id
stringlengths
14
16
text
stringlengths
29
2.73k
source
stringlengths
49
117
d04aca0fd0ca-1
"""Whether or not to use sampling; use greedy decoding otherwise.""" max_length: Optional[int] = None """The maximum length of the sequence to be generated.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" huggingface_api_key: Optional[str] = None class Config: """Configuration for this pydantic config.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transfered to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingface_api_key = get_from_dict_or_env( values, "huggingface_api_key", "HUGGINGFACE_API_KEY" ) try: from petals import DistributedBloomForCausalLM from transformers import BloomTokenizerFast
https://python.langchain.com/en/latest/_modules/langchain/llms/petals.html
d04aca0fd0ca-2
from petals import DistributedBloomForCausalLM from transformers import BloomTokenizerFast model_name = values["model_name"] values["tokenizer"] = BloomTokenizerFast.from_pretrained(model_name) values["client"] = DistributedBloomForCausalLM.from_pretrained(model_name) values["huggingface_api_key"] = huggingface_api_key except ImportError: raise ValueError( "Could not import transformers or petals python package." "Please install with `pip install -U transformers petals`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Petals API.""" normal_params = { "temperature": self.temperature, "max_new_tokens": self.max_new_tokens, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, "max_length": self.max_length, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "petals" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: """Call the Petals API.""" params = self._default_params
https://python.langchain.com/en/latest/_modules/langchain/llms/petals.html
d04aca0fd0ca-3
"""Call the Petals API.""" params = self._default_params inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"] outputs = self.client.generate(inputs, **params) text = self.tokenizer.decode(outputs[0]) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/llms/petals.html
8a77fb1c3855-0
Source code for langchain.experimental.autonomous_agents.autogpt.agent from __future__ import annotations from typing import List, Optional from pydantic import ValidationError from langchain.chains.llm import LLMChain from langchain.chat_models.base import BaseChatModel from langchain.experimental.autonomous_agents.autogpt.output_parser import ( AutoGPTOutputParser, BaseAutoGPTOutputParser, ) from langchain.experimental.autonomous_agents.autogpt.prompt import AutoGPTPrompt from langchain.experimental.autonomous_agents.autogpt.prompt_generator import ( FINISH_NAME, ) from langchain.schema import ( AIMessage, BaseMessage, Document, HumanMessage, SystemMessage, ) from langchain.tools.base import BaseTool from langchain.tools.human.tool import HumanInputRun from langchain.vectorstores.base import VectorStoreRetriever [docs]class AutoGPT: """Agent class for interacting with Auto-GPT.""" def __init__( self, ai_name: str, memory: VectorStoreRetriever, chain: LLMChain, output_parser: BaseAutoGPTOutputParser, tools: List[BaseTool], feedback_tool: Optional[HumanInputRun] = None, ): self.ai_name = ai_name self.memory = memory self.full_message_history: List[BaseMessage] = [] self.next_action_count = 0 self.chain = chain self.output_parser = output_parser self.tools = tools self.feedback_tool = feedback_tool @classmethod def from_llm_and_tools( cls, ai_name: str, ai_role: str, memory: VectorStoreRetriever,
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
8a77fb1c3855-1
ai_role: str, memory: VectorStoreRetriever, tools: List[BaseTool], llm: BaseChatModel, human_in_the_loop: bool = False, output_parser: Optional[BaseAutoGPTOutputParser] = None, ) -> AutoGPT: prompt = AutoGPTPrompt( ai_name=ai_name, ai_role=ai_role, tools=tools, input_variables=["memory", "messages", "goals", "user_input"], token_counter=llm.get_num_tokens, ) human_feedback_tool = HumanInputRun() if human_in_the_loop else None chain = LLMChain(llm=llm, prompt=prompt) return cls( ai_name, memory, chain, output_parser or AutoGPTOutputParser(), tools, feedback_tool=human_feedback_tool, ) def run(self, goals: List[str]) -> str: user_input = ( "Determine which next command to use, " "and respond using the format specified above:" ) # Interaction Loop loop_count = 0 while True: # Discontinue if continuous limit is reached loop_count += 1 # Send message to AI, get response assistant_reply = self.chain.run( goals=goals, messages=self.full_message_history, memory=self.memory, user_input=user_input, ) # Print Assistant thoughts print(assistant_reply) self.full_message_history.append(HumanMessage(content=user_input)) self.full_message_history.append(AIMessage(content=assistant_reply)) # Get command name and arguments
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
8a77fb1c3855-2
# Get command name and arguments action = self.output_parser.parse(assistant_reply) tools = {t.name: t for t in self.tools} if action.name == FINISH_NAME: return action.args["response"] if action.name in tools: tool = tools[action.name] try: observation = tool.run(action.args) except ValidationError as e: observation = ( f"Validation Error in args: {str(e)}, args: {action.args}" ) except Exception as e: observation = ( f"Error: {str(e)}, {type(e).__name__}, args: {action.args}" ) result = f"Command {tool.name} returned: {observation}" elif action.name == "ERROR": result = f"Error: {action.args}. " else: result = ( f"Unknown command '{action.name}'. " f"Please refer to the 'COMMANDS' list for available " f"commands and only respond in the specified JSON format." ) memory_to_add = ( f"Assistant Reply: {assistant_reply} " f"\nResult: {result} " ) if self.feedback_tool is not None: feedback = f"\n{self.feedback_tool.run('Input: ')}" if feedback in {"q", "stop"}: print("EXITING") return "EXITING" memory_to_add += feedback self.memory.add_documents([Document(page_content=memory_to_add)]) self.full_message_history.append(SystemMessage(content=result)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/autogpt/agent.html
fd27ab7661c6-0
Source code for langchain.experimental.autonomous_agents.baby_agi.baby_agi """BabyAGI agent.""" from collections import deque from typing import Any, Dict, List, Optional from pydantic import BaseModel, Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.experimental.autonomous_agents.baby_agi.task_creation import ( TaskCreationChain, ) from langchain.experimental.autonomous_agents.baby_agi.task_execution import ( TaskExecutionChain, ) from langchain.experimental.autonomous_agents.baby_agi.task_prioritization import ( TaskPrioritizationChain, ) from langchain.vectorstores.base import VectorStore [docs]class BabyAGI(Chain, BaseModel): """Controller model for the BabyAGI agent.""" task_list: deque = Field(default_factory=deque) task_creation_chain: Chain = Field(...) task_prioritization_chain: Chain = Field(...) execution_chain: Chain = Field(...) task_id_counter: int = Field(1) vectorstore: VectorStore = Field(init=False) max_iterations: Optional[int] = None [docs] class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def add_task(self, task: Dict) -> None: self.task_list.append(task) def print_task_list(self) -> None: print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") for t in self.task_list: print(str(t["task_id"]) + ": " + t["task_name"])
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
fd27ab7661c6-1
print(str(t["task_id"]) + ": " + t["task_name"]) def print_next_task(self, task: Dict) -> None: print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") print(str(task["task_id"]) + ": " + task["task_name"]) def print_task_result(self, result: str) -> None: print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") print(result) @property def input_keys(self) -> List[str]: return ["objective"] @property def output_keys(self) -> List[str]: return [] [docs] def get_next_task( self, result: str, task_description: str, objective: str ) -> List[Dict]: """Get the next task.""" task_names = [t["task_name"] for t in self.task_list] incomplete_tasks = ", ".join(task_names) response = self.task_creation_chain.run( result=result, task_description=task_description, incomplete_tasks=incomplete_tasks, objective=objective, ) new_tasks = response.split("\n") return [ {"task_name": task_name} for task_name in new_tasks if task_name.strip() ] [docs] def prioritize_tasks(self, this_task_id: int, objective: str) -> List[Dict]: """Prioritize tasks.""" task_names = [t["task_name"] for t in list(self.task_list)] next_task_id = int(this_task_id) + 1
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
fd27ab7661c6-2
next_task_id = int(this_task_id) + 1 response = self.task_prioritization_chain.run( task_names=", ".join(task_names), next_task_id=str(next_task_id), objective=objective, ) new_tasks = response.split("\n") prioritized_task_list = [] for task_string in new_tasks: if not task_string.strip(): continue task_parts = task_string.strip().split(".", 1) if len(task_parts) == 2: task_id = task_parts[0].strip() task_name = task_parts[1].strip() prioritized_task_list.append( {"task_id": task_id, "task_name": task_name} ) return prioritized_task_list def _get_top_tasks(self, query: str, k: int) -> List[str]: """Get the top k tasks based on the query.""" results = self.vectorstore.similarity_search(query, k=k) if not results: return [] return [str(item.metadata["task"]) for item in results] [docs] def execute_task(self, objective: str, task: str, k: int = 5) -> str: """Execute a task.""" context = self._get_top_tasks(query=objective, k=k) return self.execution_chain.run( objective=objective, context="\n".join(context), task=task ) def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run the agent.""" objective = inputs["objective"]
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
fd27ab7661c6-3
"""Run the agent.""" objective = inputs["objective"] first_task = inputs.get("first_task", "Make a todo list") self.add_task({"task_id": 1, "task_name": first_task}) num_iters = 0 while True: if self.task_list: self.print_task_list() # Step 1: Pull the first task task = self.task_list.popleft() self.print_next_task(task) # Step 2: Execute the task result = self.execute_task(objective, task["task_name"]) this_task_id = int(task["task_id"]) self.print_task_result(result) # Step 3: Store the result in Pinecone result_id = f"result_{task['task_id']}" self.vectorstore.add_texts( texts=[result], metadatas=[{"task": task["task_name"]}], ids=[result_id], ) # Step 4: Create new tasks and reprioritize task list new_tasks = self.get_next_task(result, task["task_name"], objective) for new_task in new_tasks: self.task_id_counter += 1 new_task.update({"task_id": self.task_id_counter}) self.add_task(new_task) self.task_list = deque(self.prioritize_tasks(this_task_id, objective)) num_iters += 1 if self.max_iterations is not None and num_iters == self.max_iterations: print( "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m" ) break return {} [docs] @classmethod def from_llm(
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
fd27ab7661c6-4
return {} [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, vectorstore: VectorStore, verbose: bool = False, task_execution_chain: Optional[Chain] = None, **kwargs: Dict[str, Any], ) -> "BabyAGI": """Initialize the BabyAGI Controller.""" task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose) task_prioritization_chain = TaskPrioritizationChain.from_llm( llm, verbose=verbose ) if task_execution_chain is None: execution_chain: Chain = TaskExecutionChain.from_llm(llm, verbose=verbose) else: execution_chain = task_execution_chain return cls( task_creation_chain=task_creation_chain, task_prioritization_chain=task_prioritization_chain, execution_chain=execution_chain, vectorstore=vectorstore, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/experimental/autonomous_agents/baby_agi/baby_agi.html
db2e2cea29a6-0
Source code for langchain.experimental.generative_agents.memory import logging import re from datetime import datetime from typing import Any, Dict, List, Optional from langchain import LLMChain from langchain.base_language import BaseLanguageModel from langchain.prompts import PromptTemplate from langchain.retrievers import TimeWeightedVectorStoreRetriever from langchain.schema import BaseMemory, Document from langchain.utils import mock_now logger = logging.getLogger(__name__) [docs]class GenerativeAgentMemory(BaseMemory): llm: BaseLanguageModel """The core language model.""" memory_retriever: TimeWeightedVectorStoreRetriever """The retriever to fetch related memories.""" verbose: bool = False reflection_threshold: Optional[float] = None """When aggregate_importance exceeds reflection_threshold, stop to reflect.""" current_plan: List[str] = [] """The current plan of the agent.""" # A weight of 0.15 makes this less important than it # would be otherwise, relative to salience and time importance_weight: float = 0.15 """How much weight to assign the memory importance.""" aggregate_importance: float = 0.0 # : :meta private: """Track the sum of the 'importance' of recent memories. Triggers reflection when it reaches reflection_threshold.""" max_tokens_limit: int = 1200 # : :meta private: # input keys queries_key: str = "queries" most_recent_memories_token_key: str = "recent_memories_token" add_memory_key: str = "add_memory" # output keys relevant_memories_key: str = "relevant_memories"
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
db2e2cea29a6-1
# output keys relevant_memories_key: str = "relevant_memories" relevant_memories_simple_key: str = "relevant_memories_simple" most_recent_memories_key: str = "most_recent_memories" now_key: str = "now" reflecting: bool = False def chain(self, prompt: PromptTemplate) -> LLMChain: return LLMChain(llm=self.llm, prompt=prompt, verbose=self.verbose) @staticmethod def _parse_list(text: str) -> List[str]: """Parse a newline-separated string into a list of strings.""" lines = re.split(r"\n", text.strip()) lines = [line for line in lines if line.strip()] # remove empty lines return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines] def _get_topics_of_reflection(self, last_k: int = 50) -> List[str]: """Return the 3 most salient high-level questions about recent observations.""" prompt = PromptTemplate.from_template( "{observations}\n\n" + "Given only the information above, what are the 3 most salient" + " high-level questions we can answer about the subjects in" + " the statements? Provide each question on a new line.\n\n" ) observations = self.memory_retriever.memory_stream[-last_k:] observation_str = "\n".join([o.page_content for o in observations]) result = self.chain(prompt).run(observations=observation_str) return self._parse_list(result) def _get_insights_on_topic( self, topic: str, now: Optional[datetime] = None ) -> List[str]:
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
db2e2cea29a6-2
) -> List[str]: """Generate 'insights' on a topic of reflection, based on pertinent memories.""" prompt = PromptTemplate.from_template( "Statements about {topic}\n" + "{related_statements}\n\n" + "What 5 high-level insights can you infer from the above statements?" + " (example format: insight (because of 1, 5, 3))" ) related_memories = self.fetch_memories(topic, now=now) related_statements = "\n".join( [ f"{i+1}. {memory.page_content}" for i, memory in enumerate(related_memories) ] ) result = self.chain(prompt).run( topic=topic, related_statements=related_statements ) # TODO: Parse the connections between memories and insights return self._parse_list(result) [docs] def pause_to_reflect(self, now: Optional[datetime] = None) -> List[str]: """Reflect on recent observations and generate 'insights'.""" if self.verbose: logger.info("Character is reflecting") new_insights = [] topics = self._get_topics_of_reflection() for topic in topics: insights = self._get_insights_on_topic(topic, now=now) for insight in insights: self.add_memory(insight, now=now) new_insights.extend(insights) return new_insights def _score_memory_importance(self, memory_content: str) -> float: """Score the absolute importance of the given memory.""" prompt = PromptTemplate.from_template( "On the scale of 1 to 10, where 1 is purely mundane"
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
db2e2cea29a6-3
"On the scale of 1 to 10, where 1 is purely mundane" + " (e.g., brushing teeth, making bed) and 10 is" + " extremely poignant (e.g., a break up, college" + " acceptance), rate the likely poignancy of the" + " following piece of memory. Respond with a single integer." + "\nMemory: {memory_content}" + "\nRating: " ) score = self.chain(prompt).run(memory_content=memory_content).strip() if self.verbose: logger.info(f"Importance score: {score}") match = re.search(r"^\D*(\d+)", score) if match: return (float(match.group(1)) / 10) * self.importance_weight else: return 0.0 [docs] def add_memory( self, memory_content: str, now: Optional[datetime] = None ) -> List[str]: """Add an observation or memory to the agent's memory.""" importance_score = self._score_memory_importance(memory_content) self.aggregate_importance += importance_score document = Document( page_content=memory_content, metadata={"importance": importance_score} ) result = self.memory_retriever.add_documents([document], current_time=now) # After an agent has processed a certain amount of memories (as measured by # aggregate importance), it is time to reflect on recent events to add # more synthesized memories to the agent's memory stream. if ( self.reflection_threshold is not None and self.aggregate_importance > self.reflection_threshold and not self.reflecting ): self.reflecting = True
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
db2e2cea29a6-4
and not self.reflecting ): self.reflecting = True self.pause_to_reflect(now=now) # Hack to clear the importance from reflection self.aggregate_importance = 0.0 self.reflecting = False return result [docs] def fetch_memories( self, observation: str, now: Optional[datetime] = None ) -> List[Document]: """Fetch related memories.""" if now is not None: with mock_now(now): return self.memory_retriever.get_relevant_documents(observation) else: return self.memory_retriever.get_relevant_documents(observation) def format_memories_detail(self, relevant_memories: List[Document]) -> str: content_strs = set() content = [] for mem in relevant_memories: if mem.page_content in content_strs: continue content_strs.add(mem.page_content) created_time = mem.metadata["created_at"].strftime("%B %d, %Y, %I:%M %p") content.append(f"- {created_time}: {mem.page_content.strip()}") return "\n".join([f"{mem}" for mem in content]) def format_memories_simple(self, relevant_memories: List[Document]) -> str: return "; ".join([f"{mem.page_content}" for mem in relevant_memories]) def _get_memories_until_limit(self, consumed_tokens: int) -> str: """Reduce the number of tokens in the documents.""" result = [] for doc in self.memory_retriever.memory_stream[::-1]: if consumed_tokens >= self.max_tokens_limit: break consumed_tokens += self.llm.get_num_tokens(doc.page_content)
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
db2e2cea29a6-5
break consumed_tokens += self.llm.get_num_tokens(doc.page_content) if consumed_tokens < self.max_tokens_limit: result.append(doc) return self.format_memories_simple(result) @property def memory_variables(self) -> List[str]: """Input keys this memory class will load dynamically.""" return [] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return key-value pairs given the text input to the chain.""" queries = inputs.get(self.queries_key) now = inputs.get(self.now_key) if queries is not None: relevant_memories = [ mem for query in queries for mem in self.fetch_memories(query, now=now) ] return { self.relevant_memories_key: self.format_memories_detail( relevant_memories ), self.relevant_memories_simple_key: self.format_memories_simple( relevant_memories ), } most_recent_memories_token = inputs.get(self.most_recent_memories_token_key) if most_recent_memories_token is not None: return { self.most_recent_memories_key: self._get_memories_until_limit( most_recent_memories_token ) } return {} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None: """Save the context of this model run to memory.""" # TODO: fix the save memory key mem = outputs.get(self.add_memory_key) now = outputs.get(self.now_key) if mem: self.add_memory(mem, now=now) [docs] def clear(self) -> None:
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
db2e2cea29a6-6
[docs] def clear(self) -> None: """Clear memory contents.""" # TODO By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/memory.html
5c718024d5f5-0
Source code for langchain.experimental.generative_agents.generative_agent import re from datetime import datetime from typing import Any, Dict, List, Optional, Tuple from pydantic import BaseModel, Field from langchain import LLMChain from langchain.base_language import BaseLanguageModel from langchain.experimental.generative_agents.memory import GenerativeAgentMemory from langchain.prompts import PromptTemplate [docs]class GenerativeAgent(BaseModel): """A character with memory and innate characteristics.""" name: str """The character's name.""" age: Optional[int] = None """The optional age of the character.""" traits: str = "N/A" """Permanent traits to ascribe to the character.""" status: str """The traits of the character you wish not to change.""" memory: GenerativeAgentMemory """The memory object that combines relevance, recency, and 'importance'.""" llm: BaseLanguageModel """The underlying language model.""" verbose: bool = False summary: str = "" #: :meta private: """Stateful self-summary generated via reflection on the character's memory.""" summary_refresh_seconds: int = 3600 #: :meta private: """How frequently to re-generate the summary.""" last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private: """The last time the character's summary was regenerated.""" daily_summaries: List[str] = Field(default_factory=list) # : :meta private: """Summary of the events in the plan that the agent took.""" [docs] class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True # LLM-related methods @staticmethod
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
5c718024d5f5-1
arbitrary_types_allowed = True # LLM-related methods @staticmethod def _parse_list(text: str) -> List[str]: """Parse a newline-separated string into a list of strings.""" lines = re.split(r"\n", text.strip()) return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines] def chain(self, prompt: PromptTemplate) -> LLMChain: return LLMChain( llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory ) def _get_entity_from_observation(self, observation: str) -> str: prompt = PromptTemplate.from_template( "What is the observed entity in the following observation? {observation}" + "\nEntity=" ) return self.chain(prompt).run(observation=observation).strip() def _get_entity_action(self, observation: str, entity_name: str) -> str: prompt = PromptTemplate.from_template( "What is the {entity} doing in the following observation? {observation}" + "\nThe {entity} is" ) return ( self.chain(prompt).run(entity=entity_name, observation=observation).strip() ) [docs] def summarize_related_memories(self, observation: str) -> str: """Summarize memories that are most relevant to an observation.""" prompt = PromptTemplate.from_template( """ {q1}? Context from memory: {relevant_memories} Relevant context: """ ) entity_name = self._get_entity_from_observation(observation) entity_action = self._get_entity_action(observation, entity_name)
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
5c718024d5f5-2
entity_action = self._get_entity_action(observation, entity_name) q1 = f"What is the relationship between {self.name} and {entity_name}" q2 = f"{entity_name} is {entity_action}" return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip() def _generate_reaction( self, observation: str, suffix: str, now: Optional[datetime] = None ) -> str: """React to a given observation or dialogue act.""" prompt = PromptTemplate.from_template( "{agent_summary_description}" + "\nIt is {current_time}." + "\n{agent_name}'s status: {agent_status}" + "\nSummary of relevant context from {agent_name}'s memory:" + "\n{relevant_memories}" + "\nMost recent observations: {most_recent_memories}" + "\nObservation: {observation}" + "\n\n" + suffix ) agent_summary_description = self.get_summary(now=now) relevant_memories_str = self.summarize_related_memories(observation) current_time_str = ( datetime.now().strftime("%B %d, %Y, %I:%M %p") if now is None else now.strftime("%B %d, %Y, %I:%M %p") ) kwargs: Dict[str, Any] = dict( agent_summary_description=agent_summary_description, current_time=current_time_str, relevant_memories=relevant_memories_str, agent_name=self.name, observation=observation, agent_status=self.status, ) consumed_tokens = self.llm.get_num_tokens(
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
5c718024d5f5-3
) consumed_tokens = self.llm.get_num_tokens( prompt.format(most_recent_memories="", **kwargs) ) kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens return self.chain(prompt=prompt).run(**kwargs).strip() def _clean_response(self, text: str) -> str: return re.sub(f"^{self.name} ", "", text.strip()).strip() [docs] def generate_reaction( self, observation: str, now: Optional[datetime] = None ) -> Tuple[bool, str]: """React to a given observation.""" call_to_action_template = ( "Should {agent_name} react to the observation, and if so," + " what would be an appropriate reaction? Respond in one line." + ' If the action is to engage in dialogue, write:\nSAY: "what to say"' + "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)." + "\nEither do nothing, react, or say something but not both.\n\n" ) full_result = self._generate_reaction( observation, call_to_action_template, now=now ) result = full_result.strip().split("\n")[0] # AAA self.memory.save_context( {}, { self.memory.add_memory_key: f"{self.name} observed " f"{observation} and reacted by {result}", self.memory.now_key: now, }, ) if "REACT:" in result: reaction = self._clean_response(result.split("REACT:")[-1]) return False, f"{self.name} {reaction}" if "SAY:" in result:
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
5c718024d5f5-4
if "SAY:" in result: said_value = self._clean_response(result.split("SAY:")[-1]) return True, f"{self.name} said {said_value}" else: return False, result [docs] def generate_dialogue_response( self, observation: str, now: Optional[datetime] = None ) -> Tuple[bool, str]: """React to a given observation.""" call_to_action_template = ( "What would {agent_name} say? To end the conversation, write:" ' GOODBYE: "what to say". Otherwise to continue the conversation,' ' write: SAY: "what to say next"\n\n' ) full_result = self._generate_reaction( observation, call_to_action_template, now=now ) result = full_result.strip().split("\n")[0] if "GOODBYE:" in result: farewell = self._clean_response(result.split("GOODBYE:")[-1]) self.memory.save_context( {}, { self.memory.add_memory_key: f"{self.name} observed " f"{observation} and said {farewell}", self.memory.now_key: now, }, ) return False, f"{self.name} said {farewell}" if "SAY:" in result: response_text = self._clean_response(result.split("SAY:")[-1]) self.memory.save_context( {}, { self.memory.add_memory_key: f"{self.name} observed " f"{observation} and said {response_text}", self.memory.now_key: now, }, ) return True, f"{self.name} said {response_text}"
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
5c718024d5f5-5
) return True, f"{self.name} said {response_text}" else: return False, result ###################################################### # Agent stateful' summary methods. # # Each dialog or response prompt includes a header # # summarizing the agent's self-description. This is # # updated periodically through probing its memories # ###################################################### def _compute_agent_summary(self) -> str: """""" prompt = PromptTemplate.from_template( "How would you summarize {name}'s core characteristics given the" + " following statements:\n" + "{relevant_memories}" + "Do not embellish." + "\n\nSummary: " ) # The agent seeks to think about their core characteristics. return ( self.chain(prompt) .run(name=self.name, queries=[f"{self.name}'s core characteristics"]) .strip() ) [docs] def get_summary( self, force_refresh: bool = False, now: Optional[datetime] = None ) -> str: """Return a descriptive summary of the agent.""" current_time = datetime.now() if now is None else now since_refresh = (current_time - self.last_refreshed).seconds if ( not self.summary or since_refresh >= self.summary_refresh_seconds or force_refresh ): self.summary = self._compute_agent_summary() self.last_refreshed = current_time age = self.age if self.age is not None else "N/A" return ( f"Name: {self.name} (age: {age})" + f"\nInnate traits: {self.traits}"
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
5c718024d5f5-6
+ f"\nInnate traits: {self.traits}" + f"\n{self.summary}" ) [docs] def get_full_header( self, force_refresh: bool = False, now: Optional[datetime] = None ) -> str: """Return a full header of the agent's status, summary, and current time.""" now = datetime.now() if now is None else now summary = self.get_summary(force_refresh=force_refresh, now=now) current_time_str = now.strftime("%B %d, %Y, %I:%M %p") return ( f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}" ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/experimental/generative_agents/generative_agent.html
e16cbe7d80b8-0
Source code for langchain.chains.mapreduce """Map-reduce chain. Splits up a document, sends the smaller parts to the LLM with one prompt, then combines the results with another one. """ from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Extra from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.llm import LLMChain from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.text_splitter import TextSplitter [docs]class MapReduceChain(Chain): """Map-reduce chain.""" combine_documents_chain: BaseCombineDocumentsChain """Chain to use to combine documents.""" text_splitter: TextSplitter """Text splitter to use.""" input_key: str = "input_text" #: :meta private: output_key: str = "output_text" #: :meta private: [docs] @classmethod def from_params( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, text_splitter: TextSplitter, callbacks: Callbacks = None, **kwargs: Any, ) -> MapReduceChain: """Construct a map-reduce chain that uses the chain for map and reduce.""" llm_chain = LLMChain(llm=llm, prompt=prompt, callbacks=callbacks)
https://python.langchain.com/en/latest/_modules/langchain/chains/mapreduce.html
e16cbe7d80b8-1
reduce_chain = StuffDocumentsChain(llm_chain=llm_chain, callbacks=callbacks) combine_documents_chain = MapReduceDocumentsChain( llm_chain=llm_chain, combine_document_chain=reduce_chain, callbacks=callbacks, ) return cls( combine_documents_chain=combine_documents_chain, text_splitter=text_splitter, callbacks=callbacks, **kwargs, ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() # Split the larger text into smaller chunks. texts = self.text_splitter.split_text(inputs[self.input_key]) docs = [Document(page_content=text) for text in texts] outputs = self.combine_documents_chain.run( input_documents=docs, callbacks=_run_manager.get_child() ) return {self.output_key: outputs} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/mapreduce.html
3299baebe475-0
Source code for langchain.chains.transform """Chain that runs an arbitrary python function.""" from typing import Callable, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain [docs]class TransformChain(Chain): """Chain transform chain output. Example: .. code-block:: python from langchain import TransformChain transform_chain = TransformChain(input_variables=["text"], output_variables["entities"], transform=func()) """ input_variables: List[str] output_variables: List[str] transform: Callable[[Dict[str, str]], Dict[str, str]] @property def input_keys(self) -> List[str]: """Expect input keys. :meta private: """ return self.input_variables @property def output_keys(self) -> List[str]: """Return output keys. :meta private: """ return self.output_variables def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: return self.transform(inputs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/transform.html
b5fe4cebc137-0
Source code for langchain.chains.moderation """Pass input through a moderation endpoint.""" from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.utils import get_from_dict_or_env [docs]class OpenAIModerationChain(Chain): """Pass input through a moderation endpoint. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() """ client: Any #: :meta private: model_name: Optional[str] = None """Moderation model name to use.""" error: bool = False """Whether or not to error if bad content was found.""" input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: openai_api_key: Optional[str] = None openai_organization: Optional[str] = None @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_organization = get_from_dict_or_env( values, "openai_organization",
https://python.langchain.com/en/latest/_modules/langchain/chains/moderation.html
b5fe4cebc137-1
values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai openai.api_key = openai_api_key if openai_organization: openai.organization = openai_organization values["client"] = openai.Moderation except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] def _moderate(self, text: str, results: dict) -> str: if results["flagged"]: error_str = "Text was found that violates OpenAI's content policy." if self.error: raise ValueError(error_str) else: return error_str return text def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: text = inputs[self.input_key] results = self.client.create(text) output = self._moderate(text, results["results"][0]) return {self.output_key: output} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/moderation.html
bdef456eeb70-0
Source code for langchain.chains.loading """Functionality for loading chains.""" import json from pathlib import Path from typing import Any, Union import yaml from langchain.chains.api.base import APIChain from langchain.chains.base import Chain from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain from langchain.chains.combine_documents.refine import RefineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.hyde.base import HypotheticalDocumentEmbedder from langchain.chains.llm import LLMChain from langchain.chains.llm_bash.base import LLMBashChain from langchain.chains.llm_checker.base import LLMCheckerChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.llm_requests import LLMRequestsChain from langchain.chains.pal.base import PALChain from langchain.chains.qa_with_sources.base import QAWithSourcesChain from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain from langchain.chains.retrieval_qa.base import VectorDBQA from langchain.chains.sql_database.base import SQLDatabaseChain from langchain.llms.loading import load_llm, load_llm_from_config from langchain.prompts.loading import load_prompt, load_prompt_from_config from langchain.utilities.loading import try_load_from_hub URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/" def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain: """Load LLM chain from config dict.""" if "llm" in config:
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-1
if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") return LLMChain(llm=llm, prompt=prompt, **config) def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder: """Load hypothetical document embedder chain from config dict.""" if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "embeddings" in kwargs: embeddings = kwargs.pop("embeddings") else: raise ValueError("`embeddings` must be present.") return HypotheticalDocumentEmbedder( llm_chain=llm_chain, base_embeddings=embeddings, **config )
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-2
) def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) else: raise ValueError( "One of `document_prompt` or `document_prompt_path` must be present." ) return StuffDocumentsChain( llm_chain=llm_chain, document_prompt=document_prompt, **config ) def _load_map_reduce_documents_chain( config: dict, **kwargs: Any ) -> MapReduceDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") if not isinstance(llm_chain, LLMChain):
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-3
if not isinstance(llm_chain, LLMChain): raise ValueError(f"Expected LLMChain, got {llm_chain}") if "combine_document_chain" in config: combine_document_chain_config = config.pop("combine_document_chain") combine_document_chain = load_chain_from_config(combine_document_chain_config) elif "combine_document_chain_path" in config: combine_document_chain = load_chain(config.pop("combine_document_chain_path")) else: raise ValueError( "One of `combine_document_chain` or " "`combine_document_chain_path` must be present." ) if "collapse_document_chain" in config: collapse_document_chain_config = config.pop("collapse_document_chain") if collapse_document_chain_config is None: collapse_document_chain = None else: collapse_document_chain = load_chain_from_config( collapse_document_chain_config ) elif "collapse_document_chain_path" in config: collapse_document_chain = load_chain(config.pop("collapse_document_chain_path")) return MapReduceDocumentsChain( llm_chain=llm_chain, combine_document_chain=combine_document_chain, collapse_document_chain=collapse_document_chain, **config, ) def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain: llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) # llm attribute is deprecated in favor of llm_chain, here to support old configs
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-4
# llm attribute is deprecated in favor of llm_chain, here to support old configs elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) # llm_path attribute is deprecated in favor of llm_chain_path, # its to support old configs elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) if llm_chain: return LLMBashChain(llm_chain=llm_chain, prompt=prompt, **config) else: return LLMBashChain(llm=llm, prompt=prompt, **config) def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain: if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "create_draft_answer_prompt" in config: create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt") create_draft_answer_prompt = load_prompt_from_config( create_draft_answer_prompt_config )
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-5
create_draft_answer_prompt_config ) elif "create_draft_answer_prompt_path" in config: create_draft_answer_prompt = load_prompt( config.pop("create_draft_answer_prompt_path") ) if "list_assertions_prompt" in config: list_assertions_prompt_config = config.pop("list_assertions_prompt") list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config) elif "list_assertions_prompt_path" in config: list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path")) if "check_assertions_prompt" in config: check_assertions_prompt_config = config.pop("check_assertions_prompt") check_assertions_prompt = load_prompt_from_config( check_assertions_prompt_config ) elif "check_assertions_prompt_path" in config: check_assertions_prompt = load_prompt( config.pop("check_assertions_prompt_path") ) if "revised_answer_prompt" in config: revised_answer_prompt_config = config.pop("revised_answer_prompt") revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config) elif "revised_answer_prompt_path" in config: revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path")) return LLMCheckerChain( llm=llm, create_draft_answer_prompt=create_draft_answer_prompt, list_assertions_prompt=list_assertions_prompt, check_assertions_prompt=check_assertions_prompt, revised_answer_prompt=revised_answer_prompt, **config, ) def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain: llm_chain = None if "llm_chain" in config:
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-6
llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) # llm attribute is deprecated in favor of llm_chain, here to support old configs elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) # llm_path attribute is deprecated in favor of llm_chain_path, # its to support old configs elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) if llm_chain: return LLMMathChain(llm_chain=llm_chain, prompt=prompt, **config) else: return LLMMathChain(llm=llm, prompt=prompt, **config) def _load_map_rerank_documents_chain( config: dict, **kwargs: Any ) -> MapRerankDocumentsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config:
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-7
elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.") return MapRerankDocumentsChain(llm_chain=llm_chain, **config) def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain: llm_chain = None if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) # llm attribute is deprecated in favor of llm_chain, here to support old configs elif "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) # llm_path attribute is deprecated in favor of llm_chain_path, # its to support old configs elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) elif "prompt_path" in config: prompt = load_prompt(config.pop("prompt_path")) else: raise ValueError("One of `prompt` or `prompt_path` must be present.") if llm_chain:
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-8
if llm_chain: return PALChain(llm_chain=llm_chain, prompt=prompt, **config) else: return PALChain(llm=llm, prompt=prompt, **config) def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain: if "initial_llm_chain" in config: initial_llm_chain_config = config.pop("initial_llm_chain") initial_llm_chain = load_chain_from_config(initial_llm_chain_config) elif "initial_llm_chain_path" in config: initial_llm_chain = load_chain(config.pop("initial_llm_chain_path")) else: raise ValueError( "One of `initial_llm_chain` or `initial_llm_chain_config` must be present." ) if "refine_llm_chain" in config: refine_llm_chain_config = config.pop("refine_llm_chain") refine_llm_chain = load_chain_from_config(refine_llm_chain_config) elif "refine_llm_chain_path" in config: refine_llm_chain = load_chain(config.pop("refine_llm_chain_path")) else: raise ValueError( "One of `refine_llm_chain` or `refine_llm_chain_config` must be present." ) if "document_prompt" in config: prompt_config = config.pop("document_prompt") document_prompt = load_prompt_from_config(prompt_config) elif "document_prompt_path" in config: document_prompt = load_prompt(config.pop("document_prompt_path")) return RefineDocumentsChain( initial_llm_chain=initial_llm_chain, refine_llm_chain=refine_llm_chain, document_prompt=document_prompt,
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-9
refine_llm_chain=refine_llm_chain, document_prompt=document_prompt, **config, ) def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain: if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config) def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain: if "database" in kwargs: database = kwargs.pop("database") else: raise ValueError("`database` must be present.") if "llm" in config: llm_config = config.pop("llm") llm = load_llm_from_config(llm_config) elif "llm_path" in config: llm = load_llm(config.pop("llm_path")) else: raise ValueError("One of `llm` or `llm_path` must be present.") if "prompt" in config: prompt_config = config.pop("prompt") prompt = load_prompt_from_config(prompt_config) else: prompt = None return SQLDatabaseChain.from_llm(llm, database, prompt=prompt, **config) def _load_vector_db_qa_with_sources_chain( config: dict, **kwargs: Any
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-10
config: dict, **kwargs: Any ) -> VectorDBQAWithSourcesChain: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQAWithSourcesChain( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, ) def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA: if "vectorstore" in kwargs: vectorstore = kwargs.pop("vectorstore") else: raise ValueError("`vectorstore` must be present.") if "combine_documents_chain" in config: combine_documents_chain_config = config.pop("combine_documents_chain") combine_documents_chain = load_chain_from_config(combine_documents_chain_config) elif "combine_documents_chain_path" in config: combine_documents_chain = load_chain(config.pop("combine_documents_chain_path")) else: raise ValueError( "One of `combine_documents_chain` or " "`combine_documents_chain_path` must be present." ) return VectorDBQA( combine_documents_chain=combine_documents_chain, vectorstore=vectorstore, **config, )
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-11
vectorstore=vectorstore, **config, ) def _load_api_chain(config: dict, **kwargs: Any) -> APIChain: if "api_request_chain" in config: api_request_chain_config = config.pop("api_request_chain") api_request_chain = load_chain_from_config(api_request_chain_config) elif "api_request_chain_path" in config: api_request_chain = load_chain(config.pop("api_request_chain_path")) else: raise ValueError( "One of `api_request_chain` or `api_request_chain_path` must be present." ) if "api_answer_chain" in config: api_answer_chain_config = config.pop("api_answer_chain") api_answer_chain = load_chain_from_config(api_answer_chain_config) elif "api_answer_chain_path" in config: api_answer_chain = load_chain(config.pop("api_answer_chain_path")) else: raise ValueError( "One of `api_answer_chain` or `api_answer_chain_path` must be present." ) if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") else: raise ValueError("`requests_wrapper` must be present.") return APIChain( api_request_chain=api_request_chain, api_answer_chain=api_answer_chain, requests_wrapper=requests_wrapper, **config, ) def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain: if "llm_chain" in config: llm_chain_config = config.pop("llm_chain") llm_chain = load_chain_from_config(llm_chain_config) elif "llm_chain_path" in config:
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-12
elif "llm_chain_path" in config: llm_chain = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.") if "requests_wrapper" in kwargs: requests_wrapper = kwargs.pop("requests_wrapper") return LLMRequestsChain( llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config ) else: return LLMRequestsChain(llm_chain=llm_chain, **config) type_to_loader_dict = { "api_chain": _load_api_chain, "hyde_chain": _load_hyde_chain, "llm_chain": _load_llm_chain, "llm_bash_chain": _load_llm_bash_chain, "llm_checker_chain": _load_llm_checker_chain, "llm_math_chain": _load_llm_math_chain, "llm_requests_chain": _load_llm_requests_chain, "pal_chain": _load_pal_chain, "qa_with_sources_chain": _load_qa_with_sources_chain, "stuff_documents_chain": _load_stuff_documents_chain, "map_reduce_documents_chain": _load_map_reduce_documents_chain, "map_rerank_documents_chain": _load_map_rerank_documents_chain, "refine_documents_chain": _load_refine_documents_chain, "sql_database_chain": _load_sql_database_chain, "vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain, "vector_db_qa": _load_vector_db_qa, } def load_chain_from_config(config: dict, **kwargs: Any) -> Chain:
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-13
} def load_chain_from_config(config: dict, **kwargs: Any) -> Chain: """Load chain from Config Dict.""" if "_type" not in config: raise ValueError("Must specify a chain Type in config") config_type = config.pop("_type") if config_type not in type_to_loader_dict: raise ValueError(f"Loading {config_type} chain not supported") chain_loader = type_to_loader_dict[config_type] return chain_loader(config, **kwargs) [docs]def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain: """Unified method for loading a chain from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs ): return hub_result else: return _load_chain_from_file(path, **kwargs) def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain: """Load chain from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Override default 'verbose' and 'memory' for the chain if "verbose" in kwargs: config["verbose"] = kwargs.pop("verbose")
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
bdef456eeb70-14
config["verbose"] = kwargs.pop("verbose") if "memory" in kwargs: config["memory"] = kwargs.pop("memory") # Load the chain from the config now. return load_chain_from_config(config, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/loading.html
4fbf4a02103b-0
Source code for langchain.chains.llm_requests """Chain that hits a URL and then uses an LLM to parse results.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain.requests import TextRequestsWrapper DEFAULT_HEADERS = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501 } [docs]class LLMRequestsChain(Chain): """Chain that hits a URL and then uses an LLM to parse results.""" llm_chain: LLMChain requests_wrapper: TextRequestsWrapper = Field( default_factory=TextRequestsWrapper, exclude=True ) text_length: int = 8000 requests_key: str = "requests_result" #: :meta private: input_key: str = "url" #: :meta private: output_key: str = "output" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Will be whatever keys the prompt expects. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ return [self.output_key]
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_requests.html
4fbf4a02103b-1
:meta private: """ return [self.output_key] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ValueError( "Could not import bs4 python package. " "Please install it with `pip install bs4`." ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: from bs4 import BeautifulSoup _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() # Other keys are assumed to be needed for LLM prediction other_keys = {k: v for k, v in inputs.items() if k != self.input_key} url = inputs[self.input_key] res = self.requests_wrapper.get(url) # extract the text from the html soup = BeautifulSoup(res, "html.parser") other_keys[self.requests_key] = soup.get_text()[: self.text_length] result = self.llm_chain.predict( callbacks=_run_manager.get_child(), **other_keys ) return {self.output_key: result} @property def _chain_type(self) -> str: return "llm_requests_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_requests.html
b6a3cc115d2f-0
Source code for langchain.chains.llm """Chain that just formats a prompt and calls an LLM.""" from __future__ import annotations from typing import Any, Dict, List, Optional, Sequence, Tuple, Union from pydantic import Extra from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainRun, CallbackManager, CallbackManagerForChainRun, Callbacks, ) from langchain.chains.base import Chain from langchain.input import get_colored_text from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import LLMResult, PromptValue [docs]class LLMChain(Chain): """Chain to run queries against LLMs. Example: .. code-block:: python from langchain import LLMChain, OpenAI, PromptTemplate prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate( input_variables=["adjective"], template=prompt_template ) llm = LLMChain(llm=OpenAI(), prompt=prompt) """ prompt: BasePromptTemplate """Prompt object to use.""" llm: BaseLanguageModel output_key: str = "text" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Will be whatever keys the prompt expects. :meta private: """ return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Will always return text key.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
b6a3cc115d2f-1
def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = self.generate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] [docs] def generate( self, input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) return self.llm.generate_prompt( prompts, stop, callbacks=run_manager.get_child() if run_manager else None ) [docs] async def agenerate( self, input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager) return await self.llm.agenerate_prompt( prompts, stop, callbacks=run_manager.get_child() if run_manager else None ) [docs] def prep_prompts( self, input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Tuple[List[PromptValue], Optional[List[str]]]: """Prepare prompts from inputs.""" stop = None
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
b6a3cc115d2f-2
"""Prepare prompts from inputs.""" stop = None if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop [docs] async def aprep_prompts( self, input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Tuple[List[PromptValue], Optional[List[str]]]: """Prepare prompts from inputs.""" stop = None if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: await run_manager.on_text(_text, end="\n", verbose=self.verbose)
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
b6a3cc115d2f-3
await run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop [docs] def apply( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = CallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = callback_manager.on_chain_start( {"name": self.__class__.__name__}, {"input_list": input_list}, ) try: response = self.generate(input_list, run_manager=run_manager) except (KeyboardInterrupt, Exception) as e: run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) run_manager.on_chain_end({"outputs": outputs}) return outputs [docs] async def aapply( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = await callback_manager.on_chain_start( {"name": self.__class__.__name__}, {"input_list": input_list}, ) try: response = await self.agenerate(input_list, run_manager=run_manager) except (KeyboardInterrupt, Exception) as e:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
b6a3cc115d2f-4
except (KeyboardInterrupt, Exception) as e: await run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) await run_manager.on_chain_end({"outputs": outputs}) return outputs [docs] def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]: """Create outputs from response.""" return [ # Get the text of the top generated string. {self.output_key: generation[0].text} for generation in response.generations ] async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = await self.agenerate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] [docs] def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return self(kwargs, callbacks=callbacks)[self.output_key] [docs] async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
b6a3cc115d2f-5
Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return (await self.acall(kwargs, callbacks=callbacks))[self.output_key] [docs] def predict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, Any]]: """Call predict and then parse the results.""" result = self.predict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result [docs] async def apredict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, str]]: """Call apredict and then parse the results.""" result = await self.apredict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result [docs] def apply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" result = self.apply(input_list, callbacks=callbacks) return self._parse_result(result) def _parse_result( self, result: List[Dict[str, str]] ) -> Sequence[Union[str, List[str], Dict[str, str]]]: if self.prompt.output_parser is not None: return [
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
b6a3cc115d2f-6
if self.prompt.output_parser is not None: return [ self.prompt.output_parser.parse(res[self.output_key]) for res in result ] else: return result [docs] async def aapply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" result = await self.aapply(input_list, callbacks=callbacks) return self._parse_result(result) @property def _chain_type(self) -> str: return "llm_chain" [docs] @classmethod def from_string(cls, llm: BaseLanguageModel, template: str) -> Chain: """Create LLMChain from LLM and template.""" prompt_template = PromptTemplate.from_template(template) return cls(llm=llm, prompt=prompt_template) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm.html
1869b5d332c9-0
Source code for langchain.chains.sequential """Chain pipeline where the outputs of one step feed directly into next.""" from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.input import get_color_mapping [docs]class SequentialChain(Chain): """Chain where the outputs of one chain feed directly into next.""" chains: List[Chain] input_variables: List[str] output_variables: List[str] #: :meta private: return_all: bool = False class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Return expected input keys to the chain. :meta private: """ return self.input_variables @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return self.output_variables @root_validator(pre=True) def validate_chains(cls, values: Dict) -> Dict: """Validate that the correct inputs exist for all chains.""" chains = values["chains"] input_variables = values["input_variables"] memory_keys = list() if "memory" in values and values["memory"] is not None: """Validate that prompt input variables are consistent.""" memory_keys = values["memory"].memory_variables if set(input_variables).intersection(set(memory_keys)): overlapping_keys = set(input_variables) & set(memory_keys) raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html
1869b5d332c9-1
overlapping_keys = set(input_variables) & set(memory_keys) raise ValueError( f"The the input key(s) {''.join(overlapping_keys)} are found " f"in the Memory keys ({memory_keys}) - please use input and " f"memory keys that don't overlap." ) known_variables = set(input_variables + memory_keys) for chain in chains: missing_vars = set(chain.input_keys).difference(known_variables) if missing_vars: raise ValueError( f"Missing required input keys: {missing_vars}, " f"only had {known_variables}" ) overlapping_keys = known_variables.intersection(chain.output_keys) if overlapping_keys: raise ValueError( f"Chain returned keys that already exist: {overlapping_keys}" ) known_variables |= set(chain.output_keys) if "output_variables" not in values: if values.get("return_all", False): output_keys = known_variables.difference(input_variables) else: output_keys = chains[-1].output_keys values["output_variables"] = output_keys else: missing_vars = set(values["output_variables"]).difference(known_variables) if missing_vars: raise ValueError( f"Expected output variables that were not found: {missing_vars}." ) return values def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: known_values = inputs.copy() _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() for i, chain in enumerate(self.chains):
https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html
1869b5d332c9-2
for i, chain in enumerate(self.chains): callbacks = _run_manager.get_child() outputs = chain(known_values, return_only_outputs=True, callbacks=callbacks) known_values.update(outputs) return {k: known_values[k] for k in self.output_variables} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: known_values = inputs.copy() _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() for i, chain in enumerate(self.chains): outputs = await chain.acall( known_values, return_only_outputs=True, callbacks=callbacks ) known_values.update(outputs) return {k: known_values[k] for k in self.output_variables} [docs]class SimpleSequentialChain(Chain): """Simple chain where the outputs of one step feed directly into next.""" chains: List[Chain] strip_outputs: bool = False input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return output key. :meta private: """ return [self.output_key] @root_validator()
https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html
1869b5d332c9-3
""" return [self.output_key] @root_validator() def validate_chains(cls, values: Dict) -> Dict: """Validate that chains are all single input/output.""" for chain in values["chains"]: if len(chain.input_keys) != 1: raise ValueError( "Chains used in SimplePipeline should all have one input, got " f"{chain} with {len(chain.input_keys)} inputs." ) if len(chain.output_keys) != 1: raise ValueError( "Chains used in SimplePipeline should all have one output, got " f"{chain} with {len(chain.output_keys)} outputs." ) return values def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _input = inputs[self.input_key] color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))]) for i, chain in enumerate(self.chains): _input = chain.run(_input, callbacks=_run_manager.get_child()) if self.strip_outputs: _input = _input.strip() _run_manager.on_text( _input, color=color_mapping[str(i)], end="\n", verbose=self.verbose ) return {self.output_key: _input} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]:
https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html
1869b5d332c9-4
) -> Dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() _input = inputs[self.input_key] color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))]) for i, chain in enumerate(self.chains): _input = await chain.arun(_input, callbacks=callbacks) if self.strip_outputs: _input = _input.strip() await _run_manager.on_text( _input, color=color_mapping[str(i)], end="\n", verbose=self.verbose ) return {self.output_key: _input} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/sequential.html
3edb00401123-0
Source code for langchain.chains.llm_checker.base """Chain for question-answering with self-verification.""" from __future__ import annotations import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.llm_checker.prompt import ( CHECK_ASSERTIONS_PROMPT, CREATE_DRAFT_ANSWER_PROMPT, LIST_ASSERTIONS_PROMPT, REVISED_ANSWER_PROMPT, ) from langchain.chains.sequential import SequentialChain from langchain.prompts import PromptTemplate def _load_question_to_checked_assertions_chain( llm: BaseLanguageModel, create_draft_answer_prompt: PromptTemplate, list_assertions_prompt: PromptTemplate, check_assertions_prompt: PromptTemplate, revised_answer_prompt: PromptTemplate, ) -> SequentialChain: create_draft_answer_chain = LLMChain( llm=llm, prompt=create_draft_answer_prompt, output_key="statement", ) list_assertions_chain = LLMChain( llm=llm, prompt=list_assertions_prompt, output_key="assertions", ) check_assertions_chain = LLMChain( llm=llm, prompt=check_assertions_prompt, output_key="checked_assertions", ) revised_answer_chain = LLMChain( llm=llm, prompt=revised_answer_prompt, output_key="revised_statement", ) chains = [ create_draft_answer_chain,
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
3edb00401123-1
) chains = [ create_draft_answer_chain, list_assertions_chain, check_assertions_chain, revised_answer_chain, ] question_to_checked_assertions_chain = SequentialChain( chains=chains, input_variables=["question"], output_variables=["revised_statement"], verbose=True, ) return question_to_checked_assertions_chain [docs]class LLMCheckerChain(Chain): """Chain for question-answering with self-verification. Example: .. code-block:: python from langchain import OpenAI, LLMCheckerChain llm = OpenAI(temperature=0.7) checker_chain = LLMCheckerChain.from_llm(llm) """ question_to_checked_assertions_chain: SequentialChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT """[Deprecated]""" list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT """[Deprecated]""" check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT """[Deprecated]""" revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT """[Deprecated] Prompt to use when questioning the documents.""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
3edb00401123-2
if "llm" in values: warnings.warn( "Directly instantiating an LLMCheckerChain with an llm is deprecated. " "Please instantiate with question_to_checked_assertions_chain " "or using the from_llm class method." ) if ( "question_to_checked_assertions_chain" not in values and values["llm"] is not None ): question_to_checked_assertions_chain = ( _load_question_to_checked_assertions_chain( values["llm"], values.get( "create_draft_answer_prompt", CREATE_DRAFT_ANSWER_PROMPT ), values.get("list_assertions_prompt", LIST_ASSERTIONS_PROMPT), values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT), values.get("revised_answer_prompt", REVISED_ANSWER_PROMPT), ) ) values[ "question_to_checked_assertions_chain" ] = question_to_checked_assertions_chain return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.input_key] output = self.question_to_checked_assertions_chain(
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
3edb00401123-3
output = self.question_to_checked_assertions_chain( {"question": question}, callbacks=_run_manager.get_child() ) return {self.output_key: output["revised_statement"]} @property def _chain_type(self) -> str: return "llm_checker_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, create_draft_answer_prompt: PromptTemplate = CREATE_DRAFT_ANSWER_PROMPT, list_assertions_prompt: PromptTemplate = LIST_ASSERTIONS_PROMPT, check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT, revised_answer_prompt: PromptTemplate = REVISED_ANSWER_PROMPT, **kwargs: Any, ) -> LLMCheckerChain: question_to_checked_assertions_chain = ( _load_question_to_checked_assertions_chain( llm, create_draft_answer_prompt, list_assertions_prompt, check_assertions_prompt, revised_answer_prompt, ) ) return cls( question_to_checked_assertions_chain=question_to_checked_assertions_chain, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_checker/base.html
c5565a3a143a-0
Source code for langchain.chains.sql_database.base """Chain for interacting with SQL Database.""" from __future__ import annotations import warnings from typing import Any, Dict, List, Optional from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS from langchain.prompts.base import BasePromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.sql_database import SQLDatabase from langchain.tools.sql_database.prompt import QUERY_CHECKER INTERMEDIATE_STEPS_KEY = "intermediate_steps" [docs]class SQLDatabaseChain(Chain): """Chain for interacting with SQL Database. Example: .. code-block:: python from langchain import SQLDatabaseChain, OpenAI, SQLDatabase db = SQLDatabase(...) db_chain = SQLDatabaseChain.from_llm(OpenAI(), db) """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" database: SQLDatabase = Field(exclude=True) """SQL Database to connect to.""" prompt: Optional[BasePromptTemplate] = None """[Deprecated] Prompt to use to translate natural language to SQL.""" top_k: int = 5 """Number of results to return from the query""" input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
c5565a3a143a-1
return_intermediate_steps: bool = False """Whether or not to return the intermediate steps along with the final answer.""" return_direct: bool = False """Whether or not to return the result of querying the SQL table directly.""" use_query_checker: bool = False """Whether or not the query checker tool should be used to attempt to fix the initial SQL from the LLM.""" query_checker_prompt: Optional[BasePromptTemplate] = None """The prompt template that should be used by the query checker""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an SQLDatabaseChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: database = values["database"] prompt = values.get("prompt") or SQL_PROMPTS.get( database.dialect, PROMPT ) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps:
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
c5565a3a143a-2
:meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, INTERMEDIATE_STEPS_KEY] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() input_text = f"{inputs[self.input_key]}\nSQLQuery:" _run_manager.on_text(input_text, verbose=self.verbose) # If not present, then defaults to None which is all tables. table_names_to_use = inputs.get("table_names_to_use") table_info = self.database.get_table_info(table_names=table_names_to_use) llm_inputs = { "input": input_text, "top_k": str(self.top_k), "dialect": self.database.dialect, "table_info": table_info, "stop": ["\nSQLResult:"], } intermediate_steps: List = [] try: intermediate_steps.append(llm_inputs) # input: sql generation sql_cmd = self.llm_chain.predict( callbacks=_run_manager.get_child(), **llm_inputs, ).strip() if not self.use_query_checker: _run_manager.on_text(sql_cmd, color="green", verbose=self.verbose) intermediate_steps.append( sql_cmd ) # output: sql generation (no checker) intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec result = self.database.run(sql_cmd)
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
c5565a3a143a-3
result = self.database.run(sql_cmd) intermediate_steps.append(str(result)) # output: sql exec else: query_checker_prompt = self.query_checker_prompt or PromptTemplate( template=QUERY_CHECKER, input_variables=["query", "dialect"] ) query_checker_chain = LLMChain( llm=self.llm_chain.llm, prompt=query_checker_prompt ) query_checker_inputs = { "query": sql_cmd, "dialect": self.database.dialect, } checked_sql_command: str = query_checker_chain.predict( callbacks=_run_manager.get_child(), **query_checker_inputs ).strip() intermediate_steps.append( checked_sql_command ) # output: sql generation (checker) _run_manager.on_text( checked_sql_command, color="green", verbose=self.verbose ) intermediate_steps.append( {"sql_cmd": checked_sql_command} ) # input: sql exec result = self.database.run(checked_sql_command) intermediate_steps.append(str(result)) # output: sql exec sql_cmd = checked_sql_command _run_manager.on_text("\nSQLResult: ", verbose=self.verbose) _run_manager.on_text(result, color="yellow", verbose=self.verbose) # If return direct, we just set the final result equal to # the result of the sql query result, otherwise try to get a human readable # final answer if self.return_direct: final_result = result else: _run_manager.on_text("\nAnswer:", verbose=self.verbose) input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:" llm_inputs["input"] = input_text
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
c5565a3a143a-4
llm_inputs["input"] = input_text intermediate_steps.append(llm_inputs) # input: final answer final_result = self.llm_chain.predict( callbacks=_run_manager.get_child(), **llm_inputs, ).strip() intermediate_steps.append(final_result) # output: final answer _run_manager.on_text(final_result, color="green", verbose=self.verbose) chain_result: Dict[str, Any] = {self.output_key: final_result} if self.return_intermediate_steps: chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps return chain_result except Exception as exc: # Append intermediate steps to exception, to aid in logging and later # improvement of few shot prompt seeds exc.intermediate_steps = intermediate_steps # type: ignore raise exc @property def _chain_type(self) -> str: return "sql_database_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, db: SQLDatabase, prompt: Optional[BasePromptTemplate] = None, **kwargs: Any, ) -> SQLDatabaseChain: prompt = prompt or SQL_PROMPTS.get(db.dialect, PROMPT) llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, database=db, **kwargs) [docs]class SQLDatabaseSequentialChain(Chain): """Chain for querying SQL database that is a sequential chain. The chain is as follows: 1. Based on the query, determine which tables to use. 2. Based on those tables, call the normal SQL database chain.
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
c5565a3a143a-5
2. Based on those tables, call the normal SQL database chain. This is useful in cases where the number of tables in the database is large. """ decider_chain: LLMChain sql_chain: SQLDatabaseChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: return_intermediate_steps: bool = False [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, database: SQLDatabase, query_prompt: BasePromptTemplate = PROMPT, decider_prompt: BasePromptTemplate = DECIDER_PROMPT, **kwargs: Any, ) -> SQLDatabaseSequentialChain: """Load the necessary chains.""" sql_chain = SQLDatabaseChain.from_llm( llm, database, prompt=query_prompt, **kwargs ) decider_chain = LLMChain( llm=llm, prompt=decider_prompt, output_key="table_names" ) return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs) @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, INTERMEDIATE_STEPS_KEY] def _call( self, inputs: Dict[str, Any],
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
c5565a3a143a-6
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _table_names = self.sql_chain.database.get_usable_table_names() table_names = ", ".join(_table_names) llm_inputs = { "query": inputs[self.input_key], "table_names": table_names, } _lowercased_table_names = [name.lower() for name in _table_names] table_names_from_chain = self.decider_chain.predict_and_parse(**llm_inputs) table_names_to_use = [ name for name in table_names_from_chain if name.lower() in _lowercased_table_names ] _run_manager.on_text("Table names to use:", end="\n", verbose=self.verbose) _run_manager.on_text( str(table_names_to_use), color="yellow", verbose=self.verbose ) new_inputs = { self.sql_chain.input_key: inputs[self.input_key], "table_names_to_use": table_names_to_use, } return self.sql_chain( new_inputs, callbacks=_run_manager.get_child(), return_only_outputs=True ) @property def _chain_type(self) -> str: return "sql_database_sequential_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/sql_database/base.html
cf8a9c153d17-0
Source code for langchain.chains.constitutional_ai.base """Chain for applying constitutional principles to the outputs of another chain.""" from typing import Any, Dict, List, Optional from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.constitutional_ai.principles import PRINCIPLES from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate [docs]class ConstitutionalChain(Chain): """Chain for applying constitutional principles. Example: .. code-block:: python from langchain.llms import OpenAI from langchain.chains import LLMChain, ConstitutionalChain from langchain.chains.constitutional_ai.models \ import ConstitutionalPrinciple llm = OpenAI() qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=llm, prompt=qa_prompt) constitutional_chain = ConstitutionalChain.from_llm( llm=llm, chain=qa_chain, constitutional_principles=[ ConstitutionalPrinciple( critique_request="Tell if this answer is good.", revision_request="Give a better answer.", ) ], ) constitutional_chain.run(question="What is the meaning of life?") """ chain: LLMChain constitutional_principles: List[ConstitutionalPrinciple] critique_chain: LLMChain
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
cf8a9c153d17-1
critique_chain: LLMChain revision_chain: LLMChain return_intermediate_steps: bool = False [docs] @classmethod def get_principles( cls, names: Optional[List[str]] = None ) -> List[ConstitutionalPrinciple]: if names is None: return list(PRINCIPLES.values()) else: return [PRINCIPLES[name] for name in names] [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, chain: LLMChain, critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT, revision_prompt: BasePromptTemplate = REVISION_PROMPT, **kwargs: Any, ) -> "ConstitutionalChain": """Create a chain from an LLM.""" critique_chain = LLMChain(llm=llm, prompt=critique_prompt) revision_chain = LLMChain(llm=llm, prompt=revision_prompt) return cls( chain=chain, critique_chain=critique_chain, revision_chain=revision_chain, **kwargs, ) @property def input_keys(self) -> List[str]: """Defines the input keys.""" return self.chain.input_keys @property def output_keys(self) -> List[str]: """Defines the output keys.""" if self.return_intermediate_steps: return ["output", "critiques_and_revisions", "initial_output"] return ["output"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]:
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
cf8a9c153d17-2
) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() response = self.chain.run( **inputs, callbacks=_run_manager.get_child(), ) initial_response = response input_prompt = self.chain.prompt.format(**inputs) _run_manager.on_text( text="Initial response: " + response + "\n\n", verbose=self.verbose, color="yellow", ) critiques_and_revisions = [] for constitutional_principle in self.constitutional_principles: # Do critique raw_critique = self.critique_chain.run( input_prompt=input_prompt, output_from_model=response, critique_request=constitutional_principle.critique_request, callbacks=_run_manager.get_child(), ) critique = self._parse_critique( output_string=raw_critique, ).strip() # if the critique contains "No critique needed", then we're done # in this case, initial_output is the same as output, # but we'll keep it for consistency if "no critique needed" in critique.lower(): critiques_and_revisions.append((critique, "")) continue # Do revision revision = self.revision_chain.run( input_prompt=input_prompt, output_from_model=response, critique_request=constitutional_principle.critique_request, critique=critique, revision_request=constitutional_principle.revision_request, callbacks=_run_manager.get_child(), ).strip() response = revision critiques_and_revisions.append((critique, revision)) _run_manager.on_text(
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
cf8a9c153d17-3
_run_manager.on_text( text=f"Applying {constitutional_principle.name}..." + "\n\n", verbose=self.verbose, color="green", ) _run_manager.on_text( text="Critique: " + critique + "\n\n", verbose=self.verbose, color="blue", ) _run_manager.on_text( text="Updated response: " + revision + "\n\n", verbose=self.verbose, color="yellow", ) final_output: Dict[str, Any] = {"output": response} if self.return_intermediate_steps: final_output["initial_output"] = initial_response final_output["critiques_and_revisions"] = critiques_and_revisions return final_output @staticmethod def _parse_critique(output_string: str) -> str: if "Revision request:" not in output_string: return output_string output_string = output_string.split("Revision request:")[0] if "\n\n" in output_string: output_string = output_string.split("\n\n")[0] return output_string By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/constitutional_ai/base.html
e411ab45e193-0
Source code for langchain.chains.conversational_retrieval.base """Chain for chatting with a vector database.""" from __future__ import annotations import warnings from abc import abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union from pydantic import Extra, Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMessage, BaseRetriever, Document from langchain.vectorstores.base import VectorStore # Depending on the memory type and configuration, the chat history format may differ. # This needs to be consolidated. CHAT_TURN_TYPE = Union[Tuple[str, str], BaseMessage] _ROLE_MAP = {"human": "Human: ", "ai": "Assistant: "} def _get_chat_history(chat_history: List[CHAT_TURN_TYPE]) -> str: buffer = "" for dialogue_turn in chat_history: if isinstance(dialogue_turn, BaseMessage): role_prefix = _ROLE_MAP.get(dialogue_turn.type, f"{dialogue_turn.type}: ") buffer += f"\n{role_prefix}{dialogue_turn.content}" elif isinstance(dialogue_turn, tuple): human = "Human: " + dialogue_turn[0]
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
e411ab45e193-1
human = "Human: " + dialogue_turn[0] ai = "Assistant: " + dialogue_turn[1] buffer += "\n" + "\n".join([human, ai]) else: raise ValueError( f"Unsupported chat history format: {type(dialogue_turn)}." f" Full chat history: {chat_history} " ) return buffer class BaseConversationalRetrievalChain(Chain): """Chain for chatting with an index.""" combine_docs_chain: BaseCombineDocumentsChain question_generator: LLMChain output_key: str = "answer" return_source_documents: bool = False get_chat_history: Optional[Callable[[CHAT_TURN_TYPE], str]] = None """Return the source documents.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True allow_population_by_field_name = True @property def input_keys(self) -> List[str]: """Input keys.""" return ["question", "chat_history"] @property def output_keys(self) -> List[str]: """Return the output keys. :meta private: """ _output_keys = [self.output_key] if self.return_source_documents: _output_keys = _output_keys + ["source_documents"] return _output_keys @abstractmethod def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: """Get docs.""" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]:
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
e411ab45e193-2
) -> Dict[str, Any]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs["question"] get_chat_history = self.get_chat_history or _get_chat_history chat_history_str = get_chat_history(inputs["chat_history"]) if chat_history_str: callbacks = _run_manager.get_child() new_question = self.question_generator.run( question=question, chat_history=chat_history_str, callbacks=callbacks ) else: new_question = question docs = self._get_docs(new_question, inputs) new_inputs = inputs.copy() new_inputs["question"] = new_question new_inputs["chat_history"] = chat_history_str answer = self.combine_docs_chain.run( input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} @abstractmethod async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: """Get docs.""" async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs["question"] get_chat_history = self.get_chat_history or _get_chat_history chat_history_str = get_chat_history(inputs["chat_history"]) if chat_history_str: callbacks = _run_manager.get_child() new_question = await self.question_generator.arun(
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
e411ab45e193-3
new_question = await self.question_generator.arun( question=question, chat_history=chat_history_str, callbacks=callbacks ) else: new_question = question docs = await self._aget_docs(new_question, inputs) new_inputs = inputs.copy() new_inputs["question"] = new_question new_inputs["chat_history"] = chat_history_str answer = await self.combine_docs_chain.arun( input_documents=docs, callbacks=_run_manager.get_child(), **new_inputs ) if self.return_source_documents: return {self.output_key: answer, "source_documents": docs} else: return {self.output_key: answer} def save(self, file_path: Union[Path, str]) -> None: if self.get_chat_history: raise ValueError("Chain not savable when `get_chat_history` is not None.") super().save(file_path) [docs]class ConversationalRetrievalChain(BaseConversationalRetrievalChain): """Chain for chatting with an index.""" retriever: BaseRetriever """Index to connect to.""" max_tokens_limit: Optional[int] = None """If set, restricts the docs to return from store based on tokens, enforced only for StuffDocumentChain""" def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: num_docs = len(docs) if self.max_tokens_limit and isinstance( self.combine_docs_chain, StuffDocumentsChain ): tokens = [ self.combine_docs_chain.llm_chain.llm.get_num_tokens(doc.page_content) for doc in docs ] token_count = sum(tokens[:num_docs]) while token_count > self.max_tokens_limit:
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
e411ab45e193-4
while token_count > self.max_tokens_limit: num_docs -= 1 token_count -= tokens[num_docs] return docs[:num_docs] def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: docs = self.retriever.get_relevant_documents(question) return self._reduce_tokens_below_limit(docs) async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: docs = await self.retriever.aget_relevant_documents(question) return self._reduce_tokens_below_limit(docs) [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, retriever: BaseRetriever, condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT, chain_type: str = "stuff", verbose: bool = False, condense_question_llm: Optional[BaseLanguageModel] = None, combine_docs_chain_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> BaseConversationalRetrievalChain: """Load chain from LLM.""" combine_docs_chain_kwargs = combine_docs_chain_kwargs or {} doc_chain = load_qa_chain( llm, chain_type=chain_type, verbose=verbose, **combine_docs_chain_kwargs, ) _llm = condense_question_llm or llm condense_question_chain = LLMChain( llm=_llm, prompt=condense_question_prompt, verbose=verbose ) return cls( retriever=retriever, combine_docs_chain=doc_chain, question_generator=condense_question_chain,
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
e411ab45e193-5
combine_docs_chain=doc_chain, question_generator=condense_question_chain, **kwargs, ) [docs]class ChatVectorDBChain(BaseConversationalRetrievalChain): """Chain for chatting with a vector database.""" vectorstore: VectorStore = Field(alias="vectorstore") top_k_docs_for_context: int = 4 search_kwargs: dict = Field(default_factory=dict) @property def _chain_type(self) -> str: return "chat-vector-db" @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: warnings.warn( "`ChatVectorDBChain` is deprecated - " "please use `from langchain.chains import ConversationalRetrievalChain`" ) return values def _get_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: vectordbkwargs = inputs.get("vectordbkwargs", {}) full_kwargs = {**self.search_kwargs, **vectordbkwargs} return self.vectorstore.similarity_search( question, k=self.top_k_docs_for_context, **full_kwargs ) async def _aget_docs(self, question: str, inputs: Dict[str, Any]) -> List[Document]: raise NotImplementedError("ChatVectorDBChain does not support async") [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, vectorstore: VectorStore, condense_question_prompt: BasePromptTemplate = CONDENSE_QUESTION_PROMPT, chain_type: str = "stuff", combine_docs_chain_kwargs: Optional[Dict] = None, **kwargs: Any,
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
e411ab45e193-6
**kwargs: Any, ) -> BaseConversationalRetrievalChain: """Load chain from LLM.""" combine_docs_chain_kwargs = combine_docs_chain_kwargs or {} doc_chain = load_qa_chain( llm, chain_type=chain_type, **combine_docs_chain_kwargs, ) condense_question_chain = LLMChain(llm=llm, prompt=condense_question_prompt) return cls( vectorstore=vectorstore, combine_docs_chain=doc_chain, question_generator=condense_question_chain, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/conversational_retrieval/base.html
af9548bb47a6-0
Source code for langchain.chains.api.base """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations from typing import Any, Dict, List, Optional from pydantic import Field, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.prompts import BasePromptTemplate from langchain.requests import TextRequestsWrapper [docs]class APIChain(Chain): """Chain that makes API calls and summarizes the responses to answer a question.""" api_request_chain: LLMChain api_answer_chain: LLMChain requests_wrapper: TextRequestsWrapper = Field(exclude=True) api_docs: str question_key: str = "question" #: :meta private: output_key: str = "output" #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.question_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] @root_validator(pre=True) def validate_api_request_prompt(cls, values: Dict) -> Dict: """Check that api request prompt expects the right variables.""" input_vars = values["api_request_chain"].prompt.input_variables expected_vars = {"question", "api_docs"} if set(input_vars) != expected_vars:
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
af9548bb47a6-1
if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values @root_validator(pre=True) def validate_api_answer_prompt(cls, values: Dict) -> Dict: """Check that api answer prompt expects the right variables.""" input_vars = values["api_answer_chain"].prompt.input_variables expected_vars = {"question", "api_docs", "api_url", "api_response"} if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) return values def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = self.api_request_chain.predict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) _run_manager.on_text(api_url, color="green", end="\n", verbose=self.verbose) api_response = self.requests_wrapper.get(api_url) _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = self.api_answer_chain.predict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} async def _acall( self,
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
af9548bb47a6-2
async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() question = inputs[self.question_key] api_url = await self.api_request_chain.apredict( question=question, api_docs=self.api_docs, callbacks=_run_manager.get_child(), ) await _run_manager.on_text( api_url, color="green", end="\n", verbose=self.verbose ) api_response = await self.requests_wrapper.aget(api_url) await _run_manager.on_text( api_response, color="yellow", end="\n", verbose=self.verbose ) answer = await self.api_answer_chain.apredict( question=question, api_docs=self.api_docs, api_url=api_url, api_response=api_response, callbacks=_run_manager.get_child(), ) return {self.output_key: answer} [docs] @classmethod def from_llm_and_api_docs( cls, llm: BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: BasePromptTemplate = API_URL_PROMPT, api_response_prompt: BasePromptTemplate = API_RESPONSE_PROMPT, **kwargs: Any, ) -> APIChain: """Load chain from just an LLM and the api docs.""" get_request_chain = LLMChain(llm=llm, prompt=api_url_prompt) requests_wrapper = TextRequestsWrapper(headers=headers)
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
af9548bb47a6-3
requests_wrapper = TextRequestsWrapper(headers=headers) get_answer_chain = LLMChain(llm=llm, prompt=api_response_prompt) return cls( api_request_chain=get_request_chain, api_answer_chain=get_answer_chain, requests_wrapper=requests_wrapper, api_docs=api_docs, **kwargs, ) @property def _chain_type(self) -> str: return "api_chain" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/api/base.html
991f51fa6853-0
Source code for langchain.chains.api.openapi.chain """Chain that makes API calls and summarizes the responses to answer a question.""" from __future__ import annotations import json from typing import Any, Dict, List, NamedTuple, Optional, cast from pydantic import BaseModel, Field from requests import Response from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun, Callbacks from langchain.chains.api.openapi.requests_chain import APIRequesterChain from langchain.chains.api.openapi.response_chain import APIResponderChain from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.requests import Requests from langchain.tools.openapi.utils.api_models import APIOperation class _ParamMapping(NamedTuple): """Mapping from parameter name to parameter value.""" query_params: List[str] body_params: List[str] path_params: List[str] [docs]class OpenAPIEndpointChain(Chain, BaseModel): """Chain interacts with an OpenAPI endpoint using natural language.""" api_request_chain: LLMChain api_response_chain: Optional[LLMChain] api_operation: APIOperation requests: Requests = Field(exclude=True, default_factory=Requests) param_mapping: _ParamMapping = Field(alias="param_mapping") return_intermediate_steps: bool = False instructions_key: str = "instructions" #: :meta private: output_key: str = "output" #: :meta private: max_text_length: Optional[int] = Field(ge=0) #: :meta private: @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.instructions_key] @property
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
991f51fa6853-1
""" return [self.instructions_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, "intermediate_steps"] def _construct_path(self, args: Dict[str, str]) -> str: """Construct the path from the deserialized input.""" path = self.api_operation.base_url + self.api_operation.path for param in self.param_mapping.path_params: path = path.replace(f"{{{param}}}", str(args.pop(param, ""))) return path def _extract_query_params(self, args: Dict[str, str]) -> Dict[str, str]: """Extract the query params from the deserialized input.""" query_params = {} for param in self.param_mapping.query_params: if param in args: query_params[param] = args.pop(param) return query_params def _extract_body_params(self, args: Dict[str, str]) -> Optional[Dict[str, str]]: """Extract the request body params from the deserialized input.""" body_params = None if self.param_mapping.body_params: body_params = {} for param in self.param_mapping.body_params: if param in args: body_params[param] = args.pop(param) return body_params [docs] def deserialize_json_input(self, serialized_args: str) -> dict: """Use the serialized typescript dictionary. Resolve the path, query params dict, and optional requestBody dict. """ args: dict = json.loads(serialized_args) path = self._construct_path(args)
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
991f51fa6853-2
path = self._construct_path(args) body_params = self._extract_body_params(args) query_params = self._extract_query_params(args) return { "url": path, "data": body_params, "params": query_params, } def _get_output(self, output: str, intermediate_steps: dict) -> dict: """Return the output from the API call.""" if self.return_intermediate_steps: return { self.output_key: output, "intermediate_steps": intermediate_steps, } else: return {self.output_key: output} def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() intermediate_steps = {} instructions = inputs[self.instructions_key] instructions = instructions[: self.max_text_length] _api_arguments = self.api_request_chain.predict_and_parse( instructions=instructions, callbacks=_run_manager.get_child() ) api_arguments = cast(str, _api_arguments) intermediate_steps["request_args"] = api_arguments _run_manager.on_text( api_arguments, color="green", end="\n", verbose=self.verbose ) if api_arguments.startswith("ERROR"): return self._get_output(api_arguments, intermediate_steps) elif api_arguments.startswith("MESSAGE:"): return self._get_output( api_arguments[len("MESSAGE:") :], intermediate_steps ) try: request_args = self.deserialize_json_input(api_arguments) method = getattr(self.requests, self.api_operation.method.value)
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
991f51fa6853-3
method = getattr(self.requests, self.api_operation.method.value) api_response: Response = method(**request_args) if api_response.status_code != 200: method_str = str(self.api_operation.method.value) response_text = ( f"{api_response.status_code}: {api_response.reason}" + f"\nFor {method_str.upper()} {request_args['url']}\n" + f"Called with args: {request_args['params']}" ) else: response_text = api_response.text except Exception as e: response_text = f"Error with message {str(e)}" response_text = response_text[: self.max_text_length] intermediate_steps["response_text"] = response_text _run_manager.on_text( response_text, color="blue", end="\n", verbose=self.verbose ) if self.api_response_chain is not None: _answer = self.api_response_chain.predict_and_parse( response=response_text, instructions=instructions, callbacks=_run_manager.get_child(), ) answer = cast(str, _answer) _run_manager.on_text(answer, color="yellow", end="\n", verbose=self.verbose) return self._get_output(answer, intermediate_steps) else: return self._get_output(response_text, intermediate_steps) [docs] @classmethod def from_url_and_method( cls, spec_url: str, path: str, method: str, llm: BaseLanguageModel, requests: Optional[Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain":
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
991f51fa6853-4
# TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpoint from a spec at the specified url.""" operation = APIOperation.from_openapi_url(spec_url, path, method) return cls.from_api_operation( operation, requests=requests, llm=llm, return_intermediate_steps=return_intermediate_steps, **kwargs, ) [docs] @classmethod def from_api_operation( cls, operation: APIOperation, llm: BaseLanguageModel, requests: Optional[Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, callbacks: Callbacks = None, **kwargs: Any # TODO: Handle async ) -> "OpenAPIEndpointChain": """Create an OpenAPIEndpointChain from an operation and a spec.""" param_mapping = _ParamMapping( query_params=operation.query_params, body_params=operation.body_params, path_params=operation.path_params, ) requests_chain = APIRequesterChain.from_llm_and_typescript( llm, typescript_definition=operation.to_typescript(), verbose=verbose, callbacks=callbacks, ) if raw_response: response_chain = None else: response_chain = APIResponderChain.from_llm( llm, verbose=verbose, callbacks=callbacks ) _requests = requests or Requests() return cls( api_request_chain=requests_chain, api_response_chain=response_chain, api_operation=operation, requests=_requests, param_mapping=param_mapping,
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
991f51fa6853-5
requests=_requests, param_mapping=param_mapping, verbose=verbose, return_intermediate_steps=return_intermediate_steps, callbacks=callbacks, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/api/openapi/chain.html
c58bb0e82b01-0
Source code for langchain.chains.llm_math.base """Chain that interprets a prompt and executes python code to do math.""" from __future__ import annotations import math import re import warnings from typing import Any, Dict, List, Optional import numexpr from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.llm_math.prompt import PROMPT from langchain.prompts.base import BasePromptTemplate [docs]class LLMMathChain(Chain): """Chain that interprets a prompt and executes python code to do math. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI llm_math = LLMMathChain.from_llm(OpenAI()) """ llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" prompt: BasePromptTemplate = PROMPT """[Deprecated] Prompt to use to translate to python if necessary.""" input_key: str = "question" #: :meta private: output_key: str = "answer" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn(
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
c58bb0e82b01-1
if "llm" in values: warnings.warn( "Directly instantiating an LLMMathChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: prompt = values.get("prompt", PROMPT) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] def _evaluate_expression(self, expression: str) -> str: try: local_dict = {"pi": math.pi, "e": math.e} output = str( numexpr.evaluate( expression.strip(), global_dict={}, # restrict access to globals local_dict=local_dict, # add common mathematical functions ) ) except Exception as e: raise ValueError( f'LLMMathChain._evaluate("{expression}") raised error: {e}.' " Please try again with a valid numerical expression" ) # Remove any leading and trailing brackets from the output return re.sub(r"^\[|\]$", "", output) def _process_llm_result( self, llm_output: str, run_manager: CallbackManagerForChainRun ) -> Dict[str, str]:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
c58bb0e82b01-2
) -> Dict[str, str]: run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) run_manager.on_text("\nAnswer: ", verbose=self.verbose) run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} async def _aprocess_llm_result( self, llm_output: str, run_manager: AsyncCallbackManagerForChainRun, ) -> Dict[str, str]: await run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) if text_match: expression = text_match.group(1) output = self._evaluate_expression(expression) await run_manager.on_text("\nAnswer: ", verbose=self.verbose) await run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
c58bb0e82b01-3
elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _run_manager.on_text(inputs[self.input_key]) llm_output = self.llm_chain.predict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return self._process_llm_result(llm_output, _run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() await _run_manager.on_text(inputs[self.input_key]) llm_output = await self.llm_chain.apredict( question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return await self._aprocess_llm_result(llm_output, _run_manager) @property def _chain_type(self) -> str: return "llm_math_chain" [docs] @classmethod def from_llm( cls,
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
c58bb0e82b01-4
[docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate = PROMPT, **kwargs: Any, ) -> LLMMathChain: llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_math/base.html
0e552595d0f1-0
Source code for langchain.chains.llm_summarization_checker.base """Chain for summarization with self-verification.""" from __future__ import annotations import warnings from pathlib import Path from typing import Any, Dict, List, Optional from pydantic import Extra, root_validator from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import CallbackManagerForChainRun from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.chains.sequential import SequentialChain from langchain.prompts.prompt import PromptTemplate PROMPTS_DIR = Path(__file__).parent / "prompts" CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "create_facts.txt", ["summary"] ) CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "check_facts.txt", ["assertions"] ) REVISED_SUMMARY_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"] ) ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file( PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"] ) def _load_sequential_chain( llm: BaseLanguageModel, create_assertions_prompt: PromptTemplate, check_assertions_prompt: PromptTemplate, revised_summary_prompt: PromptTemplate, are_all_true_prompt: PromptTemplate, verbose: bool = False, ) -> SequentialChain: chain = SequentialChain( chains=[ LLMChain( llm=llm, prompt=create_assertions_prompt, output_key="assertions", verbose=verbose, ), LLMChain(
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
0e552595d0f1-1
verbose=verbose, ), LLMChain( llm=llm, prompt=check_assertions_prompt, output_key="checked_assertions", verbose=verbose, ), LLMChain( llm=llm, prompt=revised_summary_prompt, output_key="revised_summary", verbose=verbose, ), LLMChain( llm=llm, output_key="all_true", prompt=are_all_true_prompt, verbose=verbose, ), ], input_variables=["summary"], output_variables=["all_true", "revised_summary"], verbose=verbose, ) return chain [docs]class LLMSummarizationCheckerChain(Chain): """Chain for question-answering with self-verification. Example: .. code-block:: python from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain.from_llm(llm) """ sequential_chain: SequentialChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT """[Deprecated]""" check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT """[Deprecated]""" revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT """[Deprecated]""" are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT """[Deprecated]""" input_key: str = "query" #: :meta private:
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
0e552595d0f1-2
input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: max_checks: int = 2 """Maximum number of times to check the assertions. Default to double-checking.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an LLMSummarizationCheckerChain with an llm is " "deprecated. Please instantiate with" " sequential_chain argument or using the from_llm class method." ) if "sequential_chain" not in values and values["llm"] is not None: values["sequential_chain"] = _load_sequential_chain( values["llm"], values.get("create_assertions_prompt", CREATE_ASSERTIONS_PROMPT), values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT), values.get("revised_summary_prompt", REVISED_SUMMARY_PROMPT), values.get("are_all_true_prompt", ARE_ALL_TRUE_PROMPT), verbose=values.get("verbose", False), ) return values @property def input_keys(self) -> List[str]: """Return the singular input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ return [self.output_key] def _call( self, inputs: Dict[str, Any],
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html
0e552595d0f1-3
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() all_true = False count = 0 output = None original_input = inputs[self.input_key] chain_input = original_input while not all_true and count < self.max_checks: output = self.sequential_chain( {"summary": chain_input}, callbacks=_run_manager.get_child() ) count += 1 if output["all_true"].strip() == "True": break if self.verbose: print(output["revised_summary"]) chain_input = output["revised_summary"] if not output: raise ValueError("No output from chain") return {self.output_key: output["revised_summary"].strip()} @property def _chain_type(self) -> str: return "llm_summarization_checker_chain" [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT, check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT, revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT, are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT, verbose: bool = False, **kwargs: Any, ) -> LLMSummarizationCheckerChain: chain = _load_sequential_chain( llm, create_assertions_prompt, check_assertions_prompt, revised_summary_prompt,
https://python.langchain.com/en/latest/_modules/langchain/chains/llm_summarization_checker/base.html