id
stringlengths
14
16
text
stringlengths
29
2.73k
source
stringlengths
49
117
7cd9c88f0159-1
Note that the input to this prompt template is just driver_id, since that is the only user defined piece (all other variables are looked up inside the prompt template). from langchain.prompts import PromptTemplate, StringPromptTemplate template = """Given the driver's up to date stats, write them note relaying those stats to them. If they have a conversation rate above .5, give them a compliment. Otherwise, make a silly joke about chickens at the end to make them feel better Here are the drivers stats: Conversation rate: {conv_rate} Acceptance rate: {acc_rate} Average Daily Trips: {avg_daily_trips} Your response:""" prompt = PromptTemplate.from_template(template) class FeastPromptTemplate(StringPromptTemplate): def format(self, **kwargs) -> str: driver_id = kwargs.pop("driver_id") feature_vector = store.get_online_features( features=[ 'driver_hourly_stats:conv_rate', 'driver_hourly_stats:acc_rate', 'driver_hourly_stats:avg_daily_trips' ], entity_rows=[{"driver_id": driver_id}] ).to_dict() kwargs["conv_rate"] = feature_vector["conv_rate"][0] kwargs["acc_rate"] = feature_vector["acc_rate"][0] kwargs["avg_daily_trips"] = feature_vector["avg_daily_trips"][0] return prompt.format(**kwargs) prompt_template = FeastPromptTemplate(input_variables=["driver_id"]) print(prompt_template.format(driver_id=1001)) Given the driver's up to date stats, write them note relaying those stats to them. If they have a conversation rate above .5, give them a compliment. Otherwise, make a silly joke about chickens at the end to make them feel better Here are the drivers stats:
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html
7cd9c88f0159-2
Here are the drivers stats: Conversation rate: 0.4745151400566101 Acceptance rate: 0.055561766028404236 Average Daily Trips: 936 Your response: Use in a chain# We can now use this in a chain, successfully creating a chain that achieves personalization backed by a feature store from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain chain = LLMChain(llm=ChatOpenAI(), prompt=prompt_template) chain.run(1001) "Hi there! I wanted to update you on your current stats. Your acceptance rate is 0.055561766028404236 and your average daily trips are 936. While your conversation rate is currently 0.4745151400566101, I have no doubt that with a little extra effort, you'll be able to exceed that .5 mark! Keep up the great work! And remember, even chickens can't always cross the road, but they still give it their best shot." Tecton# Above, we showed how you could use Feast, a popular open source and self-managed feature store, with LangChain. Our examples below will show a similar integration using Tecton. Tecton is a fully managed feature platform built to orchestrate the complete ML feature lifecycle, from transformation to online serving, with enterprise-grade SLAs. Prerequisites# Tecton Deployment (sign up at https://tecton.ai) TECTON_API_KEY environment variable set to a valid Service Account key Define and Load Features# We will use the user_transaction_counts Feature View from the Tecton tutorial as part of a Feature Service. For simplicity, we are only using a single Feature View; however, more sophisticated applications may require more feature views to retrieve the features needed for its prompt. user_transaction_metrics = FeatureService(
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html
7cd9c88f0159-3
user_transaction_metrics = FeatureService( name = "user_transaction_metrics", features = [user_transaction_counts] ) The above Feature Service is expected to be applied to a live workspace. For this example, we will be using the “prod” workspace. import tecton workspace = tecton.get_workspace("prod") feature_service = workspace.get_feature_service("user_transaction_metrics") Prompts# Here we will set up a custom TectonPromptTemplate. This prompt template will take in a user_id , look up their stats, and format those stats into a prompt. Note that the input to this prompt template is just user_id, since that is the only user defined piece (all other variables are looked up inside the prompt template). from langchain.prompts import PromptTemplate, StringPromptTemplate template = """Given the vendor's up to date transaction stats, write them a note based on the following rules: 1. If they had a transaction in the last day, write a short congratulations message on their recent sales 2. If no transaction in the last day, but they had a transaction in the last 30 days, playfully encourage them to sell more. 3. Always add a silly joke about chickens at the end Here are the vendor's stats: Number of Transactions Last Day: {transaction_count_1d} Number of Transactions Last 30 Days: {transaction_count_30d} Your response:""" prompt = PromptTemplate.from_template(template) class TectonPromptTemplate(StringPromptTemplate): def format(self, **kwargs) -> str: user_id = kwargs.pop("user_id") feature_vector = feature_service.get_online_features(join_keys={"user_id": user_id}).to_dict() kwargs["transaction_count_1d"] = feature_vector["user_transaction_counts.transaction_count_1d_1d"]
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html
7cd9c88f0159-4
kwargs["transaction_count_30d"] = feature_vector["user_transaction_counts.transaction_count_30d_1d"] return prompt.format(**kwargs) prompt_template = TectonPromptTemplate(input_variables=["user_id"]) print(prompt_template.format(user_id="user_469998441571")) Given the vendor's up to date transaction stats, write them a note based on the following rules: 1. If they had a transaction in the last day, write a short congratulations message on their recent sales 2. If no transaction in the last day, but they had a transaction in the last 30 days, playfully encourage them to sell more. 3. Always add a silly joke about chickens at the end Here are the vendor's stats: Number of Transactions Last Day: 657 Number of Transactions Last 30 Days: 20326 Your response: Use in a chain# We can now use this in a chain, successfully creating a chain that achieves personalization backed by the Tecton Feature Platform from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain chain = LLMChain(llm=ChatOpenAI(), prompt=prompt_template) chain.run("user_469998441571") 'Wow, congratulations on your recent sales! Your business is really soaring like a chicken on a hot air balloon! Keep up the great work!' Featureform# Finally, we will use Featureform an open-source and enterprise-grade feature store to run the same example. Featureform allows you to work with your infrastructure like Spark or locally to define your feature transformations. Initialize Featureform# You can follow in the instructions in the README to initialize your transformations and features in Featureform. import featureform as ff client = ff.Client(host="demo.featureform.com") Prompts#
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html
7cd9c88f0159-5
client = ff.Client(host="demo.featureform.com") Prompts# Here we will set up a custom FeatureformPromptTemplate. This prompt template will take in the average amount a user pays per transactions. Note that the input to this prompt template is just avg_transaction, since that is the only user defined piece (all other variables are looked up inside the prompt template). from langchain.prompts import PromptTemplate, StringPromptTemplate template = """Given the amount a user spends on average per transaction, let them know if they are a high roller. Otherwise, make a silly joke about chickens at the end to make them feel better Here are the user's stats: Average Amount per Transaction: ${avg_transcation} Your response:""" prompt = PromptTemplate.from_template(template) class FeatureformPromptTemplate(StringPromptTemplate): def format(self, **kwargs) -> str: user_id = kwargs.pop("user_id") fpf = client.features([("avg_transactions", "quickstart")], {"user": user_id}) return prompt.format(**kwargs) prompt_template = FeatureformPrompTemplate(input_variables=["user_id"]) print(prompt_template.format(user_id="C1410926")) Use in a chain# We can now use this in a chain, successfully creating a chain that achieves personalization backed by the Featureform Feature Platform from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain chain = LLMChain(llm=ChatOpenAI(), prompt=prompt_template) chain.run("C1410926") previous How-To Guides next How to create a custom prompt template Contents Feast Load Feast Store Prompts Use in a chain Tecton Prerequisites Define and Load Features Prompts Use in a chain Featureform Initialize Featureform
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html
7cd9c88f0159-6
Define and Load Features Prompts Use in a chain Featureform Initialize Featureform Prompts Use in a chain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/connecting_to_a_feature_store.html
6c32f77cf1b0-0
.ipynb .pdf How to create a prompt template that uses few shot examples Contents Use Case Using an example set Create the example set Create a formatter for the few shot examples Feed examples and formatter to FewShotPromptTemplate Using an example selector Feed examples into ExampleSelector Feed example selector into FewShotPromptTemplate How to create a prompt template that uses few shot examples# In this tutorial, we’ll learn how to create a prompt template that uses few shot examples. We’ll use the FewShotPromptTemplate class to create a prompt template that uses few shot examples. This class either takes in a set of examples, or an ExampleSelector object. In this tutorial, we’ll go over both options. Use Case# In this tutorial, we’ll configure few shot examples for self-ask with search. Using an example set# Create the example set# To get started, create a list of few shot examples. Each example should be a dictionary with the keys being the input variables and the values being the values for those input variables. from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate examples = [ { "question": "Who lived longer, Muhammad Ali or Alan Turing?", "answer": """ Are follow up questions needed here: Yes. Follow up: How old was Muhammad Ali when he died? Intermediate answer: Muhammad Ali was 74 years old when he died. Follow up: How old was Alan Turing when he died? Intermediate answer: Alan Turing was 41 years old when he died. So the final answer is: Muhammad Ali """ }, { "question": "When was the founder of craigslist born?", "answer": """ Are follow up questions needed here: Yes.
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/few_shot_examples.html
6c32f77cf1b0-1
"answer": """ Are follow up questions needed here: Yes. Follow up: Who was the founder of craigslist? Intermediate answer: Craigslist was founded by Craig Newmark. Follow up: When was Craig Newmark born? Intermediate answer: Craig Newmark was born on December 6, 1952. So the final answer is: December 6, 1952 """ }, { "question": "Who was the maternal grandfather of George Washington?", "answer": """ Are follow up questions needed here: Yes. Follow up: Who was the mother of George Washington? Intermediate answer: The mother of George Washington was Mary Ball Washington. Follow up: Who was the father of Mary Ball Washington? Intermediate answer: The father of Mary Ball Washington was Joseph Ball. So the final answer is: Joseph Ball """ }, { "question": "Are both the directors of Jaws and Casino Royale from the same country?", "answer": """ Are follow up questions needed here: Yes. Follow up: Who is the director of Jaws? Intermediate Answer: The director of Jaws is Steven Spielberg. Follow up: Where is Steven Spielberg from? Intermediate Answer: The United States. Follow up: Who is the director of Casino Royale? Intermediate Answer: The director of Casino Royale is Martin Campbell. Follow up: Where is Martin Campbell from? Intermediate Answer: New Zealand. So the final answer is: No """ } ] Create a formatter for the few shot examples# Configure a formatter that will format the few shot examples into a string. This formatter should be a PromptTemplate object. example_prompt = PromptTemplate(input_variables=["question", "answer"], template="Question: {question}\n{answer}")
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/few_shot_examples.html
6c32f77cf1b0-2
print(example_prompt.format(**examples[0])) Question: Who lived longer, Muhammad Ali or Alan Turing? Are follow up questions needed here: Yes. Follow up: How old was Muhammad Ali when he died? Intermediate answer: Muhammad Ali was 74 years old when he died. Follow up: How old was Alan Turing when he died? Intermediate answer: Alan Turing was 41 years old when he died. So the final answer is: Muhammad Ali Feed examples and formatter to FewShotPromptTemplate# Finally, create a FewShotPromptTemplate object. This object takes in the few shot examples and the formatter for the few shot examples. prompt = FewShotPromptTemplate( examples=examples, example_prompt=example_prompt, suffix="Question: {input}", input_variables=["input"] ) print(prompt.format(input="Who was the father of Mary Ball Washington?")) Question: Who lived longer, Muhammad Ali or Alan Turing? Are follow up questions needed here: Yes. Follow up: How old was Muhammad Ali when he died? Intermediate answer: Muhammad Ali was 74 years old when he died. Follow up: How old was Alan Turing when he died? Intermediate answer: Alan Turing was 41 years old when he died. So the final answer is: Muhammad Ali Question: When was the founder of craigslist born? Are follow up questions needed here: Yes. Follow up: Who was the founder of craigslist? Intermediate answer: Craigslist was founded by Craig Newmark. Follow up: When was Craig Newmark born? Intermediate answer: Craig Newmark was born on December 6, 1952. So the final answer is: December 6, 1952 Question: Who was the maternal grandfather of George Washington? Are follow up questions needed here: Yes.
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/few_shot_examples.html
6c32f77cf1b0-3
Are follow up questions needed here: Yes. Follow up: Who was the mother of George Washington? Intermediate answer: The mother of George Washington was Mary Ball Washington. Follow up: Who was the father of Mary Ball Washington? Intermediate answer: The father of Mary Ball Washington was Joseph Ball. So the final answer is: Joseph Ball Question: Are both the directors of Jaws and Casino Royale from the same country? Are follow up questions needed here: Yes. Follow up: Who is the director of Jaws? Intermediate Answer: The director of Jaws is Steven Spielberg. Follow up: Where is Steven Spielberg from? Intermediate Answer: The United States. Follow up: Who is the director of Casino Royale? Intermediate Answer: The director of Casino Royale is Martin Campbell. Follow up: Where is Martin Campbell from? Intermediate Answer: New Zealand. So the final answer is: No Question: Who was the father of Mary Ball Washington? Using an example selector# Feed examples into ExampleSelector# We will reuse the example set and the formatter from the previous section. However, instead of feeding the examples directly into the FewShotPromptTemplate object, we will feed them into an ExampleSelector object. In this tutorial, we will use the SemanticSimilarityExampleSelector class. This class selects few shot examples based on their similarity to the input. It uses an embedding model to compute the similarity between the input and the few shot examples, as well as a vector store to perform the nearest neighbor search. from langchain.prompts.example_selector import SemanticSimilarityExampleSelector from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings example_selector = SemanticSimilarityExampleSelector.from_examples( # This is the list of examples available to select from. examples,
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/few_shot_examples.html
6c32f77cf1b0-4
# This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. Chroma, # This is the number of examples to produce. k=1 ) # Select the most similar example to the input. question = "Who was the father of Mary Ball Washington?" selected_examples = example_selector.select_examples({"question": question}) print(f"Examples most similar to the input: {question}") for example in selected_examples: print("\n") for k, v in example.items(): print(f"{k}: {v}") Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. Examples most similar to the input: Who was the father of Mary Ball Washington? question: Who was the maternal grandfather of George Washington? answer: Are follow up questions needed here: Yes. Follow up: Who was the mother of George Washington? Intermediate answer: The mother of George Washington was Mary Ball Washington. Follow up: Who was the father of Mary Ball Washington? Intermediate answer: The father of Mary Ball Washington was Joseph Ball. So the final answer is: Joseph Ball Feed example selector into FewShotPromptTemplate# Finally, create a FewShotPromptTemplate object. This object takes in the example selector and the formatter for the few shot examples. prompt = FewShotPromptTemplate( example_selector=example_selector, example_prompt=example_prompt, suffix="Question: {input}", input_variables=["input"] )
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/few_shot_examples.html
6c32f77cf1b0-5
suffix="Question: {input}", input_variables=["input"] ) print(prompt.format(input="Who was the father of Mary Ball Washington?")) Question: Who was the maternal grandfather of George Washington? Are follow up questions needed here: Yes. Follow up: Who was the mother of George Washington? Intermediate answer: The mother of George Washington was Mary Ball Washington. Follow up: Who was the father of Mary Ball Washington? Intermediate answer: The father of Mary Ball Washington was Joseph Ball. So the final answer is: Joseph Ball Question: Who was the father of Mary Ball Washington? previous How to create a custom prompt template next How to work with partial Prompt Templates Contents Use Case Using an example set Create the example set Create a formatter for the few shot examples Feed examples and formatter to FewShotPromptTemplate Using an example selector Feed examples into ExampleSelector Feed example selector into FewShotPromptTemplate By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/few_shot_examples.html
6d039cb11352-0
.ipynb .pdf How to serialize prompts Contents PromptTemplate Loading from YAML Loading from JSON Loading Template from a File FewShotPromptTemplate Examples Loading from YAML Loading from JSON Examples in the Config Example Prompt from a File PromptTempalte with OutputParser How to serialize prompts# It is often preferrable to store prompts not as python code but as files. This can make it easy to share, store, and version prompts. This notebook covers how to do that in LangChain, walking through all the different types of prompts and the different serialization options. At a high level, the following design principles are applied to serialization: Both JSON and YAML are supported. We want to support serialization methods that are human readable on disk, and YAML and JSON are two of the most popular methods for that. Note that this rule applies to prompts. For other assets, like Examples, different serialization methods may be supported. We support specifying everything in one file, or storing different components (templates, examples, etc) in different files and referencing them. For some cases, storing everything in file makes the most sense, but for others it is preferrable to split up some of the assets (long templates, large examples, reusable components). LangChain supports both. There is also a single entry point to load prompts from disk, making it easy to load any type of prompt. # All prompts are loaded through the `load_prompt` function. from langchain.prompts import load_prompt PromptTemplate# This section covers examples for loading a PromptTemplate. Loading from YAML# This shows an example of loading a PromptTemplate from YAML. !cat simple_prompt.yaml _type: prompt input_variables: ["adjective", "content"] template: Tell me a {adjective} joke about {content}. prompt = load_prompt("simple_prompt.yaml")
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/prompt_serialization.html
6d039cb11352-1
prompt = load_prompt("simple_prompt.yaml") print(prompt.format(adjective="funny", content="chickens")) Tell me a funny joke about chickens. Loading from JSON# This shows an example of loading a PromptTemplate from JSON. !cat simple_prompt.json { "_type": "prompt", "input_variables": ["adjective", "content"], "template": "Tell me a {adjective} joke about {content}." } prompt = load_prompt("simple_prompt.json") print(prompt.format(adjective="funny", content="chickens")) Tell me a funny joke about chickens. Loading Template from a File# This shows an example of storing the template in a separate file and then referencing it in the config. Notice that the key changes from template to template_path. !cat simple_template.txt Tell me a {adjective} joke about {content}. !cat simple_prompt_with_template_file.json { "_type": "prompt", "input_variables": ["adjective", "content"], "template_path": "simple_template.txt" } prompt = load_prompt("simple_prompt_with_template_file.json") print(prompt.format(adjective="funny", content="chickens")) Tell me a funny joke about chickens. FewShotPromptTemplate# This section covers examples for loading few shot prompt templates. Examples# This shows an example of what examples stored as json might look like. !cat examples.json [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"} ] And here is what the same examples stored as yaml might look like. !cat examples.yaml - input: happy output: sad - input: tall output: short Loading from YAML#
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/prompt_serialization.html
6d039cb11352-2
output: sad - input: tall output: short Loading from YAML# This shows an example of loading a few shot example from YAML. !cat few_shot_prompt.yaml _type: few_shot input_variables: ["adjective"] prefix: Write antonyms for the following words. example_prompt: _type: prompt input_variables: ["input", "output"] template: "Input: {input}\nOutput: {output}" examples: examples.json suffix: "Input: {adjective}\nOutput:" prompt = load_prompt("few_shot_prompt.yaml") print(prompt.format(adjective="funny")) Write antonyms for the following words. Input: happy Output: sad Input: tall Output: short Input: funny Output: The same would work if you loaded examples from the yaml file. !cat few_shot_prompt_yaml_examples.yaml _type: few_shot input_variables: ["adjective"] prefix: Write antonyms for the following words. example_prompt: _type: prompt input_variables: ["input", "output"] template: "Input: {input}\nOutput: {output}" examples: examples.yaml suffix: "Input: {adjective}\nOutput:" prompt = load_prompt("few_shot_prompt_yaml_examples.yaml") print(prompt.format(adjective="funny")) Write antonyms for the following words. Input: happy Output: sad Input: tall Output: short Input: funny Output: Loading from JSON# This shows an example of loading a few shot example from JSON. !cat few_shot_prompt.json { "_type": "few_shot",
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/prompt_serialization.html
6d039cb11352-3
!cat few_shot_prompt.json { "_type": "few_shot", "input_variables": ["adjective"], "prefix": "Write antonyms for the following words.", "example_prompt": { "_type": "prompt", "input_variables": ["input", "output"], "template": "Input: {input}\nOutput: {output}" }, "examples": "examples.json", "suffix": "Input: {adjective}\nOutput:" } prompt = load_prompt("few_shot_prompt.json") print(prompt.format(adjective="funny")) Write antonyms for the following words. Input: happy Output: sad Input: tall Output: short Input: funny Output: Examples in the Config# This shows an example of referencing the examples directly in the config. !cat few_shot_prompt_examples_in.json { "_type": "few_shot", "input_variables": ["adjective"], "prefix": "Write antonyms for the following words.", "example_prompt": { "_type": "prompt", "input_variables": ["input", "output"], "template": "Input: {input}\nOutput: {output}" }, "examples": [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"} ], "suffix": "Input: {adjective}\nOutput:" } prompt = load_prompt("few_shot_prompt_examples_in.json") print(prompt.format(adjective="funny")) Write antonyms for the following words. Input: happy Output: sad Input: tall Output: short Input: funny Output: Example Prompt from a File#
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/prompt_serialization.html
6d039cb11352-4
Output: short Input: funny Output: Example Prompt from a File# This shows an example of loading the PromptTemplate that is used to format the examples from a separate file. Note that the key changes from example_prompt to example_prompt_path. !cat example_prompt.json { "_type": "prompt", "input_variables": ["input", "output"], "template": "Input: {input}\nOutput: {output}" } !cat few_shot_prompt_example_prompt.json { "_type": "few_shot", "input_variables": ["adjective"], "prefix": "Write antonyms for the following words.", "example_prompt_path": "example_prompt.json", "examples": "examples.json", "suffix": "Input: {adjective}\nOutput:" } prompt = load_prompt("few_shot_prompt_example_prompt.json") print(prompt.format(adjective="funny")) Write antonyms for the following words. Input: happy Output: sad Input: tall Output: short Input: funny Output: PromptTempalte with OutputParser# This shows an example of loading a prompt along with an OutputParser from a file. ! cat prompt_with_output_parser.json { "input_variables": [ "question", "student_answer" ], "output_parser": { "regex": "(.*?)\\nScore: (.*)", "output_keys": [ "answer", "score" ], "default_output_key": null, "_type": "regex_parser" }, "partial_variables": {},
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/prompt_serialization.html
6d039cb11352-5
"_type": "regex_parser" }, "partial_variables": {}, "template": "Given the following question and student answer, provide a correct answer and score the student answer.\nQuestion: {question}\nStudent Answer: {student_answer}\nCorrect Answer:", "template_format": "f-string", "validate_template": true, "_type": "prompt" } prompt = load_prompt("prompt_with_output_parser.json") prompt.output_parser.parse("George Washington was born in 1732 and died in 1799.\nScore: 1/2") {'answer': 'George Washington was born in 1732 and died in 1799.', 'score': '1/2'} previous How to work with partial Prompt Templates next Prompts Contents PromptTemplate Loading from YAML Loading from JSON Loading Template from a File FewShotPromptTemplate Examples Loading from YAML Loading from JSON Examples in the Config Example Prompt from a File PromptTempalte with OutputParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/prompt_serialization.html
00148f8e8872-0
.ipynb .pdf How to create a custom prompt template Contents Why are custom prompt templates needed? Creating a Custom Prompt Template Use the custom prompt template How to create a custom prompt template# Let’s suppose we want the LLM to generate English language explanations of a function given its name. To achieve this task, we will create a custom prompt template that takes in the function name as input, and formats the prompt template to provide the source code of the function. Why are custom prompt templates needed?# LangChain provides a set of default prompt templates that can be used to generate prompts for a variety of tasks. However, there may be cases where the default prompt templates do not meet your needs. For example, you may want to create a prompt template with specific dynamic instructions for your language model. In such cases, you can create a custom prompt template. Take a look at the current set of default prompt templates here. Creating a Custom Prompt Template# There are essentially two distinct prompt templates available - string prompt templates and chat prompt templates. String prompt templates provides a simple prompt in string format, while chat prompt templates produces a more structured prompt to be used with a chat API. In this guide, we will create a custom prompt using a string prompt template. To create a custom string prompt template, there are two requirements: It has an input_variables attribute that exposes what input variables the prompt template expects. It exposes a format method that takes in keyword arguments corresponding to the expected input_variables and returns the formatted prompt. We will create a custom prompt template that takes in the function name as input and formats the prompt to provide the source code of the function. To achieve this, let’s first create a function that will return the source code of a function given its name. import inspect def get_source_code(function_name): # Get the source code of the function
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/custom_prompt_template.html
00148f8e8872-1
def get_source_code(function_name): # Get the source code of the function return inspect.getsource(function_name) Next, we’ll create a custom prompt template that takes in the function name as input, and formats the prompt template to provide the source code of the function. from langchain.prompts import StringPromptTemplate from pydantic import BaseModel, validator class FunctionExplainerPromptTemplate(StringPromptTemplate, BaseModel): """ A custom prompt template that takes in the function name as input, and formats the prompt template to provide the source code of the function. """ @validator("input_variables") def validate_input_variables(cls, v): """ Validate that the input variables are correct. """ if len(v) != 1 or "function_name" not in v: raise ValueError("function_name must be the only input_variable.") return v def format(self, **kwargs) -> str: # Get the source code of the function source_code = get_source_code(kwargs["function_name"]) # Generate the prompt to be sent to the language model prompt = f""" Given the function name and source code, generate an English language explanation of the function. Function Name: {kwargs["function_name"].__name__} Source Code: {source_code} Explanation: """ return prompt def _prompt_type(self): return "function-explainer" Use the custom prompt template# Now that we have created a custom prompt template, we can use it to generate prompts for our task. fn_explainer = FunctionExplainerPromptTemplate(input_variables=["function_name"]) # Generate a prompt for the function "get_source_code" prompt = fn_explainer.format(function_name=get_source_code) print(prompt)
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/custom_prompt_template.html
00148f8e8872-2
prompt = fn_explainer.format(function_name=get_source_code) print(prompt) Given the function name and source code, generate an English language explanation of the function. Function Name: get_source_code Source Code: def get_source_code(function_name): # Get the source code of the function return inspect.getsource(function_name) Explanation: previous Connecting to a Feature Store next How to create a prompt template that uses few shot examples Contents Why are custom prompt templates needed? Creating a Custom Prompt Template Use the custom prompt template By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/custom_prompt_template.html
650011c4cc74-0
.ipynb .pdf How to work with partial Prompt Templates Contents Partial With Strings Partial With Functions How to work with partial Prompt Templates# A prompt template is a class with a .format method which takes in a key-value map and returns a string (a prompt) to pass to the language model. Like other methods, it can make sense to “partial” a prompt template - eg pass in a subset of the required values, as to create a new prompt template which expects only the remaining subset of values. LangChain supports this in two ways: we allow for partially formatted prompts (1) with string values, (2) with functions that return string values. These two different ways support different use cases. In the documentation below we go over the motivations for both use cases as well as how to do it in LangChain. Partial With Strings# One common use case for wanting to partial a prompt template is if you get some of the variables before others. For example, suppose you have a prompt template that requires two variables, foo and baz. If you get the foo value early on in the chain, but the baz value later, it can be annoying to wait until you have both variables in the same place to pass them to the prompt template. Instead, you can partial the prompt template with the foo value, and then pass the partialed prompt template along and just use that. Below is an example of doing this: from langchain.prompts import PromptTemplate prompt = PromptTemplate(template="{foo}{bar}", input_variables=["foo", "bar"]) partial_prompt = prompt.partial(foo="foo"); print(partial_prompt.format(bar="baz")) foobaz You can also just initialize the prompt with the partialed variables. prompt = PromptTemplate(template="{foo}{bar}", input_variables=["bar"], partial_variables={"foo": "foo"}) print(prompt.format(bar="baz")) foobaz
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/partial.html
650011c4cc74-1
print(prompt.format(bar="baz")) foobaz Partial With Functions# The other common use is to partial with a function. The use case for this is when you have a variable you know that you always want to fetch in a common way. A prime example of this is with date or time. Imagine you have a prompt which you always want to have the current date. You can’t hard code it in the prompt, and passing it along with the other input variables is a bit annoying. In this case, it’s very handy to be able to partial the prompt with a function that always returns the current date. from datetime import datetime def _get_datetime(): now = datetime.now() return now.strftime("%m/%d/%Y, %H:%M:%S") prompt = PromptTemplate( template="Tell me a {adjective} joke about the day {date}", input_variables=["adjective", "date"] ); partial_prompt = prompt.partial(date=_get_datetime) print(partial_prompt.format(adjective="funny")) Tell me a funny joke about the day 02/27/2023, 22:15:16 You can also just initialize the prompt with the partialed variables, which often makes more sense in this workflow. prompt = PromptTemplate( template="Tell me a {adjective} joke about the day {date}", input_variables=["adjective"], partial_variables={"date": _get_datetime} ); print(prompt.format(adjective="funny")) Tell me a funny joke about the day 02/27/2023, 22:15:16 previous How to create a prompt template that uses few shot examples next How to serialize prompts Contents Partial With Strings Partial With Functions By Harrison Chase
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/partial.html
650011c4cc74-2
Contents Partial With Strings Partial With Functions By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/prompt_templates/examples/partial.html
143d58f4f82a-0
.ipynb .pdf Output Parsers Output Parsers# Language models output text. But many times you may want to get more structured information than just text back. This is where output parsers come in. Output parsers are classes that help structure language model responses. There are two main methods an output parser must implement: get_format_instructions() -> str: A method which returns a string containing instructions for how the output of a language model should be formatted. parse(str) -> Any: A method which takes in a string (assumed to be the response from a language model) and parses it into some structure. And then one optional one: parse_with_prompt(str, PromptValue) -> Any: A method which takes in a string (assumed to be the response from a language model) and a prompt (assumed to the prompt that generated such a response) and parses it into some structure. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Below we go over the main type of output parser, the PydanticOutputParser. See the examples folder for other options. from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.output_parsers import PydanticOutputParser from pydantic import BaseModel, Field, validator from typing import List model_name = 'text-davinci-003' temperature = 0.0 model = OpenAI(model_name=model_name, temperature=temperature) # Define your desired data structure. class Joke(BaseModel): setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke")
https://python.langchain.com/en/latest/modules/prompts/output_parsers/getting_started.html
143d58f4f82a-1
punchline: str = Field(description="answer to resolve the joke") # You can add custom validation logic easily with Pydantic. @validator('setup') def question_ends_with_question_mark(cls, field): if field[-1] != '?': raise ValueError("Badly formed question!") return field # Set up a parser + inject instructions into the prompt template. parser = PydanticOutputParser(pydantic_object=Joke) prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) # And a query intented to prompt a language model to populate the data structure. joke_query = "Tell me a joke." _input = prompt.format_prompt(query=joke_query) output = model(_input.to_string()) parser.parse(output) Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!') previous Output Parsers next CommaSeparatedListOutputParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/getting_started.html
d96c49d5cecc-0
.ipynb .pdf RetryOutputParser RetryOutputParser# While in some cases it is possible to fix any parsing mistakes by only looking at the output, in other cases it can’t. An example of this is when the output is not just in the incorrect format, but is partially complete. Consider the below example. from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.output_parsers import PydanticOutputParser, OutputFixingParser, RetryOutputParser from pydantic import BaseModel, Field, validator from typing import List template = """Based on the user question, provide an Action and Action Input for what step should be taken. {format_instructions} Question: {query} Response:""" class Action(BaseModel): action: str = Field(description="action to take") action_input: str = Field(description="input to the action") parser = PydanticOutputParser(pydantic_object=Action) prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) prompt_value = prompt.format_prompt(query="who is leo di caprios gf?") bad_response = '{"action": "search"}' If we try to parse this response as is, we will get an error parser.parse(bad_response) --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:24, in PydanticOutputParser.parse(self, text) 23 json_object = json.loads(json_str)
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/retry.html
d96c49d5cecc-1
23 json_object = json.loads(json_str) ---> 24 return self.pydantic_object.parse_obj(json_object) 26 except (json.JSONDecodeError, ValidationError) as e: File ~/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pydantic/main.py:527, in pydantic.main.BaseModel.parse_obj() File ~/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pydantic/main.py:342, in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for Action action_input field required (type=value_error.missing) During handling of the above exception, another exception occurred: OutputParserException Traceback (most recent call last) Cell In[6], line 1 ----> 1 parser.parse(bad_response) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:29, in PydanticOutputParser.parse(self, text) 27 name = self.pydantic_object.__name__ 28 msg = f"Failed to parse {name} from completion {text}. Got: {e}" ---> 29 raise OutputParserException(msg) OutputParserException: Failed to parse Action from completion {"action": "search"}. Got: 1 validation error for Action action_input field required (type=value_error.missing) If we try to use the OutputFixingParser to fix this error, it will be confused - namely, it doesn’t know what to actually put for action input. fix_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI()) fix_parser.parse(bad_response) Action(action='search', action_input='')
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/retry.html
d96c49d5cecc-2
fix_parser.parse(bad_response) Action(action='search', action_input='') Instead, we can use the RetryOutputParser, which passes in the prompt (as well as the original output) to try again to get a better response. from langchain.output_parsers import RetryWithErrorOutputParser retry_parser = RetryWithErrorOutputParser.from_llm(parser=parser, llm=OpenAI(temperature=0)) retry_parser.parse_with_prompt(bad_response, prompt_value) Action(action='search', action_input='who is leo di caprios gf?') previous PydanticOutputParser next Structured Output Parser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/retry.html
89d1eaa1f860-0
.ipynb .pdf Enum Output Parser Enum Output Parser# This notebook shows how to use an Enum output parser from langchain.output_parsers.enum import EnumOutputParser from enum import Enum class Colors(Enum): RED = "red" GREEN = "green" BLUE = "blue" parser = EnumOutputParser(enum=Colors) parser.parse("red") <Colors.RED: 'red'> # Can handle spaces parser.parse(" green") <Colors.GREEN: 'green'> # And new lines parser.parse("blue\n") <Colors.BLUE: 'blue'> # And raises errors when appropriate parser.parse("yellow") --------------------------------------------------------------------------- ValueError Traceback (most recent call last) File ~/workplace/langchain/langchain/output_parsers/enum.py:25, in EnumOutputParser.parse(self, response) 24 try: ---> 25 return self.enum(response.strip()) 26 except ValueError: File ~/.pyenv/versions/3.9.1/lib/python3.9/enum.py:315, in EnumMeta.__call__(cls, value, names, module, qualname, type, start) 314 if names is None: # simple value lookup --> 315 return cls.__new__(cls, value) 316 # otherwise, functional API: we're creating a new Enum type File ~/.pyenv/versions/3.9.1/lib/python3.9/enum.py:611, in Enum.__new__(cls, value) 610 if result is None and exc is None: --> 611 raise ve_exc 612 elif exc is None: ValueError: 'yellow' is not a valid Colors During handling of the above exception, another exception occurred:
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/enum.html
89d1eaa1f860-1
During handling of the above exception, another exception occurred: OutputParserException Traceback (most recent call last) Cell In[8], line 2 1 # And raises errors when appropriate ----> 2 parser.parse("yellow") File ~/workplace/langchain/langchain/output_parsers/enum.py:27, in EnumOutputParser.parse(self, response) 25 return self.enum(response.strip()) 26 except ValueError: ---> 27 raise OutputParserException( 28 f"Response '{response}' is not one of the " 29 f"expected values: {self._valid_values}" 30 ) OutputParserException: Response 'yellow' is not one of the expected values: ['red', 'green', 'blue'] previous Datetime next OutputFixingParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/enum.html
acb1d174f78a-0
.ipynb .pdf OutputFixingParser OutputFixingParser# This output parser wraps another output parser and tries to fix any mistakes The Pydantic guardrail simply tries to parse the LLM response. If it does not parse correctly, then it errors. But we can do other things besides throw errors. Specifically, we can pass the misformatted output, along with the formatted instructions, to the model and ask it to fix it. For this example, we’ll use the above OutputParser. Here’s what happens if we pass it a result that does not comply with the schema: from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.output_parsers import PydanticOutputParser from pydantic import BaseModel, Field, validator from typing import List class Actor(BaseModel): name: str = Field(description="name of an actor") film_names: List[str] = Field(description="list of names of films they starred in") actor_query = "Generate the filmography for a random actor." parser = PydanticOutputParser(pydantic_object=Actor) misformatted = "{'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}" parser.parse(misformatted) --------------------------------------------------------------------------- JSONDecodeError Traceback (most recent call last) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:23, in PydanticOutputParser.parse(self, text) 22 json_str = match.group() ---> 23 json_object = json.loads(json_str) 24 return self.pydantic_object.parse_obj(json_object)
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/output_fixing_parser.html
acb1d174f78a-1
24 return self.pydantic_object.parse_obj(json_object) File ~/.pyenv/versions/3.9.1/lib/python3.9/json/__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 343 if (cls is None and object_hook is None and 344 parse_int is None and parse_float is None and 345 parse_constant is None and object_pairs_hook is None and not kw): --> 346 return _default_decoder.decode(s) 347 if cls is None: File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:337, in JSONDecoder.decode(self, s, _w) 333 """Return the Python representation of ``s`` (a ``str`` instance 334 containing a JSON document). 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:353, in JSONDecoder.raw_decode(self, s, idx) 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1) During handling of the above exception, another exception occurred: OutputParserException Traceback (most recent call last) Cell In[6], line 1 ----> 1 parser.parse(misformatted)
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/output_fixing_parser.html
acb1d174f78a-2
Cell In[6], line 1 ----> 1 parser.parse(misformatted) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:29, in PydanticOutputParser.parse(self, text) 27 name = self.pydantic_object.__name__ 28 msg = f"Failed to parse {name} from completion {text}. Got: {e}" ---> 29 raise OutputParserException(msg) OutputParserException: Failed to parse Actor from completion {'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}. Got: Expecting property name enclosed in double quotes: line 1 column 2 (char 1) Now we can construct and use a OutputFixingParser. This output parser takes as an argument another output parser but also an LLM with which to try to correct any formatting mistakes. from langchain.output_parsers import OutputFixingParser new_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI()) new_parser.parse(misformatted) Actor(name='Tom Hanks', film_names=['Forrest Gump']) previous Enum Output Parser next PydanticOutputParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/output_fixing_parser.html
0740e80feeee-0
.ipynb .pdf PydanticOutputParser PydanticOutputParser# This output parser allows users to specify an arbitrary JSON schema and query LLMs for JSON outputs that conform to that schema. Keep in mind that large language models are leaky abstractions! You’ll have to use an LLM with sufficient capacity to generate well-formed JSON. In the OpenAI family, DaVinci can do reliably but Curie’s ability already drops off dramatically. Use Pydantic to declare your data model. Pydantic’s BaseModel like a Python dataclass, but with actual type checking + coercion. from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.output_parsers import PydanticOutputParser from pydantic import BaseModel, Field, validator from typing import List model_name = 'text-davinci-003' temperature = 0.0 model = OpenAI(model_name=model_name, temperature=temperature) # Define your desired data structure. class Joke(BaseModel): setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke") # You can add custom validation logic easily with Pydantic. @validator('setup') def question_ends_with_question_mark(cls, field): if field[-1] != '?': raise ValueError("Badly formed question!") return field # And a query intented to prompt a language model to populate the data structure. joke_query = "Tell me a joke." # Set up a parser + inject instructions into the prompt template. parser = PydanticOutputParser(pydantic_object=Joke) prompt = PromptTemplate(
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/pydantic.html
0740e80feeee-1
prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) _input = prompt.format_prompt(query=joke_query) output = model(_input.to_string()) parser.parse(output) Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!') # Here's another example, but with a compound typed field. class Actor(BaseModel): name: str = Field(description="name of an actor") film_names: List[str] = Field(description="list of names of films they starred in") actor_query = "Generate the filmography for a random actor." parser = PydanticOutputParser(pydantic_object=Actor) prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) _input = prompt.format_prompt(query=actor_query) output = model(_input.to_string()) parser.parse(output) Actor(name='Tom Hanks', film_names=['Forrest Gump', 'Saving Private Ryan', 'The Green Mile', 'Cast Away', 'Toy Story']) previous OutputFixingParser next RetryOutputParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/pydantic.html
6a8183fd3437-0
.ipynb .pdf Structured Output Parser Structured Output Parser# While the Pydantic/JSON parser is more powerful, we initially experimented data structures having text fields only. from langchain.output_parsers import StructuredOutputParser, ResponseSchema from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI Here we define the response schema we want to receive. response_schemas = [ ResponseSchema(name="answer", description="answer to the user's question"), ResponseSchema(name="source", description="source used to answer the user's question, should be a website.") ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) We now get a string that contains instructions for how the response should be formatted, and we then insert that into our prompt. format_instructions = output_parser.get_format_instructions() prompt = PromptTemplate( template="answer the users question as best as possible.\n{format_instructions}\n{question}", input_variables=["question"], partial_variables={"format_instructions": format_instructions} ) We can now use this to format a prompt to send to the language model, and then parse the returned result. model = OpenAI(temperature=0) _input = prompt.format_prompt(question="what's the capital of france?") output = model(_input.to_string()) output_parser.parse(output) {'answer': 'Paris', 'source': 'https://www.worldatlas.com/articles/what-is-the-capital-of-france.html'} And here’s an example of using this in a chat model chat_model = ChatOpenAI(temperature=0) prompt = ChatPromptTemplate( messages=[
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/structured.html
6a8183fd3437-1
prompt = ChatPromptTemplate( messages=[ HumanMessagePromptTemplate.from_template("answer the users question as best as possible.\n{format_instructions}\n{question}") ], input_variables=["question"], partial_variables={"format_instructions": format_instructions} ) _input = prompt.format_prompt(question="what's the capital of france?") output = chat_model(_input.to_messages()) output_parser.parse(output.content) {'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'} previous RetryOutputParser next Memory By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/structured.html
c4ac9ccc5060-0
.ipynb .pdf Datetime Datetime# This OutputParser shows out to parse LLM output into datetime format. from langchain.prompts import PromptTemplate from langchain.output_parsers import DatetimeOutputParser from langchain.chains import LLMChain from langchain.llms import OpenAI output_parser = DatetimeOutputParser() template = """Answer the users question: {question} {format_instructions}""" prompt = PromptTemplate.from_template(template, partial_variables={"format_instructions": output_parser.get_format_instructions()}) chain = LLMChain(prompt=prompt, llm=OpenAI()) output = chain.run("around when was bitcoin founded?") output '\n\n2008-01-03T18:15:05.000000Z' output_parser.parse(output) datetime.datetime(2008, 1, 3, 18, 15, 5) previous CommaSeparatedListOutputParser next Enum Output Parser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/datetime.html
ac26bb1dc437-0
.ipynb .pdf CommaSeparatedListOutputParser CommaSeparatedListOutputParser# Here’s another parser strictly less powerful than Pydantic/JSON parsing. from langchain.output_parsers import CommaSeparatedListOutputParser from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI output_parser = CommaSeparatedListOutputParser() format_instructions = output_parser.get_format_instructions() prompt = PromptTemplate( template="List five {subject}.\n{format_instructions}", input_variables=["subject"], partial_variables={"format_instructions": format_instructions} ) model = OpenAI(temperature=0) _input = prompt.format(subject="ice cream flavors") output = model(_input) output_parser.parse(output) ['Vanilla', 'Chocolate', 'Strawberry', 'Mint Chocolate Chip', 'Cookies and Cream'] previous Output Parsers next Datetime By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/output_parsers/examples/comma_separated.html
040695d7d131-0
.ipynb .pdf Maximal Marginal Relevance ExampleSelector Maximal Marginal Relevance ExampleSelector# The MaxMarginalRelevanceExampleSelector selects examples based on a combination of which examples are most similar to the inputs, while also optimizing for diversity. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs, and then iteratively adding them while penalizing them for closeness to already selected examples. from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_selector = MaxMarginalRelevanceExampleSelector.from_examples( # This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. FAISS, # This is the number of examples to produce. k=2 )
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/mmr.html
040695d7d131-1
# This is the number of examples to produce. k=2 ) mmr_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) # Input is a feeling, so should select the happy/sad example as the first one print(mmr_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: windy Output: calm Input: worried Output: # Let's compare this to what we would just get if we went solely off of similarity, # by using SemanticSimilarityExampleSelector instead of MaxMarginalRelevanceExampleSelector. example_selector = SemanticSimilarityExampleSelector.from_examples( # This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. FAISS, # This is the number of examples to produce. k=2 ) similar_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) print(similar_prompt.format(adjective="worried")) Give the antonym of every input Input: happy
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/mmr.html
040695d7d131-2
Give the antonym of every input Input: happy Output: sad Input: sunny Output: gloomy Input: worried Output: previous LengthBased ExampleSelector next NGram Overlap ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/mmr.html
df338a369dbf-0
.md .pdf How to create a custom example selector Contents Implement custom example selector Use custom example selector How to create a custom example selector# In this tutorial, we’ll create a custom example selector that selects every alternate example from a given list of examples. An ExampleSelector must implement two methods: An add_example method which takes in an example and adds it into the ExampleSelector A select_examples method which takes in input variables (which are meant to be user input) and returns a list of examples to use in the few shot prompt. Let’s implement a custom ExampleSelector that just selects two examples at random. Note Take a look at the current set of example selector implementations supported in LangChain here. Implement custom example selector# from langchain.prompts.example_selector.base import BaseExampleSelector from typing import Dict, List import numpy as np class CustomExampleSelector(BaseExampleSelector): def __init__(self, examples: List[Dict[str, str]]): self.examples = examples def add_example(self, example: Dict[str, str]) -> None: """Add new example to store for a key.""" self.examples.append(example) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on the inputs.""" return np.random.choice(self.examples, size=2, replace=False) Use custom example selector# examples = [ {"foo": "1"}, {"foo": "2"}, {"foo": "3"} ] # Initialize example selector. example_selector = CustomExampleSelector(examples) # Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '2'}, {'foo': '3'}], dtype=object)
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html
df338a369dbf-1
# Add new example to the set of examples example_selector.add_example({"foo": "4"}) example_selector.examples # -> [{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}] # Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '1'}, {'foo': '4'}], dtype=object) previous Example Selectors next LengthBased ExampleSelector Contents Implement custom example selector Use custom example selector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html
36e97fbbb6f3-0
.ipynb .pdf NGram Overlap ExampleSelector NGram Overlap ExampleSelector# The NGramOverlapExampleSelector selects and orders examples based on which examples are most similar to the input, according to an ngram overlap score. The ngram overlap score is a float between 0.0 and 1.0, inclusive. The selector allows for a threshold score to be set. Examples with an ngram overlap score less than or equal to the threshold are excluded. The threshold is set to -1.0, by default, so will not exclude any examples, only reorder them. Setting the threshold to 0.0 will exclude examples that have no ngram overlaps with the input. from langchain.prompts import PromptTemplate from langchain.prompts.example_selector.ngram_overlap import NGramOverlapExampleSelector from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] # These are examples of a fictional translation task. examples = [ {"input": "See Spot run.", "output": "Ver correr a Spot."}, {"input": "My dog barks.", "output": "Mi perro ladra."}, {"input": "Spot can run.", "output": "Spot puede correr."},
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
36e97fbbb6f3-1
{"input": "Spot can run.", "output": "Spot puede correr."}, ] example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) example_selector = NGramOverlapExampleSelector( # These are the examples it has available to choose from. examples=examples, # This is the PromptTemplate being used to format the examples. example_prompt=example_prompt, # This is the threshold, at which selector stops. # It is set to -1.0 by default. threshold=-1.0, # For negative threshold: # Selector sorts examples by ngram overlap score, and excludes none. # For threshold greater than 1.0: # Selector excludes all examples, and returns an empty list. # For threshold equal to 0.0: # Selector sorts examples by ngram overlap score, # and excludes those with no ngram overlap with input. ) dynamic_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the Spanish translation of every input", suffix="Input: {sentence}\nOutput:", input_variables=["sentence"], ) # An example input with large ngram overlap with "Spot can run." # and no overlap with "My dog barks." print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: My dog barks.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
36e97fbbb6f3-2
Output: Ver correr a Spot. Input: My dog barks. Output: Mi perro ladra. Input: Spot can run fast. Output: # You can add examples to NGramOverlapExampleSelector as well. new_example = {"input": "Spot plays fetch.", "output": "Spot juega a buscar."} example_selector.add_example(new_example) print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: Spot plays fetch. Output: Spot juega a buscar. Input: My dog barks. Output: Mi perro ladra. Input: Spot can run fast. Output: # You can set a threshold at which examples are excluded. # For example, setting threshold equal to 0.0 # excludes examples with no ngram overlaps with input. # Since "My dog barks." has no ngram overlaps with "Spot can run fast." # it is excluded. example_selector.threshold=0.0 print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: Spot plays fetch. Output: Spot juega a buscar. Input: Spot can run fast. Output: # Setting small nonzero threshold example_selector.threshold=0.09 print(dynamic_prompt.format(sentence="Spot can play fetch.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: Spot plays fetch. Output: Spot juega a buscar.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
36e97fbbb6f3-3
Input: Spot plays fetch. Output: Spot juega a buscar. Input: Spot can play fetch. Output: # Setting threshold greater than 1.0 example_selector.threshold=1.0+1e-9 print(dynamic_prompt.format(sentence="Spot can play fetch.")) Give the Spanish translation of every input Input: Spot can play fetch. Output: previous Maximal Marginal Relevance ExampleSelector next Similarity ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
d776f7426b1e-0
.ipynb .pdf Similarity ExampleSelector Similarity ExampleSelector# The SemanticSimilarityExampleSelector selects examples based on which examples are most similar to the inputs. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs. from langchain.prompts.example_selector import SemanticSimilarityExampleSelector from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_selector = SemanticSimilarityExampleSelector.from_examples( # This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. Chroma, # This is the number of examples to produce. k=1 ) similar_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input",
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/similarity.html
d776f7426b1e-1
example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. # Input is a feeling, so should select the happy/sad example print(similar_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: worried Output: # Input is a measurement, so should select the tall/short example print(similar_prompt.format(adjective="fat")) Give the antonym of every input Input: happy Output: sad Input: fat Output: # You can add new examples to the SemanticSimilarityExampleSelector as well similar_prompt.example_selector.add_example({"input": "enthusiastic", "output": "apathetic"}) print(similar_prompt.format(adjective="joyful")) Give the antonym of every input Input: happy Output: sad Input: joyful Output: previous NGram Overlap ExampleSelector next Output Parsers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/similarity.html
b7dddab2fbf8-0
.ipynb .pdf LengthBased ExampleSelector LengthBased ExampleSelector# This ExampleSelector selects which examples to use based on length. This is useful when you are worried about constructing a prompt that will go over the length of the context window. For longer inputs, it will select fewer examples to include, while for shorter inputs it will select more. from langchain.prompts import PromptTemplate from langchain.prompts import FewShotPromptTemplate from langchain.prompts.example_selector import LengthBasedExampleSelector # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) example_selector = LengthBasedExampleSelector( # These are the examples it has available to choose from. examples=examples, # This is the PromptTemplate being used to format the examples. example_prompt=example_prompt, # This is the maximum length that the formatted examples should be. # Length is measured by the get_text_length function below. max_length=25, # This is the function used to get the length of a string, which is used # to determine which examples to include. It is commented out because # it is provided as a default value if none is specified.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/length_based.html
b7dddab2fbf8-1
# it is provided as a default value if none is specified. # get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x)) ) dynamic_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) # An example with small input, so it selects all examples. print(dynamic_prompt.format(adjective="big")) Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm Input: big Output: # An example with long input, so it selects only one example. long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else" print(dynamic_prompt.format(adjective=long_string)) Give the antonym of every input Input: happy Output: sad Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else Output: # You can add an example to an example selector as well. new_example = {"input": "big", "output": "small"} dynamic_prompt.example_selector.add_example(new_example) print(dynamic_prompt.format(adjective="enthusiastic")) Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/length_based.html
b7dddab2fbf8-2
Input: sunny Output: gloomy Input: windy Output: calm Input: big Output: small Input: enthusiastic Output: previous How to create a custom example selector next Maximal Marginal Relevance ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/length_based.html
2fef064145cc-0
.rst .pdf Chat Models Chat Models# Note Conceptual Guide Chat models are a variation on language models. While chat models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs. Chat model APIs are fairly new, so we are still figuring out the correct abstractions. The following sections of documentation are provided: Getting Started: An overview of all the functionality the LangChain LLM class provides. How-To Guides: A collection of how-to guides. These highlight how to accomplish various objectives with our LLM class (streaming, async, etc). Integrations: A collection of examples on how to integrate different LLM providers with LangChain (OpenAI, Hugging Face, etc). previous LLMs next Getting Started By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/chat.html
40921b52a82e-0
.rst .pdf Text Embedding Models Text Embedding Models# Note Conceptual Guide This documentation goes over how to use the Embedding class in LangChain. The Embedding class is a class designed for interfacing with embeddings. There are lots of Embedding providers (OpenAI, Cohere, Hugging Face, etc) - this class is designed to provide a standard interface for all of them. Embeddings create a vector representation of a piece of text. This is useful because it means we can think about text in the vector space, and do things like semantic search where we look for pieces of text that are most similar in the vector space. The base Embedding class in LangChain exposes two methods: embed_documents and embed_query. The largest difference is that these two methods have different interfaces: one works over multiple documents, while the other works over a single document. Besides this, another reason for having these as two separate methods is that some embedding providers have different embedding methods for documents (to be searched over) vs queries (the search query itself). The following integrations exist for text embeddings. Aleph Alpha AzureOpenAI Bedrock Embeddings Cohere Elasticsearch Fake Embeddings Google Cloud Platform Vertex AI PaLM Hugging Face Hub InstructEmbeddings Jina Llama-cpp MiniMax ModelScope MosaicML embeddings OpenAI SageMaker Endpoint Embeddings Self Hosted Embeddings Sentence Transformers Embeddings TensorflowHub previous PromptLayer ChatOpenAI next Aleph Alpha By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/text_embedding.html
efdff5a448f3-0
.ipynb .pdf Getting Started Contents Language Models text -> text interface messages -> message interface Getting Started# One of the core value props of LangChain is that it provides a standard interface to models. This allows you to swap easily between models. At a high level, there are two main types of models: Language Models: good for text generation Text Embedding Models: good for turning text into a numerical representation Language Models# There are two different sub-types of Language Models: LLMs: these wrap APIs which take text in and return text ChatModels: these wrap models which take chat messages in and return a chat message This is a subtle difference, but a value prop of LangChain is that we provide a unified interface accross these. This is nice because although the underlying APIs are actually quite different, you often want to use them interchangeably. To see this, let’s look at OpenAI (a wrapper around OpenAI’s LLM) vs ChatOpenAI (a wrapper around OpenAI’s ChatModel). from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI llm = OpenAI() chat_model = ChatOpenAI() text -> text interface# llm.predict("say hi!") '\n\nHi there!' chat_model.predict("say hi!") 'Hello there!' messages -> message interface# from langchain.schema import HumanMessage llm.predict_messages([HumanMessage(content="say hi!")]) AIMessage(content='\n\nHello! Nice to meet you!', additional_kwargs={}, example=False) chat_model.predict_messages([HumanMessage(content="say hi!")]) AIMessage(content='Hello! How can I assist you today?', additional_kwargs={}, example=False) previous Models next LLMs Contents Language Models text -> text interface messages -> message interface By Harrison Chase
https://python.langchain.com/en/latest/modules/models/getting_started.html
efdff5a448f3-1
Language Models text -> text interface messages -> message interface By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/getting_started.html
5df9f3e7a291-0
.rst .pdf LLMs LLMs# Note Conceptual Guide Large Language Models (LLMs) are a core component of LangChain. LangChain is not a provider of LLMs, but rather provides a standard interface through which you can interact with a variety of LLMs. The following sections of documentation are provided: Getting Started: An overview of all the functionality the LangChain LLM class provides. How-To Guides: A collection of how-to guides. These highlight how to accomplish various objectives with our LLM class (streaming, async, etc). Integrations: A collection of examples on how to integrate different LLM providers with LangChain (OpenAI, Hugging Face, etc). Reference: API reference documentation for all LLM classes. previous Getting Started next Getting Started By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms.html
6e7168377ec2-0
.rst .pdf Integrations Integrations# The examples here are all “how-to” guides for how to integrate with various LLM providers. AI21 Aleph Alpha Anyscale Azure OpenAI Banana Beam integration for langchain Amazon Bedrock CerebriumAI Cohere C Transformers Databricks DeepInfra ForefrontAI Google Cloud Platform Vertex AI PaLM GooseAI GPT4All Hugging Face Hub Hugging Face Local Pipelines Huggingface TextGen Inference Structured Decoding with JSONFormer Llama-cpp Manifest Modal MosaicML NLP Cloud OpenAI OpenLM Petals PipelineAI Basic LLM usage Control the output structure/ type of LLMs Chaining PromptLayer OpenAI Structured Decoding with RELLM Replicate Runhouse SageMakerEndpoint StochasticAI Writer previous How to track token usage next AI21 By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations.html
1a206d5936d7-0
.rst .pdf Generic Functionality Generic Functionality# The examples here all address certain “how-to” guides for working with LLMs. How to use the async API for LLMs How to write a custom LLM wrapper How (and why) to use the fake LLM How (and why) to use the human input LLM How to cache LLM calls How to serialize LLM classes How to stream LLM and Chat Model responses How to track token usage previous Getting Started next How to use the async API for LLMs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/how_to_guides.html
ce120e6d0a36-0
.ipynb .pdf Getting Started Getting Started# This notebook goes over how to use the LLM class in LangChain. The LLM class is a class designed for interfacing with LLMs. There are lots of LLM providers (OpenAI, Cohere, Hugging Face, etc) - this class is designed to provide a standard interface for all of them. In this part of the documentation, we will focus on generic LLM functionality. For details on working with a specific LLM wrapper, please see the examples in the How-To section. For this notebook, we will work with an OpenAI LLM wrapper, although the functionalities highlighted are generic for all LLM types. from langchain.llms import OpenAI llm = OpenAI(model_name="text-ada-001", n=2, best_of=2) Generate Text: The most basic functionality an LLM has is just the ability to call it, passing in a string and getting back a string. llm("Tell me a joke") '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' Generate: More broadly, you can call it with a list of inputs, getting back a more complete response than just the text. This complete response includes things like multiple top responses, as well as LLM provider specific information llm_result = llm.generate(["Tell me a joke", "Tell me a poem"]*15) len(llm_result.generations) 30 llm_result.generations[0] [Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side!'), Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side.')] llm_result.generations[-1]
https://python.langchain.com/en/latest/modules/models/llms/getting_started.html
ce120e6d0a36-1
llm_result.generations[-1] [Generation(text="\n\nWhat if love neverspeech\n\nWhat if love never ended\n\nWhat if love was only a feeling\n\nI'll never know this love\n\nIt's not a feeling\n\nBut it's what we have for each other\n\nWe just know that love is something strong\n\nAnd we can't help but be happy\n\nWe just feel what love is for us\n\nAnd we love each other with all our heart\n\nWe just don't know how\n\nHow it will go\n\nBut we know that love is something strong\n\nAnd we'll always have each other\n\nIn our lives."), Generation(text='\n\nOnce upon a time\n\nThere was a love so pure and true\n\nIt lasted for centuries\n\nAnd never became stale or dry\n\nIt was moving and alive\n\nAnd the heart of the love-ick\n\nIs still beating strong and true.')] You can also access provider specific information that is returned. This information is NOT standardized across providers. llm_result.llm_output {'token_usage': {'completion_tokens': 3903, 'total_tokens': 4023, 'prompt_tokens': 120}} Number of Tokens: You can also estimate how many tokens a piece of text will be in that model. This is useful because models have a context length (and cost more for more tokens), which means you need to be aware of how long the text you are passing in is. Notice that by default the tokens are estimated using tiktoken (except for legacy version <3.8, where a Hugging Face tokenizer is used) llm.get_num_tokens("what a joke") 3 previous LLMs next Generic Functionality By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/modules/models/llms/getting_started.html
ce120e6d0a36-2
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/getting_started.html
055918386f2d-0
.ipynb .pdf Beam integration for langchain Beam integration for langchain# Calls the Beam API wrapper to deploy and make subsequent calls to an instance of the gpt2 LLM in a cloud deployment. Requires installation of the Beam library and registration of Beam Client ID and Client Secret. By calling the wrapper an instance of the model is created and run, with returned text relating to the prompt. Additional calls can then be made by directly calling the Beam API. Create an account, if you don’t have one already. Grab your API keys from the dashboard. Install the Beam CLI !curl https://raw.githubusercontent.com/slai-labs/get-beam/main/get-beam.sh -sSfL | sh Register API Keys and set your beam client id and secret environment variables: import os import subprocess beam_client_id = "<Your beam client id>" beam_client_secret = "<Your beam client secret>" # Set the environment variables os.environ['BEAM_CLIENT_ID'] = beam_client_id os.environ['BEAM_CLIENT_SECRET'] = beam_client_secret # Run the beam configure command !beam configure --clientId={beam_client_id} --clientSecret={beam_client_secret} Install the Beam SDK: !pip install beam-sdk Deploy and call Beam directly from langchain! Note that a cold start might take a couple of minutes to return the response, but subsequent calls will be faster! from langchain.llms.beam import Beam llm = Beam(model_name="gpt2", name="langchain-gpt2-test", cpu=8, memory="32Gi", gpu="A10G", python_version="python3.8", python_packages=[ "diffusers[torch]>=0.10", "transformers", "torch", "pillow", "accelerate",
https://python.langchain.com/en/latest/modules/models/llms/integrations/beam.html
055918386f2d-1
"torch", "pillow", "accelerate", "safetensors", "xformers",], max_length="50", verbose=False) llm._deploy() response = llm._call("Running machine learning on a remote GPU") print(response) previous Banana next Amazon Bedrock By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/beam.html
ec23e5c7b605-0
.ipynb .pdf OpenAI OpenAI# OpenAI offers a spectrum of models with different levels of power suitable for different tasks. This example goes over how to use LangChain to interact with OpenAI models # get a token: https://platform.openai.com/account/api-keys from getpass import getpass OPENAI_API_KEY = getpass() ········ import os os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY from langchain.llms import OpenAI from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = OpenAI() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) ' Justin Bieber was born in 1994, so we are looking for the Super Bowl winner from that year. The Super Bowl in 1994 was Super Bowl XXVIII, and the winner was the Dallas Cowboys.' If you are behind an explicit proxy, you can use the OPENAI_PROXY environment variable to pass through os.environ["OPENAI_PROXY"] = "http://proxy.yourcompany.com:8080" previous NLP Cloud next OpenLM By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/openai.html
f26bb7448e78-0
.ipynb .pdf Azure OpenAI Contents API configuration Deployments Azure OpenAI# This notebook goes over how to use Langchain with Azure OpenAI. The Azure OpenAI API is compatible with OpenAI’s API. The openai Python package makes it easy to use both OpenAI and Azure OpenAI. You can call Azure OpenAI the same way you call OpenAI with the exceptions noted below. API configuration# You can configure the openai package to use Azure OpenAI using environment variables. The following is for bash: # Set this to `azure` export OPENAI_API_TYPE=azure # The API version you want to use: set this to `2022-12-01` for the released version. export OPENAI_API_VERSION=2022-12-01 # The base URL for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource. export OPENAI_API_BASE=https://your-resource-name.openai.azure.com # The API key for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource. export OPENAI_API_KEY=<your Azure OpenAI API key> Alternatively, you can configure the API right within your running Python environment: import os os.environ["OPENAI_API_TYPE"] = "azure" ... Deployments# With Azure OpenAI, you set up your own deployments of the common GPT-3 and Codex models. When calling the API, you need to specify the deployment you want to use. Let’s say your deployment name is text-davinci-002-prod. In the openai Python API, you can specify this deployment with the engine parameter. For example: import openai response = openai.Completion.create(
https://python.langchain.com/en/latest/modules/models/llms/integrations/azure_openai_example.html
f26bb7448e78-1
import openai response = openai.Completion.create( engine="text-davinci-002-prod", prompt="This is a test", max_tokens=5 ) !pip install openai import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_VERSION"] = "2022-12-01" os.environ["OPENAI_API_BASE"] = "..." os.environ["OPENAI_API_KEY"] = "..." # Import Azure OpenAI from langchain.llms import AzureOpenAI # Create an instance of Azure OpenAI # Replace the deployment name with your own llm = AzureOpenAI( deployment_name="td2", model_name="text-davinci-002", ) # Run the LLM llm("Tell me a joke") "\n\nWhy couldn't the bicycle stand up by itself? Because it was...two tired!" We can also print the LLM and see its custom print. print(llm) AzureOpenAI Params: {'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1} previous Anyscale next Banana Contents API configuration Deployments By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/azure_openai_example.html
0f02eed8b210-0
.ipynb .pdf Basic LLM usage Contents Basic LLM usage Control the output structure/ type of LLMs Chaining ! pip install predictionguard langchain import os import predictionguard as pg from langchain.llms import PredictionGuard from langchain import PromptTemplate, LLMChain Basic LLM usage# # Optional, add your OpenAI API Key. This is optional, as Prediction Guard allows # you to access all the latest open access models (see https://docs.predictionguard.com) os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>" # Your Prediction Guard API key. Get one at predictionguard.com os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>" pgllm = PredictionGuard(model="OpenAI-text-davinci-003") pgllm("Tell me a joke") Control the output structure/ type of LLMs# template = """Respond to the following query based on the context. Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦 Exclusive Candle Box - $80 Monthly Candle Box - $45 (NEW!) Scent of The Month Box - $28 (NEW!) Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉 Query: {query} Result: """ prompt = PromptTemplate(template=template, input_variables=["query"]) # Without "guarding" or controlling the output of the LLM. pgllm(prompt.format(query="What kind of post is this?"))
https://python.langchain.com/en/latest/modules/models/llms/integrations/predictionguard.html
0f02eed8b210-1
pgllm(prompt.format(query="What kind of post is this?")) # With "guarding" or controlling the output of the LLM. See the # Prediction Guard docs (https://docs.predictionguard.com) to learn how to # control the output with integer, float, boolean, JSON, and other types and # structures. pgllm = PredictionGuard(model="OpenAI-text-davinci-003", output={ "type": "categorical", "categories": [ "product announcement", "apology", "relational" ] }) pgllm(prompt.format(query="What kind of post is this?")) Chaining# pgllm = PredictionGuard(model="OpenAI-text-davinci-003") template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.predict(question=question) template = """Write a {adjective} poem about {subject}.""" prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"]) llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True) llm_chain.predict(adjective="sad", subject="ducks") previous PipelineAI next PromptLayer OpenAI Contents Basic LLM usage Control the output structure/ type of LLMs Chaining By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/predictionguard.html
0f02eed8b210-2
Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/predictionguard.html
25dd0210e2f5-0
.ipynb .pdf ForefrontAI Contents Imports Set the Environment API Key Create the ForefrontAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain ForefrontAI# The Forefront platform gives you the ability to fine-tune and use open source large language models. This notebook goes over how to use Langchain with ForefrontAI. Imports# import os from langchain.llms import ForefrontAI from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from ForefrontAI. You are given a 5 day free trial to test different models. # get a new token: https://docs.forefront.ai/forefront/api-reference/authentication from getpass import getpass FOREFRONTAI_API_KEY = getpass() os.environ["FOREFRONTAI_API_KEY"] = FOREFRONTAI_API_KEY Create the ForefrontAI instance# You can specify different parameters such as the model endpoint url, length, temperature, etc. You must provide an endpoint url. llm = ForefrontAI(endpoint_url="YOUR ENDPOINT URL HERE") Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous DeepInfra next Google Cloud Platform Vertex AI PaLM Contents Imports
https://python.langchain.com/en/latest/modules/models/llms/integrations/forefrontai_example.html
25dd0210e2f5-1
DeepInfra next Google Cloud Platform Vertex AI PaLM Contents Imports Set the Environment API Key Create the ForefrontAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/forefrontai_example.html
ddec6b3f4625-0
.ipynb .pdf Petals Contents Install petals Imports Set the Environment API Key Create the Petals instance Create a Prompt Template Initiate the LLMChain Run the LLMChain Petals# Petals runs 100B+ language models at home, BitTorrent-style. This notebook goes over how to use Langchain with Petals. Install petals# The petals package is required to use the Petals API. Install petals using pip3 install petals. !pip3 install petals Imports# import os from langchain.llms import Petals from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from Huggingface. from getpass import getpass HUGGINGFACE_API_KEY = getpass() os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY Create the Petals instance# You can specify different parameters such as the model name, max new tokens, temperature, etc. # this can take several minutes to download big files! llm = Petals(model_name="bigscience/bloom-petals") Downloading: 1%|▏ | 40.8M/7.19G [00:24<15:44, 7.57MB/s] Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain.
https://python.langchain.com/en/latest/modules/models/llms/integrations/petals_example.html
ddec6b3f4625-1
Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous OpenLM next PipelineAI Contents Install petals Imports Set the Environment API Key Create the Petals instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/petals_example.html
d0d3b387fe10-0
.ipynb .pdf Databricks Contents Wrapping a serving endpoint Wrapping a cluster driver proxy app Databricks# The Databricks Lakehouse Platform unifies data, analytics, and AI on one platform. This example notebook shows how to wrap Databricks endpoints as LLMs in LangChain. It supports two endpoint types: Serving endpoint, recommended for production and development, Cluster driver proxy app, recommended for iteractive development. from langchain.llms import Databricks Wrapping a serving endpoint# Prerequisites: An LLM was registered and deployed to a Databricks serving endpoint. You have “Can Query” permission to the endpoint. The expected MLflow model signature is: inputs: [{"name": "prompt", "type": "string"}, {"name": "stop", "type": "list[string]"}] outputs: [{"type": "string"}] If the model signature is incompatible or you want to insert extra configs, you can set transform_input_fn and transform_output_fn accordingly. # If running a Databricks notebook attached to an interactive cluster in "single user" # or "no isolation shared" mode, you only need to specify the endpoint name to create # a `Databricks` instance to query a serving endpoint in the same workspace. llm = Databricks(endpoint_name="dolly") llm("How are you?") 'I am happy to hear that you are in good health and as always, you are appreciated.' llm("How are you?", stop=["."]) 'Good' # Otherwise, you can manually specify the Databricks workspace hostname and personal access token # or set `DATABRICKS_HOST` and `DATABRICKS_API_TOKEN` environment variables, respectively.
https://python.langchain.com/en/latest/modules/models/llms/integrations/databricks.html
d0d3b387fe10-1
# See https://docs.databricks.com/dev-tools/auth.html#databricks-personal-access-tokens # We strongly recommend not exposing the API token explicitly inside a notebook. # You can use Databricks secret manager to store your API token securely. # See https://docs.databricks.com/dev-tools/databricks-utils.html#secrets-utility-dbutilssecrets import os os.environ["DATABRICKS_API_TOKEN"] = dbutils.secrets.get("myworkspace", "api_token") llm = Databricks(host="myworkspace.cloud.databricks.com", endpoint_name="dolly") llm("How are you?") 'I am fine. Thank you!' # If the serving endpoint accepts extra parameters like `temperature`, # you can set them in `model_kwargs`. llm = Databricks(endpoint_name="dolly", model_kwargs={"temperature": 0.1}) llm("How are you?") 'I am fine.' # Use `transform_input_fn` and `transform_output_fn` if the serving endpoint # expects a different input schema and does not return a JSON string, # respectively, or you want to apply a prompt template on top. def transform_input(**request): full_prompt = f"""{request["prompt"]} Be Concise. """ request["prompt"] = full_prompt return request llm = Databricks(endpoint_name="dolly", transform_input_fn=transform_input) llm("How are you?") 'I’m Excellent. You?' Wrapping a cluster driver proxy app# Prerequisites: An LLM loaded on a Databricks interactive cluster in “single user” or “no isolation shared” mode. A local HTTP server running on the driver node to serve the model at "/" using HTTP POST with JSON input/output.
https://python.langchain.com/en/latest/modules/models/llms/integrations/databricks.html
d0d3b387fe10-2
It uses a port number between [3000, 8000] and litens to the driver IP address or simply 0.0.0.0 instead of localhost only. You have “Can Attach To” permission to the cluster. The expected server schema (using JSON schema) is: inputs: {"type": "object", "properties": { "prompt": {"type": "string"}, "stop": {"type": "array", "items": {"type": "string"}}}, "required": ["prompt"]} outputs: {"type": "string"} If the server schema is incompatible or you want to insert extra configs, you can use transform_input_fn and transform_output_fn accordingly. The following is a minimal example for running a driver proxy app to serve an LLM: from flask import Flask, request, jsonify import torch from transformers import pipeline, AutoTokenizer, StoppingCriteria model = "databricks/dolly-v2-3b" tokenizer = AutoTokenizer.from_pretrained(model, padding_side="left") dolly = pipeline(model=model, tokenizer=tokenizer, trust_remote_code=True, device_map="auto") device = dolly.device class CheckStop(StoppingCriteria): def __init__(self, stop=None): super().__init__() self.stop = stop or [] self.matched = "" self.stop_ids = [tokenizer.encode(s, return_tensors='pt').to(device) for s in self.stop] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs): for i, s in enumerate(self.stop_ids): if torch.all((s == input_ids[0][-s.shape[1]:])).item(): self.matched = self.stop[i] return True return False
https://python.langchain.com/en/latest/modules/models/llms/integrations/databricks.html
d0d3b387fe10-3
self.matched = self.stop[i] return True return False def llm(prompt, stop=None, **kwargs): check_stop = CheckStop(stop) result = dolly(prompt, stopping_criteria=[check_stop], **kwargs) return result[0]["generated_text"].rstrip(check_stop.matched) app = Flask("dolly") @app.route('/', methods=['POST']) def serve_llm(): resp = llm(**request.json) return jsonify(resp) app.run(host="0.0.0.0", port="7777") Once the server is running, you can create a Databricks instance to wrap it as an LLM. # If running a Databricks notebook attached to the same cluster that runs the app, # you only need to specify the driver port to create a `Databricks` instance. llm = Databricks(cluster_driver_port="7777") llm("How are you?") 'Hello, thank you for asking. It is wonderful to hear that you are well.' # Otherwise, you can manually specify the cluster ID to use, # as well as Databricks workspace hostname and personal access token. llm = Databricks(cluster_id="0000-000000-xxxxxxxx", cluster_driver_port="7777") llm("How are you?") 'I am well. You?' # If the app accepts extra parameters like `temperature`, # you can set them in `model_kwargs`. llm = Databricks(cluster_driver_port="7777", model_kwargs={"temperature": 0.1}) llm("How are you?") 'I am very well. It is a pleasure to meet you.' # Use `transform_input_fn` and `transform_output_fn` if the app
https://python.langchain.com/en/latest/modules/models/llms/integrations/databricks.html
d0d3b387fe10-4
# Use `transform_input_fn` and `transform_output_fn` if the app # expects a different input schema and does not return a JSON string, # respectively, or you want to apply a prompt template on top. def transform_input(**request): full_prompt = f"""{request["prompt"]} Be Concise. """ request["prompt"] = full_prompt return request def transform_output(response): return response.upper() llm = Databricks( cluster_driver_port="7777", transform_input_fn=transform_input, transform_output_fn=transform_output) llm("How are you?") 'I AM DOING GREAT THANK YOU.' previous C Transformers next DeepInfra Contents Wrapping a serving endpoint Wrapping a cluster driver proxy app By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/databricks.html
81797160b7ad-0
.ipynb .pdf Huggingface TextGen Inference Huggingface TextGen Inference# Text Generation Inference is a Rust, Python and gRPC server for text generation inference. Used in production at HuggingFace to power LLMs api-inference widgets. This notebooks goes over how to use a self hosted LLM using Text Generation Inference. To use, you should have the text_generation python package installed. # !pip3 install text_generation llm = HuggingFaceTextGenInference( inference_server_url='http://localhost:8010/', max_new_tokens=512, top_k=10, top_p=0.95, typical_p=0.95, temperature=0.01, repetition_penalty=1.03, ) llm("What did foo say about bar?") previous Hugging Face Local Pipelines next Structured Decoding with JSONFormer By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_textgen_inference.html
daddbb5a14b3-0
.ipynb .pdf Cohere Cohere# Cohere is a Canadian startup that provides natural language processing models that help companies improve human-machine interactions. This example goes over how to use LangChain to interact with Cohere models. # Install the package !pip install cohere # get a new token: https://dashboard.cohere.ai/ from getpass import getpass COHERE_API_KEY = getpass() from langchain.llms import Cohere from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Cohere(cohere_api_key=COHERE_API_KEY) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question)
https://python.langchain.com/en/latest/modules/models/llms/integrations/cohere.html
daddbb5a14b3-1
llm_chain.run(question) " Let's start with the year that Justin Beiber was born. You know that he was born in 1994. We have to go back one year. 1993.\n\n1993 was the year that the Dallas Cowboys won the Super Bowl. They won over the Buffalo Bills in Super Bowl 26.\n\nNow, let's do it backwards. According to our information, the Green Bay Packers last won the Super Bowl in the 2010-2011 season. Now, we can't go back in time, so let's go from 2011 when the Packers won the Super Bowl, back to 1984. That is the year that the Packers won the Super Bowl over the Raiders.\n\nSo, we have the year that Justin Beiber was born, 1994, and the year that the Packers last won the Super Bowl, 2011, and now we have to go in the middle, 1986. That is the year that the New York Giants won the Super Bowl over the Denver Broncos. The Giants won Super Bowl 21.\n\nThe New York Giants won the Super Bowl in 1986. This means that the Green Bay Packers won the Super Bowl in 2011.\n\nDid you get it right? If you are still a bit confused, just try to go back to the question again and review the answer" previous CerebriumAI next C Transformers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/cohere.html
8bfdcf41eb30-0
.ipynb .pdf NLP Cloud NLP Cloud# The NLP Cloud serves high performance pre-trained or custom models for NER, sentiment-analysis, classification, summarization, paraphrasing, grammar and spelling correction, keywords and keyphrases extraction, chatbot, product description and ad generation, intent classification, text generation, image generation, blog post generation, code generation, question answering, automatic speech recognition, machine translation, language detection, semantic search, semantic similarity, tokenization, POS tagging, embeddings, and dependency parsing. It is ready for production, served through a REST API. This example goes over how to use LangChain to interact with NLP Cloud models. !pip install nlpcloud # get a token: https://docs.nlpcloud.com/#authentication from getpass import getpass NLPCLOUD_API_KEY = getpass() import os os.environ["NLPCLOUD_API_KEY"] = NLPCLOUD_API_KEY from langchain.llms import NLPCloud from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = NLPCloud() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) ' Justin Bieber was born in 1994, so the team that won the Super Bowl that year was the San Francisco 49ers.' previous MosaicML next OpenAI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/nlpcloud.html
83e5719a69ec-0
.ipynb .pdf Hugging Face Hub Contents Examples StableLM, by Stability AI Dolly, by DataBricks Camel, by Writer Hugging Face Hub# The Hugging Face Hub is a platform with over 120k models, 20k datasets, and 50k demo apps (Spaces), all open source and publicly available, in an online platform where people can easily collaborate and build ML together. This example showcases how to connect to the Hugging Face Hub. To use, you should have the huggingface_hub python package installed. !pip install huggingface_hub > /dev/null # get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token from getpass import getpass HUGGINGFACEHUB_API_TOKEN = getpass() import os os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN Select a Model from langchain import HuggingFaceHub repo_id = "google/flan-t5-xl" # See https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads for some other options llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64}) from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "Who won the FIFA World Cup in the year 1994? " print(llm_chain.run(question)) Examples# Below are some examples of models you can access through the Hugging Face Hub integration. StableLM, by Stability AI#
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_hub.html
83e5719a69ec-1
StableLM, by Stability AI# See Stability AI’s organization page for a list of available models. repo_id = "stabilityai/stablelm-tuned-alpha-3b" # Others include stabilityai/stablelm-base-alpha-3b # as well as 7B parameter versions llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64}) # Reuse the prompt and question from above. llm_chain = LLMChain(prompt=prompt, llm=llm) print(llm_chain.run(question)) Dolly, by DataBricks# See DataBricks organization page for a list of available models. from langchain import HuggingFaceHub repo_id = "databricks/dolly-v2-3b" llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64}) # Reuse the prompt and question from above. llm_chain = LLMChain(prompt=prompt, llm=llm) print(llm_chain.run(question)) Camel, by Writer# See Writer’s organization page for a list of available models. from langchain import HuggingFaceHub repo_id = "Writer/camel-5b-hf" # See https://huggingface.co/Writer for other options llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0, "max_length":64}) # Reuse the prompt and question from above. llm_chain = LLMChain(prompt=prompt, llm=llm) print(llm_chain.run(question)) And many more! previous GPT4All next Hugging Face Local Pipelines Contents Examples StableLM, by Stability AI
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_hub.html
83e5719a69ec-2
Contents Examples StableLM, by Stability AI Dolly, by DataBricks Camel, by Writer By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/huggingface_hub.html
fc3a20aaed76-0
.ipynb .pdf AI21 AI21# AI21 Studio provides API access to Jurassic-2 large language models. This example goes over how to use LangChain to interact with AI21 models. # install the package: !pip install ai21 # get AI21_API_KEY. Use https://studio.ai21.com/account/account from getpass import getpass AI21_API_KEY = getpass() from langchain.llms import AI21 from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = AI21(ai21_api_key=AI21_API_KEY) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) '\n1. What year was Justin Bieber born?\nJustin Bieber was born in 1994.\n2. What team won the Super Bowl in 1994?\nThe Dallas Cowboys won the Super Bowl in 1994.' previous Integrations next Aleph Alpha By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/ai21.html
174e2fa82dbd-0
.ipynb .pdf Llama-cpp Contents Installation CPU only installation Installation with OpenBLAS / cuBLAS / CLBlast Usage CPU GPU Llama-cpp# llama-cpp is a Python binding for llama.cpp. It supports several LLMs. This notebook goes over how to run llama-cpp within LangChain. Installation# There is a banch of options how to install the llama-cpp package: only CPU usage CPU + GPU (using one of many BLAS backends) CPU only installation# !pip install llama-cpp-python Installation with OpenBLAS / cuBLAS / CLBlast# lama.cpp supports multiple BLAS backends for faster processing. Use the FORCE_CMAKE=1 environment variable to force the use of cmake and install the pip package for the desired BLAS backend (source). Example installation with cuBLAS backend: !CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python IMPORTANT: If you have already installed a cpu only version of the package, you need to reinstall it from scratch: condiser the following command: !CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python Usage# Make sure you are following all instructions to install all necessary model files. You don’t need an API_TOKEN! from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler Consider using a template that suits your model! Check the models page on HuggingFace etc. to get a correct prompting template. template = """Question: {question}
https://python.langchain.com/en/latest/modules/models/llms/integrations/llamacpp.html
174e2fa82dbd-1
template = """Question: {question} Answer: Let's work this out in a step by step way to be sure we have the right answer.""" prompt = PromptTemplate(template=template, input_variables=["question"]) # Callbacks support token-wise streaming callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) # Verbose is required to pass to the callback manager CPU# # Make sure the model path is correct for your system! llm = LlamaCpp( model_path="./ggml-model-q4_0.bin", callback_manager=callback_manager, verbose=True ) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Bieber was born?" llm_chain.run(question) 1. First, find out when Justin Bieber was born. 2. We know that Justin Bieber was born on March 1, 1994. 3. Next, we need to look up when the Super Bowl was played in that year. 4. The Super Bowl was played on January 28, 1995. 5. Finally, we can use this information to answer the question. The NFL team that won the Super Bowl in the year Justin Bieber was born is the San Francisco 49ers. llama_print_timings: load time = 434.15 ms llama_print_timings: sample time = 41.81 ms / 121 runs ( 0.35 ms per token) llama_print_timings: prompt eval time = 2523.78 ms / 48 tokens ( 52.58 ms per token)
https://python.langchain.com/en/latest/modules/models/llms/integrations/llamacpp.html
174e2fa82dbd-2
llama_print_timings: eval time = 23971.57 ms / 121 runs ( 198.11 ms per token) llama_print_timings: total time = 28945.95 ms '\n\n1. First, find out when Justin Bieber was born.\n2. We know that Justin Bieber was born on March 1, 1994.\n3. Next, we need to look up when the Super Bowl was played in that year.\n4. The Super Bowl was played on January 28, 1995.\n5. Finally, we can use this information to answer the question. The NFL team that won the Super Bowl in the year Justin Bieber was born is the San Francisco 49ers.' GPU# If the installation with BLAS backend was correct, you will see an BLAS = 1 indicator in model properties. Two of the most important parameters for use with GPU are: n_gpu_layers - determines how many layers of the model are offloaded to your GPU. n_batch - how many tokens are processed in parallel. Setting these parameters correctly will dramatically improve the evaluation speed (see wrapper code for more details). n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool. n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU. # Make sure the model path is correct for your system! llm = LlamaCpp( model_path="./ggml-model-q4_0.bin", n_gpu_layers=n_gpu_layers, n_batch=n_batch, callback_manager=callback_manager, verbose=True ) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
https://python.langchain.com/en/latest/modules/models/llms/integrations/llamacpp.html
174e2fa82dbd-3
question = "What NFL team won the Super Bowl in the year Justin Bieber was born?" llm_chain.run(question) We are looking for an NFL team that won the Super Bowl when Justin Bieber (born March 1, 1994) was born. First, let's look up which year is closest to when Justin Bieber was born: * The year before he was born: 1993 * The year of his birth: 1994 * The year after he was born: 1995 We want to know what NFL team won the Super Bowl in the year that is closest to when Justin Bieber was born. Therefore, we should look up the NFL team that won the Super Bowl in either 1993 or 1994. Now let's find out which NFL team did win the Super Bowl in either of those years: * In 1993, the San Francisco 49ers won the Super Bowl against the Dallas Cowboys by a score of 20-16. * In 1994, the San Francisco 49ers won the Super Bowl again, this time against the San Diego Chargers by a score of 49-26. llama_print_timings: load time = 238.10 ms llama_print_timings: sample time = 84.23 ms / 256 runs ( 0.33 ms per token) llama_print_timings: prompt eval time = 238.04 ms / 49 tokens ( 4.86 ms per token) llama_print_timings: eval time = 10391.96 ms / 255 runs ( 40.75 ms per token) llama_print_timings: total time = 15664.80 ms
https://python.langchain.com/en/latest/modules/models/llms/integrations/llamacpp.html
174e2fa82dbd-4
llama_print_timings: total time = 15664.80 ms " We are looking for an NFL team that won the Super Bowl when Justin Bieber (born March 1, 1994) was born. \n\nFirst, let's look up which year is closest to when Justin Bieber was born:\n\n* The year before he was born: 1993\n* The year of his birth: 1994\n* The year after he was born: 1995\n\nWe want to know what NFL team won the Super Bowl in the year that is closest to when Justin Bieber was born. Therefore, we should look up the NFL team that won the Super Bowl in either 1993 or 1994.\n\nNow let's find out which NFL team did win the Super Bowl in either of those years:\n\n* In 1993, the San Francisco 49ers won the Super Bowl against the Dallas Cowboys by a score of 20-16.\n* In 1994, the San Francisco 49ers won the Super Bowl again, this time against the San Diego Chargers by a score of 49-26.\n" previous Structured Decoding with JSONFormer next Manifest Contents Installation CPU only installation Installation with OpenBLAS / cuBLAS / CLBlast Usage CPU GPU By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/llamacpp.html
901c775a231d-0
.ipynb .pdf Modal Modal# The Modal Python Library provides convenient, on-demand access to serverless cloud compute from Python scripts on your local computer. The Modal itself does not provide any LLMs but only the infrastructure. This example goes over how to use LangChain to interact with Modal. Here is another example how to use LangChain to interact with Modal. !pip install modal-client # register and get a new token !modal token new [?25lLaunching login page in your browser window[33m...[0m [2KIf this is not showing up, please copy this URL into your web browser manually: [2Km⠙[0m Waiting for authentication in the web browser... ]8;id=417802;https://modal.com/token-flow/tf-ptEuGecm7T1T5YQe42kwM1\[4;94mhttps://modal.com/token-flow/tf-ptEuGecm7T1T5YQe42kwM1[0m]8;;\ [2K[32m⠙[0m Waiting for authentication in the web browser... [1A[2K^C [31mAborted.[0m Follow these instructions to deal with secrets. from langchain.llms import Modal from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Modal(endpoint_url="YOUR_ENDPOINT_URL") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous Manifest next MosaicML By Harrison Chase
https://python.langchain.com/en/latest/modules/models/llms/integrations/modal.html
901c775a231d-1
previous Manifest next MosaicML By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/modal.html
27f12aec27bf-0
.ipynb .pdf Aleph Alpha Aleph Alpha# The Luminous series is a family of large language models. This example goes over how to use LangChain to interact with Aleph Alpha models # Install the package !pip install aleph-alpha-client # create a new token: https://docs.aleph-alpha.com/docs/account/#create-a-new-token from getpass import getpass ALEPH_ALPHA_API_KEY = getpass() from langchain.llms import AlephAlpha from langchain import PromptTemplate, LLMChain template = """Q: {question} A:""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = AlephAlpha(model="luminous-extended", maximum_tokens=20, stop_sequences=["Q:"], aleph_alpha_api_key=ALEPH_ALPHA_API_KEY) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is AI?" llm_chain.run(question) ' Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems.\n' previous AI21 next Anyscale By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/aleph_alpha.html
2535554d7de0-0
.ipynb .pdf Structured Decoding with JSONFormer Contents HuggingFace Baseline JSONFormer LLM Wrapper Structured Decoding with JSONFormer# JSONFormer is a library that wraps local HuggingFace pipeline models for structured decoding of a subset of the JSON Schema. It works by filling in the structure tokens and then sampling the content tokens from the model. Warning - this module is still experimental !pip install --upgrade jsonformer > /dev/null HuggingFace Baseline# First, let’s establish a qualitative baseline by checking the output of the model without structured decoding. import logging logging.basicConfig(level=logging.ERROR) from typing import Optional from langchain.tools import tool import os import json import requests HF_TOKEN = os.environ.get("HUGGINGFACE_API_KEY") @tool def ask_star_coder(query: str, temperature: float = 1.0, max_new_tokens: float = 250): """Query the BigCode StarCoder model about coding questions.""" url = "https://api-inference.huggingface.co/models/bigcode/starcoder" headers = { "Authorization": f"Bearer {HF_TOKEN}", "content-type": "application/json" } payload = { "inputs": f"{query}\n\nAnswer:", "temperature": temperature, "max_new_tokens": int(max_new_tokens), } response = requests.post(url, headers=headers, data=json.dumps(payload)) response.raise_for_status() return json.loads(response.content.decode("utf-8")) prompt = """You must respond using JSON format, with a single action and single action input. You may 'ask_star_coder' for help on coding problems. {arg_schema} EXAMPLES ----
https://python.langchain.com/en/latest/modules/models/llms/integrations/jsonformer_experimental.html
2535554d7de0-1
{arg_schema} EXAMPLES ---- Human: "So what's all this about a GIL?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What is a GIL?", "temperature": 0.0, "max_new_tokens": 100}}" }} Observation: "The GIL is python's Global Interpreter Lock" Human: "Could you please write a calculator program in LISP?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "Write a calculator program in LISP", "temperature": 0.0, "max_new_tokens": 250}} }} Observation: "(defun add (x y) (+ x y))\n(defun sub (x y) (- x y ))" Human: "What's the difference between an SVM and an LLM?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What's the difference between SGD and an SVM?", "temperature": 1.0, "max_new_tokens": 250}} }} Observation: "SGD stands for stochastic gradient descent, while an SVM is a Support Vector Machine." BEGIN! Answer the Human's question as best as you are able. ------ Human: 'What's the difference between an iterator and an iterable?' AI Assistant:""".format(arg_schema=ask_star_coder.args) from transformers import pipeline from langchain.llms import HuggingFacePipeline hf_model = pipeline("text-generation", model="cerebras/Cerebras-GPT-590M", max_new_tokens=200) original_model = HuggingFacePipeline(pipeline=hf_model)
https://python.langchain.com/en/latest/modules/models/llms/integrations/jsonformer_experimental.html
2535554d7de0-2
original_model = HuggingFacePipeline(pipeline=hf_model) generated = original_model.predict(prompt, stop=["Observation:", "Human:"]) print(generated) Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. 'What's the difference between an iterator and an iterable?' That’s not so impressive, is it? It didn’t follow the JSON format at all! Let’s try with the structured decoder. JSONFormer LLM Wrapper# Let’s try that again, now providing a the Action input’s JSON Schema to the model. decoder_schema = { "title": "Decoding Schema", "type": "object", "properties": { "action": {"type": "string", "default": ask_star_coder.name}, "action_input": { "type": "object", "properties": ask_star_coder.args, } } } from langchain.experimental.llms import JsonFormer json_former = JsonFormer(json_schema=decoder_schema, pipeline=hf_model) results = json_former.predict(prompt, stop=["Observation:", "Human:"]) print(results) {"action": "ask_star_coder", "action_input": {"query": "What's the difference between an iterator and an iter", "temperature": 0.0, "max_new_tokens": 50.0}} Voila! Free of parsing errors. previous Huggingface TextGen Inference next Llama-cpp Contents HuggingFace Baseline JSONFormer LLM Wrapper By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/modules/models/llms/integrations/jsonformer_experimental.html