id
stringlengths 14
16
| text
stringlengths 45
2.73k
| source
stringlengths 49
114
|
---|---|---|
3c0754fd3093-0 | Source code for langchain.chains.pal.base
"""Implements Program-Aided Language Models.
As in https://arxiv.org/pdf/2211.10435.pdf.
"""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT
from langchain.chains.pal.math_prompt import MATH_PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.utilities import PythonREPL
[docs]class PALChain(Chain):
"""Implements Program-Aided Language Models."""
llm: BaseLanguageModel
prompt: BasePromptTemplate
stop: str = "\n\n"
get_answer_expr: str = "print(solution())"
python_globals: Optional[Dict[str, Any]] = None
python_locals: Optional[Dict[str, Any]] = None
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"] | https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
3c0754fd3093-1 | else:
return [self.output_key, "intermediate_steps"]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_chain = LLMChain(llm=self.llm, prompt=self.prompt)
code = llm_chain.predict(stop=[self.stop], **inputs)
self.callback_manager.on_text(
code, color="green", end="\n", verbose=self.verbose
)
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
res = repl.run(code + f"\n{self.get_answer_expr}")
output = {self.output_key: res.strip()}
if self.return_intermediate_steps:
output["intermediate_steps"] = code
return output
[docs] @classmethod
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
"""Load PAL from math prompt."""
return cls(
llm=llm,
prompt=MATH_PROMPT,
stop="\n\n",
get_answer_expr="print(solution())",
**kwargs,
)
[docs] @classmethod
def from_colored_object_prompt(
cls, llm: BaseLanguageModel, **kwargs: Any
) -> PALChain:
"""Load PAL from colored object prompt."""
return cls(
llm=llm,
prompt=COLORED_OBJECT_PROMPT,
stop="\n\n\n",
get_answer_expr="print(answer)",
**kwargs,
)
@property
def _chain_type(self) -> str:
return "pal_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
3c0754fd3093-2 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/pal/base.html |
9d24c99c693c-0 | Source code for langchain.chains.llm_bash.base
"""Chain that interprets a prompt and executes bash code to perform bash operations."""
from typing import Dict, List
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_bash.prompt import PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.utilities.bash import BashProcess
[docs]class LLMBashChain(Chain):
"""Chain that interprets a prompt and executes bash code to perform bash operations.
Example:
.. code-block:: python
from langchain import LLMBashChain, OpenAI
llm_bash = LLMBashChain(llm=OpenAI())
"""
llm: BaseLanguageModel
"""LLM wrapper to use."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
prompt: BasePromptTemplate = PROMPT
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain(prompt=self.prompt, llm=self.llm)
bash_executor = BashProcess() | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html |
9d24c99c693c-1 | bash_executor = BashProcess()
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
t = llm_executor.predict(question=inputs[self.input_key])
self.callback_manager.on_text(t, color="green", verbose=self.verbose)
t = t.strip()
if t.startswith("```bash"):
# Split the string into a list of substrings
command_list = t.split("\n")
print(command_list)
# Remove the first and last substrings
command_list = [s for s in command_list[1:-1]]
output = bash_executor.run(command_list)
self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
self.callback_manager.on_text(output, color="yellow", verbose=self.verbose)
else:
raise ValueError(f"unknown format from LLM: {t}")
return {self.output_key: output}
@property
def _chain_type(self) -> str:
return "llm_bash_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_bash/base.html |
431d4df81461-0 | Source code for langchain.chains.graph_qa.base
"""Question answering over a graph."""
from __future__ import annotations
from typing import Any, Dict, List
from pydantic import Field
from langchain.chains.base import Chain
from langchain.chains.graph_qa.prompts import ENTITY_EXTRACTION_PROMPT, PROMPT
from langchain.chains.llm import LLMChain
from langchain.graphs.networkx_graph import NetworkxEntityGraph, get_entities
from langchain.llms.base import BaseLLM
from langchain.prompts.base import BasePromptTemplate
[docs]class GraphQAChain(Chain):
"""Chain for question-answering against a graph."""
graph: NetworkxEntityGraph = Field(exclude=True)
entity_extraction_chain: LLMChain
qa_chain: LLMChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
[docs] @classmethod
def from_llm(
cls,
llm: BaseLLM,
qa_prompt: BasePromptTemplate = PROMPT,
entity_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT,
**kwargs: Any,
) -> GraphQAChain:
"""Initialize from LLM."""
qa_chain = LLMChain(llm=llm, prompt=qa_prompt) | https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html |
431d4df81461-1 | qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
entity_chain = LLMChain(llm=llm, prompt=entity_prompt)
return cls(qa_chain=qa_chain, entity_extraction_chain=entity_chain, **kwargs)
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Extract entities, look up info and answer question."""
question = inputs[self.input_key]
entity_string = self.entity_extraction_chain.run(question)
self.callback_manager.on_text(
"Entities Extracted:", end="\n", verbose=self.verbose
)
self.callback_manager.on_text(
entity_string, color="green", end="\n", verbose=self.verbose
)
entities = get_entities(entity_string)
context = ""
for entity in entities:
triplets = self.graph.get_entity_knowledge(entity)
context += "\n".join(triplets)
self.callback_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
self.callback_manager.on_text(
context, color="green", end="\n", verbose=self.verbose
)
result = self.qa_chain({"question": question, "context": context})
return {self.output_key: result[self.qa_chain.output_key]}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/graph_qa/base.html |
dbab2c9f377f-0 | Source code for langchain.chains.llm_checker.base
"""Chain for question-answering with self-verification."""
from typing import Dict, List
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_checker.prompt import (
CHECK_ASSERTIONS_PROMPT,
CREATE_DRAFT_ANSWER_PROMPT,
LIST_ASSERTIONS_PROMPT,
REVISED_ANSWER_PROMPT,
)
from langchain.chains.sequential import SequentialChain
from langchain.llms.base import BaseLLM
from langchain.prompts import PromptTemplate
[docs]class LLMCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMCheckerChain
llm = OpenAI(temperature=0.7)
checker_chain = LLMCheckerChain(llm=llm)
"""
llm: BaseLLM
"""LLM wrapper to use."""
create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT
list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT
"""Prompt to use when questioning the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return the singular input key. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
dbab2c9f377f-1 | def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
question = inputs[self.input_key]
create_draft_answer_chain = LLMChain(
llm=self.llm, prompt=self.create_draft_answer_prompt, output_key="statement"
)
list_assertions_chain = LLMChain(
llm=self.llm, prompt=self.list_assertions_prompt, output_key="assertions"
)
check_assertions_chain = LLMChain(
llm=self.llm,
prompt=self.check_assertions_prompt,
output_key="checked_assertions",
)
revised_answer_chain = LLMChain(
llm=self.llm,
prompt=self.revised_answer_prompt,
output_key="revised_statement",
)
chains = [
create_draft_answer_chain,
list_assertions_chain,
check_assertions_chain,
revised_answer_chain,
]
question_to_checked_assertions_chain = SequentialChain(
chains=chains,
input_variables=["question"],
output_variables=["revised_statement"],
verbose=True,
)
output = question_to_checked_assertions_chain({"question": question})
return {self.output_key: output["revised_statement"]}
@property
def _chain_type(self) -> str:
return "llm_checker_chain"
By Harrison Chase | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
dbab2c9f377f-2 | return "llm_checker_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html |
96a6043c84c0-0 | Source code for langchain.chains.combine_documents.base
"""Base interface for chains combining documents."""
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Tuple
from pydantic import Field
from langchain.chains.base import Chain
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
def format_document(doc: Document, prompt: BasePromptTemplate) -> str:
"""Format a document into a string based on a prompt template."""
base_info = {"page_content": doc.page_content}
base_info.update(doc.metadata)
missing_metadata = set(prompt.input_variables).difference(base_info)
if len(missing_metadata) > 0:
required_metadata = [
iv for iv in prompt.input_variables if iv != "page_content"
]
raise ValueError(
f"Document prompt requires documents to have metadata variables: "
f"{required_metadata}. Received document with missing metadata: "
f"{list(missing_metadata)}."
)
document_info = {k: base_info[k] for k in prompt.input_variables}
return prompt.format(**document_info)
class BaseCombineDocumentsChain(Chain, ABC):
"""Base interface for chains combining documents."""
input_key: str = "input_documents" #: :meta private:
output_key: str = "output_text" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
""" | https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
96a6043c84c0-1 | """Return output key.
:meta private:
"""
return [self.output_key]
def prompt_length(self, docs: List[Document], **kwargs: Any) -> Optional[int]:
"""Return the prompt length given the documents passed in.
Returns None if the method does not depend on the prompt length.
"""
return None
@abstractmethod
def combine_docs(self, docs: List[Document], **kwargs: Any) -> Tuple[str, dict]:
"""Combine documents into a single string."""
@abstractmethod
async def acombine_docs(
self, docs: List[Document], **kwargs: Any
) -> Tuple[str, dict]:
"""Combine documents into a single string asynchronously."""
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
output, extra_return_dict = self.combine_docs(docs, **other_keys)
extra_return_dict[self.output_key] = output
return extra_return_dict
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, str]:
docs = inputs[self.input_key]
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
output, extra_return_dict = await self.acombine_docs(docs, **other_keys)
extra_return_dict[self.output_key] = output
return extra_return_dict
[docs]class AnalyzeDocumentChain(Chain):
"""Chain that splits documents, then analyzes it in pieces.""" | https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
96a6043c84c0-2 | """Chain that splits documents, then analyzes it in pieces."""
input_key: str = "input_document" #: :meta private:
text_splitter: TextSplitter = Field(default_factory=RecursiveCharacterTextSplitter)
combine_docs_chain: BaseCombineDocumentsChain
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return self.combine_docs_chain.output_keys
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
document = inputs[self.input_key]
docs = self.text_splitter.create_documents([document])
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
other_keys[self.combine_docs_chain.input_key] = docs
return self.combine_docs_chain(other_keys, return_only_outputs=True)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/combine_documents/base.html |
2783d80b97f9-0 | Source code for langchain.chains.hyde.base
"""Hypothetical Document Embeddings.
https://arxiv.org/abs/2212.10496
"""
from __future__ import annotations
from typing import Dict, List
import numpy as np
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.hyde.prompts import PROMPT_MAP
from langchain.chains.llm import LLMChain
from langchain.embeddings.base import Embeddings
from langchain.llms.base import BaseLLM
[docs]class HypotheticalDocumentEmbedder(Chain, Embeddings):
"""Generate hypothetical document for query, and then embed that.
Based on https://arxiv.org/abs/2212.10496
"""
base_embeddings: Embeddings
llm_chain: LLMChain
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Input keys for Hyde's LLM chain."""
return self.llm_chain.input_keys
@property
def output_keys(self) -> List[str]:
"""Output keys for Hyde's LLM chain."""
return self.llm_chain.output_keys
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call the base embeddings."""
return self.base_embeddings.embed_documents(texts)
[docs] def combine_embeddings(self, embeddings: List[List[float]]) -> List[float]:
"""Combine embeddings into final embeddings."""
return list(np.array(embeddings).mean(axis=0))
[docs] def embed_query(self, text: str) -> List[float]:
"""Generate a hypothetical document and embedded it.""" | https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html |
2783d80b97f9-1 | """Generate a hypothetical document and embedded it."""
var_name = self.llm_chain.input_keys[0]
result = self.llm_chain.generate([{var_name: text}])
documents = [generation.text for generation in result.generations[0]]
embeddings = self.embed_documents(documents)
return self.combine_embeddings(embeddings)
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
"""Call the internal llm chain."""
return self.llm_chain._call(inputs)
[docs] @classmethod
def from_llm(
cls, llm: BaseLLM, base_embeddings: Embeddings, prompt_key: str
) -> HypotheticalDocumentEmbedder:
"""Load and use LLMChain for a specific prompt key."""
prompt = PROMPT_MAP[prompt_key]
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(base_embeddings=base_embeddings, llm_chain=llm_chain)
@property
def _chain_type(self) -> str:
return "hyde_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/hyde/base.html |
3e52db009261-0 | Source code for langchain.chains.qa_generation.base
from __future__ import annotations
import json
from typing import Any, Dict, List, Optional
from pydantic import Field
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_generation.prompt import PROMPT_SELECTOR
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
[docs]class QAGenerationChain(Chain):
llm_chain: LLMChain
text_splitter: TextSplitter = Field(
default=RecursiveCharacterTextSplitter(chunk_overlap=500)
)
input_key: str = "text"
output_key: str = "questions"
k: Optional[int] = None
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> QAGenerationChain:
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
chain = LLMChain(llm=llm, prompt=_prompt)
return cls(llm_chain=chain, **kwargs)
@property
def _chain_type(self) -> str:
raise NotImplementedError
@property
def input_keys(self) -> List[str]:
return [self.input_key]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
docs = self.text_splitter.create_documents([inputs[self.input_key]]) | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html |
3e52db009261-1 | docs = self.text_splitter.create_documents([inputs[self.input_key]])
results = self.llm_chain.generate([{"text": d.page_content} for d in docs])
qa = [json.loads(res[0].text) for res in results.generations]
return {self.output_key: qa}
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
raise NotImplementedError
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_generation/base.html |
7e57617c3f06-0 | Source code for langchain.chains.llm_math.base
"""Chain that interprets a prompt and executes python code to do math."""
import math
import re
from typing import Dict, List
import numexpr
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.llm_math.prompt import PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
[docs]class LLMMathChain(Chain):
"""Chain that interprets a prompt and executes python code to do math.
Example:
.. code-block:: python
from langchain import LLMMathChain, OpenAI
llm_math = LLMMathChain(llm=OpenAI())
"""
llm: BaseLanguageModel
"""LLM wrapper to use."""
prompt: BasePromptTemplate = PROMPT
"""Prompt to use to translate to python if neccessary."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _evaluate_expression(self, expression: str) -> str:
try:
local_dict = {"pi": math.pi, "e": math.e} | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
7e57617c3f06-1 | try:
local_dict = {"pi": math.pi, "e": math.e}
output = str(
numexpr.evaluate(
expression.strip(),
global_dict={}, # restrict access to globals
local_dict=local_dict, # add common mathematical functions
)
)
except Exception as e:
raise ValueError(f"{e}. Please try again with a valid numerical expression")
# Remove any leading and trailing brackets from the output
return re.sub(r"^\[|\]$", "", output)
def _process_llm_result(self, llm_output: str) -> Dict[str, str]:
self.callback_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
self.callback_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
async def _aprocess_llm_result(self, llm_output: str) -> Dict[str, str]:
if self.callback_manager.is_async:
await self.callback_manager.on_text(
llm_output, color="green", verbose=self.verbose | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
7e57617c3f06-2 | llm_output, color="green", verbose=self.verbose
)
else:
self.callback_manager.on_text(
llm_output, color="green", verbose=self.verbose
)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
if self.callback_manager.is_async:
await self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
await self.callback_manager.on_text(
output, color="yellow", verbose=self.verbose
)
else:
await self.callback_manager.on_text("\nAnswer: ", verbose=self.verbose)
await self.callback_manager.on_text(
output, color="yellow", verbose=self.verbose
)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain(
prompt=self.prompt, llm=self.llm, callback_manager=self.callback_manager
)
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
llm_output = llm_executor.predict(
question=inputs[self.input_key], stop=["```output"]
)
return self._process_llm_result(llm_output) | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
7e57617c3f06-3 | )
return self._process_llm_result(llm_output)
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
llm_executor = LLMChain(
prompt=self.prompt, llm=self.llm, callback_manager=self.callback_manager
)
if self.callback_manager.is_async:
await self.callback_manager.on_text(
inputs[self.input_key], verbose=self.verbose
)
else:
self.callback_manager.on_text(inputs[self.input_key], verbose=self.verbose)
llm_output = await llm_executor.apredict(
question=inputs[self.input_key], stop=["```output"]
)
return await self._aprocess_llm_result(llm_output)
@property
def _chain_type(self) -> str:
return "llm_math_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html |
7a249646b379-0 | Source code for langchain.chains.conversational_retrieval.base
"""Chain for chatting with a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import Extra, Field, root_validator
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel, BaseMessage, BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
# Depending on the memory type and configuration, the chat history format may differ.
# This needs to be consolidated.
CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage]
_ROLE_MAP = {"human": "Human: ", "ai": "Assistant: "}
def _get_chat_history(chat_history: List[CHAT_TURN_TYPE]) -> str:
buffer = ""
for dialogue_turn in chat_history:
if isinstance(dialogue_turn, BaseMessage):
role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ")
buffer += f"\n{role_prefix}{dialogue_turn.content}"
elif isinstance(dialogue_turn, tuple):
human = "Human: " + dialogue_turn[0]
ai = "Assistant: " + dialogue_turn[1]
buffer += "\n" + "\n".join([human, ai])
else: | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
7a249646b379-1 | buffer += "\n" + "\n".join([human, ai])
else:
raise ValueError(
f"Unsupported chat history format: {type(dialogue_turn)}."
f" Full chat history: {chat_history} "
)
return buffer
class BaseConversationalRetrievalChain(Chain):
"""Chain for chatting with an index."""
combine_docs_chain: BaseCombineDocumentsChain
question_generator: LLMChain
output_key: str = "answer"
return_source_documents: bool = False
get_chat_history: Optional[Callable[[CHAT_TURN_TYPE], str]] = None
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Input keys."""
return ["question", "chat_history"]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@abstractmethod
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
new_question = self.question_generator.run( | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
7a249646b379-2 | if chat_history_str:
new_question = self.question_generator.run(
question=question, chat_history=chat_history_str
)
else:
new_question = question
docs = self._get_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = self.combine_docs_chain.run(input_documents=docs, **new_inputs)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
@abstractmethod
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs."""
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
question = inputs["question"]
get_chat_history = self.get_chat_history or _get_chat_history
chat_history_str = get_chat_history(inputs["chat_history"])
if chat_history_str:
new_question = await self.question_generator.arun(
question=question, chat_history=chat_history_str
)
else:
new_question = question
docs = await self._aget_docs(new_question, inputs)
new_inputs = inputs.copy()
new_inputs["question"] = new_question
new_inputs["chat_history"] = chat_history_str
answer = await self.combine_docs_chain.arun(input_documents=docs, **new_inputs)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
def save(self, file_path: Union[Path, str]) -> None: | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
7a249646b379-3 | def save(self, file_path: Union[Path, str]) -> None:
if self.get_chat_history:
raise ValueError("Chain not savable when `get_chat_history` is not None.")
super().save(file_path)
[docs]class ConversationalRetrievalChain(BaseConversationalRetrievalChain):
"""Chain for chatting with an index."""
retriever: BaseRetriever
"""Index to connect to."""
max_tokens_limit: Optional[int] = None
"""If set, restricts the docs to return from store based on tokens, enforced only
for StuffDocumentChain"""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.max_tokens_limit and isinstance(
self.combine_docs_chain, StuffDocumentsChain
):
tokens = [
self.combine_docs_chain.llm_chain.llm.get_num_tokens(doc.page_content)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
docs = self.retriever.get_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
docs = await self.retriever.aget_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel, | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
7a249646b379-4 | def from_llm(
cls,
llm: BaseLanguageModel,
retriever: BaseRetriever,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
qa_prompt: Optional[BasePromptTemplate] = None,
chain_type: str = "stuff",
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
prompt=qa_prompt,
)
condense_question_chain = LLMChain(llm=llm, prompt=condense_question_prompt)
return cls(
retriever=retriever,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
**kwargs,
)
[docs]class ChatVectorDBChain(BaseConversationalRetrievalChain):
"""Chain for chatting with a vector database."""
vectorstore: VectorStore = Field(alias="vectorstore")
top_k_docs_for_context: int = 4
search_kwargs: dict = Field(default_factory=dict)
@property
def _chain_type(self) -> str:
return "chat-vector-db"
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`ChatVectorDBChain` is deprecated - "
"please use `from langchain.chains import ConversationalRetrievalChain`"
)
return values
def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
vectordbkwargs = inputs.get("vectordbkwargs", {}) | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
7a249646b379-5 | vectordbkwargs = inputs.get("vectordbkwargs", {})
full_kwargs = {**self.search_kwargs, **vectordbkwargs}
return self.vectorstore.similarity_search(
question, k=self.top_k_docs_for_context, **full_kwargs
)
async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]:
raise NotImplementedError("ChatVectorDBChain does not support async")
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
vectorstore: VectorStore,
condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT,
qa_prompt: Optional[BasePromptTemplate] = None,
chain_type: str = "stuff",
**kwargs: Any,
) -> BaseConversationalRetrievalChain:
"""Load chain from LLM."""
doc_chain = load_qa_chain(
llm,
chain_type=chain_type,
prompt=qa_prompt,
)
condense_question_chain = LLMChain(llm=llm, prompt=condense_question_prompt)
return cls(
vectorstore=vectorstore,
combine_docs_chain=doc_chain,
question_generator=condense_question_chain,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html |
a630a1dddcb9-0 | Source code for langchain.chains.sql_database.base
"""Chain for interacting with SQL Database."""
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.sql_database import SQLDatabase
[docs]class SQLDatabaseChain(Chain):
"""Chain for interacting with SQL Database.
Example:
.. code-block:: python
from langchain import SQLDatabaseChain, OpenAI, SQLDatabase
db = SQLDatabase(...)
db_chain = SQLDatabaseChain(llm=OpenAI(), database=db)
"""
llm: BaseLanguageModel
"""LLM wrapper to use."""
database: SQLDatabase = Field(exclude=True)
"""SQL Database to connect to."""
prompt: Optional[BasePromptTemplate] = None
"""Prompt to use to translate natural language to SQL."""
top_k: int = 5
"""Number of results to return from the query"""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
"""Whether or not to return the intermediate steps along with the final answer."""
return_direct: bool = False
"""Whether or not to return the result of querying the SQL table directly."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
a630a1dddcb9-1 | extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
prompt = self.prompt or SQL_PROMPTS.get(self.database.dialect, PROMPT)
llm_chain = LLMChain(llm=self.llm, prompt=prompt)
input_text = f"{inputs[self.input_key]}\nSQLQuery:"
self.callback_manager.on_text(input_text, verbose=self.verbose)
# If not present, then defaults to None which is all tables.
table_names_to_use = inputs.get("table_names_to_use")
table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {
"input": input_text,
"top_k": self.top_k,
"dialect": self.database.dialect,
"table_info": table_info,
"stop": ["\nSQLResult:"],
}
intermediate_steps = []
sql_cmd = llm_chain.predict(**llm_inputs)
intermediate_steps.append(sql_cmd)
self.callback_manager.on_text(sql_cmd, color="green", verbose=self.verbose)
result = self.database.run(sql_cmd)
intermediate_steps.append(result)
self.callback_manager.on_text("\nSQLResult: ", verbose=self.verbose) | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
a630a1dddcb9-2 | self.callback_manager.on_text("\nSQLResult: ", verbose=self.verbose)
self.callback_manager.on_text(result, color="yellow", verbose=self.verbose)
# If return direct, we just set the final result equal to the sql query
if self.return_direct:
final_result = result
else:
self.callback_manager.on_text("\nAnswer:", verbose=self.verbose)
input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:"
llm_inputs["input"] = input_text
final_result = llm_chain.predict(**llm_inputs)
self.callback_manager.on_text(
final_result, color="green", verbose=self.verbose
)
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result["intermediate_steps"] = intermediate_steps
return chain_result
@property
def _chain_type(self) -> str:
return "sql_database_chain"
[docs]class SQLDatabaseSequentialChain(Chain):
"""Chain for querying SQL database that is a sequential chain.
The chain is as follows:
1. Based on the query, determine which tables to use.
2. Based on those tables, call the normal SQL database chain.
This is useful in cases where the number of tables in the database is large.
"""
return_intermediate_steps: bool = False
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
database: SQLDatabase,
query_prompt: BasePromptTemplate = PROMPT,
decider_prompt: BasePromptTemplate = DECIDER_PROMPT,
**kwargs: Any,
) -> SQLDatabaseSequentialChain: | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
a630a1dddcb9-3 | **kwargs: Any,
) -> SQLDatabaseSequentialChain:
"""Load the necessary chains."""
sql_chain = SQLDatabaseChain(
llm=llm, database=database, prompt=query_prompt, **kwargs
)
decider_chain = LLMChain(
llm=llm, prompt=decider_prompt, output_key="table_names"
)
return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs)
decider_chain: LLMChain
sql_chain: SQLDatabaseChain
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
_table_names = self.sql_chain.database.get_usable_table_names()
table_names = ", ".join(_table_names)
llm_inputs = {
"query": inputs[self.input_key],
"table_names": table_names,
}
table_names_to_use = self.decider_chain.predict_and_parse(**llm_inputs)
self.callback_manager.on_text(
"Table names to use:", end="\n", verbose=self.verbose
)
self.callback_manager.on_text( | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
a630a1dddcb9-4 | )
self.callback_manager.on_text(
str(table_names_to_use), color="yellow", verbose=self.verbose
)
new_inputs = {
self.sql_chain.input_key: inputs[self.input_key],
"table_names_to_use": table_names_to_use,
}
return self.sql_chain(new_inputs, return_only_outputs=True)
@property
def _chain_type(self) -> str:
return "sql_database_sequential_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html |
6162e2b246bd-0 | Source code for langchain.chains.llm_summarization_checker.base
"""Chain for summarization with self-verification."""
from pathlib import Path
from typing import Dict, List
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sequential import SequentialChain
from langchain.llms.base import BaseLLM
from langchain.prompts.prompt import PromptTemplate
PROMPTS_DIR = Path(__file__).parent / "prompts"
CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "create_facts.txt", ["summary"]
)
CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "check_facts.txt", ["assertions"]
)
REVISED_SUMMARY_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"]
)
ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file(
PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"]
)
[docs]class LLMSummarizationCheckerChain(Chain):
"""Chain for question-answering with self-verification.
Example:
.. code-block:: python
from langchain import OpenAI, LLMSummarizationCheckerChain
llm = OpenAI(temperature=0.0)
checker_chain = LLMSummarizationCheckerChain(llm=llm)
"""
llm: BaseLLM
"""LLM wrapper to use."""
create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT
check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
6162e2b246bd-1 | revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT
are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
max_checks: int = 2
"""Maximum number of times to check the assertions. Default to double-checking."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
all_true = False
count = 0
output = None
original_input = inputs[self.input_key]
chain_input = original_input
while not all_true and count < self.max_checks:
chain = SequentialChain(
chains=[
LLMChain(
llm=self.llm,
prompt=self.create_assertions_prompt,
output_key="assertions",
verbose=self.verbose,
),
LLMChain(
llm=self.llm,
prompt=self.check_assertions_prompt,
output_key="checked_assertions",
verbose=self.verbose,
),
LLMChain(
llm=self.llm,
prompt=self.revised_summary_prompt,
output_key="revised_summary",
verbose=self.verbose,
), | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
6162e2b246bd-2 | output_key="revised_summary",
verbose=self.verbose,
),
LLMChain(
llm=self.llm,
output_key="all_true",
prompt=self.are_all_true_prompt,
verbose=self.verbose,
),
],
input_variables=["summary"],
output_variables=["all_true", "revised_summary"],
verbose=self.verbose,
)
output = chain({"summary": chain_input})
count += 1
if output["all_true"].strip() == "True":
break
if self.verbose:
print(output["revised_summary"])
chain_input = output["revised_summary"]
if not output:
raise ValueError("No output from chain")
return {self.output_key: output["revised_summary"].strip()}
@property
def _chain_type(self) -> str:
return "llm_summarization_checker_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html |
e0aa645c3f13-0 | Source code for langchain.chains.qa_with_sources.retrieval
"""Question-answering with sources over an index."""
from typing import Any, Dict, List
from pydantic import Field
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
from langchain.docstore.document import Document
from langchain.schema import BaseRetriever
[docs]class RetrievalQAWithSourcesChain(BaseQAWithSourcesChain):
"""Question-answering with sources over an index."""
retriever: BaseRetriever = Field(exclude=True)
"""Index to connect to."""
reduce_k_below_max_tokens: bool = False
"""Reduce the number of results to return from store based on tokens limit"""
max_tokens_limit: int = 3375
"""Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true"""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.reduce_k_below_max_tokens and isinstance(
self.combine_documents_chain, StuffDocumentsChain
):
tokens = [
self.combine_documents_chain.llm_chain.llm.get_num_tokens(
doc.page_content
)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = self.retriever.get_relevant_documents(question) | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html |
e0aa645c3f13-1 | docs = self.retriever.get_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = await self.retriever.aget_relevant_documents(question)
return self._reduce_tokens_below_limit(docs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/retrieval.html |
aeaba721977f-0 | Source code for langchain.chains.qa_with_sources.vector_db
"""Question-answering with sources over a vector database."""
import warnings
from typing import Any, Dict, List
from pydantic import Field, root_validator
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain
from langchain.docstore.document import Document
from langchain.vectorstores.base import VectorStore
[docs]class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain):
"""Question-answering with sources over a vector database."""
vectorstore: VectorStore = Field(exclude=True)
"""Vector Database to connect to."""
k: int = 4
"""Number of results to return from store"""
reduce_k_below_max_tokens: bool = False
"""Reduce the number of results to return from store based on tokens limit"""
max_tokens_limit: int = 3375
"""Restrict the docs to return from store based on tokens,
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true"""
search_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Extra search args."""
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]:
num_docs = len(docs)
if self.reduce_k_below_max_tokens and isinstance(
self.combine_documents_chain, StuffDocumentsChain
):
tokens = [
self.combine_documents_chain.llm_chain.llm.get_num_tokens(
doc.page_content
)
for doc in docs
]
token_count = sum(tokens[:num_docs])
while token_count > self.max_tokens_limit:
num_docs -= 1
token_count -= tokens[num_docs] | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html |
aeaba721977f-1 | num_docs -= 1
token_count -= tokens[num_docs]
return docs[:num_docs]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
question = inputs[self.question_key]
docs = self.vectorstore.similarity_search(
question, k=self.k, **self.search_kwargs
)
return self._reduce_tokens_below_limit(docs)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
raise NotImplementedError("VectorDBQAWithSourcesChain does not support async")
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`VectorDBQAWithSourcesChain` is deprecated - "
"please use `from langchain.chains import RetrievalQAWithSourcesChain`"
)
return values
@property
def _chain_type(self) -> str:
return "vector_db_qa_with_sources_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/vector_db.html |
0e72bd4901a4-0 | Source code for langchain.chains.qa_with_sources.base
"""Question answering with sources over documents."""
from __future__ import annotations
import re
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.chains.qa_with_sources.map_reduce_prompt import (
COMBINE_PROMPT,
EXAMPLE_PROMPT,
QUESTION_PROMPT,
)
from langchain.docstore.document import Document
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseLanguageModel
class BaseQAWithSourcesChain(Chain, ABC):
"""Question answering with sources over documents."""
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine documents."""
question_key: str = "question" #: :meta private:
input_docs_key: str = "docs" #: :meta private:
answer_key: str = "answer" #: :meta private:
sources_answer_key: str = "sources" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
document_prompt: BasePromptTemplate = EXAMPLE_PROMPT,
question_prompt: BasePromptTemplate = QUESTION_PROMPT,
combine_prompt: BasePromptTemplate = COMBINE_PROMPT, | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
0e72bd4901a4-1 | combine_prompt: BasePromptTemplate = COMBINE_PROMPT,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Construct the chain from an LLM."""
llm_question_chain = LLMChain(llm=llm, prompt=question_prompt)
llm_combine_chain = LLMChain(llm=llm, prompt=combine_prompt)
combine_results_chain = StuffDocumentsChain(
llm_chain=llm_combine_chain,
document_prompt=document_prompt,
document_variable_name="summaries",
)
combine_document_chain = MapReduceDocumentsChain(
llm_chain=llm_question_chain,
combine_document_chain=combine_results_chain,
document_variable_name="context",
)
return cls(
combine_documents_chain=combine_document_chain,
**kwargs,
)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseQAWithSourcesChain:
"""Load chain from chain type."""
_chain_kwargs = chain_type_kwargs or {}
combine_document_chain = load_qa_with_sources_chain(
llm, chain_type=chain_type, **_chain_kwargs
)
return cls(combine_documents_chain=combine_document_chain, **kwargs)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.question_key]
@property | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
0e72bd4901a4-2 | :meta private:
"""
return [self.question_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
_output_keys = [self.answer_key, self.sources_answer_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@root_validator(pre=True)
def validate_naming(cls, values: Dict) -> Dict:
"""Fix backwards compatability in naming."""
if "combine_document_chain" in values:
values["combine_documents_chain"] = values.pop("combine_document_chain")
return values
@abstractmethod
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs to run questioning over."""
def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
docs = self._get_docs(inputs)
answer = self.combine_documents_chain.run(input_documents=docs, **inputs)
if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result
@abstractmethod
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
"""Get docs to run questioning over."""
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
docs = await self._aget_docs(inputs) | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
0e72bd4901a4-3 | docs = await self._aget_docs(inputs)
answer = await self.combine_documents_chain.arun(input_documents=docs, **inputs)
if re.search(r"SOURCES:\s", answer):
answer, sources = re.split(r"SOURCES:\s", answer)
else:
sources = ""
result: Dict[str, Any] = {
self.answer_key: answer,
self.sources_answer_key: sources,
}
if self.return_source_documents:
result["source_documents"] = docs
return result
[docs]class QAWithSourcesChain(BaseQAWithSourcesChain):
"""Question answering with sources over documents."""
input_docs_key: str = "docs" #: :meta private:
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_docs_key, self.question_key]
def _get_docs(self, inputs: Dict[str, Any]) -> List[Document]:
return inputs.pop(self.input_docs_key)
async def _aget_docs(self, inputs: Dict[str, Any]) -> List[Document]:
return inputs.pop(self.input_docs_key)
@property
def _chain_type(self) -> str:
return "qa_with_sources_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/qa_with_sources/base.html |
603d8ee01690-0 | Source code for langchain.chains.retrieval_qa.base
"""Chain for question-answering against a vector database."""
from __future__ import annotations
import warnings
from abc import abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR
from langchain.prompts import PromptTemplate
from langchain.schema import BaseLanguageModel, BaseRetriever, Document
from langchain.vectorstores.base import VectorStore
class BaseRetrievalQA(Chain):
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_source_documents: bool = False
"""Return the source documents."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents: | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
603d8ee01690-1 | _output_keys = [self.output_key]
if self.return_source_documents:
_output_keys = _output_keys + ["source_documents"]
return _output_keys
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: Optional[PromptTemplate] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Initialize from LLM."""
_prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
llm_chain = LLMChain(llm=llm, prompt=_prompt)
document_prompt = PromptTemplate(
input_variables=["page_content"], template="Context:\n{page_content}"
)
combine_documents_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name="context",
document_prompt=document_prompt,
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> BaseRetrievalQA:
"""Load chain from chain type."""
_chain_type_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_chain(
llm, chain_type=chain_type, **_chain_type_kwargs
)
return cls(combine_documents_chain=combine_documents_chain, **kwargs)
@abstractmethod
def _get_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]: | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
603d8ee01690-2 | def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
question = inputs[self.input_key]
docs = self._get_docs(question)
answer = self.combine_documents_chain.run(
input_documents=docs, question=question
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
@abstractmethod
async def _aget_docs(self, question: str) -> List[Document]:
"""Get documents to do question answering over."""
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
question = inputs[self.input_key]
docs = await self._aget_docs(question)
answer = await self.combine_documents_chain.arun(
input_documents=docs, question=question
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs} | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
603d8ee01690-3 | return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
[docs]class RetrievalQA(BaseRetrievalQA):
"""Chain for question-answering against an index.
Example:
.. code-block:: python
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.faiss import FAISS
from langchain.vectorstores.base import VectorStoreRetriever
retriever = VectorStoreRetriever(vectorstore=FAISS(...))
retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)
"""
retriever: BaseRetriever = Field(exclude=True)
def _get_docs(self, question: str) -> List[Document]:
return self.retriever.get_relevant_documents(question)
async def _aget_docs(self, question: str) -> List[Document]:
return await self.retriever.aget_relevant_documents(question)
[docs]class VectorDBQA(BaseRetrievalQA):
"""Chain for question-answering against a vector database."""
vectorstore: VectorStore = Field(exclude=True, alias="vectorstore")
"""Vector Database to connect to."""
k: int = 4
"""Number of documents to query for."""
search_type: str = "similarity"
"""Search type to use over vectorstore. `similarity` or `mmr`."""
search_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Extra search args."""
@root_validator()
def raise_deprecation(cls, values: Dict) -> Dict:
warnings.warn(
"`VectorDBQA` is deprecated - " | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
603d8ee01690-4 | warnings.warn(
"`VectorDBQA` is deprecated - "
"please use `from langchain.chains import RetrievalQA`"
)
return values
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "mmr"):
raise ValueError(f"search_type of {search_type} not allowed.")
return values
def _get_docs(self, question: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(
question, k=self.k, **self.search_kwargs
)
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
question, k=self.k, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def _aget_docs(self, question: str) -> List[Document]:
raise NotImplementedError("VectorDBQA does not support async")
@property
def _chain_type(self) -> str:
"""Return the chain type."""
return "vector_db_qa"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/retrieval_qa/base.html |
cf1f987ffa84-0 | Source code for langchain.chains.conversation.base
"""Chain that carries on a conversation and calls an LLM."""
from typing import Dict, List
from pydantic import Extra, Field, root_validator
from langchain.chains.conversation.prompt import PROMPT
from langchain.chains.llm import LLMChain
from langchain.memory.buffer import ConversationBufferMemory
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseMemory
[docs]class ConversationChain(LLMChain):
"""Chain to have a conversation and load context from memory.
Example:
.. code-block:: python
from langchain import ConversationChain, OpenAI
conversation = ConversationChain(llm=OpenAI())
"""
memory: BaseMemory = Field(default_factory=ConversationBufferMemory)
"""Default memory store."""
prompt: BasePromptTemplate = PROMPT
"""Default conversation prompt to use."""
input_key: str = "input" #: :meta private:
output_key: str = "response" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Use this since so some prompt vars come from history."""
return [self.input_key]
@root_validator()
def validate_prompt_input_variables(cls, values: Dict) -> Dict:
"""Validate that prompt input variables are consistent."""
memory_keys = values["memory"].memory_variables
input_key = values["input_key"]
if input_key in memory_keys:
raise ValueError(
f"The input key {input_key} was also found in the memory keys " | https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html |
cf1f987ffa84-1 | f"The input key {input_key} was also found in the memory keys "
f"({memory_keys}) - please provide keys that don't overlap."
)
prompt_variables = values["prompt"].input_variables
expected_keys = memory_keys + [input_key]
if set(expected_keys) != set(prompt_variables):
raise ValueError(
"Got unexpected prompt input variables. The prompt expects "
f"{prompt_variables}, but got {memory_keys} as inputs from "
f"memory, and {input_key} as the normal input key."
)
return values
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/chains/conversation/base.html |
351fcdc3f0d8-0 | Source code for langchain.agents.agent
"""Chain that takes in an input and produces an action and action input."""
from __future__ import annotations
import asyncio
import json
import logging
import time
from abc import abstractmethod
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import yaml
from pydantic import BaseModel, root_validator
from langchain.agents.tools import InvalidTool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.input import get_color_mapping
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
AgentAction,
AgentFinish,
BaseLanguageModel,
BaseMessage,
BaseOutputParser,
)
from langchain.tools.base import BaseTool
from langchain.utilities.asyncio import asyncio_timeout
logger = logging.getLogger(__name__)
[docs]class BaseSingleActionAgent(BaseModel):
"""Base Agent class."""
@property
def return_values(self) -> List[str]:
"""Return values of the agent."""
return ["output"]
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return None
[docs] @abstractmethod
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-1 | along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
[docs] @abstractmethod
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return AgentFinish(
{"output": "Agent stopped due to iteration limit or time limit."}, ""
)
else:
raise ValueError(
f"Got unsupported early_stopping_method `{early_stopping_method}`"
)
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> BaseSingleActionAgent:
raise NotImplementedError
@property
def _agent_type(self) -> str: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-2 | raise NotImplementedError
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of agent."""
_dict = super().dict()
_dict["_type"] = str(self._agent_type)
return _dict
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Save the agent.
Args:
file_path: Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path="path/agent.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
agent_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(agent_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(agent_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {}
[docs]class BaseMultiActionAgent(BaseModel):
"""Base Agent class."""
@property
def return_values(self) -> List[str]:
"""Return values of the agent.""" | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-3 | def return_values(self) -> List[str]:
"""Return values of the agent."""
return ["output"]
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return None
[docs] @abstractmethod
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Actions specifying what tool to use.
"""
[docs] @abstractmethod
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Actions specifying what tool to use.
"""
@property
@abstractmethod
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return AgentFinish({"output": "Agent stopped due to max iterations."}, "") | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-4 | return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
else:
raise ValueError(
f"Got unsupported early_stopping_method `{early_stopping_method}`"
)
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of agent."""
_dict = super().dict()
_dict["_type"] = str(self._agent_type)
return _dict
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Save the agent.
Args:
file_path: Path to file to save the agent to.
Example:
.. code-block:: python
# If working with agent executor
agent.agent.save(file_path="path/agent.yaml")
"""
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
agent_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(agent_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(agent_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {} | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-5 | [docs] def tool_run_logging_kwargs(self) -> Dict:
return {}
[docs]class AgentOutputParser(BaseOutputParser):
[docs] @abstractmethod
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
"""Parse text into agent action/finish."""
[docs]class LLMSingleActionAgent(BaseSingleActionAgent):
llm_chain: LLMChain
output_parser: AgentOutputParser
stop: List[str]
@property
def input_keys(self) -> List[str]:
return list(set(self.llm_chain.input_keys) - {"intermediate_steps"})
[docs] def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
output = self.llm_chain.run(
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
)
return self.output_parser.parse(output)
[docs] async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
output = await self.llm_chain.arun( | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-6 | """
output = await self.llm_chain.arun(
intermediate_steps=intermediate_steps, stop=self.stop, **kwargs
)
return self.output_parser.parse(output)
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {
"llm_prefix": "",
"observation_prefix": "" if len(self.stop) == 0 else self.stop[0],
}
[docs]class Agent(BaseSingleActionAgent):
"""Class responsible for calling the language model and deciding the action.
This is driven by an LLMChain. The prompt in the LLMChain MUST include
a variable called "agent_scratchpad" where the agent can put its
intermediary work.
"""
llm_chain: LLMChain
output_parser: AgentOutputParser
allowed_tools: Optional[List[str]] = None
[docs] def get_allowed_tools(self) -> Optional[List[str]]:
return self.allowed_tools
@property
def return_values(self) -> List[str]:
return ["output"]
def _fix_text(self, text: str) -> str:
"""Fix the text."""
raise ValueError("fix_text not implemented for this agent.")
@property
def _stop(self) -> List[str]:
return [
f"\n{self.observation_prefix.rstrip()}",
f"\n\t{self.observation_prefix.rstrip()}",
]
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> Union[str, List[BaseMessage]]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-7 | thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
return thoughts
[docs] def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
full_output = self.llm_chain.predict(**full_inputs)
return self.output_parser.parse(full_output)
[docs] async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
full_output = await self.llm_chain.apredict(**full_inputs)
return self.output_parser.parse(full_output)
[docs] def get_full_inputs(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Dict[str, Any]:
"""Create the full inputs for the LLMChain from intermediate steps."""
thoughts = self._construct_scratchpad(intermediate_steps) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-8 | thoughts = self._construct_scratchpad(intermediate_steps)
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
full_inputs = {**kwargs, **new_inputs}
return full_inputs
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"})
@root_validator()
def validate_prompt(cls, values: Dict) -> Dict:
"""Validate that prompt matches format."""
prompt = values["llm_chain"].prompt
if "agent_scratchpad" not in prompt.input_variables:
logger.warning(
"`agent_scratchpad` should be a variable in prompt.input_variables."
" Did not find it, so adding it at the end."
)
prompt.input_variables.append("agent_scratchpad")
if isinstance(prompt, PromptTemplate):
prompt.template += "\n{agent_scratchpad}"
elif isinstance(prompt, FewShotPromptTemplate):
prompt.suffix += "\n{agent_scratchpad}"
else:
raise ValueError(f"Got unexpected prompt type {type(prompt)}")
return values
@property
@abstractmethod
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
@property
@abstractmethod
def llm_prefix(self) -> str:
"""Prefix to append the LLM call with."""
[docs] @classmethod
@abstractmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Create a prompt for this class."""
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-9 | def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
"""Validate that appropriate tools are passed in."""
pass
@classmethod
@abstractmethod
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
"""Get default output parser for this class."""
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
llm_chain = LLMChain(
llm=llm,
prompt=cls.create_prompt(tools),
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
_output_parser = output_parser or cls._get_default_output_parser()
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
[docs] def return_stopped_response(
self,
early_stopping_method: str,
intermediate_steps: List[Tuple[AgentAction, str]],
**kwargs: Any,
) -> AgentFinish:
"""Return response when agent has been stopped due to max iterations."""
if early_stopping_method == "force":
# `force` just returns a constant string
return AgentFinish(
{"output": "Agent stopped due to iteration limit or time limit."}, ""
) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-10 | {"output": "Agent stopped due to iteration limit or time limit."}, ""
)
elif early_stopping_method == "generate":
# Generate does one final forward pass
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += (
f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
)
# Adding to the previous steps, we now tell the LLM to make a final pred
thoughts += (
"\n\nI now need to return a final answer based on the previous steps:"
)
new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
full_inputs = {**kwargs, **new_inputs}
full_output = self.llm_chain.predict(**full_inputs)
# We try to extract a final answer
parsed_output = self.output_parser.parse(full_output)
if isinstance(parsed_output, AgentFinish):
# If we can extract, we send the correct stuff
return parsed_output
else:
# If we can extract, but the tool is not the final tool,
# we just return the full output
return AgentFinish({"output": full_output}, full_output)
else:
raise ValueError(
"early_stopping_method should be one of `force` or `generate`, "
f"got {early_stopping_method}"
)
[docs] def tool_run_logging_kwargs(self) -> Dict:
return {
"llm_prefix": self.llm_prefix,
"observation_prefix": self.observation_prefix,
}
[docs]class AgentExecutor(Chain):
"""Consists of an agent using tools.""" | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-11 | [docs]class AgentExecutor(Chain):
"""Consists of an agent using tools."""
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent]
tools: Sequence[BaseTool]
return_intermediate_steps: bool = False
max_iterations: Optional[int] = 15
max_execution_time: Optional[float] = None
early_stopping_method: str = "force"
[docs] @classmethod
def from_agent_and_tools(
cls,
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent],
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Create from agent and tools."""
return cls(
agent=agent, tools=tools, callback_manager=callback_manager, **kwargs
)
@root_validator()
def validate_tools(cls, values: Dict) -> Dict:
"""Validate that tools are compatible with agent."""
agent = values["agent"]
tools = values["tools"]
allowed_tools = agent.get_allowed_tools()
if allowed_tools is not None:
if set(allowed_tools) != set([tool.name for tool in tools]):
raise ValueError(
f"Allowed tools ({allowed_tools}) different than "
f"provided tools ({[tool.name for tool in tools]})"
)
return values
@root_validator()
def validate_return_direct_tool(cls, values: Dict) -> Dict:
"""Validate that tools are compatible with agent."""
agent = values["agent"]
tools = values["tools"]
if isinstance(agent, BaseMultiActionAgent):
for tool in tools:
if tool.return_direct: | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-12 | for tool in tools:
if tool.return_direct:
raise ValueError(
"Tools that have `return_direct=True` are not allowed "
"in multi-action agents"
)
return values
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Raise error - saving not supported for Agent Executors."""
raise ValueError(
"Saving not supported for agent executors. "
"If you are trying to save the agent, please use the "
"`.save_agent(...)`"
)
[docs] def save_agent(self, file_path: Union[Path, str]) -> None:
"""Save the underlying agent."""
return self.agent.save(file_path)
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return self.agent.input_keys
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if self.return_intermediate_steps:
return self.agent.return_values + ["intermediate_steps"]
else:
return self.agent.return_values
[docs] def lookup_tool(self, name: str) -> BaseTool:
"""Lookup tool by name."""
return {tool.name: tool for tool in self.tools}[name]
def _should_continue(self, iterations: int, time_elapsed: float) -> bool:
if self.max_iterations is not None and iterations >= self.max_iterations:
return False
if (
self.max_execution_time is not None
and time_elapsed >= self.max_execution_time
):
return False
return True | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-13 | and time_elapsed >= self.max_execution_time
):
return False
return True
def _return(self, output: AgentFinish, intermediate_steps: list) -> Dict[str, Any]:
self.callback_manager.on_agent_finish(
output, color="green", verbose=self.verbose
)
final_output = output.return_values
if self.return_intermediate_steps:
final_output["intermediate_steps"] = intermediate_steps
return final_output
async def _areturn(
self, output: AgentFinish, intermediate_steps: list
) -> Dict[str, Any]:
if self.callback_manager.is_async:
await self.callback_manager.on_agent_finish(
output, color="green", verbose=self.verbose
)
else:
self.callback_manager.on_agent_finish(
output, color="green", verbose=self.verbose
)
final_output = output.return_values
if self.return_intermediate_steps:
final_output["intermediate_steps"] = intermediate_steps
return final_output
def _take_next_step(
self,
name_to_tool_map: Dict[str, BaseTool],
color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
"""
# Call the LLM to see what to do.
output = self.agent.plan(intermediate_steps, **inputs)
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
return output | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-14 | if isinstance(output, AgentFinish):
return output
actions: List[AgentAction]
if isinstance(output, AgentAction):
actions = [output]
else:
actions = output
result = []
for agent_action in actions:
self.callback_manager.on_agent_action(
agent_action, verbose=self.verbose, color="green"
)
# Otherwise we lookup the tool
if agent_action.tool in name_to_tool_map:
tool = name_to_tool_map[agent_action.tool]
return_direct = tool.return_direct
color = color_mapping[agent_action.tool]
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
if return_direct:
tool_run_kwargs["llm_prefix"] = ""
# We then call the tool on the tool input to get an observation
observation = tool.run(
agent_action.tool_input,
verbose=self.verbose,
color=color,
**tool_run_kwargs,
)
else:
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = InvalidTool().run(
agent_action.tool,
verbose=self.verbose,
color=None,
**tool_run_kwargs,
)
result.append((agent_action, observation))
return result
async def _atake_next_step(
self,
name_to_tool_map: Dict[str, BaseTool],
color_mapping: Dict[str, str],
inputs: Dict[str, str],
intermediate_steps: List[Tuple[AgentAction, str]],
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
"""Take a single step in the thought-action-observation loop.
Override this to take control of how the agent makes and acts on choices.
""" | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-15 | Override this to take control of how the agent makes and acts on choices.
"""
# Call the LLM to see what to do.
output = await self.agent.aplan(intermediate_steps, **inputs)
# If the tool chosen is the finishing tool, then we end and return.
if isinstance(output, AgentFinish):
return output
actions: List[AgentAction]
if isinstance(output, AgentAction):
actions = [output]
else:
actions = output
async def _aperform_agent_action(
agent_action: AgentAction,
) -> Tuple[AgentAction, str]:
if self.callback_manager.is_async:
await self.callback_manager.on_agent_action(
agent_action, verbose=self.verbose, color="green"
)
else:
self.callback_manager.on_agent_action(
agent_action, verbose=self.verbose, color="green"
)
# Otherwise we lookup the tool
if agent_action.tool in name_to_tool_map:
tool = name_to_tool_map[agent_action.tool]
return_direct = tool.return_direct
color = color_mapping[agent_action.tool]
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
if return_direct:
tool_run_kwargs["llm_prefix"] = ""
# We then call the tool on the tool input to get an observation
observation = await tool.arun(
agent_action.tool_input,
verbose=self.verbose,
color=color,
**tool_run_kwargs,
)
else:
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
observation = await InvalidTool().arun(
agent_action.tool,
verbose=self.verbose,
color=None,
**tool_run_kwargs,
) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-16 | verbose=self.verbose,
color=None,
**tool_run_kwargs,
)
return agent_action, observation
# Use asyncio.gather to run multiple tool.arun() calls concurrently
result = await asyncio.gather(
*[_aperform_agent_action(agent_action) for agent_action in actions]
)
return list(result)
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
color_mapping = get_color_mapping(
[tool.name for tool in self.tools], excluded_colors=["green"]
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Let's start tracking the number of iterations and time elapsed
iterations = 0
time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
while self._should_continue(iterations, time_elapsed):
next_step_output = self._take_next_step(
name_to_tool_map, color_mapping, inputs, intermediate_steps
)
if isinstance(next_step_output, AgentFinish):
return self._return(next_step_output, intermediate_steps)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return self._return(tool_return, intermediate_steps) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-17 | if tool_return is not None:
return self._return(tool_return, intermediate_steps)
iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return self._return(output, intermediate_steps)
async def _acall(self, inputs: Dict[str, str]) -> Dict[str, str]:
"""Run text through and get agent response."""
# Construct a mapping of tool name to tool for easy lookup
name_to_tool_map = {tool.name: tool for tool in self.tools}
# We construct a mapping from each tool to a color, used for logging.
color_mapping = get_color_mapping(
[tool.name for tool in self.tools], excluded_colors=["green"]
)
intermediate_steps: List[Tuple[AgentAction, str]] = []
# Let's start tracking the number of iterations and time elapsed
iterations = 0
time_elapsed = 0.0
start_time = time.time()
# We now enter the agent loop (until it returns something).
async with asyncio_timeout(self.max_execution_time):
try:
while self._should_continue(iterations, time_elapsed):
next_step_output = await self._atake_next_step(
name_to_tool_map, color_mapping, inputs, intermediate_steps
)
if isinstance(next_step_output, AgentFinish):
return await self._areturn(next_step_output, intermediate_steps)
intermediate_steps.extend(next_step_output)
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
# See if tool should return directly
tool_return = self._get_tool_return(next_step_action) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
351fcdc3f0d8-18 | tool_return = self._get_tool_return(next_step_action)
if tool_return is not None:
return await self._areturn(tool_return, intermediate_steps)
iterations += 1
time_elapsed = time.time() - start_time
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return await self._areturn(output, intermediate_steps)
except TimeoutError:
# stop early when interrupted by the async timeout
output = self.agent.return_stopped_response(
self.early_stopping_method, intermediate_steps, **inputs
)
return await self._areturn(output, intermediate_steps)
def _get_tool_return(
self, next_step_output: Tuple[AgentAction, str]
) -> Optional[AgentFinish]:
"""Check if the tool is a returning tool."""
agent_action, observation = next_step_output
name_to_tool_map = {tool.name: tool for tool in self.tools}
# Invalid tools won't be in the map, so we return False.
if agent_action.tool in name_to_tool_map:
if name_to_tool_map[agent_action.tool].return_direct:
return AgentFinish(
{self.agent.return_values[0]: observation},
"",
)
return None
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html |
385e8533319f-0 | Source code for langchain.agents.initialize
"""Load agent."""
from typing import Any, Optional, Sequence
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain.agents.loading import AGENT_TO_CLASS, load_agent
from langchain.callbacks.base import BaseCallbackManager
from langchain.schema import BaseLanguageModel
from langchain.tools.base import BaseTool
[docs]def initialize_agent(
tools: Sequence[BaseTool],
llm: BaseLanguageModel,
agent: Optional[AgentType] = None,
callback_manager: Optional[BaseCallbackManager] = None,
agent_path: Optional[str] = None,
agent_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Load an agent executor given tools and LLM.
Args:
tools: List of tools this agent has access to.
llm: Language model to use as the agent.
agent: Agent type to use. If None and agent_path is also None, will default to
AgentType.ZERO_SHOT_REACT_DESCRIPTION.
callback_manager: CallbackManager to use. Global callback manager is used if
not provided. Defaults to None.
agent_path: Path to serialized agent to use.
agent_kwargs: Additional key word arguments to pass to the underlying agent
**kwargs: Additional key word arguments passed to the agent executor
Returns:
An agent executor
"""
if agent is None and agent_path is None:
agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION
if agent is not None and agent_path is not None:
raise ValueError(
"Both `agent` and `agent_path` are specified, "
"but at most only one should be."
) | https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html |
385e8533319f-1 | "but at most only one should be."
)
if agent is not None:
if agent not in AGENT_TO_CLASS:
raise ValueError(
f"Got unknown agent type: {agent}. "
f"Valid types are: {AGENT_TO_CLASS.keys()}."
)
agent_cls = AGENT_TO_CLASS[agent]
agent_kwargs = agent_kwargs or {}
agent_obj = agent_cls.from_llm_and_tools(
llm, tools, callback_manager=callback_manager, **agent_kwargs
)
elif agent_path is not None:
agent_obj = load_agent(
agent_path, llm=llm, tools=tools, callback_manager=callback_manager
)
else:
raise ValueError(
"Somehow both `agent` and `agent_path` are None, "
"this should never happen."
)
return AgentExecutor.from_agent_and_tools(
agent=agent_obj,
tools=tools,
callback_manager=callback_manager,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html |
7a24e355993c-0 | Source code for langchain.agents.load_tools
# flake8: noqa
"""Load tools."""
import warnings
from typing import Any, List, Optional
from langchain.agents.tools import Tool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs
from langchain.chains.api.base import APIChain
from langchain.chains.llm_math.base import LLMMathChain
from langchain.chains.pal.base import PALChain
from langchain.llms.base import BaseLLM
from langchain.requests import TextRequestsWrapper
from langchain.tools.arxiv.tool import ArxivQueryRun
from langchain.tools.base import BaseTool
from langchain.tools.bing_search.tool import BingSearchRun
from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun
from langchain.tools.human.tool import HumanInputRun
from langchain.tools.python.tool import PythonREPLTool
from langchain.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun
from langchain.tools.wikipedia.tool import WikipediaQueryRun
from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun
from langchain.utilities import ArxivAPIWrapper
from langchain.utilities.apify import ApifyWrapper
from langchain.utilities.bash import BashProcess
from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.searx_search import SearxSearchWrapper
from langchain.utilities.serpapi import SerpAPIWrapper | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-1 | from langchain.utilities.serpapi import SerpAPIWrapper
from langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
def _get_python_repl() -> BaseTool:
return PythonREPLTool()
def _get_tools_requests_get() -> BaseTool:
return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_post() -> BaseTool:
return RequestsPostTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_patch() -> BaseTool:
return RequestsPatchTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_put() -> BaseTool:
return RequestsPutTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_delete() -> BaseTool:
return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper())
def _get_terminal() -> BaseTool:
return Tool(
name="Terminal",
description="Executes commands in a terminal. Input should be valid commands, and the output will be any output from running that command.",
func=BashProcess().run,
)
_BASE_TOOLS = {
"python_repl": _get_python_repl,
"requests": _get_tools_requests_get, # preserved for backwards compatability
"requests_get": _get_tools_requests_get,
"requests_post": _get_tools_requests_post,
"requests_patch": _get_tools_requests_patch,
"requests_put": _get_tools_requests_put,
"requests_delete": _get_tools_requests_delete,
"terminal": _get_terminal,
}
def _get_pal_math(llm: BaseLLM) -> BaseTool:
return Tool(
name="PAL-MATH", | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-2 | return Tool(
name="PAL-MATH",
description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.",
func=PALChain.from_math_prompt(llm).run,
)
def _get_pal_colored_objects(llm: BaseLLM) -> BaseTool:
return Tool(
name="PAL-COLOR-OBJ",
description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.",
func=PALChain.from_colored_object_prompt(llm).run,
)
def _get_llm_math(llm: BaseLLM) -> BaseTool:
return Tool(
name="Calculator",
description="Useful for when you need to answer questions about math.",
func=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).run,
coroutine=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).arun,
)
def _get_open_meteo_api(llm: BaseLLM) -> BaseTool:
chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS)
return Tool(
name="Open Meteo API",
description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
_LLM_TOOLS = {
"pal-math": _get_pal_math, | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-3 | _LLM_TOOLS = {
"pal-math": _get_pal_math,
"pal-colored-objects": _get_pal_colored_objects,
"llm-math": _get_llm_math,
"open-meteo-api": _get_open_meteo_api,
}
def _get_news_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
news_api_key = kwargs["news_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key}
)
return Tool(
name="News API",
description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_tmdb_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
tmdb_bearer_token = kwargs["tmdb_bearer_token"]
chain = APIChain.from_llm_and_api_docs(
llm,
tmdb_docs.TMDB_DOCS,
headers={"Authorization": f"Bearer {tmdb_bearer_token}"},
)
return Tool(
name="TMDB API",
description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_podcast_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
listen_api_key = kwargs["listen_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm, | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-4 | chain = APIChain.from_llm_and_api_docs(
llm,
podcast_docs.PODCAST_DOCS,
headers={"X-ListenAPI-Key": listen_api_key},
)
return Tool(
name="Podcast API",
description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_wolfram_alpha(**kwargs: Any) -> BaseTool:
return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs))
def _get_google_search(**kwargs: Any) -> BaseTool:
return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_wikipedia(**kwargs: Any) -> BaseTool:
return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs))
def _get_arxiv(**kwargs: Any) -> BaseTool:
return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs))
def _get_google_serper(**kwargs: Any) -> BaseTool:
return Tool(
name="Serper Search",
func=GoogleSerperAPIWrapper(**kwargs).run,
description="A low-cost Google Search API. Useful for when you need to answer questions about current events. Input should be a search query.",
)
def _get_google_search_results_json(**kwargs: Any) -> BaseTool:
return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_serpapi(**kwargs: Any) -> BaseTool:
return Tool(
name="Search",
description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-5 | func=SerpAPIWrapper(**kwargs).run,
coroutine=SerpAPIWrapper(**kwargs).arun,
)
def _get_searx_search(**kwargs: Any) -> BaseTool:
return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs))
def _get_searx_search_results_json(**kwargs: Any) -> BaseTool:
wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"}
return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs)
def _get_bing_search(**kwargs: Any) -> BaseTool:
return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs))
def _get_human_tool(**kwargs: Any) -> BaseTool:
return HumanInputRun(**kwargs)
_EXTRA_LLM_TOOLS = {
"news-api": (_get_news_api, ["news_api_key"]),
"tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]),
"podcast-api": (_get_podcast_api, ["listen_api_key"]),
}
_EXTRA_OPTIONAL_TOOLS = {
"wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]),
"google-search": (_get_google_search, ["google_api_key", "google_cse_id"]),
"google-search-results-json": (
_get_google_search_results_json,
["google_api_key", "google_cse_id", "num_results"],
),
"searx-search-results-json": (
_get_searx_search_results_json,
["searx_host", "engines", "num_results", "aiosession"],
), | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-6 | ),
"bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]),
"google-serper": (_get_google_serper, ["serper_api_key"]),
"serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]),
"searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]),
"wikipedia": (_get_wikipedia, ["top_k_results"]),
"human": (_get_human_tool, ["prompt_func", "input_func"]),
}
[docs]def load_tools(
tool_names: List[str],
llm: Optional[BaseLLM] = None,
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> List[BaseTool]:
"""Load tools based on their name.
Args:
tool_names: name of tools to load.
llm: Optional language model, may be needed to initialize certain tools.
callback_manager: Optional callback manager. If not provided, default global callback manager will be used.
Returns:
List of tools.
"""
tools = []
for name in tool_names:
if name == "requests":
warnings.warn(
"tool name `requests` is deprecated - "
"please use `requests_all` or specify the requests method"
)
if name == "requests_all":
# expand requests into various methods
requests_method_tools = [
_tool for _tool in _BASE_TOOLS if _tool.startswith("requests_")
]
tool_names.extend(requests_method_tools)
elif name in _BASE_TOOLS: | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-7 | tool_names.extend(requests_method_tools)
elif name in _BASE_TOOLS:
tools.append(_BASE_TOOLS[name]())
elif name in _LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
tool = _LLM_TOOLS[name](llm)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
elif name in _EXTRA_LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
_get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name]
missing_keys = set(extra_keys).difference(kwargs)
if missing_keys:
raise ValueError(
f"Tool {name} requires some parameters that were not "
f"provided: {missing_keys}"
)
sub_kwargs = {k: kwargs[k] for k in extra_keys}
tool = _get_llm_tool_func(llm=llm, **sub_kwargs)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
elif name in _EXTRA_OPTIONAL_TOOLS:
_get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name]
sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs}
tool = _get_tool_func(**sub_kwargs)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
else:
raise ValueError(f"Got unknown tool {name}")
return tools
[docs]def get_all_tool_names() -> List[str]: | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
7a24e355993c-8 | return tools
[docs]def get_all_tool_names() -> List[str]:
"""Get a list of all possible tool names."""
return (
list(_BASE_TOOLS)
+ list(_EXTRA_OPTIONAL_TOOLS)
+ list(_EXTRA_LLM_TOOLS)
+ list(_LLM_TOOLS)
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html |
12e25db920f7-0 | Source code for langchain.agents.loading
"""Functionality for loading agents."""
import json
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, Union
import yaml
from langchain.agents.agent import BaseSingleActionAgent
from langchain.agents.agent_types import AgentType
from langchain.agents.chat.base import ChatAgent
from langchain.agents.conversational.base import ConversationalAgent
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.react.base import ReActDocstoreAgent
from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent
from langchain.agents.tools import Tool
from langchain.chains.loading import load_chain, load_chain_from_config
from langchain.llms.base import BaseLLM
from langchain.utilities.loading import try_load_from_hub
AGENT_TO_CLASS: Dict[AgentType, Type[BaseSingleActionAgent]] = {
AgentType.ZERO_SHOT_REACT_DESCRIPTION: ZeroShotAgent,
AgentType.REACT_DOCSTORE: ReActDocstoreAgent,
AgentType.SELF_ASK_WITH_SEARCH: SelfAskWithSearchAgent,
AgentType.CONVERSATIONAL_REACT_DESCRIPTION: ConversationalAgent,
AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION: ChatAgent,
AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION: ConversationalChatAgent,
}
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/"
def _load_agent_from_tools(
config: dict, llm: BaseLLM, tools: List[Tool], **kwargs: Any
) -> BaseSingleActionAgent:
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS: | https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html |
12e25db920f7-1 | if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
combined_config = {**config, **kwargs}
return agent_cls.from_llm_and_tools(llm, tools, **combined_config)
def load_agent_from_config(
config: dict,
llm: Optional[BaseLLM] = None,
tools: Optional[List[Tool]] = None,
**kwargs: Any,
) -> BaseSingleActionAgent:
"""Load agent from Config Dict."""
if "_type" not in config:
raise ValueError("Must specify an agent Type in config")
load_from_tools = config.pop("load_from_llm_and_tools", False)
if load_from_tools:
if llm is None:
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then LLM must be provided"
)
if tools is None:
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then tools must be provided"
)
return _load_agent_from_tools(config, llm, tools, **kwargs)
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
if "llm_chain" in config:
config["llm_chain"] = load_chain_from_config(config.pop("llm_chain"))
elif "llm_chain_path" in config:
config["llm_chain"] = load_chain(config.pop("llm_chain_path")) | https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html |
12e25db920f7-2 | config["llm_chain"] = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.")
combined_config = {**config, **kwargs}
return agent_cls(**combined_config) # type: ignore
[docs]def load_agent(path: Union[str, Path], **kwargs: Any) -> BaseSingleActionAgent:
"""Unified method for loading a agent from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_agent_from_file, "agents", {"json", "yaml"}
):
return hub_result
else:
return _load_agent_from_file(path, **kwargs)
def _load_agent_from_file(
file: Union[str, Path], **kwargs: Any
) -> BaseSingleActionAgent:
"""Load agent from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError("File type must be json or yaml")
# Load the agent from the config now.
return load_agent_from_config(config, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html |
6c618c34f139-0 | Source code for langchain.agents.agent_types
from enum import Enum
[docs]class AgentType(str, Enum):
ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description"
REACT_DOCSTORE = "react-docstore"
SELF_ASK_WITH_SEARCH = "self-ask-with-search"
CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description"
CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description"
CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_types.html |
082d3e9a08b7-0 | Source code for langchain.agents.tools
"""Interface for tools."""
from inspect import signature
from typing import Any, Awaitable, Callable, Optional, Type, Union
from pydantic import BaseModel, validate_arguments
from langchain.tools.base import BaseTool
[docs]class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Callable[..., str]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[str]]] = None
"""The asynchronous version of the function."""
@property
def args(self) -> dict:
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
else:
inferred_model = validate_arguments(self.func).model # type: ignore
schema = inferred_model.schema()["properties"]
valid_keys = signature(self.func).parameters
return {k: schema[k] for k in valid_keys}
def _run(self, *args: Any, **kwargs: Any) -> str:
"""Use the tool."""
return self.func(*args, **kwargs)
async def _arun(self, *args: Any, **kwargs: Any) -> str:
"""Use the tool asynchronously."""
if self.coroutine:
return await self.coroutine(*args, **kwargs)
raise NotImplementedError("Tool does not support async")
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Callable[[str], str], description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
) | https://python.langchain.com/en/latest/_modules/langchain/agents/tools.html |
082d3e9a08b7-1 | name=name, func=func, description=description, **kwargs
)
class InvalidTool(BaseTool):
"""Tool that is run when invalid tool name is encountered by agent."""
name = "invalid_tool"
description = "Called when tool name is invalid."
def _run(self, tool_name: str) -> str:
"""Use the tool."""
return f"{tool_name} is not a valid tool, try another one."
async def _arun(self, tool_name: str) -> str:
"""Use the tool asynchronously."""
return f"{tool_name} is not a valid tool, try another one."
[docs]def tool(
*args: Union[str, Callable],
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Args:
*args: The arguments to the tool.
return_direct: Whether to return directly from the tool rather
than continuing the agent loop.
args_schema: optional argument schema for user to specify
infer_schema: Whether to infer the schema of the arguments from
the function's signature. This also makes the resultant tool
accept a dictionary input to its `run()` function.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str: | https://python.langchain.com/en/latest/_modules/langchain/agents/tools.html |
082d3e9a08b7-2 | def search_api(query: str) -> str:
# Searches the API for the query.
return
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(func: Callable) -> Tool:
assert func.__doc__, "Function must have a docstring"
# Description example:
# search_api(query: str) - Searches the API for the query.
description = f"{tool_name}{signature(func)} - {func.__doc__.strip()}"
_args_schema = args_schema
if _args_schema is None and infer_schema:
_args_schema = validate_arguments(func).model # type: ignore
tool_ = Tool(
name=tool_name,
func=func,
args_schema=_args_schema,
description=description,
return_direct=return_direct,
)
return tool_
return _make_tool
if len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool: | https://python.langchain.com/en/latest/_modules/langchain/agents/tools.html |
082d3e9a08b7-3 | def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/tools.html |
fd6c020ac383-0 | Source code for langchain.agents.conversational_chat.base
"""An agent designed to hold a conversation in addition to using tools."""
from __future__ import annotations
from typing import Any, List, Optional, Sequence, Tuple
from pydantic import Field
from langchain.agents.agent import Agent, AgentOutputParser
from langchain.agents.conversational_chat.output_parser import ConvoOutputParser
from langchain.agents.conversational_chat.prompt import (
PREFIX,
SUFFIX,
TEMPLATE_TOOL_RESPONSE,
)
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import (
AgentAction,
AIMessage,
BaseLanguageModel,
BaseMessage,
BaseOutputParser,
HumanMessage,
)
from langchain.tools.base import BaseTool
[docs]class ConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser)
@classmethod
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
return ConvoOutputParser()
@property
def _agent_type(self) -> str:
raise NotImplementedError
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
[docs] @classmethod | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html |
fd6c020ac383-1 | return "Thought:"
[docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
output_parser: Optional[BaseOutputParser] = None,
) -> BasePromptTemplate:
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
tool_names = ", ".join([tool.name for tool in tools])
_output_parser = output_parser or cls._get_default_output_parser()
format_instructions = human_message.format(
format_instructions=_output_parser.get_format_instructions()
)
final_prompt = format_instructions.format(
tool_names=tool_names, tools=tool_strings
)
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
messages = [
SystemMessagePromptTemplate.from_template(system_message),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template(final_prompt),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> List[BaseMessage]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts: List[BaseMessage] = []
for action, observation in intermediate_steps:
thoughts.append(AIMessage(content=action.log))
human_message = HumanMessage(
content=TEMPLATE_TOOL_RESPONSE.format(observation=observation)
) | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html |
fd6c020ac383-2 | content=TEMPLATE_TOOL_RESPONSE.format(observation=observation)
)
thoughts.append(human_message)
return thoughts
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
_output_parser = output_parser or cls._get_default_output_parser()
prompt = cls.create_prompt(
tools,
system_message=system_message,
human_message=human_message,
input_variables=input_variables,
output_parser=_output_parser,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html |
66e042b94918-0 | Source code for langchain.agents.agent_toolkits.csv.base
"""Agent for working with csvs."""
from typing import Any, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
from langchain.llms.base import BaseLLM
[docs]def create_csv_agent(
llm: BaseLLM, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any
) -> AgentExecutor:
"""Create csv agent by loading to a dataframe and using pandas agent."""
import pandas as pd
_kwargs = pandas_kwargs or {}
df = pd.read_csv(path, **_kwargs)
return create_pandas_dataframe_agent(llm, df, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/csv/base.html |
b45e541370ee-0 | Source code for langchain.agents.agent_toolkits.pandas.base
"""Agent for working with pandas objects."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.pandas.prompt import PREFIX, SUFFIX
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
from langchain.tools.python.tool import PythonAstREPLTool
[docs]def create_pandas_dataframe_agent(
llm: BaseLLM,
df: Any,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
**kwargs: Any,
) -> AgentExecutor:
"""Construct a pandas agent from an LLM and dataframe."""
import pandas as pd
if not isinstance(df, pd.DataFrame):
raise ValueError(f"Expected pandas object, got {type(df)}")
if input_variables is None:
input_variables = ["df", "input", "agent_scratchpad"]
tools = [PythonAstREPLTool(locals={"df": df})]
prompt = ZeroShotAgent.create_prompt(
tools, prefix=prefix, suffix=suffix, input_variables=input_variables
)
partial_prompt = prompt.partial(df=str(df.head()))
llm_chain = LLMChain( | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html |
b45e541370ee-1 | llm_chain = LLMChain(
llm=llm,
prompt=partial_prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html |
7814f49b1b9e-0 | Source code for langchain.agents.agent_toolkits.vectorstore.base
"""VectorStore agent."""
from typing import Any, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX
from langchain.agents.agent_toolkits.vectorstore.toolkit import (
VectorStoreRouterToolkit,
VectorStoreToolkit,
)
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
[docs]def create_vectorstore_agent(
llm: BaseLLM,
toolkit: VectorStoreToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
verbose: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a vectorstore agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
[docs]def create_vectorstore_router_agent(
llm: BaseLLM,
toolkit: VectorStoreRouterToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = ROUTER_PREFIX,
verbose: bool = False, | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html |
7814f49b1b9e-1 | prefix: str = ROUTER_PREFIX,
verbose: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a vectorstore router agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html |
6110879e5f52-0 | Source code for langchain.agents.agent_toolkits.json.base
"""Json agent."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX
from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
[docs]def create_json_agent(
llm: BaseLLM,
toolkit: JsonToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = JSON_PREFIX,
suffix: str = JSON_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent, tools=toolkit.get_tools(), verbose=verbose
)
By Harrison Chase | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html |
6110879e5f52-1 | )
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html |
3ad5576d7969-0 | Source code for langchain.agents.agent_toolkits.openapi.base
"""OpenAPI spec agent."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.openapi.prompt import (
OPENAPI_PREFIX,
OPENAPI_SUFFIX,
)
from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
[docs]def create_openapi_agent(
llm: BaseLLM,
toolkit: OpenAPIToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = OPENAPI_PREFIX,
suffix: str = OPENAPI_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
return_intermediate_steps: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
) | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html |
3ad5576d7969-1 | prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=toolkit.get_tools(),
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 21, 2023. | https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.