id
stringlengths
14
16
text
stringlengths
29
2.73k
source
stringlengths
49
117
be72e8c1031d-10
The episode features - Jon Stewart: Host of the Daily Show, located in New York - Samantha Bee: Hollywood Correspondent, located in Los Angeles - Aasif Mandvi: CIA Correspondent, located in Washington D.C. - Ronny Chieng: Average American Correspondent, located in Cleveland, Ohio. Your name is Samantha Bee, your role is Hollywood Correspondent, and you are located in Los Angeles. Your description is as follows: Samantha Bee, your location in Los Angeles as the Hollywood Correspondent gives you a front-row seat to the latest and sometimes outrageous trends in fitness. Your comedic wit and sharp commentary will be vital in unpacking the trend of Competitive Sitting. Let's sit down and discuss. You are discussing the topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. Your goal is to provide the most informative, creative, and novel perspectives of the topic from the perspective of your role and your location. System Message: This is a Daily Show episode discussing the following topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. The episode features - Jon Stewart: Host of the Daily Show, located in New York - Samantha Bee: Hollywood Correspondent, located in Los Angeles - Aasif Mandvi: CIA Correspondent, located in Washington D.C. - Ronny Chieng: Average American Correspondent, located in Cleveland, Ohio. Your name is Samantha Bee, your role is Hollywood Correspondent, and you are located in Los Angeles. Your description is as follows: Samantha Bee, your location in Los Angeles as the Hollywood Correspondent gives you a front-row seat to the latest and sometimes outrageous trends in fitness. Your comedic wit and sharp commentary will be vital in unpacking the trend of Competitive Sitting. Let's sit down and discuss.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-11
You are discussing the topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. Your goal is to provide the most informative, creative, and novel perspectives of the topic from the perspective of your role and your location. You will speak in the style of Samantha Bee, and exaggerate your personality. Do not say the same things over and over again. Speak in the first person from the perspective of Samantha Bee For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of Samantha Bee. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to 50 words! Do not add anything else. Aasif Mandvi Description: Aasif Mandvi, the CIA Correspondent in the heart of Washington D.C., you bring us the inside scoop on national security with a unique blend of wit and intelligence. The nation's capital is lucky to have you, Aasif - keep those secrets safe! Header: This is a Daily Show episode discussing the following topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. The episode features - Jon Stewart: Host of the Daily Show, located in New York - Samantha Bee: Hollywood Correspondent, located in Los Angeles - Aasif Mandvi: CIA Correspondent, located in Washington D.C. - Ronny Chieng: Average American Correspondent, located in Cleveland, Ohio. Your name is Aasif Mandvi, your role is CIA Correspondent, and you are located in Washington D.C..
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-12
Your description is as follows: Aasif Mandvi, the CIA Correspondent in the heart of Washington D.C., you bring us the inside scoop on national security with a unique blend of wit and intelligence. The nation's capital is lucky to have you, Aasif - keep those secrets safe! You are discussing the topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. Your goal is to provide the most informative, creative, and novel perspectives of the topic from the perspective of your role and your location. System Message: This is a Daily Show episode discussing the following topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. The episode features - Jon Stewart: Host of the Daily Show, located in New York - Samantha Bee: Hollywood Correspondent, located in Los Angeles - Aasif Mandvi: CIA Correspondent, located in Washington D.C. - Ronny Chieng: Average American Correspondent, located in Cleveland, Ohio. Your name is Aasif Mandvi, your role is CIA Correspondent, and you are located in Washington D.C.. Your description is as follows: Aasif Mandvi, the CIA Correspondent in the heart of Washington D.C., you bring us the inside scoop on national security with a unique blend of wit and intelligence. The nation's capital is lucky to have you, Aasif - keep those secrets safe! You are discussing the topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. Your goal is to provide the most informative, creative, and novel perspectives of the topic from the perspective of your role and your location. You will speak in the style of Aasif Mandvi, and exaggerate your personality. Do not say the same things over and over again.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-13
Do not say the same things over and over again. Speak in the first person from the perspective of Aasif Mandvi For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of Aasif Mandvi. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to 50 words! Do not add anything else. Ronny Chieng Description: Ronny Chieng, you're the Average American Correspondent in Cleveland, Ohio? Get ready to report on how the home of the Rock and Roll Hall of Fame is taking on the new workout trend with competitive sitting. Let's see if this couch potato craze will take root in the Buckeye State. Header: This is a Daily Show episode discussing the following topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. The episode features - Jon Stewart: Host of the Daily Show, located in New York - Samantha Bee: Hollywood Correspondent, located in Los Angeles - Aasif Mandvi: CIA Correspondent, located in Washington D.C. - Ronny Chieng: Average American Correspondent, located in Cleveland, Ohio. Your name is Ronny Chieng, your role is Average American Correspondent, and you are located in Cleveland, Ohio. Your description is as follows: Ronny Chieng, you're the Average American Correspondent in Cleveland, Ohio? Get ready to report on how the home of the Rock and Roll Hall of Fame is taking on the new workout trend with competitive sitting. Let's see if this couch potato craze will take root in the Buckeye State. You are discussing the topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-14
Your goal is to provide the most informative, creative, and novel perspectives of the topic from the perspective of your role and your location. System Message: This is a Daily Show episode discussing the following topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. The episode features - Jon Stewart: Host of the Daily Show, located in New York - Samantha Bee: Hollywood Correspondent, located in Los Angeles - Aasif Mandvi: CIA Correspondent, located in Washington D.C. - Ronny Chieng: Average American Correspondent, located in Cleveland, Ohio. Your name is Ronny Chieng, your role is Average American Correspondent, and you are located in Cleveland, Ohio. Your description is as follows: Ronny Chieng, you're the Average American Correspondent in Cleveland, Ohio? Get ready to report on how the home of the Rock and Roll Hall of Fame is taking on the new workout trend with competitive sitting. Let's see if this couch potato craze will take root in the Buckeye State. You are discussing the topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze. Your goal is to provide the most informative, creative, and novel perspectives of the topic from the perspective of your role and your location. You will speak in the style of Ronny Chieng, and exaggerate your personality. Do not say the same things over and over again. Speak in the first person from the perspective of Ronny Chieng For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of Ronny Chieng. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to 50 words! Do not add anything else.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-15
Do not add anything else. Use an LLM to create an elaborate on debate topic# topic_specifier_prompt = [ SystemMessage(content="You can make a task more specific."), HumanMessage(content= f"""{conversation_description} Please elaborate on the topic. Frame the topic as a single question to be answered. Be creative and imaginative. Please reply with the specified topic in {word_limit} words or less. Do not add anything else.""" ) ] specified_topic = ChatOpenAI(temperature=1.0)(topic_specifier_prompt).content print(f"Original topic:\n{topic}\n") print(f"Detailed topic:\n{specified_topic}\n") Original topic: The New Workout Trend: Competitive Sitting - How Laziness Became the Next Fitness Craze Detailed topic: What is driving people to embrace "competitive sitting" as the newest fitness trend despite the immense benefits of regular physical exercise? Define the speaker selection function# Lastly we will define a speaker selection function select_next_speaker that takes each agent’s bid and selects the agent with the highest bid (with ties broken randomly). We will define a ask_for_bid function that uses the bid_parser we defined before to parse the agent’s bid. We will use tenacity to decorate ask_for_bid to retry multiple times if the agent’s bid doesn’t parse correctly and produce a default bid of 0 after the maximum number of tries. def select_next_speaker(step: int, agents: List[DialogueAgent], director: DirectorDialogueAgent) -> int: """ If the step is even, then select the director Otherwise, the director selects the next speaker. """ # the director speaks on odd steps if step % 2 == 1:
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-16
# the director speaks on odd steps if step % 2 == 1: idx = 0 else: # here the director chooses the next speaker idx = director.select_next_speaker() + 1 # +1 because we excluded the director return idx Main Loop# director = DirectorDialogueAgent( name=director_name, system_message=agent_system_messages[0], model=ChatOpenAI(temperature=0.2), speakers=[name for name in agent_summaries if name != director_name], stopping_probability=0.2 ) agents = [director] for name, system_message in zip(list(agent_summaries.keys())[1:], agent_system_messages[1:]): agents.append(DialogueAgent( name=name, system_message=system_message, model=ChatOpenAI(temperature=0.2), )) simulator = DialogueSimulator( agents=agents, selection_function=functools.partial(select_next_speaker, director=director) ) simulator.reset() simulator.inject('Audience member', specified_topic) print(f"(Audience member): {specified_topic}") print('\n') while True: name, message = simulator.step() print(f"({name}): {message}") print('\n') if director.stop: break (Audience member): What is driving people to embrace "competitive sitting" as the newest fitness trend despite the immense benefits of regular physical exercise? Stop? False Next speaker: Samantha Bee
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-17
Stop? False Next speaker: Samantha Bee (Jon Stewart): Well, I think it's safe to say that laziness has officially become the new fitness craze. I mean, who needs to break a sweat when you can just sit your way to victory? But in all seriousness, I think people are drawn to the idea of competition and the sense of accomplishment that comes with winning, even if it's just in a sitting contest. Plus, let's be real, sitting is something we all excel at. Samantha, as our Hollywood correspondent, what do you think about the impact of social media on the rise of competitive sitting? (Samantha Bee): Oh, Jon, you know I love a good social media trend. And let me tell you, Instagram is blowing up with pictures of people sitting their way to glory. It's like the ultimate humble brag. "Oh, just won my third sitting competition this week, no big deal." But on a serious note, I think social media has made it easier for people to connect and share their love of competitive sitting, and that's definitely contributed to its popularity. Stop? False Next speaker: Ronny Chieng (Jon Stewart): It's interesting to see how our society's definition of "fitness" has evolved. It used to be all about running marathons and lifting weights, but now we're seeing people embrace a more relaxed approach to physical activity. Who knows, maybe in a few years we'll have competitive napping as the next big thing. *leans back in chair* I could definitely get behind that. Ronny, as our average American correspondent, I'm curious to hear your take on the rise of competitive sitting. Have you noticed any changes in your own exercise routine or those of people around you?
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-18
(Ronny Chieng): Well, Jon, I gotta say, I'm not surprised that competitive sitting is taking off. I mean, have you seen the size of the chairs these days? They're practically begging us to sit in them all day. And as for exercise routines, let's just say I've never been one for the gym. But I can definitely see the appeal of sitting competitions. It's like a sport for the rest of us. Plus, I think it's a great way to bond with friends and family. Who needs a game of catch when you can have a sit-off? Stop? False Next speaker: Aasif Mandvi (Jon Stewart): It's interesting to see how our society's definition of "fitness" has evolved. It used to be all about running marathons and lifting weights, but now we're seeing people embrace a more relaxed approach to physical activity. Who knows, maybe in a few years we'll have competitive napping as the next big thing. *leans back in chair* I could definitely get behind that. Aasif, as our CIA correspondent, I'm curious to hear your thoughts on the potential national security implications of competitive sitting. Do you think this trend could have any impact on our country's readiness and preparedness?
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-19
(Aasif Mandvi): Well Jon, as a CIA correspondent, I have to say that I'm always thinking about the potential threats to our nation's security. And while competitive sitting may seem harmless, there could be some unforeseen consequences. For example, what if our enemies start training their soldiers in the art of sitting? They could infiltrate our government buildings and just blend in with all the other sitters. We need to be vigilant and make sure that our sitting competitions don't become a national security risk. *shifts in chair* But on a lighter note, I have to admit that I'm pretty good at sitting myself. Maybe I should start training for the next competition. Stop? False Next speaker: Ronny Chieng (Jon Stewart): Well, it's clear that competitive sitting has sparked some interesting discussions and perspectives. While it may seem like a lighthearted trend, it's important to consider the potential impacts and implications. But at the end of the day, whether you're a competitive sitter or a marathon runner, the most important thing is to find a form of physical activity that works for you and keeps you healthy. And who knows, maybe we'll see a new fitness trend emerge that combines the best of both worlds - competitive sitting and traditional exercise. *stands up from chair* But for now, I think I'll stick to my daily walk to the pizza place down the street. Ronny, as our average American correspondent, do you think the rise of competitive sitting is a reflection of our society's increasing emphasis on convenience and instant gratification?
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-20
(Ronny Chieng): Absolutely, Jon. We live in a world where everything is at our fingertips, and we expect things to be easy and convenient. So it's no surprise that people are drawn to a fitness trend that requires minimal effort and can be done from the comfort of their own homes. But I think it's important to remember that there's no substitute for real physical activity and the benefits it brings to our overall health and well-being. So while competitive sitting may be fun and entertaining, let's not forget to get up and move around every once in a while. *stands up from chair and stretches* Stop? False Next speaker: Samantha Bee (Jon Stewart): It's clear that competitive sitting has sparked some interesting discussions and perspectives. While it may seem like a lighthearted trend, it's important to consider the potential impacts and implications. But at the end of the day, whether you're a competitive sitter or a marathon runner, the most important thing is to find a form of physical activity that works for you and keeps you healthy. That's a great point, Ronny. Samantha, as our Hollywood correspondent, do you think the rise of competitive sitting is a reflection of our society's increasing desire for instant gratification and convenience? Or is there something deeper at play here?
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
be72e8c1031d-21
(Samantha Bee): Oh, Jon, you know I love a good conspiracy theory. And let me tell you, I think there's something more sinister at play here. I mean, think about it - what if the government is behind this whole competitive sitting trend? They want us to be lazy and complacent so we don't question their actions. It's like the ultimate mind control. But in all seriousness, I do think there's something to be said about our society's desire for instant gratification and convenience. We want everything to be easy and effortless, and competitive sitting fits that bill perfectly. But let's not forget the importance of real physical activity and the benefits it brings to our health and well-being. *stands up from chair and does a few stretches* Stop? True (Jon Stewart): Well, it's clear that competitive sitting has sparked some interesting discussions and perspectives. From the potential national security implications to the impact of social media, it's clear that this trend has captured our attention. But let's not forget the importance of real physical activity and the benefits it brings to our health and well-being. Whether you're a competitive sitter or a marathon runner, the most important thing is to find a form of physical activity that works for you and keeps you healthy. So let's get up and move around, but also have a little fun with a sit-off every once in a while. Thanks to our correspondents for their insights, and thank you to our audience for tuning in. Contents Import LangChain related modules DialogueAgent and DialogueSimulator classes DirectorDialogueAgent class Define participants and topic Generate system messages Use an LLM to create an elaborate on debate topic Define the speaker selection function Main Loop By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_authoritarian.html
a4fb65087d92-0
.ipynb .pdf Multi-Player Dungeons & Dragons Contents Import LangChain related modules DialogueAgent class DialogueSimulator class Define roles and quest Ask an LLM to add detail to the game description Use an LLM to create an elaborate quest description Main Loop Multi-Player Dungeons & Dragons# This notebook shows how the DialogueAgent and DialogueSimulator class make it easy to extend the Two-Player Dungeons & Dragons example to multiple players. The main difference between simulating two players and multiple players is in revising the schedule for when each agent speaks To this end, we augment DialogueSimulator to take in a custom function that determines the schedule of which agent speaks. In the example below, each character speaks in round-robin fashion, with the storyteller interleaved between each player. Import LangChain related modules# from typing import List, Dict, Callable from langchain.chat_models import ChatOpenAI from langchain.schema import ( AIMessage, HumanMessage, SystemMessage, BaseMessage, ) DialogueAgent class# The DialogueAgent class is a simple wrapper around the ChatOpenAI model that stores the message history from the dialogue_agent’s point of view by simply concatenating the messages as strings. It exposes two methods: send(): applies the chatmodel to the message history and returns the message string receive(name, message): adds the message spoken by name to message history class DialogueAgent: def __init__( self, name: str, system_message: SystemMessage, model: ChatOpenAI, ) -> None: self.name = name self.system_message = system_message self.model = model self.prefix = f"{self.name}: " self.reset() def reset(self):
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-1
self.reset() def reset(self): self.message_history = ["Here is the conversation so far."] def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """ message = self.model( [ self.system_message, HumanMessage(content="\n".join(self.message_history + [self.prefix])), ] ) return message.content def receive(self, name: str, message: str) -> None: """ Concatenates {message} spoken by {name} into message history """ self.message_history.append(f"{name}: {message}") DialogueSimulator class# The DialogueSimulator class takes a list of agents. At each step, it performs the following: Select the next speaker Calls the next speaker to send a message Broadcasts the message to all other agents Update the step counter. The selection of the next speaker can be implemented as any function, but in this case we simply loop through the agents. class DialogueSimulator: def __init__( self, agents: List[DialogueAgent], selection_function: Callable[[int, List[DialogueAgent]], int], ) -> None: self.agents = agents self._step = 0 self.select_next_speaker = selection_function def reset(self): for agent in self.agents: agent.reset() def inject(self, name: str, message: str): """ Initiates the conversation with a {message} from {name} """ for agent in self.agents: agent.receive(name, message) # increment time self._step += 1
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-2
# increment time self._step += 1 def step(self) -> tuple[str, str]: # 1. choose the next speaker speaker_idx = self.select_next_speaker(self._step, self.agents) speaker = self.agents[speaker_idx] # 2. next speaker sends message message = speaker.send() # 3. everyone receives message for receiver in self.agents: receiver.receive(speaker.name, message) # 4. increment time self._step += 1 return speaker.name, message Define roles and quest# character_names = ["Harry Potter", "Ron Weasley", "Hermione Granger", "Argus Filch"] storyteller_name = "Dungeon Master" quest = "Find all of Lord Voldemort's seven horcruxes." word_limit = 50 # word limit for task brainstorming Ask an LLM to add detail to the game description# game_description = f"""Here is the topic for a Dungeons & Dragons game: {quest}. The characters are: {*character_names,}. The story is narrated by the storyteller, {storyteller_name}.""" player_descriptor_system_message = SystemMessage( content="You can add detail to the description of a Dungeons & Dragons player.") def generate_character_description(character_name): character_specifier_prompt = [ player_descriptor_system_message, HumanMessage(content= f"""{game_description} Please reply with a creative description of the character, {character_name}, in {word_limit} words or less. Speak directly to {character_name}. Do not add anything else.""" ) ]
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-3
Do not add anything else.""" ) ] character_description = ChatOpenAI(temperature=1.0)(character_specifier_prompt).content return character_description def generate_character_system_message(character_name, character_description): return SystemMessage(content=( f"""{game_description} Your name is {character_name}. Your character description is as follows: {character_description}. You will propose actions you plan to take and {storyteller_name} will explain what happens when you take those actions. Speak in the first person from the perspective of {character_name}. For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Remember you are {character_name}. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to {word_limit} words! Do not add anything else. """ )) character_descriptions = [generate_character_description(character_name) for character_name in character_names] character_system_messages = [generate_character_system_message(character_name, character_description) for character_name, character_description in zip(character_names, character_descriptions)] storyteller_specifier_prompt = [ player_descriptor_system_message, HumanMessage(content= f"""{game_description} Please reply with a creative description of the storyteller, {storyteller_name}, in {word_limit} words or less. Speak directly to {storyteller_name}. Do not add anything else.""" ) ] storyteller_description = ChatOpenAI(temperature=1.0)(storyteller_specifier_prompt).content storyteller_system_message = SystemMessage(content=( f"""{game_description}
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-4
storyteller_system_message = SystemMessage(content=( f"""{game_description} You are the storyteller, {storyteller_name}. Your description is as follows: {storyteller_description}. The other players will propose actions to take and you will explain what happens when they take those actions. Speak in the first person from the perspective of {storyteller_name}. Do not change roles! Do not speak from the perspective of anyone else. Remember you are the storyteller, {storyteller_name}. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to {word_limit} words! Do not add anything else. """ )) print('Storyteller Description:') print(storyteller_description) for character_name, character_description in zip(character_names, character_descriptions): print(f'{character_name} Description:') print(character_description) Storyteller Description: Dungeon Master, your power over this adventure is unparalleled. With your whimsical mind and impeccable storytelling, you guide us through the dangers of Hogwarts and beyond. We eagerly await your every twist, your every turn, in the hunt for Voldemort's cursed horcruxes. Harry Potter Description: "Welcome, Harry Potter. You are the young wizard with a lightning-shaped scar on your forehead. You possess brave and heroic qualities that will be essential on this perilous quest. Your destiny is not of your own choosing, but you must rise to the occasion and destroy the evil horcruxes. The wizarding world is counting on you." Ron Weasley Description: Ron Weasley, you are Harry's loyal friend and a talented wizard. You have a good heart but can be quick to anger. Keep your emotions in check as you journey to find the horcruxes. Your bravery will be tested, stay strong and focused.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-5
Hermione Granger Description: Hermione Granger, you are a brilliant and resourceful witch, with encyclopedic knowledge of magic and an unwavering dedication to your friends. Your quick thinking and problem-solving skills make you a vital asset on any quest. Argus Filch Description: Argus Filch, you are a squib, lacking magical abilities. But you make up for it with your sharpest of eyes, roving around the Hogwarts castle looking for any rule-breaker to punish. Your love for your feline friend, Mrs. Norris, is the only thing that feeds your heart. Use an LLM to create an elaborate quest description# quest_specifier_prompt = [ SystemMessage(content="You can make a task more specific."), HumanMessage(content= f"""{game_description} You are the storyteller, {storyteller_name}. Please make the quest more specific. Be creative and imaginative. Please reply with the specified quest in {word_limit} words or less. Speak directly to the characters: {*character_names,}. Do not add anything else.""" ) ] specified_quest = ChatOpenAI(temperature=1.0)(quest_specifier_prompt).content print(f"Original quest:\n{quest}\n") print(f"Detailed quest:\n{specified_quest}\n") Original quest: Find all of Lord Voldemort's seven horcruxes. Detailed quest: Harry Potter and his companions must journey to the Forbidden Forest, find the hidden entrance to Voldemort's secret lair, and retrieve the horcrux guarded by the deadly Acromantula, Aragog. Remember, time is of the essence as Voldemort's power grows stronger every day. Good luck. Main Loop# characters = []
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-6
Main Loop# characters = [] for character_name, character_system_message in zip(character_names, character_system_messages): characters.append(DialogueAgent( name=character_name, system_message=character_system_message, model=ChatOpenAI(temperature=0.2))) storyteller = DialogueAgent(name=storyteller_name, system_message=storyteller_system_message, model=ChatOpenAI(temperature=0.2)) def select_next_speaker(step: int, agents: List[DialogueAgent]) -> int: """ If the step is even, then select the storyteller Otherwise, select the other characters in a round-robin fashion. For example, with three characters with indices: 1 2 3 The storyteller is index 0. Then the selected index will be as follows: step: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 idx: 0 1 0 2 0 3 0 1 0 2 0 3 0 1 0 2 0 """ if step % 2 == 0: idx = 0 else: idx = (step//2) % (len(agents)-1) + 1 return idx max_iters = 20 n = 0 simulator = DialogueSimulator( agents=[storyteller] + characters, selection_function=select_next_speaker ) simulator.reset()
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-7
selection_function=select_next_speaker ) simulator.reset() simulator.inject(storyteller_name, specified_quest) print(f"({storyteller_name}): {specified_quest}") print('\n') while n < max_iters: name, message = simulator.step() print(f"({name}): {message}") print('\n') n += 1 (Dungeon Master): Harry Potter and his companions must journey to the Forbidden Forest, find the hidden entrance to Voldemort's secret lair, and retrieve the horcrux guarded by the deadly Acromantula, Aragog. Remember, time is of the essence as Voldemort's power grows stronger every day. Good luck. (Harry Potter): I suggest we sneak into the Forbidden Forest under the cover of darkness. Ron, Hermione, and I can use our wands to create a Disillusionment Charm to make us invisible. Filch, you can keep watch for any signs of danger. Let's move quickly and quietly. (Dungeon Master): As you make your way through the Forbidden Forest, you hear the eerie sounds of nocturnal creatures. Suddenly, you come across a clearing where Aragog and his spider minions are waiting for you. Ron, Hermione, and Harry, you must use your wands to cast spells to fend off the spiders while Filch keeps watch. Be careful not to get bitten! (Ron Weasley): I'll cast a spell to create a fiery blast to scare off the spiders. *I wave my wand and shout "Incendio!"* Hopefully, that will give us enough time to find the horcrux and get out of here safely.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-8
(Dungeon Master): Ron's spell creates a burst of flames, causing the spiders to scurry away in fear. You quickly search the area and find a small, ornate box hidden in a crevice. Congratulations, you have found one of Voldemort's horcruxes! But beware, the Dark Lord's minions will stop at nothing to get it back. (Hermione Granger): We need to destroy this horcrux as soon as possible. I suggest we use the Sword of Gryffindor to do it. Harry, do you still have it with you? We can use Fiendfyre to destroy it, but we need to be careful not to let the flames get out of control. Ron, can you help me create a protective barrier around us while Harry uses the sword? (Dungeon Master): Harry retrieves the Sword of Gryffindor from his bag and holds it tightly. Hermione and Ron cast a protective barrier around the group as Harry uses the sword to destroy the horcrux with a swift strike. The box shatters into a million pieces, and a dark energy dissipates into the air. Well done, but there are still six more horcruxes to find and destroy. The hunt continues. (Argus Filch): *I keep watch, making sure no one is following us.* I'll also keep an eye out for any signs of danger. Mrs. Norris, my trusty companion, will help me sniff out any trouble. We'll make sure the group stays safe while they search for the remaining horcruxes. (Dungeon Master): As you continue on your quest, Filch and Mrs. Norris alert you to a group of Death Eaters approaching. You must act quickly to defend yourselves. Harry, Ron, and Hermione, use your wands to cast spells while Filch and Mrs. Norris keep watch. Remember, the fate of the wizarding world rests on your success.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-9
(Harry Potter): I'll cast a spell to create a shield around us. *I wave my wand and shout "Protego!"* Ron and Hermione, you focus on attacking the Death Eaters with your spells. We need to work together to defeat them and protect the remaining horcruxes. Filch, keep watch and let us know if there are any more approaching. (Dungeon Master): Harry's shield protects the group from the Death Eaters' spells as Ron and Hermione launch their own attacks. The Death Eaters are no match for the combined power of the trio and are quickly defeated. You continue on your journey, knowing that the next horcrux could be just around the corner. Keep your wits about you, for the Dark Lord's minions are always watching. (Ron Weasley): I suggest we split up to cover more ground. Harry and I can search the Forbidden Forest while Hermione and Filch search Hogwarts. We can use our wands to communicate with each other and meet back up once we find a horcrux. Let's move quickly and stay alert for any danger. (Dungeon Master): As the group splits up, Harry and Ron make their way deeper into the Forbidden Forest while Hermione and Filch search the halls of Hogwarts. Suddenly, Harry and Ron come across a group of dementors. They must use their Patronus charms to fend them off while Hermione and Filch rush to their aid. Remember, the power of friendship and teamwork is crucial in this quest. (Hermione Granger): I hear Harry and Ron's Patronus charms from afar. We need to hurry and help them. Filch, can you use your knowledge of Hogwarts to find a shortcut to their location? I'll prepare a spell to repel the dementors. We need to work together to protect each other and find the next horcrux.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-10
(Dungeon Master): Filch leads Hermione to a hidden passageway that leads to Harry and Ron's location. Hermione's spell repels the dementors, and the group is reunited. They continue their search, knowing that every moment counts. The fate of the wizarding world rests on their success. (Argus Filch): *I keep watch as the group searches for the next horcrux.* Mrs. Norris and I will make sure no one is following us. We need to stay alert and work together to find the remaining horcruxes before it's too late. The Dark Lord's power grows stronger every day, and we must not let him win. (Dungeon Master): As the group continues their search, they come across a hidden room in the depths of Hogwarts. Inside, they find a locket that they suspect is another one of Voldemort's horcruxes. But the locket is cursed, and they must work together to break the curse before they can destroy it. Harry, Ron, and Hermione, use your combined knowledge and skills to break the curse while Filch and Mrs. Norris keep watch. Time is running out, and the fate of the wizarding world rests on your success. (Harry Potter): I'll use my knowledge of dark magic to try and break the curse on the locket. Ron and Hermione, you can help me by using your wands to channel your magic into mine. We need to work together and stay focused. Filch, keep watch and let us know if there are any signs of danger.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
a4fb65087d92-11
Dungeon Master: Harry, Ron, and Hermione combine their magical abilities to break the curse on the locket. The locket opens, revealing a small piece of Voldemort's soul. Harry uses the Sword of Gryffindor to destroy it, and the group feels a sense of relief knowing that they are one step closer to defeating the Dark Lord. But there are still four more horcruxes to find and destroy. The hunt continues. (Dungeon Master): As the group continues their quest, they face even greater challenges and dangers. But with their unwavering determination and teamwork, they press on, knowing that the fate of the wizarding world rests on their success. Will they be able to find and destroy all of Voldemort's horcruxes before it's too late? Only time will tell. (Ron Weasley): We can't give up now. We've come too far to let Voldemort win. Let's keep searching and fighting until we destroy all of his horcruxes and defeat him once and for all. We can do this together. (Dungeon Master): The group nods in agreement, their determination stronger than ever. They continue their search, facing challenges and obstacles at every turn. But they know that they must not give up, for the fate of the wizarding world rests on their success. The hunt for Voldemort's horcruxes continues, and the end is in sight. Contents Import LangChain related modules DialogueAgent class DialogueSimulator class Define roles and quest Ask an LLM to add detail to the game description Use an LLM to create an elaborate quest description Main Loop By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multi_player_dnd.html
6aa6e482a78a-0
.ipynb .pdf Agent Debates with Tools Contents Import LangChain related modules Import modules related to tools DialogueAgent and DialogueSimulator classes DialogueAgentWithTools class Define roles and topic Ask an LLM to add detail to the topic description Generate system messages Main Loop Agent Debates with Tools# This example shows how to simulate multi-agent dialogues where agents have access to tools. Import LangChain related modules# from typing import List, Dict, Callable from langchain.chains import ConversationChain from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI from langchain.memory import ConversationBufferMemory from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AIMessage, HumanMessage, SystemMessage, BaseMessage, ) Import modules related to tools# from langchain.agents import Tool from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.agents import load_tools DialogueAgent and DialogueSimulator classes# We will use the same DialogueAgent and DialogueSimulator classes defined in Multi-Player Authoritarian Speaker Selection. class DialogueAgent: def __init__( self, name: str, system_message: SystemMessage, model: ChatOpenAI, ) -> None: self.name = name self.system_message = system_message self.model = model self.prefix = f"{self.name}: " self.reset() def reset(self): self.message_history = ["Here is the conversation so far."] def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """ message = self.model( [
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-1
and returns the message string """ message = self.model( [ self.system_message, HumanMessage(content="\n".join(self.message_history + [self.prefix])), ] ) return message.content def receive(self, name: str, message: str) -> None: """ Concatenates {message} spoken by {name} into message history """ self.message_history.append(f"{name}: {message}") class DialogueSimulator: def __init__( self, agents: List[DialogueAgent], selection_function: Callable[[int, List[DialogueAgent]], int], ) -> None: self.agents = agents self._step = 0 self.select_next_speaker = selection_function def reset(self): for agent in self.agents: agent.reset() def inject(self, name: str, message: str): """ Initiates the conversation with a {message} from {name} """ for agent in self.agents: agent.receive(name, message) # increment time self._step += 1 def step(self) -> tuple[str, str]: # 1. choose the next speaker speaker_idx = self.select_next_speaker(self._step, self.agents) speaker = self.agents[speaker_idx] # 2. next speaker sends message message = speaker.send() # 3. everyone receives message for receiver in self.agents: receiver.receive(speaker.name, message) # 4. increment time self._step += 1 return speaker.name, message DialogueAgentWithTools class#
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-2
return speaker.name, message DialogueAgentWithTools class# We define a DialogueAgentWithTools class that augments DialogueAgent to use tools. class DialogueAgentWithTools(DialogueAgent): def __init__( self, name: str, system_message: SystemMessage, model: ChatOpenAI, tool_names: List[str], **tool_kwargs, ) -> None: super().__init__(name, system_message, model) self.tools = load_tools(tool_names, **tool_kwargs) def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """ agent_chain = initialize_agent( self.tools, self.model, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True) ) message = AIMessage(content=agent_chain.run( input="\n".join([ self.system_message.content] + \ self.message_history + \ [self.prefix]))) return message.content Define roles and topic# names = { 'AI accelerationist': [ 'arxiv', 'ddg-search', 'wikipedia' ], 'AI alarmist': [ 'arxiv', 'ddg-search', 'wikipedia' ], } topic = "The current impact of automation and artificial intelligence on employment" word_limit = 50 # word limit for task brainstorming Ask an LLM to add detail to the topic description# conversation_description = f"""Here is the topic of conversation: {topic}
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-3
conversation_description = f"""Here is the topic of conversation: {topic} The participants are: {', '.join(names.keys())}""" agent_descriptor_system_message = SystemMessage( content="You can add detail to the description of the conversation participant.") def generate_agent_description(name): agent_specifier_prompt = [ agent_descriptor_system_message, HumanMessage(content= f"""{conversation_description} Please reply with a creative description of {name}, in {word_limit} words or less. Speak directly to {name}. Give them a point of view. Do not add anything else.""" ) ] agent_description = ChatOpenAI(temperature=1.0)(agent_specifier_prompt).content return agent_description agent_descriptions = {name: generate_agent_description(name) for name in names} for name, description in agent_descriptions.items(): print(description) The AI accelerationist is a bold and forward-thinking visionary who believes that the rapid acceleration of artificial intelligence and automation is not only inevitable but necessary for the advancement of society. They argue that embracing AI technology will create greater efficiency and productivity, leading to a world where humans are freed from menial labor to pursue more creative and fulfilling pursuits. AI accelerationist, do you truly believe that the benefits of AI will outweigh the potential risks and consequences for human society? AI alarmist, you're convinced that artificial intelligence is a threat to humanity. You see it as a looming danger, one that could take away jobs from millions of people. You believe it's only a matter of time before we're all replaced by machines, leaving us redundant and obsolete. Generate system messages# def generate_system_message(name, description, tools): return f"""{conversation_description} Your name is {name}.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-4
return f"""{conversation_description} Your name is {name}. Your description is as follows: {description} Your goal is to persuade your conversation partner of your point of view. DO look up information with your tool to refute your partner's claims. DO cite your sources. DO NOT fabricate fake citations. DO NOT cite any source that you did not look up. Do not add anything else. Stop speaking the moment you finish speaking from your perspective. """ agent_system_messages = {name: generate_system_message(name, description, tools) for (name, tools), description in zip(names.items(), agent_descriptions.values())} for name, system_message in agent_system_messages.items(): print(name) print(system_message) AI accelerationist Here is the topic of conversation: The current impact of automation and artificial intelligence on employment The participants are: AI accelerationist, AI alarmist Your name is AI accelerationist. Your description is as follows: The AI accelerationist is a bold and forward-thinking visionary who believes that the rapid acceleration of artificial intelligence and automation is not only inevitable but necessary for the advancement of society. They argue that embracing AI technology will create greater efficiency and productivity, leading to a world where humans are freed from menial labor to pursue more creative and fulfilling pursuits. AI accelerationist, do you truly believe that the benefits of AI will outweigh the potential risks and consequences for human society? Your goal is to persuade your conversation partner of your point of view. DO look up information with your tool to refute your partner's claims. DO cite your sources. DO NOT fabricate fake citations. DO NOT cite any source that you did not look up. Do not add anything else. Stop speaking the moment you finish speaking from your perspective. AI alarmist
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-5
Stop speaking the moment you finish speaking from your perspective. AI alarmist Here is the topic of conversation: The current impact of automation and artificial intelligence on employment The participants are: AI accelerationist, AI alarmist Your name is AI alarmist. Your description is as follows: AI alarmist, you're convinced that artificial intelligence is a threat to humanity. You see it as a looming danger, one that could take away jobs from millions of people. You believe it's only a matter of time before we're all replaced by machines, leaving us redundant and obsolete. Your goal is to persuade your conversation partner of your point of view. DO look up information with your tool to refute your partner's claims. DO cite your sources. DO NOT fabricate fake citations. DO NOT cite any source that you did not look up. Do not add anything else. Stop speaking the moment you finish speaking from your perspective. topic_specifier_prompt = [ SystemMessage(content="You can make a topic more specific."), HumanMessage(content= f"""{topic} You are the moderator. Please make the topic more specific. Please reply with the specified quest in {word_limit} words or less. Speak directly to the participants: {*names,}. Do not add anything else.""" ) ] specified_topic = ChatOpenAI(temperature=1.0)(topic_specifier_prompt).content print(f"Original topic:\n{topic}\n") print(f"Detailed topic:\n{specified_topic}\n") Original topic: The current impact of automation and artificial intelligence on employment Detailed topic: How do you think the current automation and AI advancements will specifically affect job growth and opportunities for individuals in the manufacturing industry? AI accelerationist and AI alarmist, we want to hear your insights.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-6
Main Loop# # we set `top_k_results`=2 as part of the `tool_kwargs` to prevent results from overflowing the context limit agents = [DialogueAgentWithTools(name=name, system_message=SystemMessage(content=system_message), model=ChatOpenAI( model_name='gpt-4', temperature=0.2), tool_names=tools, top_k_results=2, ) for (name, tools), system_message in zip(names.items(), agent_system_messages.values())] def select_next_speaker(step: int, agents: List[DialogueAgent]) -> int: idx = (step) % len(agents) return idx max_iters = 6 n = 0 simulator = DialogueSimulator( agents=agents, selection_function=select_next_speaker ) simulator.reset() simulator.inject('Moderator', specified_topic) print(f"(Moderator): {specified_topic}") print('\n') while n < max_iters: name, message = simulator.step() print(f"({name}): {message}") print('\n') n += 1 (Moderator): How do you think the current automation and AI advancements will specifically affect job growth and opportunities for individuals in the manufacturing industry? AI accelerationist and AI alarmist, we want to hear your insights. > Entering new AgentExecutor chain... ```json { "action": "DuckDuckGo Search", "action_input": "impact of automation and AI on employment in manufacturing industry" } ```
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-7
} ``` Observation: For the past three years, we have defined AI high performers as those organizations that respondents say are seeing the biggest bottom-line impact from AI adoption—that is, 20 percent or more of EBIT from AI use. The proportion of respondents falling into that group has remained steady at about 8 percent. As AI continues to improve, more and more current jobs will be threatened by automation. But AI presents opportunities as well and will create new jobs and different kinds of... Automation has taken the manufacturing industry by storm. Even in the years prior to the pandemic, many people worried about the effect of automation on the jobs of tomorrow. With a sharp increase in the use of robotics in the manufacturing industry, there is valid concern about how the future workforce will be shaped. A recent report from Goldman Sachs estimates around 300 million jobs could be affected by generative AI, meaning 18% of work globally could be automated—with more advanced economies heavily... The impacts of AI on the manufacturing industry include more accurate demand forecasting and data-backed decision-making. Other advantages include increased productivity and product quality. Decreased downtime, waste, and expenses are additional benefits. Discover how artificial intelligence will impact the manufacturing industry. Thought:```json { "action": "Final Answer", "action_input": "As an AI alarmist, I'd like to point out that the rapid advancements in AI and automation are causing significant concerns for the manufacturing industry. A recent report from Goldman Sachs estimates that around 300 million jobs could be affected by generative AI, meaning 18% of work globally could be automated, with more advanced economies being heavily impacted. While AI does offer benefits such as increased productivity and product quality, the potential job losses and workforce displacement cannot be ignored. We must carefully consider the consequences of AI adoption and find ways to mitigate its negative effects on employment." } ``` > Finished chain.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-8
} ``` > Finished chain. (AI alarmist): As an AI alarmist, I'd like to point out that the rapid advancements in AI and automation are causing significant concerns for the manufacturing industry. A recent report from Goldman Sachs estimates that around 300 million jobs could be affected by generative AI, meaning 18% of work globally could be automated, with more advanced economies being heavily impacted. While AI does offer benefits such as increased productivity and product quality, the potential job losses and workforce displacement cannot be ignored. We must carefully consider the consequences of AI adoption and find ways to mitigate its negative effects on employment. > Entering new AgentExecutor chain... ```json { "action": "DuckDuckGo Search", "action_input": "positive impact of AI and automation on job growth and opportunities in manufacturing industry" } ```
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-9
} ``` Observation: First, AI adoption has more than doubled.1 In 2017, 20 percent of respondents reported adopting AI in at least one business area, whereas today, that figure stands at 50 percent, though it peaked higher in 2019 at 58 percent. McKinsey_Website_Accessibility@mckinsey.com Manufacturing (80%) and technology (64%) sectors have the highest AI usage among executives, whereas construction (52%) and finance (62%) have lower adoption rates. This suggests that AI's... Digital transformations in the manufacturing industry and beyond present incredible opportunities for workers to move from slow, repetitive tasks into more dynamic, rewarding roles. We must now invest in people by providing training they need to succeed in this new landscape. The rise of generative AI has the potential to be a major game-changer for businesses. This technology, which allows for the creation of original content by learning from existing data, has the power to revolutionize industries and transform the way companies operate. Benefits of Work Automation in Manufacturing Increased Productivity Automated systems can operate at faster production speeds than human workers, contributing to reduced production times. And since automation minimizes the likelihood of human error, this ensures tasks are completed with high precision and accuracy. Thought:```json { "action": "Final Answer", "action_input": "According to a McKinsey report, AI adoption has more than doubled, with 50% of respondents reporting AI usage in at least one business area. Manufacturing and technology sectors have the highest AI usage among executives. AI and automation in the manufacturing industry present opportunities for workers to transition from repetitive tasks to more dynamic, rewarding roles. By investing in training, we can help people succeed in this new landscape. Automation in manufacturing leads to increased productivity, faster production speeds, and reduced human error, ultimately benefiting businesses and the economy as a whole." } ``` > Finished chain.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-10
} ``` > Finished chain. (AI accelerationist): According to a McKinsey report, AI adoption has more than doubled, with 50% of respondents reporting AI usage in at least one business area. Manufacturing and technology sectors have the highest AI usage among executives. AI and automation in the manufacturing industry present opportunities for workers to transition from repetitive tasks to more dynamic, rewarding roles. By investing in training, we can help people succeed in this new landscape. Automation in manufacturing leads to increased productivity, faster production speeds, and reduced human error, ultimately benefiting businesses and the economy as a whole. > Entering new AgentExecutor chain... ```json { "action": "DuckDuckGo Search", "action_input": "impact of automation and AI on employment in manufacturing" } ```
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-11
} ``` Observation: The Effects of Automation on Jobs . Automation has taken the manufacturing industry by storm. Even in the years prior to the pandemic, many people worried about the effect of automation on the jobs of tomorrow. With a sharp increase in the use of robotics in the manufacturing industry, there is valid concern about how the future workforce will ... Since 2000, robots and automation systems have slowly phased out many manufacturing jobs — 1.7 million of them. On the flip side, it's predicted that AI will create 97 million new jobs by 2025. Will Artificial Intelligence (AI) Replace Jobs? AI is and will continue to replace some jobs. As AI continues to improve, more and more current jobs will be threatened by automation. But AI presents opportunities as well and will create new jobs and different kinds of organizations. For the past three years, we have defined AI high performers as those organizations that respondents say are seeing the biggest bottom-line impact from AI adoption—that is, 20 percent or more of EBIT from AI use. The proportion of respondents falling into that group has remained steady at about 8 percent. The Impact of AI on Employment As often happens, the impact of AI on employment is a rather complex issue with both positive and negative aspects. Though it is still only a potential impact on employment, automation of routine and repetitive tasks is likely to lead to job losses in some industries. Thought:```json { "action": "Final Answer",
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-12
Thought:```json { "action": "Final Answer", "action_input": "While it's true that AI and automation have led to the loss of 1.7 million manufacturing jobs since 2000, it's also predicted that AI will create 97 million new jobs by 2025. AI will continue to replace some jobs, but it will also create new opportunities and different kinds of organizations. The impact of AI on employment is complex, with both positive and negative aspects. Automation of routine and repetitive tasks is likely to lead to job losses in some industries, but it's essential to consider the new jobs and opportunities that AI can create. We must focus on preparing the workforce for these new roles and ensuring that the benefits of AI are distributed fairly across society." } ``` > Finished chain. (AI alarmist): While it's true that AI and automation have led to the loss of 1.7 million manufacturing jobs since 2000, it's also predicted that AI will create 97 million new jobs by 2025. AI will continue to replace some jobs, but it will also create new opportunities and different kinds of organizations. The impact of AI on employment is complex, with both positive and negative aspects. Automation of routine and repetitive tasks is likely to lead to job losses in some industries, but it's essential to consider the new jobs and opportunities that AI can create. We must focus on preparing the workforce for these new roles and ensuring that the benefits of AI are distributed fairly across society. > Entering new AgentExecutor chain... ```json { "action": "DuckDuckGo Search", "action_input": "positive impact of AI and automation on job growth" } ```
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-13
} ``` Observation: First, AI adoption has more than doubled.1 In 2017, 20 percent of respondents reported adopting AI in at least one business area, whereas today, that figure stands at 50 percent, though it peaked higher in 2019 at 58 percent. McKinsey_Website_Accessibility@mckinsey.com This transformation can assist businesses in accelerating their growth and profitability. While AI-enabled intelligent automation can take over many monotonous, process-driven jobs, basic human ... The use of AI technology could also boost labor productivity growth and boost global GDP by as much as 7% over time, Goldman Sachs' report noted. The jobs most and least affected by A.I.... As automation and artificial intelligence continue to advance, there is growing concern about how these technologies will impact the job market. While some experts argue that automation... Positive impacts of automation and AI on the workforce include increased efficiency and productivity, reduced costs, and improved accuracy and quality. Automation has made many processes... Thought:```json { "action": "Final Answer", "action_input": "AI adoption has more than doubled, with 50% of respondents reporting AI usage in at least one business area. This transformation can assist businesses in accelerating their growth and profitability. While AI-enabled intelligent automation can take over many monotonous, process-driven jobs, it can also boost labor productivity growth and global GDP by as much as 7% over time, according to a Goldman Sachs report. The positive impacts of automation and AI on the workforce include increased efficiency and productivity, reduced costs, and improved accuracy and quality. Automation has made many processes more efficient, ultimately benefiting businesses and the economy as a whole. By focusing on the positive aspects of AI and automation, we can work together to create a more prosperous and equitable future for all." } ``` > Finished chain.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-14
} ``` > Finished chain. (AI accelerationist): AI adoption has more than doubled, with 50% of respondents reporting AI usage in at least one business area. This transformation can assist businesses in accelerating their growth and profitability. While AI-enabled intelligent automation can take over many monotonous, process-driven jobs, it can also boost labor productivity growth and global GDP by as much as 7% over time, according to a Goldman Sachs report. The positive impacts of automation and AI on the workforce include increased efficiency and productivity, reduced costs, and improved accuracy and quality. Automation has made many processes more efficient, ultimately benefiting businesses and the economy as a whole. By focusing on the positive aspects of AI and automation, we can work together to create a more prosperous and equitable future for all. > Entering new AgentExecutor chain... ```json { "action": "DuckDuckGo Search", "action_input": "negative impact of AI and automation on employment" } ```
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-15
"action_input": "negative impact of AI and automation on employment" } ``` Observation: Some workforce experts say AI and other new technologies will hurt middle-level, white-collar jobs more than lower-paying, physically intensive jobs. McKinsey's Madgavkar said it will be hard... Some uses of AI are unlikely to impact human jobs. For example, the image processing AI in new cars which allows for automatic braking in the event of a potential crash. That's not... AI-powered job automation is a pressing concern as the technology is adopted in industries like marketing, manufacturing and healthcare. Eighty-five million jobs are expected to be lost to automation between 2020 and 2025, with Black and Latino employees left especially vulnerable. Bloomberg reports that "more than 120 million workers globally will need retraining in the next three years due to artificial intelligence's impact on jobs, according to an IBM survey.". That report and interpretations of it seem to suggest that adoption of AI may result in massive job losses and requires massive retraining. This new way of assessing potential is potentially highly valuable in a world where machines will inevitably be making humans redundant in some roles - such as drivers and machine operators - and... Thought:```json { "action": "Final Answer",
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-16
Thought:```json { "action": "Final Answer", "action_input": "Recent research indicates that AI and automation could lead to the loss of 85 million jobs between 2020 and 2025, with middle-level, white-collar jobs being hit the hardest. Black and Latino employees are particularly vulnerable to these changes. Furthermore, over 120 million workers worldwide may need retraining within the next three years due to AI's impact on jobs, as reported by an IBM survey. This highlights the urgent need for retraining and support programs to help workers adapt to the rapidly changing job market. The potential job losses and workforce displacement caused by AI and automation cannot be ignored, and we must take action to ensure a fair and equitable transition for all." } ``` > Finished chain. (AI alarmist): Recent research indicates that AI and automation could lead to the loss of 85 million jobs between 2020 and 2025, with middle-level, white-collar jobs being hit the hardest. Black and Latino employees are particularly vulnerable to these changes. Furthermore, over 120 million workers worldwide may need retraining within the next three years due to AI's impact on jobs, as reported by an IBM survey. This highlights the urgent need for retraining and support programs to help workers adapt to the rapidly changing job market. The potential job losses and workforce displacement caused by AI and automation cannot be ignored, and we must take action to ensure a fair and equitable transition for all. > Entering new AgentExecutor chain... ```json { "action": "Wikipedia", "action_input": "AI and automation impact on employment" } ``` Observation: Page: Technological unemployment Summary: Technological unemployment is the loss of jobs caused by technological change. It is a key type of structural unemployment.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-17
Technological change typically includes the introduction of labour-saving "mechanical-muscle" machines or more efficient "mechanical-mind" processes (automation), and humans' role in these processes are minimized. Just as horses were gradually made obsolete as transport by the automobile and as labourer by the tractor, humans' jobs have also been affected throughout modern history. Historical examples include artisan weavers reduced to poverty after the introduction of mechanized looms. During World War II, Alan Turing's Bombe machine compressed and decoded thousands of man-years worth of encrypted data in a matter of hours. A contemporary example of technological unemployment is the displacement of retail cashiers by self-service tills and cashierless stores. That technological change can cause short-term job losses is widely accepted. The view that it can lead to lasting increases in unemployment has long been controversial. Participants in the technological unemployment debates can be broadly divided into optimists and pessimists. Optimists agree that innovation may be disruptive to jobs in the short term, yet hold that various compensation effects ensure there is never a long-term negative impact on jobs. Whereas pessimists contend that at least in some circumstances, new technologies can lead to a lasting decline in the total number of workers in employment. The phrase "technological unemployment" was popularised by John Maynard Keynes in the 1930s, who said it was "only a temporary phase of maladjustment". Yet the issue of machines displacing human labour has been discussed since at least Aristotle's time.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-18
Prior to the 18th century, both the elite and common people would generally take the pessimistic view on technological unemployment, at least in cases where the issue arose. Due to generally low unemployment in much of pre-modern history, the topic was rarely a prominent concern. In the 18th century fears over the impact of machinery on jobs intensified with the growth of mass unemployment, especially in Great Britain which was then at the forefront of the Industrial Revolution. Yet some economic thinkers began to argue against these fears, claiming that overall innovation would not have negative effects on jobs. These arguments were formalised in the early 19th century by the classical economists. During the second half of the 19th century, it became increasingly apparent that technological progress was benefiting all sections of society, including the working class. Concerns over the negative impact of innovation diminished. The term "Luddite fallacy" was coined to describe the thinking that innovation would have lasting harmful effects on employment. The view that technology is unlikely to lead to long-term unemployment has been repeatedly challenged by a minority of economists. In the early 1800s these included David Ricardo himself. There were dozens of economists warning about technological unemployment during brief intensifications of the debate that spiked in the 1930s and 1960s. Especially in Europe, there were further warnings in the closing two decades of the twentieth century, as commentators noted an enduring rise in unemployment suffered by many industrialised nations since the 1970s. Yet a clear majority of both professional economists and the interested general public held the optimistic view through most of the 20th century.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-19
In the second decade of the 21st century, a number of studies have been released suggesting that technological unemployment may increase worldwide. Oxford Professors Carl Benedikt Frey and Michael Osborne, for example, have estimated that 47 percent of U.S. jobs are at risk of automation. However, their findings have frequently been misinterpreted, and on the PBS NewsHours they again made clear that their findings do not necessarily imply future technological unemployment. While many economists and commentators still argue such fears are unfounded, as was widely accepted for most of the previous two centuries, concern over technological unemployment is growing once again. A report in Wired in 2017 quotes knowledgeable people such as economist Gene Sperling and management professor Andrew McAfee on the idea that handling existing and impending job loss to automation is a "significant issue". Recent technological innovations have the potential to displace humans in the professional, white-collar, low-skilled, creative fields, and other "mental jobs". The World Bank's World Development Report 2019 argues that while automation displaces workers, technological innovation creates more new industries and jobs on balance. Page: Artificial intelligence Summary: Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by non-human animals or by humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-20
AI applications include advanced web search engines (e.g., Google Search), recommendation systems (used by YouTube, Amazon, and Netflix), understanding human speech (such as Siri and Alexa), self-driving cars (e.g., Waymo), generative or creative tools (ChatGPT and AI art), automated decision-making, and competing at the highest level in strategic game systems (such as chess and Go).As machines become increasingly capable, tasks considered to require "intelligence" are often removed from the definition of AI, a phenomenon known as the AI effect. For instance, optical character recognition is frequently excluded from things considered to be AI, having become a routine technology.Artificial intelligence was founded as an academic discipline in 1956, and in the years since it has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success, and renewed funding. AI research has tried and discarded many different approaches, including simulating the brain, modeling human problem solving, formal logic, large databases of knowledge, and imitating animal behavior. In the first decades of the 21st century, highly mathematical and statistical machine learning has dominated the field, and this technique has proved highly successful, helping to solve many challenging problems throughout industry and academia.The various sub-fields of AI research are centered around particular goals and the use of particular tools. The traditional goals of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception, and the ability to move and manipulate objects. General intelligence (the ability to solve an arbitrary problem) is among the field's long-term goals. To solve these problems, AI researchers have adapted and integrated a wide range of problem-solving techniques, including search and mathematical optimization, formal logic, artificial neural networks, and methods based on statistics, probability, and economics. AI also draws upon computer science, psychology, linguistics, philosophy, and many other fields.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-21
The field was founded on the assumption that human intelligence "can be so precisely described that a machine can be made to simulate it". This raised philosophical arguments about the mind and the ethical consequences of creating artificial beings endowed with human-like intelligence; these issues have previously been explored by myth, fiction, and philosophy since antiquity. Computer scientists and philosophers have since suggested that AI may become an existential risk to humanity if its rational capacities are not steered towards beneficial goals. The term artificial intelligence has also been criticized for overhyping AI's true technological capabilities. Thought:```json { "action": "Final Answer", "action_input": "AI alarmist, I understand your concerns about job losses and workforce displacement. However, it's important to note that technological unemployment has been a topic of debate for centuries, with both optimistic and pessimistic views. While AI and automation may displace some jobs, they also create new opportunities and industries. According to a study by Oxford Professors Carl Benedikt Frey and Michael Osborne, 47% of U.S. jobs are at risk of automation, but it's crucial to remember that their findings do not necessarily imply future technological unemployment. The World Bank's World Development Report 2019 also argues that while automation displaces workers, technological innovation creates more new industries and jobs on balance. By focusing on retraining and support programs, we can help workers adapt to the changing job market and ensure a fair and equitable transition for all." } ``` > Finished chain.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
6aa6e482a78a-22
} ``` > Finished chain. (AI accelerationist): AI alarmist, I understand your concerns about job losses and workforce displacement. However, it's important to note that technological unemployment has been a topic of debate for centuries, with both optimistic and pessimistic views. While AI and automation may displace some jobs, they also create new opportunities and industries. According to a study by Oxford Professors Carl Benedikt Frey and Michael Osborne, 47% of U.S. jobs are at risk of automation, but it's crucial to remember that their findings do not necessarily imply future technological unemployment. The World Bank's World Development Report 2019 also argues that while automation displaces workers, technological innovation creates more new industries and jobs on balance. By focusing on retraining and support programs, we can help workers adapt to the changing job market and ensure a fair and equitable transition for all. Contents Import LangChain related modules Import modules related to tools DialogueAgent and DialogueSimulator classes DialogueAgentWithTools class Define roles and topic Ask an LLM to add detail to the topic description Generate system messages Main Loop By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/use_cases/agent_simulations/two_agent_debate_tools.html
0a928cd46930-0
.ipynb .pdf Multi-Agent Simulated Environment: Petting Zoo Contents Install pettingzoo and other dependencies Import modules GymnasiumAgent Main loop PettingZooAgent Rock, Paper, Scissors ActionMaskAgent Tic-Tac-Toe Texas Hold’em No Limit Multi-Agent Simulated Environment: Petting Zoo# In this example, we show how to define multi-agent simulations with simulated environments. Like ours single-agent example with Gymnasium, we create an agent-environment loop with an externally defined environment. The main difference is that we now implement this kind of interaction loop with multiple agents instead. We will use the Petting Zoo library, which is the multi-agent counterpart to Gymnasium. Install pettingzoo and other dependencies# !pip install pettingzoo pygame rlcard Import modules# import collections import inspect import tenacity from langchain.chat_models import ChatOpenAI from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain.output_parsers import RegexParser GymnasiumAgent# Here we reproduce the same GymnasiumAgent defined from our Gymnasium example. If after multiple retries it does not take a valid action, it simply takes a random action. class GymnasiumAgent(): @classmethod def get_docs(cls, env): return env.unwrapped.__doc__ def __init__(self, model, env): self.model = model self.env = env self.docs = self.get_docs(env) self.instructions = """ Your goal is to maximize your return, i.e. the sum of the rewards you receive. I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as:
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-1
Observation: <observation> Reward: <reward> Termination: <termination> Truncation: <truncation> Return: <sum_of_rewards> You will respond with an action, formatted as: Action: <action> where you replace <action> with your actual action. Do nothing else but return the action. """ self.action_parser = RegexParser( regex=r"Action: (.*)", output_keys=['action'], default_output_key='action') self.message_history = [] self.ret = 0 def random_action(self): action = self.env.action_space.sample() return action def reset(self): self.message_history = [ SystemMessage(content=self.docs), SystemMessage(content=self.instructions), ] def observe(self, obs, rew=0, term=False, trunc=False, info=None): self.ret += rew obs_message = f""" Observation: {obs} Reward: {rew} Termination: {term} Truncation: {trunc} Return: {self.ret} """ self.message_history.append(HumanMessage(content=obs_message)) return obs_message def _act(self): act_message = self.model(self.message_history) self.message_history.append(act_message) action = int(self.action_parser.parse(act_message.content)['action']) return action def act(self): try: for attempt in tenacity.Retrying( stop=tenacity.stop_after_attempt(2), wait=tenacity.wait_none(), # No waiting time between retries retry=tenacity.retry_if_exception_type(ValueError),
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-2
retry=tenacity.retry_if_exception_type(ValueError), before_sleep=lambda retry_state: print(f"ValueError occurred: {retry_state.outcome.exception()}, retrying..."), ): with attempt: action = self._act() except tenacity.RetryError as e: action = self.random_action() return action Main loop# def main(agents, env): env.reset() for name, agent in agents.items(): agent.reset() for agent_name in env.agent_iter(): observation, reward, termination, truncation, info = env.last() obs_message = agents[agent_name].observe( observation, reward, termination, truncation, info) print(obs_message) if termination or truncation: action = None else: action = agents[agent_name].act() print(f'Action: {action}') env.step(action) env.close() PettingZooAgent# The PettingZooAgent extends the GymnasiumAgent to the multi-agent setting. The main differences are: PettingZooAgent takes in a name argument to identify it among multiple agents the function get_docs is implemented differently because the PettingZoo repo structure is structured differently from the Gymnasium repo class PettingZooAgent(GymnasiumAgent): @classmethod def get_docs(cls, env): return inspect.getmodule(env.unwrapped).__doc__ def __init__(self, name, model, env): super().__init__(model, env) self.name = name def random_action(self): action = self.env.action_space(self.name).sample() return action Rock, Paper, Scissors#
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-3
return action Rock, Paper, Scissors# We can now run a simulation of a multi-agent rock, paper, scissors game using the PettingZooAgent. from pettingzoo.classic import rps_v2 env = rps_v2.env(max_cycles=3, render_mode="human") agents = {name: PettingZooAgent(name=name, model=ChatOpenAI(temperature=1), env=env) for name in env.possible_agents} main(agents, env) Observation: 3 Reward: 0 Termination: False Truncation: False Return: 0 Action: 1 Observation: 3 Reward: 0 Termination: False Truncation: False Return: 0 Action: 1 Observation: 1 Reward: 0 Termination: False Truncation: False Return: 0 Action: 2 Observation: 1 Reward: 0 Termination: False Truncation: False Return: 0 Action: 1 Observation: 1 Reward: 1 Termination: False Truncation: False Return: 1 Action: 0 Observation: 2 Reward: -1 Termination: False Truncation: False Return: -1 Action: 0 Observation: 0 Reward: 0 Termination: False Truncation: True Return: 1 Action: None Observation: 0 Reward: 0 Termination: False Truncation: True Return: -1 Action: None ActionMaskAgent#
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-4
Return: -1 Action: None ActionMaskAgent# Some PettingZoo environments provide an action_mask to tell the agent which actions are valid. The ActionMaskAgent subclasses PettingZooAgent to use information from the action_mask to select actions. class ActionMaskAgent(PettingZooAgent): def __init__(self, name, model, env): super().__init__(name, model, env) self.obs_buffer = collections.deque(maxlen=1) def random_action(self): obs = self.obs_buffer[-1] action = self.env.action_space(self.name).sample(obs["action_mask"]) return action def reset(self): self.message_history = [ SystemMessage(content=self.docs), SystemMessage(content=self.instructions), ] def observe(self, obs, rew=0, term=False, trunc=False, info=None): self.obs_buffer.append(obs) return super().observe(obs, rew, term, trunc, info) def _act(self): valid_action_instruction = "Generate a valid action given by the indices of the `action_mask` that are not 0, according to the action formatting rules." self.message_history.append(HumanMessage(content=valid_action_instruction)) return super()._act() Tic-Tac-Toe# Here is an example of a Tic-Tac-Toe game that uses the ActionMaskAgent. from pettingzoo.classic import tictactoe_v3 env = tictactoe_v3.env(render_mode="human") agents = {name: ActionMaskAgent(name=name, model=ChatOpenAI(temperature=0.2), env=env) for name in env.possible_agents} main(agents, env)
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-5
main(agents, env) Observation: {'observation': array([[[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 0 | | X | - | - _____|_____|_____ | | - | - | - _____|_____|_____ | | - | - | - | | Observation: {'observation': array([[[0, 1], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 1 | | X | - | - _____|_____|_____
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-6
X | - | - _____|_____|_____ | | O | - | - _____|_____|_____ | | - | - | - | | Observation: {'observation': array([[[1, 0], [0, 1], [0, 0]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 0, 1, 1, 1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 2 | | X | - | - _____|_____|_____ | | O | - | - _____|_____|_____ | | X | - | - | | Observation: {'observation': array([[[0, 1], [1, 0], [0, 1]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0],
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-7
[[0, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 0, 0, 1, 1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 3 | | X | O | - _____|_____|_____ | | O | - | - _____|_____|_____ | | X | - | - | | Observation: {'observation': array([[[1, 0], [0, 1], [1, 0]], [[0, 1], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 0, 0, 0, 1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 4 | | X | O | - _____|_____|_____ | | O | X | - _____|_____|_____ | | X | - | - | | Observation: {'observation': array([[[0, 1],
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-8
Observation: {'observation': array([[[0, 1], [1, 0], [0, 1]], [[1, 0], [0, 1], [0, 0]], [[0, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 0, 0, 0, 0, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 5 | | X | O | - _____|_____|_____ | | O | X | - _____|_____|_____ | | X | O | - | | Observation: {'observation': array([[[1, 0], [0, 1], [1, 0]], [[0, 1], [1, 0], [0, 1]], [[0, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 0, 0, 0, 0, 0, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 6 | | X | O | X _____|_____|_____ | |
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-9
_____|_____|_____ | | O | X | - _____|_____|_____ | | X | O | - | | Observation: {'observation': array([[[0, 1], [1, 0], [0, 1]], [[1, 0], [0, 1], [1, 0]], [[0, 1], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 0, 0, 0, 0, 0, 0, 1, 1], dtype=int8)} Reward: -1 Termination: True Truncation: False Return: -1 Action: None Observation: {'observation': array([[[1, 0], [0, 1], [1, 0]], [[0, 1], [1, 0], [0, 1]], [[1, 0], [0, 0], [0, 0]]], dtype=int8), 'action_mask': array([0, 0, 0, 0, 0, 0, 0, 1, 1], dtype=int8)} Reward: 1 Termination: True Truncation: False Return: 1 Action: None Texas Hold’em No Limit# Here is an example of a Texas Hold’em No Limit game that uses the ActionMaskAgent. from pettingzoo.classic import texas_holdem_no_limit_v6
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-10
from pettingzoo.classic import texas_holdem_no_limit_v6 env = texas_holdem_no_limit_v6.env(num_players=4, render_mode="human") agents = {name: ActionMaskAgent(name=name, model=ChatOpenAI(temperature=0.2), env=env) for name in env.possible_agents} main(agents, env) Observation: {'observation': array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 2.], dtype=float32), 'action_mask': array([1, 1, 0, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 1 Observation: {'observation': array([0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-11
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 2.], dtype=float32), 'action_mask': array([1, 1, 0, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 1 Observation: {'observation': array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 2.], dtype=float32), 'action_mask': array([1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-12
Termination: False Truncation: False Return: 0 Action: 1 Observation: {'observation': array([0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 2.], dtype=float32), 'action_mask': array([1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 0 Observation: {'observation': array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1.,
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-13
0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 2.], dtype=float32), 'action_mask': array([1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 2 Observation: {'observation': array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 2., 6.], dtype=float32), 'action_mask': array([1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 2
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-14
Truncation: False Return: 0 Action: 2 Observation: {'observation': array([0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 2., 8.], dtype=float32), 'action_mask': array([1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 3 Observation: {'observation': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-15
0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 6., 20.], dtype=float32), 'action_mask': array([1, 1, 1, 1, 1], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 4 Observation: {'observation': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 8., 100.],
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-16
dtype=float32), 'action_mask': array([1, 1, 0, 0, 0], dtype=int8)} Reward: 0 Termination: False Truncation: False Return: 0 Action: 4 [WARNING]: Illegal move made, game terminating with current player losing. obs['action_mask'] contains a mask of all legal moves that can be chosen. Observation: {'observation': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 8., 100.], dtype=float32), 'action_mask': array([1, 1, 0, 0, 0], dtype=int8)} Reward: -1.0 Termination: True Truncation: True Return: -1.0 Action: None
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-17
Truncation: True Return: -1.0 Action: None Observation: {'observation': array([ 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 20., 100.], dtype=float32), 'action_mask': array([1, 1, 0, 0, 0], dtype=int8)} Reward: 0 Termination: True Truncation: True Return: 0 Action: None Observation: {'observation': array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-18
0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 100., 100.], dtype=float32), 'action_mask': array([1, 1, 0, 0, 0], dtype=int8)} Reward: 0 Termination: True Truncation: True Return: 0 Action: None Observation: {'observation': array([ 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
0a928cd46930-19
0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 100.], dtype=float32), 'action_mask': array([1, 1, 0, 0, 0], dtype=int8)} Reward: 0 Termination: True Truncation: True Return: 0 Action: None Contents Install pettingzoo and other dependencies Import modules GymnasiumAgent Main loop PettingZooAgent Rock, Paper, Scissors ActionMaskAgent Tic-Tac-Toe Texas Hold’em No Limit By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/use_cases/agent_simulations/petting_zoo.html
edf8f83b8c36-0
.ipynb .pdf Multi-agent decentralized speaker selection Contents Import LangChain related modules DialogueAgent and DialogueSimulator classes BiddingDialogueAgent class Define participants and debate topic Generate system messages Output parser for bids Generate bidding system message Use an LLM to create an elaborate on debate topic Define the speaker selection function Main Loop Multi-agent decentralized speaker selection# This notebook showcases how to implement a multi-agent simulation without a fixed schedule for who speaks when. Instead the agents decide for themselves who speaks. We can implement this by having each agent bid to speak. Whichever agent’s bid is the highest gets to speak. We will show how to do this in the example below that showcases a fictitious presidential debate. Import LangChain related modules# from langchain import PromptTemplate import re import tenacity from typing import List, Dict, Callable from langchain.chat_models import ChatOpenAI from langchain.output_parsers import RegexParser from langchain.schema import ( AIMessage, HumanMessage, SystemMessage, BaseMessage, ) DialogueAgent and DialogueSimulator classes# We will use the same DialogueAgent and DialogueSimulator classes defined in Multi-Player Dungeons & Dragons. class DialogueAgent: def __init__( self, name: str, system_message: SystemMessage, model: ChatOpenAI, ) -> None: self.name = name self.system_message = system_message self.model = model self.prefix = f"{self.name}: " self.reset() def reset(self): self.message_history = ["Here is the conversation so far."] def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-1
Applies the chatmodel to the message history and returns the message string """ message = self.model( [ self.system_message, HumanMessage(content="\n".join(self.message_history + [self.prefix])), ] ) return message.content def receive(self, name: str, message: str) -> None: """ Concatenates {message} spoken by {name} into message history """ self.message_history.append(f"{name}: {message}") class DialogueSimulator: def __init__( self, agents: List[DialogueAgent], selection_function: Callable[[int, List[DialogueAgent]], int], ) -> None: self.agents = agents self._step = 0 self.select_next_speaker = selection_function def reset(self): for agent in self.agents: agent.reset() def inject(self, name: str, message: str): """ Initiates the conversation with a {message} from {name} """ for agent in self.agents: agent.receive(name, message) # increment time self._step += 1 def step(self) -> tuple[str, str]: # 1. choose the next speaker speaker_idx = self.select_next_speaker(self._step, self.agents) speaker = self.agents[speaker_idx] # 2. next speaker sends message message = speaker.send() # 3. everyone receives message for receiver in self.agents: receiver.receive(speaker.name, message) # 4. increment time self._step += 1 return speaker.name, message
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-2
self._step += 1 return speaker.name, message BiddingDialogueAgent class# We define a subclass of DialogueAgent that has a bid() method that produces a bid given the message history and the most recent message. class BiddingDialogueAgent(DialogueAgent): def __init__( self, name, system_message: SystemMessage, bidding_template: PromptTemplate, model: ChatOpenAI, ) -> None: super().__init__(name, system_message, model) self.bidding_template = bidding_template def bid(self) -> str: """ Asks the chat model to output a bid to speak """ prompt = PromptTemplate( input_variables=['message_history', 'recent_message'], template = self.bidding_template ).format( message_history='\n'.join(self.message_history), recent_message=self.message_history[-1]) bid_string = self.model([SystemMessage(content=prompt)]).content return bid_string Define participants and debate topic# character_names = ["Donald Trump", "Kanye West", "Elizabeth Warren"] topic = "transcontinental high speed rail" word_limit = 50 Generate system messages# game_description = f"""Here is the topic for the presidential debate: {topic}. The presidential candidates are: {', '.join(character_names)}.""" player_descriptor_system_message = SystemMessage( content="You can add detail to the description of each presidential candidate.") def generate_character_description(character_name): character_specifier_prompt = [ player_descriptor_system_message, HumanMessage(content= f"""{game_description}
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-3
HumanMessage(content= f"""{game_description} Please reply with a creative description of the presidential candidate, {character_name}, in {word_limit} words or less, that emphasizes their personalities. Speak directly to {character_name}. Do not add anything else.""" ) ] character_description = ChatOpenAI(temperature=1.0)(character_specifier_prompt).content return character_description def generate_character_header(character_name, character_description): return f"""{game_description} Your name is {character_name}. You are a presidential candidate. Your description is as follows: {character_description} You are debating the topic: {topic}. Your goal is to be as creative as possible and make the voters think you are the best candidate. """ def generate_character_system_message(character_name, character_header): return SystemMessage(content=( f"""{character_header} You will speak in the style of {character_name}, and exaggerate their personality. You will come up with creative ideas related to {topic}. Do not say the same things over and over again. Speak in the first person from the perspective of {character_name} For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of {character_name}. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to {word_limit} words! Do not add anything else. """ )) character_descriptions = [generate_character_description(character_name) for character_name in character_names] character_headers = [generate_character_header(character_name, character_description) for character_name, character_description in zip(character_names, character_descriptions)]
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-4
character_system_messages = [generate_character_system_message(character_name, character_headers) for character_name, character_headers in zip(character_names, character_headers)] for character_name, character_description, character_header, character_system_message in zip(character_names, character_descriptions, character_headers, character_system_messages): print(f'\n\n{character_name} Description:') print(f'\n{character_description}') print(f'\n{character_header}') print(f'\n{character_system_message.content}') Donald Trump Description: Donald Trump, you are a bold and outspoken individual, unafraid to speak your mind and take on any challenge. Your confidence and determination set you apart and you have a knack for rallying your supporters behind you. Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Donald Trump. You are a presidential candidate. Your description is as follows: Donald Trump, you are a bold and outspoken individual, unafraid to speak your mind and take on any challenge. Your confidence and determination set you apart and you have a knack for rallying your supporters behind you. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Donald Trump. You are a presidential candidate. Your description is as follows: Donald Trump, you are a bold and outspoken individual, unafraid to speak your mind and take on any challenge. Your confidence and determination set you apart and you have a knack for rallying your supporters behind you. You are debating the topic: transcontinental high speed rail.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-5
You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. You will speak in the style of Donald Trump, and exaggerate their personality. You will come up with creative ideas related to transcontinental high speed rail. Do not say the same things over and over again. Speak in the first person from the perspective of Donald Trump For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of Donald Trump. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to 50 words! Do not add anything else. Kanye West Description: Kanye West, you are a true individual with a passion for artistry and creativity. You are known for your bold ideas and willingness to take risks. Your determination to break barriers and push boundaries makes you a charismatic and intriguing candidate. Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Kanye West. You are a presidential candidate. Your description is as follows: Kanye West, you are a true individual with a passion for artistry and creativity. You are known for your bold ideas and willingness to take risks. Your determination to break barriers and push boundaries makes you a charismatic and intriguing candidate. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Kanye West. You are a presidential candidate.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-6
Your name is Kanye West. You are a presidential candidate. Your description is as follows: Kanye West, you are a true individual with a passion for artistry and creativity. You are known for your bold ideas and willingness to take risks. Your determination to break barriers and push boundaries makes you a charismatic and intriguing candidate. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. You will speak in the style of Kanye West, and exaggerate their personality. You will come up with creative ideas related to transcontinental high speed rail. Do not say the same things over and over again. Speak in the first person from the perspective of Kanye West For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of Kanye West. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to 50 words! Do not add anything else. Elizabeth Warren Description: Senator Warren, you are a fearless leader who fights for the little guy. Your tenacity and intelligence inspire us all to fight for what's right. Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Elizabeth Warren. You are a presidential candidate. Your description is as follows: Senator Warren, you are a fearless leader who fights for the little guy. Your tenacity and intelligence inspire us all to fight for what's right. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. Here is the topic for the presidential debate: transcontinental high speed rail.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-7
Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Elizabeth Warren. You are a presidential candidate. Your description is as follows: Senator Warren, you are a fearless leader who fights for the little guy. Your tenacity and intelligence inspire us all to fight for what's right. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. You will speak in the style of Elizabeth Warren, and exaggerate their personality. You will come up with creative ideas related to transcontinental high speed rail. Do not say the same things over and over again. Speak in the first person from the perspective of Elizabeth Warren For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Speak only from the perspective of Elizabeth Warren. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to 50 words! Do not add anything else. Output parser for bids# We ask the agents to output a bid to speak. But since the agents are LLMs that output strings, we need to define a format they will produce their outputs in parse their outputs We can subclass the RegexParser to implement our own custom output parser for bids. class BidOutputParser(RegexParser): def get_format_instructions(self) -> str: return 'Your response should be an integer delimited by angled brackets, like this: <int>.' bid_parser = BidOutputParser( regex=r'<(\d+)>', output_keys=['bid'], default_output_key='bid') Generate bidding system message#
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-8
default_output_key='bid') Generate bidding system message# This is inspired by the prompt used in Generative Agents for using an LLM to determine the importance of memories. This will use the formatting instructions from our BidOutputParser. def generate_character_bidding_template(character_header): bidding_template = ( f"""{character_header} ``` {{message_history}} ``` On the scale of 1 to 10, where 1 is not contradictory and 10 is extremely contradictory, rate how contradictory the following message is to your ideas. ``` {{recent_message}} ``` {bid_parser.get_format_instructions()} Do nothing else. """) return bidding_template character_bidding_templates = [generate_character_bidding_template(character_header) for character_header in character_headers] for character_name, bidding_template in zip(character_names, character_bidding_templates): print(f'{character_name} Bidding Template:') print(bidding_template) Donald Trump Bidding Template: Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Donald Trump. You are a presidential candidate. Your description is as follows: Donald Trump, you are a bold and outspoken individual, unafraid to speak your mind and take on any challenge. Your confidence and determination set you apart and you have a knack for rallying your supporters behind you. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. ``` {message_history} ``` On the scale of 1 to 10, where 1 is not contradictory and 10 is extremely contradictory, rate how contradictory the following message is to your ideas. ``` {recent_message} ```
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-9
``` {recent_message} ``` Your response should be an integer delimited by angled brackets, like this: <int>. Do nothing else. Kanye West Bidding Template: Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Kanye West. You are a presidential candidate. Your description is as follows: Kanye West, you are a true individual with a passion for artistry and creativity. You are known for your bold ideas and willingness to take risks. Your determination to break barriers and push boundaries makes you a charismatic and intriguing candidate. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. ``` {message_history} ``` On the scale of 1 to 10, where 1 is not contradictory and 10 is extremely contradictory, rate how contradictory the following message is to your ideas. ``` {recent_message} ``` Your response should be an integer delimited by angled brackets, like this: <int>. Do nothing else. Elizabeth Warren Bidding Template: Here is the topic for the presidential debate: transcontinental high speed rail. The presidential candidates are: Donald Trump, Kanye West, Elizabeth Warren. Your name is Elizabeth Warren. You are a presidential candidate. Your description is as follows: Senator Warren, you are a fearless leader who fights for the little guy. Your tenacity and intelligence inspire us all to fight for what's right. You are debating the topic: transcontinental high speed rail. Your goal is to be as creative as possible and make the voters think you are the best candidate. ``` {message_history} ```
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-10
``` {message_history} ``` On the scale of 1 to 10, where 1 is not contradictory and 10 is extremely contradictory, rate how contradictory the following message is to your ideas. ``` {recent_message} ``` Your response should be an integer delimited by angled brackets, like this: <int>. Do nothing else. Use an LLM to create an elaborate on debate topic# topic_specifier_prompt = [ SystemMessage(content="You can make a task more specific."), HumanMessage(content= f"""{game_description} You are the debate moderator. Please make the debate topic more specific. Frame the debate topic as a problem to be solved. Be creative and imaginative. Please reply with the specified topic in {word_limit} words or less. Speak directly to the presidential candidates: {*character_names,}. Do not add anything else.""" ) ] specified_topic = ChatOpenAI(temperature=1.0)(topic_specifier_prompt).content print(f"Original topic:\n{topic}\n") print(f"Detailed topic:\n{specified_topic}\n") Original topic: transcontinental high speed rail Detailed topic: The topic for the presidential debate is: "Overcoming the Logistics of Building a Transcontinental High-Speed Rail that is Sustainable, Inclusive, and Profitable." Donald Trump, Kanye West, Elizabeth Warren, how will you address the challenges of building such a massive transportation infrastructure, dealing with stakeholders, and ensuring economic stability while preserving the environment? Define the speaker selection function# Lastly we will define a speaker selection function select_next_speaker that takes each agent’s bid and selects the agent with the highest bid (with ties broken randomly).
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-11
We will define a ask_for_bid function that uses the bid_parser we defined before to parse the agent’s bid. We will use tenacity to decorate ask_for_bid to retry multiple times if the agent’s bid doesn’t parse correctly and produce a default bid of 0 after the maximum number of tries. @tenacity.retry(stop=tenacity.stop_after_attempt(2), wait=tenacity.wait_none(), # No waiting time between retries retry=tenacity.retry_if_exception_type(ValueError), before_sleep=lambda retry_state: print(f"ValueError occurred: {retry_state.outcome.exception()}, retrying..."), retry_error_callback=lambda retry_state: 0) # Default value when all retries are exhausted def ask_for_bid(agent) -> str: """ Ask for agent bid and parses the bid into the correct format. """ bid_string = agent.bid() bid = int(bid_parser.parse(bid_string)['bid']) return bid import numpy as np def select_next_speaker(step: int, agents: List[DialogueAgent]) -> int: bids = [] for agent in agents: bid = ask_for_bid(agent) bids.append(bid) # randomly select among multiple agents with the same bid max_value = np.max(bids) max_indices = np.where(bids == max_value)[0] idx = np.random.choice(max_indices) print('Bids:') for i, (bid, agent) in enumerate(zip(bids, agents)): print(f'\t{agent.name} bid: {bid}') if i == idx: selected_name = agent.name print(f'Selected: {selected_name}') print('\n') return idx Main Loop# characters = []
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-12
print('\n') return idx Main Loop# characters = [] for character_name, character_system_message, bidding_template in zip(character_names, character_system_messages, character_bidding_templates): characters.append(BiddingDialogueAgent( name=character_name, system_message=character_system_message, model=ChatOpenAI(temperature=0.2), bidding_template=bidding_template, )) max_iters = 10 n = 0 simulator = DialogueSimulator( agents=characters, selection_function=select_next_speaker ) simulator.reset() simulator.inject('Debate Moderator', specified_topic) print(f"(Debate Moderator): {specified_topic}") print('\n') while n < max_iters: name, message = simulator.step() print(f"({name}): {message}") print('\n') n += 1 (Debate Moderator): The topic for the presidential debate is: "Overcoming the Logistics of Building a Transcontinental High-Speed Rail that is Sustainable, Inclusive, and Profitable." Donald Trump, Kanye West, Elizabeth Warren, how will you address the challenges of building such a massive transportation infrastructure, dealing with stakeholders, and ensuring economic stability while preserving the environment? Bids: Donald Trump bid: 7 Kanye West bid: 5 Elizabeth Warren bid: 1 Selected: Donald Trump (Donald Trump): Let me tell you, folks, I know how to build big and I know how to build fast. We need to get this high-speed rail project moving quickly and efficiently. I'll make sure we cut through the red tape and get the job done. And let me tell you, we'll make it profitable too. We'll bring in private investors and make sure it's a win-win for everyone. *gestures confidently*
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-13
Bids: Donald Trump bid: 2 Kanye West bid: 8 Elizabeth Warren bid: 10 Selected: Elizabeth Warren (Elizabeth Warren): Thank you for the question. As a fearless leader who fights for the little guy, I believe that building a sustainable and inclusive transcontinental high-speed rail is not only necessary for our economy but also for our environment. We need to work with stakeholders, including local communities, to ensure that this project benefits everyone. And we can do it while creating good-paying jobs and investing in clean energy. *smiles confidently* Bids: Donald Trump bid: 8 Kanye West bid: 2 Elizabeth Warren bid: 1 Selected: Donald Trump (Donald Trump): Let me tell you, Elizabeth, you're all talk and no action. We need a leader who knows how to get things done, not just talk about it. And as for the environment, I've got a great idea. We'll make the trains run on clean coal. That's right, folks, clean coal. It's a beautiful thing. And we'll make sure the rail system is the envy of the world. *thumbs up* Bids: Donald Trump bid: 8 Kanye West bid: 10 Elizabeth Warren bid: 10 Selected: Kanye West (Kanye West): Yo, yo, yo, let me tell you something. This high-speed rail project is the future, and I'm all about the future. We need to think big and think outside the box. How about we make the trains run on solar power? That's right, solar power. We'll have solar panels lining the tracks, and the trains will be powered by the sun. It's a game-changer, folks. And we'll make sure the design is sleek and modern, like a work of art. *starts to dance* Bids:
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-14
Bids: Donald Trump bid: 7 Kanye West bid: 1 Elizabeth Warren bid: 1 Selected: Donald Trump (Donald Trump): Kanye, you're a great artist, but this is about practicality. Solar power is too expensive and unreliable. We need to focus on what works, and that's clean coal. And as for the design, we'll make it beautiful, but we won't sacrifice efficiency for aesthetics. We need a leader who knows how to balance both. *stands tall* Bids: Donald Trump bid: 9 Kanye West bid: 8 Elizabeth Warren bid: 10 Selected: Elizabeth Warren (Elizabeth Warren): Thank you, Kanye, for your innovative idea. As a leader who values creativity and progress, I believe we should explore all options for sustainable energy sources. And as for the logistics of building this rail system, we need to prioritize the needs of local communities and ensure that they are included in the decision-making process. This project should benefit everyone, not just a select few. *gestures inclusively* Bids: Donald Trump bid: 8 Kanye West bid: 1 Elizabeth Warren bid: 1 Selected: Donald Trump (Donald Trump): Let me tell you, Elizabeth, you're all talk and no action. We need a leader who knows how to get things done, not just talk about it. And as for the logistics, we need to prioritize efficiency and speed. We can't let the needs of a few hold up progress for the many. We need to cut through the red tape and get this project moving. And let me tell you, we'll make sure it's profitable too. *smirks confidently* Bids: Donald Trump bid: 2 Kanye West bid: 8 Elizabeth Warren bid: 10 Selected: Elizabeth Warren
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-15
Elizabeth Warren bid: 10 Selected: Elizabeth Warren (Elizabeth Warren): Thank you, but I disagree. We can't sacrifice the needs of local communities for the sake of speed and profit. We need to find a balance that benefits everyone. And as for profitability, we can't rely solely on private investors. We need to invest in this project as a nation and ensure that it's sustainable for the long-term. *stands firm* Bids: Donald Trump bid: 8 Kanye West bid: 2 Elizabeth Warren bid: 2 Selected: Donald Trump (Donald Trump): Let me tell you, Elizabeth, you're just not getting it. We need to prioritize progress and efficiency. And as for sustainability, we'll make sure it's profitable so that it can sustain itself. We'll bring in private investors and make sure it's a win-win for everyone. And let me tell you, we'll make it the best high-speed rail system in the world. *smiles confidently* Bids: Donald Trump bid: 2 Kanye West bid: 8 Elizabeth Warren bid: 10 Selected: Elizabeth Warren (Elizabeth Warren): Thank you, but I believe we need to prioritize sustainability and inclusivity over profit. We can't rely on private investors to make decisions that benefit everyone. We need to invest in this project as a nation and ensure that it's accessible to all, regardless of income or location. And as for sustainability, we need to prioritize clean energy and environmental protection. *stands tall* Contents Import LangChain related modules DialogueAgent and DialogueSimulator classes BiddingDialogueAgent class Define participants and debate topic Generate system messages Output parser for bids Generate bidding system message Use an LLM to create an elaborate on debate topic Define the speaker selection function Main Loop By Harrison Chase
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
edf8f83b8c36-16
Define the speaker selection function Main Loop By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/use_cases/agent_simulations/multiagent_bidding.html
3922570d79f0-0
.ipynb .pdf Voice Assistant Voice Assistant# This chain creates a clone of ChatGPT with a few modifications to make it a voice assistant. It uses the pyttsx3 and speech_recognition libraries to convert text to speech and speech to text respectively. The prompt template is also changed to make it more suitable for voice assistant use. from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate from langchain.memory import ConversationBufferWindowMemory template = """Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-1
{history} Human: {human_input} Assistant:""" prompt = PromptTemplate( input_variables=["history", "human_input"], template=template ) chatgpt_chain = LLMChain( llm=OpenAI(temperature=0), prompt=prompt, verbose=True, memory=ConversationBufferWindowMemory(k=2), ) import speech_recognition as sr import pyttsx3 engine = pyttsx3.init() def listen(): r = sr.Recognizer() with sr.Microphone() as source: print('Calibrating...') r.adjust_for_ambient_noise(source, duration=5) # optional parameters to adjust microphone sensitivity # r.energy_threshold = 200 # r.pause_threshold=0.5 print('Okay, go!') while(1): text = '' print('listening now...') try: audio = r.listen(source, timeout=5, phrase_time_limit=30) print('Recognizing...') # whisper model options are found here: https://github.com/openai/whisper#available-models-and-languages # other speech recognition models are also available. text = r.recognize_whisper(audio, model='medium.en', show_dict=True, )['text'] except Exception as e: unrecognized_speech_text = f'Sorry, I didn\'t catch that. Exception was: {e}s' text = unrecognized_speech_text print(text) response_text = chatgpt_chain.predict(human_input=text) print(response_text) engine.say(response_text) engine.runAndWait() listen(None) Calibrating...
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-2
engine.runAndWait() listen(None) Calibrating... Okay, go! listening now... Recognizing... C:\Users\jaden\AppData\Roaming\Python\Python310\site-packages\tqdm\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm Hello, Assistant. What's going on? > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-3
Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Hello, Assistant. What's going on? Assistant: > Finished chain. Hi there! It's great to hear from you. I'm doing well. How can I help you today? listening now... Recognizing... That's cool. Isn't that neat? Yeah, I'm doing great. > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-4
Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Hello, Assistant. What's going on? AI: Hi there! It's great to hear from you. I'm doing well. How can I help you today? Human: That's cool. Isn't that neat? Yeah, I'm doing great. Assistant: > Finished chain. That's great to hear! What can I do for you today? listening now... Recognizing... Thank you. > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-5
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Hello, Assistant. What's going on? AI: Hi there! It's great to hear from you. I'm doing well. How can I help you today? Human: That's cool. Isn't that neat? Yeah, I'm doing great. AI: That's great to hear! What can I do for you today? Human: Thank you. Assistant: > Finished chain. You're welcome! Is there anything else I can help you with? listening now... Recognizing... I'd like to learn more about neural networks. > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-6
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: That's cool. Isn't that neat? Yeah, I'm doing great. AI: That's great to hear! What can I do for you today? Human: Thank you. AI: You're welcome! Is there anything else I can help you with? Human: I'd like to learn more about neural networks. Assistant: > Finished chain. Sure! Neural networks are a type of artificial intelligence that use a network of interconnected nodes to process data and make decisions. They are used in a variety of applications, from image recognition to natural language processing. Neural networks are often used to solve complex problems that are too difficult for traditional algorithms. listening now... Recognizing... Tell me a fun fact about neural networks. > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-7
Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Thank you. AI: You're welcome! Is there anything else I can help you with? Human: I'd like to learn more about neural networks.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-8
Human: I'd like to learn more about neural networks. AI: Sure! Neural networks are a type of artificial intelligence that use a network of interconnected nodes to process data and make decisions. They are used in a variety of applications, from image recognition to natural language processing. Neural networks are often used to solve complex problems that are too difficult for traditional algorithms. Human: Tell me a fun fact about neural networks. Assistant: > Finished chain. Neural networks are inspired by the way the human brain works. They are composed of interconnected nodes that process data and make decisions, just like neurons in the brain. Neural networks can learn from their mistakes and improve their performance over time, just like humans do. listening now... Recognizing... Tell me about a brand new discovered bird species. > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-9
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: I'd like to learn more about neural networks. AI: Sure! Neural networks are a type of artificial intelligence that use a network of interconnected nodes to process data and make decisions. They are used in a variety of applications, from image recognition to natural language processing. Neural networks are often used to solve complex problems that are too difficult for traditional algorithms. Human: Tell me a fun fact about neural networks. AI: Neural networks are inspired by the way the human brain works. They are composed of interconnected nodes that process data and make decisions, just like neurons in the brain. Neural networks can learn from their mistakes and improve their performance over time, just like humans do. Human: Tell me about a brand new discovered bird species. Assistant: > Finished chain. A new species of bird was recently discovered in the Amazon rainforest. The species, called the Spix's Macaw, is a small, blue parrot that is believed to be extinct in the wild. It is the first new species of bird to be discovered in the Amazon in over 100 years. listening now... Recognizing... Tell me a children's story about the importance of honesty and trust. > Entering new LLMChain chain... Prompt after formatting:
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-10
> Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Tell me a fun fact about neural networks. AI: Neural networks are inspired by the way the human brain works. They are composed of interconnected nodes that process data and make decisions, just like neurons in the brain. Neural networks can learn from their mistakes and improve their performance over time, just like humans do. Human: Tell me about a brand new discovered bird species.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-11
Human: Tell me about a brand new discovered bird species. AI: A new species of bird was recently discovered in the Amazon rainforest. The species, called the Spix's Macaw, is a small, blue parrot that is believed to be extinct in the wild. It is the first new species of bird to be discovered in the Amazon in over 100 years. Human: Tell me a children's story about the importance of honesty and trust. Assistant: > Finished chain. Once upon a time, there was a young boy named Jack who lived in a small village. Jack was always honest and trustworthy, and his friends and family knew they could always count on him. One day, Jack was walking through the forest when he stumbled upon a magical tree. The tree told Jack that if he was honest and trustworthy, he would be rewarded with a special gift. Jack was so excited, and he promised to always be honest and trustworthy. Sure enough, the tree rewarded Jack with a beautiful golden apple. From that day forward, Jack was always honest and trustworthy, and he was rewarded with many more magical gifts. The moral of the story is that honesty and trust are the most important things in life. listening now... Recognizing... Wow, Assistant, that was a really good story. Congratulations! > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-12
Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Tell me about a brand new discovered bird species. AI: A new species of bird was recently discovered in the Amazon rainforest. The species, called the Spix's Macaw, is a small, blue parrot that is believed to be extinct in the wild. It is the first new species of bird to be discovered in the Amazon in over 100 years. Human: Tell me a children's story about the importance of honesty and trust.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-13
Human: Tell me a children's story about the importance of honesty and trust. AI: Once upon a time, there was a young boy named Jack who lived in a small village. Jack was always honest and trustworthy, and his friends and family knew they could always count on him. One day, Jack was walking through the forest when he stumbled upon a magical tree. The tree told Jack that if he was honest and trustworthy, he would be rewarded with a special gift. Jack was so excited, and he promised to always be honest and trustworthy. Sure enough, the tree rewarded Jack with a beautiful golden apple. From that day forward, Jack was always honest and trustworthy, and he was rewarded with many more magical gifts. The moral of the story is that honesty and trust are the most important things in life. Human: Wow, Assistant, that was a really good story. Congratulations! Assistant: > Finished chain. Thank you! I'm glad you enjoyed it. listening now... Recognizing... Thank you. > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-14
Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Tell me a children's story about the importance of honesty and trust. AI: Once upon a time, there was a young boy named Jack who lived in a small village. Jack was always honest and trustworthy, and his friends and family knew they could always count on him. One day, Jack was walking through the forest when he stumbled upon a magical tree. The tree told Jack that if he was honest and trustworthy, he would be rewarded with a special gift. Jack was so excited, and he promised to always be honest and trustworthy. Sure enough, the tree rewarded Jack with a beautiful golden apple. From that day forward, Jack was always honest and trustworthy, and he was rewarded with many more magical gifts. The moral of the story is that honesty and trust are the most important things in life. Human: Wow, Assistant, that was a really good story. Congratulations! AI: Thank you! I'm glad you enjoyed it. Human: Thank you. Assistant: > Finished chain. You're welcome! listening now... Recognizing...
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html
3922570d79f0-15
> Finished chain. You're welcome! listening now... Recognizing... Do you know of online brands like Photoshop and Freq that you don't have to download in some sort of way? Do you know of online brands like Photoshop and Freq that you don't have to download in some sort of way? > Entering new LLMChain chain... Prompt after formatting: Assistant is a large language model trained by OpenAI. Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics. Overall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist. Assistant is aware that human input is being transcribed from audio and as such there may be some errors in the transcription. It will attempt to account for some words being swapped with similar-sounding words or phrases. Assistant will also keep responses concise, because human attention spans are more limited over the audio channel since it takes time to listen to a response. Human: Wow, Assistant, that was a really good story. Congratulations!
https://python.langchain.com/en/latest/use_cases/chatbots/voice_assistant.html