title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.IntervalIndex.get_loc
`pandas.IntervalIndex.get_loc` Get integer location, slice or boolean mask for requested label. default: matches where the label is within an interval only. ``` >>> i1, i2 = pd.Interval(0, 1), pd.Interval(1, 2) >>> index = pd.IntervalIndex([i1, i2]) >>> index.get_loc(1) 0 ```
IntervalIndex.get_loc(key, method=None, tolerance=None)[source]# Get integer location, slice or boolean mask for requested label. Parameters keylabel method{None}, optional default: matches where the label is within an interval only. Deprecated since version 1.4. Returns int if unique index, slice if monotonic index, else mask Examples >>> i1, i2 = pd.Interval(0, 1), pd.Interval(1, 2) >>> index = pd.IntervalIndex([i1, i2]) >>> index.get_loc(1) 0 You can also supply a point inside an interval. >>> index.get_loc(1.5) 1 If a label is in several intervals, you get the locations of all the relevant intervals. >>> i3 = pd.Interval(0, 2) >>> overlapping_index = pd.IntervalIndex([i1, i2, i3]) >>> overlapping_index.get_loc(0.5) array([ True, False, True]) Only exact matches will be returned if an interval is provided. >>> index.get_loc(pd.Interval(0, 1)) 0
reference/api/pandas.IntervalIndex.get_loc.html
pandas.tseries.offsets.CustomBusinessDay.name
`pandas.tseries.offsets.CustomBusinessDay.name` Return a string representing the base frequency. Examples ``` >>> pd.offsets.Hour().name 'H' ```
CustomBusinessDay.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.CustomBusinessDay.name.html
pandas.tseries.offsets.FY5253Quarter.is_on_offset
`pandas.tseries.offsets.FY5253Quarter.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
FY5253Quarter.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.FY5253Quarter.is_on_offset.html
pandas.core.resample.Resampler.fillna
`pandas.core.resample.Resampler.fillna` Fill missing values introduced by upsampling. ``` >>> s = pd.Series([1, 2, 3], ... index=pd.date_range('20180101', periods=3, freq='h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 2018-01-01 02:00:00 3 Freq: H, dtype: int64 ```
Resampler.fillna(method, limit=None)[source]# Fill missing values introduced by upsampling. In statistics, imputation is the process of replacing missing data with substituted values [1]. When resampling data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency). Missing values that existed in the original data will not be modified. Parameters method{‘pad’, ‘backfill’, ‘ffill’, ‘bfill’, ‘nearest’}Method to use for filling holes in resampled data ‘pad’ or ‘ffill’: use previous valid observation to fill gap (forward fill). ‘backfill’ or ‘bfill’: use next valid observation to fill gap. ‘nearest’: use nearest valid observation to fill gap. limitint, optionalLimit of how many consecutive missing values to fill. Returns Series or DataFrameAn upsampled Series or DataFrame with missing values filled. See also bfillBackward fill NaN values in the resampled data. ffillForward fill NaN values in the resampled data. nearestFill NaN values in the resampled data with nearest neighbor starting from center. interpolateFill NaN values using interpolation. Series.fillnaFill NaN values in the Series using the specified method, which can be ‘bfill’ and ‘ffill’. DataFrame.fillnaFill NaN values in the DataFrame using the specified method, which can be ‘bfill’ and ‘ffill’. References 1 https://en.wikipedia.org/wiki/Imputation_(statistics) Examples Resampling a Series: >>> s = pd.Series([1, 2, 3], ... index=pd.date_range('20180101', periods=3, freq='h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 2018-01-01 02:00:00 3 Freq: H, dtype: int64 Without filling the missing values you get: >>> s.resample("30min").asfreq() 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 01:00:00 2.0 2018-01-01 01:30:00 NaN 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 >>> s.resample('30min').fillna("backfill") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 2 2018-01-01 01:00:00 2 2018-01-01 01:30:00 3 2018-01-01 02:00:00 3 Freq: 30T, dtype: int64 >>> s.resample('15min').fillna("backfill", limit=2) 2018-01-01 00:00:00 1.0 2018-01-01 00:15:00 NaN 2018-01-01 00:30:00 2.0 2018-01-01 00:45:00 2.0 2018-01-01 01:00:00 2.0 2018-01-01 01:15:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 01:45:00 3.0 2018-01-01 02:00:00 3.0 Freq: 15T, dtype: float64 >>> s.resample('30min').fillna("pad") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 1 2018-01-01 01:00:00 2 2018-01-01 01:30:00 2 2018-01-01 02:00:00 3 Freq: 30T, dtype: int64 >>> s.resample('30min').fillna("nearest") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 2 2018-01-01 01:00:00 2 2018-01-01 01:30:00 3 2018-01-01 02:00:00 3 Freq: 30T, dtype: int64 Missing values present before the upsampling are not affected. >>> sm = pd.Series([1, None, 3], ... index=pd.date_range('20180101', periods=3, freq='h')) >>> sm 2018-01-01 00:00:00 1.0 2018-01-01 01:00:00 NaN 2018-01-01 02:00:00 3.0 Freq: H, dtype: float64 >>> sm.resample('30min').fillna('backfill') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 >>> sm.resample('30min').fillna('pad') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 1.0 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 NaN 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 >>> sm.resample('30min').fillna('nearest') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 DataFrame resampling is done column-wise. All the same options are available. >>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]}, ... index=pd.date_range('20180101', periods=3, ... freq='h')) >>> df a b 2018-01-01 00:00:00 2.0 1 2018-01-01 01:00:00 NaN 3 2018-01-01 02:00:00 6.0 5 >>> df.resample('30min').fillna("bfill") a b 2018-01-01 00:00:00 2.0 1 2018-01-01 00:30:00 NaN 3 2018-01-01 01:00:00 NaN 3 2018-01-01 01:30:00 6.0 5 2018-01-01 02:00:00 6.0 5
reference/api/pandas.core.resample.Resampler.fillna.html
pandas.Series.dt.nanosecond
`pandas.Series.dt.nanosecond` The nanoseconds of the datetime. ``` >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="ns") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000000 1 2000-01-01 00:00:00.000000001 2 2000-01-01 00:00:00.000000002 dtype: datetime64[ns] >>> datetime_series.dt.nanosecond 0 0 1 1 2 2 dtype: int64 ```
Series.dt.nanosecond[source]# The nanoseconds of the datetime. Examples >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="ns") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000000 1 2000-01-01 00:00:00.000000001 2 2000-01-01 00:00:00.000000002 dtype: datetime64[ns] >>> datetime_series.dt.nanosecond 0 0 1 1 2 2 dtype: int64
reference/api/pandas.Series.dt.nanosecond.html
pandas.errors.SpecificationError
`pandas.errors.SpecificationError` Exception raised by agg when the functions are ill-specified. ``` >>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2], ... 'B': range(5), ... 'C': range(5)}) >>> df.groupby('A').B.agg({'foo': 'count'}) ... # SpecificationError: nested renamer is not supported ```
exception pandas.errors.SpecificationError[source]# Exception raised by agg when the functions are ill-specified. The exception raised in two scenarios. The first way is calling agg on a Dataframe or Series using a nested renamer (dict-of-dict). The second way is calling agg on a Dataframe with duplicated functions names without assigning column name. Examples >>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2], ... 'B': range(5), ... 'C': range(5)}) >>> df.groupby('A').B.agg({'foo': 'count'}) ... # SpecificationError: nested renamer is not supported >>> df.groupby('A').agg({'B': {'foo': ['sum', 'max']}}) ... # SpecificationError: nested renamer is not supported >>> df.groupby('A').agg(['min', 'min']) ... # SpecificationError: nested renamer is not supported
reference/api/pandas.errors.SpecificationError.html
pandas.Series.str.startswith
`pandas.Series.str.startswith` Test if the start of each string element matches a pattern. ``` >>> s = pd.Series(['bat', 'Bear', 'cat', np.nan]) >>> s 0 bat 1 Bear 2 cat 3 NaN dtype: object ```
Series.str.startswith(pat, na=None)[source]# Test if the start of each string element matches a pattern. Equivalent to str.startswith(). Parameters patstr or tuple[str, …]Character sequence or tuple of strings. Regular expressions are not accepted. naobject, default NaNObject shown if element tested is not a string. The default depends on dtype of the array. For object-dtype, numpy.nan is used. For StringDtype, pandas.NA is used. Returns Series or Index of boolA Series of booleans indicating whether the given pattern matches the start of each string element. See also str.startswithPython standard library string method. Series.str.endswithSame as startswith, but tests the end of string. Series.str.containsTests if string element contains a pattern. Examples >>> s = pd.Series(['bat', 'Bear', 'cat', np.nan]) >>> s 0 bat 1 Bear 2 cat 3 NaN dtype: object >>> s.str.startswith('b') 0 True 1 False 2 False 3 NaN dtype: object >>> s.str.startswith(('b', 'B')) 0 True 1 True 2 False 3 NaN dtype: object Specifying na to be False instead of NaN. >>> s.str.startswith('b', na=False) 0 True 1 False 2 False 3 False dtype: bool
reference/api/pandas.Series.str.startswith.html
pandas.io.formats.style.Styler.hide
`pandas.io.formats.style.Styler.hide` Hide the entire index / column headers, or specific rows / columns from display. ``` >>> df = pd.DataFrame([[1,2], [3,4], [5,6]], index=["a", "b", "c"]) >>> df.style.hide(["a", "b"]) 0 1 c 5 6 ```
Styler.hide(subset=None, axis=0, level=None, names=False)[source]# Hide the entire index / column headers, or specific rows / columns from display. New in version 1.4.0. Parameters subsetlabel, array-like, IndexSlice, optionalA valid 1d input or single key along the axis within DataFrame.loc[<subset>, :] or DataFrame.loc[:, <subset>] depending upon axis, to limit data to select hidden rows / columns. axis{“index”, 0, “columns”, 1}Apply to the index or columns. levelint, str, listThe level(s) to hide in a MultiIndex if hiding the entire index / column headers. Cannot be used simultaneously with subset. namesboolWhether to hide the level name(s) of the index / columns headers in the case it (or at least one the levels) remains visible. Returns selfStyler Notes Warning This method only works with the output methods to_html, to_string and to_latex. Other output methods, including to_excel, ignore this hiding method and will display all data. This method has multiple functionality depending upon the combination of the subset, level and names arguments (see examples). The axis argument is used only to control whether the method is applied to row or column headers: Argument combinations# subset level names Effect None None False The axis-Index is hidden entirely. None None True Only the axis-Index names are hidden. None Int, Str, List False Specified axis-MultiIndex levels are hidden entirely. None Int, Str, List True Specified axis-MultiIndex levels are hidden entirely and the names of remaining axis-MultiIndex levels. Subset None False The specified data rows/columns are hidden, but the axis-Index itself, and names, remain unchanged. Subset None True The specified data rows/columns and axis-Index names are hidden, but the axis-Index itself remains unchanged. Subset Int, Str, List Boolean ValueError: cannot supply subset and level simultaneously. Note this method only hides the identifed elements so can be chained to hide multiple elements in sequence. Examples Simple application hiding specific rows: >>> df = pd.DataFrame([[1,2], [3,4], [5,6]], index=["a", "b", "c"]) >>> df.style.hide(["a", "b"]) 0 1 c 5 6 Hide the index and retain the data values: >>> midx = pd.MultiIndex.from_product([["x", "y"], ["a", "b", "c"]]) >>> df = pd.DataFrame(np.random.randn(6,6), index=midx, columns=midx) >>> df.style.format("{:.1f}").hide() x y a b c a b c 0.1 0.0 0.4 1.3 0.6 -1.4 0.7 1.0 1.3 1.5 -0.0 -0.2 1.4 -0.8 1.6 -0.2 -0.4 -0.3 0.4 1.0 -0.2 -0.8 -1.2 1.1 -0.6 1.2 1.8 1.9 0.3 0.3 0.8 0.5 -0.3 1.2 2.2 -0.8 Hide specific rows in a MultiIndex but retain the index: >>> df.style.format("{:.1f}").hide(subset=(slice(None), ["a", "c"])) ... x y a b c a b c x b 0.7 1.0 1.3 1.5 -0.0 -0.2 y b -0.6 1.2 1.8 1.9 0.3 0.3 Hide specific rows and the index through chaining: >>> df.style.format("{:.1f}").hide(subset=(slice(None), ["a", "c"])).hide() ... x y a b c a b c 0.7 1.0 1.3 1.5 -0.0 -0.2 -0.6 1.2 1.8 1.9 0.3 0.3 Hide a specific level: >>> df.style.format("{:,.1f}").hide(level=1) x y a b c a b c x 0.1 0.0 0.4 1.3 0.6 -1.4 0.7 1.0 1.3 1.5 -0.0 -0.2 1.4 -0.8 1.6 -0.2 -0.4 -0.3 y 0.4 1.0 -0.2 -0.8 -1.2 1.1 -0.6 1.2 1.8 1.9 0.3 0.3 0.8 0.5 -0.3 1.2 2.2 -0.8 Hiding just the index level names: >>> df.index.names = ["lev0", "lev1"] >>> df.style.format("{:,.1f}").hide(names=True) x y a b c a b c x a 0.1 0.0 0.4 1.3 0.6 -1.4 b 0.7 1.0 1.3 1.5 -0.0 -0.2 c 1.4 -0.8 1.6 -0.2 -0.4 -0.3 y a 0.4 1.0 -0.2 -0.8 -1.2 1.1 b -0.6 1.2 1.8 1.9 0.3 0.3 c 0.8 0.5 -0.3 1.2 2.2 -0.8 Examples all produce equivalently transposed effects with axis="columns".
reference/api/pandas.io.formats.style.Styler.hide.html
pandas.tseries.offsets.MonthEnd.is_month_start
`pandas.tseries.offsets.MonthEnd.is_month_start` Return boolean whether a timestamp occurs on the month start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
MonthEnd.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.MonthEnd.is_month_start.html
pandas.Series.str.repeat
`pandas.Series.str.repeat` Duplicate each string in the Series or Index. ``` >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object ```
Series.str.repeat(repeats)[source]# Duplicate each string in the Series or Index. Parameters repeatsint or sequence of intSame value for all (int) or different value per (sequence). Returns Series or Index of objectSeries or Index of repeated string objects specified by input parameter repeats. Examples >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object Single int repeats string in Series >>> s.str.repeat(repeats=2) 0 aa 1 bb 2 cc dtype: object Sequence of int repeats corresponding string in Series >>> s.str.repeat(repeats=[1, 2, 3]) 0 a 1 bb 2 ccc dtype: object
reference/api/pandas.Series.str.repeat.html
Resampling
Resampling
Resampler objects are returned by resample calls: pandas.DataFrame.resample(), pandas.Series.resample(). Indexing, iteration# Resampler.__iter__() Groupby iterator. Resampler.groups Dict {group name -> group labels}. Resampler.indices Dict {group name -> group indices}. Resampler.get_group(name[, obj]) Construct DataFrame from group with provided name. Function application# Resampler.apply([func]) Aggregate using one or more operations over the specified axis. Resampler.aggregate([func]) Aggregate using one or more operations over the specified axis. Resampler.transform(arg, *args, **kwargs) Call function producing a like-indexed Series on each group. Resampler.pipe(func, *args, **kwargs) Apply a func with arguments to this Resampler object and return its result. Upsampling# Resampler.ffill([limit]) Forward fill the values. Resampler.backfill([limit]) (DEPRECATED) Backward fill the values. Resampler.bfill([limit]) Backward fill the new missing values in the resampled data. Resampler.pad([limit]) (DEPRECATED) Forward fill the values. Resampler.nearest([limit]) Resample by using the nearest value. Resampler.fillna(method[, limit]) Fill missing values introduced by upsampling. Resampler.asfreq([fill_value]) Return the values at the new freq, essentially a reindex. Resampler.interpolate([method, axis, limit, ...]) Interpolate values according to different methods. Computations / descriptive stats# Resampler.count() Compute count of group, excluding missing values. Resampler.nunique(*args, **kwargs) Return number of unique elements in the group. Resampler.first([numeric_only, min_count]) Compute the first non-null entry of each column. Resampler.last([numeric_only, min_count]) Compute the last non-null entry of each column. Resampler.max([numeric_only, min_count]) Compute max of group values. Resampler.mean([numeric_only]) Compute mean of groups, excluding missing values. Resampler.median([numeric_only]) Compute median of groups, excluding missing values. Resampler.min([numeric_only, min_count]) Compute min of group values. Resampler.ohlc(*args, **kwargs) Compute open, high, low and close values of a group, excluding missing values. Resampler.prod([numeric_only, min_count]) Compute prod of group values. Resampler.size() Compute group sizes. Resampler.sem([ddof, numeric_only]) Compute standard error of the mean of groups, excluding missing values. Resampler.std([ddof, numeric_only]) Compute standard deviation of groups, excluding missing values. Resampler.sum([numeric_only, min_count]) Compute sum of group values. Resampler.var([ddof, numeric_only]) Compute variance of groups, excluding missing values. Resampler.quantile([q]) Return value at the given quantile.
reference/resampling.html
pandas.MultiIndex.to_frame
`pandas.MultiIndex.to_frame` Create a DataFrame with the levels of the MultiIndex as columns. ``` >>> mi = pd.MultiIndex.from_arrays([['a', 'b'], ['c', 'd']]) >>> mi MultiIndex([('a', 'c'), ('b', 'd')], ) ```
MultiIndex.to_frame(index=True, name=_NoDefault.no_default, allow_duplicates=False)[source]# Create a DataFrame with the levels of the MultiIndex as columns. Column ordering is determined by the DataFrame constructor with data as a dict. Parameters indexbool, default TrueSet the index of the returned DataFrame as the original MultiIndex. namelist / sequence of str, optionalThe passed names should substitute index level names. allow_duplicatesbool, optional default FalseAllow duplicate column labels to be created. New in version 1.5.0. Returns DataFramea DataFrame containing the original MultiIndex data. See also DataFrameTwo-dimensional, size-mutable, potentially heterogeneous tabular data. Examples >>> mi = pd.MultiIndex.from_arrays([['a', 'b'], ['c', 'd']]) >>> mi MultiIndex([('a', 'c'), ('b', 'd')], ) >>> df = mi.to_frame() >>> df 0 1 a c a c b d b d >>> df = mi.to_frame(index=False) >>> df 0 1 0 a c 1 b d >>> df = mi.to_frame(name=['x', 'y']) >>> df x y a c a c b d b d
reference/api/pandas.MultiIndex.to_frame.html
pandas.DatetimeIndex.freq
`pandas.DatetimeIndex.freq` Return the frequency object if it is set, otherwise None.
property DatetimeIndex.freq[source]# Return the frequency object if it is set, otherwise None.
reference/api/pandas.DatetimeIndex.freq.html
pandas.api.types.is_number
`pandas.api.types.is_number` Check if the object is a number. Returns True when the object is a number, and False if is not. ``` >>> from pandas.api.types import is_number >>> is_number(1) True >>> is_number(7.15) True ```
pandas.api.types.is_number(obj)[source]# Check if the object is a number. Returns True when the object is a number, and False if is not. Parameters objany typeThe object to check if is a number. Returns is_numberboolWhether obj is a number or not. See also api.types.is_integerChecks a subgroup of numbers. Examples >>> from pandas.api.types import is_number >>> is_number(1) True >>> is_number(7.15) True Booleans are valid because they are int subclass. >>> is_number(False) True >>> is_number("foo") False >>> is_number("5") False
reference/api/pandas.api.types.is_number.html
pandas.DataFrame.assign
`pandas.DataFrame.assign` Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. ``` >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 ```
DataFrame.assign(**kwargs)[source]# Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters **kwargsdict of {str: callable or Series}The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns DataFrameA new DataFrame with the new columns in addition to all the existing columns. Notes Assigning multiple columns within the same assign is possible. Later items in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned into ‘df’ in order. Examples >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on df: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15
reference/api/pandas.DataFrame.assign.html
pandas.PeriodIndex.year
`pandas.PeriodIndex.year` The year of the period.
property PeriodIndex.year[source]# The year of the period.
reference/api/pandas.PeriodIndex.year.html
pandas.Timedelta.value
pandas.Timedelta.value
Timedelta.value#
reference/api/pandas.Timedelta.value.html
Date offsets
Date offsets
DateOffset# DateOffset Standard kind of date increment used for a date range. Properties# DateOffset.freqstr Return a string representing the frequency. DateOffset.kwds Return a dict of extra parameters for the offset. DateOffset.name Return a string representing the base frequency. DateOffset.nanos DateOffset.normalize DateOffset.rule_code DateOffset.n DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. Methods# DateOffset.apply DateOffset.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. DateOffset.copy Return a copy of the frequency. DateOffset.isAnchored DateOffset.onOffset DateOffset.is_anchored Return boolean whether the frequency is a unit frequency (n=1). DateOffset.is_on_offset Return boolean whether a timestamp intersects with this frequency. DateOffset.__call__(*args, **kwargs) Call self as a function. DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. DateOffset.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. DateOffset.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. DateOffset.is_year_start Return boolean whether a timestamp occurs on the year start. DateOffset.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessDay# BusinessDay DateOffset subclass representing possibly n business days. Alias: BDay alias of pandas._libs.tslibs.offsets.BusinessDay Properties# BusinessDay.freqstr Return a string representing the frequency. BusinessDay.kwds Return a dict of extra parameters for the offset. BusinessDay.name Return a string representing the base frequency. BusinessDay.nanos BusinessDay.normalize BusinessDay.rule_code BusinessDay.n BusinessDay.weekmask BusinessDay.holidays BusinessDay.calendar Methods# BusinessDay.apply BusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessDay.copy Return a copy of the frequency. BusinessDay.isAnchored BusinessDay.onOffset BusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessDay.__call__(*args, **kwargs) Call self as a function. BusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessHour# BusinessHour DateOffset subclass representing possibly n business hours. Properties# BusinessHour.freqstr Return a string representing the frequency. BusinessHour.kwds Return a dict of extra parameters for the offset. BusinessHour.name Return a string representing the base frequency. BusinessHour.nanos BusinessHour.normalize BusinessHour.rule_code BusinessHour.n BusinessHour.start BusinessHour.end BusinessHour.weekmask BusinessHour.holidays BusinessHour.calendar Methods# BusinessHour.apply BusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessHour.copy Return a copy of the frequency. BusinessHour.isAnchored BusinessHour.onOffset BusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessHour.__call__(*args, **kwargs) Call self as a function. BusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessDay# CustomBusinessDay DateOffset subclass representing custom business days excluding holidays. Alias: CDay alias of pandas._libs.tslibs.offsets.CustomBusinessDay Properties# CustomBusinessDay.freqstr Return a string representing the frequency. CustomBusinessDay.kwds Return a dict of extra parameters for the offset. CustomBusinessDay.name Return a string representing the base frequency. CustomBusinessDay.nanos CustomBusinessDay.normalize CustomBusinessDay.rule_code CustomBusinessDay.n CustomBusinessDay.weekmask CustomBusinessDay.calendar CustomBusinessDay.holidays Methods# CustomBusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessDay.apply CustomBusinessDay.copy Return a copy of the frequency. CustomBusinessDay.isAnchored CustomBusinessDay.onOffset CustomBusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessDay.__call__(*args, **kwargs) Call self as a function. CustomBusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessHour# CustomBusinessHour DateOffset subclass representing possibly n custom business days. Properties# CustomBusinessHour.freqstr Return a string representing the frequency. CustomBusinessHour.kwds Return a dict of extra parameters for the offset. CustomBusinessHour.name Return a string representing the base frequency. CustomBusinessHour.nanos CustomBusinessHour.normalize CustomBusinessHour.rule_code CustomBusinessHour.n CustomBusinessHour.weekmask CustomBusinessHour.calendar CustomBusinessHour.holidays CustomBusinessHour.start CustomBusinessHour.end Methods# CustomBusinessHour.apply CustomBusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessHour.copy Return a copy of the frequency. CustomBusinessHour.isAnchored CustomBusinessHour.onOffset CustomBusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessHour.__call__(*args, **kwargs) Call self as a function. CustomBusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. MonthEnd# MonthEnd DateOffset of one month end. Properties# MonthEnd.freqstr Return a string representing the frequency. MonthEnd.kwds Return a dict of extra parameters for the offset. MonthEnd.name Return a string representing the base frequency. MonthEnd.nanos MonthEnd.normalize MonthEnd.rule_code MonthEnd.n Methods# MonthEnd.apply MonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthEnd.copy Return a copy of the frequency. MonthEnd.isAnchored MonthEnd.onOffset MonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthEnd.__call__(*args, **kwargs) Call self as a function. MonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. MonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. MonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. MonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. MonthBegin# MonthBegin DateOffset of one month at beginning. Properties# MonthBegin.freqstr Return a string representing the frequency. MonthBegin.kwds Return a dict of extra parameters for the offset. MonthBegin.name Return a string representing the base frequency. MonthBegin.nanos MonthBegin.normalize MonthBegin.rule_code MonthBegin.n Methods# MonthBegin.apply MonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthBegin.copy Return a copy of the frequency. MonthBegin.isAnchored MonthBegin.onOffset MonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthBegin.__call__(*args, **kwargs) Call self as a function. MonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. MonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. MonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. MonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthEnd# BusinessMonthEnd DateOffset increments between the last business day of the month. Alias: BMonthEnd alias of pandas._libs.tslibs.offsets.BusinessMonthEnd Properties# BusinessMonthEnd.freqstr Return a string representing the frequency. BusinessMonthEnd.kwds Return a dict of extra parameters for the offset. BusinessMonthEnd.name Return a string representing the base frequency. BusinessMonthEnd.nanos BusinessMonthEnd.normalize BusinessMonthEnd.rule_code BusinessMonthEnd.n Methods# BusinessMonthEnd.apply BusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthEnd.copy Return a copy of the frequency. BusinessMonthEnd.isAnchored BusinessMonthEnd.onOffset BusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. BusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthBegin# BusinessMonthBegin DateOffset of one month at the first business day. Alias: BMonthBegin alias of pandas._libs.tslibs.offsets.BusinessMonthBegin Properties# BusinessMonthBegin.freqstr Return a string representing the frequency. BusinessMonthBegin.kwds Return a dict of extra parameters for the offset. BusinessMonthBegin.name Return a string representing the base frequency. BusinessMonthBegin.nanos BusinessMonthBegin.normalize BusinessMonthBegin.rule_code BusinessMonthBegin.n Methods# BusinessMonthBegin.apply BusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthBegin.copy Return a copy of the frequency. BusinessMonthBegin.isAnchored BusinessMonthBegin.onOffset BusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthBegin.__call__(*args, **kwargs) Call self as a function. BusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthEnd# CustomBusinessMonthEnd Attributes Alias: CBMonthEnd alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd Properties# CustomBusinessMonthEnd.freqstr Return a string representing the frequency. CustomBusinessMonthEnd.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthEnd.m_offset CustomBusinessMonthEnd.name Return a string representing the base frequency. CustomBusinessMonthEnd.nanos CustomBusinessMonthEnd.normalize CustomBusinessMonthEnd.rule_code CustomBusinessMonthEnd.n CustomBusinessMonthEnd.weekmask CustomBusinessMonthEnd.calendar CustomBusinessMonthEnd.holidays Methods# CustomBusinessMonthEnd.apply CustomBusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthEnd.copy Return a copy of the frequency. CustomBusinessMonthEnd.isAnchored CustomBusinessMonthEnd.onOffset CustomBusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. CustomBusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthBegin# CustomBusinessMonthBegin Attributes Alias: CBMonthBegin alias of pandas._libs.tslibs.offsets.CustomBusinessMonthBegin Properties# CustomBusinessMonthBegin.freqstr Return a string representing the frequency. CustomBusinessMonthBegin.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthBegin.m_offset CustomBusinessMonthBegin.name Return a string representing the base frequency. CustomBusinessMonthBegin.nanos CustomBusinessMonthBegin.normalize CustomBusinessMonthBegin.rule_code CustomBusinessMonthBegin.n CustomBusinessMonthBegin.weekmask CustomBusinessMonthBegin.calendar CustomBusinessMonthBegin.holidays Methods# CustomBusinessMonthBegin.apply CustomBusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthBegin.copy Return a copy of the frequency. CustomBusinessMonthBegin.isAnchored CustomBusinessMonthBegin.onOffset CustomBusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthBegin.__call__(*args, ...) Call self as a function. CustomBusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthEnd# SemiMonthEnd Two DateOffset's per month repeating on the last day of the month & day_of_month. Properties# SemiMonthEnd.freqstr Return a string representing the frequency. SemiMonthEnd.kwds Return a dict of extra parameters for the offset. SemiMonthEnd.name Return a string representing the base frequency. SemiMonthEnd.nanos SemiMonthEnd.normalize SemiMonthEnd.rule_code SemiMonthEnd.n SemiMonthEnd.day_of_month Methods# SemiMonthEnd.apply SemiMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthEnd.copy Return a copy of the frequency. SemiMonthEnd.isAnchored SemiMonthEnd.onOffset SemiMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthEnd.__call__(*args, **kwargs) Call self as a function. SemiMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthBegin# SemiMonthBegin Two DateOffset's per month repeating on the first day of the month & day_of_month. Properties# SemiMonthBegin.freqstr Return a string representing the frequency. SemiMonthBegin.kwds Return a dict of extra parameters for the offset. SemiMonthBegin.name Return a string representing the base frequency. SemiMonthBegin.nanos SemiMonthBegin.normalize SemiMonthBegin.rule_code SemiMonthBegin.n SemiMonthBegin.day_of_month Methods# SemiMonthBegin.apply SemiMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthBegin.copy Return a copy of the frequency. SemiMonthBegin.isAnchored SemiMonthBegin.onOffset SemiMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthBegin.__call__(*args, **kwargs) Call self as a function. SemiMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. Week# Week Weekly offset. Properties# Week.freqstr Return a string representing the frequency. Week.kwds Return a dict of extra parameters for the offset. Week.name Return a string representing the base frequency. Week.nanos Week.normalize Week.rule_code Week.n Week.weekday Methods# Week.apply Week.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Week.copy Return a copy of the frequency. Week.isAnchored Week.onOffset Week.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Week.is_on_offset Return boolean whether a timestamp intersects with this frequency. Week.__call__(*args, **kwargs) Call self as a function. Week.is_month_start Return boolean whether a timestamp occurs on the month start. Week.is_month_end Return boolean whether a timestamp occurs on the month end. Week.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Week.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Week.is_year_start Return boolean whether a timestamp occurs on the year start. Week.is_year_end Return boolean whether a timestamp occurs on the year end. WeekOfMonth# WeekOfMonth Describes monthly dates like "the Tuesday of the 2nd week of each month". Properties# WeekOfMonth.freqstr Return a string representing the frequency. WeekOfMonth.kwds Return a dict of extra parameters for the offset. WeekOfMonth.name Return a string representing the base frequency. WeekOfMonth.nanos WeekOfMonth.normalize WeekOfMonth.rule_code WeekOfMonth.n WeekOfMonth.week Methods# WeekOfMonth.apply WeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. WeekOfMonth.copy Return a copy of the frequency. WeekOfMonth.isAnchored WeekOfMonth.onOffset WeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). WeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. WeekOfMonth.__call__(*args, **kwargs) Call self as a function. WeekOfMonth.weekday WeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. WeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. WeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. WeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. WeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. WeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. LastWeekOfMonth# LastWeekOfMonth Describes monthly dates in last week of month. Properties# LastWeekOfMonth.freqstr Return a string representing the frequency. LastWeekOfMonth.kwds Return a dict of extra parameters for the offset. LastWeekOfMonth.name Return a string representing the base frequency. LastWeekOfMonth.nanos LastWeekOfMonth.normalize LastWeekOfMonth.rule_code LastWeekOfMonth.n LastWeekOfMonth.weekday LastWeekOfMonth.week Methods# LastWeekOfMonth.apply LastWeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. LastWeekOfMonth.copy Return a copy of the frequency. LastWeekOfMonth.isAnchored LastWeekOfMonth.onOffset LastWeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). LastWeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. LastWeekOfMonth.__call__(*args, **kwargs) Call self as a function. LastWeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. LastWeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. LastWeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. LastWeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. LastWeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. LastWeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterEnd# BQuarterEnd DateOffset increments between the last business day of each Quarter. Properties# BQuarterEnd.freqstr Return a string representing the frequency. BQuarterEnd.kwds Return a dict of extra parameters for the offset. BQuarterEnd.name Return a string representing the base frequency. BQuarterEnd.nanos BQuarterEnd.normalize BQuarterEnd.rule_code BQuarterEnd.n BQuarterEnd.startingMonth Methods# BQuarterEnd.apply BQuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterEnd.copy Return a copy of the frequency. BQuarterEnd.isAnchored BQuarterEnd.onOffset BQuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterEnd.__call__(*args, **kwargs) Call self as a function. BQuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterBegin# BQuarterBegin DateOffset increments between the first business day of each Quarter. Properties# BQuarterBegin.freqstr Return a string representing the frequency. BQuarterBegin.kwds Return a dict of extra parameters for the offset. BQuarterBegin.name Return a string representing the base frequency. BQuarterBegin.nanos BQuarterBegin.normalize BQuarterBegin.rule_code BQuarterBegin.n BQuarterBegin.startingMonth Methods# BQuarterBegin.apply BQuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterBegin.copy Return a copy of the frequency. BQuarterBegin.isAnchored BQuarterBegin.onOffset BQuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterBegin.__call__(*args, **kwargs) Call self as a function. BQuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterEnd# QuarterEnd DateOffset increments between Quarter end dates. Properties# QuarterEnd.freqstr Return a string representing the frequency. QuarterEnd.kwds Return a dict of extra parameters for the offset. QuarterEnd.name Return a string representing the base frequency. QuarterEnd.nanos QuarterEnd.normalize QuarterEnd.rule_code QuarterEnd.n QuarterEnd.startingMonth Methods# QuarterEnd.apply QuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterEnd.copy Return a copy of the frequency. QuarterEnd.isAnchored QuarterEnd.onOffset QuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterEnd.__call__(*args, **kwargs) Call self as a function. QuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterBegin# QuarterBegin DateOffset increments between Quarter start dates. Properties# QuarterBegin.freqstr Return a string representing the frequency. QuarterBegin.kwds Return a dict of extra parameters for the offset. QuarterBegin.name Return a string representing the base frequency. QuarterBegin.nanos QuarterBegin.normalize QuarterBegin.rule_code QuarterBegin.n QuarterBegin.startingMonth Methods# QuarterBegin.apply QuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterBegin.copy Return a copy of the frequency. QuarterBegin.isAnchored QuarterBegin.onOffset QuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterBegin.__call__(*args, **kwargs) Call self as a function. QuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BYearEnd# BYearEnd DateOffset increments between the last business day of the year. Properties# BYearEnd.freqstr Return a string representing the frequency. BYearEnd.kwds Return a dict of extra parameters for the offset. BYearEnd.name Return a string representing the base frequency. BYearEnd.nanos BYearEnd.normalize BYearEnd.rule_code BYearEnd.n BYearEnd.month Methods# BYearEnd.apply BYearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearEnd.copy Return a copy of the frequency. BYearEnd.isAnchored BYearEnd.onOffset BYearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearEnd.__call__(*args, **kwargs) Call self as a function. BYearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BYearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BYearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BYearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BYearBegin# BYearBegin DateOffset increments between the first business day of the year. Properties# BYearBegin.freqstr Return a string representing the frequency. BYearBegin.kwds Return a dict of extra parameters for the offset. BYearBegin.name Return a string representing the base frequency. BYearBegin.nanos BYearBegin.normalize BYearBegin.rule_code BYearBegin.n BYearBegin.month Methods# BYearBegin.apply BYearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearBegin.copy Return a copy of the frequency. BYearBegin.isAnchored BYearBegin.onOffset BYearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearBegin.__call__(*args, **kwargs) Call self as a function. BYearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BYearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BYearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BYearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. YearEnd# YearEnd DateOffset increments between calendar year ends. Properties# YearEnd.freqstr Return a string representing the frequency. YearEnd.kwds Return a dict of extra parameters for the offset. YearEnd.name Return a string representing the base frequency. YearEnd.nanos YearEnd.normalize YearEnd.rule_code YearEnd.n YearEnd.month Methods# YearEnd.apply YearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearEnd.copy Return a copy of the frequency. YearEnd.isAnchored YearEnd.onOffset YearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearEnd.__call__(*args, **kwargs) Call self as a function. YearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. YearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. YearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. YearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. YearBegin# YearBegin DateOffset increments between calendar year begin dates. Properties# YearBegin.freqstr Return a string representing the frequency. YearBegin.kwds Return a dict of extra parameters for the offset. YearBegin.name Return a string representing the base frequency. YearBegin.nanos YearBegin.normalize YearBegin.rule_code YearBegin.n YearBegin.month Methods# YearBegin.apply YearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearBegin.copy Return a copy of the frequency. YearBegin.isAnchored YearBegin.onOffset YearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearBegin.__call__(*args, **kwargs) Call self as a function. YearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. YearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. YearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. YearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253# FY5253 Describes 52-53 week fiscal year. Properties# FY5253.freqstr Return a string representing the frequency. FY5253.kwds Return a dict of extra parameters for the offset. FY5253.name Return a string representing the base frequency. FY5253.nanos FY5253.normalize FY5253.rule_code FY5253.n FY5253.startingMonth FY5253.variation FY5253.weekday Methods# FY5253.apply FY5253.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253.copy Return a copy of the frequency. FY5253.get_rule_code_suffix FY5253.get_year_end FY5253.isAnchored FY5253.onOffset FY5253.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253.__call__(*args, **kwargs) Call self as a function. FY5253.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253Quarter# FY5253Quarter DateOffset increments between business quarter dates for 52-53 week fiscal year. Properties# FY5253Quarter.freqstr Return a string representing the frequency. FY5253Quarter.kwds Return a dict of extra parameters for the offset. FY5253Quarter.name Return a string representing the base frequency. FY5253Quarter.nanos FY5253Quarter.normalize FY5253Quarter.rule_code FY5253Quarter.n FY5253Quarter.qtr_with_extra_week FY5253Quarter.startingMonth FY5253Quarter.variation FY5253Quarter.weekday Methods# FY5253Quarter.apply FY5253Quarter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253Quarter.copy Return a copy of the frequency. FY5253Quarter.get_rule_code_suffix FY5253Quarter.get_weeks FY5253Quarter.isAnchored FY5253Quarter.onOffset FY5253Quarter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253Quarter.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253Quarter.year_has_extra_week FY5253Quarter.__call__(*args, **kwargs) Call self as a function. FY5253Quarter.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253Quarter.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253Quarter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253Quarter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253Quarter.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253Quarter.is_year_end Return boolean whether a timestamp occurs on the year end. Easter# Easter DateOffset for the Easter holiday using logic defined in dateutil. Properties# Easter.freqstr Return a string representing the frequency. Easter.kwds Return a dict of extra parameters for the offset. Easter.name Return a string representing the base frequency. Easter.nanos Easter.normalize Easter.rule_code Easter.n Methods# Easter.apply Easter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Easter.copy Return a copy of the frequency. Easter.isAnchored Easter.onOffset Easter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Easter.is_on_offset Return boolean whether a timestamp intersects with this frequency. Easter.__call__(*args, **kwargs) Call self as a function. Easter.is_month_start Return boolean whether a timestamp occurs on the month start. Easter.is_month_end Return boolean whether a timestamp occurs on the month end. Easter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Easter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Easter.is_year_start Return boolean whether a timestamp occurs on the year start. Easter.is_year_end Return boolean whether a timestamp occurs on the year end. Tick# Tick Attributes Properties# Tick.delta Tick.freqstr Return a string representing the frequency. Tick.kwds Return a dict of extra parameters for the offset. Tick.name Return a string representing the base frequency. Tick.nanos Return an integer of the total number of nanoseconds. Tick.normalize Tick.rule_code Tick.n Methods# Tick.copy Return a copy of the frequency. Tick.isAnchored Tick.onOffset Tick.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Tick.is_on_offset Return boolean whether a timestamp intersects with this frequency. Tick.__call__(*args, **kwargs) Call self as a function. Tick.apply Tick.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Tick.is_month_start Return boolean whether a timestamp occurs on the month start. Tick.is_month_end Return boolean whether a timestamp occurs on the month end. Tick.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Tick.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Tick.is_year_start Return boolean whether a timestamp occurs on the year start. Tick.is_year_end Return boolean whether a timestamp occurs on the year end. Day# Day Attributes Properties# Day.delta Day.freqstr Return a string representing the frequency. Day.kwds Return a dict of extra parameters for the offset. Day.name Return a string representing the base frequency. Day.nanos Return an integer of the total number of nanoseconds. Day.normalize Day.rule_code Day.n Methods# Day.copy Return a copy of the frequency. Day.isAnchored Day.onOffset Day.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Day.is_on_offset Return boolean whether a timestamp intersects with this frequency. Day.__call__(*args, **kwargs) Call self as a function. Day.apply Day.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Day.is_month_start Return boolean whether a timestamp occurs on the month start. Day.is_month_end Return boolean whether a timestamp occurs on the month end. Day.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Day.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Day.is_year_start Return boolean whether a timestamp occurs on the year start. Day.is_year_end Return boolean whether a timestamp occurs on the year end. Hour# Hour Attributes Properties# Hour.delta Hour.freqstr Return a string representing the frequency. Hour.kwds Return a dict of extra parameters for the offset. Hour.name Return a string representing the base frequency. Hour.nanos Return an integer of the total number of nanoseconds. Hour.normalize Hour.rule_code Hour.n Methods# Hour.copy Return a copy of the frequency. Hour.isAnchored Hour.onOffset Hour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Hour.is_on_offset Return boolean whether a timestamp intersects with this frequency. Hour.__call__(*args, **kwargs) Call self as a function. Hour.apply Hour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Hour.is_month_start Return boolean whether a timestamp occurs on the month start. Hour.is_month_end Return boolean whether a timestamp occurs on the month end. Hour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Hour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Hour.is_year_start Return boolean whether a timestamp occurs on the year start. Hour.is_year_end Return boolean whether a timestamp occurs on the year end. Minute# Minute Attributes Properties# Minute.delta Minute.freqstr Return a string representing the frequency. Minute.kwds Return a dict of extra parameters for the offset. Minute.name Return a string representing the base frequency. Minute.nanos Return an integer of the total number of nanoseconds. Minute.normalize Minute.rule_code Minute.n Methods# Minute.copy Return a copy of the frequency. Minute.isAnchored Minute.onOffset Minute.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Minute.is_on_offset Return boolean whether a timestamp intersects with this frequency. Minute.__call__(*args, **kwargs) Call self as a function. Minute.apply Minute.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Minute.is_month_start Return boolean whether a timestamp occurs on the month start. Minute.is_month_end Return boolean whether a timestamp occurs on the month end. Minute.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Minute.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Minute.is_year_start Return boolean whether a timestamp occurs on the year start. Minute.is_year_end Return boolean whether a timestamp occurs on the year end. Second# Second Attributes Properties# Second.delta Second.freqstr Return a string representing the frequency. Second.kwds Return a dict of extra parameters for the offset. Second.name Return a string representing the base frequency. Second.nanos Return an integer of the total number of nanoseconds. Second.normalize Second.rule_code Second.n Methods# Second.copy Return a copy of the frequency. Second.isAnchored Second.onOffset Second.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Second.is_on_offset Return boolean whether a timestamp intersects with this frequency. Second.__call__(*args, **kwargs) Call self as a function. Second.apply Second.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Second.is_month_start Return boolean whether a timestamp occurs on the month start. Second.is_month_end Return boolean whether a timestamp occurs on the month end. Second.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Second.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Second.is_year_start Return boolean whether a timestamp occurs on the year start. Second.is_year_end Return boolean whether a timestamp occurs on the year end. Milli# Milli Attributes Properties# Milli.delta Milli.freqstr Return a string representing the frequency. Milli.kwds Return a dict of extra parameters for the offset. Milli.name Return a string representing the base frequency. Milli.nanos Return an integer of the total number of nanoseconds. Milli.normalize Milli.rule_code Milli.n Methods# Milli.copy Return a copy of the frequency. Milli.isAnchored Milli.onOffset Milli.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Milli.is_on_offset Return boolean whether a timestamp intersects with this frequency. Milli.__call__(*args, **kwargs) Call self as a function. Milli.apply Milli.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Milli.is_month_start Return boolean whether a timestamp occurs on the month start. Milli.is_month_end Return boolean whether a timestamp occurs on the month end. Milli.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Milli.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Milli.is_year_start Return boolean whether a timestamp occurs on the year start. Milli.is_year_end Return boolean whether a timestamp occurs on the year end. Micro# Micro Attributes Properties# Micro.delta Micro.freqstr Return a string representing the frequency. Micro.kwds Return a dict of extra parameters for the offset. Micro.name Return a string representing the base frequency. Micro.nanos Return an integer of the total number of nanoseconds. Micro.normalize Micro.rule_code Micro.n Methods# Micro.copy Return a copy of the frequency. Micro.isAnchored Micro.onOffset Micro.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Micro.is_on_offset Return boolean whether a timestamp intersects with this frequency. Micro.__call__(*args, **kwargs) Call self as a function. Micro.apply Micro.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Micro.is_month_start Return boolean whether a timestamp occurs on the month start. Micro.is_month_end Return boolean whether a timestamp occurs on the month end. Micro.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Micro.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Micro.is_year_start Return boolean whether a timestamp occurs on the year start. Micro.is_year_end Return boolean whether a timestamp occurs on the year end. Nano# Nano Attributes Properties# Nano.delta Nano.freqstr Return a string representing the frequency. Nano.kwds Return a dict of extra parameters for the offset. Nano.name Return a string representing the base frequency. Nano.nanos Return an integer of the total number of nanoseconds. Nano.normalize Nano.rule_code Nano.n Methods# Nano.copy Return a copy of the frequency. Nano.isAnchored Nano.onOffset Nano.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Nano.is_on_offset Return boolean whether a timestamp intersects with this frequency. Nano.__call__(*args, **kwargs) Call self as a function. Nano.apply Nano.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Nano.is_month_start Return boolean whether a timestamp occurs on the month start. Nano.is_month_end Return boolean whether a timestamp occurs on the month end. Nano.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Nano.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Nano.is_year_start Return boolean whether a timestamp occurs on the year start. Nano.is_year_end Return boolean whether a timestamp occurs on the year end. Frequencies# to_offset Return DateOffset object from string or datetime.timedelta object.
reference/offset_frequency.html
pandas.UInt32Dtype
`pandas.UInt32Dtype` An ExtensionDtype for uint32 integer data.
class pandas.UInt32Dtype[source]# An ExtensionDtype for uint32 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan. Attributes None Methods None
reference/api/pandas.UInt32Dtype.html
pandas.DataFrame.to_hdf
`pandas.DataFrame.to_hdf` Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. ``` >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') ```
DataFrame.to_hdf(path_or_buf, key, mode='a', complevel=None, complib=None, append=False, format=None, index=True, min_itemsize=None, nan_rep=None, dropna=None, data_columns=None, errors='strict', encoding='UTF-8')[source]# Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. Warning One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing. For more information see the user guide. Parameters path_or_bufstr or pandas.HDFStoreFile path or HDFStore object. keystrIdentifier for the group in the store. mode{‘a’, ‘w’, ‘r+’}, default ‘a’Mode to open file: ‘w’: write, a new file is created (an existing file with the same name would be deleted). ‘a’: append, an existing file is opened for reading and writing, and if the file does not exist it is created. ‘r+’: similar to ‘a’, but the file must already exist. complevel{0-9}, default NoneSpecifies a compression level for data. A value of 0 or None disables compression. complib{‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’}, default ‘zlib’Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: ‘blosc:blosclz’): {‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’, ‘blosc:zlib’, ‘blosc:zstd’}. Specifying a compression library which is not available issues a ValueError. appendbool, default FalseFor Table formats, append the input data to the existing. format{‘fixed’, ‘table’, None}, default ‘fixed’Possible values: ‘fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable. ‘table’: Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. If None, pd.get_option(‘io.hdf.default_format’) is checked, followed by fallback to “fixed”. indexbool, default TrueWrite DataFrame index as a column. min_itemsizedict or int, optionalMap column names to minimum string sizes for columns. nan_repAny, optionalHow to represent null values as str. Not allowed with append=True. dropnabool, default False, optionalRemove missing values. data_columnslist of columns or True, optionalList of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See Query via data columns. for more information. Applicable only to format=’table’. errorsstr, default ‘strict’Specifies how encoding and decoding errors are to be handled. See the errors argument for open() for a full list of options. encodingstr, default “UTF-8” See also read_hdfRead from HDF file. DataFrame.to_orcWrite a DataFrame to the binary orc format. DataFrame.to_parquetWrite a DataFrame to the binary parquet format. DataFrame.to_sqlWrite to a SQL table. DataFrame.to_featherWrite out feather-format for DataFrames. DataFrame.to_csvWrite out to a csv file. Examples >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64
reference/api/pandas.DataFrame.to_hdf.html
pandas.api.types.is_list_like
`pandas.api.types.is_list_like` Check if the object is list-like. Objects that are considered list-like are for example Python lists, tuples, sets, NumPy arrays, and Pandas Series. ``` >>> import datetime >>> is_list_like([1, 2, 3]) True >>> is_list_like({1, 2, 3}) True >>> is_list_like(datetime.datetime(2017, 1, 1)) False >>> is_list_like("foo") False >>> is_list_like(1) False >>> is_list_like(np.array([2])) True >>> is_list_like(np.array(2)) False ```
pandas.api.types.is_list_like()# Check if the object is list-like. Objects that are considered list-like are for example Python lists, tuples, sets, NumPy arrays, and Pandas Series. Strings and datetime objects, however, are not considered list-like. Parameters objobjectObject to check. allow_setsbool, default TrueIf this parameter is False, sets will not be considered list-like. Returns boolWhether obj has list-like properties. Examples >>> import datetime >>> is_list_like([1, 2, 3]) True >>> is_list_like({1, 2, 3}) True >>> is_list_like(datetime.datetime(2017, 1, 1)) False >>> is_list_like("foo") False >>> is_list_like(1) False >>> is_list_like(np.array([2])) True >>> is_list_like(np.array(2)) False
reference/api/pandas.api.types.is_list_like.html
pandas.tseries.offsets.FY5253.rollback
`pandas.tseries.offsets.FY5253.rollback` Roll provided date backward to next offset only if not on offset.
FY5253.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.FY5253.rollback.html
pandas.io.formats.style.Styler.hide_columns
`pandas.io.formats.style.Styler.hide_columns` Hide the column headers or specific keys in the columns from rendering.
Styler.hide_columns(subset=None, level=None, names=False)[source]# Hide the column headers or specific keys in the columns from rendering. This method has dual functionality: if subset is None then the entire column headers row, or specific levels, will be hidden whilst the data-values remain visible. if a subset is given then those specific columns, including the data-values will be hidden, whilst the column headers row remains visible. Changed in version 1.3.0. ..deprecated:: 1.4.0This method should be replaced by hide(axis="columns", **kwargs) Parameters subsetlabel, array-like, IndexSlice, optionalA valid 1d input or single key along the columns axis within DataFrame.loc[:, <subset>], to limit data to before applying the function. levelint, str, listThe level(s) to hide in a MultiIndex if hiding the entire column headers row. Cannot be used simultaneously with subset. New in version 1.4.0. namesboolWhether to hide the column index name(s), in the case all column headers, or some levels, are visible. New in version 1.4.0. Returns selfStyler See also Styler.hideHide the entire index / columns, or specific rows / columns.
reference/api/pandas.io.formats.style.Styler.hide_columns.html
pandas.core.resample.Resampler.transform
`pandas.core.resample.Resampler.transform` Call function producing a like-indexed Series on each group. Return a Series with the transformed values. ``` >>> s = pd.Series([1, 2], ... index=pd.date_range('20180101', ... periods=2, ... freq='1h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 Freq: H, dtype: int64 ```
Resampler.transform(arg, *args, **kwargs)[source]# Call function producing a like-indexed Series on each group. Return a Series with the transformed values. Parameters argfunctionTo apply to each group. Should return a Series with the same index. Returns transformedSeries Examples >>> s = pd.Series([1, 2], ... index=pd.date_range('20180101', ... periods=2, ... freq='1h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 Freq: H, dtype: int64 >>> resampled = s.resample('15min') >>> resampled.transform(lambda x: (x - x.mean()) / x.std()) 2018-01-01 00:00:00 NaN 2018-01-01 01:00:00 NaN Freq: H, dtype: float64
reference/api/pandas.core.resample.Resampler.transform.html
Options and settings
Options and settings
API for configuring global behavior. See the User Guide for more. Working with options# describe_option(pat[, _print_desc]) Prints the description for one or more registered options. reset_option(pat) Reset one or more options to their default value. get_option(pat) Retrieves the value of the specified option. set_option(pat, value) Sets the value of the specified option. option_context(*args) Context manager to temporarily set options in the with statement context.
reference/options.html
pandas.Series.dt.daysinmonth
`pandas.Series.dt.daysinmonth` The number of days in the month.
Series.dt.daysinmonth[source]# The number of days in the month.
reference/api/pandas.Series.dt.daysinmonth.html
pandas.Series.append
`pandas.Series.append` Concatenate two or more Series. Deprecated since version 1.4.0: Use concat() instead. For further details see Deprecated DataFrame.append and Series.append ``` >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 ```
Series.append(to_append, ignore_index=False, verify_integrity=False)[source]# Concatenate two or more Series. Deprecated since version 1.4.0: Use concat() instead. For further details see Deprecated DataFrame.append and Series.append Parameters to_appendSeries or list/tuple of SeriesSeries to append with self. ignore_indexbool, default FalseIf True, the resulting axis will be labeled 0, 1, …, n - 1. verify_integritybool, default FalseIf True, raise Exception on creating index with duplicates. Returns SeriesConcatenated Series. See also concatGeneral function to concatenate DataFrame or Series objects. Notes Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With ignore_index set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With verify_integrity set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2]
reference/api/pandas.Series.append.html
pandas.tseries.offsets.BQuarterBegin.isAnchored
pandas.tseries.offsets.BQuarterBegin.isAnchored
BQuarterBegin.isAnchored()#
reference/api/pandas.tseries.offsets.BQuarterBegin.isAnchored.html
pandas.interval_range
`pandas.interval_range` Return a fixed frequency IntervalIndex. ``` >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]') ```
pandas.interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right')[source]# Return a fixed frequency IntervalIndex. Parameters startnumeric or datetime-like, default NoneLeft bound for generating intervals. endnumeric or datetime-like, default NoneRight bound for generating intervals. periodsint, default NoneNumber of periods to generate. freqnumeric, str, or DateOffset, default NoneThe length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or ‘5H’ for datetime-like. Default is 1 for numeric and ‘D’ for datetime-like. namestr, default NoneName of the resulting IntervalIndex. closed{‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’Whether the intervals are closed on the left-side, right-side, both or neither. Returns IntervalIndex See also IntervalIndexAn Index of intervals that are all closed on the same side. Notes Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omitted, the resulting IntervalIndex will have periods linearly spaced elements between start and end, inclusively. To learn more about datetime-like frequency strings, please see this link. Examples Numeric start and end is supported. >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]') Additionally, datetime-like input is also supported. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]], dtype='interval[datetime64[ns], right]') The freq parameter specifies the frequency between the left and right. endpoints of the individual intervals within the IntervalIndex. For numeric start and end, the frequency must also be numeric. >>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], dtype='interval[float64, right]') Similarly, for datetime-like start and end, the frequency must be convertible to a DateOffset. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]], dtype='interval[datetime64[ns], right]') Specify start, end, and periods; the frequency is generated automatically (linearly spaced). >>> pd.interval_range(start=0, end=6, periods=4) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], dtype='interval[float64, right]') The closed parameter specifies which endpoints of the individual intervals within the IntervalIndex are closed. >>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]], dtype='interval[int64, both]')
reference/api/pandas.interval_range.html
pandas.tseries.offsets.BusinessDay.is_on_offset
`pandas.tseries.offsets.BusinessDay.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
BusinessDay.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.BusinessDay.is_on_offset.html
pandas.Series.str.replace
`pandas.Series.str.replace` Replace each occurrence of pattern/regex in the Series/Index. ``` >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f.', 'ba', regex=True) 0 bao 1 baz 2 NaN dtype: object ```
Series.str.replace(pat, repl, n=- 1, case=None, flags=0, regex=None)[source]# Replace each occurrence of pattern/regex in the Series/Index. Equivalent to str.replace() or re.sub(), depending on the regex value. Parameters patstr or compiled regexString can be a character sequence or regular expression. replstr or callableReplacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See re.sub(). nint, default -1 (all)Number of replacements to make from start. casebool, default NoneDetermines if replace is case sensitive: If True, case sensitive (the default if pat is a string) Set to False for case insensitive Cannot be set if pat is a compiled regex. flagsint, default 0 (no flags)Regex module flags, e.g. re.IGNORECASE. Cannot be set if pat is a compiled regex. regexbool, default TrueDetermines if the passed-in pattern is a regular expression: If True, assumes the passed-in pattern is a regular expression. If False, treats the pattern as a literal string Cannot be set to False if pat is a compiled regex or repl is a callable. New in version 0.23.0. Returns Series or Index of objectA copy of the object with all matching occurrences of pat replaced by repl. Raises ValueError if regex is False and repl is a callable or pat is a compiled regex if pat is a compiled regex and case or flags is set Notes When pat is a compiled regex, all flags should be included in the compiled regex. Use of case, flags, or regex=False with a compiled regex will raise an error. Examples When pat is a string and regex is True (the default), the given pat is compiled as a regex. When repl is a string, it replaces matching regex patterns as with re.sub(). NaN value(s) in the Series are left as is: >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f.', 'ba', regex=True) 0 bao 1 baz 2 NaN dtype: object When pat is a string and regex is False, every pat is replaced with repl as with str.replace(): >>> pd.Series(['f.o', 'fuz', np.nan]).str.replace('f.', 'ba', regex=False) 0 bao 1 fuz 2 NaN dtype: object When repl is a callable, it is called on every pat using re.sub(). The callable should expect one positional argument (a regex object) and return a string. To get the idea: >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr, regex=True) 0 <re.Match object; span=(0, 1), match='f'>oo 1 <re.Match object; span=(0, 1), match='f'>uz 2 NaN dtype: object Reverse every lowercase alphabetic word: >>> repl = lambda m: m.group(0)[::-1] >>> ser = pd.Series(['foo 123', 'bar baz', np.nan]) >>> ser.str.replace(r'[a-z]+', repl, regex=True) 0 oof 123 1 rab zab 2 NaN dtype: object Using regex groups (extract second group and swap case): >>> pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)" >>> repl = lambda m: m.group('two').swapcase() >>> ser = pd.Series(['One Two Three', 'Foo Bar Baz']) >>> ser.str.replace(pat, repl, regex=True) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar', regex=True) 0 foo 1 bar 2 NaN dtype: object
reference/api/pandas.Series.str.replace.html
pandas.Series.iloc
`pandas.Series.iloc` Purely integer-location based indexing for selection by position. ``` >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 ```
property Series.iloc[source]# Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. Allowed inputs are: An integer, e.g. 5. A list or array of integers, e.g. [4, 3, 0]. A slice object with ints, e.g. 1:7. A boolean array. A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value. A tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. (0, 1). .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics). See more at Selection by Position. See also DataFrame.iatFast integer location scalar accessor. DataFrame.locPurely label-location based indexer for selection by label. Series.ilocPurely integer-location based indexing for selection by position. Examples >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 Indexing just the rows With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a slice object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The x passed to the lambda is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 Indexing both axes You can mix the indexer types for the index and columns. Use : to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With slice objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000
reference/api/pandas.Series.iloc.html
pandas.Series.cummax
`pandas.Series.cummax` Return cumulative maximum over a DataFrame or Series axis. ``` >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 ```
Series.cummax(axis=None, skipna=True, *args, **kwargs)[source]# Return cumulative maximum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative maximum. Parameters axis{0 or ‘index’, 1 or ‘columns’}, default 0The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargsAdditional keywords have no effect but might be accepted for compatibility with NumPy. Returns scalar or SeriesReturn cumulative maximum of scalar or Series. See also core.window.expanding.Expanding.maxSimilar functionality but ignores NaN values. Series.maxReturn the maximum over Series axis. Series.cummaxReturn cumulative maximum over Series axis. Series.cumminReturn cumulative minimum over Series axis. Series.cumsumReturn cumulative sum over Series axis. Series.cumprodReturn cumulative product over Series axis. Examples Series >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummax() 0 2.0 1 NaN 2 5.0 3 5.0 4 5.0 dtype: float64 To include NA values in the operation, use skipna=False >>> s.cummax(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 DataFrame >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None or axis='index'. >>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0 To iterate over columns and find the maximum in each row, use axis=1 >>> df.cummax(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 1.0
reference/api/pandas.Series.cummax.html
pandas.tseries.offsets.WeekOfMonth.rollback
`pandas.tseries.offsets.WeekOfMonth.rollback` Roll provided date backward to next offset only if not on offset.
WeekOfMonth.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.WeekOfMonth.rollback.html
pandas.Series.to_sql
`pandas.Series.to_sql` Write records stored in a DataFrame to a SQL database. ``` >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) ```
Series.to_sql(name, con, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None, method=None)[source]# Write records stored in a DataFrame to a SQL database. Databases supported by SQLAlchemy [1] are supported. Tables can be newly created, appended to, or overwritten. Parameters namestrName of SQL table. consqlalchemy.engine.(Engine or Connection) or sqlite3.ConnectionUsing SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. The user is responsible for engine disposal and connection closure for the SQLAlchemy connectable See here. schemastr, optionalSpecify the schema (if database flavor supports this). If None, use default schema. if_exists{‘fail’, ‘replace’, ‘append’}, default ‘fail’How to behave if the table already exists. fail: Raise a ValueError. replace: Drop the table before inserting new values. append: Insert new values to the existing table. indexbool, default TrueWrite DataFrame index as a column. Uses index_label as the column name in the table. index_labelstr or sequence, default NoneColumn label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksizeint, optionalSpecify the number of rows in each batch to be written at a time. By default, all rows will be written at once. dtypedict or scalar, optionalSpecifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns. method{None, ‘multi’, callable}, optionalControls the SQL insertion clause used: None : Uses standard SQL INSERT clause (one per row). ‘multi’: Pass multiple values in a single INSERT clause. callable with signature (pd_table, conn, keys, data_iter). Details and a sample callable implementation can be found in the section insert method. Returns None or intNumber of rows affected by to_sql. None is returned if the callable passed into method does not return an integer number of rows. The number of returned rows affected is the sum of the rowcount attribute of sqlite3.Cursor or SQLAlchemy connectable which may not reflect the exact number of written rows as stipulated in the sqlite3 or SQLAlchemy. New in version 1.4.0. Raises ValueErrorWhen the table already exists and if_exists is ‘fail’ (the default). See also read_sqlRead a DataFrame from a table. Notes Timezone aware datetime columns will be written as Timestamp with timezone type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone. References 1 https://docs.sqlalchemy.org 2 https://www.python.org/dev/peps/pep-0249/ Examples Create an in-memory SQLite database. >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) Create a table from scratch with 3 rows. >>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']}) >>> df name 0 User 1 1 User 2 2 User 3 >>> df.to_sql('users', con=engine) 3 >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')] An sqlalchemy.engine.Connection can also be passed to con: >>> with engine.begin() as connection: ... df1 = pd.DataFrame({'name' : ['User 4', 'User 5']}) ... df1.to_sql('users', con=connection, if_exists='append') 2 This is allowed to support operations that require that the same DBAPI connection is used for the entire operation. >>> df2 = pd.DataFrame({'name' : ['User 6', 'User 7']}) >>> df2.to_sql('users', con=engine, if_exists='append') 2 >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'), (0, 'User 4'), (1, 'User 5'), (0, 'User 6'), (1, 'User 7')] Overwrite the table with just df2. >>> df2.to_sql('users', con=engine, if_exists='replace', ... index_label='id') 2 >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 6'), (1, 'User 7')] Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars. >>> df = pd.DataFrame({"A": [1, None, 2]}) >>> df A 0 1.0 1 NaN 2 2.0 >>> from sqlalchemy.types import Integer >>> df.to_sql('integers', con=engine, index=False, ... dtype={"A": Integer()}) 3 >>> engine.execute("SELECT * FROM integers").fetchall() [(1,), (None,), (2,)]
reference/api/pandas.Series.to_sql.html
pandas.Int64Dtype
`pandas.Int64Dtype` An ExtensionDtype for int64 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan.
class pandas.Int64Dtype[source]# An ExtensionDtype for int64 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan. Attributes None Methods None
reference/api/pandas.Int64Dtype.html
pandas.api.types.is_numeric_dtype
`pandas.api.types.is_numeric_dtype` Check whether the provided array or dtype is of a numeric dtype. ``` >>> is_numeric_dtype(str) False >>> is_numeric_dtype(int) True >>> is_numeric_dtype(float) True >>> is_numeric_dtype(np.uint64) True >>> is_numeric_dtype(np.datetime64) False >>> is_numeric_dtype(np.timedelta64) False >>> is_numeric_dtype(np.array(['a', 'b'])) False >>> is_numeric_dtype(pd.Series([1, 2])) True >>> is_numeric_dtype(pd.Index([1, 2.])) True >>> is_numeric_dtype(np.array([], dtype=np.timedelta64)) False ```
pandas.api.types.is_numeric_dtype(arr_or_dtype)[source]# Check whether the provided array or dtype is of a numeric dtype. Parameters arr_or_dtypearray-like or dtypeThe array or dtype to check. Returns booleanWhether or not the array or dtype is of a numeric dtype. Examples >>> is_numeric_dtype(str) False >>> is_numeric_dtype(int) True >>> is_numeric_dtype(float) True >>> is_numeric_dtype(np.uint64) True >>> is_numeric_dtype(np.datetime64) False >>> is_numeric_dtype(np.timedelta64) False >>> is_numeric_dtype(np.array(['a', 'b'])) False >>> is_numeric_dtype(pd.Series([1, 2])) True >>> is_numeric_dtype(pd.Index([1, 2.])) True >>> is_numeric_dtype(np.array([], dtype=np.timedelta64)) False
reference/api/pandas.api.types.is_numeric_dtype.html
pandas.DataFrame.to_numpy
`pandas.DataFrame.to_numpy` Convert the DataFrame to a NumPy array. ``` >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) ```
DataFrame.to_numpy(dtype=None, copy=False, na_value=_NoDefault.no_default)[source]# Convert the DataFrame to a NumPy array. By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are float16 and float32, the results dtype will be float32. This may require copying data and coercing values, which may be expensive. Parameters dtypestr or numpy.dtype, optionalThe dtype to pass to numpy.asarray(). copybool, default FalseWhether to ensure that the returned value is not a view on another array. Note that copy=False does not ensure that to_numpy() is no-copy. Rather, copy=True ensure that a copy is made, even if not strictly necessary. na_valueAny, optionalThe value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns. New in version 1.1.0. Returns numpy.ndarray See also Series.to_numpySimilar method for Series. Examples >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
reference/api/pandas.DataFrame.to_numpy.html
pandas.tseries.offsets.Tick.apply_index
`pandas.tseries.offsets.Tick.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
Tick.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.Tick.apply_index.html
pandas.Index.to_numpy
`pandas.Index.to_numpy` A NumPy ndarray representing the values in this Series or Index. The dtype to pass to numpy.asarray(). ``` >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) ```
Index.to_numpy(dtype=None, copy=False, na_value=_NoDefault.no_default, **kwargs)[source]# A NumPy ndarray representing the values in this Series or Index. Parameters dtypestr or numpy.dtype, optionalThe dtype to pass to numpy.asarray(). copybool, default FalseWhether to ensure that the returned value is not a view on another array. Note that copy=False does not ensure that to_numpy() is no-copy. Rather, copy=True ensure that a copy is made, even if not strictly necessary. na_valueAny, optionalThe value to use for missing values. The default value depends on dtype and the type of the array. New in version 1.0.0. **kwargsAdditional keywords passed through to the to_numpy method of the underlying array (for extension arrays). New in version 1.0.0. Returns numpy.ndarray See also Series.arrayGet the actual data stored within. Index.arrayGet the actual data stored within. DataFrame.to_numpySimilar method for DataFrame. Notes The returned array will be the same up to equality (values equal in self will be equal in the returned array; likewise for values that are not equal). When self contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Series, to_numpy() will return a NumPy array and the categorical dtype will be lost. For NumPy dtypes, this will be a reference to the actual data stored in this Series or Index (assuming copy=False). Modifying the result in place will modify the data stored in the Series or Index (not that we recommend doing that). For extension types, to_numpy() may require copying data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-copy reference to the underlying data, Series.array should be used instead. This table lays out the different dtypes and default return types of to_numpy() for various dtypes within pandas. dtype array type category[T] ndarray[T] (same dtype as input) period ndarray[object] (Periods) interval ndarray[object] (Intervals) IntegerNA ndarray[object] datetime64[ns] datetime64[ns] datetime64[ns, tz] ndarray[object] (Timestamps) Examples >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) Specify the dtype to control how datetime-aware data is represented. Use dtype=object to return an ndarray of pandas Timestamp objects, each with the correct tz. >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'), Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object) Or dtype='datetime64[ns]' to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is dropped. >>> ser.to_numpy(dtype="datetime64[ns]") ... array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]')
reference/api/pandas.Index.to_numpy.html
pandas.tseries.offsets.BQuarterBegin.startingMonth
pandas.tseries.offsets.BQuarterBegin.startingMonth
BQuarterBegin.startingMonth#
reference/api/pandas.tseries.offsets.BQuarterBegin.startingMonth.html
Options and settings
Options and settings
API for configuring global behavior. See the User Guide for more. Working with options# describe_option(pat[, _print_desc]) Prints the description for one or more registered options. reset_option(pat) Reset one or more options to their default value. get_option(pat) Retrieves the value of the specified option. set_option(pat, value) Sets the value of the specified option. option_context(*args) Context manager to temporarily set options in the with statement context.
reference/options.html
pandas.Index.dtype
`pandas.Index.dtype` Return the dtype object of the underlying data.
Index.dtype[source]# Return the dtype object of the underlying data.
reference/api/pandas.Index.dtype.html
pandas.tseries.offsets.CustomBusinessMonthBegin.is_on_offset
`pandas.tseries.offsets.CustomBusinessMonthBegin.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
CustomBusinessMonthBegin.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.is_on_offset.html
pandas.tseries.offsets.Milli
`pandas.tseries.offsets.Milli` Attributes base
class pandas.tseries.offsets.Milli# Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. nanos Return an integer of the total number of nanoseconds. delta n normalize rule_code Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.Milli.html
pandas.errors.UndefinedVariableError
`pandas.errors.UndefinedVariableError` Exception raised by query or eval when using an undefined variable name. It will also specify whether the undefined variable is local or not. ``` >>> df = pd.DataFrame({'A': [1, 1, 1]}) >>> df.query("A > x") ... # UndefinedVariableError: name 'x' is not defined >>> df.query("A > @y") ... # UndefinedVariableError: local variable 'y' is not defined >>> pd.eval('x + 1') ... # UndefinedVariableError: name 'x' is not defined ```
exception pandas.errors.UndefinedVariableError(name, is_local=None)[source]# Exception raised by query or eval when using an undefined variable name. It will also specify whether the undefined variable is local or not. Examples >>> df = pd.DataFrame({'A': [1, 1, 1]}) >>> df.query("A > x") ... # UndefinedVariableError: name 'x' is not defined >>> df.query("A > @y") ... # UndefinedVariableError: local variable 'y' is not defined >>> pd.eval('x + 1') ... # UndefinedVariableError: name 'x' is not defined
reference/api/pandas.errors.UndefinedVariableError.html
pandas.api.types.infer_dtype
`pandas.api.types.infer_dtype` Return a string label of the type of a scalar or list-like of values. ``` >>> import datetime >>> infer_dtype(['foo', 'bar']) 'string' ```
pandas.api.types.infer_dtype()# Return a string label of the type of a scalar or list-like of values. Parameters valuescalar, list, ndarray, or pandas type skipnabool, default TrueIgnore NaN values when inferring the type. Returns strDescribing the common type of the input data. Results can include: string bytes floating integer mixed-integer mixed-integer-float decimal complex categorical boolean datetime64 datetime date timedelta64 timedelta time period mixed unknown-array Raises TypeErrorIf ndarray-like but cannot infer the dtype Notes ‘mixed’ is the catchall for anything that is not otherwise specialized ‘mixed-integer-float’ are floats and integers ‘mixed-integer’ are integers mixed with non-integers ‘unknown-array’ is the catchall for something that is an array (has a dtype attribute), but has a dtype unknown to pandas (e.g. external extension array) Examples >>> import datetime >>> infer_dtype(['foo', 'bar']) 'string' >>> infer_dtype(['a', np.nan, 'b'], skipna=True) 'string' >>> infer_dtype(['a', np.nan, 'b'], skipna=False) 'mixed' >>> infer_dtype([b'foo', b'bar']) 'bytes' >>> infer_dtype([1, 2, 3]) 'integer' >>> infer_dtype([1, 2, 3.5]) 'mixed-integer-float' >>> infer_dtype([1.0, 2.0, 3.5]) 'floating' >>> infer_dtype(['a', 1]) 'mixed-integer' >>> infer_dtype([Decimal(1), Decimal(2.0)]) 'decimal' >>> infer_dtype([True, False]) 'boolean' >>> infer_dtype([True, False, np.nan]) 'boolean' >>> infer_dtype([pd.Timestamp('20130101')]) 'datetime' >>> infer_dtype([datetime.date(2013, 1, 1)]) 'date' >>> infer_dtype([np.datetime64('2013-01-01')]) 'datetime64' >>> infer_dtype([datetime.timedelta(0, 1, 1)]) 'timedelta' >>> infer_dtype(pd.Series(list('aabc')).astype('category')) 'categorical'
reference/api/pandas.api.types.infer_dtype.html
pandas.core.groupby.GroupBy.cummin
`pandas.core.groupby.GroupBy.cummin` Cumulative min for each group.
final GroupBy.cummin(axis=0, numeric_only=False, **kwargs)[source]# Cumulative min for each group. Returns Series or DataFrame See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.groupby.GroupBy.cummin.html
pandas.DatetimeIndex.month
`pandas.DatetimeIndex.month` The month as January=1, December=12. Examples ``` >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64 ```
property DatetimeIndex.month[source]# The month as January=1, December=12. Examples >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64
reference/api/pandas.DatetimeIndex.month.html
pandas.DataFrame.eval
`pandas.DataFrame.eval` Evaluate a string describing operations on DataFrame columns. ``` >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 ```
DataFrame.eval(expr, *, inplace=False, **kwargs)[source]# Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters exprstrThe expression string to evaluate. inplacebool, default FalseIf the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargsSee the documentation for eval() for complete details on the keyword arguments accepted by query(). Returns ndarray, scalar, pandas object, or NoneThe result of the evaluation or None if inplace=True. See also DataFrame.queryEvaluates a boolean expression to query the columns of a frame. DataFrame.assignCan evaluate an expression or function to create new values for a column. evalEvaluate a Python expression as a string using various backends. Notes For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval. Examples >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use inplace=True to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3
reference/api/pandas.DataFrame.eval.html
pandas.tseries.offsets.BusinessHour.is_year_end
`pandas.tseries.offsets.BusinessHour.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
BusinessHour.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.BusinessHour.is_year_end.html
pandas.Series.at
`pandas.Series.at` Access a single value for a row/column label pair. Similar to loc, in that both provide label-based lookups. Use at if you only need to get or set a single value in a DataFrame or Series. ``` >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 ```
property Series.at[source]# Access a single value for a row/column label pair. Similar to loc, in that both provide label-based lookups. Use at if you only need to get or set a single value in a DataFrame or Series. Raises KeyError If getting a value and ‘label’ does not exist in a DataFrame orSeries. ValueError If row/column label pair is not a tuple or if any label fromthe pair is not a scalar for DataFrame. If label is list-like (excluding NamedTuple) for Series. See also DataFrame.atAccess a single value for a row/column pair by label. DataFrame.iatAccess a single value for a row/column pair by integer position. DataFrame.locAccess a group of rows and columns by label(s). DataFrame.ilocAccess a group of rows and columns by integer position(s). Series.atAccess a single value by label. Series.iatAccess a single value by integer position. Series.locAccess a group of rows by label(s). Series.ilocAccess a group of rows by integer position(s). Notes See Fast scalar value getting and setting for more details. Examples >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4
reference/api/pandas.Series.at.html
pandas.tseries.offsets.BusinessMonthEnd.rollforward
`pandas.tseries.offsets.BusinessMonthEnd.rollforward` Roll provided date forward to next offset only if not on offset.
BusinessMonthEnd.rollforward()# Roll provided date forward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.BusinessMonthEnd.rollforward.html
pandas.tseries.offsets.BQuarterEnd.rollback
`pandas.tseries.offsets.BQuarterEnd.rollback` Roll provided date backward to next offset only if not on offset.
BQuarterEnd.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.BQuarterEnd.rollback.html
pandas.Series.plot.area
`pandas.Series.plot.area` Draw a stacked area plot. An area plot displays quantitative data visually. This function wraps the matplotlib area function. ``` >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, index=pd.date_range(start='2018/01/01', end='2018/07/01', ... freq='M')) >>> ax = df.plot.area() ```
Series.plot.area(x=None, y=None, **kwargs)[source]# Draw a stacked area plot. An area plot displays quantitative data visually. This function wraps the matplotlib area function. Parameters xlabel or position, optionalCoordinates for the X axis. By default uses the index. ylabel or position, optionalColumn to plot. By default uses all columns. stackedbool, default TrueArea plots are stacked by default. Set to False to create a unstacked plot. **kwargsAdditional keyword arguments are documented in DataFrame.plot(). Returns matplotlib.axes.Axes or numpy.ndarrayArea plot, or array of area plots if subplots is True. See also DataFrame.plotMake plots of DataFrame using matplotlib / pylab. Examples Draw an area plot based on basic business metrics: >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, index=pd.date_range(start='2018/01/01', end='2018/07/01', ... freq='M')) >>> ax = df.plot.area() Area plots are stacked by default. To produce an unstacked plot, pass stacked=False: >>> ax = df.plot.area(stacked=False) Draw an area plot for a single column: >>> ax = df.plot.area(y='sales') Draw with a different x: >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3], ... 'visits': [20, 42, 28], ... 'day': [1, 2, 3], ... }) >>> ax = df.plot.area(x='day')
reference/api/pandas.Series.plot.area.html
Python Module Index
p   p pandas
py-modindex.html
null
pandas.PeriodIndex.weekofyear
`pandas.PeriodIndex.weekofyear` The week ordinal of the year.
property PeriodIndex.weekofyear[source]# The week ordinal of the year.
reference/api/pandas.PeriodIndex.weekofyear.html
pandas.core.groupby.GroupBy.size
`pandas.core.groupby.GroupBy.size` Compute group sizes.
final GroupBy.size()[source]# Compute group sizes. Returns DataFrame or SeriesNumber of rows in each group as a Series if as_index is True or a DataFrame if as_index is False. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.groupby.GroupBy.size.html
pandas.Timestamp.is_year_start
`pandas.Timestamp.is_year_start` Return True if date is first day of the year. ``` >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.is_year_start False ```
Timestamp.is_year_start# Return True if date is first day of the year. Examples >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.is_year_start False >>> ts = pd.Timestamp(2020, 1, 1) >>> ts.is_year_start True
reference/api/pandas.Timestamp.is_year_start.html
Style
Style
Styler objects are returned by pandas.DataFrame.style. Styler constructor# Styler(data[, precision, table_styles, ...]) Helps style a DataFrame or Series according to the data with HTML and CSS. Styler.from_custom_template(searchpath[, ...]) Factory function for creating a subclass of Styler. Styler properties# Styler.env Styler.template_html Styler.template_html_style Styler.template_html_table Styler.template_latex Styler.template_string Styler.loader Style application# Styler.apply(func[, axis, subset]) Apply a CSS-styling function column-wise, row-wise, or table-wise. Styler.applymap(func[, subset]) Apply a CSS-styling function elementwise. Styler.apply_index(func[, axis, level]) Apply a CSS-styling function to the index or column headers, level-wise. Styler.applymap_index(func[, axis, level]) Apply a CSS-styling function to the index or column headers, elementwise. Styler.format([formatter, subset, na_rep, ...]) Format the text display value of cells. Styler.format_index([formatter, axis, ...]) Format the text display value of index labels or column headers. Styler.relabel_index(labels[, axis, level]) Relabel the index, or column header, keys to display a set of specified values. Styler.hide([subset, axis, level, names]) Hide the entire index / column headers, or specific rows / columns from display. Styler.concat(other) Append another Styler to combine the output into a single table. Styler.set_td_classes(classes) Set the class attribute of <td> HTML elements. Styler.set_table_styles([table_styles, ...]) Set the table styles included within the <style> HTML element. Styler.set_table_attributes(attributes) Set the table attributes added to the <table> HTML element. Styler.set_tooltips(ttips[, props, css_class]) Set the DataFrame of strings on Styler generating :hover tooltips. Styler.set_caption(caption) Set the text added to a <caption> HTML element. Styler.set_sticky([axis, pixel_size, levels]) Add CSS to permanently display the index or column headers in a scrolling frame. Styler.set_properties([subset]) Set defined CSS-properties to each <td> HTML element for the given subset. Styler.set_uuid(uuid) Set the uuid applied to id attributes of HTML elements. Styler.clear() Reset the Styler, removing any previously applied styles. Styler.pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs), and return the result. Builtin styles# Styler.highlight_null([color, subset, ...]) Highlight missing values with a style. Styler.highlight_max([subset, color, axis, ...]) Highlight the maximum with a style. Styler.highlight_min([subset, color, axis, ...]) Highlight the minimum with a style. Styler.highlight_between([subset, color, ...]) Highlight a defined range with a style. Styler.highlight_quantile([subset, color, ...]) Highlight values defined by a quantile with a style. Styler.background_gradient([cmap, low, ...]) Color the background in a gradient style. Styler.text_gradient([cmap, low, high, ...]) Color the text in a gradient style. Styler.bar([subset, axis, color, cmap, ...]) Draw bar chart in the cell backgrounds. Style export and import# Styler.to_html([buf, table_uuid, ...]) Write Styler to a file, buffer or string in HTML-CSS format. Styler.to_latex([buf, column_format, ...]) Write Styler to a file, buffer or string in LaTeX format. Styler.to_excel(excel_writer[, sheet_name, ...]) Write Styler to an Excel sheet. Styler.to_string([buf, encoding, ...]) Write Styler to a file, buffer or string in text format. Styler.export() Export the styles applied to the current Styler. Styler.use(styles) Set the styles on the current Styler.
reference/style.html
Index
Index
_ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z _ __array__() (pandas.Categorical method) (pandas.Series method) __call__() (pandas.option_context method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) __dataframe__() (pandas.DataFrame method) __iter__() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) _concat_same_type() (pandas.api.extensions.ExtensionArray class method) _formatter() (pandas.api.extensions.ExtensionArray method) _from_factorized() (pandas.api.extensions.ExtensionArray class method) _from_sequence() (pandas.api.extensions.ExtensionArray class method) _from_sequence_of_strings() (pandas.api.extensions.ExtensionArray class method) _reduce() (pandas.api.extensions.ExtensionArray method) _values_for_argsort() (pandas.api.extensions.ExtensionArray method) _values_for_factorize() (pandas.api.extensions.ExtensionArray method) A abs() (pandas.DataFrame method) (pandas.Series method) AbstractMethodError AccessorRegistrationWarning add() (pandas.DataFrame method) (pandas.Series method) add_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) add_prefix() (pandas.DataFrame method) (pandas.Series method) add_suffix() (pandas.DataFrame method) (pandas.Series method) agg() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) aggregate() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) align() (pandas.DataFrame method) (pandas.Series method) all() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) allows_duplicate_labels (pandas.Flags property) andrews_curves() (in module pandas.plotting) any() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) append() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Index method) (pandas.Series method) apply() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) apply_index() (pandas.io.formats.style.Styler method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) applymap() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) applymap_index() (pandas.io.formats.style.Styler method) area() (pandas.DataFrame.plot method) (pandas.Series.plot method) argmax() (pandas.Index method) (pandas.Series method) argmin() (pandas.Index method) (pandas.Series method) argsort() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) array (pandas.Index attribute) (pandas.Series property) array() (in module pandas) ArrowDtype (class in pandas) ArrowExtensionArray (class in pandas.arrays) ArrowStringArray (class in pandas.arrays) as_ordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) as_unordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) asfreq() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) asi8 (pandas.Index property) asm8 (pandas.Timedelta attribute) (pandas.Timestamp attribute) asof() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) asof_locs() (pandas.Index method) assert_extension_array_equal() (in module pandas.testing) assert_frame_equal() (in module pandas.testing) assert_index_equal() (in module pandas.testing) assert_series_equal() (in module pandas.testing) assign() (pandas.DataFrame method) astimezone() (pandas.Timestamp method) astype() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) at (pandas.DataFrame property) (pandas.Series property) at_time() (pandas.DataFrame method) (pandas.Series method) AttributeConflictWarning attrs (pandas.DataFrame property) (pandas.Series property) autocorr() (pandas.Series method) autocorrelation_plot() (in module pandas.plotting) axes (pandas.DataFrame property) (pandas.Series property) B backfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) background_gradient() (pandas.io.formats.style.Styler method) bar() (pandas.DataFrame.plot method) (pandas.io.formats.style.Styler method) (pandas.Series.plot method) barh() (pandas.DataFrame.plot method) (pandas.Series.plot method) base (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) BaseIndexer (class in pandas.api.indexers) bdate_range() (in module pandas) BDay (in module pandas.tseries.offsets) between() (pandas.Series method) between_time() (pandas.DataFrame method) (pandas.Series method) bfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) BMonthBegin (in module pandas.tseries.offsets) BMonthEnd (in module pandas.tseries.offsets) book (pandas.ExcelWriter property) bool() (pandas.DataFrame method) (pandas.Series method) BooleanArray (class in pandas.arrays) BooleanDtype (class in pandas) bootstrap_plot() (in module pandas.plotting) box() (pandas.DataFrame.plot method) (pandas.Series.plot method) boxplot() (in module pandas.plotting) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) BQuarterBegin (class in pandas.tseries.offsets) BQuarterEnd (class in pandas.tseries.offsets) build_table_schema() (in module pandas.io.json) BusinessDay (class in pandas.tseries.offsets) BusinessHour (class in pandas.tseries.offsets) BusinessMonthBegin (class in pandas.tseries.offsets) BusinessMonthEnd (class in pandas.tseries.offsets) BYearBegin (class in pandas.tseries.offsets) BYearEnd (class in pandas.tseries.offsets) C calendar (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) capitalize() (pandas.Series.str method) casefold() (pandas.Series.str method) cat() (pandas.Series method) (pandas.Series.str method) Categorical (class in pandas) CategoricalConversionWarning CategoricalDtype (class in pandas) CategoricalIndex (class in pandas) categories (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) cbday_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) CBMonthBegin (in module pandas.tseries.offsets) CBMonthEnd (in module pandas.tseries.offsets) CDay (in module pandas.tseries.offsets) ceil() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) center() (pandas.Series.str method) check_array_indexer() (in module pandas.api.indexers) check_extension() (pandas.ExcelWriter class method) clear() (pandas.io.formats.style.Styler method) clip() (pandas.DataFrame method) (pandas.Series method) close() (pandas.ExcelWriter method) closed (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) closed_left (pandas.Interval attribute) closed_right (pandas.Interval attribute) ClosedFileError codes (pandas.Categorical property) (pandas.CategoricalIndex property) (pandas.MultiIndex property) (pandas.Series.cat attribute) columns (pandas.DataFrame attribute) combine() (pandas.DataFrame method) (pandas.Series method) (pandas.Timestamp class method) combine_first() (pandas.DataFrame method) (pandas.Series method) compare() (pandas.DataFrame method) (pandas.Series method) components (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) concat() (in module pandas) (pandas.io.formats.style.Styler method) construct_array_type() (pandas.api.extensions.ExtensionDtype class method) construct_from_string() (pandas.api.extensions.ExtensionDtype class method) contains() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) (pandas.Series.str method) convert_dtypes() (pandas.DataFrame method) (pandas.Series method) copy() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) corr (pandas.core.groupby.DataFrameGroupBy property) corr() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) corrwith (pandas.core.groupby.DataFrameGroupBy property) corrwith() (pandas.DataFrame method) count() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) cov (pandas.core.groupby.DataFrameGroupBy property) cov() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) crosstab() (in module pandas) CSSWarning ctime() (pandas.Timestamp method) cumcount() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) cummax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cummin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumprod() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumsum() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cur_sheet (pandas.ExcelWriter property) CustomBusinessDay (class in pandas.tseries.offsets) CustomBusinessHour (class in pandas.tseries.offsets) CustomBusinessMonthBegin (class in pandas.tseries.offsets) CustomBusinessMonthEnd (class in pandas.tseries.offsets) cut() (in module pandas) D data_label (pandas.io.stata.StataReader property) DatabaseError DataError DataFrame (class in pandas) date (pandas.DatetimeIndex property) (pandas.Series.dt attribute) date() (pandas.Timestamp method) date_format (pandas.ExcelWriter property) date_range() (in module pandas) DateOffset (class in pandas.tseries.offsets) datetime_format (pandas.ExcelWriter property) DatetimeArray (class in pandas.arrays) DatetimeIndex (class in pandas) DatetimeTZDtype (class in pandas) Day (class in pandas.tseries.offsets) day (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) day_of_month (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) day_of_week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_of_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofweek (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) days (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) days_in_month (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) daysinmonth (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) decode() (pandas.Series.str method) delete() (pandas.Index method) delta (pandas.Timedelta attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.Tick attribute) density (pandas.DataFrame.sparse attribute) (pandas.Series.sparse attribute) density() (pandas.DataFrame.plot method) (pandas.Series.plot method) deregister_matplotlib_converters() (in module pandas.plotting) describe() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) describe_option (in module pandas) diff() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) difference() (pandas.Index method) div() (pandas.DataFrame method) (pandas.Series method) divide() (pandas.DataFrame method) (pandas.Series method) divmod() (pandas.Series method) dot() (pandas.DataFrame method) (pandas.Series method) drop() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) drop_duplicates() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) droplevel() (pandas.DataFrame method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) dropna() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) dst() (pandas.Timestamp method) dt() (pandas.Series method) dtype (pandas.api.extensions.ExtensionArray property) (pandas.Categorical property) (pandas.Index attribute) (pandas.Series property) dtypes (pandas.DataFrame property) (pandas.MultiIndex attribute) (pandas.Series property) DtypeWarning duplicated() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) DuplicateLabelError E Easter (class in pandas.tseries.offsets) empty (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) empty() (pandas.api.extensions.ExtensionDtype method) EmptyDataError encode() (pandas.Series.str method) end (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) end_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) endswith() (pandas.Series.str method) engine (pandas.ExcelWriter property) env (pandas.io.formats.style.Styler attribute) eq() (pandas.DataFrame method) (pandas.Series method) equals() (pandas.api.extensions.ExtensionArray method) (pandas.CategoricalIndex method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) eval() (in module pandas) (pandas.DataFrame method) ewm() (pandas.DataFrame method) (pandas.Series method) ExcelWriter (class in pandas) expanding() (pandas.DataFrame method) (pandas.Series method) explode() (pandas.DataFrame method) (pandas.Series method) export() (pandas.io.formats.style.Styler method) ExtensionArray (class in pandas.api.extensions) ExtensionDtype (class in pandas.api.extensions) extract() (pandas.Series.str method) extractall() (pandas.Series.str method) F factorize() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) ffill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) fill_value (pandas.Series.sparse attribute) fillna (pandas.core.groupby.DataFrameGroupBy property) fillna() (pandas.api.extensions.ExtensionArray method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) filter() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) find() (pandas.Series.str method) findall() (pandas.Series.str method) first() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) first_valid_index() (pandas.DataFrame method) (pandas.Series method) FixedForwardWindowIndexer (class in pandas.api.indexers) Flags (class in pandas) flags (pandas.DataFrame property) (pandas.Series property) Float64Index (class in pandas) floor() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) floordiv() (pandas.DataFrame method) (pandas.Series method) fold (pandas.Timestamp attribute) format() (pandas.Index method) (pandas.io.formats.style.Styler method) format_index() (pandas.io.formats.style.Styler method) freq (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodDtype property) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.Timestamp attribute) freqstr (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Timestamp property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) from_arrays() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) from_breaks() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) from_codes() (pandas.Categorical class method) from_coo() (pandas.Series.sparse class method) from_custom_template() (pandas.io.formats.style.Styler class method) from_dataframe() (in module pandas.api.interchange) from_dict() (pandas.DataFrame class method) from_dummies() (in module pandas) from_frame() (pandas.MultiIndex class method) from_product() (pandas.MultiIndex class method) from_range() (pandas.RangeIndex class method) from_records() (pandas.DataFrame class method) from_spmatrix() (pandas.DataFrame.sparse class method) from_tuples() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) fromisocalendar() (pandas.Timestamp method) fromisoformat() (pandas.Timestamp method) fromordinal() (pandas.Timestamp class method) fromtimestamp() (pandas.Timestamp class method) fullmatch() (pandas.Series.str method) FY5253 (class in pandas.tseries.offsets) FY5253Quarter (class in pandas.tseries.offsets) G ge() (pandas.DataFrame method) (pandas.Series method) get() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) (pandas.Series.str method) get_dummies() (in module pandas) (pandas.Series.str method) get_group() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) get_indexer() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_indexer_for() (pandas.Index method) get_indexer_non_unique() (pandas.Index method) get_level_values() (pandas.Index method) (pandas.MultiIndex method) get_loc() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_loc_level() (pandas.MultiIndex method) get_locs() (pandas.MultiIndex method) get_option (in module pandas) get_rule_code_suffix() (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) get_slice_bound() (pandas.Index method) get_value() (pandas.Index method) get_weeks() (pandas.tseries.offsets.FY5253Quarter method) get_window_bounds() (pandas.api.indexers.BaseIndexer method) (pandas.api.indexers.FixedForwardWindowIndexer method) (pandas.api.indexers.VariableOffsetWindowIndexer method) get_year_end() (pandas.tseries.offsets.FY5253 method) groupby() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Grouper (class in pandas) groups (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) groups() (pandas.HDFStore method) gt() (pandas.DataFrame method) (pandas.Series method) H handles (pandas.ExcelWriter property) has_duplicates (pandas.Index property) hash_array() (in module pandas.util) hash_pandas_object() (in module pandas.util) hasnans (pandas.Index attribute) (pandas.Series property) head() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) hexbin() (pandas.DataFrame.plot method) hide() (pandas.io.formats.style.Styler method) hide_columns() (pandas.io.formats.style.Styler method) hide_index() (pandas.io.formats.style.Styler method) highlight_between() (pandas.io.formats.style.Styler method) highlight_max() (pandas.io.formats.style.Styler method) highlight_min() (pandas.io.formats.style.Styler method) highlight_null() (pandas.io.formats.style.Styler method) highlight_quantile() (pandas.io.formats.style.Styler method) hist (pandas.core.groupby.DataFrameGroupBy property) (pandas.core.groupby.SeriesGroupBy property) hist() (pandas.DataFrame method) (pandas.DataFrame.plot method) (pandas.Series method) (pandas.Series.plot method) holds_integer() (pandas.Index method) holidays (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) Hour (class in pandas.tseries.offsets) hour (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) I iat (pandas.DataFrame property) (pandas.Series property) identical() (pandas.Index method) idxmax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) idxmin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) if_sheet_exists (pandas.ExcelWriter property) iloc (pandas.DataFrame property) (pandas.Series property) IncompatibilityWarning Index (class in pandas) index (pandas.DataFrame attribute) (pandas.Series attribute) index() (pandas.Series.str method) indexer_at_time() (pandas.DatetimeIndex method) indexer_between_time() (pandas.DatetimeIndex method) IndexingError IndexSlice (in module pandas) indices (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) infer_dtype() (in module pandas.api.types) infer_freq() (in module pandas) infer_objects() (pandas.DataFrame method) (pandas.Series method) inferred_freq (pandas.DatetimeIndex attribute) (pandas.TimedeltaIndex attribute) inferred_type (pandas.Index attribute) info() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) insert() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) Int16Dtype (class in pandas) Int32Dtype (class in pandas) Int64Dtype (class in pandas) Int64Index (class in pandas) Int8Dtype (class in pandas) IntCastingNaNError IntegerArray (class in pandas.arrays) interpolate() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) intersection() (pandas.Index method) Interval (class in pandas) interval_range() (in module pandas) IntervalArray (class in pandas.arrays) IntervalDtype (class in pandas) IntervalIndex (class in pandas) InvalidColumnName InvalidIndexError is_() (pandas.Index method) is_all_dates (pandas.Index attribute) is_anchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_bool() (in module pandas.api.types) is_bool_dtype() (in module pandas.api.types) is_boolean() (pandas.Index method) is_categorical() (in module pandas.api.types) (pandas.Index method) is_categorical_dtype() (in module pandas.api.types) is_complex() (in module pandas.api.types) is_complex_dtype() (in module pandas.api.types) is_datetime64_any_dtype() (in module pandas.api.types) is_datetime64_dtype() (in module pandas.api.types) is_datetime64_ns_dtype() (in module pandas.api.types) is_datetime64tz_dtype() (in module pandas.api.types) is_dict_like() (in module pandas.api.types) is_dtype() (pandas.api.extensions.ExtensionDtype class method) is_empty (pandas.arrays.IntervalArray attribute) (pandas.Interval attribute) (pandas.IntervalIndex property) is_extension_array_dtype() (in module pandas.api.types) is_extension_type() (in module pandas.api.types) is_file_like() (in module pandas.api.types) is_float() (in module pandas.api.types) is_float_dtype() (in module pandas.api.types) is_floating() (pandas.Index method) is_hashable() (in module pandas.api.types) is_int64_dtype() (in module pandas.api.types) is_integer() (in module pandas.api.types) (pandas.Index method) is_integer_dtype() (in module pandas.api.types) is_interval() (in module pandas.api.types) (pandas.Index method) is_interval_dtype() (in module pandas.api.types) is_iterator() (in module pandas.api.types) is_leap_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_list_like() (in module pandas.api.types) is_mixed() (pandas.Index method) is_monotonic (pandas.Index property) (pandas.Series property) is_monotonic_decreasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_monotonic_increasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_month_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_month_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_named_tuple() (in module pandas.api.types) is_non_overlapping_monotonic (pandas.arrays.IntervalArray property) (pandas.IntervalIndex attribute) is_number() (in module pandas.api.types) is_numeric() (pandas.Index method) is_numeric_dtype() (in module pandas.api.types) is_object() (pandas.Index method) is_object_dtype() (in module pandas.api.types) is_on_offset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_overlapping (pandas.IntervalIndex property) is_period_dtype() (in module pandas.api.types) is_populated (pandas.Timedelta attribute) is_quarter_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_quarter_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_re() (in module pandas.api.types) is_re_compilable() (in module pandas.api.types) is_scalar() (in module pandas.api.types) is_signed_integer_dtype() (in module pandas.api.types) is_sparse() (in module pandas.api.types) is_string_dtype() (in module pandas.api.types) is_timedelta64_dtype() (in module pandas.api.types) is_timedelta64_ns_dtype() (in module pandas.api.types) is_type_compatible() (pandas.Index method) is_unique (pandas.Index attribute) (pandas.Series property) is_unsigned_integer_dtype() (in module pandas.api.types) is_year_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_year_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isalnum() (pandas.Series.str method) isalpha() (pandas.Series.str method) isAnchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isdecimal() (pandas.Series.str method) isdigit() (pandas.Series.str method) isetitem() (pandas.DataFrame method) isin() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) islower() (pandas.Series.str method) isna() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnumeric() (pandas.Series.str method) isocalendar() (pandas.Series.dt method) (pandas.Timestamp method) isoformat() (pandas.Timedelta method) (pandas.Timestamp method) isoweekday() (pandas.Timestamp method) isspace() (pandas.Series.str method) istitle() (pandas.Series.str method) isupper() (pandas.Series.str method) item() (pandas.Index method) (pandas.Series method) items() (pandas.DataFrame method) (pandas.Series method) iteritems() (pandas.DataFrame method) (pandas.Series method) iterrows() (pandas.DataFrame method) itertuples() (pandas.DataFrame method) J join() (pandas.DataFrame method) (pandas.Index method) (pandas.Series.str method) json_normalize() (in module pandas) K kde() (pandas.DataFrame.plot method) (pandas.Series.plot method) keys() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) kind (pandas.api.extensions.ExtensionDtype property) kurt() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) kurtosis() (pandas.DataFrame method) (pandas.Series method) kwds (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) L lag_plot() (in module pandas.plotting) last() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) last_valid_index() (pandas.DataFrame method) (pandas.Series method) LastWeekOfMonth (class in pandas.tseries.offsets) le() (pandas.DataFrame method) (pandas.Series method) left (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) len() (pandas.Series.str method) length (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex property) levels (pandas.MultiIndex attribute) levshape (pandas.MultiIndex property) line() (pandas.DataFrame.plot method) (pandas.Series.plot method) ljust() (pandas.Series.str method) loader (pandas.io.formats.style.Styler attribute) loc (pandas.DataFrame property) (pandas.Series property) lookup() (pandas.DataFrame method) lower() (pandas.Series.str method) lstrip() (pandas.Series.str method) lt() (pandas.DataFrame method) (pandas.Series method) M m_offset (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) mad (pandas.core.groupby.DataFrameGroupBy property) mad() (pandas.DataFrame method) (pandas.Series method) map() (pandas.CategoricalIndex method) (pandas.Index method) (pandas.Series method) mask() (pandas.DataFrame method) (pandas.Series method) match() (pandas.Series.str method) max (pandas.Timedelta attribute) (pandas.Timestamp attribute) max() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) mean() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) median() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) melt() (in module pandas) (pandas.DataFrame method) memory_usage() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) merge() (in module pandas) (pandas.DataFrame method) merge_asof() (in module pandas) merge_ordered() (in module pandas) MergeError Micro (class in pandas.tseries.offsets) microsecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) microseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) mid (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) Milli (class in pandas.tseries.offsets) min (pandas.Timedelta attribute) (pandas.Timestamp attribute) min() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Minute (class in pandas.tseries.offsets) minute (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) mod() (pandas.DataFrame method) (pandas.Series method) mode() (pandas.DataFrame method) (pandas.Series method) module pandas month (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) month_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) month_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) MonthBegin (class in pandas.tseries.offsets) MonthEnd (class in pandas.tseries.offsets) mul() (pandas.DataFrame method) (pandas.Series method) MultiIndex (class in pandas) multiply() (pandas.DataFrame method) (pandas.Series method) N n (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) na_value (pandas.api.extensions.ExtensionDtype property) name (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.Series property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) names (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.MultiIndex property) Nano (class in pandas.tseries.offsets) nanos (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) nanosecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) nanoseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) nbytes (pandas.api.extensions.ExtensionArray property) (pandas.Index property) (pandas.Series property) ndim (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) ne() (pandas.DataFrame method) (pandas.Series method) nearest() (pandas.core.resample.Resampler method) next_bday (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) ngroup() (pandas.core.groupby.GroupBy method) nlargest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nlevels (pandas.Index property) (pandas.MultiIndex property) normalize (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) normalize() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Series.str method) (pandas.Timestamp method) notna() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) notnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) now() (pandas.Period method) (pandas.Timestamp class method) npoints (pandas.Series.sparse attribute) nsmallest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nth (pandas.core.groupby.GroupBy property) NullFrequencyError NumbaUtilError NumExprClobberingError nunique() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) O offset (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) ohlc() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) onOffset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) open_left (pandas.Interval attribute) open_right (pandas.Interval attribute) option_context (class in pandas) OptionError ordered (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) ordinal (pandas.Period attribute) OutOfBoundsDatetime OutOfBoundsTimedelta overlaps() (pandas.arrays.IntervalArray method) (pandas.Interval method) (pandas.IntervalIndex method) P pad() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) pandas module pandas_dtype() (in module pandas.api.types) PandasArray (class in pandas.arrays) parallel_coordinates() (in module pandas.plotting) parse() (pandas.ExcelFile method) ParserError ParserWarning partition() (pandas.Series.str method) path (pandas.ExcelWriter property) pct_change() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) PerformanceWarning Period (class in pandas) period_range() (in module pandas) PeriodArray (class in pandas.arrays) PeriodDtype (class in pandas) PeriodIndex (class in pandas) pie() (pandas.DataFrame.plot method) (pandas.Series.plot method) pipe() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) pivot() (in module pandas) (pandas.DataFrame method) pivot_table() (in module pandas) (pandas.DataFrame method) plot (pandas.core.groupby.DataFrameGroupBy property) plot() (pandas.DataFrame method) (pandas.Series method) plot_params (in module pandas.plotting) pop() (pandas.DataFrame method) (pandas.Series method) PossibleDataLossError PossiblePrecisionLoss pow() (pandas.DataFrame method) (pandas.Series method) prod() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) product() (pandas.DataFrame method) (pandas.Series method) put() (pandas.HDFStore method) putmask() (pandas.Index method) PyperclipException PyperclipWindowsException Python Enhancement Proposals PEP 484 PEP 561 PEP 585 PEP 8#imports Q qcut() (in module pandas) qtr_with_extra_week (pandas.tseries.offsets.FY5253Quarter attribute) quantile() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) quarter (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) QuarterBegin (class in pandas.tseries.offsets) QuarterEnd (class in pandas.tseries.offsets) query() (pandas.DataFrame method) qyear (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) R radd() (pandas.DataFrame method) (pandas.Series method) radviz() (in module pandas.plotting) RangeIndex (class in pandas) rank() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) ravel() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) rdiv() (pandas.DataFrame method) (pandas.Series method) rdivmod() (pandas.Series method) read_clipboard() (in module pandas) read_csv() (in module pandas) read_excel() (in module pandas) read_feather() (in module pandas) read_fwf() (in module pandas) read_gbq() (in module pandas) read_hdf() (in module pandas) read_html() (in module pandas) read_json() (in module pandas) read_orc() (in module pandas) read_parquet() (in module pandas) read_pickle() (in module pandas) read_sas() (in module pandas) read_spss() (in module pandas) read_sql() (in module pandas) read_sql_query() (in module pandas) read_sql_table() (in module pandas) read_stata() (in module pandas) read_table() (in module pandas) read_xml() (in module pandas) register_dataframe_accessor() (in module pandas.api.extensions) register_extension_dtype() (in module pandas.api.extensions) register_index_accessor() (in module pandas.api.extensions) register_matplotlib_converters() (in module pandas.plotting) register_series_accessor() (in module pandas.api.extensions) reindex() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) reindex_like() (pandas.DataFrame method) (pandas.Series method) relabel_index() (pandas.io.formats.style.Styler method) remove_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_levels() (pandas.MultiIndex method) removeprefix() (pandas.Series.str method) removesuffix() (pandas.Series.str method) rename() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) rename_axis() (pandas.DataFrame method) (pandas.Series method) rename_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) render() (pandas.io.formats.style.Styler method) reorder_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) reorder_levels() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) repeat() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Series.str method) replace() (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) (pandas.Timestamp method) resample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) reset_index() (pandas.DataFrame method) (pandas.Series method) reset_option (in module pandas) resolution (pandas.Timedelta attribute) (pandas.Timestamp attribute) resolution_string (pandas.Timedelta attribute) rfind() (pandas.Series.str method) rfloordiv() (pandas.DataFrame method) (pandas.Series method) right (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) rindex() (pandas.Series.str method) rjust() (pandas.Series.str method) rmod() (pandas.DataFrame method) (pandas.Series method) rmul() (pandas.DataFrame method) (pandas.Series method) rollback() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rollforward() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rolling() (pandas.DataFrame method) (pandas.Series method) round() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) rpartition() (pandas.Series.str method) rpow() (pandas.DataFrame method) (pandas.Series method) rsplit() (pandas.Series.str method) rstrip() (pandas.Series.str method) rsub() (pandas.DataFrame method) (pandas.Series method) rtruediv() (pandas.DataFrame method) (pandas.Series method) rule_code (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) S sample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) save() (pandas.ExcelWriter method) scatter() (pandas.DataFrame.plot method) scatter_matrix() (in module pandas.plotting) searchsorted() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) Second (class in pandas.tseries.offsets) second (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) seconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) select() (pandas.HDFStore method) select_dtypes() (pandas.DataFrame method) sem() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) SemiMonthBegin (class in pandas.tseries.offsets) SemiMonthEnd (class in pandas.tseries.offsets) Series (class in pandas) set_axis() (pandas.DataFrame method) (pandas.Series method) set_caption() (pandas.io.formats.style.Styler method) set_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) set_closed() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) set_codes() (pandas.MultiIndex method) set_flags() (pandas.DataFrame method) (pandas.Series method) set_index() (pandas.DataFrame method) set_levels() (pandas.MultiIndex method) set_na_rep() (pandas.io.formats.style.Styler method) set_names() (pandas.Index method) set_option (in module pandas) set_precision() (pandas.io.formats.style.Styler method) set_properties() (pandas.io.formats.style.Styler method) set_sticky() (pandas.io.formats.style.Styler method) set_table_attributes() (pandas.io.formats.style.Styler method) set_table_styles() (pandas.io.formats.style.Styler method) set_td_classes() (pandas.io.formats.style.Styler method) set_tooltips() (pandas.io.formats.style.Styler method) set_uuid() (pandas.io.formats.style.Styler method) set_value() (pandas.Index method) SettingWithCopyError SettingWithCopyWarning shape (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) sheets (pandas.ExcelWriter property) shift() (pandas.api.extensions.ExtensionArray method) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) show_versions() (in module pandas) size (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) size() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) skew (pandas.core.groupby.DataFrameGroupBy property) skew() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) slice() (pandas.Series.str method) slice_indexer() (pandas.Index method) slice_locs() (pandas.Index method) slice_replace() (pandas.Series.str method) slice_shift() (pandas.DataFrame method) (pandas.Series method) snap() (pandas.DatetimeIndex method) sort() (pandas.Index method) sort_index() (pandas.DataFrame method) (pandas.Series method) sort_values() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) sortlevel() (pandas.Index method) (pandas.MultiIndex method) sp_values (pandas.Series.sparse attribute) sparse() (pandas.DataFrame method) (pandas.Series method) SparseArray (class in pandas.arrays) SparseDtype (class in pandas) SpecificationError split() (pandas.Series.str method) squeeze() (pandas.DataFrame method) (pandas.Series method) stack() (pandas.DataFrame method) start (pandas.RangeIndex property) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) start_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) startingMonth (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) startswith() (pandas.Series.str method) std() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) step (pandas.RangeIndex property) stop (pandas.RangeIndex property) str() (pandas.Index method) (pandas.Series method) strftime() (pandas.DatetimeIndex method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series.dt method) (pandas.Timestamp method) StringArray (class in pandas.arrays) StringDtype (class in pandas) strip() (pandas.Series.str method) strptime() (pandas.Timestamp class method) style (pandas.DataFrame property) Styler (class in pandas.io.formats.style) sub() (pandas.DataFrame method) (pandas.Series method) subtract() (pandas.DataFrame method) (pandas.Series method) subtype (pandas.IntervalDtype property) sum() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) supported_extensions (pandas.ExcelWriter property) swapaxes() (pandas.DataFrame method) (pandas.Series method) swapcase() (pandas.Series.str method) swaplevel() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) symmetric_difference() (pandas.Index method) T T (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) table() (in module pandas.plotting) tail() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) take (pandas.core.groupby.DataFrameGroupBy property) take() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) template_html (pandas.io.formats.style.Styler attribute) template_html_style (pandas.io.formats.style.Styler attribute) template_html_table (pandas.io.formats.style.Styler attribute) template_latex (pandas.io.formats.style.Styler attribute) template_string (pandas.io.formats.style.Styler attribute) test() (in module pandas) text_gradient() (pandas.io.formats.style.Styler method) Tick (class in pandas.tseries.offsets) time (pandas.DatetimeIndex property) (pandas.Series.dt attribute) time() (pandas.Timestamp method) Timedelta (class in pandas) timedelta_range() (in module pandas) TimedeltaArray (class in pandas.arrays) TimedeltaIndex (class in pandas) Timestamp (class in pandas) timestamp() (pandas.Timestamp method) timetuple() (pandas.Timestamp method) timetz (pandas.DatetimeIndex property) (pandas.Series.dt attribute) timetz() (pandas.Timestamp method) title() (pandas.Series.str method) to_clipboard() (pandas.DataFrame method) (pandas.Series method) to_coo() (pandas.DataFrame.sparse method) (pandas.Series.sparse method) to_csv() (pandas.DataFrame method) (pandas.Series method) to_datetime() (in module pandas) to_datetime64() (pandas.Timestamp method) to_dense() (pandas.DataFrame.sparse method) to_dict() (pandas.DataFrame method) (pandas.Series method) to_excel() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_feather() (pandas.DataFrame method) to_flat_index() (pandas.Index method) (pandas.MultiIndex method) to_frame() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) to_gbq() (pandas.DataFrame method) to_hdf() (pandas.DataFrame method) (pandas.Series method) to_html() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) to_json() (pandas.DataFrame method) (pandas.Series method) to_julian_date() (pandas.Timestamp method) to_latex() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_list() (pandas.Index method) (pandas.Series method) to_markdown() (pandas.DataFrame method) (pandas.Series method) to_native_types() (pandas.Index method) to_numeric() (in module pandas) to_numpy() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) (pandas.Timestamp method) to_offset() (in module pandas.tseries.frequencies) to_orc() (pandas.DataFrame method) to_parquet() (pandas.DataFrame method) to_period() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) to_perioddelta() (pandas.DatetimeIndex method) to_pickle() (pandas.DataFrame method) (pandas.Series method) to_pydatetime() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) to_pytimedelta() (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) to_records() (pandas.DataFrame method) to_series() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.TimedeltaIndex method) to_sql() (pandas.DataFrame method) (pandas.Series method) to_stata() (pandas.DataFrame method) to_string() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_timedelta() (in module pandas) to_timedelta64() (pandas.Timedelta method) to_timestamp() (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) to_tuples() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) to_xarray() (pandas.DataFrame method) (pandas.Series method) to_xml() (pandas.DataFrame method) today() (pandas.Timestamp class method) tolist() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) toordinal() (pandas.Timestamp method) total_seconds() (pandas.Series.dt method) (pandas.Timedelta method) transform() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) translate() (pandas.Series.str method) transpose() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) truediv() (pandas.DataFrame method) (pandas.Series method) truncate() (pandas.DataFrame method) (pandas.Series method) tshift (pandas.core.groupby.DataFrameGroupBy property) tshift() (pandas.DataFrame method) (pandas.Series method) type (pandas.api.extensions.ExtensionDtype property) tz (pandas.DatetimeIndex property) (pandas.DatetimeTZDtype property) (pandas.Series.dt attribute) (pandas.Timestamp property) tz_convert() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tz_localize() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tzinfo (pandas.Timestamp attribute) tzname() (pandas.Timestamp method) U UInt16Dtype (class in pandas) UInt32Dtype (class in pandas) UInt64Dtype (class in pandas) UInt64Index (class in pandas) UInt8Dtype (class in pandas) UndefinedVariableError union() (pandas.Index method) union_categoricals() (in module pandas.api.types) unique (pandas.core.groupby.SeriesGroupBy property) unique() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) unit (pandas.DatetimeTZDtype property) UnsortedIndexError unstack() (pandas.DataFrame method) (pandas.Series method) UnsupportedFunctionCall update() (pandas.DataFrame method) (pandas.Series method) upper() (pandas.Series.str method) use() (pandas.io.formats.style.Styler method) utcfromtimestamp() (pandas.Timestamp class method) utcnow() (pandas.Timestamp class method) utcoffset() (pandas.Timestamp method) utctimetuple() (pandas.Timestamp method) V value (pandas.Timedelta attribute) (pandas.Timestamp attribute) value_counts() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) value_labels() (pandas.io.stata.StataReader method) ValueLabelTypeMismatch values (pandas.DataFrame property) (pandas.Index property) (pandas.IntervalIndex property) (pandas.Series property) var() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) variable_labels() (pandas.io.stata.StataReader method) VariableOffsetWindowIndexer (class in pandas.api.indexers) variation (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) view() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) W walk() (pandas.HDFStore method) Week (class in pandas.tseries.offsets) week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday() (pandas.Timestamp method) weekmask (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) WeekOfMonth (class in pandas.tseries.offsets) weekofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) where() (pandas.DataFrame method) (pandas.Index method) (pandas.io.formats.style.Styler method) (pandas.Series method) wide_to_long() (in module pandas) wrap() (pandas.Series.str method) write_cells() (pandas.ExcelWriter method) write_file() (pandas.io.stata.StataWriter method) X xs() (pandas.DataFrame method) (pandas.Series method) Y year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) year_has_extra_week() (pandas.tseries.offsets.FY5253Quarter method) YearBegin (class in pandas.tseries.offsets) YearEnd (class in pandas.tseries.offsets) Z zfill() (pandas.Series.str method)
genindex.html
pandas.tseries.offsets.BQuarterBegin.is_anchored
`pandas.tseries.offsets.BQuarterBegin.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
BQuarterBegin.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.BQuarterBegin.is_anchored.html
pandas.tseries.offsets.BusinessMonthEnd.n
pandas.tseries.offsets.BusinessMonthEnd.n
BusinessMonthEnd.n#
reference/api/pandas.tseries.offsets.BusinessMonthEnd.n.html
pandas.Series.rpow
`pandas.Series.rpow` Return Exponential power of series and other, element-wise (binary operator rpow). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.pow(b, fill_value=0) a 1.0 b 1.0 c 1.0 d 0.0 e NaN dtype: float64 ```
Series.rpow(other, level=None, fill_value=None, axis=0)[source]# Return Exponential power of series and other, element-wise (binary operator rpow). Equivalent to other ** series, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. See also Series.powElement-wise Exponential power, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.pow(b, fill_value=0) a 1.0 b 1.0 c 1.0 d 0.0 e NaN dtype: float64
reference/api/pandas.Series.rpow.html
pandas.Series.cat.remove_unused_categories
`pandas.Series.cat.remove_unused_categories` Remove categories which are not used. Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. ``` >>> c = pd.Categorical(['a', 'c', 'b', 'c', 'd']) >>> c ['a', 'c', 'b', 'c', 'd'] Categories (4, object): ['a', 'b', 'c', 'd'] ```
Series.cat.remove_unused_categories(*args, **kwargs)[source]# Remove categories which are not used. Parameters inplacebool, default FalseWhether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Deprecated since version 1.2.0. Returns catCategorical or NoneCategorical with unused categories dropped or None if inplace=True. See also rename_categoriesRename categories. reorder_categoriesReorder categories. add_categoriesAdd new categories. remove_categoriesRemove the specified categories. set_categoriesSet the categories to the specified ones. Examples >>> c = pd.Categorical(['a', 'c', 'b', 'c', 'd']) >>> c ['a', 'c', 'b', 'c', 'd'] Categories (4, object): ['a', 'b', 'c', 'd'] >>> c[2] = 'a' >>> c[4] = 'c' >>> c ['a', 'c', 'a', 'c', 'c'] Categories (4, object): ['a', 'b', 'c', 'd'] >>> c.remove_unused_categories() ['a', 'c', 'a', 'c', 'c'] Categories (2, object): ['a', 'c']
reference/api/pandas.Series.cat.remove_unused_categories.html
pandas.Series.sparse.sp_values
`pandas.Series.sparse.sp_values` An ndarray containing the non- fill_value values. Examples ``` >>> s = SparseArray([0, 0, 1, 0, 2], fill_value=0) >>> s.sp_values array([1, 2]) ```
Series.sparse.sp_values[source]# An ndarray containing the non- fill_value values. Examples >>> s = SparseArray([0, 0, 1, 0, 2], fill_value=0) >>> s.sp_values array([1, 2])
reference/api/pandas.Series.sparse.sp_values.html
pandas.tseries.offsets.Day.base
`pandas.tseries.offsets.Day.base` Returns a copy of the calling offset object with n=1 and all other attributes equal.
Day.base# Returns a copy of the calling offset object with n=1 and all other attributes equal.
reference/api/pandas.tseries.offsets.Day.base.html
pandas.DataFrame.sparse.from_spmatrix
`pandas.DataFrame.sparse.from_spmatrix` Create a new DataFrame from a scipy sparse matrix. ``` >>> import scipy.sparse >>> mat = scipy.sparse.eye(3) >>> pd.DataFrame.sparse.from_spmatrix(mat) 0 1 2 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 ```
classmethod DataFrame.sparse.from_spmatrix(data, index=None, columns=None)[source]# Create a new DataFrame from a scipy sparse matrix. New in version 0.25.0. Parameters datascipy.sparse.spmatrixMust be convertible to csc format. index, columnsIndex, optionalRow and column labels to use for the resulting DataFrame. Defaults to a RangeIndex. Returns DataFrameEach column of the DataFrame is stored as a arrays.SparseArray. Examples >>> import scipy.sparse >>> mat = scipy.sparse.eye(3) >>> pd.DataFrame.sparse.from_spmatrix(mat) 0 1 2 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0
reference/api/pandas.DataFrame.sparse.from_spmatrix.html
Window
Rolling objects are returned by .rolling calls: pandas.DataFrame.rolling(), pandas.Series.rolling(), etc. Expanding objects are returned by .expanding calls: pandas.DataFrame.expanding(), pandas.Series.expanding(), etc. ExponentialMovingWindow objects are returned by .ewm calls: pandas.DataFrame.ewm(), pandas.Series.ewm(), etc. Rolling window functions# Rolling.count([numeric_only]) Calculate the rolling count of non NaN observations. Rolling.sum([numeric_only, engine, ...]) Calculate the rolling sum. Rolling.mean([numeric_only, engine, ...]) Calculate the rolling mean. Rolling.median([numeric_only, engine, ...]) Calculate the rolling median. Rolling.var([ddof, numeric_only, engine, ...]) Calculate the rolling variance. Rolling.std([ddof, numeric_only, engine, ...]) Calculate the rolling standard deviation. Rolling.min([numeric_only, engine, ...]) Calculate the rolling minimum. Rolling.max([numeric_only, engine, ...]) Calculate the rolling maximum. Rolling.corr([other, pairwise, ddof, ...]) Calculate the rolling correlation. Rolling.cov([other, pairwise, ddof, ...]) Calculate the rolling sample covariance. Rolling.skew([numeric_only]) Calculate the rolling unbiased skewness. Rolling.kurt([numeric_only]) Calculate the rolling Fisher's definition of kurtosis without bias. Rolling.apply(func[, raw, engine, ...]) Calculate the rolling custom aggregation function. Rolling.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Rolling.quantile(quantile[, interpolation, ...]) Calculate the rolling quantile. Rolling.sem([ddof, numeric_only]) Calculate the rolling standard error of mean. Rolling.rank([method, ascending, pct, ...]) Calculate the rolling rank. Weighted window functions# Window.mean([numeric_only]) Calculate the rolling weighted window mean. Window.sum([numeric_only]) Calculate the rolling weighted window sum. Window.var([ddof, numeric_only]) Calculate the rolling weighted window variance. Window.std([ddof, numeric_only]) Calculate the rolling weighted window standard deviation. Expanding window functions# Expanding.count([numeric_only]) Calculate the expanding count of non NaN observations. Expanding.sum([numeric_only, engine, ...]) Calculate the expanding sum. Expanding.mean([numeric_only, engine, ...]) Calculate the expanding mean. Expanding.median([numeric_only, engine, ...]) Calculate the expanding median. Expanding.var([ddof, numeric_only, engine, ...]) Calculate the expanding variance. Expanding.std([ddof, numeric_only, engine, ...]) Calculate the expanding standard deviation. Expanding.min([numeric_only, engine, ...]) Calculate the expanding minimum. Expanding.max([numeric_only, engine, ...]) Calculate the expanding maximum. Expanding.corr([other, pairwise, ddof, ...]) Calculate the expanding correlation. Expanding.cov([other, pairwise, ddof, ...]) Calculate the expanding sample covariance. Expanding.skew([numeric_only]) Calculate the expanding unbiased skewness. Expanding.kurt([numeric_only]) Calculate the expanding Fisher's definition of kurtosis without bias. Expanding.apply(func[, raw, engine, ...]) Calculate the expanding custom aggregation function. Expanding.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Expanding.quantile(quantile[, ...]) Calculate the expanding quantile. Expanding.sem([ddof, numeric_only]) Calculate the expanding standard error of mean. Expanding.rank([method, ascending, pct, ...]) Calculate the expanding rank. Exponentially-weighted window functions# ExponentialMovingWindow.mean([numeric_only, ...]) Calculate the ewm (exponential weighted moment) mean. ExponentialMovingWindow.sum([numeric_only, ...]) Calculate the ewm (exponential weighted moment) sum. ExponentialMovingWindow.std([bias, numeric_only]) Calculate the ewm (exponential weighted moment) standard deviation. ExponentialMovingWindow.var([bias, numeric_only]) Calculate the ewm (exponential weighted moment) variance. ExponentialMovingWindow.corr([other, ...]) Calculate the ewm (exponential weighted moment) sample correlation. ExponentialMovingWindow.cov([other, ...]) Calculate the ewm (exponential weighted moment) sample covariance. Window indexer# Base class for defining custom window boundaries. api.indexers.BaseIndexer([index_array, ...]) Base class for window bounds calculations. api.indexers.FixedForwardWindowIndexer([...]) Creates window boundaries for fixed-length windows that include the current row. api.indexers.VariableOffsetWindowIndexer([...]) Calculate window boundaries based on a non-fixed offset such as a BusinessDay.
reference/window.html
null
pandas.tseries.offsets.FY5253Quarter.variation
pandas.tseries.offsets.FY5253Quarter.variation
FY5253Quarter.variation#
reference/api/pandas.tseries.offsets.FY5253Quarter.variation.html
pandas.tseries.offsets.CustomBusinessMonthBegin.freqstr
`pandas.tseries.offsets.CustomBusinessMonthBegin.freqstr` Return a string representing the frequency. Examples ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
CustomBusinessMonthBegin.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.freqstr.html
pandas.tseries.offsets.BQuarterBegin.n
pandas.tseries.offsets.BQuarterBegin.n
BQuarterBegin.n#
reference/api/pandas.tseries.offsets.BQuarterBegin.n.html
pandas.tseries.offsets.Hour.is_month_start
`pandas.tseries.offsets.Hour.is_month_start` Return boolean whether a timestamp occurs on the month start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
Hour.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.Hour.is_month_start.html
pandas.api.extensions.ExtensionArray.tolist
`pandas.api.extensions.ExtensionArray.tolist` Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period)
ExtensionArray.tolist()[source]# Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns list
reference/api/pandas.api.extensions.ExtensionArray.tolist.html
Series
Series
Constructor# Series([data, index, dtype, name, copy, ...]) One-dimensional ndarray with axis labels (including time series). Attributes# Axes Series.index The index (axis labels) of the Series. Series.array The ExtensionArray of the data backing this Series or Index. Series.values Return Series as ndarray or ndarray-like depending on the dtype. Series.dtype Return the dtype object of the underlying data. Series.shape Return a tuple of the shape of the underlying data. Series.nbytes Return the number of bytes in the underlying data. Series.ndim Number of dimensions of the underlying data, by definition 1. Series.size Return the number of elements in the underlying data. Series.T Return the transpose, which is by definition self. Series.memory_usage([index, deep]) Return the memory usage of the Series. Series.hasnans Return True if there are any NaNs. Series.empty Indicator whether Series/DataFrame is empty. Series.dtypes Return the dtype object of the underlying data. Series.name Return the name of the Series. Series.flags Get the properties associated with this pandas object. Series.set_flags(*[, copy, ...]) Return a new object with updated flags. Conversion# Series.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype. Series.convert_dtypes([infer_objects, ...]) Convert columns to best possible dtypes using dtypes supporting pd.NA. Series.infer_objects() Attempt to infer better dtypes for object columns. Series.copy([deep]) Make a copy of this object's indices and data. Series.bool() Return the bool of a single element Series or DataFrame. Series.to_numpy([dtype, copy, na_value]) A NumPy ndarray representing the values in this Series or Index. Series.to_period([freq, copy]) Convert Series from DatetimeIndex to PeriodIndex. Series.to_timestamp([freq, how, copy]) Cast to DatetimeIndex of Timestamps, at beginning of period. Series.to_list() Return a list of the values. Series.__array__([dtype]) Return the values as a NumPy array. Indexing, iteration# Series.get(key[, default]) Get item from object for given key (ex: DataFrame column). Series.at Access a single value for a row/column label pair. Series.iat Access a single value for a row/column pair by integer position. Series.loc Access a group of rows and columns by label(s) or a boolean array. Series.iloc Purely integer-location based indexing for selection by position. Series.__iter__() Return an iterator of the values. Series.items() Lazily iterate over (index, value) tuples. Series.iteritems() (DEPRECATED) Lazily iterate over (index, value) tuples. Series.keys() Return alias for index. Series.pop(item) Return item and drops from series. Series.item() Return the first element of the underlying data as a Python scalar. Series.xs(key[, axis, level, drop_level]) Return cross-section from the Series/DataFrame. For more information on .at, .iat, .loc, and .iloc, see the indexing documentation. Binary operator functions# Series.add(other[, level, fill_value, axis]) Return Addition of series and other, element-wise (binary operator add). Series.sub(other[, level, fill_value, axis]) Return Subtraction of series and other, element-wise (binary operator sub). Series.mul(other[, level, fill_value, axis]) Return Multiplication of series and other, element-wise (binary operator mul). Series.div(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator truediv). Series.truediv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator truediv). Series.floordiv(other[, level, fill_value, axis]) Return Integer division of series and other, element-wise (binary operator floordiv). Series.mod(other[, level, fill_value, axis]) Return Modulo of series and other, element-wise (binary operator mod). Series.pow(other[, level, fill_value, axis]) Return Exponential power of series and other, element-wise (binary operator pow). Series.radd(other[, level, fill_value, axis]) Return Addition of series and other, element-wise (binary operator radd). Series.rsub(other[, level, fill_value, axis]) Return Subtraction of series and other, element-wise (binary operator rsub). Series.rmul(other[, level, fill_value, axis]) Return Multiplication of series and other, element-wise (binary operator rmul). Series.rdiv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator rtruediv). Series.rtruediv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator rtruediv). Series.rfloordiv(other[, level, fill_value, ...]) Return Integer division of series and other, element-wise (binary operator rfloordiv). Series.rmod(other[, level, fill_value, axis]) Return Modulo of series and other, element-wise (binary operator rmod). Series.rpow(other[, level, fill_value, axis]) Return Exponential power of series and other, element-wise (binary operator rpow). Series.combine(other, func[, fill_value]) Combine the Series with a Series or scalar according to func. Series.combine_first(other) Update null elements with value in the same location in 'other'. Series.round([decimals]) Round each value in a Series to the given number of decimals. Series.lt(other[, level, fill_value, axis]) Return Less than of series and other, element-wise (binary operator lt). Series.gt(other[, level, fill_value, axis]) Return Greater than of series and other, element-wise (binary operator gt). Series.le(other[, level, fill_value, axis]) Return Less than or equal to of series and other, element-wise (binary operator le). Series.ge(other[, level, fill_value, axis]) Return Greater than or equal to of series and other, element-wise (binary operator ge). Series.ne(other[, level, fill_value, axis]) Return Not equal to of series and other, element-wise (binary operator ne). Series.eq(other[, level, fill_value, axis]) Return Equal to of series and other, element-wise (binary operator eq). Series.product([axis, skipna, level, ...]) Return the product of the values over the requested axis. Series.dot(other) Compute the dot product between the Series and the columns of other. Function application, GroupBy & window# Series.apply(func[, convert_dtype, args]) Invoke function on values of Series. Series.agg([func, axis]) Aggregate using one or more operations over the specified axis. Series.aggregate([func, axis]) Aggregate using one or more operations over the specified axis. Series.transform(func[, axis]) Call func on self producing a Series with the same axis shape as self. Series.map(arg[, na_action]) Map values of Series according to an input mapping or function. Series.groupby([by, axis, level, as_index, ...]) Group Series using a mapper or by a Series of columns. Series.rolling(window[, min_periods, ...]) Provide rolling window calculations. Series.expanding([min_periods, center, ...]) Provide expanding window calculations. Series.ewm([com, span, halflife, alpha, ...]) Provide exponentially weighted (EW) calculations. Series.pipe(func, *args, **kwargs) Apply chainable functions that expect Series or DataFrames. Computations / descriptive stats# Series.abs() Return a Series/DataFrame with absolute numeric value of each element. Series.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over an axis. Series.any(*[, axis, bool_only, skipna, level]) Return whether any element is True, potentially over an axis. Series.autocorr([lag]) Compute the lag-N autocorrelation. Series.between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <= right. Series.clip([lower, upper, axis, inplace]) Trim values at input threshold(s). Series.corr(other[, method, min_periods]) Compute correlation with other Series, excluding missing values. Series.count([level]) Return number of non-NA/null observations in the Series. Series.cov(other[, min_periods, ddof]) Compute covariance with Series, excluding missing values. Series.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Series axis. Series.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Series axis. Series.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series axis. Series.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis. Series.describe([percentiles, include, ...]) Generate descriptive statistics. Series.diff([periods]) First discrete difference of element. Series.factorize([sort, na_sentinel, ...]) Encode the object as an enumerated type or categorical variable. Series.kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis. Series.mad([axis, skipna, level]) (DEPRECATED) Return the mean absolute deviation of the values over the requested axis. Series.max([axis, skipna, level, numeric_only]) Return the maximum of the values over the requested axis. Series.mean([axis, skipna, level, numeric_only]) Return the mean of the values over the requested axis. Series.median([axis, skipna, level, ...]) Return the median of the values over the requested axis. Series.min([axis, skipna, level, numeric_only]) Return the minimum of the values over the requested axis. Series.mode([dropna]) Return the mode(s) of the Series. Series.nlargest([n, keep]) Return the largest n elements. Series.nsmallest([n, keep]) Return the smallest n elements. Series.pct_change([periods, fill_method, ...]) Percentage change between the current and a prior element. Series.prod([axis, skipna, level, ...]) Return the product of the values over the requested axis. Series.quantile([q, interpolation]) Return value at the given quantile. Series.rank([axis, method, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis. Series.sem([axis, skipna, level, ddof, ...]) Return unbiased standard error of the mean over requested axis. Series.skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis. Series.std([axis, skipna, level, ddof, ...]) Return sample standard deviation over requested axis. Series.sum([axis, skipna, level, ...]) Return the sum of the values over the requested axis. Series.var([axis, skipna, level, ddof, ...]) Return unbiased variance over requested axis. Series.kurtosis([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. Series.unique() Return unique values of Series object. Series.nunique([dropna]) Return number of unique elements in the object. Series.is_unique Return boolean if values in the object are unique. Series.is_monotonic (DEPRECATED) Return boolean if values in the object are monotonically increasing. Series.is_monotonic_increasing Return boolean if values in the object are monotonically increasing. Series.is_monotonic_decreasing Return boolean if values in the object are monotonically decreasing. Series.value_counts([normalize, sort, ...]) Return a Series containing counts of unique values. Reindexing / selection / label manipulation# Series.align(other[, join, axis, level, ...]) Align two objects on their axes with the specified join method. Series.drop([labels, axis, index, columns, ...]) Return Series with specified index labels removed. Series.droplevel(level[, axis]) Return Series/DataFrame with requested index / column level(s) removed. Series.drop_duplicates(*[, keep, inplace]) Return Series with duplicate values removed. Series.duplicated([keep]) Indicate duplicate Series values. Series.equals(other) Test whether two objects contain the same elements. Series.first(offset) Select initial periods of time series data based on a date offset. Series.head([n]) Return the first n rows. Series.idxmax([axis, skipna]) Return the row label of the maximum value. Series.idxmin([axis, skipna]) Return the row label of the minimum value. Series.isin(values) Whether elements in Series are contained in values. Series.last(offset) Select final periods of time series data based on a date offset. Series.reindex(*args, **kwargs) Conform Series to new index with optional filling logic. Series.reindex_like(other[, method, copy, ...]) Return an object with matching indices as other object. Series.rename([index, axis, copy, inplace, ...]) Alter Series index labels or name. Series.rename_axis([mapper, inplace]) Set the name of the axis for the index or columns. Series.reset_index([level, drop, name, ...]) Generate a new DataFrame or Series with the index reset. Series.sample([n, frac, replace, weights, ...]) Return a random sample of items from an axis of object. Series.set_axis(labels, *[, axis, inplace, copy]) Assign desired index to given axis. Series.take(indices[, axis, is_copy]) Return the elements in the given positional indices along an axis. Series.tail([n]) Return the last n rows. Series.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some index value. Series.where(cond[, other, inplace, axis, ...]) Replace values where the condition is False. Series.mask(cond[, other, inplace, axis, ...]) Replace values where the condition is True. Series.add_prefix(prefix) Prefix labels with string prefix. Series.add_suffix(suffix) Suffix labels with string suffix. Series.filter([items, like, regex, axis]) Subset the dataframe rows or columns according to the specified index labels. Missing data handling# Series.backfill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='bfill'. Series.bfill(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='bfill'. Series.dropna(*[, axis, inplace, how]) Return a new Series with missing values removed. Series.ffill(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='ffill'. Series.fillna([value, method, axis, ...]) Fill NA/NaN values using the specified method. Series.interpolate([method, axis, limit, ...]) Fill NaN values using an interpolation method. Series.isna() Detect missing values. Series.isnull() Series.isnull is an alias for Series.isna. Series.notna() Detect existing (non-missing) values. Series.notnull() Series.notnull is an alias for Series.notna. Series.pad(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='ffill'. Series.replace([to_replace, value, inplace, ...]) Replace values given in to_replace with value. Reshaping, sorting# Series.argsort([axis, kind, order]) Return the integer indices that would sort the Series values. Series.argmin([axis, skipna]) Return int position of the smallest value in the Series. Series.argmax([axis, skipna]) Return int position of the largest value in the Series. Series.reorder_levels(order) Rearrange index levels using input order. Series.sort_values(*[, axis, ascending, ...]) Sort by the values. Series.sort_index(*[, axis, level, ...]) Sort Series by index labels. Series.swaplevel([i, j, copy]) Swap levels i and j in a MultiIndex. Series.unstack([level, fill_value]) Unstack, also known as pivot, Series with MultiIndex to produce DataFrame. Series.explode([ignore_index]) Transform each element of a list-like to a row. Series.searchsorted(value[, side, sorter]) Find indices where elements should be inserted to maintain order. Series.ravel([order]) Return the flattened underlying data as an ndarray. Series.repeat(repeats[, axis]) Repeat elements of a Series. Series.squeeze([axis]) Squeeze 1 dimensional axis objects into scalars. Series.view([dtype]) Create a new view of the Series. Combining / comparing / joining / merging# Series.append(to_append[, ignore_index, ...]) (DEPRECATED) Concatenate two or more Series. Series.compare(other[, align_axis, ...]) Compare to another Series and show the differences. Series.update(other) Modify Series in place using values from passed Series. Time Series-related# Series.asfreq(freq[, method, how, ...]) Convert time series to specified frequency. Series.asof(where[, subset]) Return the last row(s) without any NaNs before where. Series.shift([periods, freq, axis, fill_value]) Shift index by desired number of periods with an optional time freq. Series.first_valid_index() Return index for first non-NA value or None, if no non-NA value is found. Series.last_valid_index() Return index for last non-NA value or None, if no non-NA value is found. Series.resample(rule[, axis, closed, label, ...]) Resample time-series data. Series.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone. Series.tz_localize(tz[, axis, level, copy, ...]) Localize tz-naive index of a Series or DataFrame to target time zone. Series.at_time(time[, asof, axis]) Select values at particular time of day (e.g., 9:30AM). Series.between_time(start_time, end_time[, ...]) Select values between particular times of the day (e.g., 9:00-9:30 AM). Series.tshift([periods, freq, axis]) (DEPRECATED) Shift the time index, using the index's frequency if available. Series.slice_shift([periods, axis]) (DEPRECATED) Equivalent to shift without copying data. Accessors# pandas provides dtype-specific methods under various accessors. These are separate namespaces within Series that only apply to specific data types. Data Type Accessor Datetime, Timedelta, Period dt String str Categorical cat Sparse sparse Datetimelike properties# Series.dt can be used to access the values of the series as datetimelike and return several properties. These can be accessed like Series.dt.<property>. Datetime properties# Series.dt.date Returns numpy array of python datetime.date objects. Series.dt.time Returns numpy array of datetime.time objects. Series.dt.timetz Returns numpy array of datetime.time objects with timezones. Series.dt.year The year of the datetime. Series.dt.month The month as January=1, December=12. Series.dt.day The day of the datetime. Series.dt.hour The hours of the datetime. Series.dt.minute The minutes of the datetime. Series.dt.second The seconds of the datetime. Series.dt.microsecond The microseconds of the datetime. Series.dt.nanosecond The nanoseconds of the datetime. Series.dt.week (DEPRECATED) The week ordinal of the year according to the ISO 8601 standard. Series.dt.weekofyear (DEPRECATED) The week ordinal of the year according to the ISO 8601 standard. Series.dt.dayofweek The day of the week with Monday=0, Sunday=6. Series.dt.day_of_week The day of the week with Monday=0, Sunday=6. Series.dt.weekday The day of the week with Monday=0, Sunday=6. Series.dt.dayofyear The ordinal day of the year. Series.dt.day_of_year The ordinal day of the year. Series.dt.quarter The quarter of the date. Series.dt.is_month_start Indicates whether the date is the first day of the month. Series.dt.is_month_end Indicates whether the date is the last day of the month. Series.dt.is_quarter_start Indicator for whether the date is the first day of a quarter. Series.dt.is_quarter_end Indicator for whether the date is the last day of a quarter. Series.dt.is_year_start Indicate whether the date is the first day of a year. Series.dt.is_year_end Indicate whether the date is the last day of the year. Series.dt.is_leap_year Boolean indicator if the date belongs to a leap year. Series.dt.daysinmonth The number of days in the month. Series.dt.days_in_month The number of days in the month. Series.dt.tz Return the timezone. Series.dt.freq Return the frequency object for this PeriodArray. Datetime methods# Series.dt.isocalendar() Calculate year, week, and day according to the ISO 8601 standard. Series.dt.to_period(*args, **kwargs) Cast to PeriodArray/Index at a particular frequency. Series.dt.to_pydatetime() Return the data as an array of datetime.datetime objects. Series.dt.tz_localize(*args, **kwargs) Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. Series.dt.tz_convert(*args, **kwargs) Convert tz-aware Datetime Array/Index from one time zone to another. Series.dt.normalize(*args, **kwargs) Convert times to midnight. Series.dt.strftime(*args, **kwargs) Convert to Index using specified date_format. Series.dt.round(*args, **kwargs) Perform round operation on the data to the specified freq. Series.dt.floor(*args, **kwargs) Perform floor operation on the data to the specified freq. Series.dt.ceil(*args, **kwargs) Perform ceil operation on the data to the specified freq. Series.dt.month_name(*args, **kwargs) Return the month names with specified locale. Series.dt.day_name(*args, **kwargs) Return the day names with specified locale. Period properties# Series.dt.qyear Series.dt.start_time Get the Timestamp for the start of the period. Series.dt.end_time Get the Timestamp for the end of the period. Timedelta properties# Series.dt.days Number of days for each element. Series.dt.seconds Number of seconds (>= 0 and less than 1 day) for each element. Series.dt.microseconds Number of microseconds (>= 0 and less than 1 second) for each element. Series.dt.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. Series.dt.components Return a Dataframe of the components of the Timedeltas. Timedelta methods# Series.dt.to_pytimedelta() Return an array of native datetime.timedelta objects. Series.dt.total_seconds(*args, **kwargs) Return total duration of each element expressed in seconds. String handling# Series.str can be used to access the values of the series as strings and apply several methods to it. These can be accessed like Series.str.<function/property>. Series.str.capitalize() Convert strings in the Series/Index to be capitalized. Series.str.casefold() Convert strings in the Series/Index to be casefolded. Series.str.cat([others, sep, na_rep, join]) Concatenate strings in the Series/Index with given separator. Series.str.center(width[, fillchar]) Pad left and right side of strings in the Series/Index. Series.str.contains(pat[, case, flags, na, ...]) Test if pattern or regex is contained within a string of a Series or Index. Series.str.count(pat[, flags]) Count occurrences of pattern in each string of the Series/Index. Series.str.decode(encoding[, errors]) Decode character string in the Series/Index using indicated encoding. Series.str.encode(encoding[, errors]) Encode character string in the Series/Index using indicated encoding. Series.str.endswith(pat[, na]) Test if the end of each string element matches a pattern. Series.str.extract(pat[, flags, expand]) Extract capture groups in the regex pat as columns in a DataFrame. Series.str.extractall(pat[, flags]) Extract capture groups in the regex pat as columns in DataFrame. Series.str.find(sub[, start, end]) Return lowest indexes in each strings in the Series/Index. Series.str.findall(pat[, flags]) Find all occurrences of pattern or regular expression in the Series/Index. Series.str.fullmatch(pat[, case, flags, na]) Determine if each string entirely matches a regular expression. Series.str.get(i) Extract element from each component at specified position or with specified key. Series.str.index(sub[, start, end]) Return lowest indexes in each string in Series/Index. Series.str.join(sep) Join lists contained as elements in the Series/Index with passed delimiter. Series.str.len() Compute the length of each element in the Series/Index. Series.str.ljust(width[, fillchar]) Pad right side of strings in the Series/Index. Series.str.lower() Convert strings in the Series/Index to lowercase. Series.str.lstrip([to_strip]) Remove leading characters. Series.str.match(pat[, case, flags, na]) Determine if each string starts with a match of a regular expression. Series.str.normalize(form) Return the Unicode normal form for the strings in the Series/Index. Series.str.pad(width[, side, fillchar]) Pad strings in the Series/Index up to width. Series.str.partition([sep, expand]) Split the string at the first occurrence of sep. Series.str.removeprefix(prefix) Remove a prefix from an object series. Series.str.removesuffix(suffix) Remove a suffix from an object series. Series.str.repeat(repeats) Duplicate each string in the Series or Index. Series.str.replace(pat, repl[, n, case, ...]) Replace each occurrence of pattern/regex in the Series/Index. Series.str.rfind(sub[, start, end]) Return highest indexes in each strings in the Series/Index. Series.str.rindex(sub[, start, end]) Return highest indexes in each string in Series/Index. Series.str.rjust(width[, fillchar]) Pad left side of strings in the Series/Index. Series.str.rpartition([sep, expand]) Split the string at the last occurrence of sep. Series.str.rstrip([to_strip]) Remove trailing characters. Series.str.slice([start, stop, step]) Slice substrings from each element in the Series or Index. Series.str.slice_replace([start, stop, repl]) Replace a positional slice of a string with another value. Series.str.split([pat, n, expand, regex]) Split strings around given separator/delimiter. Series.str.rsplit([pat, n, expand]) Split strings around given separator/delimiter. Series.str.startswith(pat[, na]) Test if the start of each string element matches a pattern. Series.str.strip([to_strip]) Remove leading and trailing characters. Series.str.swapcase() Convert strings in the Series/Index to be swapcased. Series.str.title() Convert strings in the Series/Index to titlecase. Series.str.translate(table) Map all characters in the string through the given mapping table. Series.str.upper() Convert strings in the Series/Index to uppercase. Series.str.wrap(width, **kwargs) Wrap strings in Series/Index at specified line width. Series.str.zfill(width) Pad strings in the Series/Index by prepending '0' characters. Series.str.isalnum() Check whether all characters in each string are alphanumeric. Series.str.isalpha() Check whether all characters in each string are alphabetic. Series.str.isdigit() Check whether all characters in each string are digits. Series.str.isspace() Check whether all characters in each string are whitespace. Series.str.islower() Check whether all characters in each string are lowercase. Series.str.isupper() Check whether all characters in each string are uppercase. Series.str.istitle() Check whether all characters in each string are titlecase. Series.str.isnumeric() Check whether all characters in each string are numeric. Series.str.isdecimal() Check whether all characters in each string are decimal. Series.str.get_dummies([sep]) Return DataFrame of dummy/indicator variables for Series. Categorical accessor# Categorical-dtype specific methods and attributes are available under the Series.cat accessor. Series.cat.categories The categories of this categorical. Series.cat.ordered Whether the categories have an ordered relationship. Series.cat.codes Return Series of codes as well as the index. Series.cat.rename_categories(*args, **kwargs) Rename categories. Series.cat.reorder_categories(*args, **kwargs) Reorder categories as specified in new_categories. Series.cat.add_categories(*args, **kwargs) Add new categories. Series.cat.remove_categories(*args, **kwargs) Remove the specified categories. Series.cat.remove_unused_categories(*args, ...) Remove categories which are not used. Series.cat.set_categories(*args, **kwargs) Set the categories to the specified new_categories. Series.cat.as_ordered(*args, **kwargs) Set the Categorical to be ordered. Series.cat.as_unordered(*args, **kwargs) Set the Categorical to be unordered. Sparse accessor# Sparse-dtype specific methods and attributes are provided under the Series.sparse accessor. Series.sparse.npoints The number of non- fill_value points. Series.sparse.density The percent of non- fill_value points, as decimal. Series.sparse.fill_value Elements in data that are fill_value are not stored. Series.sparse.sp_values An ndarray containing the non- fill_value values. Series.sparse.from_coo(A[, dense_index]) Create a Series with sparse values from a scipy.sparse.coo_matrix. Series.sparse.to_coo([row_levels, ...]) Create a scipy.sparse.coo_matrix from a Series with MultiIndex. Flags# Flags refer to attributes of the pandas object. Properties of the dataset (like the date is was recorded, the URL it was accessed from, etc.) should be stored in Series.attrs. Flags(obj, *, allows_duplicate_labels) Flags that apply to pandas objects. Metadata# Series.attrs is a dictionary for storing global metadata for this Series. Warning Series.attrs is considered experimental and may change without warning. Series.attrs Dictionary of global attributes of this dataset. Plotting# Series.plot is both a callable method and a namespace attribute for specific plotting methods of the form Series.plot.<kind>. Series.plot([kind, ax, figsize, ....]) Series plotting accessor and method Series.plot.area([x, y]) Draw a stacked area plot. Series.plot.bar([x, y]) Vertical bar plot. Series.plot.barh([x, y]) Make a horizontal bar plot. Series.plot.box([by]) Make a box plot of the DataFrame columns. Series.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. Series.plot.hist([by, bins]) Draw one histogram of the DataFrame's columns. Series.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. Series.plot.line([x, y]) Plot Series or DataFrame as lines. Series.plot.pie(**kwargs) Generate a pie plot. Series.hist([by, ax, grid, xlabelsize, ...]) Draw histogram of the input series using matplotlib. Serialization / IO / conversion# Series.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. Series.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. Series.to_dict([into]) Convert Series to {label -> value} dict or dict-like object. Series.to_excel(excel_writer[, sheet_name, ...]) Write object to an Excel sheet. Series.to_frame([name]) Convert Series to DataFrame. Series.to_xarray() Return an xarray object from the pandas object. Series.to_hdf(path_or_buf, key[, mode, ...]) Write the contained data to an HDF5 file using HDFStore. Series.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. Series.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. Series.to_string([buf, na_rep, ...]) Render a string representation of the Series. Series.to_clipboard([excel, sep]) Copy object to the system clipboard. Series.to_latex([buf, columns, col_space, ...]) Render object to a LaTeX tabular, longtable, or nested table. Series.to_markdown([buf, mode, index, ...]) Print Series in Markdown-friendly format.
reference/series.html
pandas.api.extensions.ExtensionDtype.empty
`pandas.api.extensions.ExtensionDtype.empty` Construct an ExtensionArray of this dtype with the given shape.
ExtensionDtype.empty(shape)[source]# Construct an ExtensionArray of this dtype with the given shape. Analogous to numpy.empty. Parameters shapeint or tuple[int] Returns ExtensionArray
reference/api/pandas.api.extensions.ExtensionDtype.empty.html
pandas.Index.asi8
`pandas.Index.asi8` Integer representation of the values.
property Index.asi8[source]# Integer representation of the values. Returns ndarrayAn ndarray with int64 dtype.
reference/api/pandas.Index.asi8.html
Sparse data structures
Sparse data structures pandas provides data structures for efficiently storing sparse data. These are not necessarily sparse in the typical “mostly 0”. Rather, you can view these objects as being “compressed” where any data matching a specific value (NaN / missing value, though any value can be chosen, including 0) is omitted. The compressed values are not actually stored in the array. Notice the dtype, Sparse[float64, nan]. The nan means that elements in the array that are nan aren’t actually stored, only the non-nan elements are. Those non-nan elements have a float64 dtype. The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame: As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts.
pandas provides data structures for efficiently storing sparse data. These are not necessarily sparse in the typical “mostly 0”. Rather, you can view these objects as being “compressed” where any data matching a specific value (NaN / missing value, though any value can be chosen, including 0) is omitted. The compressed values are not actually stored in the array. In [1]: arr = np.random.randn(10) In [2]: arr[2:-2] = np.nan In [3]: ts = pd.Series(pd.arrays.SparseArray(arr)) In [4]: ts Out[4]: 0 0.469112 1 -0.282863 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 -0.861849 9 -2.104569 dtype: Sparse[float64, nan] Notice the dtype, Sparse[float64, nan]. The nan means that elements in the array that are nan aren’t actually stored, only the non-nan elements are. Those non-nan elements have a float64 dtype. The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame: In [5]: df = pd.DataFrame(np.random.randn(10000, 4)) In [6]: df.iloc[:9998] = np.nan In [7]: sdf = df.astype(pd.SparseDtype("float", np.nan)) In [8]: sdf.head() Out[8]: 0 1 2 3 0 NaN NaN NaN NaN 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN In [9]: sdf.dtypes Out[9]: 0 Sparse[float64, nan] 1 Sparse[float64, nan] 2 Sparse[float64, nan] 3 Sparse[float64, nan] dtype: object In [10]: sdf.sparse.density Out[10]: 0.0002 As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. In [11]: 'dense : {:0.2f} bytes'.format(df.memory_usage().sum() / 1e3) Out[11]: 'dense : 320.13 bytes' In [12]: 'sparse: {:0.2f} bytes'.format(sdf.memory_usage().sum() / 1e3) Out[12]: 'sparse: 0.22 bytes' Functionally, their behavior should be nearly identical to their dense counterparts. SparseArray# arrays.SparseArray is a ExtensionArray for storing an array of sparse values (see dtypes for more on extension arrays). It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value: In [13]: arr = np.random.randn(10) In [14]: arr[2:5] = np.nan In [15]: arr[7:8] = np.nan In [16]: sparr = pd.arrays.SparseArray(arr) In [17]: sparr Out[17]: [-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.14529711373305043, nan, 0.6060271905134522, 1.3342113401317768] Fill: nan IntIndex Indices: array([0, 1, 5, 6, 8, 9], dtype=int32) A sparse array can be converted to a regular (dense) ndarray with numpy.asarray() In [18]: np.asarray(sparr) Out[18]: array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453, nan, 0.606 , 1.3342]) SparseDtype# The SparseArray.dtype property stores two pieces of information The dtype of the non-sparse values The scalar fill value In [19]: sparr.dtype Out[19]: Sparse[float64, nan] A SparseDtype may be constructed by passing only a dtype In [20]: pd.SparseDtype(np.dtype('datetime64[ns]')) Out[20]: Sparse[datetime64[ns], numpy.datetime64('NaT')] in which case a default fill value will be used (for NumPy dtypes this is often the “missing” value for that dtype). To override this default an explicit fill value may be passed instead In [21]: pd.SparseDtype(np.dtype('datetime64[ns]'), ....: fill_value=pd.Timestamp('2017-01-01')) ....: Out[21]: Sparse[datetime64[ns], Timestamp('2017-01-01 00:00:00')] Finally, the string alias 'Sparse[dtype]' may be used to specify a sparse dtype in many places In [22]: pd.array([1, 0, 0, 2], dtype='Sparse[int]') Out[22]: [1, 0, 0, 2] Fill: 0 IntIndex Indices: array([0, 3], dtype=int32) Sparse accessor# pandas provides a .sparse accessor, similar to .str for string data, .cat for categorical data, and .dt for datetime-like data. This namespace provides attributes and methods that are specific to sparse data. In [23]: s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]") In [24]: s.sparse.density Out[24]: 0.5 In [25]: s.sparse.fill_value Out[25]: 0 This accessor is available only on data with SparseDtype, and on the Series class itself for creating a Series with sparse data from a scipy COO matrix with. New in version 0.25.0. A .sparse accessor has been added for DataFrame as well. See Sparse accessor for more. Sparse calculation# You can apply NumPy ufuncs to arrays.SparseArray and get a arrays.SparseArray as a result. In [26]: arr = pd.arrays.SparseArray([1., np.nan, np.nan, -2., np.nan]) In [27]: np.abs(arr) Out[27]: [1.0, nan, nan, 2.0, nan] Fill: nan IntIndex Indices: array([0, 3], dtype=int32) The ufunc is also applied to fill_value. This is needed to get the correct dense result. In [28]: arr = pd.arrays.SparseArray([1., -1, -1, -2., -1], fill_value=-1) In [29]: np.abs(arr) Out[29]: [1, 1, 1, 2.0, 1] Fill: 1 IntIndex Indices: array([3], dtype=int32) In [30]: np.abs(arr).to_dense() Out[30]: array([1., 1., 1., 2., 1.]) Migrating# Note SparseSeries and SparseDataFrame were removed in pandas 1.0.0. This migration guide is present to aid in migrating from previous versions. In older versions of pandas, the SparseSeries and SparseDataFrame classes (documented below) were the preferred way to work with sparse data. With the advent of extension arrays, these subclasses are no longer needed. Their purpose is better served by using a regular Series or DataFrame with sparse values instead. Note There’s no performance or memory penalty to using a Series or DataFrame with sparse values, rather than a SparseSeries or SparseDataFrame. This section provides some guidance on migrating your code to the new style. As a reminder, you can use the Python warnings module to control warnings. But we recommend modifying your code, rather than ignoring the warning. Construction From an array-like, use the regular Series or DataFrame constructors with arrays.SparseArray values. # Previous way >>> pd.SparseDataFrame({"A": [0, 1]}) # New way In [31]: pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])}) Out[31]: A 0 0 1 1 From a SciPy sparse matrix, use DataFrame.sparse.from_spmatrix(), # Previous way >>> from scipy import sparse >>> mat = sparse.eye(3) >>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C']) # New way In [32]: from scipy import sparse In [33]: mat = sparse.eye(3) In [34]: df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C']) In [35]: df.dtypes Out[35]: A Sparse[float64, 0] B Sparse[float64, 0] C Sparse[float64, 0] dtype: object Conversion From sparse to dense, use the .sparse accessors In [36]: df.sparse.to_dense() Out[36]: A B C 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 In [37]: df.sparse.to_coo() Out[37]: <3x3 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> From dense to sparse, use DataFrame.astype() with a SparseDtype. In [38]: dense = pd.DataFrame({"A": [1, 0, 0, 1]}) In [39]: dtype = pd.SparseDtype(int, fill_value=0) In [40]: dense.astype(dtype) Out[40]: A 0 1 1 0 2 0 3 1 Sparse Properties Sparse-specific properties, like density, are available on the .sparse accessor. In [41]: df.sparse.density Out[41]: 0.3333333333333333 General differences In a SparseDataFrame, all columns were sparse. A DataFrame can have a mixture of sparse and dense columns. As a consequence, assigning new columns to a DataFrame with sparse values will not automatically convert the input to be sparse. # Previous Way >>> df = pd.SparseDataFrame({"A": [0, 1]}) >>> df['B'] = [0, 0] # implicitly becomes Sparse >>> df['B'].dtype Sparse[int64, nan] Instead, you’ll need to ensure that the values being assigned are sparse In [42]: df = pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])}) In [43]: df['B'] = [0, 0] # remains dense In [44]: df['B'].dtype Out[44]: dtype('int64') In [45]: df['B'] = pd.arrays.SparseArray([0, 0]) In [46]: df['B'].dtype Out[46]: Sparse[int64, 0] The SparseDataFrame.default_kind and SparseDataFrame.default_fill_value attributes have no replacement. Interaction with scipy.sparse# Use DataFrame.sparse.from_spmatrix() to create a DataFrame with sparse values from a sparse matrix. New in version 0.25.0. In [47]: from scipy.sparse import csr_matrix In [48]: arr = np.random.random(size=(1000, 5)) In [49]: arr[arr < .9] = 0 In [50]: sp_arr = csr_matrix(arr) In [51]: sp_arr Out[51]: <1000x5 sparse matrix of type '<class 'numpy.float64'>' with 517 stored elements in Compressed Sparse Row format> In [52]: sdf = pd.DataFrame.sparse.from_spmatrix(sp_arr) In [53]: sdf.head() Out[53]: 0 1 2 3 4 0 0.956380 0.0 0.0 0.000000 0.0 1 0.000000 0.0 0.0 0.000000 0.0 2 0.000000 0.0 0.0 0.000000 0.0 3 0.000000 0.0 0.0 0.000000 0.0 4 0.999552 0.0 0.0 0.956153 0.0 In [54]: sdf.dtypes Out[54]: 0 Sparse[float64, 0] 1 Sparse[float64, 0] 2 Sparse[float64, 0] 3 Sparse[float64, 0] 4 Sparse[float64, 0] dtype: object All sparse formats are supported, but matrices that are not in COOrdinate format will be converted, copying data as needed. To convert back to sparse SciPy matrix in COO format, you can use the DataFrame.sparse.to_coo() method: In [55]: sdf.sparse.to_coo() Out[55]: <1000x5 sparse matrix of type '<class 'numpy.float64'>' with 517 stored elements in COOrdinate format> Series.sparse.to_coo() is implemented for transforming a Series with sparse values indexed by a MultiIndex to a scipy.sparse.coo_matrix. The method requires a MultiIndex with two or more levels. In [56]: s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) In [57]: s.index = pd.MultiIndex.from_tuples( ....: [ ....: (1, 2, "a", 0), ....: (1, 2, "a", 1), ....: (1, 1, "b", 0), ....: (1, 1, "b", 1), ....: (2, 1, "b", 0), ....: (2, 1, "b", 1), ....: ], ....: names=["A", "B", "C", "D"], ....: ) ....: In [58]: ss = s.astype('Sparse') In [59]: ss Out[59]: A B C D 1 2 a 0 3.0 1 NaN 1 b 0 1.0 1 3.0 2 1 b 0 NaN 1 NaN dtype: Sparse[float64, nan] In the example below, we transform the Series to a sparse representation of a 2-d array by specifying that the first and second MultiIndex levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation. In [60]: A, rows, columns = ss.sparse.to_coo( ....: row_levels=["A", "B"], column_levels=["C", "D"], sort_labels=True ....: ) ....: In [61]: A Out[61]: <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> In [62]: A.todense() Out[62]: matrix([[0., 0., 1., 3.], [3., 0., 0., 0.], [0., 0., 0., 0.]]) In [63]: rows Out[63]: [(1, 1), (1, 2), (2, 1)] In [64]: columns Out[64]: [('a', 0), ('a', 1), ('b', 0), ('b', 1)] Specifying different row and column labels (and not sorting them) yields a different sparse matrix: In [65]: A, rows, columns = ss.sparse.to_coo( ....: row_levels=["A", "B", "C"], column_levels=["D"], sort_labels=False ....: ) ....: In [66]: A Out[66]: <3x2 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> In [67]: A.todense() Out[67]: matrix([[3., 0.], [1., 3.], [0., 0.]]) In [68]: rows Out[68]: [(1, 2, 'a'), (1, 1, 'b'), (2, 1, 'b')] In [69]: columns Out[69]: [(0,), (1,)] A convenience method Series.sparse.from_coo() is implemented for creating a Series with sparse values from a scipy.sparse.coo_matrix. In [70]: from scipy import sparse In [71]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) In [72]: A Out[72]: <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> In [73]: A.todense() Out[73]: matrix([[0., 0., 1., 2.], [3., 0., 0., 0.], [0., 0., 0., 0.]]) The default behaviour (with dense_index=False) simply returns a Series containing only the non-null entries. In [74]: ss = pd.Series.sparse.from_coo(A) In [75]: ss Out[75]: 0 2 1.0 3 2.0 1 0 3.0 dtype: Sparse[float64, nan] Specifying dense_index=True will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to dense_index=False) if the sparse matrix is large (and sparse) enough. In [76]: ss_dense = pd.Series.sparse.from_coo(A, dense_index=True) In [77]: ss_dense Out[77]: 0 0 NaN 1 NaN 2 1.0 3 2.0 1 0 3.0 1 NaN 2 NaN 3 NaN 2 0 NaN 1 NaN 2 NaN 3 NaN dtype: Sparse[float64, nan]
user_guide/sparse.html
pandas.Series.cat.reorder_categories
`pandas.Series.cat.reorder_categories` Reorder categories as specified in new_categories. new_categories need to include all old categories and no new category items.
Series.cat.reorder_categories(*args, **kwargs)[source]# Reorder categories as specified in new_categories. new_categories need to include all old categories and no new category items. Parameters new_categoriesIndex-likeThe categories in new order. orderedbool, optionalWhether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplacebool, default FalseWhether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Deprecated since version 1.3.0. Returns catCategorical or NoneCategorical with removed categories or None if inplace=True. Raises ValueErrorIf the new categories do not contain all old category items or any new ones See also rename_categoriesRename categories. add_categoriesAdd new categories. remove_categoriesRemove the specified categories. remove_unused_categoriesRemove categories which are not used. set_categoriesSet the categories to the specified ones.
reference/api/pandas.Series.cat.reorder_categories.html
pandas.io.formats.style.Styler.template_latex
pandas.io.formats.style.Styler.template_latex
Styler.template_latex = <Template 'latex.tpl'>#
reference/api/pandas.io.formats.style.Styler.template_latex.html
pandas.api.extensions.ExtensionDtype.empty
`pandas.api.extensions.ExtensionDtype.empty` Construct an ExtensionArray of this dtype with the given shape. Analogous to numpy.empty.
ExtensionDtype.empty(shape)[source]# Construct an ExtensionArray of this dtype with the given shape. Analogous to numpy.empty. Parameters shapeint or tuple[int] Returns ExtensionArray
reference/api/pandas.api.extensions.ExtensionDtype.empty.html
pandas.DataFrame.shape
`pandas.DataFrame.shape` Return a tuple representing the dimensionality of the DataFrame. ``` >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) ```
property DataFrame.shape[source]# Return a tuple representing the dimensionality of the DataFrame. See also ndarray.shapeTuple of array dimensions. Examples >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3)
reference/api/pandas.DataFrame.shape.html
pandas.PeriodIndex.qyear
pandas.PeriodIndex.qyear
property PeriodIndex.qyear[source]#
reference/api/pandas.PeriodIndex.qyear.html
pandas.Series.str.extract
`pandas.Series.str.extract` Extract capture groups in the regex pat as columns in a DataFrame. ``` >>> s = pd.Series(['a1', 'b2', 'c3']) >>> s.str.extract(r'([ab])(\d)') 0 1 0 a 1 1 b 2 2 NaN NaN ```
Series.str.extract(pat, flags=0, expand=True)[source]# Extract capture groups in the regex pat as columns in a DataFrame. For each subject string in the Series, extract groups from the first match of regular expression pat. Parameters patstrRegular expression pattern with capturing groups. flagsint, default 0 (no flags)Flags from the re module, e.g. re.IGNORECASE, that modify regular expression matching for things like case, spaces, etc. For more details, see re. expandbool, default TrueIf True, return DataFrame with one column per capture group. If False, return a Series/Index if there is one capture group or DataFrame if there are multiple capture groups. Returns DataFrame or Series or IndexA DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. The dtype of each result column is always object, even when no match is found. If expand=False and pat has only one capture group, then return a Series (if subject is a Series) or Index (if subject is an Index). See also extractallReturns all matches (not just the first match). Examples A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN. >>> s = pd.Series(['a1', 'b2', 'c3']) >>> s.str.extract(r'([ab])(\d)') 0 1 0 a 1 1 b 2 2 NaN NaN A pattern may contain optional groups. >>> s.str.extract(r'([ab])?(\d)') 0 1 0 a 1 1 b 2 2 NaN 3 Named groups will become column names in the result. >>> s.str.extract(r'(?P<letter>[ab])(?P<digit>\d)') letter digit 0 a 1 1 b 2 2 NaN NaN A pattern with one group will return a DataFrame with one column if expand=True. >>> s.str.extract(r'[ab](\d)', expand=True) 0 0 1 1 2 2 NaN A pattern with one group will return a Series if expand=False. >>> s.str.extract(r'[ab](\d)', expand=False) 0 1 1 2 2 NaN dtype: object
reference/api/pandas.Series.str.extract.html
pandas.tseries.offsets.BusinessMonthEnd.n
pandas.tseries.offsets.BusinessMonthEnd.n
BusinessMonthEnd.n#
reference/api/pandas.tseries.offsets.BusinessMonthEnd.n.html
pandas.core.window.rolling.Rolling.min
`pandas.core.window.rolling.Rolling.min` Calculate the rolling minimum. Include only float, int, boolean columns. ``` >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 ```
Rolling.min(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the rolling minimum. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.minAggregating min for Series. pandas.DataFrame.minAggregating min for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine. Examples Performing a rolling minimum with a window size of 3. >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64
reference/api/pandas.core.window.rolling.Rolling.min.html
pandas.Interval
`pandas.Interval` Immutable object implementing an Interval, a bounded slice-like interval. ``` >>> iv = pd.Interval(left=0, right=5) >>> iv Interval(0, 5, closed='right') ```
class pandas.Interval# Immutable object implementing an Interval, a bounded slice-like interval. Parameters leftorderable scalarLeft bound for the interval. rightorderable scalarRight bound for the interval. closed{‘right’, ‘left’, ‘both’, ‘neither’}, default ‘right’Whether the interval is closed on the left-side, right-side, both or neither. See the Notes for more detailed explanation. See also IntervalIndexAn Index of Interval objects that are all closed on the same side. cutConvert continuous data into discrete bins (Categorical of Interval objects). qcutConvert continuous data into bins (Categorical of Interval objects) based on quantiles. PeriodRepresents a period of time. Notes The parameters left and right must be from the same type, you must be able to compare them and they must satisfy left <= right. A closed interval (in mathematics denoted by square brackets) contains its endpoints, i.e. the closed interval [0, 5] is characterized by the conditions 0 <= x <= 5. This is what closed='both' stands for. An open interval (in mathematics denoted by parentheses) does not contain its endpoints, i.e. the open interval (0, 5) is characterized by the conditions 0 < x < 5. This is what closed='neither' stands for. Intervals can also be half-open or half-closed, i.e. [0, 5) is described by 0 <= x < 5 (closed='left') and (0, 5] is described by 0 < x <= 5 (closed='right'). Examples It is possible to build Intervals of different types, like numeric ones: >>> iv = pd.Interval(left=0, right=5) >>> iv Interval(0, 5, closed='right') You can check if an element belongs to it, or if it contains another interval: >>> 2.5 in iv True >>> pd.Interval(left=2, right=5, closed='both') in iv True You can test the bounds (closed='right', so 0 < x <= 5): >>> 0 in iv False >>> 5 in iv True >>> 0.0001 in iv True Calculate its length >>> iv.length 5 You can operate with + and * over an Interval and the operation is applied to each of its bounds, so the result depends on the type of the bound elements >>> shifted_iv = iv + 3 >>> shifted_iv Interval(3, 8, closed='right') >>> extended_iv = iv * 10.0 >>> extended_iv Interval(0.0, 50.0, closed='right') To create a time interval you can use Timestamps as the bounds >>> year_2017 = pd.Interval(pd.Timestamp('2017-01-01 00:00:00'), ... pd.Timestamp('2018-01-01 00:00:00'), ... closed='left') >>> pd.Timestamp('2017-01-01 00:00') in year_2017 True >>> year_2017.length Timedelta('365 days 00:00:00') Attributes closed String describing the inclusive side the intervals. closed_left Check if the interval is closed on the left side. closed_right Check if the interval is closed on the right side. is_empty Indicates if an interval is empty, meaning it contains no points. left Left bound for the interval. length Return the length of the Interval. mid Return the midpoint of the Interval. open_left Check if the interval is open on the left side. open_right Check if the interval is open on the right side. right Right bound for the interval. Methods overlaps Check whether two Interval objects overlap.
reference/api/pandas.Interval.html
pandas.tseries.offsets.QuarterEnd.is_quarter_end
`pandas.tseries.offsets.QuarterEnd.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
QuarterEnd.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.QuarterEnd.is_quarter_end.html
pandas.tseries.offsets.MonthBegin.rule_code
pandas.tseries.offsets.MonthBegin.rule_code
MonthBegin.rule_code#
reference/api/pandas.tseries.offsets.MonthBegin.rule_code.html
pandas.DataFrame.tz_convert
`pandas.DataFrame.tz_convert` Convert tz-aware axis to target time zone.
DataFrame.tz_convert(tz, axis=0, level=None, copy=True)[source]# Convert tz-aware axis to target time zone. Parameters tzstr or tzinfo object axisthe axis to convert levelint, str, default NoneIf axis is a MultiIndex, convert a specific level. Otherwise must be None. copybool, default TrueAlso make a copy of the underlying data. Returns Series/DataFrameObject with time zone converted axis. Raises TypeErrorIf the axis is tz-naive.
reference/api/pandas.DataFrame.tz_convert.html
pandas.core.resample.Resampler.ohlc
`pandas.core.resample.Resampler.ohlc` Compute open, high, low and close values of a group, excluding missing values.
Resampler.ohlc(*args, **kwargs)[source]# Compute open, high, low and close values of a group, excluding missing values. For multiple groupings, the result index will be a MultiIndex Returns DataFrameOpen, high, low and close values within each group. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.resample.Resampler.ohlc.html
pandas.Series.head
`pandas.Series.head` Return the first n rows. ``` >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra ```
Series.head(n=5)[source]# Return the first n rows. This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. For negative values of n, this function returns all rows except the last |n| rows, equivalent to df[:n]. If n is larger than the number of rows, this function returns all rows. Parameters nint, default 5Number of rows to select. Returns same type as callerThe first n rows of the caller object. See also DataFrame.tailReturns the last n rows. Examples >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first n lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon For negative values of n >>> df.head(-3) animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot
reference/api/pandas.Series.head.html
pandas.tseries.offsets.BQuarterBegin
`pandas.tseries.offsets.BQuarterBegin` DateOffset increments between the first business day of each Quarter. startingMonth = 1 corresponds to dates like 1/01/2007, 4/01/2007, … startingMonth = 2 corresponds to dates like 2/01/2007, 5/01/2007, … startingMonth = 3 corresponds to dates like 3/01/2007, 6/01/2007, … ``` >>> from pandas.tseries.offsets import BQuarterBegin >>> ts = pd.Timestamp('2020-05-24 05:01:15') >>> ts + BQuarterBegin() Timestamp('2020-06-01 05:01:15') >>> ts + BQuarterBegin(2) Timestamp('2020-09-01 05:01:15') >>> ts + BQuarterBegin(startingMonth=2) Timestamp('2020-08-03 05:01:15') >>> ts + BQuarterBegin(-1) Timestamp('2020-03-02 05:01:15') ```
class pandas.tseries.offsets.BQuarterBegin# DateOffset increments between the first business day of each Quarter. startingMonth = 1 corresponds to dates like 1/01/2007, 4/01/2007, … startingMonth = 2 corresponds to dates like 2/01/2007, 5/01/2007, … startingMonth = 3 corresponds to dates like 3/01/2007, 6/01/2007, … Examples >>> from pandas.tseries.offsets import BQuarterBegin >>> ts = pd.Timestamp('2020-05-24 05:01:15') >>> ts + BQuarterBegin() Timestamp('2020-06-01 05:01:15') >>> ts + BQuarterBegin(2) Timestamp('2020-09-01 05:01:15') >>> ts + BQuarterBegin(startingMonth=2) Timestamp('2020-08-03 05:01:15') >>> ts + BQuarterBegin(-1) Timestamp('2020-03-02 05:01:15') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. n nanos normalize rule_code startingMonth Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.BQuarterBegin.html
pandas.tseries.offsets.SemiMonthEnd.is_quarter_end
`pandas.tseries.offsets.SemiMonthEnd.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
SemiMonthEnd.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.SemiMonthEnd.is_quarter_end.html
pandas.Series.str.rsplit
`pandas.Series.str.rsplit` Split strings around given separator/delimiter. Splits the string in the Series/Index from the end, at the specified delimiter string. ``` >>> s = pd.Series( ... [ ... "this is a regular sentence", ... "https://docs.python.org/3/tutorial/index.html", ... np.nan ... ] ... ) >>> s 0 this is a regular sentence 1 https://docs.python.org/3/tutorial/index.html 2 NaN dtype: object ```
Series.str.rsplit(pat=None, *, n=- 1, expand=False)[source]# Split strings around given separator/delimiter. Splits the string in the Series/Index from the end, at the specified delimiter string. Parameters patstr, optionalString to split on. If not specified, split on whitespace. nint, default -1 (all)Limit number of splits in output. None, 0 and -1 will be interpreted as return all splits. expandbool, default FalseExpand the split strings into separate columns. If True, return DataFrame/MultiIndex expanding dimensionality. If False, return Series/Index, containing lists of strings. Returns Series, Index, DataFrame or MultiIndexType matches caller unless expand=True (see Notes). See also Series.str.splitSplit strings around given separator/delimiter. Series.str.rsplitSplits string around given separator/delimiter, starting from the right. Series.str.joinJoin lists contained as elements in the Series/Index with passed delimiter. str.splitStandard library version for split. str.rsplitStandard library version for rsplit. Notes The handling of the n keyword depends on the number of found splits: If found splits > n, make first n splits only If found splits <= n, make all splits If for a certain row the number of found splits < n, append None for padding up to n if expand=True If using expand=True, Series and Index callers return DataFrame and MultiIndex objects, respectively. Examples >>> s = pd.Series( ... [ ... "this is a regular sentence", ... "https://docs.python.org/3/tutorial/index.html", ... np.nan ... ] ... ) >>> s 0 this is a regular sentence 1 https://docs.python.org/3/tutorial/index.html 2 NaN dtype: object In the default setting, the string is split by whitespace. >>> s.str.split() 0 [this, is, a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object Without the n parameter, the outputs of rsplit and split are identical. >>> s.str.rsplit() 0 [this, is, a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object The n parameter can be used to limit the number of splits on the delimiter. The outputs of split and rsplit are different. >>> s.str.split(n=2) 0 [this, is, a regular sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object >>> s.str.rsplit(n=2) 0 [this is a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object The pat parameter can be used to split by other characters. >>> s.str.split(pat="/") 0 [this is a regular sentence] 1 [https:, , docs.python.org, 3, tutorial, index... 2 NaN dtype: object When using expand=True, the split elements will expand out into separate columns. If NaN is present, it is propagated throughout the columns during the split. >>> s.str.split(expand=True) 0 1 2 3 4 0 this is a regular sentence 1 https://docs.python.org/3/tutorial/index.html None None None None 2 NaN NaN NaN NaN NaN For slightly more complex use cases like splitting the html document name from a url, a combination of parameter settings can be used. >>> s.str.rsplit("/", n=1, expand=True) 0 1 0 this is a regular sentence None 1 https://docs.python.org/3/tutorial index.html 2 NaN NaN
reference/api/pandas.Series.str.rsplit.html
pandas.tseries.offsets.YearBegin.apply_index
`pandas.tseries.offsets.YearBegin.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
YearBegin.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.YearBegin.apply_index.html
pandas.testing.assert_index_equal
`pandas.testing.assert_index_equal` Check that left and right Index are equal. ``` >>> from pandas import testing as tm >>> a = pd.Index([1, 2, 3]) >>> b = pd.Index([1, 2, 3]) >>> tm.assert_index_equal(a, b) ```
pandas.testing.assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=_NoDefault.no_default, check_exact=True, check_categorical=True, check_order=True, rtol=1e-05, atol=1e-08, obj='Index')[source]# Check that left and right Index are equal. Parameters leftIndex rightIndex exactbool or {‘equiv’}, default ‘equiv’Whether to check the Index class, dtype and inferred_type are identical. If ‘equiv’, then RangeIndex can be substituted for Int64Index as well. check_namesbool, default TrueWhether to check the names attribute. check_less_precisebool or int, default FalseSpecify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. Deprecated since version 1.1.0: Use rtol and atol instead to define relative/absolute tolerance, respectively. Similar to math.isclose(). check_exactbool, default TrueWhether to compare number exactly. check_categoricalbool, default TrueWhether to compare internal Categorical exactly. check_orderbool, default TrueWhether to compare the order of index entries as well as their values. If True, both indexes must contain the same elements, in the same order. If False, both indexes must contain the same elements, but in any order. New in version 1.2.0. rtolfloat, default 1e-5Relative tolerance. Only used when check_exact is False. New in version 1.1.0. atolfloat, default 1e-8Absolute tolerance. Only used when check_exact is False. New in version 1.1.0. objstr, default ‘Index’Specify object name being compared, internally used to show appropriate assertion message. Examples >>> from pandas import testing as tm >>> a = pd.Index([1, 2, 3]) >>> b = pd.Index([1, 2, 3]) >>> tm.assert_index_equal(a, b)
reference/api/pandas.testing.assert_index_equal.html
Input/output
Pickling# read_pickle(filepath_or_buffer[, ...]) Load pickled pandas object (or any object) from file. DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. Flat file# read_table(filepath_or_buffer, *[, sep, ...]) Read general delimited file into DataFrame. read_csv(filepath_or_buffer, *[, sep, ...]) Read a comma-separated values (csv) file into DataFrame. DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. read_fwf(filepath_or_buffer, *[, colspecs, ...]) Read a table of fixed-width formatted lines into DataFrame. Clipboard# read_clipboard([sep]) Read text from clipboard and pass to read_csv. DataFrame.to_clipboard([excel, sep]) Copy object to the system clipboard. Excel# read_excel(io[, sheet_name, header, names, ...]) Read an Excel file into a pandas DataFrame. DataFrame.to_excel(excel_writer[, ...]) Write object to an Excel sheet. ExcelFile.parse([sheet_name, header, names, ...]) Parse specified sheet(s) into a DataFrame. Styler.to_excel(excel_writer[, sheet_name, ...]) Write Styler to an Excel sheet. ExcelWriter(path[, engine, date_format, ...]) Class for writing DataFrame objects into excel sheets. JSON# read_json(path_or_buf, *[, orient, typ, ...]) Convert a JSON string to pandas object. json_normalize(data[, record_path, meta, ...]) Normalize semi-structured JSON data into a flat table. DataFrame.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. build_table_schema(data[, index, ...]) Create a Table schema from data. HTML# read_html(io, *[, match, flavor, header, ...]) Read HTML tables into a list of DataFrame objects. DataFrame.to_html([buf, columns, col_space, ...]) Render a DataFrame as an HTML table. Styler.to_html([buf, table_uuid, ...]) Write Styler to a file, buffer or string in HTML-CSS format. XML# read_xml(path_or_buffer, *[, xpath, ...]) Read XML document into a DataFrame object. DataFrame.to_xml([path_or_buffer, index, ...]) Render a DataFrame to an XML document. Latex# DataFrame.to_latex([buf, columns, ...]) Render object to a LaTeX tabular, longtable, or nested table. Styler.to_latex([buf, column_format, ...]) Write Styler to a file, buffer or string in LaTeX format. HDFStore: PyTables (HDF5)# read_hdf(path_or_buf[, key, mode, errors, ...]) Read from the store, close it if we opened it. HDFStore.put(key, value[, format, index, ...]) Store object in HDFStore. HDFStore.append(key, value[, format, axes, ...]) Append to Table in file. HDFStore.get(key) Retrieve pandas object stored in file. HDFStore.select(key[, where, start, stop, ...]) Retrieve pandas object stored in file, optionally based on where criteria. HDFStore.info() Print detailed information on the store. HDFStore.keys([include]) Return a list of keys corresponding to objects stored in HDFStore. HDFStore.groups() Return a list of all the top-level nodes. HDFStore.walk([where]) Walk the pytables group hierarchy for pandas objects. Warning One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing. Feather# read_feather(path[, columns, use_threads, ...]) Load a feather-format object from the file path. DataFrame.to_feather(path, **kwargs) Write a DataFrame to the binary Feather format. Parquet# read_parquet(path[, engine, columns, ...]) Load a parquet object from the file path, returning a DataFrame. DataFrame.to_parquet([path, engine, ...]) Write a DataFrame to the binary parquet format. ORC# read_orc(path[, columns]) Load an ORC object from the file path, returning a DataFrame. DataFrame.to_orc([path, engine, index, ...]) Write a DataFrame to the ORC format. SAS# read_sas(filepath_or_buffer, *[, format, ...]) Read SAS files stored as either XPORT or SAS7BDAT format files. SPSS# read_spss(path[, usecols, convert_categoricals]) Load an SPSS file from the file path, returning a DataFrame. SQL# read_sql_table(table_name, con[, schema, ...]) Read SQL database table into a DataFrame. read_sql_query(sql, con[, index_col, ...]) Read SQL query into a DataFrame. read_sql(sql, con[, index_col, ...]) Read SQL query or database table into a DataFrame. DataFrame.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. Google BigQuery# read_gbq(query[, project_id, index_col, ...]) Load data from Google BigQuery. STATA# read_stata(filepath_or_buffer, *[, ...]) Read Stata file into DataFrame. DataFrame.to_stata(path, *[, convert_dates, ...]) Export DataFrame object to Stata dta format. StataReader.data_label Return data label of Stata file. StataReader.value_labels() Return a nested dict associating each variable name to its value and label. StataReader.variable_labels() Return a dict associating each variable name with corresponding label. StataWriter.write_file() Export DataFrame object to Stata dta format.
reference/io.html
null
Series
Constructor# Series([data, index, dtype, name, copy, ...]) One-dimensional ndarray with axis labels (including time series). Attributes# Axes Series.index The index (axis labels) of the Series. Series.array The ExtensionArray of the data backing this Series or Index. Series.values Return Series as ndarray or ndarray-like depending on the dtype. Series.dtype Return the dtype object of the underlying data. Series.shape Return a tuple of the shape of the underlying data. Series.nbytes Return the number of bytes in the underlying data. Series.ndim Number of dimensions of the underlying data, by definition 1. Series.size Return the number of elements in the underlying data. Series.T Return the transpose, which is by definition self. Series.memory_usage([index, deep]) Return the memory usage of the Series. Series.hasnans Return True if there are any NaNs. Series.empty Indicator whether Series/DataFrame is empty. Series.dtypes Return the dtype object of the underlying data. Series.name Return the name of the Series. Series.flags Get the properties associated with this pandas object. Series.set_flags(*[, copy, ...]) Return a new object with updated flags. Conversion# Series.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype. Series.convert_dtypes([infer_objects, ...]) Convert columns to best possible dtypes using dtypes supporting pd.NA. Series.infer_objects() Attempt to infer better dtypes for object columns. Series.copy([deep]) Make a copy of this object's indices and data. Series.bool() Return the bool of a single element Series or DataFrame. Series.to_numpy([dtype, copy, na_value]) A NumPy ndarray representing the values in this Series or Index. Series.to_period([freq, copy]) Convert Series from DatetimeIndex to PeriodIndex. Series.to_timestamp([freq, how, copy]) Cast to DatetimeIndex of Timestamps, at beginning of period. Series.to_list() Return a list of the values. Series.__array__([dtype]) Return the values as a NumPy array. Indexing, iteration# Series.get(key[, default]) Get item from object for given key (ex: DataFrame column). Series.at Access a single value for a row/column label pair. Series.iat Access a single value for a row/column pair by integer position. Series.loc Access a group of rows and columns by label(s) or a boolean array. Series.iloc Purely integer-location based indexing for selection by position. Series.__iter__() Return an iterator of the values. Series.items() Lazily iterate over (index, value) tuples. Series.iteritems() (DEPRECATED) Lazily iterate over (index, value) tuples. Series.keys() Return alias for index. Series.pop(item) Return item and drops from series. Series.item() Return the first element of the underlying data as a Python scalar. Series.xs(key[, axis, level, drop_level]) Return cross-section from the Series/DataFrame. For more information on .at, .iat, .loc, and .iloc, see the indexing documentation. Binary operator functions# Series.add(other[, level, fill_value, axis]) Return Addition of series and other, element-wise (binary operator add). Series.sub(other[, level, fill_value, axis]) Return Subtraction of series and other, element-wise (binary operator sub). Series.mul(other[, level, fill_value, axis]) Return Multiplication of series and other, element-wise (binary operator mul). Series.div(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator truediv). Series.truediv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator truediv). Series.floordiv(other[, level, fill_value, axis]) Return Integer division of series and other, element-wise (binary operator floordiv). Series.mod(other[, level, fill_value, axis]) Return Modulo of series and other, element-wise (binary operator mod). Series.pow(other[, level, fill_value, axis]) Return Exponential power of series and other, element-wise (binary operator pow). Series.radd(other[, level, fill_value, axis]) Return Addition of series and other, element-wise (binary operator radd). Series.rsub(other[, level, fill_value, axis]) Return Subtraction of series and other, element-wise (binary operator rsub). Series.rmul(other[, level, fill_value, axis]) Return Multiplication of series and other, element-wise (binary operator rmul). Series.rdiv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator rtruediv). Series.rtruediv(other[, level, fill_value, axis]) Return Floating division of series and other, element-wise (binary operator rtruediv). Series.rfloordiv(other[, level, fill_value, ...]) Return Integer division of series and other, element-wise (binary operator rfloordiv). Series.rmod(other[, level, fill_value, axis]) Return Modulo of series and other, element-wise (binary operator rmod). Series.rpow(other[, level, fill_value, axis]) Return Exponential power of series and other, element-wise (binary operator rpow). Series.combine(other, func[, fill_value]) Combine the Series with a Series or scalar according to func. Series.combine_first(other) Update null elements with value in the same location in 'other'. Series.round([decimals]) Round each value in a Series to the given number of decimals. Series.lt(other[, level, fill_value, axis]) Return Less than of series and other, element-wise (binary operator lt). Series.gt(other[, level, fill_value, axis]) Return Greater than of series and other, element-wise (binary operator gt). Series.le(other[, level, fill_value, axis]) Return Less than or equal to of series and other, element-wise (binary operator le). Series.ge(other[, level, fill_value, axis]) Return Greater than or equal to of series and other, element-wise (binary operator ge). Series.ne(other[, level, fill_value, axis]) Return Not equal to of series and other, element-wise (binary operator ne). Series.eq(other[, level, fill_value, axis]) Return Equal to of series and other, element-wise (binary operator eq). Series.product([axis, skipna, level, ...]) Return the product of the values over the requested axis. Series.dot(other) Compute the dot product between the Series and the columns of other. Function application, GroupBy & window# Series.apply(func[, convert_dtype, args]) Invoke function on values of Series. Series.agg([func, axis]) Aggregate using one or more operations over the specified axis. Series.aggregate([func, axis]) Aggregate using one or more operations over the specified axis. Series.transform(func[, axis]) Call func on self producing a Series with the same axis shape as self. Series.map(arg[, na_action]) Map values of Series according to an input mapping or function. Series.groupby([by, axis, level, as_index, ...]) Group Series using a mapper or by a Series of columns. Series.rolling(window[, min_periods, ...]) Provide rolling window calculations. Series.expanding([min_periods, center, ...]) Provide expanding window calculations. Series.ewm([com, span, halflife, alpha, ...]) Provide exponentially weighted (EW) calculations. Series.pipe(func, *args, **kwargs) Apply chainable functions that expect Series or DataFrames. Computations / descriptive stats# Series.abs() Return a Series/DataFrame with absolute numeric value of each element. Series.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over an axis. Series.any(*[, axis, bool_only, skipna, level]) Return whether any element is True, potentially over an axis. Series.autocorr([lag]) Compute the lag-N autocorrelation. Series.between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <= right. Series.clip([lower, upper, axis, inplace]) Trim values at input threshold(s). Series.corr(other[, method, min_periods]) Compute correlation with other Series, excluding missing values. Series.count([level]) Return number of non-NA/null observations in the Series. Series.cov(other[, min_periods, ddof]) Compute covariance with Series, excluding missing values. Series.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Series axis. Series.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Series axis. Series.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series axis. Series.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis. Series.describe([percentiles, include, ...]) Generate descriptive statistics. Series.diff([periods]) First discrete difference of element. Series.factorize([sort, na_sentinel, ...]) Encode the object as an enumerated type or categorical variable. Series.kurt([axis, skipna, level, numeric_only]) Return unbiased kurtosis over requested axis. Series.mad([axis, skipna, level]) (DEPRECATED) Return the mean absolute deviation of the values over the requested axis. Series.max([axis, skipna, level, numeric_only]) Return the maximum of the values over the requested axis. Series.mean([axis, skipna, level, numeric_only]) Return the mean of the values over the requested axis. Series.median([axis, skipna, level, ...]) Return the median of the values over the requested axis. Series.min([axis, skipna, level, numeric_only]) Return the minimum of the values over the requested axis. Series.mode([dropna]) Return the mode(s) of the Series. Series.nlargest([n, keep]) Return the largest n elements. Series.nsmallest([n, keep]) Return the smallest n elements. Series.pct_change([periods, fill_method, ...]) Percentage change between the current and a prior element. Series.prod([axis, skipna, level, ...]) Return the product of the values over the requested axis. Series.quantile([q, interpolation]) Return value at the given quantile. Series.rank([axis, method, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis. Series.sem([axis, skipna, level, ddof, ...]) Return unbiased standard error of the mean over requested axis. Series.skew([axis, skipna, level, numeric_only]) Return unbiased skew over requested axis. Series.std([axis, skipna, level, ddof, ...]) Return sample standard deviation over requested axis. Series.sum([axis, skipna, level, ...]) Return the sum of the values over the requested axis. Series.var([axis, skipna, level, ddof, ...]) Return unbiased variance over requested axis. Series.kurtosis([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. Series.unique() Return unique values of Series object. Series.nunique([dropna]) Return number of unique elements in the object. Series.is_unique Return boolean if values in the object are unique. Series.is_monotonic (DEPRECATED) Return boolean if values in the object are monotonically increasing. Series.is_monotonic_increasing Return boolean if values in the object are monotonically increasing. Series.is_monotonic_decreasing Return boolean if values in the object are monotonically decreasing. Series.value_counts([normalize, sort, ...]) Return a Series containing counts of unique values. Reindexing / selection / label manipulation# Series.align(other[, join, axis, level, ...]) Align two objects on their axes with the specified join method. Series.drop([labels, axis, index, columns, ...]) Return Series with specified index labels removed. Series.droplevel(level[, axis]) Return Series/DataFrame with requested index / column level(s) removed. Series.drop_duplicates(*[, keep, inplace]) Return Series with duplicate values removed. Series.duplicated([keep]) Indicate duplicate Series values. Series.equals(other) Test whether two objects contain the same elements. Series.first(offset) Select initial periods of time series data based on a date offset. Series.head([n]) Return the first n rows. Series.idxmax([axis, skipna]) Return the row label of the maximum value. Series.idxmin([axis, skipna]) Return the row label of the minimum value. Series.isin(values) Whether elements in Series are contained in values. Series.last(offset) Select final periods of time series data based on a date offset. Series.reindex(*args, **kwargs) Conform Series to new index with optional filling logic. Series.reindex_like(other[, method, copy, ...]) Return an object with matching indices as other object. Series.rename([index, axis, copy, inplace, ...]) Alter Series index labels or name. Series.rename_axis([mapper, inplace]) Set the name of the axis for the index or columns. Series.reset_index([level, drop, name, ...]) Generate a new DataFrame or Series with the index reset. Series.sample([n, frac, replace, weights, ...]) Return a random sample of items from an axis of object. Series.set_axis(labels, *[, axis, inplace, copy]) Assign desired index to given axis. Series.take(indices[, axis, is_copy]) Return the elements in the given positional indices along an axis. Series.tail([n]) Return the last n rows. Series.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some index value. Series.where(cond[, other, inplace, axis, ...]) Replace values where the condition is False. Series.mask(cond[, other, inplace, axis, ...]) Replace values where the condition is True. Series.add_prefix(prefix) Prefix labels with string prefix. Series.add_suffix(suffix) Suffix labels with string suffix. Series.filter([items, like, regex, axis]) Subset the dataframe rows or columns according to the specified index labels. Missing data handling# Series.backfill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='bfill'. Series.bfill(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='bfill'. Series.dropna(*[, axis, inplace, how]) Return a new Series with missing values removed. Series.ffill(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='ffill'. Series.fillna([value, method, axis, ...]) Fill NA/NaN values using the specified method. Series.interpolate([method, axis, limit, ...]) Fill NaN values using an interpolation method. Series.isna() Detect missing values. Series.isnull() Series.isnull is an alias for Series.isna. Series.notna() Detect existing (non-missing) values. Series.notnull() Series.notnull is an alias for Series.notna. Series.pad(*[, axis, inplace, limit, downcast]) Synonym for DataFrame.fillna() with method='ffill'. Series.replace([to_replace, value, inplace, ...]) Replace values given in to_replace with value. Reshaping, sorting# Series.argsort([axis, kind, order]) Return the integer indices that would sort the Series values. Series.argmin([axis, skipna]) Return int position of the smallest value in the Series. Series.argmax([axis, skipna]) Return int position of the largest value in the Series. Series.reorder_levels(order) Rearrange index levels using input order. Series.sort_values(*[, axis, ascending, ...]) Sort by the values. Series.sort_index(*[, axis, level, ...]) Sort Series by index labels. Series.swaplevel([i, j, copy]) Swap levels i and j in a MultiIndex. Series.unstack([level, fill_value]) Unstack, also known as pivot, Series with MultiIndex to produce DataFrame. Series.explode([ignore_index]) Transform each element of a list-like to a row. Series.searchsorted(value[, side, sorter]) Find indices where elements should be inserted to maintain order. Series.ravel([order]) Return the flattened underlying data as an ndarray. Series.repeat(repeats[, axis]) Repeat elements of a Series. Series.squeeze([axis]) Squeeze 1 dimensional axis objects into scalars. Series.view([dtype]) Create a new view of the Series. Combining / comparing / joining / merging# Series.append(to_append[, ignore_index, ...]) (DEPRECATED) Concatenate two or more Series. Series.compare(other[, align_axis, ...]) Compare to another Series and show the differences. Series.update(other) Modify Series in place using values from passed Series. Time Series-related# Series.asfreq(freq[, method, how, ...]) Convert time series to specified frequency. Series.asof(where[, subset]) Return the last row(s) without any NaNs before where. Series.shift([periods, freq, axis, fill_value]) Shift index by desired number of periods with an optional time freq. Series.first_valid_index() Return index for first non-NA value or None, if no non-NA value is found. Series.last_valid_index() Return index for last non-NA value or None, if no non-NA value is found. Series.resample(rule[, axis, closed, label, ...]) Resample time-series data. Series.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone. Series.tz_localize(tz[, axis, level, copy, ...]) Localize tz-naive index of a Series or DataFrame to target time zone. Series.at_time(time[, asof, axis]) Select values at particular time of day (e.g., 9:30AM). Series.between_time(start_time, end_time[, ...]) Select values between particular times of the day (e.g., 9:00-9:30 AM). Series.tshift([periods, freq, axis]) (DEPRECATED) Shift the time index, using the index's frequency if available. Series.slice_shift([periods, axis]) (DEPRECATED) Equivalent to shift without copying data. Accessors# pandas provides dtype-specific methods under various accessors. These are separate namespaces within Series that only apply to specific data types. Data Type Accessor Datetime, Timedelta, Period dt String str Categorical cat Sparse sparse Datetimelike properties# Series.dt can be used to access the values of the series as datetimelike and return several properties. These can be accessed like Series.dt.<property>. Datetime properties# Series.dt.date Returns numpy array of python datetime.date objects. Series.dt.time Returns numpy array of datetime.time objects. Series.dt.timetz Returns numpy array of datetime.time objects with timezones. Series.dt.year The year of the datetime. Series.dt.month The month as January=1, December=12. Series.dt.day The day of the datetime. Series.dt.hour The hours of the datetime. Series.dt.minute The minutes of the datetime. Series.dt.second The seconds of the datetime. Series.dt.microsecond The microseconds of the datetime. Series.dt.nanosecond The nanoseconds of the datetime. Series.dt.week (DEPRECATED) The week ordinal of the year according to the ISO 8601 standard. Series.dt.weekofyear (DEPRECATED) The week ordinal of the year according to the ISO 8601 standard. Series.dt.dayofweek The day of the week with Monday=0, Sunday=6. Series.dt.day_of_week The day of the week with Monday=0, Sunday=6. Series.dt.weekday The day of the week with Monday=0, Sunday=6. Series.dt.dayofyear The ordinal day of the year. Series.dt.day_of_year The ordinal day of the year. Series.dt.quarter The quarter of the date. Series.dt.is_month_start Indicates whether the date is the first day of the month. Series.dt.is_month_end Indicates whether the date is the last day of the month. Series.dt.is_quarter_start Indicator for whether the date is the first day of a quarter. Series.dt.is_quarter_end Indicator for whether the date is the last day of a quarter. Series.dt.is_year_start Indicate whether the date is the first day of a year. Series.dt.is_year_end Indicate whether the date is the last day of the year. Series.dt.is_leap_year Boolean indicator if the date belongs to a leap year. Series.dt.daysinmonth The number of days in the month. Series.dt.days_in_month The number of days in the month. Series.dt.tz Return the timezone. Series.dt.freq Return the frequency object for this PeriodArray. Datetime methods# Series.dt.isocalendar() Calculate year, week, and day according to the ISO 8601 standard. Series.dt.to_period(*args, **kwargs) Cast to PeriodArray/Index at a particular frequency. Series.dt.to_pydatetime() Return the data as an array of datetime.datetime objects. Series.dt.tz_localize(*args, **kwargs) Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. Series.dt.tz_convert(*args, **kwargs) Convert tz-aware Datetime Array/Index from one time zone to another. Series.dt.normalize(*args, **kwargs) Convert times to midnight. Series.dt.strftime(*args, **kwargs) Convert to Index using specified date_format. Series.dt.round(*args, **kwargs) Perform round operation on the data to the specified freq. Series.dt.floor(*args, **kwargs) Perform floor operation on the data to the specified freq. Series.dt.ceil(*args, **kwargs) Perform ceil operation on the data to the specified freq. Series.dt.month_name(*args, **kwargs) Return the month names with specified locale. Series.dt.day_name(*args, **kwargs) Return the day names with specified locale. Period properties# Series.dt.qyear Series.dt.start_time Get the Timestamp for the start of the period. Series.dt.end_time Get the Timestamp for the end of the period. Timedelta properties# Series.dt.days Number of days for each element. Series.dt.seconds Number of seconds (>= 0 and less than 1 day) for each element. Series.dt.microseconds Number of microseconds (>= 0 and less than 1 second) for each element. Series.dt.nanoseconds Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. Series.dt.components Return a Dataframe of the components of the Timedeltas. Timedelta methods# Series.dt.to_pytimedelta() Return an array of native datetime.timedelta objects. Series.dt.total_seconds(*args, **kwargs) Return total duration of each element expressed in seconds. String handling# Series.str can be used to access the values of the series as strings and apply several methods to it. These can be accessed like Series.str.<function/property>. Series.str.capitalize() Convert strings in the Series/Index to be capitalized. Series.str.casefold() Convert strings in the Series/Index to be casefolded. Series.str.cat([others, sep, na_rep, join]) Concatenate strings in the Series/Index with given separator. Series.str.center(width[, fillchar]) Pad left and right side of strings in the Series/Index. Series.str.contains(pat[, case, flags, na, ...]) Test if pattern or regex is contained within a string of a Series or Index. Series.str.count(pat[, flags]) Count occurrences of pattern in each string of the Series/Index. Series.str.decode(encoding[, errors]) Decode character string in the Series/Index using indicated encoding. Series.str.encode(encoding[, errors]) Encode character string in the Series/Index using indicated encoding. Series.str.endswith(pat[, na]) Test if the end of each string element matches a pattern. Series.str.extract(pat[, flags, expand]) Extract capture groups in the regex pat as columns in a DataFrame. Series.str.extractall(pat[, flags]) Extract capture groups in the regex pat as columns in DataFrame. Series.str.find(sub[, start, end]) Return lowest indexes in each strings in the Series/Index. Series.str.findall(pat[, flags]) Find all occurrences of pattern or regular expression in the Series/Index. Series.str.fullmatch(pat[, case, flags, na]) Determine if each string entirely matches a regular expression. Series.str.get(i) Extract element from each component at specified position or with specified key. Series.str.index(sub[, start, end]) Return lowest indexes in each string in Series/Index. Series.str.join(sep) Join lists contained as elements in the Series/Index with passed delimiter. Series.str.len() Compute the length of each element in the Series/Index. Series.str.ljust(width[, fillchar]) Pad right side of strings in the Series/Index. Series.str.lower() Convert strings in the Series/Index to lowercase. Series.str.lstrip([to_strip]) Remove leading characters. Series.str.match(pat[, case, flags, na]) Determine if each string starts with a match of a regular expression. Series.str.normalize(form) Return the Unicode normal form for the strings in the Series/Index. Series.str.pad(width[, side, fillchar]) Pad strings in the Series/Index up to width. Series.str.partition([sep, expand]) Split the string at the first occurrence of sep. Series.str.removeprefix(prefix) Remove a prefix from an object series. Series.str.removesuffix(suffix) Remove a suffix from an object series. Series.str.repeat(repeats) Duplicate each string in the Series or Index. Series.str.replace(pat, repl[, n, case, ...]) Replace each occurrence of pattern/regex in the Series/Index. Series.str.rfind(sub[, start, end]) Return highest indexes in each strings in the Series/Index. Series.str.rindex(sub[, start, end]) Return highest indexes in each string in Series/Index. Series.str.rjust(width[, fillchar]) Pad left side of strings in the Series/Index. Series.str.rpartition([sep, expand]) Split the string at the last occurrence of sep. Series.str.rstrip([to_strip]) Remove trailing characters. Series.str.slice([start, stop, step]) Slice substrings from each element in the Series or Index. Series.str.slice_replace([start, stop, repl]) Replace a positional slice of a string with another value. Series.str.split([pat, n, expand, regex]) Split strings around given separator/delimiter. Series.str.rsplit([pat, n, expand]) Split strings around given separator/delimiter. Series.str.startswith(pat[, na]) Test if the start of each string element matches a pattern. Series.str.strip([to_strip]) Remove leading and trailing characters. Series.str.swapcase() Convert strings in the Series/Index to be swapcased. Series.str.title() Convert strings in the Series/Index to titlecase. Series.str.translate(table) Map all characters in the string through the given mapping table. Series.str.upper() Convert strings in the Series/Index to uppercase. Series.str.wrap(width, **kwargs) Wrap strings in Series/Index at specified line width. Series.str.zfill(width) Pad strings in the Series/Index by prepending '0' characters. Series.str.isalnum() Check whether all characters in each string are alphanumeric. Series.str.isalpha() Check whether all characters in each string are alphabetic. Series.str.isdigit() Check whether all characters in each string are digits. Series.str.isspace() Check whether all characters in each string are whitespace. Series.str.islower() Check whether all characters in each string are lowercase. Series.str.isupper() Check whether all characters in each string are uppercase. Series.str.istitle() Check whether all characters in each string are titlecase. Series.str.isnumeric() Check whether all characters in each string are numeric. Series.str.isdecimal() Check whether all characters in each string are decimal. Series.str.get_dummies([sep]) Return DataFrame of dummy/indicator variables for Series. Categorical accessor# Categorical-dtype specific methods and attributes are available under the Series.cat accessor. Series.cat.categories The categories of this categorical. Series.cat.ordered Whether the categories have an ordered relationship. Series.cat.codes Return Series of codes as well as the index. Series.cat.rename_categories(*args, **kwargs) Rename categories. Series.cat.reorder_categories(*args, **kwargs) Reorder categories as specified in new_categories. Series.cat.add_categories(*args, **kwargs) Add new categories. Series.cat.remove_categories(*args, **kwargs) Remove the specified categories. Series.cat.remove_unused_categories(*args, ...) Remove categories which are not used. Series.cat.set_categories(*args, **kwargs) Set the categories to the specified new_categories. Series.cat.as_ordered(*args, **kwargs) Set the Categorical to be ordered. Series.cat.as_unordered(*args, **kwargs) Set the Categorical to be unordered. Sparse accessor# Sparse-dtype specific methods and attributes are provided under the Series.sparse accessor. Series.sparse.npoints The number of non- fill_value points. Series.sparse.density The percent of non- fill_value points, as decimal. Series.sparse.fill_value Elements in data that are fill_value are not stored. Series.sparse.sp_values An ndarray containing the non- fill_value values. Series.sparse.from_coo(A[, dense_index]) Create a Series with sparse values from a scipy.sparse.coo_matrix. Series.sparse.to_coo([row_levels, ...]) Create a scipy.sparse.coo_matrix from a Series with MultiIndex. Flags# Flags refer to attributes of the pandas object. Properties of the dataset (like the date is was recorded, the URL it was accessed from, etc.) should be stored in Series.attrs. Flags(obj, *, allows_duplicate_labels) Flags that apply to pandas objects. Metadata# Series.attrs is a dictionary for storing global metadata for this Series. Warning Series.attrs is considered experimental and may change without warning. Series.attrs Dictionary of global attributes of this dataset. Plotting# Series.plot is both a callable method and a namespace attribute for specific plotting methods of the form Series.plot.<kind>. Series.plot([kind, ax, figsize, ....]) Series plotting accessor and method Series.plot.area([x, y]) Draw a stacked area plot. Series.plot.bar([x, y]) Vertical bar plot. Series.plot.barh([x, y]) Make a horizontal bar plot. Series.plot.box([by]) Make a box plot of the DataFrame columns. Series.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. Series.plot.hist([by, bins]) Draw one histogram of the DataFrame's columns. Series.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. Series.plot.line([x, y]) Plot Series or DataFrame as lines. Series.plot.pie(**kwargs) Generate a pie plot. Series.hist([by, ax, grid, xlabelsize, ...]) Draw histogram of the input series using matplotlib. Serialization / IO / conversion# Series.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. Series.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. Series.to_dict([into]) Convert Series to {label -> value} dict or dict-like object. Series.to_excel(excel_writer[, sheet_name, ...]) Write object to an Excel sheet. Series.to_frame([name]) Convert Series to DataFrame. Series.to_xarray() Return an xarray object from the pandas object. Series.to_hdf(path_or_buf, key[, mode, ...]) Write the contained data to an HDF5 file using HDFStore. Series.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. Series.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. Series.to_string([buf, na_rep, ...]) Render a string representation of the Series. Series.to_clipboard([excel, sep]) Copy object to the system clipboard. Series.to_latex([buf, columns, col_space, ...]) Render object to a LaTeX tabular, longtable, or nested table. Series.to_markdown([buf, mode, index, ...]) Print Series in Markdown-friendly format.
reference/series.html
null
pandas.tseries.offsets.BusinessMonthEnd.kwds
`pandas.tseries.offsets.BusinessMonthEnd.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
BusinessMonthEnd.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.BusinessMonthEnd.kwds.html