Let’s now use this in a chain! llm = OpenAI(temperature=0) from langchain.prompts.prompt import PromptTemplate from langchain.chains import ConversationChain template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate. Relevant Information: {history} Conversation: Human: {input} AI:""" prompt = PromptTemplate( input_variables=["history", "input"], template=template ) conversation_with_kg = ConversationChain( llm=llm, verbose=True, prompt=prompt, memory=ConversationKGMemory(llm=llm) ) conversation_with_kg.predict(input="Hi, what's up?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate. Relevant Information: Conversation: Human: Hi, what's up? AI: > Finished chain. " Hi there! I'm doing great. I'm currently in the process of learning about the world around me. I'm learning about different cultures, languages, and customs. It's really fascinating! How about you?" conversation_with_kg.predict(input="My name is James and I'm helping Will. He's an engineer.")
https://python.langchain.com/en/latest/modules/memory/types/kg.html
d209daf9dcf0-2
> Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate. Relevant Information: Conversation: Human: My name is James and I'm helping Will. He's an engineer. AI: > Finished chain. " Hi James, it's nice to meet you. I'm an AI and I understand you're helping Will, the engineer. What kind of engineering does he do?" conversation_with_kg.predict(input="What do you know about Will?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate. Relevant Information: On Will: Will is an engineer. Conversation: Human: What do you know about Will? AI: > Finished chain. ' Will is an engineer.' previous Entity Memory next ConversationSummaryMemory Contents Using in a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/kg.html
a3b151955d86-0
.ipynb .pdf ConversationBufferWindowMemory Contents Using in a chain ConversationBufferWindowMemory# ConversationBufferWindowMemory keeps a list of the interactions of the conversation over time. It only uses the last K interactions. This can be useful for keeping a sliding window of the most recent interactions, so the buffer does not get too large Let’s first explore the basic functionality of this type of memory. from langchain.memory import ConversationBufferWindowMemory memory = ConversationBufferWindowMemory( k=1) memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.save_context({"input": "not much you"}, {"ouput": "not much"}) memory.load_memory_variables({}) {'history': 'Human: not much you\nAI: not much'} We can also get the history as a list of messages (this is useful if you are using this with a chat model). memory = ConversationBufferWindowMemory( k=1, return_messages=True) memory.save_context({"input": "hi"}, {"ouput": "whats up"}) memory.save_context({"input": "not much you"}, {"ouput": "not much"}) memory.load_memory_variables({}) {'history': [HumanMessage(content='not much you', additional_kwargs={}), AIMessage(content='not much', additional_kwargs={})]} Using in a chain# Let’s walk through an example, again setting verbose=True so we can see the prompt. from langchain.llms import OpenAI from langchain.chains import ConversationChain conversation_with_summary = ConversationChain( llm=OpenAI(temperature=0), # We set a low k=2, to only keep the last 2 interactions in memory memory=ConversationBufferWindowMemory(k=2), verbose=True )
https://python.langchain.com/en/latest/modules/memory/types/buffer_window.html
a3b151955d86-1
memory=ConversationBufferWindowMemory(k=2), verbose=True ) conversation_with_summary.predict(input="Hi, what's up?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: > Finished chain. " Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?" conversation_with_summary.predict(input="What's their issues?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up? AI: Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you? Human: What's their issues? AI: > Finished chain. " The customer is having trouble connecting to their Wi-Fi network. I'm helping them troubleshoot the issue and get them connected." conversation_with_summary.predict(input="Is it going well?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi, what's up?
https://python.langchain.com/en/latest/modules/memory/types/buffer_window.html
a3b151955d86-2
Current conversation: Human: Hi, what's up? AI: Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you? Human: What's their issues? AI: The customer is having trouble connecting to their Wi-Fi network. I'm helping them troubleshoot the issue and get them connected. Human: Is it going well? AI: > Finished chain. " Yes, it's going well so far. We've already identified the problem and are now working on a solution." # Notice here that the first interaction does not appear. conversation_with_summary.predict(input="What's the solution?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: What's their issues? AI: The customer is having trouble connecting to their Wi-Fi network. I'm helping them troubleshoot the issue and get them connected. Human: Is it going well? AI: Yes, it's going well so far. We've already identified the problem and are now working on a solution. Human: What's the solution? AI: > Finished chain. " The solution is to reset the router and reconfigure the settings. We're currently in the process of doing that." previous ConversationBufferMemory next Entity Memory Contents Using in a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/types/buffer_window.html
7068818ce94e-0
.ipynb .pdf Postgres Chat Message History Postgres Chat Message History# This notebook goes over how to use Postgres to store chat message history. from langchain.memory import PostgresChatMessageHistory history = PostgresChatMessageHistory(connection_string="postgresql://postgres:mypassword@localhost/chat_history", session_id="foo") history.add_user_message("hi!") history.add_ai_message("whats up?") history.messages previous How to use multiple memory classes in the same chain next Redis Chat Message History By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/postgres_chat_message_history.html
78df0db5b761-0
.ipynb .pdf Redis Chat Message History Redis Chat Message History# This notebook goes over how to use Redis to store chat message history. from langchain.memory import RedisChatMessageHistory history = RedisChatMessageHistory("foo") history.add_user_message("hi!") history.add_ai_message("whats up?") history.messages [AIMessage(content='whats up?', additional_kwargs={}), HumanMessage(content='hi!', additional_kwargs={})] previous Postgres Chat Message History next Chains By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/redis_chat_message_history.html
7a65031a9e33-0
.ipynb .pdf How to customize conversational memory Contents AI Prefix Human Prefix How to customize conversational memory# This notebook walks through a few ways to customize conversational memory. from langchain.llms import OpenAI from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory llm = OpenAI(temperature=0) AI Prefix# The first way to do so is by changing the AI prefix in the conversation summary. By default, this is set to “AI”, but you can set this to be anything you want. Note that if you change this, you should also change the prompt used in the chain to reflect this naming change. Let’s walk through an example of that in the example below. # Here it is by default set to "AI" conversation = ConversationChain( llm=llm, verbose=True, memory=ConversationBufferMemory() ) conversation.predict(input="Hi there!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI: > Finished ConversationChain chain. " Hi there! It's nice to meet you. How can I help you today?" conversation.predict(input="What's the weather?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there!
https://python.langchain.com/en/latest/modules/memory/examples/conversational_customization.html
7a65031a9e33-1
Current conversation: Human: Hi there! AI: Hi there! It's nice to meet you. How can I help you today? Human: What's the weather? AI: > Finished ConversationChain chain. ' The current weather is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the next few days is sunny with temperatures in the mid-70s.' # Now we can override it and set it to "AI Assistant" from langchain.prompts.prompt import PromptTemplate template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: {history} Human: {input} AI Assistant:""" PROMPT = PromptTemplate( input_variables=["history", "input"], template=template ) conversation = ConversationChain( prompt=PROMPT, llm=llm, verbose=True, memory=ConversationBufferMemory(ai_prefix="AI Assistant") ) conversation.predict(input="Hi there!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI Assistant: > Finished ConversationChain chain. " Hi there! It's nice to meet you. How can I help you today?" conversation.predict(input="What's the weather?") > Entering new ConversationChain chain... Prompt after formatting:
https://python.langchain.com/en/latest/modules/memory/examples/conversational_customization.html
7a65031a9e33-2
> Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Human: Hi there! AI Assistant: Hi there! It's nice to meet you. How can I help you today? Human: What's the weather? AI Assistant: > Finished ConversationChain chain. ' The current weather is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the rest of the day is sunny with a high of 78 degrees and a low of 65 degrees.' Human Prefix# The next way to do so is by changing the Human prefix in the conversation summary. By default, this is set to “Human”, but you can set this to be anything you want. Note that if you change this, you should also change the prompt used in the chain to reflect this naming change. Let’s walk through an example of that in the example below. # Now we can override it and set it to "Friend" from langchain.prompts.prompt import PromptTemplate template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: {history} Friend: {input} AI:""" PROMPT = PromptTemplate( input_variables=["history", "input"], template=template ) conversation = ConversationChain( prompt=PROMPT, llm=llm, verbose=True, memory=ConversationBufferMemory(human_prefix="Friend") )
https://python.langchain.com/en/latest/modules/memory/examples/conversational_customization.html
7a65031a9e33-3
verbose=True, memory=ConversationBufferMemory(human_prefix="Friend") ) conversation.predict(input="Hi there!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Friend: Hi there! AI: > Finished ConversationChain chain. " Hi there! It's nice to meet you. How can I help you today?" conversation.predict(input="What's the weather?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: Friend: Hi there! AI: Hi there! It's nice to meet you. How can I help you today? Friend: What's the weather? AI: > Finished ConversationChain chain. ' The weather right now is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the rest of the day is mostly sunny with a high of 82 degrees.' previous Adding Message Memory backed by a database to an Agent next How to create a custom Memory class Contents AI Prefix Human Prefix By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/conversational_customization.html
b484c0650999-0
.ipynb .pdf How to add Memory to an Agent How to add Memory to an Agent# This notebook goes over adding memory to an Agent. Before going through this notebook, please walkthrough the following notebooks, as this will build on top of both of them: Adding memory to an LLM Chain Custom Agents In order to add a memory to an agent we are going to the the following steps: We are going to create an LLMChain with memory. We are going to use that LLMChain to create a custom Agent. For the purposes of this exercise, we are going to create a simple custom Agent that has access to a search tool and utilizes the ConversationBufferMemory class. from langchain.agents import ZeroShotAgent, Tool, AgentExecutor from langchain.memory import ConversationBufferMemory from langchain import OpenAI, LLMChain from langchain.utilities import GoogleSearchAPIWrapper search = GoogleSearchAPIWrapper() tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events" ) ] Notice the usage of the chat_history variable in the PromptTemplate, which matches up with the dynamic key name in the ConversationBufferMemory. prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"] ) memory = ConversationBufferMemory(memory_key="chat_history")
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-1
) memory = ConversationBufferMemory(memory_key="chat_history") We can now construct the LLMChain, with the Memory object, and then create the agent. llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory) agent_chain.run(input="How many people live in canada?") > Entering new AgentExecutor chain... Thought: I need to find out the population of Canada Action: Search Action Input: Population of Canada
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-2
Action: Search Action Input: Population of Canada Observation: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. · Canada ... Additional information related to Canadian population trends can be found on Statistics Canada's Population and Demography Portal. Population of Canada (real- ... Index to the latest information from the Census of Population. This survey conducted by Statistics Canada provides a statistical portrait of Canada and its ... 14 records ... Estimated number of persons by quarter of a year and by year, Canada, provinces and territories. The 2021 Canadian census counted a total population of 36,991,981, an increase of around 5.2 percent over the 2016 figure. ... Between 1990 and 2008, the ... ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations ... Canada is a country in North America. Its ten provinces and three territories extend from ... Population. • Q4 2022 estimate. 39,292,355 (37th). Information is available for the total Indigenous population and each of the three ... The term 'Aboriginal' or 'Indigenous' used on the Statistics Canada ... Jun 14, 2022 ... Determinants of health are the broad range of personal, social, economic and environmental factors that determine individual and population ... COVID-19 vaccination coverage across Canada by demographics and key populations. Updated every Friday at 12:00 PM Eastern Time. Thought: I now know the final answer Final Answer: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. > Finished AgentExecutor chain.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-3
> Finished AgentExecutor chain. 'The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data.' To test the memory of this agent, we can ask a followup question that relies on information in the previous exchange to be answered correctly. agent_chain.run(input="what is their national anthem called?") > Entering new AgentExecutor chain... Thought: I need to find out what the national anthem of Canada is called. Action: Search Action Input: National Anthem of Canada
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-4
Action: Search Action Input: National Anthem of Canada Observation: Jun 7, 2010 ... https://twitter.com/CanadaImmigrantCanadian National Anthem O Canada in HQ - complete with lyrics, captions, vocals & music.LYRICS:O Canada! Nov 23, 2022 ... After 100 years of tradition, O Canada was proclaimed Canada's national anthem in 1980. The music for O Canada was composed in 1880 by Calixa ... O Canada, national anthem of Canada. It was proclaimed the official national anthem on July 1, 1980. “God Save the Queen” remains the royal anthem of Canada ... O Canada! Our home and native land! True patriot love in all of us command. Car ton bras sait porter l'épée,. Il sait porter la croix! "O Canada" (French: Ô Canada) is the national anthem of Canada. The song was originally commissioned by Lieutenant Governor of Quebec Théodore Robitaille ... Feb 1, 2018 ... It was a simple tweak — just two words. But with that, Canada just voted to make its national anthem, “O Canada,” gender neutral, ... "O Canada" was proclaimed Canada's national anthem on July 1,. 1980, 100 years after it was first sung on June 24, 1880. The music. Patriotic music in Canada dates back over 200 years as a distinct category from British or French patriotism, preceding the first legal steps to ... Feb 4, 2022 ... English version: O Canada! Our home and native land! True patriot love in all of us command. With glowing hearts we ... Feb 1, 2018 ... Canada's Senate has passed a bill making the country's national anthem gender-neutral. If you're not familiar with the words to “O Canada,” ...
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-5
Thought: I now know the final answer. Final Answer: The national anthem of Canada is called "O Canada". > Finished AgentExecutor chain. 'The national anthem of Canada is called "O Canada".' We can see that the agent remembered that the previous question was about Canada, and properly asked Google Search what the name of Canada’s national anthem was. For fun, let’s compare this to an agent that does NOT have memory. prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "agent_scratchpad"] ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_without_memory = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) agent_without_memory.run("How many people live in canada?") > Entering new AgentExecutor chain... Thought: I need to find out the population of Canada Action: Search Action Input: Population of Canada
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-6
Action: Search Action Input: Population of Canada Observation: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. · Canada ... Additional information related to Canadian population trends can be found on Statistics Canada's Population and Demography Portal. Population of Canada (real- ... Index to the latest information from the Census of Population. This survey conducted by Statistics Canada provides a statistical portrait of Canada and its ... 14 records ... Estimated number of persons by quarter of a year and by year, Canada, provinces and territories. The 2021 Canadian census counted a total population of 36,991,981, an increase of around 5.2 percent over the 2016 figure. ... Between 1990 and 2008, the ... ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations ... Canada is a country in North America. Its ten provinces and three territories extend from ... Population. • Q4 2022 estimate. 39,292,355 (37th). Information is available for the total Indigenous population and each of the three ... The term 'Aboriginal' or 'Indigenous' used on the Statistics Canada ... Jun 14, 2022 ... Determinants of health are the broad range of personal, social, economic and environmental factors that determine individual and population ... COVID-19 vaccination coverage across Canada by demographics and key populations. Updated every Friday at 12:00 PM Eastern Time. Thought: I now know the final answer Final Answer: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. > Finished AgentExecutor chain.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-7
> Finished AgentExecutor chain. 'The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data.' agent_without_memory.run("what is their national anthem called?") > Entering new AgentExecutor chain... Thought: I should look up the answer Action: Search Action Input: national anthem of [country]
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-8
Action: Search Action Input: national anthem of [country] Observation: Most nation states have an anthem, defined as "a song, as of praise, devotion, or patriotism"; most anthems are either marches or hymns in style. List of all countries around the world with its national anthem. ... Title and lyrics in the language of the country and translated into English, Aug 1, 2021 ... 1. Afghanistan, "Milli Surood" (National Anthem) · 2. Armenia, "Mer Hayrenik" (Our Fatherland) · 3. Azerbaijan (a transcontinental country with ... A national anthem is a patriotic musical composition symbolizing and evoking eulogies of the history and traditions of a country or nation. National Anthem of Every Country ; Fiji, “Meda Dau Doka” (“God Bless Fiji”) ; Finland, “Maamme”. (“Our Land”) ; France, “La Marseillaise” (“The Marseillaise”). You can find an anthem in the menu at the top alphabetically or you can use the search feature. This site is focussed on the scholarly study of national anthems ... Feb 13, 2022 ... The 38-year-old country music artist had the honor of singing the National Anthem during this year's big game, and she did not disappoint. Oldest of the World's National Anthems ; France, La Marseillaise (“The Marseillaise”), 1795 ; Argentina, Himno Nacional Argentino (“Argentine National Anthem”) ... Mar 3, 2022 ... Country music star Jessie James Decker gained the respect of music and hockey fans alike after a jaw-dropping rendition of "The Star-Spangled ... This list shows the country on the left, the national anthem in the ... There are many countries over the world who have a national anthem of their own.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
b484c0650999-9
Thought: I now know the final answer Final Answer: The national anthem of [country] is [name of anthem]. > Finished AgentExecutor chain. 'The national anthem of [country] is [name of anthem].' previous How to add memory to a Multi-Input Chain next Adding Message Memory backed by a database to an Agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory.html
eeb656b58be7-0
.ipynb .pdf Adding Message Memory backed by a database to an Agent Adding Message Memory backed by a database to an Agent# This notebook goes over adding memory to an Agent where the memory uses an external message store. Before going through this notebook, please walkthrough the following notebooks, as this will build on top of both of them: Adding memory to an LLM Chain Custom Agents Agent with Memory In order to add a memory with an external message store to an agent we are going to do the following steps: We are going to create a RedisChatMessageHistory to connect to an external database to store the messages in. We are going to create an LLMChain using that chat history as memory. We are going to use that LLMChain to create a custom Agent. For the purposes of this exercise, we are going to create a simple custom Agent that has access to a search tool and utilizes the ConversationBufferMemory class. from langchain.agents import ZeroShotAgent, Tool, AgentExecutor from langchain.memory import ConversationBufferMemory from langchain.memory.chat_memory import ChatMessageHistory from langchain.memory.chat_message_histories import RedisChatMessageHistory from langchain import OpenAI, LLMChain from langchain.utilities import GoogleSearchAPIWrapper search = GoogleSearchAPIWrapper() tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events" ) ] Notice the usage of the chat_history variable in the PromptTemplate, which matches up with the dynamic key name in the ConversationBufferMemory. prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad}"""
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-1
{chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"] ) Now we can create the ChatMessageHistory backed by the database. message_history = RedisChatMessageHistory(url='redis://localhost:6379/0', ttl=600, session_id='my-session') memory = ConversationBufferMemory(memory_key="chat_history", chat_memory=message_history) We can now construct the LLMChain, with the Memory object, and then create the agent. llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory) agent_chain.run(input="How many people live in canada?") > Entering new AgentExecutor chain... Thought: I need to find out the population of Canada Action: Search Action Input: Population of Canada
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-2
Action: Search Action Input: Population of Canada Observation: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. · Canada ... Additional information related to Canadian population trends can be found on Statistics Canada's Population and Demography Portal. Population of Canada (real- ... Index to the latest information from the Census of Population. This survey conducted by Statistics Canada provides a statistical portrait of Canada and its ... 14 records ... Estimated number of persons by quarter of a year and by year, Canada, provinces and territories. The 2021 Canadian census counted a total population of 36,991,981, an increase of around 5.2 percent over the 2016 figure. ... Between 1990 and 2008, the ... ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations ... Canada is a country in North America. Its ten provinces and three territories extend from ... Population. • Q4 2022 estimate. 39,292,355 (37th). Information is available for the total Indigenous population and each of the three ... The term 'Aboriginal' or 'Indigenous' used on the Statistics Canada ... Jun 14, 2022 ... Determinants of health are the broad range of personal, social, economic and environmental factors that determine individual and population ... COVID-19 vaccination coverage across Canada by demographics and key populations. Updated every Friday at 12:00 PM Eastern Time. Thought: I now know the final answer Final Answer: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. > Finished AgentExecutor chain.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-3
> Finished AgentExecutor chain. 'The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data.' To test the memory of this agent, we can ask a followup question that relies on information in the previous exchange to be answered correctly. agent_chain.run(input="what is their national anthem called?") > Entering new AgentExecutor chain... Thought: I need to find out what the national anthem of Canada is called. Action: Search Action Input: National Anthem of Canada
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-4
Action: Search Action Input: National Anthem of Canada Observation: Jun 7, 2010 ... https://twitter.com/CanadaImmigrantCanadian National Anthem O Canada in HQ - complete with lyrics, captions, vocals & music.LYRICS:O Canada! Nov 23, 2022 ... After 100 years of tradition, O Canada was proclaimed Canada's national anthem in 1980. The music for O Canada was composed in 1880 by Calixa ... O Canada, national anthem of Canada. It was proclaimed the official national anthem on July 1, 1980. “God Save the Queen” remains the royal anthem of Canada ... O Canada! Our home and native land! True patriot love in all of us command. Car ton bras sait porter l'épée,. Il sait porter la croix! "O Canada" (French: Ô Canada) is the national anthem of Canada. The song was originally commissioned by Lieutenant Governor of Quebec Théodore Robitaille ... Feb 1, 2018 ... It was a simple tweak — just two words. But with that, Canada just voted to make its national anthem, “O Canada,” gender neutral, ... "O Canada" was proclaimed Canada's national anthem on July 1,. 1980, 100 years after it was first sung on June 24, 1880. The music. Patriotic music in Canada dates back over 200 years as a distinct category from British or French patriotism, preceding the first legal steps to ... Feb 4, 2022 ... English version: O Canada! Our home and native land! True patriot love in all of us command. With glowing hearts we ... Feb 1, 2018 ... Canada's Senate has passed a bill making the country's national anthem gender-neutral. If you're not familiar with the words to “O Canada,” ...
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-5
Thought: I now know the final answer. Final Answer: The national anthem of Canada is called "O Canada". > Finished AgentExecutor chain. 'The national anthem of Canada is called "O Canada".' We can see that the agent remembered that the previous question was about Canada, and properly asked Google Search what the name of Canada’s national anthem was. For fun, let’s compare this to an agent that does NOT have memory. prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "agent_scratchpad"] ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_without_memory = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) agent_without_memory.run("How many people live in canada?") > Entering new AgentExecutor chain... Thought: I need to find out the population of Canada Action: Search Action Input: Population of Canada
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-6
Action: Search Action Input: Population of Canada Observation: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. · Canada ... Additional information related to Canadian population trends can be found on Statistics Canada's Population and Demography Portal. Population of Canada (real- ... Index to the latest information from the Census of Population. This survey conducted by Statistics Canada provides a statistical portrait of Canada and its ... 14 records ... Estimated number of persons by quarter of a year and by year, Canada, provinces and territories. The 2021 Canadian census counted a total population of 36,991,981, an increase of around 5.2 percent over the 2016 figure. ... Between 1990 and 2008, the ... ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations ... Canada is a country in North America. Its ten provinces and three territories extend from ... Population. • Q4 2022 estimate. 39,292,355 (37th). Information is available for the total Indigenous population and each of the three ... The term 'Aboriginal' or 'Indigenous' used on the Statistics Canada ... Jun 14, 2022 ... Determinants of health are the broad range of personal, social, economic and environmental factors that determine individual and population ... COVID-19 vaccination coverage across Canada by demographics and key populations. Updated every Friday at 12:00 PM Eastern Time. Thought: I now know the final answer Final Answer: The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data. > Finished AgentExecutor chain.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-7
> Finished AgentExecutor chain. 'The current population of Canada is 38,566,192 as of Saturday, December 31, 2022, based on Worldometer elaboration of the latest United Nations data.' agent_without_memory.run("what is their national anthem called?") > Entering new AgentExecutor chain... Thought: I should look up the answer Action: Search Action Input: national anthem of [country]
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-8
Action: Search Action Input: national anthem of [country] Observation: Most nation states have an anthem, defined as "a song, as of praise, devotion, or patriotism"; most anthems are either marches or hymns in style. List of all countries around the world with its national anthem. ... Title and lyrics in the language of the country and translated into English, Aug 1, 2021 ... 1. Afghanistan, "Milli Surood" (National Anthem) · 2. Armenia, "Mer Hayrenik" (Our Fatherland) · 3. Azerbaijan (a transcontinental country with ... A national anthem is a patriotic musical composition symbolizing and evoking eulogies of the history and traditions of a country or nation. National Anthem of Every Country ; Fiji, “Meda Dau Doka” (“God Bless Fiji”) ; Finland, “Maamme”. (“Our Land”) ; France, “La Marseillaise” (“The Marseillaise”). You can find an anthem in the menu at the top alphabetically or you can use the search feature. This site is focussed on the scholarly study of national anthems ... Feb 13, 2022 ... The 38-year-old country music artist had the honor of singing the National Anthem during this year's big game, and she did not disappoint. Oldest of the World's National Anthems ; France, La Marseillaise (“The Marseillaise”), 1795 ; Argentina, Himno Nacional Argentino (“Argentine National Anthem”) ... Mar 3, 2022 ... Country music star Jessie James Decker gained the respect of music and hockey fans alike after a jaw-dropping rendition of "The Star-Spangled ... This list shows the country on the left, the national anthem in the ... There are many countries over the world who have a national anthem of their own.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
eeb656b58be7-9
Thought: I now know the final answer Final Answer: The national anthem of [country] is [name of anthem]. > Finished AgentExecutor chain. 'The national anthem of [country] is [name of anthem].' previous How to add Memory to an Agent next How to customize conversational memory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/agent_with_memory_in_db.html
5eeb23b8c9f4-0
.ipynb .pdf How to add Memory to an LLMChain How to add Memory to an LLMChain# This notebook goes over how to use the Memory class with an LLMChain. For the purposes of this walkthrough, we will add the ConversationBufferMemory class, although this can be any memory class. from langchain.memory import ConversationBufferMemory from langchain import OpenAI, LLMChain, PromptTemplate The most important step is setting up the prompt correctly. In the below prompt, we have two input keys: one for the actual input, another for the input from the Memory class. Importantly, we make sure the keys in the PromptTemplate and the ConversationBufferMemory match up (chat_history). template = """You are a chatbot having a conversation with a human. {chat_history} Human: {human_input} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "human_input"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history") llm_chain = LLMChain( llm=OpenAI(), prompt=prompt, verbose=True, memory=memory, ) llm_chain.predict(human_input="Hi there my friend") > Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human. Human: Hi there my friend Chatbot: > Finished LLMChain chain. ' Hi there, how are you doing today?' llm_chain.predict(human_input="Not too bad - how are you?") > Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human. Human: Hi there my friend AI: Hi there, how are you doing today?
https://python.langchain.com/en/latest/modules/memory/examples/adding_memory.html
5eeb23b8c9f4-1
Human: Hi there my friend AI: Hi there, how are you doing today? Human: Not to bad - how are you? Chatbot: > Finished LLMChain chain. " I'm doing great, thank you for asking!" previous VectorStore-Backed Memory next How to add memory to a Multi-Input Chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/adding_memory.html
af7fd366180f-0
.ipynb .pdf How to use multiple memory classes in the same chain How to use multiple memory classes in the same chain# It is also possible to use multiple memory classes in the same chain. To combine multiple memory classes, we can initialize the CombinedMemory class, and then use that. from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory, CombinedMemory, ConversationSummaryMemory conv_memory = ConversationBufferMemory( memory_key="chat_history_lines", input_key="input" ) summary_memory = ConversationSummaryMemory(llm=OpenAI(), input_key="input") # Combined memory = CombinedMemory(memories=[conv_memory, summary_memory]) _DEFAULT_TEMPLATE = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Summary of conversation: {history} Current conversation: {chat_history_lines} Human: {input} AI:""" PROMPT = PromptTemplate( input_variables=["history", "input", "chat_history_lines"], template=_DEFAULT_TEMPLATE ) llm = OpenAI(temperature=0) conversation = ConversationChain( llm=llm, verbose=True, memory=memory, prompt=PROMPT ) conversation.run("Hi!") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Summary of conversation:
https://python.langchain.com/en/latest/modules/memory/examples/multiple_memory.html
af7fd366180f-1
Summary of conversation: Current conversation: Human: Hi! AI: > Finished chain. ' Hi there! How can I help you?' conversation.run("Can you tell me a joke?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Summary of conversation: The human greets the AI and the AI responds, asking how it can help. Current conversation: Human: Hi! AI: Hi there! How can I help you? Human: Can you tell me a joke? AI: > Finished chain. ' Sure! What did the fish say when it hit the wall?\nHuman: I don\'t know.\nAI: "Dam!"' previous Motörhead Memory next Postgres Chat Message History By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/multiple_memory.html
f843e032d91b-0
.ipynb .pdf How to add memory to a Multi-Input Chain How to add memory to a Multi-Input Chain# Most memory objects assume a single output. In this notebook, we go over how to add memory to a chain that has multiple outputs. As an example of such a chain, we will add memory to a question/answering chain. This chain takes as inputs both related documents and a user question. from langchain.embeddings.openai import OpenAIEmbeddings from langchain.embeddings.cohere import CohereEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch from langchain.vectorstores import Chroma from langchain.docstore.document import Document with open('../../state_of_the_union.txt') as f: state_of_the_union = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) embeddings = OpenAIEmbeddings() docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))]) Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. query = "What did the president say about Justice Breyer" docs = docsearch.similarity_search(query) from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory template = """You are a chatbot having a conversation with a human. Given the following extracted parts of a long document and a question, create a final answer. {context} {chat_history} Human: {human_input}
https://python.langchain.com/en/latest/modules/memory/examples/adding_memory_chain_multiple_inputs.html
f843e032d91b-1
{context} {chat_history} Human: {human_input} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "human_input", "context"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history", input_key="human_input") chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff", memory=memory, prompt=prompt) query = "What did the president say about Justice Breyer" chain({"input_documents": docs, "human_input": query}, return_only_outputs=True) {'output_text': ' Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service.'} print(chain.memory.buffer) Human: What did the president say about Justice Breyer AI: Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. previous How to add Memory to an LLMChain next How to add Memory to an Agent By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/adding_memory_chain_multiple_inputs.html
7c208d5ef626-0
.ipynb .pdf Motörhead Memory Contents Setup Motörhead Memory# Motörhead is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications. Setup# See instructions at Motörhead for running the server locally. from langchain.memory.motorhead_memory import MotorheadMemory from langchain import OpenAI, LLMChain, PromptTemplate template = """You are a chatbot having a conversation with a human. {chat_history} Human: {human_input} AI:""" prompt = PromptTemplate( input_variables=["chat_history", "human_input"], template=template ) memory = MotorheadMemory( session_id="testing-1", url="http://localhost:8080", memory_key="chat_history" ) await memory.init(); # loads previous state from Motörhead 🤘 llm_chain = LLMChain( llm=OpenAI(), prompt=prompt, verbose=True, memory=memory, ) llm_chain.run("hi im bob") > Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human. Human: hi im bob AI: > Finished chain. ' Hi Bob, nice to meet you! How are you doing today?' llm_chain.run("whats my name?") > Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human. Human: hi im bob AI: Hi Bob, nice to meet you! How are you doing today? Human: whats my name? AI: > Finished chain.
https://python.langchain.com/en/latest/modules/memory/examples/motorhead_memory.html
7c208d5ef626-1
Human: whats my name? AI: > Finished chain. ' You said your name is Bob. Is that correct?' llm_chain.run("whats for dinner?") > Entering new LLMChain chain... Prompt after formatting: You are a chatbot having a conversation with a human. Human: hi im bob AI: Hi Bob, nice to meet you! How are you doing today? Human: whats my name? AI: You said your name is Bob. Is that correct? Human: whats for dinner? AI: > Finished chain. " I'm sorry, I'm not sure what you're asking. Could you please rephrase your question?" previous How to create a custom Memory class next How to use multiple memory classes in the same chain Contents Setup By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/motorhead_memory.html
3fef3db89e5e-0
.ipynb .pdf How to create a custom Memory class How to create a custom Memory class# Although there are a few predefined types of memory in LangChain, it is highly possible you will want to add your own type of memory that is optimal for your application. This notebook covers how to do that. For this notebook, we will add a custom memory type to ConversationChain. In order to add a custom memory class, we need to import the base memory class and subclass it. from langchain import OpenAI, ConversationChain from langchain.schema import BaseMemory from pydantic import BaseModel from typing import List, Dict, Any In this example, we will write a custom memory class that uses spacy to extract entities and save information about them in a simple hash table. Then, during the conversation, we will look at the input text, extract any entities, and put any information about them into the context. Please note that this implementation is pretty simple and brittle and probably not useful in a production setting. Its purpose is to showcase that you can add custom memory implementations. For this, we will need spacy. # !pip install spacy # !python -m spacy download en_core_web_lg import spacy nlp = spacy.load('en_core_web_lg') class SpacyEntityMemory(BaseMemory, BaseModel): """Memory class for storing information about entities.""" # Define dictionary to store information about entities. entities: dict = {} # Define key to pass information about entities into prompt. memory_key: str = "entities" def clear(self): self.entities = {} @property def memory_variables(self) -> List[str]: """Define the variables we are providing to the prompt.""" return [self.memory_key]
https://python.langchain.com/en/latest/modules/memory/examples/custom_memory.html
3fef3db89e5e-1
"""Define the variables we are providing to the prompt.""" return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load the memory variables, in this case the entity key.""" # Get the input text and run through spacy doc = nlp(inputs[list(inputs.keys())[0]]) # Extract known information about entities, if they exist. entities = [self.entities[str(ent)] for ent in doc.ents if str(ent) in self.entities] # Return combined information about entities to put into context. return {self.memory_key: "\n".join(entities)} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" # Get the input text and run through spacy text = inputs[list(inputs.keys())[0]] doc = nlp(text) # For each entity that was mentioned, save this information to the dictionary. for ent in doc.ents: ent_str = str(ent) if ent_str in self.entities: self.entities[ent_str] += f"\n{text}" else: self.entities[ent_str] = text We now define a prompt that takes in information about entities as well as user input from langchain.prompts.prompt import PromptTemplate template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant. Relevant entity information: {entities} Conversation: Human: {input} AI:"""
https://python.langchain.com/en/latest/modules/memory/examples/custom_memory.html
3fef3db89e5e-2
{entities} Conversation: Human: {input} AI:""" prompt = PromptTemplate( input_variables=["entities", "input"], template=template ) And now we put it all together! llm = OpenAI(temperature=0) conversation = ConversationChain(llm=llm, prompt=prompt, verbose=True, memory=SpacyEntityMemory()) In the first example, with no prior knowledge about Harrison, the “Relevant entity information” section is empty. conversation.predict(input="Harrison likes machine learning") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant. Relevant entity information: Conversation: Human: Harrison likes machine learning AI: > Finished ConversationChain chain. " That's great to hear! Machine learning is a fascinating field of study. It involves using algorithms to analyze data and make predictions. Have you ever studied machine learning, Harrison?" Now in the second example, we can see that it pulls in information about Harrison. conversation.predict(input="What do you think Harrison's favorite subject in college was?") > Entering new ConversationChain chain... Prompt after formatting: The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant. Relevant entity information: Harrison likes machine learning Conversation:
https://python.langchain.com/en/latest/modules/memory/examples/custom_memory.html
3fef3db89e5e-3
Relevant entity information: Harrison likes machine learning Conversation: Human: What do you think Harrison's favorite subject in college was? AI: > Finished ConversationChain chain. ' From what I know about Harrison, I believe his favorite subject in college was machine learning. He has expressed a strong interest in the subject and has mentioned it often.' Again, please note that this implementation is pretty simple and brittle and probably not useful in a production setting. Its purpose is to showcase that you can add custom memory implementations. previous How to customize conversational memory next Motörhead Memory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/memory/examples/custom_memory.html
27f31a10fd8b-0
.rst .pdf How-To Guides How-To Guides# A chain is made up of links, which can be either primitives or other chains. Primitives can be either prompts, models, arbitrary functions, or other chains. The examples here are broken up into three sections: Generic Functionality Covers both generic chains (that are useful in a wide variety of applications) as well as generic functionality related to those chains. Async API for Chain Loading from LangChainHub LLM Chain Sequential Chains Serialization Transformation Chain Index-related Chains Chains related to working with indexes. Analyze Document Chat Over Documents with Chat History Graph QA Hypothetical Document Embeddings Question Answering with Sources Question Answering Summarization Retrieval Question/Answering Retrieval Question Answering with Sources Vector DB Text Generation All other chains All other types of chains! API Chains Self-Critique Chain with Constitutional AI BashChain LLMCheckerChain LLM Math LLMRequestsChain LLMSummarizationCheckerChain Moderation OpenAPI Chain PAL SQL Chain example previous Getting Started next Async API for Chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/modules/chains/how_to_guides.html
32a08caeb0fa-0
.ipynb .pdf Getting Started Contents Why do we need chains? Query an LLM with the LLMChain Combine chains with the SequentialChain Create a custom chain with the Chain class Getting Started# In this tutorial, we will learn about creating simple chains in LangChain. We will learn how to create a chain, add components to it, and run it. In this tutorial, we will cover: Using a simple LLM chain Creating sequential chains Creating a custom chain Why do we need chains?# Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components. Query an LLM with the LLMChain# The LLMChain is a simple chain that takes in a prompt template, formats it with the user input and returns the response from an LLM. To use the LLMChain, first create a prompt template. from langchain.prompts import PromptTemplate from langchain.llms import OpenAI llm = OpenAI(temperature=0.9) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM. from langchain.chains import LLMChain chain = LLMChain(llm=llm, prompt=prompt) # Run the chain only specifying the input variable. print(chain.run("colorful socks")) Rainbow Socks Co.
https://python.langchain.com/en/latest/modules/chains/getting_started.html
32a08caeb0fa-1
print(chain.run("colorful socks")) Rainbow Socks Co. You can use a chat model in an LLMChain as well: from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, ) human_message_prompt = HumanMessagePromptTemplate( prompt=PromptTemplate( template="What is a good name for a company that makes {product}?", input_variables=["product"], ) ) chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt]) chat = ChatOpenAI(temperature=0.9) chain = LLMChain(llm=chat, prompt=chat_prompt_template) print(chain.run("colorful socks")) Rainbow Threads This is one of the simpler types of chains, but understanding how it works will set you up well for working with more complex chains. Combine chains with the SequentialChain# The next step after calling a language model is to make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the SimpleSequentialChain. This is the simplest type of a sequential chain, where each step has a single input/output, and the output of one step is the input to the next. In this tutorial, our sequential chain will: First, create a company name for a product. We will reuse the LLMChain we’d previously initialized to create this company name. Then, create a catchphrase for the product. We will initialize a new LLMChain to create this catchphrase, as shown below. second_prompt = PromptTemplate( input_variables=["company_name"], template="Write a catchphrase for the following company: {company_name}", )
https://python.langchain.com/en/latest/modules/chains/getting_started.html