title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.tseries.offsets.MonthBegin.__call__
`pandas.tseries.offsets.MonthBegin.__call__` Call self as a function.
MonthBegin.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.MonthBegin.__call__.html
pandas.tseries.offsets.Tick.delta
pandas.tseries.offsets.Tick.delta
Tick.delta#
reference/api/pandas.tseries.offsets.Tick.delta.html
Extensions
Extensions
These are primarily intended for library authors looking to extend pandas objects. api.extensions.register_extension_dtype(cls) Register an ExtensionType with pandas as class decorator. api.extensions.register_dataframe_accessor(name) Register a custom accessor on DataFrame objects. api.extensions.register_series_accessor(name) Register a custom accessor on Series objects. api.extensions.register_index_accessor(name) Register a custom accessor on Index objects. api.extensions.ExtensionDtype() A custom data type, to be paired with an ExtensionArray. api.extensions.ExtensionArray() Abstract base class for custom 1-D array types. arrays.PandasArray(values[, copy]) A pandas ExtensionArray for NumPy data. Additionally, we have some utility methods for ensuring your object behaves correctly. api.indexers.check_array_indexer(array, indexer) Check if indexer is a valid array indexer for array. The sentinel pandas.api.extensions.no_default is used as the default value in some methods. Use an is comparison to check if the user provides a non-default value.
reference/extensions.html
pandas.tseries.offsets.BusinessHour.is_quarter_start
`pandas.tseries.offsets.BusinessHour.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
BusinessHour.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.BusinessHour.is_quarter_start.html
pandas.tseries.offsets.BusinessDay.rollback
`pandas.tseries.offsets.BusinessDay.rollback` Roll provided date backward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
BusinessDay.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.BusinessDay.rollback.html
pandas.tseries.offsets.Easter.is_year_start
`pandas.tseries.offsets.Easter.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
Easter.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.Easter.is_year_start.html
pandas.DataFrame.replace
`pandas.DataFrame.replace` Replace values given in to_replace with value. Values of the DataFrame are replaced with other values dynamically. ``` >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s.replace(1, 5) 0 5 1 2 2 3 3 4 4 5 dtype: int64 ```
DataFrame.replace(to_replace=None, value=_NoDefault.no_default, *, inplace=False, limit=None, regex=False, method=_NoDefault.no_default)[source]# Replace values given in to_replace with value. Values of the DataFrame are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value. Parameters to_replacestr, regex, list, dict, Series, int, float, or NoneHow to find the values that will be replaced. numeric, str or regex: numeric: numeric values equal to to_replace will be replaced with value str: string exactly matching to_replace will be replaced with value regex: regexs matching to_replace will be replaced with value list of str, regex, or numeric: First, if to_replace and value are both lists, they must be the same length. Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. str, regex and numeric rules apply as above. dict: Dicts can be used to specify different replacement values for different existing values. For example, {'a': 'b', 'y': 'z'} replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way, the optional value parameter should not be given. For a DataFrame a dict can specify that different values should be replaced in different columns. For example, {'a': 1, 'b': 'z'} looks for the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with whatever is specified in value. The value parameter should not be None in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The optional value parameter should not be specified to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. None: This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. valuescalar, dict, list, str, regex, default NoneValue to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplacebool, default FalseWhether to modify the DataFrame rather than creating a new one. limitint, default NoneMaximum size gap to forward or backward fill. regexbool or same types as to_replace, default FalseWhether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case to_replace must be None. method{‘pad’, ‘ffill’, ‘bfill’}The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None. Changed in version 0.23.0: Added to DataFrame. Returns DataFrameObject after replacement. Raises AssertionError If regex is not a bool and to_replace is not None. TypeError If to_replace is not a scalar, array-like, dict, or None If to_replace is a dict and value is not a list, dict, ndarray, or Series If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. When replacing multiple bool or datetime64 objects and the arguments to to_replace does not match the type of the value being replaced ValueError If a list or an ndarray is passed to to_replace and value but they are not the same length. See also DataFrame.fillnaFill NA values. DataFrame.whereReplace values based on boolean condition. Series.str.replaceSimple string replacement. Notes Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter. Examples Scalar `to_replace` and `value` >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s.replace(1, 5) 0 5 1 2 2 3 3 4 4 5 dtype: int64 >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e List-like `to_replace` >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 3 1 3 2 3 3 4 4 5 dtype: int64 dict-like `to_replace` >>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e Regular expression `to_replace` >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to understand the peculiarities of the to_replace parameter: >>> s = pd.Series([10, 'a', 'a', 'b', 'a']) When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a': None}, value=None, method=None): >>> s.replace({'a': None}) 0 10 1 None 2 None 3 b 4 None dtype: object When value is not explicitly passed and to_replace is a scalar, list or tuple, replace uses the method parameter (default ‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2 and ‘b’ in row 4 in this case. >>> s.replace('a') 0 10 1 10 2 10 3 b 4 b dtype: object On the other hand, if None is explicitly passed for value, it will be respected: >>> s.replace('a', None) 0 10 1 None 2 None 3 b 4 None dtype: object Changed in version 1.4.0: Previously the explicit None was silently ignored.
reference/api/pandas.DataFrame.replace.html
pandas.Categorical.categories
`pandas.Categorical.categories` The categories of this categorical.
property Categorical.categories[source]# The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to categories is a inplace operation! Raises ValueErrorIf the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See also rename_categoriesRename categories. reorder_categoriesReorder categories. add_categoriesAdd new categories. remove_categoriesRemove the specified categories. remove_unused_categoriesRemove categories which are not used. set_categoriesSet the categories to the specified ones.
reference/api/pandas.Categorical.categories.html
pandas.errors.DatabaseError
`pandas.errors.DatabaseError` Error is raised when executing sql with bad syntax or sql that throws an error. Examples ``` >>> from sqlite3 import connect >>> conn = connect(':memory:') >>> pd.read_sql('select * test', conn) ... # DatabaseError: Execution failed on sql 'test': near "test": syntax error ```
exception pandas.errors.DatabaseError[source]# Error is raised when executing sql with bad syntax or sql that throws an error. Examples >>> from sqlite3 import connect >>> conn = connect(':memory:') >>> pd.read_sql('select * test', conn) ... # DatabaseError: Execution failed on sql 'test': near "test": syntax error
reference/api/pandas.errors.DatabaseError.html
pandas.tseries.offsets.CustomBusinessDay.is_quarter_end
`pandas.tseries.offsets.CustomBusinessDay.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
CustomBusinessDay.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessDay.is_quarter_end.html
pandas.Series.replace
`pandas.Series.replace` Replace values given in to_replace with value. ``` >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s.replace(1, 5) 0 5 1 2 2 3 3 4 4 5 dtype: int64 ```
Series.replace(to_replace=None, value=_NoDefault.no_default, *, inplace=False, limit=None, regex=False, method=_NoDefault.no_default)[source]# Replace values given in to_replace with value. Values of the Series are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value. Parameters to_replacestr, regex, list, dict, Series, int, float, or NoneHow to find the values that will be replaced. numeric, str or regex: numeric: numeric values equal to to_replace will be replaced with value str: string exactly matching to_replace will be replaced with value regex: regexs matching to_replace will be replaced with value list of str, regex, or numeric: First, if to_replace and value are both lists, they must be the same length. Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use. str, regex and numeric rules apply as above. dict: Dicts can be used to specify different replacement values for different existing values. For example, {'a': 'b', 'y': 'z'} replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way, the optional value parameter should not be given. For a DataFrame a dict can specify that different values should be replaced in different columns. For example, {'a': 1, 'b': 'z'} looks for the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with whatever is specified in value. The value parameter should not be None in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The optional value parameter should not be specified to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions. None: This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series. See the examples section for examples of each of these. valuescalar, dict, list, str, regex, default NoneValue to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplacebool, default FalseIf True, performs operation inplace and returns None. limitint, default NoneMaximum size gap to forward or backward fill. regexbool or same types as to_replace, default FalseWhether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case to_replace must be None. method{‘pad’, ‘ffill’, ‘bfill’}The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None. Changed in version 0.23.0: Added to DataFrame. Returns SeriesObject after replacement. Raises AssertionError If regex is not a bool and to_replace is not None. TypeError If to_replace is not a scalar, array-like, dict, or None If to_replace is a dict and value is not a list, dict, ndarray, or Series If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. When replacing multiple bool or datetime64 objects and the arguments to to_replace does not match the type of the value being replaced ValueError If a list or an ndarray is passed to to_replace and value but they are not the same length. See also Series.fillnaFill NA values. Series.whereReplace values based on boolean condition. Series.str.replaceSimple string replacement. Notes Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same. Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this. This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works. When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter. Examples Scalar `to_replace` and `value` >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s.replace(1, 5) 0 5 1 2 2 3 3 4 4 5 dtype: int64 >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e List-like `to_replace` >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 3 1 3 2 3 3 4 4 5 dtype: int64 dict-like `to_replace` >>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e Regular expression `to_replace` >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to understand the peculiarities of the to_replace parameter: >>> s = pd.Series([10, 'a', 'a', 'b', 'a']) When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a': None}, value=None, method=None): >>> s.replace({'a': None}) 0 10 1 None 2 None 3 b 4 None dtype: object When value is not explicitly passed and to_replace is a scalar, list or tuple, replace uses the method parameter (default ‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2 and ‘b’ in row 4 in this case. >>> s.replace('a') 0 10 1 10 2 10 3 b 4 b dtype: object On the other hand, if None is explicitly passed for value, it will be respected: >>> s.replace('a', None) 0 10 1 None 2 None 3 b 4 None dtype: object Changed in version 1.4.0: Previously the explicit None was silently ignored.
reference/api/pandas.Series.replace.html
pandas.tseries.offsets.FY5253Quarter.qtr_with_extra_week
pandas.tseries.offsets.FY5253Quarter.qtr_with_extra_week
FY5253Quarter.qtr_with_extra_week#
reference/api/pandas.tseries.offsets.FY5253Quarter.qtr_with_extra_week.html
pandas.tseries.offsets.Week.is_quarter_end
`pandas.tseries.offsets.Week.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
Week.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.Week.is_quarter_end.html
pandas.tseries.offsets.FY5253.copy
`pandas.tseries.offsets.FY5253.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
FY5253.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.FY5253.copy.html
pandas.DataFrame.hist
`pandas.DataFrame.hist` Make a histogram of the DataFrame’s columns. A histogram is a representation of the distribution of data. This function calls matplotlib.pyplot.hist(), on each series in the DataFrame, resulting in one histogram per column. ``` >>> df = pd.DataFrame({ ... 'length': [1.5, 0.5, 1.2, 0.9, 3], ... 'width': [0.7, 0.2, 0.15, 0.2, 1.1] ... }, index=['pig', 'rabbit', 'duck', 'chicken', 'horse']) >>> hist = df.hist(bins=3) ```
DataFrame.hist(column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, backend=None, legend=False, **kwargs)[source]# Make a histogram of the DataFrame’s columns. A histogram is a representation of the distribution of data. This function calls matplotlib.pyplot.hist(), on each series in the DataFrame, resulting in one histogram per column. Parameters dataDataFrameThe pandas object holding the data. columnstr or sequence, optionalIf passed, will be used to limit data to a subset of columns. byobject, optionalIf passed, then used to form histograms for separate groups. gridbool, default TrueWhether to show axis grid lines. xlabelsizeint, default NoneIf specified changes the x-axis label size. xrotfloat, default NoneRotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise. ylabelsizeint, default NoneIf specified changes the y-axis label size. yrotfloat, default NoneRotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise. axMatplotlib axes object, default NoneThe axes to plot the histogram on. sharexbool, default True if ax is None else FalseIn case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure. shareybool, default FalseIn case subplots=True, share y axis and set some y axis labels to invisible. figsizetuple, optionalThe size in inches of the figure to create. Uses the value in matplotlib.rcParams by default. layouttuple, optionalTuple of (rows, columns) for the layout of the histograms. binsint or sequence, default 10Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. backendstr, default NoneBackend to use instead of the backend specified in the option plotting.backend. For instance, ‘matplotlib’. Alternatively, to specify the plotting.backend for the whole session, set pd.options.plotting.backend. New in version 1.0.0. legendbool, default FalseWhether to show the legend. New in version 1.1.0. **kwargsAll other plotting keyword arguments to be passed to matplotlib.pyplot.hist(). Returns matplotlib.AxesSubplot or numpy.ndarray of them See also matplotlib.pyplot.histPlot a histogram using matplotlib. Examples This example draws a histogram based on the length and width of some animals, displayed in three bins >>> df = pd.DataFrame({ ... 'length': [1.5, 0.5, 1.2, 0.9, 3], ... 'width': [0.7, 0.2, 0.15, 0.2, 1.1] ... }, index=['pig', 'rabbit', 'duck', 'chicken', 'horse']) >>> hist = df.hist(bins=3)
reference/api/pandas.DataFrame.hist.html
pandas.api.types.is_datetime64_ns_dtype
`pandas.api.types.is_datetime64_ns_dtype` Check whether the provided array or dtype is of the datetime64[ns] dtype. ``` >>> is_datetime64_ns_dtype(str) False >>> is_datetime64_ns_dtype(int) False >>> is_datetime64_ns_dtype(np.datetime64) # no unit False >>> is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern")) True >>> is_datetime64_ns_dtype(np.array(['a', 'b'])) False >>> is_datetime64_ns_dtype(np.array([1, 2])) False >>> is_datetime64_ns_dtype(np.array([], dtype="datetime64")) # no unit False >>> is_datetime64_ns_dtype(np.array([], dtype="datetime64[ps]")) # wrong unit False >>> is_datetime64_ns_dtype(pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]")) True ```
pandas.api.types.is_datetime64_ns_dtype(arr_or_dtype)[source]# Check whether the provided array or dtype is of the datetime64[ns] dtype. Parameters arr_or_dtypearray-like or dtypeThe array or dtype to check. Returns boolWhether or not the array or dtype is of the datetime64[ns] dtype. Examples >>> is_datetime64_ns_dtype(str) False >>> is_datetime64_ns_dtype(int) False >>> is_datetime64_ns_dtype(np.datetime64) # no unit False >>> is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern")) True >>> is_datetime64_ns_dtype(np.array(['a', 'b'])) False >>> is_datetime64_ns_dtype(np.array([1, 2])) False >>> is_datetime64_ns_dtype(np.array([], dtype="datetime64")) # no unit False >>> is_datetime64_ns_dtype(np.array([], dtype="datetime64[ps]")) # wrong unit False >>> is_datetime64_ns_dtype(pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]")) True
reference/api/pandas.api.types.is_datetime64_ns_dtype.html
pandas.tseries.offsets.FY5253Quarter.is_anchored
`pandas.tseries.offsets.FY5253Quarter.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
FY5253Quarter.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.FY5253Quarter.is_anchored.html
pandas.DataFrame.eval
`pandas.DataFrame.eval` Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. ``` >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 ```
DataFrame.eval(expr, *, inplace=False, **kwargs)[source]# Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters exprstrThe expression string to evaluate. inplacebool, default FalseIf the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargsSee the documentation for eval() for complete details on the keyword arguments accepted by query(). Returns ndarray, scalar, pandas object, or NoneThe result of the evaluation or None if inplace=True. See also DataFrame.queryEvaluates a boolean expression to query the columns of a frame. DataFrame.assignCan evaluate an expression or function to create new values for a column. evalEvaluate a Python expression as a string using various backends. Notes For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval. Examples >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use inplace=True to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3
reference/api/pandas.DataFrame.eval.html
pandas.cut
`pandas.cut` Bin values into discrete intervals. Use cut when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example, cut could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins. ``` >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64, right]): [(0.994, 3.0] < (3.0, 5.0] ... ```
pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise', ordered=True)[source]# Bin values into discrete intervals. Use cut when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example, cut could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins. Parameters xarray-likeThe input array to be binned. Must be 1-dimensional. binsint, sequence of scalars, or IntervalIndexThe criteria to bin by. int : Defines the number of equal-width bins in the range of x. The range of x is extended by .1% on each side to include the minimum and maximum values of x. sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of x is done. IntervalIndex : Defines the exact bins to be used. Note that IntervalIndex for bins must be non-overlapping. rightbool, default TrueIndicates whether bins includes the rightmost edge or not. If right == True (the default), then the bins [1, 2, 3, 4] indicate (1,2], (2,3], (3,4]. This argument is ignored when bins is an IntervalIndex. labelsarray or False, default NoneSpecifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when bins is an IntervalIndex. If True, raises an error. When ordered=False, labels must be provided. retbinsbool, default FalseWhether to return the bins or not. Useful when bins is provided as a scalar. precisionint, default 3The precision at which to store and display the bins labels. include_lowestbool, default FalseWhether the first interval should be left-inclusive or not. duplicates{default ‘raise’, ‘drop’}, optionalIf bin edges are not unique, raise ValueError or drop non-uniques. orderedbool, default TrueWhether the labels are ordered or not. Applies to returned types Categorical and Series (with Categorical dtype). If True, the resulting categorical will be ordered. If False, the resulting categorical will be unordered (labels must be provided). New in version 1.1.0. Returns outCategorical, Series, or ndarrayAn array-like object representing the respective bin for each value of x. The type depends on the value of labels. None (default) : returns a Series for Series x or a Categorical for all other inputs. The values stored within are Interval dtype. sequence of scalars : returns a Series for Series x or a Categorical for all other inputs. The values stored within are whatever the type in the sequence is. False : returns an ndarray of integers. binsnumpy.ndarray or IntervalIndex.The computed or specified bins. Only returned when retbins=True. For scalar or sequence bins, this is an ndarray with the computed bins. If set duplicates=drop, bins will drop non-unique bin. For an IntervalIndex bins, this is equal to bins. See also qcutDiscretize variable into equal-sized buckets based on rank or based on sample quantiles. CategoricalArray type for storing data that come from a fixed set of values. SeriesOne-dimensional array with axis labels (including time series). IntervalIndexImmutable Index implementing an ordered, sliceable set. Notes Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or Categorical object. Reference the user guide for more examples. Examples Discretize into three equal-sized bins. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64, right]): [(0.994, 3.0] < (3.0, 5.0] ... >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True) ... ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64, right]): [(0.994, 3.0] < (3.0, 5.0] ... array([0.994, 3. , 5. , 7. ])) Discovers the same bins, but assign them specific labels. Notice that the returned Categorical’s categories are labels and is ordered. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), ... 3, labels=["bad", "medium", "good"]) ['bad', 'good', 'medium', 'medium', 'good', 'bad'] Categories (3, object): ['bad' < 'medium' < 'good'] ordered=False will result in unordered categories when labels are passed. This parameter can be used to allow non-unique labels: >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, ... labels=["B", "A", "B"], ordered=False) ['B', 'B', 'A', 'A', 'B', 'B'] Categories (2, object): ['A', 'B'] labels=False implies you just want the bins back. >>> pd.cut([0, 1, 1, 2], bins=4, labels=False) array([0, 1, 1, 3]) Passing a Series as an input returns a Series with categorical dtype: >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, 3) ... a (1.992, 4.667] b (1.992, 4.667] c (4.667, 7.333] d (7.333, 10.0] e (7.333, 10.0] dtype: category Categories (3, interval[float64, right]): [(1.992, 4.667] < (4.667, ... Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based on bins. >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False) ... (a 1.0 b 2.0 c 3.0 d 4.0 e NaN dtype: float64, array([ 0, 2, 4, 6, 8, 10])) Use drop optional when bins is not unique >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True, ... right=False, duplicates='drop') ... (a 1.0 b 2.0 c 3.0 d 3.0 e NaN dtype: float64, array([ 0, 2, 4, 6, 10])) Passing an IntervalIndex for bins results in those categories exactly. Notice that values not covered by the IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between two bins. >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins) [NaN, (0.0, 1.0], NaN, (2.0, 3.0], (4.0, 5.0]] Categories (3, interval[int64, right]): [(0, 1] < (2, 3] < (4, 5]]
reference/api/pandas.cut.html
pandas.DataFrame.div
`pandas.DataFrame.div` Get Floating division of dataframe and other, element-wise (binary operator truediv). ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.div(other, axis='columns', level=None, fill_value=None)[source]# Get Floating division of dataframe and other, element-wise (binary operator truediv). Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.div.html
pandas.tseries.offsets.Second.name
`pandas.tseries.offsets.Second.name` Return a string representing the base frequency. Examples ``` >>> pd.offsets.Hour().name 'H' ```
Second.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.Second.name.html
pandas.DataFrame.plot.pie
`pandas.DataFrame.plot.pie` Generate a pie plot. A pie plot is a proportional representation of the numerical data in a column. This function wraps matplotlib.pyplot.pie() for the specified column. If no column reference is passed and subplots=True a pie plot is drawn for each numerical column independently. ``` >>> df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97], ... 'radius': [2439.7, 6051.8, 6378.1]}, ... index=['Mercury', 'Venus', 'Earth']) >>> plot = df.plot.pie(y='mass', figsize=(5, 5)) ```
DataFrame.plot.pie(**kwargs)[source]# Generate a pie plot. A pie plot is a proportional representation of the numerical data in a column. This function wraps matplotlib.pyplot.pie() for the specified column. If no column reference is passed and subplots=True a pie plot is drawn for each numerical column independently. Parameters yint or label, optionalLabel or position of the column to plot. If not provided, subplots=True argument must be passed. **kwargsKeyword arguments to pass on to DataFrame.plot(). Returns matplotlib.axes.Axes or np.ndarray of themA NumPy array is returned when subplots is True. See also Series.plot.pieGenerate a pie plot for a Series. DataFrame.plotMake plots of a DataFrame. Examples In the example below we have a DataFrame with the information about planet’s mass and radius. We pass the ‘mass’ column to the pie function to get a pie plot. >>> df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97], ... 'radius': [2439.7, 6051.8, 6378.1]}, ... index=['Mercury', 'Venus', 'Earth']) >>> plot = df.plot.pie(y='mass', figsize=(5, 5)) >>> plot = df.plot.pie(subplots=True, figsize=(11, 6))
reference/api/pandas.DataFrame.plot.pie.html
pandas.tseries.offsets.Day.is_month_end
`pandas.tseries.offsets.Day.is_month_end` Return boolean whether a timestamp occurs on the month end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
Day.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.Day.is_month_end.html
pandas.tseries.offsets.CustomBusinessMonthEnd.nanos
pandas.tseries.offsets.CustomBusinessMonthEnd.nanos
CustomBusinessMonthEnd.nanos#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.nanos.html
pandas.tseries.offsets.BYearEnd.normalize
pandas.tseries.offsets.BYearEnd.normalize
BYearEnd.normalize#
reference/api/pandas.tseries.offsets.BYearEnd.normalize.html
pandas.core.groupby.DataFrameGroupBy.corr
`pandas.core.groupby.DataFrameGroupBy.corr` Compute pairwise correlation of columns, excluding NA/null values. Method of correlation: ``` >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 ```
property DataFrameGroupBy.corr[source]# Compute pairwise correlation of columns, excluding NA/null values. Parameters method{‘pearson’, ‘kendall’, ‘spearman’} or callableMethod of correlation: pearson : standard correlation coefficient kendall : Kendall Tau correlation coefficient spearman : Spearman rank correlation callable: callable with input two 1d ndarraysand returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior. min_periodsint, optionalMinimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. numeric_onlybool, default TrueInclude only float, int or boolean data. New in version 1.5.0. Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas. Returns DataFrameCorrelation matrix. See also DataFrame.corrwithCompute pairwise correlation with another DataFrame or Series. Series.corrCompute the correlation between two Series. Notes Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations. Pearson correlation coefficient Kendall rank correlation coefficient Spearman’s rank correlation coefficient Examples >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 >>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)], ... columns=['dogs', 'cats']) >>> df.corr(min_periods=3) dogs cats dogs 1.0 NaN cats NaN 1.0
reference/api/pandas.core.groupby.DataFrameGroupBy.corr.html
pandas.Series.set_axis
`pandas.Series.set_axis` Assign desired index to given axis. ``` >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 ```
Series.set_axis(labels, *, axis=0, inplace=_NoDefault.no_default, copy=_NoDefault.no_default)[source]# Assign desired index to given axis. Indexes for row labels can be changed by assigning a list-like or Index. Parameters labelslist-like, IndexThe values for the new index. axis{0 or ‘index’}, default 0The axis to update. The value 0 identifies the rows. For Series this parameter is unused and defaults to 0. inplacebool, default FalseWhether to return a new Series instance. Deprecated since version 1.5.0. copybool, default TrueWhether to make a copy of the underlying data. New in version 1.5.0. Returns renamedSeries or NoneAn object of type Series or None if inplace=True. See also Series.rename_axisAlter the name of the index. Examples >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0) a 1 b 2 c 3 dtype: int64
reference/api/pandas.Series.set_axis.html
pandas.Series.str.isspace
`pandas.Series.str.isspace` Check whether all characters in each string are whitespace. ``` >>> s1 = pd.Series(['one', 'one1', '1', '']) ```
Series.str.isspace()[source]# Check whether all characters in each string are whitespace. This is equivalent to running the Python string method str.isspace() for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns Series or Index of boolSeries or Index of boolean values with the same length as the original Series/Index. See also Series.str.isalphaCheck whether all characters are alphabetic. Series.str.isnumericCheck whether all characters are numeric. Series.str.isalnumCheck whether all characters are alphanumeric. Series.str.isdigitCheck whether all characters are digits. Series.str.isdecimalCheck whether all characters are decimal. Series.str.isspaceCheck whether all characters are whitespace. Series.str.islowerCheck whether all characters are lowercase. Series.str.isupperCheck whether all characters are uppercase. Series.str.istitleCheck whether all characters are titlecase. Examples Checks for Alphabetic and Numeric Characters >>> s1 = pd.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = pd.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool More Detailed Checks for Numeric Characters There are several different but overlapping sets of numeric characters that can be checked for. >>> s3 = pd.Series(['23', '³', '⅕', '']) The s3.str.isdecimal method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool The s.str.isdigit method is the same as s3.str.isdecimal but also includes special digits, like superscripted and subscripted digits in unicode. >>> s3.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool The s.str.isnumeric method is the same as s3.str.isdigit but also includes other characters that can represent quantities such as unicode fractions. >>> s3.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool Checks for Whitespace >>> s4 = pd.Series([' ', '\t\r\n ', '']) >>> s4.str.isspace() 0 True 1 True 2 False dtype: bool Checks for Character Case >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s5.str.islower() 0 True 1 False 2 False 3 False dtype: bool >>> s5.str.isupper() 0 False 1 False 2 True 3 False dtype: bool The s5.str.istitle method checks for whether all words are in title case (whether only the first letter of each word is capitalized). Words are assumed to be as any sequence of non-numeric characters separated by whitespace characters. >>> s5.str.istitle() 0 False 1 True 2 False 3 False dtype: bool
reference/api/pandas.Series.str.isspace.html
pandas.DatetimeIndex.quarter
`pandas.DatetimeIndex.quarter` The quarter of the date.
property DatetimeIndex.quarter[source]# The quarter of the date.
reference/api/pandas.DatetimeIndex.quarter.html
pandas.Timestamp.freq
pandas.Timestamp.freq
Timestamp.freq#
reference/api/pandas.Timestamp.freq.html
pandas.CategoricalIndex
`pandas.CategoricalIndex` Index based on an underlying Categorical. ``` >>> pd.CategoricalIndex(["a", "b", "c", "a", "b", "c"]) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') ```
class pandas.CategoricalIndex(data=None, categories=None, ordered=None, dtype=None, copy=False, name=None)[source]# Index based on an underlying Categorical. CategoricalIndex, like Categorical, can only take on a limited, and usually fixed, number of possible values (categories). Also, like Categorical, it might have an order, but numerical operations (additions, divisions, …) are not possible. Parameters dataarray-like (1-dimensional)The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categoriesindex-like, optionalThe categories for the categorical. Items need to be unique. If the categories are not given here (and also not in dtype), they will be inferred from the data. orderedbool, optionalWhether or not this categorical is treated as an ordered categorical. If not given here or in dtype, the resulting categorical will be unordered. dtypeCategoricalDtype or “category”, optionalIf CategoricalDtype, cannot be used together with categories or ordered. copybool, default FalseMake a copy of input ndarray. nameobject, optionalName to be stored in the index. Raises ValueErrorIf the categories do not validate. TypeErrorIf an explicit ordered=True is given but no categories and the values are not sortable. See also IndexThe base pandas Index type. CategoricalA categorical array. CategoricalDtypeType for categorical data. Notes See the user guide for more. Examples >>> pd.CategoricalIndex(["a", "b", "c", "a", "b", "c"]) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') CategoricalIndex can also be instantiated from a Categorical: >>> c = pd.Categorical(["a", "b", "c", "a", "b", "c"]) >>> pd.CategoricalIndex(c) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') Ordered CategoricalIndex can have a min and max value. >>> ci = pd.CategoricalIndex( ... ["a", "b", "c", "a", "b", "c"], ordered=True, categories=["c", "b", "a"] ... ) >>> ci CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') >>> ci.min() 'c' Attributes codes The category codes of this categorical. categories The categories of this categorical. ordered Whether the categories have an ordered relationship. Methods rename_categories(*args, **kwargs) Rename categories. reorder_categories(*args, **kwargs) Reorder categories as specified in new_categories. add_categories(*args, **kwargs) Add new categories. remove_categories(*args, **kwargs) Remove the specified categories. remove_unused_categories(*args, **kwargs) Remove categories which are not used. set_categories(*args, **kwargs) Set the categories to the specified new_categories. as_ordered(*args, **kwargs) Set the Categorical to be ordered. as_unordered(*args, **kwargs) Set the Categorical to be unordered. map(mapper) Map values using input an input mapping or function.
reference/api/pandas.CategoricalIndex.html
pandas.Timestamp.round
`pandas.Timestamp.round` Round the Timestamp to the specified resolution. Frequency string indicating the rounding resolution. ``` >>> ts = pd.Timestamp('2020-03-14T15:32:52.192548651') ```
Timestamp.round(freq, ambiguous='raise', nonexistent='raise')# Round the Timestamp to the specified resolution. Parameters freqstrFrequency string indicating the rounding resolution. ambiguousbool or {‘raise’, ‘NaT’}, default ‘raise’The behavior is as follows: bool contains flags to determine if time is dst or not (note that this flag is only applicable for ambiguous fall dst dates). ‘NaT’ will return NaT for an ambiguous time. ‘raise’ will raise an AmbiguousTimeError for an ambiguous time. nonexistent{‘raise’, ‘shift_forward’, ‘shift_backward, ‘NaT’, timedelta}, default ‘raise’A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. ‘shift_forward’ will shift the nonexistent time forward to the closest existing time. ‘shift_backward’ will shift the nonexistent time backward to the closest existing time. ‘NaT’ will return NaT where there are nonexistent times. timedelta objects will shift nonexistent times by the timedelta. ‘raise’ will raise an NonExistentTimeError if there are nonexistent times. Returns a new Timestamp rounded to the given resolution of freq Raises ValueError if the freq cannot be converted Notes If the Timestamp has a timezone, rounding will take place relative to the local (“wall”) time and re-localized to the same timezone. When rounding near daylight savings time, use nonexistent and ambiguous to control the re-localization behavior. Examples Create a timestamp object: >>> ts = pd.Timestamp('2020-03-14T15:32:52.192548651') A timestamp can be rounded using multiple frequency units: >>> ts.round(freq='H') # hour Timestamp('2020-03-14 16:00:00') >>> ts.round(freq='T') # minute Timestamp('2020-03-14 15:33:00') >>> ts.round(freq='S') # seconds Timestamp('2020-03-14 15:32:52') >>> ts.round(freq='L') # milliseconds Timestamp('2020-03-14 15:32:52.193000') freq can also be a multiple of a single unit, like ‘5T’ (i.e. 5 minutes): >>> ts.round(freq='5T') Timestamp('2020-03-14 15:35:00') or a combination of multiple units, like ‘1H30T’ (i.e. 1 hour and 30 minutes): >>> ts.round(freq='1H30T') Timestamp('2020-03-14 15:00:00') Analogous for pd.NaT: >>> pd.NaT.round() NaT When rounding near a daylight savings time transition, use ambiguous or nonexistent to control how the timestamp should be re-localized. >>> ts_tz = pd.Timestamp("2021-10-31 01:30:00").tz_localize("Europe/Amsterdam") >>> ts_tz.round("H", ambiguous=False) Timestamp('2021-10-31 02:00:00+0100', tz='Europe/Amsterdam') >>> ts_tz.round("H", ambiguous=True) Timestamp('2021-10-31 02:00:00+0200', tz='Europe/Amsterdam')
reference/api/pandas.Timestamp.round.html
pandas.core.window.expanding.Expanding.min
`pandas.core.window.expanding.Expanding.min` Calculate the expanding minimum.
Expanding.min(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the expanding minimum. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.expandingCalling expanding with Series data. pandas.DataFrame.expandingCalling expanding with DataFrames. pandas.Series.minAggregating min for Series. pandas.DataFrame.minAggregating min for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
reference/api/pandas.core.window.expanding.Expanding.min.html
pandas.tseries.offsets.QuarterEnd.apply
pandas.tseries.offsets.QuarterEnd.apply
QuarterEnd.apply()#
reference/api/pandas.tseries.offsets.QuarterEnd.apply.html
pandas.tseries.offsets.CustomBusinessHour.__call__
`pandas.tseries.offsets.CustomBusinessHour.__call__` Call self as a function.
CustomBusinessHour.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.CustomBusinessHour.__call__.html
pandas.core.groupby.GroupBy.ngroup
`pandas.core.groupby.GroupBy.ngroup` Number each group from 0 to the number of groups - 1. ``` >>> df = pd.DataFrame({"A": list("aaabba")}) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').ngroup() 0 0 1 0 2 0 3 1 4 1 5 0 dtype: int64 >>> df.groupby('A').ngroup(ascending=False) 0 1 1 1 2 1 3 0 4 0 5 1 dtype: int64 >>> df.groupby(["A", [1,1,2,3,2,1]]).ngroup() 0 0 1 0 2 1 3 3 4 2 5 0 dtype: int64 ```
final GroupBy.ngroup(ascending=True)[source]# Number each group from 0 to the number of groups - 1. This is the enumerative complement of cumcount. Note that the numbers given to the groups match the order in which the groups would be seen when iterating over the groupby object, not the order they are first observed. Parameters ascendingbool, default TrueIf False, number in reverse, from number of group - 1 to 0. Returns SeriesUnique numbers for each group. See also cumcountNumber the rows in each group. Examples >>> df = pd.DataFrame({"A": list("aaabba")}) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').ngroup() 0 0 1 0 2 0 3 1 4 1 5 0 dtype: int64 >>> df.groupby('A').ngroup(ascending=False) 0 1 1 1 2 1 3 0 4 0 5 1 dtype: int64 >>> df.groupby(["A", [1,1,2,3,2,1]]).ngroup() 0 0 1 0 2 1 3 3 4 2 5 0 dtype: int64
reference/api/pandas.core.groupby.GroupBy.ngroup.html
pandas.read_parquet
`pandas.read_parquet` Load a parquet object from the file path, returning a DataFrame. String, path object (implementing os.PathLike[str]), or file-like object implementing a binary read() function. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.parquet. A file URL can also be a path to a directory that contains multiple partitioned parquet files. Both pyarrow and fastparquet support paths to directories as well as file URLs. A directory path could be: file://localhost/path/to/tables or s3://bucket/partition_dir.
pandas.read_parquet(path, engine='auto', columns=None, storage_options=None, use_nullable_dtypes=False, **kwargs)[source]# Load a parquet object from the file path, returning a DataFrame. Parameters pathstr, path object or file-like objectString, path object (implementing os.PathLike[str]), or file-like object implementing a binary read() function. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.parquet. A file URL can also be a path to a directory that contains multiple partitioned parquet files. Both pyarrow and fastparquet support paths to directories as well as file URLs. A directory path could be: file://localhost/path/to/tables or s3://bucket/partition_dir. engine{‘auto’, ‘pyarrow’, ‘fastparquet’}, default ‘auto’Parquet library to use. If ‘auto’, then the option io.parquet.engine is used. The default io.parquet.engine behavior is to try ‘pyarrow’, falling back to ‘fastparquet’ if ‘pyarrow’ is unavailable. columnslist, default=NoneIf not None, only these columns will be read from the file. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.3.0. use_nullable_dtypesbool, default FalseIf True, use dtypes that use pd.NA as missing value indicator for the resulting DataFrame. (only applicable for the pyarrow engine) As new dtypes are added that support pd.NA in the future, the output with this option will change to use those dtypes. Note: this is an experimental option, and behaviour (e.g. additional support dtypes) may change without notice. New in version 1.2.0. **kwargsAny additional kwargs are passed to the engine. Returns DataFrame
reference/api/pandas.read_parquet.html
Comparison with other tools
Comparison with other tools
Comparison with R / R libraries Quick reference Base R plyr reshape / reshape2 Comparison with SQL Copies vs. in place operations SELECT WHERE GROUP BY JOIN UNION LIMIT pandas equivalents for some SQL analytic and aggregate functions UPDATE DELETE Comparison with spreadsheets Data structures Data input / output Data operations String processing Merging Other considerations Comparison with SAS Data structures Data input / output Data operations String processing Merging Missing data GroupBy Other considerations Comparison with Stata Data structures Data input / output Data operations String processing Merging Missing data GroupBy Other considerations
getting_started/comparison/index.html
pandas.DataFrame.sparse.density
`pandas.DataFrame.sparse.density` Ratio of non-sparse points to total (dense) data points.
DataFrame.sparse.density[source]# Ratio of non-sparse points to total (dense) data points.
reference/api/pandas.DataFrame.sparse.density.html
pandas.DataFrame.align
`pandas.DataFrame.align` Align two objects on their axes with the specified join method. ``` >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 ```
DataFrame.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)[source]# Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters otherDataFrame or Series join{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axisallowed axis of the other object, default NoneAlign on index (0), columns (1), or both (None). levelint or level name, default NoneBroadcast across a level, matching Index values on the passed MultiIndex level. copybool, default TrueAlways returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_valuescalar, default np.NaNValue to use for missing values. Defaults to NaN, but can be any “compatible” value. method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default NoneMethod to use for filling holes in reindexed Series: pad / ffill: propagate last valid observation forward to next valid. backfill / bfill: use NEXT valid observation to fill gap. limitint, default NoneIf method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. fill_axis{0 or ‘index’, 1 or ‘columns’}, default 0Filling axis, method and limit. broadcast_axis{0 or ‘index’, 1 or ‘columns’}, default NoneBroadcast values along this axis, if aligning two objects of different dimensions. Returns (left, right)(DataFrame, type of other)Aligned objects. Examples >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 Align on columns: >>> left, right = df.align(other, join="outer", axis=1) >>> left A B C D E 1 4 2 NaN 1 3 2 9 7 NaN 6 8 >>> right A B C D E 2 10 20 30 40 NaN 3 60 70 80 90 NaN 4 600 700 800 900 NaN We can also align on the index: >>> left, right = df.align(other, join="outer", axis=0) >>> left D B E A 1 1.0 2.0 3.0 4.0 2 6.0 7.0 8.0 9.0 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN >>> right A B C D 1 NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 3 60.0 70.0 80.0 90.0 4 600.0 700.0 800.0 900.0 Finally, the default axis=None will align on both index and columns: >>> left, right = df.align(other, join="outer", axis=None) >>> left A B C D E 1 4.0 2.0 NaN 1.0 3.0 2 9.0 7.0 NaN 6.0 8.0 3 NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN >>> right A B C D E 1 NaN NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 NaN 3 60.0 70.0 80.0 90.0 NaN 4 600.0 700.0 800.0 900.0 NaN
reference/api/pandas.DataFrame.align.html
pandas.tseries.offsets.Easter.isAnchored
pandas.tseries.offsets.Easter.isAnchored
Easter.isAnchored()#
reference/api/pandas.tseries.offsets.Easter.isAnchored.html
pandas.errors.CategoricalConversionWarning
`pandas.errors.CategoricalConversionWarning` Warning is raised when reading a partial labeled Stata file using a iterator. Examples ``` >>> from pandas.io.stata import StataReader >>> with StataReader('dta_file', chunksize=2) as reader: ... for i, block in enumerate(reader): ... print(i, block)) ... # CategoricalConversionWarning: One or more series with value labels... ```
exception pandas.errors.CategoricalConversionWarning[source]# Warning is raised when reading a partial labeled Stata file using a iterator. Examples >>> from pandas.io.stata import StataReader >>> with StataReader('dta_file', chunksize=2) as reader: ... for i, block in enumerate(reader): ... print(i, block)) ... # CategoricalConversionWarning: One or more series with value labels...
reference/api/pandas.errors.CategoricalConversionWarning.html
pandas.Series.dt.components
`pandas.Series.dt.components` Return a Dataframe of the components of the Timedeltas. ``` >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='s')) >>> s 0 0 days 00:00:00 1 0 days 00:00:01 2 0 days 00:00:02 3 0 days 00:00:03 4 0 days 00:00:04 dtype: timedelta64[ns] >>> s.dt.components days hours minutes seconds milliseconds microseconds nanoseconds 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 ```
Series.dt.components[source]# Return a Dataframe of the components of the Timedeltas. Returns DataFrame Examples >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='s')) >>> s 0 0 days 00:00:00 1 0 days 00:00:01 2 0 days 00:00:02 3 0 days 00:00:03 4 0 days 00:00:04 dtype: timedelta64[ns] >>> s.dt.components days hours minutes seconds milliseconds microseconds nanoseconds 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0
reference/api/pandas.Series.dt.components.html
Development
Development
Contributing to pandas Where to start? Bug reports and enhancement requests Working with the code Contributing your changes to pandas Tips for a successful pull request Creating a development environment Step 1: install a C compiler Step 2: create an isolated environment Step 3: build and install pandas Contributing to the documentation About the pandas documentation Updating a pandas docstring How to build the pandas documentation Previewing changes Contributing to the code base Code standards Pre-commit Optional dependencies Backwards compatibility Type hints Testing with continuous integration Test-driven development Running the test suite Running the performance test suite Documenting your code pandas maintenance Roles Tasks Issue triage Closing issues Reviewing pull requests Backporting Cleaning up old issues Cleaning up old pull requests Becoming a pandas maintainer Merging pull requests Benchmark machine Release process Internals Indexing Subclassing pandas data structures Debugging C extensions Using a debugger Checking memory leaks with valgrind Extending pandas Registering custom accessors Extension types Subclassing pandas data structures Plotting backends Developer Storing pandas DataFrame objects in Apache Parquet format Policies Version policy Python support Roadmap Extensibility String data type Consistent missing value handling Apache Arrow interoperability Block manager rewrite Decoupling of indexing and internals Numba-accelerated operations Performance monitoring Roadmap evolution Completed items Contributor community Community meeting New contributor meeting Calendar GitHub issue tracker The developer mailing list Community slack
development/index.html
pandas.Series.eq
`pandas.Series.eq` Return Equal to of series and other, element-wise (binary operator eq). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.eq(b, fill_value=0) a True b False c False d False e False dtype: bool ```
Series.eq(other, level=None, fill_value=None, axis=0)[source]# Return Equal to of series and other, element-wise (binary operator eq). Equivalent to series == other, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.eq(b, fill_value=0) a True b False c False d False e False dtype: bool
reference/api/pandas.Series.eq.html
pandas.DatetimeIndex.is_quarter_start
`pandas.DatetimeIndex.is_quarter_start` Indicator for whether the date is the first day of a quarter. ``` >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False ```
property DatetimeIndex.is_quarter_start[source]# Indicator for whether the date is the first day of a quarter. Returns is_quarter_startSeries or DatetimeIndexThe same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See also quarterReturn the quarter of the date. is_quarter_endSimilar property for indicating the quarter start. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_start array([False, False, True, False])
reference/api/pandas.DatetimeIndex.is_quarter_start.html
pandas.tseries.offsets.YearEnd.__call__
`pandas.tseries.offsets.YearEnd.__call__` Call self as a function.
YearEnd.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.YearEnd.__call__.html
pandas.tseries.offsets.Micro.kwds
`pandas.tseries.offsets.Micro.kwds` Return a dict of extra parameters for the offset. Examples ``` >>> pd.DateOffset(5).kwds {} ```
Micro.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.Micro.kwds.html
pandas.merge
`pandas.merge` Merge DataFrame or named Series objects with a database-style join. ``` >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 ```
pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)[source]# Merge DataFrame or named Series objects with a database-style join. A named Series object is treated as a DataFrame with a single named column. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed. Warning If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results. Parameters leftDataFrame rightDataFrame or named SeriesObject to merge with. how{‘left’, ‘right’, ‘outer’, ‘inner’, ‘cross’}, default ‘inner’Type of merge to be performed. left: use only keys from left frame, similar to a SQL left outer join; preserve key order. right: use only keys from right frame, similar to a SQL right outer join; preserve key order. outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. cross: creates the cartesian product from both frames, preserves the order of the left keys. New in version 1.2.0. onlabel or listColumn or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_onlabel or list, or array-likeColumn or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_onlabel or list, or array-likeColumn or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_indexbool, default FalseUse the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_indexbool, default FalseUse the index from the right DataFrame as the join key. Same caveats as left_index. sortbool, default FalseSort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixeslist-like, default is (“_x”, “_y”)A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in left and right respectively. Pass a value of None instead of a string to indicate that the column name from left or right should be left as-is, with no suffix. At least one of the values must not be None. copybool, default TrueIf False, avoid copy if possible. indicatorbool or str, default FalseIf True, adds a column to the output DataFrame called “_merge” with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of “left_only” for observations whose merge key only appears in the left DataFrame, “right_only” for observations whose merge key only appears in the right DataFrame, and “both” if the observation’s merge key is found in both DataFrames. validatestr, optionalIf specified, checks if merge is of specified type. “one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets. “one_to_many” or “1:m”: check if merge keys are unique in left dataset. “many_to_one” or “m:1”: check if merge keys are unique in right dataset. “many_to_many” or “m:m”: allowed, but does not result in checks. Returns DataFrameA DataFrame of the two merged objects. See also merge_orderedMerge with optional filling/interpolation. merge_asofMerge on nearest keys. DataFrame.joinSimilar method using indices. Notes Support for specifying index levels as the on, left_on, and right_on parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') >>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]}) >>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]}) >>> df1 a b 0 foo 1 1 bar 2 >>> df2 a c 0 foo 3 1 baz 4 >>> df1.merge(df2, how='inner', on='a') a b c 0 foo 1 3 >>> df1.merge(df2, how='left', on='a') a b c 0 foo 1 3.0 1 bar 2 NaN >>> df1 = pd.DataFrame({'left': ['foo', 'bar']}) >>> df2 = pd.DataFrame({'right': [7, 8]}) >>> df1 left 0 foo 1 bar >>> df2 right 0 7 1 8 >>> df1.merge(df2, how='cross') left right 0 foo 7 1 foo 8 2 bar 7 3 bar 8
reference/api/pandas.merge.html
pandas.tseries.offsets.CustomBusinessMonthBegin.is_quarter_end
`pandas.tseries.offsets.CustomBusinessMonthBegin.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
CustomBusinessMonthBegin.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.is_quarter_end.html
pandas.Series.dt.seconds
`pandas.Series.dt.seconds` Number of seconds (>= 0 and less than 1 day) for each element.
Series.dt.seconds[source]# Number of seconds (>= 0 and less than 1 day) for each element.
reference/api/pandas.Series.dt.seconds.html
pandas.core.groupby.DataFrameGroupBy.any
`pandas.core.groupby.DataFrameGroupBy.any` Return True if any value in the group is truthful, else False.
DataFrameGroupBy.any(skipna=True)[source]# Return True if any value in the group is truthful, else False. Parameters skipnabool, default TrueFlag to ignore nan values during truth testing. Returns Series or DataFrameDataFrame or Series of boolean values, where a value is True if any element is True within its respective group, False otherwise. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.groupby.DataFrameGroupBy.any.html
pandas.arrays.IntervalArray.is_empty
`pandas.arrays.IntervalArray.is_empty` Indicates if an interval is empty, meaning it contains no points. ``` >>> pd.Interval(0, 1, closed='right').is_empty False ```
IntervalArray.is_empty# Indicates if an interval is empty, meaning it contains no points. New in version 0.25.0. Returns bool or ndarrayA boolean indicating if a scalar Interval is empty, or a boolean ndarray positionally indicating if an Interval in an IntervalArray or IntervalIndex is empty. Examples An Interval that contains points is not empty: >>> pd.Interval(0, 1, closed='right').is_empty False An Interval that does not contain any points is empty: >>> pd.Interval(0, 0, closed='right').is_empty True >>> pd.Interval(0, 0, closed='left').is_empty True >>> pd.Interval(0, 0, closed='neither').is_empty True An Interval that contains a single point is not empty: >>> pd.Interval(0, 0, closed='both').is_empty False An IntervalArray or IntervalIndex returns a boolean ndarray positionally indicating if an Interval is empty: >>> ivs = [pd.Interval(0, 0, closed='neither'), ... pd.Interval(1, 2, closed='neither')] >>> pd.arrays.IntervalArray(ivs).is_empty array([ True, False]) Missing values are not considered empty: >>> ivs = [pd.Interval(0, 0, closed='neither'), np.nan] >>> pd.IntervalIndex(ivs).is_empty array([ True, False])
reference/api/pandas.arrays.IntervalArray.is_empty.html
pandas.tseries.offsets.CustomBusinessDay.is_quarter_start
`pandas.tseries.offsets.CustomBusinessDay.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
CustomBusinessDay.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.CustomBusinessDay.is_quarter_start.html
pandas.tseries.offsets.BusinessHour.start
pandas.tseries.offsets.BusinessHour.start
BusinessHour.start#
reference/api/pandas.tseries.offsets.BusinessHour.start.html
pandas.ExcelWriter.close
`pandas.ExcelWriter.close` synonym for save, to make it more file-like
ExcelWriter.close()[source]# synonym for save, to make it more file-like
reference/api/pandas.ExcelWriter.close.html
pandas.tseries.offsets.Nano
`pandas.tseries.offsets.Nano` Attributes base
class pandas.tseries.offsets.Nano# Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. nanos Return an integer of the total number of nanoseconds. delta n normalize rule_code Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.Nano.html
pandas.tseries.offsets.SemiMonthEnd.is_on_offset
`pandas.tseries.offsets.SemiMonthEnd.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
SemiMonthEnd.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.SemiMonthEnd.is_on_offset.html
pandas.Timestamp.timetuple
`pandas.Timestamp.timetuple` Return time tuple, compatible with time.localtime().
Timestamp.timetuple()# Return time tuple, compatible with time.localtime().
reference/api/pandas.Timestamp.timetuple.html
pandas.Series.str.rstrip
`pandas.Series.str.rstrip` Remove trailing characters. ``` >>> s = pd.Series(['1. Ant. ', '2. Bee!\n', '3. Cat?\t', np.nan, 10, True]) >>> s 0 1. Ant. 1 2. Bee!\n 2 3. Cat?\t 3 NaN 4 10 5 True dtype: object ```
Series.str.rstrip(to_strip=None)[source]# Remove trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the Series/Index from right side. Replaces any non-strings in Series with NaNs. Equivalent to str.rstrip(). Parameters to_stripstr or None, default NoneSpecifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns Series or Index of object See also Series.str.stripRemove leading and trailing characters in Series/Index. Series.str.lstripRemove leading characters in Series/Index. Series.str.rstripRemove trailing characters in Series/Index. Examples >>> s = pd.Series(['1. Ant. ', '2. Bee!\n', '3. Cat?\t', np.nan, 10, True]) >>> s 0 1. Ant. 1 2. Bee!\n 2 3. Cat?\t 3 NaN 4 10 5 True dtype: object >>> s.str.strip() 0 1. Ant. 1 2. Bee! 2 3. Cat? 3 NaN 4 NaN 5 NaN dtype: object >>> s.str.lstrip('123.') 0 Ant. 1 Bee!\n 2 Cat?\t 3 NaN 4 NaN 5 NaN dtype: object >>> s.str.rstrip('.!? \n\t') 0 1. Ant 1 2. Bee 2 3. Cat 3 NaN 4 NaN 5 NaN dtype: object >>> s.str.strip('123.!? \n\t') 0 Ant 1 Bee 2 Cat 3 NaN 4 NaN 5 NaN dtype: object
reference/api/pandas.Series.str.rstrip.html
pandas.Series.tshift
`pandas.Series.tshift` Shift the time index, using the index’s frequency if available.
Series.tshift(periods=1, freq=None, axis=0)[source]# Shift the time index, using the index’s frequency if available. Deprecated since version 1.1.0: Use shift instead. Parameters periodsintNumber of periods to move, can be positive or negative. freqDateOffset, timedelta, or str, default NoneIncrement to use from the tseries module or time rule expressed as a string (e.g. ‘EOM’). axis{0 or ‘index’, 1 or ‘columns’, None}, default 0Corresponds to the axis that contains the Index. For Series this parameter is unused and defaults to 0. Returns shiftedSeries/DataFrame Notes If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown
reference/api/pandas.Series.tshift.html
pandas.CategoricalIndex.ordered
`pandas.CategoricalIndex.ordered` Whether the categories have an ordered relationship.
property CategoricalIndex.ordered[source]# Whether the categories have an ordered relationship.
reference/api/pandas.CategoricalIndex.ordered.html
pandas.tseries.offsets.BusinessHour.apply_index
`pandas.tseries.offsets.BusinessHour.apply_index` Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead.
BusinessHour.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.BusinessHour.apply_index.html
pandas.Flags
`pandas.Flags` Flags that apply to pandas objects. New in version 1.2.0. ``` >>> df = pd.DataFrame() >>> df.flags <Flags(allows_duplicate_labels=True)> >>> df.flags.allows_duplicate_labels = False >>> df.flags <Flags(allows_duplicate_labels=False)> ```
class pandas.Flags(obj, *, allows_duplicate_labels)[source]# Flags that apply to pandas objects. New in version 1.2.0. Parameters objSeries or DataFrameThe object these flags are associated with. allows_duplicate_labelsbool, default TrueWhether to allow duplicate labels in this object. By default, duplicate labels are permitted. Setting this to False will cause an errors.DuplicateLabelError to be raised when index (or columns for DataFrame) is not unique, or any subsequent operation on introduces duplicates. See Disallowing Duplicate Labels for more. Warning This is an experimental feature. Currently, many methods fail to propagate the allows_duplicate_labels value. In future versions it is expected that every method taking or returning one or more DataFrame or Series objects will propagate allows_duplicate_labels. Notes Attributes can be set in two ways >>> df = pd.DataFrame() >>> df.flags <Flags(allows_duplicate_labels=True)> >>> df.flags.allows_duplicate_labels = False >>> df.flags <Flags(allows_duplicate_labels=False)> >>> df.flags['allows_duplicate_labels'] = True >>> df.flags <Flags(allows_duplicate_labels=True)> Attributes allows_duplicate_labels Whether this object allows duplicate labels.
reference/api/pandas.Flags.html
pandas.tseries.offsets.CustomBusinessHour.rollback
`pandas.tseries.offsets.CustomBusinessHour.rollback` Roll provided date backward to next offset only if not on offset.
CustomBusinessHour.rollback(other)# Roll provided date backward to next offset only if not on offset.
reference/api/pandas.tseries.offsets.CustomBusinessHour.rollback.html
pandas.Series.is_monotonic_increasing
`pandas.Series.is_monotonic_increasing` Return boolean if values in the object are monotonically increasing.
property Series.is_monotonic_increasing[source]# Return boolean if values in the object are monotonically increasing. Returns bool
reference/api/pandas.Series.is_monotonic_increasing.html
pandas.core.resample.Resampler.last
`pandas.core.resample.Resampler.last` Compute the last non-null entry of each column. ``` >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3])) >>> df.groupby("A").last() B C A 1 5.0 2 3 6.0 3 ```
Resampler.last(numeric_only=_NoDefault.no_default, min_count=0, *args, **kwargs)[source]# Compute the last non-null entry of each column. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. min_countint, default -1The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. Returns Series or DataFrameLast non-null of values within each group. See also DataFrame.groupbyApply a function groupby to each row or column of a DataFrame. DataFrame.core.groupby.GroupBy.firstCompute the first non-null entry of each column. DataFrame.core.groupby.GroupBy.nthTake the nth row from each group. Examples >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3])) >>> df.groupby("A").last() B C A 1 5.0 2 3 6.0 3
reference/api/pandas.core.resample.Resampler.last.html
pandas.Series.reindex_like
`pandas.Series.reindex_like` Return an object with matching indices as other object. ``` >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) ```
Series.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)[source]# Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters otherObject of the same data typeIts row and column indices are used to define the new indices of this object. method{None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. None (default): don’t fill gaps pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap nearest: use nearest valid observations to fill gap. copybool, default TrueReturn a new object, even if the passed indexes are the same. limitint, default NoneMaximum number of consecutive labels to fill for inexact matches. toleranceoptionalMaximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type. Returns Series or DataFrameSame type as caller, but with changed indices on each axis. See also DataFrame.set_indexSet row labels. DataFrame.reset_indexRemove row labels or move them to new columns. DataFrame.reindexChange to new indices or expand indices. Notes Same as calling .reindex(index=other.index, columns=other.columns,...). Examples >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium
reference/api/pandas.Series.reindex_like.html
pandas.DatetimeIndex.indexer_at_time
`pandas.DatetimeIndex.indexer_at_time` Return index locations of values at particular time of day.
DatetimeIndex.indexer_at_time(time, asof=False)[source]# Return index locations of values at particular time of day. Parameters timedatetime.time or strTime passed in either as object (datetime.time) or as string in appropriate format (“%H:%M”, “%H%M”, “%I:%M%p”, “%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”, “%I%M%S%p”). Returns np.ndarray[np.intp] See also indexer_between_timeGet index locations of values between particular times of day. DataFrame.at_timeSelect values at particular time of day.
reference/api/pandas.DatetimeIndex.indexer_at_time.html
pandas.Series.dt.is_year_end
`pandas.Series.dt.is_year_end` Indicate whether the date is the last day of the year. ``` >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] ```
Series.dt.is_year_end[source]# Indicate whether the date is the last day of the year. Returns Series or DatetimeIndexThe same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See also is_year_startSimilar property indicating the start of the year. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_end array([False, True, False])
reference/api/pandas.Series.dt.is_year_end.html
pandas.tseries.offsets.SemiMonthBegin.apply_index
`pandas.tseries.offsets.SemiMonthBegin.apply_index` Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead.
SemiMonthBegin.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.SemiMonthBegin.apply_index.html
pandas.tseries.offsets.Hour.apply_index
`pandas.tseries.offsets.Hour.apply_index` Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead.
Hour.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.Hour.apply_index.html
pandas.IntervalIndex.overlaps
`pandas.IntervalIndex.overlaps` Check elementwise if an Interval overlaps the values in the IntervalArray. Two intervals overlap if they share a common point, including closed endpoints. Intervals that only have an open endpoint in common do not overlap. ``` >>> data = [(0, 1), (1, 3), (2, 4)] >>> intervals = pd.arrays.IntervalArray.from_tuples(data) >>> intervals <IntervalArray> [(0, 1], (1, 3], (2, 4]] Length: 3, dtype: interval[int64, right] ```
IntervalIndex.overlaps(*args, **kwargs)[source]# Check elementwise if an Interval overlaps the values in the IntervalArray. Two intervals overlap if they share a common point, including closed endpoints. Intervals that only have an open endpoint in common do not overlap. Parameters otherIntervalArrayInterval to check against for an overlap. Returns ndarrayBoolean array positionally indicating where an overlap occurs. See also Interval.overlapsCheck whether two Interval objects overlap. Examples >>> data = [(0, 1), (1, 3), (2, 4)] >>> intervals = pd.arrays.IntervalArray.from_tuples(data) >>> intervals <IntervalArray> [(0, 1], (1, 3], (2, 4]] Length: 3, dtype: interval[int64, right] >>> intervals.overlaps(pd.Interval(0.5, 1.5)) array([ True, True, False]) Intervals that share closed endpoints overlap: >>> intervals.overlaps(pd.Interval(1, 3, closed='left')) array([ True, True, True]) Intervals that only have an open endpoint in common do not overlap: >>> intervals.overlaps(pd.Interval(1, 2, closed='right')) array([False, True, False])
reference/api/pandas.IntervalIndex.overlaps.html
pandas.tseries.offsets.CustomBusinessMonthEnd.isAnchored
pandas.tseries.offsets.CustomBusinessMonthEnd.isAnchored
CustomBusinessMonthEnd.isAnchored()#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.isAnchored.html
pandas.tseries.offsets.Micro.rollback
`pandas.tseries.offsets.Micro.rollback` Roll provided date backward to next offset only if not on offset.
Micro.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.Micro.rollback.html
pandas.tseries.offsets.Easter.freqstr
`pandas.tseries.offsets.Easter.freqstr` Return a string representing the frequency. Examples ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
Easter.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.Easter.freqstr.html
pandas.Index.get_indexer_for
`pandas.Index.get_indexer_for` Guaranteed return of an indexer even when non-unique. ``` >>> idx = pd.Index([np.nan, 'var1', np.nan]) >>> idx.get_indexer_for([np.nan]) array([0, 2]) ```
final Index.get_indexer_for(target)[source]# Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns np.ndarray[np.intp]List of indices. Examples >>> idx = pd.Index([np.nan, 'var1', np.nan]) >>> idx.get_indexer_for([np.nan]) array([0, 2])
reference/api/pandas.Index.get_indexer_for.html
pandas.Timedelta.nanoseconds
`pandas.Timedelta.nanoseconds` Return the number of nanoseconds (n), where 0 <= n < 1 microsecond. ``` >>> td = pd.Timedelta('1 days 2 min 3 us 42 ns') ```
Timedelta.nanoseconds# Return the number of nanoseconds (n), where 0 <= n < 1 microsecond. Returns intNumber of nanoseconds. See also Timedelta.componentsReturn all attributes with assigned values (i.e. days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds). Examples Using string input >>> td = pd.Timedelta('1 days 2 min 3 us 42 ns') >>> td.nanoseconds 42 Using integer input >>> td = pd.Timedelta(42, unit='ns') >>> td.nanoseconds 42
reference/api/pandas.Timedelta.nanoseconds.html
pandas.tseries.offsets.Hour.apply
pandas.tseries.offsets.Hour.apply
Hour.apply()#
reference/api/pandas.tseries.offsets.Hour.apply.html
pandas.Series.swaplevel
`pandas.Series.swaplevel` Swap levels i and j in a MultiIndex. Default is to swap the two innermost levels of the index. ``` >>> s = pd.Series( ... ["A", "B", "A", "C"], ... index=[ ... ["Final exam", "Final exam", "Coursework", "Coursework"], ... ["History", "Geography", "History", "Geography"], ... ["January", "February", "March", "April"], ... ], ... ) >>> s Final exam History January A Geography February B Coursework History March A Geography April C dtype: object ```
Series.swaplevel(i=- 2, j=- 1, copy=True)[source]# Swap levels i and j in a MultiIndex. Default is to swap the two innermost levels of the index. Parameters i, jint or strLevels of the indices to be swapped. Can pass level name as string. copybool, default TrueWhether to copy underlying data. Returns SeriesSeries with levels swapped in MultiIndex. Examples >>> s = pd.Series( ... ["A", "B", "A", "C"], ... index=[ ... ["Final exam", "Final exam", "Coursework", "Coursework"], ... ["History", "Geography", "History", "Geography"], ... ["January", "February", "March", "April"], ... ], ... ) >>> s Final exam History January A Geography February B Coursework History March A Geography April C dtype: object In the following example, we will swap the levels of the indices. Here, we will swap the levels column-wise, but levels can be swapped row-wise in a similar manner. Note that column-wise is the default behaviour. By not supplying any arguments for i and j, we swap the last and second to last indices. >>> s.swaplevel() Final exam January History A February Geography B Coursework March History A April Geography C dtype: object By supplying one argument, we can choose which index to swap the last index with. We can for example swap the first index with the last one as follows. >>> s.swaplevel(0) January History Final exam A February Geography Final exam B March History Coursework A April Geography Coursework C dtype: object We can also define explicitly which indices we want to swap by supplying values for both i and j. Here, we for example swap the first and second indices. >>> s.swaplevel(0, 1) History Final exam January A Geography Final exam February B History Coursework March A Geography Coursework April C dtype: object
reference/api/pandas.Series.swaplevel.html
pandas.Series.sort_values
`pandas.Series.sort_values` Sort by the values. ``` >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 ```
Series.sort_values(*, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)[source]# Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. ascendingbool or list of bools, default TrueIf True, sort values in ascending order, otherwise descending. inplacebool, default FalseIf True, perform operation in-place. kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, default ‘quicksort’Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ and ‘stable’ are the only stable algorithms. na_position{‘first’ or ‘last’}, default ‘last’Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. ignore_indexbool, default FalseIf True, the resulting axis will be labeled 0, 1, …, n - 1. New in version 1.0.0. keycallable, optionalIf not None, apply the key function to the series values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect a Series and return an array-like. New in version 1.1.0. Returns Series or NoneSeries ordered by values or None if inplace=True. See also Series.sort_indexSort by the Series indices. DataFrame.sort_valuesSort DataFrame by the values along either axis. DataFrame.sort_indexSort DataFrame by indices. Examples >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object Sort using a key function. Your key function will be given the Series of values and should return an array-like. >>> s = pd.Series(['a', 'B', 'c', 'D', 'e']) >>> s.sort_values() 1 B 3 D 0 a 2 c 4 e dtype: object >>> s.sort_values(key=lambda x: x.str.lower()) 0 a 1 B 2 c 3 D 4 e dtype: object NumPy ufuncs work well here. For example, we can sort by the sin of the value >>> s = pd.Series([-4, -2, 0, 2, 4]) >>> s.sort_values(key=np.sin) 1 -2 4 4 2 0 0 -4 3 2 dtype: int64 More complicated user-defined functions can be used, as long as they expect a Series and return an array-like >>> s.sort_values(key=lambda x: (np.tan(x.cumsum()))) 0 -4 3 2 4 4 1 -2 2 0 dtype: int64
reference/api/pandas.Series.sort_values.html
pandas.tseries.offsets.BQuarterEnd.is_year_end
`pandas.tseries.offsets.BQuarterEnd.is_year_end` Return boolean whether a timestamp occurs on the year end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
BQuarterEnd.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.BQuarterEnd.is_year_end.html
pandas.core.resample.Resampler.sem
`pandas.core.resample.Resampler.sem` Compute standard error of the mean of groups, excluding missing values.
Resampler.sem(ddof=1, numeric_only=_NoDefault.no_default, *args, **kwargs)[source]# Compute standard error of the mean of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. Parameters ddofint, default 1Degrees of freedom. numeric_onlybool, default TrueInclude only float, int or boolean data. New in version 1.5.0. Returns Series or DataFrameStandard error of the mean of values within each group. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.resample.Resampler.sem.html
pandas.Series.truncate
`pandas.Series.truncate` Truncate a Series or DataFrame before and after some index value. ``` >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o ```
Series.truncate(before=None, after=None, axis=None, copy=True)[source]# Truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. Parameters beforedate, str, intTruncate all rows before this index value. afterdate, str, intTruncate all rows after this index value. axis{0 or ‘index’, 1 or ‘columns’}, optionalAxis to truncate. Truncates the index (rows) by default. For Series this parameter is unused and defaults to 0. copybool, default is True,Return a copy of the truncated section. Returns type of callerThe truncated Series or DataFrame. See also DataFrame.locSelect a subset of a DataFrame by label. DataFrame.ilocSelect a subset of a DataFrame by position. Notes If the index being truncated contains only datetime values, before and after may be specified as strings instead of Timestamps. Examples >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n The columns of a DataFrame can be truncated. >>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j For Series, only rows can be truncated. >>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object The index values in truncate can be datetimes or string dates. >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.tail() A 2016-01-31 23:59:56 1 2016-01-31 23:59:57 1 2016-01-31 23:59:58 1 2016-01-31 23:59:59 1 2016-02-01 00:00:00 1 >>> df.truncate(before=pd.Timestamp('2016-01-05'), ... after=pd.Timestamp('2016-01-10')).tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Because the index is a DatetimeIndex containing only dates, we can specify before and after as strings. They will be coerced to Timestamps before truncation. >>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Note that truncate assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates. >>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1
reference/api/pandas.Series.truncate.html
pandas.api.extensions.ExtensionArray.tolist
`pandas.api.extensions.ExtensionArray.tolist` Return a list of the values.
ExtensionArray.tolist()[source]# Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns list
reference/api/pandas.api.extensions.ExtensionArray.tolist.html
pandas.tseries.offsets.SemiMonthEnd.n
pandas.tseries.offsets.SemiMonthEnd.n
SemiMonthEnd.n#
reference/api/pandas.tseries.offsets.SemiMonthEnd.n.html
pandas.tseries.offsets.CustomBusinessMonthBegin.__call__
`pandas.tseries.offsets.CustomBusinessMonthBegin.__call__` Call self as a function.
CustomBusinessMonthBegin.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.__call__.html
pandas.io.json.build_table_schema
`pandas.io.json.build_table_schema` Create a Table schema from data. ``` >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'} ```
pandas.io.json.build_table_schema(data, index=True, primary_key=None, version=True)[source]# Create a Table schema from data. Parameters dataSeries, DataFrame indexbool, default TrueWhether to include data.index in the schema. primary_keybool or None, default TrueColumn names to designate as the primary key. The default None will set ‘primaryKey’ to the index level or levels if the index is unique. versionbool, default TrueWhether to include a field pandas_version with the version of pandas that last revised the table schema. This version can be different from the installed pandas version. Returns schemadict Notes See Table Schema for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision. Categoricals are converted to the any dtype, and use the enum field constraint to list the allowed values. The ordered attribute is included in an ordered field. Examples >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'primaryKey': ['idx'], 'pandas_version': '1.4.0'}
reference/api/pandas.io.json.build_table_schema.html
pandas.core.groupby.GroupBy.pad
`pandas.core.groupby.GroupBy.pad` Forward fill the values. Deprecated since version 1.4: Use ffill instead.
GroupBy.pad(limit=None)[source]# Forward fill the values. Deprecated since version 1.4: Use ffill instead. Parameters limitint, optionalLimit of how many values to fill. Returns Series or DataFrameObject with missing values filled.
reference/api/pandas.core.groupby.GroupBy.pad.html
pandas.option_context.__call__
`pandas.option_context.__call__` Call self as a function.
option_context.__call__(func)[source]# Call self as a function.
reference/api/pandas.option_context.__call__.html
pandas.DataFrame.shift
`pandas.DataFrame.shift` Shift index by desired number of periods with an optional time freq. When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using the periods and the freq. freq can be inferred when specified as “infer” as long as either freq or inferred_freq attribute is set in the index. ``` >>> df = pd.DataFrame({"Col1": [10, 20, 15, 30, 45], ... "Col2": [13, 23, 18, 33, 48], ... "Col3": [17, 27, 22, 37, 52]}, ... index=pd.date_range("2020-01-01", "2020-01-05")) >>> df Col1 Col2 Col3 2020-01-01 10 13 17 2020-01-02 20 23 27 2020-01-03 15 18 22 2020-01-04 30 33 37 2020-01-05 45 48 52 ```
DataFrame.shift(periods=1, freq=None, axis=0, fill_value=_NoDefault.no_default)[source]# Shift index by desired number of periods with an optional time freq. When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using the periods and the freq. freq can be inferred when specified as “infer” as long as either freq or inferred_freq attribute is set in the index. Parameters periodsintNumber of periods to shift. Can be positive or negative. freqDateOffset, tseries.offsets, timedelta, or str, optionalOffset to use from the tseries module or time rule (e.g. ‘EOM’). If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data. If freq is specified as “infer” then it will be inferred from the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown. axis{0 or ‘index’, 1 or ‘columns’, None}, default NoneShift direction. For Series this parameter is unused and defaults to 0. fill_valueobject, optionalThe scalar value to use for newly introduced missing values. the default depends on the dtype of self. For numeric data, np.nan is used. For datetime, timedelta, or period data, etc. NaT is used. For extension dtypes, self.dtype.na_value is used. Changed in version 1.1.0. Returns DataFrameCopy of input object, shifted. See also Index.shiftShift values of Index. DatetimeIndex.shiftShift values of DatetimeIndex. PeriodIndex.shiftShift values of PeriodIndex. tshiftShift the time index, using the index’s frequency if available. Examples >>> df = pd.DataFrame({"Col1": [10, 20, 15, 30, 45], ... "Col2": [13, 23, 18, 33, 48], ... "Col3": [17, 27, 22, 37, 52]}, ... index=pd.date_range("2020-01-01", "2020-01-05")) >>> df Col1 Col2 Col3 2020-01-01 10 13 17 2020-01-02 20 23 27 2020-01-03 15 18 22 2020-01-04 30 33 37 2020-01-05 45 48 52 >>> df.shift(periods=3) Col1 Col2 Col3 2020-01-01 NaN NaN NaN 2020-01-02 NaN NaN NaN 2020-01-03 NaN NaN NaN 2020-01-04 10.0 13.0 17.0 2020-01-05 20.0 23.0 27.0 >>> df.shift(periods=1, axis="columns") Col1 Col2 Col3 2020-01-01 NaN 10 13 2020-01-02 NaN 20 23 2020-01-03 NaN 15 18 2020-01-04 NaN 30 33 2020-01-05 NaN 45 48 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 2020-01-01 0 0 0 2020-01-02 0 0 0 2020-01-03 0 0 0 2020-01-04 10 13 17 2020-01-05 20 23 27 >>> df.shift(periods=3, freq="D") Col1 Col2 Col3 2020-01-04 10 13 17 2020-01-05 20 23 27 2020-01-06 15 18 22 2020-01-07 30 33 37 2020-01-08 45 48 52 >>> df.shift(periods=3, freq="infer") Col1 Col2 Col3 2020-01-04 10 13 17 2020-01-05 20 23 27 2020-01-06 15 18 22 2020-01-07 30 33 37 2020-01-08 45 48 52
reference/api/pandas.DataFrame.shift.html
pandas.wide_to_long
`pandas.wide_to_long` Unpivot a DataFrame from wide to long format. ``` >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 ```
pandas.wide_to_long(df, stubnames, i, j, sep='', suffix='\\d+')[source]# Unpivot a DataFrame from wide to long format. Less flexible but more user-friendly than melt. With stubnames [‘A’, ‘B’], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,…, B-suffix1, B-suffix2,… You specify what you want to call this suffix in the resulting long format with j (for example j=’year’) Each row of these wide variables are assumed to be uniquely identified by i (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters dfDataFrameThe wide-format DataFrame. stubnamesstr or list-likeThe stub name(s). The wide format variables are assumed to start with the stub names. istr or list-likeColumn(s) to use as id variable(s). jstrThe name of the sub-observation variable. What you wish to name your suffix in the long format. sepstr, default “”A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying sep=’-’. suffixstr, default ‘\d+’A regular expression capturing the wanted suffixes. ‘\d+’ captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class ‘\D+’. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying suffix=’(!?one|two)’. When all suffixes are numeric, they are cast to int64/float64. Returns DataFrameA DataFrame that contains each stub name as a variable, with new index (i, j). See also meltUnpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivotCreate a spreadsheet-style pivot table as a DataFrame. DataFrame.pivotPivot without aggregation that can handle non-numeric data. DataFrame.pivot_tableGeneralization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstackPivot based on the index values instead of a column. Notes All extra variables are left untouched. This simply uses pandas.melt under the hood, but is hard-coded to “do the right thing” in a typical case. Examples >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multiple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of unstack >>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2 >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)'] All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes. >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix=r'\w+') >>> l ... ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9
reference/api/pandas.wide_to_long.html
pandas.arrays.ArrowExtensionArray
`pandas.arrays.ArrowExtensionArray` Pandas ExtensionArray backed by a PyArrow ChunkedArray. Warning ``` >>> pd.array([1, 1, None], dtype="int64[pyarrow]") <ArrowExtensionArray> [1, 1, <NA>] Length: 3, dtype: int64[pyarrow] ```
class pandas.arrays.ArrowExtensionArray(values)[source]# Pandas ExtensionArray backed by a PyArrow ChunkedArray. Warning ArrowExtensionArray is considered experimental. The implementation and parts of the API may change without warning. Parameters valuespyarrow.Array or pyarrow.ChunkedArray Returns ArrowExtensionArray Notes Most methods are implemented using pyarrow compute functions. Some methods may either raise an exception or raise a PerformanceWarning if an associated compute function is not available based on the installed version of PyArrow. Please install the latest version of PyArrow to enable the best functionality and avoid potential bugs in prior versions of PyArrow. Examples Create an ArrowExtensionArray with pandas.array(): >>> pd.array([1, 1, None], dtype="int64[pyarrow]") <ArrowExtensionArray> [1, 1, <NA>] Length: 3, dtype: int64[pyarrow] Attributes None Methods None
reference/api/pandas.arrays.ArrowExtensionArray.html
pandas.Timestamp.isoweekday
`pandas.Timestamp.isoweekday` Return the day of the week represented by the date.
Timestamp.isoweekday()# Return the day of the week represented by the date. Monday == 1 … Sunday == 7.
reference/api/pandas.Timestamp.isoweekday.html
pandas.tseries.offsets.BQuarterBegin.is_on_offset
`pandas.tseries.offsets.BQuarterBegin.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
BQuarterBegin.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.BQuarterBegin.is_on_offset.html
pandas.io.formats.style.Styler.highlight_null
`pandas.io.formats.style.Styler.highlight_null` Highlight missing values with a style.
Styler.highlight_null(color=None, subset=None, props=None, null_color=_NoDefault.no_default)[source]# Highlight missing values with a style. Parameters colorstr, default ‘yellow’Background color to use for highlighting. New in version 1.5.0. subsetlabel, array-like, IndexSlice, optionalA valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit data to before applying the function. New in version 1.1.0. propsstr, default NoneCSS properties to use for highlighting. If props is given, color is not used. New in version 1.3.0. null_colorstr, default NoneThe background color for highlighting. Deprecated since version 1.5.0: Use color instead. If color is given null_color is not used. Returns selfStyler See also Styler.highlight_maxHighlight the maximum with a style. Styler.highlight_minHighlight the minimum with a style. Styler.highlight_betweenHighlight a defined range with a style. Styler.highlight_quantileHighlight values defined by a quantile with a style.
reference/api/pandas.io.formats.style.Styler.highlight_null.html
pandas.api.extensions.ExtensionArray._reduce
`pandas.api.extensions.ExtensionArray._reduce` Return a scalar result of performing the reduction operation.
ExtensionArray._reduce(name, *, skipna=True, **kwargs)[source]# Return a scalar result of performing the reduction operation. Parameters namestrName of the function, supported values are: { any, all, min, max, sum, mean, median, prod, std, var, sem, kurt, skew }. skipnabool, default TrueIf True, skip NaN values. **kwargsAdditional keyword arguments passed to the reduction function. Currently, ddof is the only supported kwarg. Returns scalar Raises TypeErrorsubclass does not define reductions
reference/api/pandas.api.extensions.ExtensionArray._reduce.html
pandas.tseries.offsets.LastWeekOfMonth.is_anchored
`pandas.tseries.offsets.LastWeekOfMonth.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). Examples ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
LastWeekOfMonth.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.LastWeekOfMonth.is_anchored.html
pandas.RangeIndex.from_range
`pandas.RangeIndex.from_range` Create RangeIndex from a range object.
classmethod RangeIndex.from_range(data, name=None, dtype=None)[source]# Create RangeIndex from a range object. Returns RangeIndex
reference/api/pandas.RangeIndex.from_range.html
pandas.Series.to_string
`pandas.Series.to_string` Render a string representation of the Series. Buffer to write to.
Series.to_string(buf=None, na_rep='NaN', float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None)[source]# Render a string representation of the Series. Parameters bufStringIO-like, optionalBuffer to write to. na_repstr, optionalString representation of NaN to use, default ‘NaN’. float_formatone-parameter function, optionalFormatter function to apply to columns’ elements if they are floats, default None. headerbool, default TrueAdd the Series header (index name). indexbool, optionalAdd index (row) labels, default True. lengthbool, default FalseAdd the Series length. dtypebool, default FalseAdd the Series dtype. namebool, default FalseAdd the Series name if not None. max_rowsint, optionalMaximum number of rows to show before truncating. If None, show all. min_rowsint, optionalThe number of rows to display in a truncated repr (when number of rows is above max_rows). Returns str or NoneString representation of Series if buf=None, otherwise None.
reference/api/pandas.Series.to_string.html