id
stringlengths 14
16
| text
stringlengths 29
2.73k
| source
stringlengths 49
117
|
---|---|---|
b7c52421af6f-1 | from langchain.prompts import StringPromptTemplate
from langchain import OpenAI, SerpAPIWrapper, LLMChain
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish
import re
Set up tool#
Set up any tools the agent may want to use. This may be necessary to put in the prompt (so that the agent knows to use these tools).
# Define which tools the agent can use to answer user queries
search = SerpAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
)
]
Prompt Template#
This instructs the agent on what to do. Generally, the template should incorporate:
tools: which tools the agent has access and how and when to call them.
intermediate_steps: These are tuples of previous (AgentAction, Observation) pairs. These are generally not passed directly to the model, but the prompt template formats them in a specific way.
input: generic user input
# Set up the base template
template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s
Question: {input} | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html |
b7c52421af6f-2 | Question: {input}
{agent_scratchpad}"""
# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
return self.template.format(**kwargs)
prompt = CustomPromptTemplate(
template=template,
tools=tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps"]
)
Output Parser#
The output parser is responsible for parsing the LLM output into AgentAction and AgentFinish. This usually depends heavily on the prompt used.
This is where you can change the parsing to do retries, handle whitespace, etc
class CustomOutputParser(AgentOutputParser): | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html |
b7c52421af6f-3 | class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
output_parser = CustomOutputParser()
Set up LLM#
Choose the LLM you want to use!
llm = OpenAI(temperature=0)
Define the stop sequence#
This is important because it tells the LLM when to stop generation.
This depends heavily on the prompt and model you are using. Generally, you want this to be whatever token you use in the prompt to denote the start of an Observation (otherwise, the LLM may hallucinate an observation for you).
Set up the Agent#
We can now combine everything to set up our agent | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html |
b7c52421af6f-4 | Set up the Agent#
We can now combine everything to set up our agent
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
Use the Agent#
Now we can use it!
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run("How many people live in canada as of 2023?")
> Entering new AgentExecutor chain...
Thought: I need to find out the population of Canada in 2023
Action: Search
Action Input: Population of Canada in 2023
Observation:The current population of Canada is 38,658,314 as of Wednesday, April 12, 2023, based on Worldometer elaboration of the latest United Nations data. I now know the final answer
Final Answer: Arrr, there be 38,658,314 people livin' in Canada as of 2023!
> Finished chain.
"Arrr, there be 38,658,314 people livin' in Canada as of 2023!"
Adding Memory#
If you want to add memory to the agent, you’ll need to:
Add a place in the custom prompt for the chat_history
Add a memory object to the agent executor.
# Set up the base template
template_with_history = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html |
b7c52421af6f-5 | {tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s
Previous conversation history:
{history}
New question: {input}
{agent_scratchpad}"""
prompt_with_history = CustomPromptTemplate(
template=template_with_history,
tools=tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps", "history"]
)
llm_chain = LLMChain(llm=llm, prompt=prompt_with_history)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
from langchain.memory import ConversationBufferWindowMemory
memory=ConversationBufferWindowMemory(k=2)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
agent_executor.run("How many people live in canada as of 2023?")
> Entering new AgentExecutor chain...
Thought: I need to find out the population of Canada in 2023 | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html |
b7c52421af6f-6 | Thought: I need to find out the population of Canada in 2023
Action: Search
Action Input: Population of Canada in 2023
Observation:The current population of Canada is 38,658,314 as of Wednesday, April 12, 2023, based on Worldometer elaboration of the latest United Nations data. I now know the final answer
Final Answer: Arrr, there be 38,658,314 people livin' in Canada as of 2023!
> Finished chain.
"Arrr, there be 38,658,314 people livin' in Canada as of 2023!"
agent_executor.run("how about in mexico?")
> Entering new AgentExecutor chain...
Thought: I need to find out how many people live in Mexico.
Action: Search
Action Input: How many people live in Mexico as of 2023?
Observation:The current population of Mexico is 132,679,922 as of Tuesday, April 11, 2023, based on Worldometer elaboration of the latest United Nations data. Mexico 2020 ... I now know the final answer.
Final Answer: Arrr, there be 132,679,922 people livin' in Mexico as of 2023!
> Finished chain.
"Arrr, there be 132,679,922 people livin' in Mexico as of 2023!"
previous
Custom Agent
next
Custom LLM Agent (with a ChatModel)
Contents
Set up environment
Set up tool
Prompt Template
Output Parser
Set up LLM
Define the stop sequence
Set up the Agent
Use the Agent
Adding Memory
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_agent.html |
9ebdb55f33b4-0 | .ipynb
.pdf
Custom MultiAction Agent
Custom MultiAction Agent#
This notebook goes through how to create your own custom agent.
An agent consists of two parts:
- Tools: The tools the agent has available to use.
- The agent class itself: this decides which action to take.
In this notebook we walk through how to create a custom agent that predicts/takes multiple steps at a time.
from langchain.agents import Tool, AgentExecutor, BaseMultiActionAgent
from langchain import OpenAI, SerpAPIWrapper
def random_word(query: str) -> str:
print("\nNow I'm doing this!")
return "foo"
search = SerpAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
),
Tool(
name = "RandomWord",
func=random_word,
description="call this to get a random word."
)
]
from typing import List, Tuple, Any, Union
from langchain.schema import AgentAction, AgentFinish
class FakeAgent(BaseMultiActionAgent):
"""Fake Custom Agent."""
@property
def input_keys(self):
return ["input"]
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(intermediate_steps) == 0:
return [ | https://python.langchain.com/en/latest/modules/agents/agents/custom_multi_action_agent.html |
9ebdb55f33b4-1 | """
if len(intermediate_steps) == 0:
return [
AgentAction(tool="Search", tool_input=kwargs["input"], log=""),
AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""),
]
else:
return AgentFinish(return_values={"output": "bar"}, log="")
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(intermediate_steps) == 0:
return [
AgentAction(tool="Search", tool_input=kwargs["input"], log=""),
AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""),
]
else:
return AgentFinish(return_values={"output": "bar"}, log="")
agent = FakeAgent()
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run("How many people live in canada as of 2023?")
> Entering new AgentExecutor chain...
The current population of Canada is 38,669,152 as of Monday, April 24, 2023, based on Worldometer elaboration of the latest United Nations data.
Now I'm doing this!
foo
> Finished chain.
'bar'
previous
Custom MRKL Agent
next
Custom Agent with Tool Retrieval
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/modules/agents/agents/custom_multi_action_agent.html |
9ebdb55f33b4-2 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/custom_multi_action_agent.html |
9582d06200c9-0 | .ipynb
.pdf
Custom Agent with Tool Retrieval
Contents
Set up environment
Set up tools
Tool Retriever
Prompt Template
Output Parser
Set up LLM, stop sequence, and the agent
Use the Agent
Custom Agent with Tool Retrieval#
This notebook builds off of this notebook and assumes familiarity with how agents work.
The novel idea introduced in this notebook is the idea of using retrieval to select the set of tools to use to answer an agent query. This is useful when you have many many tools to select from. You cannot put the description of all the tools in the prompt (because of context length issues) so instead you dynamically select the N tools you do want to consider using at run time.
In this notebook we will create a somewhat contrieved example. We will have one legitimate tool (search) and then 99 fake tools which are just nonsense. We will then add a step in the prompt template that takes the user input and retrieves tool relevant to the query.
Set up environment#
Do necessary imports, etc.
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import StringPromptTemplate
from langchain import OpenAI, SerpAPIWrapper, LLMChain
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish
import re
Set up tools#
We will create one legitimate tool (search) and then 99 fake tools
# Define which tools the agent can use to answer user queries
search = SerpAPIWrapper()
search_tool = Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
)
def fake_func(inp: str) -> str:
return "foo"
fake_tools = [
Tool( | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html |
9582d06200c9-1 | return "foo"
fake_tools = [
Tool(
name=f"foo-{i}",
func=fake_func,
description=f"a silly function that you can use to get more information about the number {i}"
)
for i in range(99)
]
ALL_TOOLS = [search_tool] + fake_tools
Tool Retriever#
We will use a vectorstore to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools.
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
docs = [Document(page_content=t.description, metadata={"index": i}) for i, t in enumerate(ALL_TOOLS)]
vector_store = FAISS.from_documents(docs, OpenAIEmbeddings())
retriever = vector_store.as_retriever()
def get_tools(query):
docs = retriever.get_relevant_documents(query)
return [ALL_TOOLS[d.metadata["index"]] for d in docs]
We can now test this retriever to see if it seems to work.
get_tools("whats the weather?")
[Tool(name='Search', description='useful for when you need to answer questions about current events', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<bound method SerpAPIWrapper.run of SerpAPIWrapper(search_engine=<class 'serpapi.google_search.GoogleSearch'>, params={'engine': 'google', 'google_domain': 'google.com', 'gl': 'us', 'hl': 'en'}, serpapi_api_key='', aiosession=None)>, coroutine=None), | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html |
9582d06200c9-2 | Tool(name='foo-95', description='a silly function that you can use to get more information about the number 95', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),
Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),
Tool(name='foo-15', description='a silly function that you can use to get more information about the number 15', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)]
get_tools("whats the number 13?")
[Tool(name='foo-13', description='a silly function that you can use to get more information about the number 13', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),
Tool(name='foo-12', description='a silly function that you can use to get more information about the number 12', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None), | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html |
9582d06200c9-3 | Tool(name='foo-14', description='a silly function that you can use to get more information about the number 14', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None),
Tool(name='foo-11', description='a silly function that you can use to get more information about the number 11', return_direct=False, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x114b28a90>, func=<function fake_func at 0x15e5bd1f0>, coroutine=None)]
Prompt Template#
The prompt template is pretty standard, because we’re not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done.
# Set up the base template
template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s
Question: {input}
{agent_scratchpad}"""
The custom prompt template now has the concept of a tools_getter, which we call on the input to select the tools to use
from typing import Callable | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html |
9582d06200c9-4 | from typing import Callable
# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
############## NEW ######################
# The list of tools available
tools_getter: Callable
def format(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
############## NEW ######################
tools = self.tools_getter(kwargs["input"])
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
return self.template.format(**kwargs)
prompt = CustomPromptTemplate(
template=template,
tools_getter=get_tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps"]
)
Output Parser#
The output parser is unchanged from the previous notebook, since we are not changing anything about the output format.
class CustomOutputParser(AgentOutputParser): | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html |
9582d06200c9-5 | class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
output_parser = CustomOutputParser()
Set up LLM, stop sequence, and the agent#
Also the same as the previous notebook
llm = OpenAI(temperature=0)
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt)
tools = get_tools("whats the weather?")
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"], | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html |
9582d06200c9-6 | output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
Use the Agent#
Now we can use it!
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run("What's the weather in SF?")
> Entering new AgentExecutor chain...
Thought: I need to find out what the weather is in SF
Action: Search
Action Input: Weather in SF
Observation:Mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shifting to W at 10 to 15 mph. Humidity71%. UV Index6 of 10. I now know the final answer
Final Answer: 'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10.
> Finished chain.
"'Arg, 'tis mostly cloudy skies early, then partly cloudy in the afternoon. High near 60F. ENE winds shiftin' to W at 10 to 15 mph. Humidity71%. UV Index6 of 10."
previous
Custom MultiAction Agent
next
Conversation Agent (for Chat Models)
Contents
Set up environment
Set up tools
Tool Retriever
Prompt Template
Output Parser
Set up LLM, stop sequence, and the agent
Use the Agent
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent_with_tool_retrieval.html |
c57a7bc5af8d-0 | .ipynb
.pdf
Custom Agent
Custom Agent#
This notebook goes through how to create your own custom agent.
An agent consists of two parts:
- Tools: The tools the agent has available to use.
- The agent class itself: this decides which action to take.
In this notebook we walk through how to create a custom agent.
from langchain.agents import Tool, AgentExecutor, BaseSingleActionAgent
from langchain import OpenAI, SerpAPIWrapper
search = SerpAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events",
return_direct=True
)
]
from typing import List, Tuple, Any, Union
from langchain.schema import AgentAction, AgentFinish
class FakeAgent(BaseSingleActionAgent):
"""Fake Custom Agent."""
@property
def input_keys(self):
return ["input"]
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
return AgentAction(tool="Search", tool_input=kwargs["input"], log="")
async def aplan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[AgentAction, AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date, | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent.html |
c57a7bc5af8d-1 | Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
return AgentAction(tool="Search", tool_input=kwargs["input"], log="")
agent = FakeAgent()
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run("How many people live in canada as of 2023?")
> Entering new AgentExecutor chain...
The current population of Canada is 38,669,152 as of Monday, April 24, 2023, based on Worldometer elaboration of the latest United Nations data.
> Finished chain.
'The current population of Canada is 38,669,152 as of Monday, April 24, 2023, based on Worldometer elaboration of the latest United Nations data.'
previous
Agent Types
next
Custom LLM Agent
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/custom_agent.html |
6ed4e61648a9-0 | .ipynb
.pdf
Custom LLM Agent (with a ChatModel)
Contents
Set up environment
Set up tool
Prompt Template
Output Parser
Set up LLM
Define the stop sequence
Set up the Agent
Use the Agent
Custom LLM Agent (with a ChatModel)#
This notebook goes through how to create your own custom agent based on a chat model.
An LLM chat agent consists of three parts:
PromptTemplate: This is the prompt template that can be used to instruct the language model on what to do
ChatModel: This is the language model that powers the agent
stop sequence: Instructs the LLM to stop generating as soon as this string is found
OutputParser: This determines how to parse the LLMOutput into an AgentAction or AgentFinish object
The LLMAgent is used in an AgentExecutor. This AgentExecutor can largely be thought of as a loop that:
Passes user input and any previous steps to the Agent (in this case, the LLMAgent)
If the Agent returns an AgentFinish, then return that directly to the user
If the Agent returns an AgentAction, then use that to call a tool and get an Observation
Repeat, passing the AgentAction and Observation back to the Agent until an AgentFinish is emitted.
AgentAction is a response that consists of action and action_input. action refers to which tool to use, and action_input refers to the input to that tool. log can also be provided as more context (that can be used for logging, tracing, etc).
AgentFinish is a response that contains the final message to be sent back to the user. This should be used to end an agent run.
In this notebook we walk through how to create a custom LLM agent.
Set up environment#
Do necessary imports, etc.
!pip install langchain
!pip install google-search-results
!pip install openai | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html |
6ed4e61648a9-1 | !pip install langchain
!pip install google-search-results
!pip install openai
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import BaseChatPromptTemplate
from langchain import SerpAPIWrapper, LLMChain
from langchain.chat_models import ChatOpenAI
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish, HumanMessage
import re
from getpass import getpass
Set up tool#
Set up any tools the agent may want to use. This may be necessary to put in the prompt (so that the agent knows to use these tools).
SERPAPI_API_KEY = getpass()
# Define which tools the agent can use to answer user queries
search = SerpAPIWrapper(serpapi_api_key=SERPAPI_API_KEY)
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
)
]
Prompt Template#
This instructs the agent on what to do. Generally, the template should incorporate:
tools: which tools the agent has access and how and when to call them.
intermediate_steps: These are tuples of previous (AgentAction, Observation) pairs. These are generally not passed directly to the model, but the prompt template formats them in a specific way.
input: generic user input
# Set up the base template
template = """Complete the objective as best you can. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html |
6ed4e61648a9-2 | Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
These were previous tasks you completed:
Begin!
Question: {input}
{agent_scratchpad}"""
# Set up a prompt template
class CustomPromptTemplate(BaseChatPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format_messages(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
formatted = self.template.format(**kwargs)
return [HumanMessage(content=formatted)]
prompt = CustomPromptTemplate(
template=template,
tools=tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html |
6ed4e61648a9-3 | # This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps"]
)
Output Parser#
The output parser is responsible for parsing the LLM output into AgentAction and AgentFinish. This usually depends heavily on the prompt used.
This is where you can change the parsing to do retries, handle whitespace, etc
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
output_parser = CustomOutputParser()
Set up LLM#
Choose the LLM you want to use!
OPENAI_API_KEY = getpass()
llm = ChatOpenAI(openai_api_key=OPENAI_API_KEY, temperature=0) | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html |
6ed4e61648a9-4 | Define the stop sequence#
This is important because it tells the LLM when to stop generation.
This depends heavily on the prompt and model you are using. Generally, you want this to be whatever token you use in the prompt to denote the start of an Observation (otherwise, the LLM may hallucinate an observation for you).
Set up the Agent#
We can now combine everything to set up our agent
# LLM chain consisting of the LLM and a prompt
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
Use the Agent#
Now we can use it!
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run("Search for Leo DiCaprio's girlfriend on the internet.")
> Entering new AgentExecutor chain...
Thought: I should use a reliable search engine to get accurate information.
Action: Search
Action Input: "Leo DiCaprio girlfriend"
Observation:He went on to date Gisele Bündchen, Bar Refaeli, Blake Lively, Toni Garrn and Nina Agdal, among others, before finally settling down with current girlfriend Camila Morrone, who is 23 years his junior.
I have found the answer to the question.
Final Answer: Leo DiCaprio's current girlfriend is Camila Morrone.
> Finished chain.
"Leo DiCaprio's current girlfriend is Camila Morrone."
previous
Custom LLM Agent
next
Custom MRKL Agent
Contents
Set up environment
Set up tool
Prompt Template
Output Parser | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html |
6ed4e61648a9-5 | Contents
Set up environment
Set up tool
Prompt Template
Output Parser
Set up LLM
Define the stop sequence
Set up the Agent
Use the Agent
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/custom_llm_chat_agent.html |
a34d869d9c5c-0 | .ipynb
.pdf
Custom MRKL Agent
Contents
Custom LLMChain
Multiple inputs
Custom MRKL Agent#
This notebook goes through how to create your own custom MRKL agent.
A MRKL agent consists of three parts:
- Tools: The tools the agent has available to use.
- LLMChain: The LLMChain that produces the text that is parsed in a certain way to determine which action to take.
- The agent class itself: this parses the output of the LLMChain to determine which action to take.
In this notebook we walk through how to create a custom MRKL agent by creating a custom LLMChain.
Custom LLMChain#
The first way to create a custom agent is to use an existing Agent class, but use a custom LLMChain. This is the simplest way to create a custom Agent. It is highly recommended that you work with the ZeroShotAgent, as at the moment that is by far the most generalizable one.
Most of the work in creating the custom LLMChain comes down to the prompt. Because we are using an existing agent class to parse the output, it is very important that the prompt say to produce text in that format. Additionally, we currently require an agent_scratchpad input variable to put notes on previous actions and observations. This should almost always be the final part of the prompt. However, besides those instructions, you can customize the prompt as you wish.
To ensure that the prompt contains the appropriate instructions, we will utilize a helper method on that class. The helper method for the ZeroShotAgent takes the following arguments:
tools: List of tools the agent will have access to, used to format the prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
input_variables: List of input variables the final prompt will expect. | https://python.langchain.com/en/latest/modules/agents/agents/custom_mrkl_agent.html |
a34d869d9c5c-1 | input_variables: List of input variables the final prompt will expect.
For this exercise, we will give our agent access to Google Search, and we will customize it in that we will have it answer as a pirate.
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain import OpenAI, SerpAPIWrapper, LLMChain
search = SerpAPIWrapper()
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events"
)
]
prefix = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:"""
suffix = """Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "agent_scratchpad"]
)
In case we are curious, we can now take a look at the final prompt template to see what it looks like when its all put together.
print(prompt.template)
Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
Search: useful for when you need to answer questions about current events
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Search]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer | https://python.langchain.com/en/latest/modules/agents/agents/custom_mrkl_agent.html |
a34d869d9c5c-2 | Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Args"
Question: {input}
{agent_scratchpad}
Note that we are able to feed agents a self-defined prompt template, i.e. not restricted to the prompt generated by the create_prompt function, assuming it meets the agent’s requirements.
For example, for ZeroShotAgent, we will need to ensure that it meets the following requirements. There should a string starting with “Action:” and a following string starting with “Action Input:”, and both should be separated by a newline.
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run("How many people live in canada as of 2023?")
> Entering new AgentExecutor chain...
Thought: I need to find out the population of Canada
Action: Search
Action Input: Population of Canada 2023
Observation: The current population of Canada is 38,661,927 as of Sunday, April 16, 2023, based on Worldometer elaboration of the latest United Nations data.
Thought: I now know the final answer
Final Answer: Arrr, Canada be havin' 38,661,927 people livin' there as of 2023!
> Finished chain.
"Arrr, Canada be havin' 38,661,927 people livin' there as of 2023!"
Multiple inputs#
Agents can also work with prompts that require multiple inputs. | https://python.langchain.com/en/latest/modules/agents/agents/custom_mrkl_agent.html |
a34d869d9c5c-3 | Multiple inputs#
Agents can also work with prompts that require multiple inputs.
prefix = """Answer the following questions as best you can. You have access to the following tools:"""
suffix = """When answering, you MUST speak in the following language: {language}.
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "language", "agent_scratchpad"]
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
agent_executor.run(input="How many people live in canada as of 2023?", language="italian")
> Entering new AgentExecutor chain...
Thought: I should look for recent population estimates.
Action: Search
Action Input: Canada population 2023
Observation: 39,566,248
Thought: I should double check this number.
Action: Search
Action Input: Canada population estimates 2023
Observation: Canada's population was estimated at 39,566,248 on January 1, 2023, after a record population growth of 1,050,110 people from January 1, 2022, to January 1, 2023.
Thought: I now know the final answer. | https://python.langchain.com/en/latest/modules/agents/agents/custom_mrkl_agent.html |
a34d869d9c5c-4 | Thought: I now know the final answer.
Final Answer: La popolazione del Canada è stata stimata a 39.566.248 il 1° gennaio 2023, dopo un record di crescita demografica di 1.050.110 persone dal 1° gennaio 2022 al 1° gennaio 2023.
> Finished chain.
'La popolazione del Canada è stata stimata a 39.566.248 il 1° gennaio 2023, dopo un record di crescita demografica di 1.050.110 persone dal 1° gennaio 2022 al 1° gennaio 2023.'
previous
Custom LLM Agent (with a ChatModel)
next
Custom MultiAction Agent
Contents
Custom LLMChain
Multiple inputs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/custom_mrkl_agent.html |
2a5229acbea3-0 | .md
.pdf
Agent Types
Contents
zero-shot-react-description
react-docstore
self-ask-with-search
conversational-react-description
Agent Types#
Agents use an LLM to determine which actions to take and in what order.
An action can either be using a tool and observing its output, or returning a response to the user.
Here are the agents available in LangChain.
zero-shot-react-description#
This agent uses the ReAct framework to determine which tool to use
based solely on the tool’s description. Any number of tools can be provided.
This agent requires that a description is provided for each tool.
react-docstore#
This agent uses the ReAct framework to interact with a docstore. Two tools must
be provided: a Search tool and a Lookup tool (they must be named exactly as so).
The Search tool should search for a document, while the Lookup tool should lookup
a term in the most recently found document.
This agent is equivalent to the
original ReAct paper, specifically the Wikipedia example.
self-ask-with-search#
This agent utilizes a single tool that should be named Intermediate Answer.
This tool should be able to lookup factual answers to questions. This agent
is equivalent to the original self ask with search paper,
where a Google search API was provided as the tool.
conversational-react-description#
This agent is designed to be used in conversational settings.
The prompt is designed to make the agent helpful and conversational.
It uses the ReAct framework to decide which tool to use, and uses memory to remember the previous conversation interactions.
previous
Agents
next
Custom Agent
Contents
zero-shot-react-description
react-docstore
self-ask-with-search
conversational-react-description
By Harrison Chase
© Copyright 2023, Harrison Chase. | https://python.langchain.com/en/latest/modules/agents/agents/agent_types.html |
2a5229acbea3-1 | By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/agent_types.html |
0c9b9a8e5613-0 | .ipynb
.pdf
Structured Tool Chat Agent
Contents
Initialize Tools
Adding in memory
Structured Tool Chat Agent#
This notebook walks through using a chat agent capable of using multi-input tools.
Older agents are configured to specify an action input as a single string, but this agent can use the provided tools’ args_schema to populate the action input.
This functionality is natively available in the (structured-chat-zero-shot-react-description or AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION).
import os
os.environ["LANGCHAIN_TRACING"] = "true" # If you want to trace the execution of the program, set to "true"
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent
Initialize Tools#
We will test the agent using a web browser.
from langchain.agents.agent_toolkits import PlayWrightBrowserToolkit
from langchain.tools.playwright.utils import (
create_async_playwright_browser,
create_sync_playwright_browser, # A synchronous browser is available, though it isn't compatible with jupyter.
)
# This import is required only for jupyter notebooks, since they have their own eventloop
import nest_asyncio
nest_asyncio.apply()
async_browser = create_async_playwright_browser()
browser_toolkit = PlayWrightBrowserToolkit.from_browser(async_browser=async_browser)
tools = browser_toolkit.get_tools()
llm = ChatOpenAI(temperature=0) # Also works well with Anthropic models
agent_chain = initialize_agent(tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
response = await agent_chain.arun(input="Hi I'm Erica.")
print(response)
> Entering new AgentExecutor chain...
Action:
```
{ | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-1 | print(response)
> Entering new AgentExecutor chain...
Action:
```
{
"action": "Final Answer",
"action_input": "Hello Erica, how can I assist you today?"
}
```
> Finished chain.
Hello Erica, how can I assist you today?
response = await agent_chain.arun(input="Don't need help really just chatting.")
print(response)
> Entering new AgentExecutor chain...
> Finished chain.
I'm here to chat! How's your day going?
response = await agent_chain.arun(input="Browse to blog.langchain.dev and summarize the text, please.")
print(response)
> Entering new AgentExecutor chain...
Action:
```
{
"action": "navigate_browser",
"action_input": {
"url": "https://blog.langchain.dev/"
}
}
```
Observation: Navigating to https://blog.langchain.dev/ returned status code 200
Thought:I need to extract the text from the webpage to summarize it.
Action:
```
{
"action": "extract_text",
"action_input": {}
}
```
Observation: LangChain LangChain Home About GitHub Docs LangChain The official LangChain blog. Auto-Evaluator Opportunities Editor's Note: this is a guest blog post by Lance Martin.
TL;DR | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-2 | We recently open-sourced an auto-evaluator tool for grading LLM question-answer chains. We are now releasing an open source, free to use hosted app and API to expand usability. Below we discuss a few opportunities to further improve May 1, 2023 5 min read Callbacks Improvements TL;DR: We're announcing improvements to our callbacks system, which powers logging, tracing, streaming output, and some awesome third-party integrations. This will better support concurrent runs with independent callbacks, tracing of deeply nested trees of LangChain components, and callback handlers scoped to a single request (which is super useful for May 1, 2023 3 min read Unleashing the power of AI Collaboration with Parallelized LLM Agent Actor Trees Editor's note: the following is a guest blog post from Cyrus at Shaman AI. We use guest blog posts to highlight interesting and novel applciations, and this is certainly that. There's been a lot of talk about agents recently, but most have been discussions around a single agent. If multiple Apr 28, 2023 4 min read Gradio & LLM Agents Editor's note: this is a guest blog post from Freddy Boulton, a software engineer at Gradio. We're excited to share this post because it brings a large number of exciting new tools into the ecosystem. Agents are largely defined by the tools they have, so to be able to equip Apr 23, 2023 4 min read RecAlign - The smart content filter for social media feed [Editor's Note] This is a guest post by Tian Jin. We are highlighting this application as we think it is a novel use case. Specifically, we think recommendation systems are incredibly impactful in our everyday lives and there has not been a ton of discourse on how LLMs will impact Apr 22, 2023 3 min read Improving Document Retrieval with Contextual Compression Note: This post assumes some familiarity with LangChain | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-3 | read Improving Document Retrieval with Contextual Compression Note: This post assumes some familiarity with LangChain and is moderately technical. | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-4 | 💡 TL;DR: We’ve introduced a new abstraction and a new document Retriever to facilitate the post-processing of retrieved documents. Specifically, the new abstraction makes it easy to take a set of retrieved documents and extract from them Apr 20, 2023 3 min read Autonomous Agents & Agent Simulations Over the past two weeks, there has been a massive increase in using LLMs in an agentic manner. Specifically, projects like AutoGPT, BabyAGI, CAMEL, and Generative Agents have popped up. The LangChain community has now implemented some parts of all of those projects in the LangChain framework. While researching and Apr 18, 2023 7 min read AI-Powered Medical Knowledge: Revolutionizing Care for Rare Conditions [Editor's Note]: This is a guest post by Jack Simon, who recently participated in a hackathon at Williams College. He built a LangChain-powered chatbot focused on appendiceal cancer, aiming to make specialized knowledge more accessible to those in need. If you are interested in building a chatbot for another rare Apr 17, 2023 3 min read Auto-Eval of Question-Answering Tasks By Lance Martin
Context
LLM ops platforms, such as LangChain, make it easy to assemble LLM components (e.g., models, document retrievers, data loaders) into chains. Question-Answering is one of the most popular applications of these chains. But it is often not always obvious to determine what parameters (e.g. Apr 15, 2023 3 min read Announcing LangChainJS Support for Multiple JS Environments TLDR: We're announcing support for running LangChain.js in browsers, Cloudflare Workers, Vercel/Next.js, Deno, Supabase Edge Functions, alongside existing support for Node.js ESM and CJS. See install/upgrade docs and breaking changes list.
Context | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-5 | Context
Originally we designed LangChain.js to run in Node.js, which is the Apr 11, 2023 3 min read LangChain x Supabase Supabase is holding an AI Hackathon this week. Here at LangChain we are big fans of both Supabase and hackathons, so we thought this would be a perfect time to highlight the multiple ways you can use LangChain and Supabase together. | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-6 | The reason we like Supabase so much is that Apr 8, 2023 2 min read Announcing our $10M seed round led by Benchmark It was only six months ago that we released the first version of LangChain, but it seems like several years. When we launched, generative AI was starting to go mainstream: stable diffusion had just been released and was captivating people’s imagination and fueling an explosion in developer activity, Jasper Apr 4, 2023 4 min read Custom Agents One of the most common requests we've heard is better functionality and documentation for creating custom agents. This has always been a bit tricky - because in our mind it's actually still very unclear what an "agent" actually is, and therefor what the "right" abstractions for them may be. Recently, Apr 3, 2023 3 min read Retrieval TL;DR: We are adjusting our abstractions to make it easy for other retrieval methods besides the LangChain VectorDB object to be used in LangChain. This is done with the goals of (1) allowing retrievers constructed elsewhere to be used more easily in LangChain, (2) encouraging more experimentation with alternative Mar 23, 2023 4 min read LangChain + Zapier Natural Language Actions (NLA) We are super excited to team up with Zapier and integrate their new Zapier NLA API into LangChain, which you can now use with your agents and chains. With this integration, you have access to the 5k+ apps and 20k+ actions on Zapier's platform through a natural language API interface. Mar 16, 2023 2 min read Evaluation Evaluation of language models, and by extension applications built on top of language models, is hard. With recent model releases (OpenAI, Anthropic, Google) evaluation is becoming a bigger and bigger issue. People are starting to try to tackle this, with OpenAI releasing | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-7 | becoming a bigger and bigger issue. People are starting to try to tackle this, with OpenAI releasing OpenAI/evals - focused on evaluating OpenAI models. Mar 14, 2023 3 min read LLMs and SQL Francisco Ingham and Jon Luo are two of the community members leading the change on the SQL integrations. We’re really excited to write this blog post with them going over all the tips and tricks they’ve learned doing so. We’re even more excited to announce that we’ Mar 13, 2023 8 min read Origin Web Browser [Editor's Note]: This is the second of hopefully many guest posts. We intend to highlight novel applications building on top of LangChain. If you are interested in working with us on such a post, please reach out to harrison@langchain.dev. | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-8 | Authors: Parth Asawa (pgasawa@), Ayushi Batwara (ayushi.batwara@), Jason Mar 8, 2023 4 min read Prompt Selectors One common complaint we've heard is that the default prompt templates do not work equally well for all models. This became especially pronounced this past week when OpenAI released a ChatGPT API. This new API had a completely new interface (which required new abstractions) and as a result many users Mar 8, 2023 2 min read Chat Models Last week OpenAI released a ChatGPT endpoint. It came marketed with several big improvements, most notably being 10x cheaper and a lot faster. But it also came with a completely new API endpoint. We were able to quickly write a wrapper for this endpoint to let users use it like Mar 6, 2023 6 min read Using the ChatGPT API to evaluate the ChatGPT API OpenAI released a new ChatGPT API yesterday. Lots of people were excited to try it. But how does it actually compare to the existing API? It will take some time before there is a definitive answer, but here are some initial thoughts. Because I'm lazy, I also enrolled the help Mar 2, 2023 5 min read Agent Toolkits Today, we're announcing agent toolkits, a new abstraction that allows developers to create agents designed for a particular use-case (for example, interacting with a relational database or interacting with an OpenAPI spec). We hope to continue developing different toolkits that can enable agents to do amazing feats. Toolkits are supported Mar 1, 2023 3 min read TypeScript Support It's finally here... TypeScript support for LangChain. | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-9 | What does this mean? It means that all your favorite prompts, chains, and agents are all recreatable in TypeScript natively. Both the Python version and TypeScript version utilize the same serializable format, meaning that artifacts can seamlessly be shared between languages. As an Feb 17, 2023 2 min read Streaming Support in LangChain We’re excited to announce streaming support in LangChain. There's been a lot of talk about the best UX for LLM applications, and we believe streaming is at its core. We’ve also updated the chat-langchain repo to include streaming and async execution. We hope that this repo can serve Feb 14, 2023 2 min read LangChain + Chroma Today we’re announcing LangChain's integration with Chroma, the first step on the path to the Modern A.I Stack.
LangChain - The A.I-native developer toolkit
We started LangChain with the intent to build a modular and flexible framework for developing A.I-native applications. Some of the use cases Feb 13, 2023 2 min read Page 1 of 2 Older Posts → LangChain © 2023 Sign up Powered by Ghost
Thought:
> Finished chain.
The LangChain blog has recently released an open-source auto-evaluator tool for grading LLM question-answer chains and is now releasing an open-source, free-to-use hosted app and API to expand usability. The blog also discusses various opportunities to further improve the LangChain platform.
response = await agent_chain.arun(input="What's the latest xkcd comic about?")
print(response)
> Entering new AgentExecutor chain...
Thought: I can navigate to the xkcd website and extract the latest comic title and alt text to answer the question.
Action:
```
{
"action": "navigate_browser",
"action_input": {
"url": "https://xkcd.com/"
} | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-10 | "url": "https://xkcd.com/"
}
}
```
Observation: Navigating to https://xkcd.com/ returned status code 200
Thought:I can extract the latest comic title and alt text using CSS selectors.
Action:
```
{
"action": "get_elements",
"action_input": {
"selector": "#ctitle, #comic img",
"attributes": ["alt", "src"]
}
}
```
Observation: [{"alt": "Tapetum Lucidum", "src": "//imgs.xkcd.com/comics/tapetum_lucidum.png"}]
Thought:
> Finished chain.
The latest xkcd comic is titled "Tapetum Lucidum" and the image can be found at https://xkcd.com/2565/.
Adding in memory#
Here is how you add in memory to this agent
from langchain.prompts import MessagesPlaceholder
from langchain.memory import ConversationBufferMemory
chat_history = MessagesPlaceholder(variable_name="chat_history")
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
agent_chain = initialize_agent(
tools,
llm,
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
memory=memory,
agent_kwargs = {
"memory_prompts": [chat_history],
"input_variables": ["input", "agent_scratchpad", "chat_history"]
}
)
response = await agent_chain.arun(input="Hi I'm Erica.")
print(response)
> Entering new AgentExecutor chain...
Action:
```
{
"action": "Final Answer", | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
0c9b9a8e5613-11 | Action:
```
{
"action": "Final Answer",
"action_input": "Hi Erica! How can I assist you today?"
}
```
> Finished chain.
Hi Erica! How can I assist you today?
response = await agent_chain.arun(input="whats my name?")
print(response)
> Entering new AgentExecutor chain...
Your name is Erica.
> Finished chain.
Your name is Erica.
previous
Self Ask With Search
next
Toolkits
Contents
Initialize Tools
Adding in memory
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/examples/structured_chat.html |
1f8bc102e136-0 | .ipynb
.pdf
MRKL
MRKL#
This notebook showcases using an agent to replicate the MRKL chain.
This uses the example Chinook database.
To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the .db file in a notebooks folder at the root of this repository.
from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, SQLDatabase, SQLDatabaseChain
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
db = SQLDatabase.from_uri("sqlite:///../../../../../notebooks/Chinook.db")
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events. You should ask targeted questions"
),
Tool(
name="Calculator",
func=llm_math_chain.run,
description="useful for when you need to answer questions about math"
),
Tool(
name="FooBar DB",
func=db_chain.run,
description="useful for when you need to answer questions about FooBar. Input should be in the form of a question containing full context"
)
]
mrkl = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
mrkl.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
> Entering new AgentExecutor chain... | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl.html |
1f8bc102e136-1 | > Entering new AgentExecutor chain...
I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.
Action: Search
Action Input: "Who is Leo DiCaprio's girlfriend?"
Observation: DiCaprio met actor Camila Morrone in December 2017, when she was 20 and he was 43. They were spotted at Coachella and went on multiple vacations together. Some reports suggested that DiCaprio was ready to ask Morrone to marry him. The couple made their red carpet debut at the 2020 Academy Awards.
Thought: I need to calculate Camila Morrone's age raised to the 0.43 power.
Action: Calculator
Action Input: 21^0.43
> Entering new LLMMathChain chain...
21^0.43
```text
21**0.43
```
...numexpr.evaluate("21**0.43")...
Answer: 3.7030049853137306
> Finished chain.
Observation: Answer: 3.7030049853137306
Thought: I now know the final answer.
Final Answer: Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.7030049853137306.
> Finished chain.
"Camila Morrone is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is 3.7030049853137306."
mrkl.run("What is the full name of the artist who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?")
> Entering new AgentExecutor chain... | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl.html |
1f8bc102e136-2 | > Entering new AgentExecutor chain...
I need to find out the artist's full name and then search the FooBar database for their albums.
Action: Search
Action Input: "The Storm Before the Calm" artist
Observation: The Storm Before the Calm (stylized in all lowercase) is the tenth (and eighth international) studio album by Canadian-American singer-songwriter Alanis Morissette, released June 17, 2022, via Epiphany Music and Thirty Tigers, as well as by RCA Records in Europe.
Thought: I now need to search the FooBar database for Alanis Morissette's albums.
Action: FooBar DB
Action Input: What albums by Alanis Morissette are in the FooBar database?
> Entering new SQLDatabaseChain chain...
What albums by Alanis Morissette are in the FooBar database?
SQLQuery:
/Users/harrisonchase/workplace/langchain/langchain/sql_database.py:191: SAWarning: Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must convert from floating point - rounding errors and other issues may occur. Please consider storing Decimal numbers as strings or integers on this platform for lossless storage.
sample_rows = connection.execute(command)
SELECT "Title" FROM "Album" INNER JOIN "Artist" ON "Album"."ArtistId" = "Artist"."ArtistId" WHERE "Name" = 'Alanis Morissette' LIMIT 5;
SQLResult: [('Jagged Little Pill',)]
Answer: The albums by Alanis Morissette in the FooBar database are Jagged Little Pill.
> Finished chain.
Observation: The albums by Alanis Morissette in the FooBar database are Jagged Little Pill.
Thought: I now know the final answer. | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl.html |
1f8bc102e136-3 | Thought: I now know the final answer.
Final Answer: The artist who released the album 'The Storm Before the Calm' is Alanis Morissette and the albums of hers in the FooBar database are Jagged Little Pill.
> Finished chain.
"The artist who released the album 'The Storm Before the Calm' is Alanis Morissette and the albums of hers in the FooBar database are Jagged Little Pill."
previous
Conversation Agent
next
MRKL Chat
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl.html |
7394cffd17dc-0 | .ipynb
.pdf
Self Ask With Search
Self Ask With Search#
This notebook showcases the Self Ask With Search chain.
from langchain import OpenAI, SerpAPIWrapper
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
tools = [
Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search"
)
]
self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
> Entering new AgentExecutor chain...
Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Carlos Alcaraz Garfia
Follow up: Where is Carlos Alcaraz Garfia from?
Intermediate answer: El Palmar, Spain
So the final answer is: El Palmar, Spain
> Finished chain.
'El Palmar, Spain'
previous
ReAct
next
Structured Tool Chat Agent
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/examples/self_ask_with_search.html |
e377552146e8-0 | .ipynb
.pdf
ReAct
ReAct#
This notebook showcases using an agent to implement the ReAct logic.
from langchain import OpenAI, Wikipedia
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.agents.react.base import DocstoreExplorer
docstore=DocstoreExplorer(Wikipedia())
tools = [
Tool(
name="Search",
func=docstore.search,
description="useful for when you need to ask with search"
),
Tool(
name="Lookup",
func=docstore.lookup,
description="useful for when you need to ask with lookup"
)
]
llm = OpenAI(temperature=0, model_name="text-davinci-002")
react = initialize_agent(tools, llm, agent=AgentType.REACT_DOCSTORE, verbose=True)
question = "Author David Chanoff has collaborated with a U.S. Navy admiral who served as the ambassador to the United Kingdom under which President?"
react.run(question)
> Entering new AgentExecutor chain...
Thought: I need to search David Chanoff and find the U.S. Navy admiral he collaborated with. Then I need to find which President the admiral served under.
Action: Search[David Chanoff] | https://python.langchain.com/en/latest/modules/agents/agents/examples/react.html |
e377552146e8-1 | Action: Search[David Chanoff]
Observation: David Chanoff is a noted author of non-fiction work. His work has typically involved collaborations with the principal protagonist of the work concerned. His collaborators have included; Augustus A. White, Joycelyn Elders, Đoàn Văn Toại, William J. Crowe, Ariel Sharon, Kenneth Good and Felix Zandman. He has also written about a wide range of subjects including literary history, education and foreign for The Washington Post, The New Republic and The New York Times Magazine. He has published more than twelve books.
Thought: The U.S. Navy admiral David Chanoff collaborated with is William J. Crowe. I need to find which President he served under.
Action: Search[William J. Crowe]
Observation: William James Crowe Jr. (January 2, 1925 – October 18, 2007) was a United States Navy admiral and diplomat who served as the 11th chairman of the Joint Chiefs of Staff under Presidents Ronald Reagan and George H. W. Bush, and as the ambassador to the United Kingdom and Chair of the Intelligence Oversight Board under President Bill Clinton.
Thought: William J. Crowe served as the ambassador to the United Kingdom under President Bill Clinton, so the answer is Bill Clinton.
Action: Finish[Bill Clinton]
> Finished chain.
'Bill Clinton'
previous
MRKL Chat
next
Self Ask With Search
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/examples/react.html |
69dad52d002a-0 | .ipynb
.pdf
Conversation Agent
Conversation Agent#
This notebook walks through using an agent optimized for conversation. Other agents are often optimized for using tools to figure out the best response, which is not ideal in a conversational setting where you may want the agent to be able to chat with the user as well.
This is accomplished with a specific type of agent (conversational-react-description) which expects to be used with a memory component.
from langchain.agents import Tool
from langchain.agents import AgentType
from langchain.memory import ConversationBufferMemory
from langchain import OpenAI
from langchain.utilities import SerpAPIWrapper
from langchain.agents import initialize_agent
search = SerpAPIWrapper()
tools = [
Tool(
name = "Current Search",
func=search.run,
description="useful for when you need to answer questions about current events or the current state of the world"
),
]
memory = ConversationBufferMemory(memory_key="chat_history")
llm=OpenAI(temperature=0)
agent_chain = initialize_agent(tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory)
agent_chain.run(input="hi, i am bob")
> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? No
AI: Hi Bob, nice to meet you! How can I help you today?
> Finished chain.
'Hi Bob, nice to meet you! How can I help you today?'
agent_chain.run(input="what's my name?")
> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? No
AI: Your name is Bob!
> Finished chain.
'Your name is Bob!' | https://python.langchain.com/en/latest/modules/agents/agents/examples/conversational_agent.html |
69dad52d002a-1 | AI: Your name is Bob!
> Finished chain.
'Your name is Bob!'
agent_chain.run("what are some good dinners to make this week, if i like thai food?")
> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? Yes
Action: Current Search
Action Input: Thai food dinner recipes
Observation: 59 easy Thai recipes for any night of the week · Marion Grasby's Thai spicy chilli and basil fried rice · Thai curry noodle soup · Marion Grasby's Thai Spicy ...
Thought: Do I need to use a tool? No
AI: Here are some great Thai dinner recipes you can try this week: Marion Grasby's Thai Spicy Chilli and Basil Fried Rice, Thai Curry Noodle Soup, Thai Green Curry with Coconut Rice, Thai Red Curry with Vegetables, and Thai Coconut Soup. I hope you enjoy them!
> Finished chain.
"Here are some great Thai dinner recipes you can try this week: Marion Grasby's Thai Spicy Chilli and Basil Fried Rice, Thai Curry Noodle Soup, Thai Green Curry with Coconut Rice, Thai Red Curry with Vegetables, and Thai Coconut Soup. I hope you enjoy them!"
agent_chain.run(input="tell me the last letter in my name, and also tell me who won the world cup in 1978?")
> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? Yes
Action: Current Search
Action Input: Who won the World Cup in 1978
Observation: Argentina national football team
Thought: Do I need to use a tool? No
AI: The last letter in your name is "b" and the winner of the 1978 World Cup was the Argentina national football team.
> Finished chain. | https://python.langchain.com/en/latest/modules/agents/agents/examples/conversational_agent.html |
69dad52d002a-2 | > Finished chain.
'The last letter in your name is "b" and the winner of the 1978 World Cup was the Argentina national football team.'
agent_chain.run(input="whats the current temperature in pomfret?")
> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? Yes
Action: Current Search
Action Input: Current temperature in Pomfret
Observation: Partly cloudy skies. High around 70F. Winds W at 5 to 10 mph. Humidity41%.
Thought: Do I need to use a tool? No
AI: The current temperature in Pomfret is around 70F with partly cloudy skies and winds W at 5 to 10 mph. The humidity is 41%.
> Finished chain.
'The current temperature in Pomfret is around 70F with partly cloudy skies and winds W at 5 to 10 mph. The humidity is 41%.'
previous
Conversation Agent (for Chat Models)
next
MRKL
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/examples/conversational_agent.html |
dc95dc1569fd-0 | .ipynb
.pdf
MRKL Chat
MRKL Chat#
This notebook showcases using an agent to replicate the MRKL chain using an agent optimized for chat models.
This uses the example Chinook database.
To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the .db file in a notebooks folder at the root of this repository.
from langchain import OpenAI, LLMMathChain, SerpAPIWrapper, SQLDatabase, SQLDatabaseChain
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
llm1 = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm1, verbose=True)
db = SQLDatabase.from_uri("sqlite:///../../../../../notebooks/Chinook.db")
db_chain = SQLDatabaseChain.from_llm(llm1, db, verbose=True)
tools = [
Tool(
name = "Search",
func=search.run,
description="useful for when you need to answer questions about current events. You should ask targeted questions"
),
Tool(
name="Calculator",
func=llm_math_chain.run,
description="useful for when you need to answer questions about math"
),
Tool(
name="FooBar DB",
func=db_chain.run,
description="useful for when you need to answer questions about FooBar. Input should be in the form of a question containing full context"
)
]
mrkl = initialize_agent(tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True) | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl_chat.html |
dc95dc1569fd-1 | mrkl.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
> Entering new AgentExecutor chain...
Thought: The first question requires a search, while the second question requires a calculator.
Action:
```
{
"action": "Search",
"action_input": "Leo DiCaprio girlfriend"
}
```
Observation: Gigi Hadid: 2022 Leo and Gigi were first linked back in September 2022, when a source told Us Weekly that Leo had his “sights set" on her (alarming way to put it, but okay).
Thought:For the second question, I need to calculate the age raised to the 0.43 power. I will use the calculator tool.
Action:
```
{
"action": "Calculator",
"action_input": "((2022-1995)^0.43)"
}
```
> Entering new LLMMathChain chain...
((2022-1995)^0.43)
```text
(2022-1995)**0.43
```
...numexpr.evaluate("(2022-1995)**0.43")...
Answer: 4.125593352125936
> Finished chain.
Observation: Answer: 4.125593352125936
Thought:I now know the final answer.
Final Answer: Gigi Hadid is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is approximately 4.13.
> Finished chain.
"Gigi Hadid is Leo DiCaprio's girlfriend and her current age raised to the 0.43 power is approximately 4.13." | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl_chat.html |
dc95dc1569fd-2 | mrkl.run("What is the full name of the artist who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?")
> Entering new AgentExecutor chain...
Question: What is the full name of the artist who recently released an album called 'The Storm Before the Calm' and are they in the FooBar database? If so, what albums of theirs are in the FooBar database?
Thought: I should use the Search tool to find the answer to the first part of the question and then use the FooBar DB tool to find the answer to the second part.
Action:
```
{
"action": "Search",
"action_input": "Who recently released an album called 'The Storm Before the Calm'"
}
```
Observation: Alanis Morissette
Thought:Now that I know the artist's name, I can use the FooBar DB tool to find out if they are in the database and what albums of theirs are in it.
Action:
```
{
"action": "FooBar DB",
"action_input": "What albums does Alanis Morissette have in the database?"
}
```
> Entering new SQLDatabaseChain chain...
What albums does Alanis Morissette have in the database?
SQLQuery:
/Users/harrisonchase/workplace/langchain/langchain/sql_database.py:191: SAWarning: Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must convert from floating point - rounding errors and other issues may occur. Please consider storing Decimal numbers as strings or integers on this platform for lossless storage.
sample_rows = connection.execute(command) | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl_chat.html |
dc95dc1569fd-3 | sample_rows = connection.execute(command)
SELECT "Title" FROM "Album" WHERE "ArtistId" IN (SELECT "ArtistId" FROM "Artist" WHERE "Name" = 'Alanis Morissette') LIMIT 5;
SQLResult: [('Jagged Little Pill',)]
Answer: Alanis Morissette has the album Jagged Little Pill in the database.
> Finished chain.
Observation: Alanis Morissette has the album Jagged Little Pill in the database.
Thought:The artist Alanis Morissette is in the FooBar database and has the album Jagged Little Pill in it.
Final Answer: Alanis Morissette is in the FooBar database and has the album Jagged Little Pill in it.
> Finished chain.
'Alanis Morissette is in the FooBar database and has the album Jagged Little Pill in it.'
previous
MRKL
next
ReAct
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/examples/mrkl_chat.html |
0b18e6315d19-0 | .ipynb
.pdf
Conversation Agent (for Chat Models)
Conversation Agent (for Chat Models)#
This notebook walks through using an agent optimized for conversation, using ChatModels. Other agents are often optimized for using tools to figure out the best response, which is not ideal in a conversational setting where you may want the agent to be able to chat with the user as well.
This is accomplished with a specific type of agent (chat-conversational-react-description) which expects to be used with a memory component.
!pip install langchain
!pip install google-search-results
!pip install openai
from langchain.agents import Tool
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.utilities import SerpAPIWrapper
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from getpass import getpass
SERPAPI_API_KEY = getpass()
search = SerpAPIWrapper(serpapi_api_key=SERPAPI_API_KEY)
tools = [
Tool(
name = "Current Search",
func=search.run,
description="useful for when you need to answer questions about current events or the current state of the world. the input to this should be a single search term."
),
]
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
OPENAI_API_KEY = getpass()
llm=ChatOpenAI(openai_api_key=OPENAI_API_KEY, temperature=0)
agent_chain = initialize_agent(tools, llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory)
agent_chain.run(input="hi, i am bob")
> Entering new AgentExecutor chain...
{
"action": "Final Answer", | https://python.langchain.com/en/latest/modules/agents/agents/examples/chat_conversation_agent.html |
0b18e6315d19-1 | > Entering new AgentExecutor chain...
{
"action": "Final Answer",
"action_input": "Hello Bob! How can I assist you today?"
}
> Finished chain.
'Hello Bob! How can I assist you today?'
agent_chain.run(input="what's my name?")
> Entering new AgentExecutor chain...
{
"action": "Final Answer",
"action_input": "Your name is Bob."
}
> Finished chain.
'Your name is Bob.'
agent_chain.run("what are some good dinners to make this week, if i like thai food?")
> Entering new AgentExecutor chain...
{
"action": "Current Search",
"action_input": "Thai food dinner recipes"
}
Observation: 64 easy Thai recipes for any night of the week · Thai curry noodle soup · Thai yellow cauliflower, snake bean and tofu curry · Thai-spiced chicken hand pies · Thai ...
Thought:{
"action": "Final Answer",
"action_input": "Here are some Thai food dinner recipes you can try this week: Thai curry noodle soup, Thai yellow cauliflower, snake bean and tofu curry, Thai-spiced chicken hand pies, and many more. You can find the full list of recipes at the source I found earlier."
}
> Finished chain.
'Here are some Thai food dinner recipes you can try this week: Thai curry noodle soup, Thai yellow cauliflower, snake bean and tofu curry, Thai-spiced chicken hand pies, and many more. You can find the full list of recipes at the source I found earlier.'
agent_chain.run(input="tell me the last letter in my name, and also tell me who won the world cup in 1978?")
> Entering new AgentExecutor chain...
{
"action": "Final Answer", | https://python.langchain.com/en/latest/modules/agents/agents/examples/chat_conversation_agent.html |
0b18e6315d19-2 | > Entering new AgentExecutor chain...
{
"action": "Final Answer",
"action_input": "The last letter in your name is 'b'. Argentina won the World Cup in 1978."
}
> Finished chain.
"The last letter in your name is 'b'. Argentina won the World Cup in 1978."
agent_chain.run(input="whats the weather like in pomfret?")
> Entering new AgentExecutor chain...
{
"action": "Current Search",
"action_input": "weather in pomfret"
}
Observation: Cloudy with showers. Low around 55F. Winds S at 5 to 10 mph. Chance of rain 60%. Humidity76%.
Thought:{
"action": "Final Answer",
"action_input": "Cloudy with showers. Low around 55F. Winds S at 5 to 10 mph. Chance of rain 60%. Humidity76%."
}
> Finished chain.
'Cloudy with showers. Low around 55F. Winds S at 5 to 10 mph. Chance of rain 60%. Humidity76%.'
previous
Custom Agent with Tool Retrieval
next
Conversation Agent
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Jun 02, 2023. | https://python.langchain.com/en/latest/modules/agents/agents/examples/chat_conversation_agent.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.