text
stringlengths
0
1.05M
meta
dict
"""unit testing code for the BuildComposite functionality """ from rdkit import RDConfig import unittest,os from rdkit.ML import BuildComposite from rdkit.ML import ScreenComposite from rdkit.Dbase.DbConnection import DbConnect import cPickle as pickle def feq(a,b,tol=1e-4): if abs(a-b)>tol: return 0 else: return 1 class TestCase(unittest.TestCase): def setUp(self): #print '\n%s: '%self.shortDescription(), self.baseDir = os.path.join(RDConfig.RDCodeDir,'ML','test_data') self.dbName = RDConfig.RDTestDatabase self.details = BuildComposite.SetDefaults() self.details.dbName = self.dbName self.details.dbUser = RDConfig.defaultDBUser self.details.dbPassword = RDConfig.defaultDBPassword def _init(self,refCompos,copyBounds=0): BuildComposite._verbose=0 conn = DbConnect(self.details.dbName,self.details.tableName) cols = [x.upper() for x in conn.GetColumnNames()] cDescs = [x.upper() for x in refCompos.GetDescriptorNames()] assert cols==cDescs,'bad descriptor names in table: %s != %s'%(cols,cDescs) self.details.nModels = 10 self.details.lockRandom = 1 self.details.randomSeed = refCompos._randomSeed self.details.splitFrac = refCompos._splitFrac if self.details.splitFrac: self.details.splitRun = 1 else: self.details.splitRun = 0 if not copyBounds: self.details.qBounds = [0]*len(cols) else: self.details.qBounds = refCompos.GetQuantBounds()[0] def compare(self,compos,refCompos): assert len(compos)==len(refCompos),'%d != %d'%(len(compos),len(refCompos)) cs = [] rcs = [] for i in range(len(compos)): cs.append(compos[i]) rcs.append(refCompos[i]) def sortHelp(x,y): if x[2]==y[2]: return cmp(x[1],y[1]) else: return cmp(x[2],y[2]) cs.sort(sortHelp) rcs.sort(sortHelp) for i in range(len(compos)): tree,count,err = cs[i] refTree,refCount,refErr = rcs[i] assert count==refCount, str((count,refCount)) assert feq(err,refErr),'%f != %f'%(err,refErr) def test1(self): """ basics """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10.pkl' refCompos = pickle.load(open(os.path.join(self.baseDir,refComposName), 'rb')) # first make sure the data are intact self._init(refCompos) compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test2(self): """ depth limit """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10_3.pkl' refCompos = pickle.load(open(os.path.join(self.baseDir,refComposName), 'rb')) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test3(self): """ depth limit + less greedy """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10_3_lessgreedy.pkl' refCompos = pickle.load(open(os.path.join(self.baseDir,refComposName), 'rb')) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 self.details.lessGreedy = 1 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test4(self): """ more trees """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_50_3.pkl' refCompos = pickle.load(open(os.path.join(self.baseDir,refComposName), 'rb')) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 self.details.nModels = 50 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test5(self): """ auto bounds """ self.details.tableName = 'ferro_noquant' refComposName = 'ferromag_auto_10_3.pkl' refCompos = pickle.load(open(os.path.join(self.baseDir,refComposName), 'rb')) # first make sure the data are intact self._init(refCompos,copyBounds=1) self.details.limitDepth = 3 self.details.nModels = 10 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test6(self): """ auto bounds with a real valued activity""" self.details.tableName = 'ferro_noquant_realact' refComposName = 'ferromag_auto_10_3.pkl' refCompos = pickle.load(open(os.path.join(self.baseDir,refComposName), 'rb')) # first make sure the data are intact self._init(refCompos,copyBounds=1) self.details.limitDepth = 3 self.details.nModels = 10 self.details.activityBounds=[0.5] compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test7(self): """ Test composite of naive bayes""" self.details.tableName = 'ferro_noquant' refComposName = 'ferromag_NaiveBayes.pkl' pklFile = open(os.path.join(self.baseDir,refComposName), 'rb') refCompos = pickle.load(pklFile) self._init(refCompos,copyBounds=1) self.details.useTrees = 0 self.details.useNaiveBayes = 1 self.details.mEstimateVal = 20.0 self.details.qBounds = [0] + [2]*6 + [0] compos = BuildComposite.RunIt(self.details, saveIt= 0) self.compare(compos,refCompos) if __name__ == '__main__': unittest.main()
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/ML/UnitTestBuildComposite.py", "copies": "2", "size": "5858", "license": "bsd-3-clause", "hash": -5591691407116287000, "line_mean": 30.1595744681, "line_max": 79, "alpha_frac": 0.6536360533, "autogenerated": false, "ratio": 3.1854268624252313, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48390629157252313, "avg_score": null, "num_lines": null }
"""unit testing code for the BuildComposite functionality """ import io import os import unittest from rdkit import RDConfig from rdkit.Dbase.DbConnection import DbConnect from rdkit.ML import BuildComposite from rdkit.six.moves import cPickle as pickle class TestCase(unittest.TestCase): def setUp(self): self.baseDir = os.path.join(RDConfig.RDCodeDir, 'ML', 'test_data') self.dbName = RDConfig.RDTestDatabase self.details = BuildComposite.SetDefaults() self.details.dbName = self.dbName self.details.dbUser = RDConfig.defaultDBUser self.details.dbPassword = RDConfig.defaultDBPassword def _init(self, refCompos, copyBounds=0): BuildComposite._verbose = 0 conn = DbConnect(self.details.dbName, self.details.tableName) cols = [x.upper() for x in conn.GetColumnNames()] cDescs = [x.upper() for x in refCompos.GetDescriptorNames()] self.assertEqual(cols, cDescs) self.details.nModels = 10 self.details.lockRandom = 1 self.details.randomSeed = refCompos._randomSeed self.details.splitFrac = refCompos._splitFrac if self.details.splitFrac: self.details.splitRun = 1 else: self.details.splitRun = 0 if not copyBounds: self.details.qBounds = [0] * len(cols) else: self.details.qBounds = refCompos.GetQuantBounds()[0] def compare(self, compos, refCompos): self.assertEqual(len(compos), len(refCompos)) cs = [] rcs = [] for i in range(len(compos)): cs.append(compos[i]) rcs.append(refCompos[i]) cs.sort(key=lambda x: (x[2], x[2])) rcs.sort(key=lambda x: (x[2], x[2])) for i in range(len(compos)): _, count, err = cs[i] _, refCount, refErr = rcs[i] self.assertEqual(count, refCount) self.assertAlmostEqual(err, refErr, 4) def test1_basics(self): # """ basics """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10.pkl' with open(os.path.join(self.baseDir, refComposName), 'r') as pklTF: buf = pklTF.read().replace('\r\n', '\n').encode('utf-8') pklTF.close() with io.BytesIO(buf) as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) compos = BuildComposite.RunIt(self.details, saveIt=0) # pickle.dump(compos,open(os.path.join(self.baseDir,refComposName), 'wb')) # with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: # refCompos = pickle.load(pklF) self.compare(compos, refCompos) def test2_depth_limit(self): # """ depth limit """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10_3.pkl' with open(os.path.join(self.baseDir, refComposName), 'r') as pklTF: buf = pklTF.read().replace('\r\n', '\n').encode('utf-8') pklTF.close() with io.BytesIO(buf) as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 compos = BuildComposite.RunIt(self.details, saveIt=0) self.compare(compos, refCompos) def test3_depth_limit_less_greedy(self): # """ depth limit + less greedy """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10_3_lessgreedy.pkl' with open(os.path.join(self.baseDir, refComposName), 'r') as pklTF: buf = pklTF.read().replace('\r\n', '\n').encode('utf-8') pklTF.close() with io.BytesIO(buf) as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 self.details.lessGreedy = 1 compos = BuildComposite.RunIt(self.details, saveIt=0) self.compare(compos, refCompos) def test4_more_trees(self): # """ more trees """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_50_3.pkl' with open(os.path.join(self.baseDir, refComposName), 'r') as pklTF: buf = pklTF.read().replace('\r\n', '\n').encode('utf-8') pklTF.close() with io.BytesIO(buf) as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 self.details.nModels = 50 compos = BuildComposite.RunIt(self.details, saveIt=0) self.compare(compos, refCompos) def test5_auto_bounds(self): # """ auto bounds """ self.details.tableName = 'ferro_noquant' refComposName = 'ferromag_auto_10_3.pkl' with open(os.path.join(self.baseDir, refComposName), 'r') as pklTF: buf = pklTF.read().replace('\r\n', '\n').encode('utf-8') pklTF.close() with io.BytesIO(buf) as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos, copyBounds=1) self.details.limitDepth = 3 self.details.nModels = 10 compos = BuildComposite.RunIt(self.details, saveIt=0) self.compare(compos, refCompos) def test6_auto_bounds_real_activity(self): # """ auto bounds with a real valued activity""" self.details.tableName = 'ferro_noquant_realact' refComposName = 'ferromag_auto_10_3.pkl' with open(os.path.join(self.baseDir, refComposName), 'r') as pklTF: buf = pklTF.read().replace('\r\n', '\n').encode('utf-8') pklTF.close() with io.BytesIO(buf) as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos, copyBounds=1) self.details.limitDepth = 3 self.details.nModels = 10 self.details.activityBounds = [0.5] compos = BuildComposite.RunIt(self.details, saveIt=0) self.compare(compos, refCompos) def test7_composite_naiveBayes(self): # """ Test composite of naive bayes""" self.details.tableName = 'ferro_noquant' refComposName = 'ferromag_NaiveBayes.pkl' with open(os.path.join(self.baseDir, refComposName), 'r') as pklTFile: buf = pklTFile.read().replace('\r\n', '\n').encode('utf-8') pklTFile.close() with io.BytesIO(buf) as pklFile: refCompos = pickle.load(pklFile) self._init(refCompos, copyBounds=1) self.details.useTrees = 0 self.details.useNaiveBayes = 1 self.details.mEstimateVal = 20.0 self.details.qBounds = [0] + [2] * 6 + [0] compos = BuildComposite.RunIt(self.details, saveIt=0) self.compare(compos, refCompos) if __name__ == '__main__': # pragma: nocover unittest.main()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/ML/UnitTestBuildComposite.py", "copies": "4", "size": "6697", "license": "bsd-3-clause", "hash": -1186130716703731200, "line_mean": 30.8904761905, "line_max": 78, "alpha_frac": 0.6643273107, "autogenerated": false, "ratio": 3.018026137899955, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5682353448599956, "avg_score": null, "num_lines": null }
"""unit testing code for the BuildComposite functionality """ import unittest,os from rdkit.six.moves import cPickle as pickle from rdkit.six import cmp from rdkit import RDConfig from rdkit.ML import BuildComposite from rdkit.ML import ScreenComposite from rdkit.Dbase.DbConnection import DbConnect class TestCase(unittest.TestCase): def setUp(self): #print '\n%s: '%self.shortDescription(), self.baseDir = os.path.join(RDConfig.RDCodeDir,'ML','test_data') self.dbName = RDConfig.RDTestDatabase self.details = BuildComposite.SetDefaults() self.details.dbName = self.dbName self.details.dbUser = RDConfig.defaultDBUser self.details.dbPassword = RDConfig.defaultDBPassword def _init(self,refCompos,copyBounds=0): BuildComposite._verbose=0 conn = DbConnect(self.details.dbName,self.details.tableName) cols = [x.upper() for x in conn.GetColumnNames()] cDescs = [x.upper() for x in refCompos.GetDescriptorNames()] self.assertEqual(cols,cDescs) self.details.nModels = 10 self.details.lockRandom = 1 self.details.randomSeed = refCompos._randomSeed self.details.splitFrac = refCompos._splitFrac if self.details.splitFrac: self.details.splitRun = 1 else: self.details.splitRun = 0 if not copyBounds: self.details.qBounds = [0]*len(cols) else: self.details.qBounds = refCompos.GetQuantBounds()[0] def compare(self,compos,refCompos): self.assertEqual(len(compos),len(refCompos)) cs = [] rcs = [] for i in range(len(compos)): cs.append(compos[i]) rcs.append(refCompos[i]) def sortHelp(x,y): if x[2]==y[2]: return cmp(x[1],y[1]) else: return cmp(x[2],y[2]) cs.sort(key=lambda x:(x[2],x[2])) rcs.sort(key=lambda x:(x[2],x[2])) for i in range(len(compos)): tree,count,err = cs[i] refTree,refCount,refErr = rcs[i] self.assertEqual(count,refCount) self.assertAlmostEqual(err,refErr,4) def test1(self): """ basics """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10.pkl' with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) compos = BuildComposite.RunIt(self.details,saveIt=0) #pickle.dump(compos,open(os.path.join(self.baseDir,refComposName), 'wb')) #with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: # refCompos = pickle.load(pklF) self.compare(compos,refCompos) def test2(self): """ depth limit """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10_3.pkl' with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test3(self): """ depth limit + less greedy """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_10_3_lessgreedy.pkl' with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 self.details.lessGreedy = 1 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test4(self): """ more trees """ self.details.tableName = 'ferro_quant' refComposName = 'ferromag_quant_50_3.pkl' with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos) self.details.limitDepth = 3 self.details.nModels = 50 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test5(self): """ auto bounds """ self.details.tableName = 'ferro_noquant' refComposName = 'ferromag_auto_10_3.pkl' with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos,copyBounds=1) self.details.limitDepth = 3 self.details.nModels = 10 compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test6(self): """ auto bounds with a real valued activity""" self.details.tableName = 'ferro_noquant_realact' refComposName = 'ferromag_auto_10_3.pkl' with open(os.path.join(self.baseDir,refComposName), 'rb') as pklF: refCompos = pickle.load(pklF) # first make sure the data are intact self._init(refCompos,copyBounds=1) self.details.limitDepth = 3 self.details.nModels = 10 self.details.activityBounds=[0.5] compos = BuildComposite.RunIt(self.details,saveIt=0) self.compare(compos,refCompos) def test7(self): """ Test composite of naive bayes""" self.details.tableName = 'ferro_noquant' refComposName = 'ferromag_NaiveBayes.pkl' with open(os.path.join(self.baseDir,refComposName), 'rb') as pklFile: refCompos = pickle.load(pklFile) self._init(refCompos,copyBounds=1) self.details.useTrees = 0 self.details.useNaiveBayes = 1 self.details.mEstimateVal = 20.0 self.details.qBounds = [0] + [2]*6 + [0] compos = BuildComposite.RunIt(self.details, saveIt= 0) self.compare(compos,refCompos) if __name__ == '__main__': unittest.main()
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "rdkit/ML/UnitTestBuildComposite.py", "copies": "1", "size": "5925", "license": "bsd-3-clause", "hash": -6177026492547434000, "line_mean": 29.859375, "line_max": 77, "alpha_frac": 0.6766244726, "autogenerated": false, "ratio": 3.074727555786196, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9115504357516988, "avg_score": 0.027169534173841756, "num_lines": 192 }
"""unit testing code for the ScreenComposite functionality """ from rdkit import RDConfig import unittest,os from rdkit.ML import BuildComposite from rdkit.ML import ScreenComposite from rdkit.six.moves import cPickle as pickle def feq(a,b,tol=1e-4): if abs(a-b)>tol: return 0 else: return 1 class TestCase(unittest.TestCase): def setUp(self): #print '\n%s: '%self.shortDescription(), self.baseDir = os.path.join(RDConfig.RDCodeDir,'ML','test_data') self.dbName = RDConfig.RDTestDatabase self.details = ScreenComposite.SetDefaults() self.details.dbName = self.dbName self.details.dbUser = RDConfig.defaultDBUser self.details.dbPassword = RDConfig.defaultDBPassword def test1(self): """ basics """ self.details.tableName = 'ferro_quant' with open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'),'rb') as pklF: compos = pickle.load(pklF) tgt = 5 self.assertEqual(len(compos),tgt) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,93) self.assertEqual(misCount,2) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.9871,4) self.assertAlmostEqual(avgBad,.8000,4) self.assertEqual(tbl[0,0] , 54) self.assertEqual(tbl[1,1] , 39) self.assertEqual(tbl[0,1] , 2) self.assertEqual(tbl[1,0] , 0) def test2(self): """ include holdout data only """ self.details.tableName = 'ferro_quant' self.details.doHoldout=1 self.details.doTraining=0 with open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'),'rb') as pklF: compos = pickle.load(pklF) tgt = 5 self.assertEqual(len(compos),tgt) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,28) self.assertEqual(misCount,1) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.9964,4) self.assertAlmostEqual(avgBad,1.000,4) self.assertEqual(tbl[0,0] , 16) self.assertEqual(tbl[1,1] , 12) self.assertEqual(tbl[0,1] , 1) self.assertEqual(tbl[1,0] , 0) def test3(self): """ include training data only """ self.details.tableName = 'ferro_quant' self.details.doHoldout=0 self.details.doTraining=1 with open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'),'rb') as pklF: compos = pickle.load(pklF) tgt = 5 self.assertEqual(len(compos),tgt,'bad composite loaded: %d != %d'%(len(compos),tgt)) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,65) self.assertEqual(misCount,1) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.98307,4) self.assertAlmostEqual(avgBad,0.600,4) self.assertEqual(tbl[0,0] , 38,tbl) self.assertEqual(tbl[1,1] , 27) self.assertEqual(tbl[0,1] , 1) self.assertEqual(tbl[1,0] , 0) def test4(self): """ include thresholding """ self.details.tableName = 'ferro_quant' self.details.threshold = 0.80 self.details.doHoldout=0 self.details.doTraining=0 with open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'),'rb') as pklF: compos = pickle.load(pklF) tgt = 5 self.assertEqual(len(compos),tgt) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,91) self.assertEqual(misCount,1) self.assertEqual(nSkipped,3) self.assertAlmostEqual(avgGood,0.9956,4) self.assertAlmostEqual(avgBad,1.000,4) self.assertAlmostEqual(avgSkip,0.6000,4) self.assertEqual(tbl[0,0] , 54) self.assertEqual(tbl[1,1] , 37) self.assertEqual(tbl[0,1] , 1) self.assertEqual(tbl[1,0] , 0) def test5(self): """ basics """ self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_auto_10_3.pkl'),'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) tpl = ScreenComposite.ScreenFromDetails(compos,self.details) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = tpl self.assertEqual(nGood,95) self.assertEqual(misCount,8) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.9684,4) self.assertAlmostEqual(avgBad,.8375,4) self.assertEqual(tbl[0,0] , 50) self.assertEqual(tbl[1,1] , 45) self.assertEqual(tbl[0,1] , 5) self.assertEqual(tbl[1,0] , 3) def test6(self): """ multiple models """ self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_auto_10_3.pkl'),'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) composites = [compos,compos] tpl = ScreenComposite.ScreenFromDetails(composites,self.details) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = tpl self.assertEqual(nGood[0],95) self.assertEqual(misCount[0],8) self.assertEqual(nSkipped[0],0) self.assertAlmostEqual(avgGood[0],.9684,4) self.assertAlmostEqual(avgBad[0],.8375,4) self.assertEqual(nGood[1],0) self.assertEqual(misCount[1],0) self.assertEqual(nSkipped[1],0) self.assertEqual(avgGood[1],0) self.assertEqual(avgBad[1],0) self.assertEqual(tbl[0,0],50) self.assertEqual(tbl[1,1],45) self.assertEqual(tbl[0,1],5) self.assertEqual(tbl[1,0],3) def test7(self): """ shuffle """ self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_shuffle_10_3.pkl'),'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) self.details.shuffleActivities=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,50) self.assertEqual(misCount,53) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.7380,4) self.assertAlmostEqual(avgBad,.7660,4) self.assertEqual(tbl[0,0] , 30) self.assertEqual(tbl[1,1] , 20) self.assertEqual(tbl[0,1] , 25) self.assertEqual(tbl[1,0] , 28) def test8(self): """ shuffle with segmentation """ self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_shuffle_10_3.pkl'), 'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) self.details.shuffleActivities=1 self.details.doHoldout=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,19) self.assertEqual(misCount,12) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.7737,4) self.assertAlmostEqual(avgBad,.7500,4) self.assertEqual(tbl[0,0] , 12) self.assertEqual(tbl[1,1] , 7) self.assertEqual(tbl[0,1] , 6) self.assertEqual(tbl[1,0] , 6) def test9(self): """ shuffle with segmentation2 """ self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_shuffle_10_3.pkl'), 'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) self.details.shuffleActivities=1 self.details.doTraining=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,31) self.assertEqual(misCount,41) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.7161,4) self.assertAlmostEqual(avgBad,.7707,4) self.assertEqual(tbl[0,0] , 18) self.assertEqual(tbl[1,1] , 13) self.assertEqual(tbl[0,1] , 19) self.assertEqual(tbl[1,0] , 22) def test10(self): """ filtering """ self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_filt_10_3.pkl'), 'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) self.details.filterVal=1 self.details.filterFrac=.33 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,90) self.assertEqual(misCount,13) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.9578,4) self.assertAlmostEqual(avgBad,.8538,4) self.assertEqual(tbl[0,0] , 54) self.assertEqual(tbl[1,1] , 36) self.assertEqual(tbl[0,1] , 1) self.assertEqual(tbl[1,0] , 12) def test11(self): """ filtering with segmentation """ self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_filt_10_3.pkl'), 'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) self.details.doHoldout=1 self.details.filterVal=1 self.details.filterFrac=.33 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood,37) self.assertEqual(misCount,6) self.assertEqual(nSkipped,0) self.assertAlmostEqual(avgGood,.95946,4) self.assertAlmostEqual(avgBad,.85,4) self.assertEqual(tbl[0,0] , 14) self.assertEqual(tbl[1,1] , 23) self.assertEqual(tbl[0,1] , 1) self.assertEqual(tbl[1,0] , 5) def test12(self): """ test the naive bayes composite""" self.details.tableName = 'ferro_noquant' with open(os.path.join(self.baseDir,'ferromag_NaiveBayes.pkl'), 'rb') as pklF: compos = pickle.load(pklF) tgt = 10 self.assertEqual(len(compos),tgt) self.details.doHoldout=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) self.assertEqual(nGood , 25) self.assertEqual(misCount , 6) self.assertEqual(nSkipped , 0) self.assertAlmostEqual(avgGood, 0.9800,4) self.assertAlmostEqual(avgBad, 0.86667,4) self.assertEqual(tbl[0,0] , 9) self.assertEqual(tbl[0,1] , 6) self.assertEqual(tbl[1,0] , 0) self.assertEqual(tbl[1,1] , 16) if __name__ == '__main__': unittest.main()
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "rdkit/ML/UnitTestScreenComposite.py", "copies": "1", "size": "10507", "license": "bsd-3-clause", "hash": 6088741859960249000, "line_mean": 34.2583892617, "line_max": 111, "alpha_frac": 0.6851622728, "autogenerated": false, "ratio": 3.0393404686144057, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.901300082346641, "avg_score": 0.04230038358959904, "num_lines": 298 }
"""unit testing code for the ScreenComposite functionality """ from rdkit import RDConfig import unittest,os from rdkit.ML import BuildComposite from rdkit.ML import ScreenComposite import cPickle as pickle def feq(a,b,tol=1e-4): if abs(a-b)>tol: return 0 else: return 1 class TestCase(unittest.TestCase): def setUp(self): #print '\n%s: '%self.shortDescription(), self.baseDir = os.path.join(RDConfig.RDCodeDir,'ML','test_data') self.dbName = RDConfig.RDTestDatabase self.details = ScreenComposite.SetDefaults() self.details.dbName = self.dbName self.details.dbUser = RDConfig.defaultDBUser self.details.dbPassword = RDConfig.defaultDBPassword def test1(self): """ basics """ self.details.tableName = 'ferro_quant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'), 'rb')) tgt = 7 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==93 assert misCount==2 assert nSkipped==0 assert feq(avgGood,.9849),avgGood assert feq(avgBad,.8500),avgBad assert tbl[0,0] == 54,tbl assert tbl[1,1] == 39 assert tbl[0,1] == 2 assert tbl[1,0] == 0 def test2(self): """ include holdout data only """ self.details.tableName = 'ferro_quant' self.details.doHoldout=1 self.details.doTraining=0 compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'), 'rb')) tgt = 7 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==28 assert misCount==1 assert nSkipped==0 assert feq(avgGood,.9857),avgGood assert feq(avgBad,1.000),avgBad assert tbl[0,0] == 16,tbl assert tbl[1,1] == 12 assert tbl[0,1] == 1 assert tbl[1,0] == 0 def test3(self): """ include training data only """ self.details.tableName = 'ferro_quant' self.details.doHoldout=0 self.details.doTraining=1 compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'), 'rb')) tgt = 7 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==65 assert misCount==1 assert nSkipped==0 assert feq(avgGood,.9846),avgGood assert feq(avgBad,.7000),avgBad assert tbl[0,0] == 38,tbl assert tbl[1,1] == 27 assert tbl[0,1] == 1 assert tbl[1,0] == 0 def test4(self): """ include thresholding """ self.details.tableName = 'ferro_quant' self.details.threshold = 0.80 self.details.doHoldout=0 self.details.doTraining=0 compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_quant_10.pkl'), 'rb')) tgt = 7 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==87,str(nGood) assert misCount==1 assert nSkipped==7,nSkipped assert feq(avgGood,1.0),avgGood assert feq(avgBad,1.000),avgBad assert feq(avgSkip,.7571),avgSkip assert tbl[0,0] == 50 assert tbl[1,1] == 37 assert tbl[0,1] == 1 assert tbl[1,0] == 0 def test5(self): """ basics """ self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_auto_10_3.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) tpl = ScreenComposite.ScreenFromDetails(compos,self.details) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = tpl assert nGood==93,nGood assert misCount==10 assert nSkipped==0 assert feq(avgGood,.9699),avgGood assert feq(avgBad,.8100),avgBad assert tbl[0,0] == 48,tbl assert tbl[1,1] == 45 assert tbl[0,1] == 7 assert tbl[1,0] == 3 def test6(self): """ multiple models """ self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_auto_10_3.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) composites = [compos,compos] tpl = ScreenComposite.ScreenFromDetails(composites,self.details) nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = tpl assert feq(nGood[0],93),nGood assert feq(misCount[0],10) assert feq(nSkipped[0],0) assert feq(avgGood[0],.9699),avgGood assert feq(avgBad[0],.8100),avgBad assert feq(nGood[1],0) assert feq(misCount[1],0) assert feq(nSkipped[1],0) assert feq(avgGood[1],0) assert feq(avgBad[1],0) assert feq(tbl[0,0],48),tbl assert feq(tbl[1,1],45) assert feq(tbl[0,1],7) assert feq(tbl[1,0],3) def test7(self): """ shuffle """ self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_shuffle_10_3.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) self.details.shuffleActivities=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==50,nGood assert misCount==53 assert nSkipped==0 assert feq(avgGood,.7380),avgGood assert feq(avgBad,.7660),avgBad assert tbl[0,0] == 30,tbl assert tbl[1,1] == 20 assert tbl[0,1] == 25 assert tbl[1,0] == 28 def test8(self): """ shuffle with segmentation """ self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_shuffle_10_3.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) self.details.shuffleActivities=1 self.details.doHoldout=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==19,nGood assert misCount==12 assert nSkipped==0 assert feq(avgGood,.7737),avgGood assert feq(avgBad,.7500),avgBad assert tbl[0,0] == 12,tbl assert tbl[1,1] == 7 assert tbl[0,1] == 6 assert tbl[1,0] == 6 def test9(self): """ shuffle with segmentation2 """ self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_shuffle_10_3.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) self.details.shuffleActivities=1 self.details.doTraining=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==31,nGood assert misCount==41 assert nSkipped==0 assert feq(avgGood,.7161),avgGood assert feq(avgBad,.7707),avgBad assert tbl[0,0] == 18,tbl assert tbl[1,1] == 13 assert tbl[0,1] == 19 assert tbl[1,0] == 22 def test10(self): """ filtering """ self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_filt_10_3.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) self.details.filterVal=1 self.details.filterFrac=.33 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==90 assert misCount==13 assert nSkipped==0 assert feq(avgGood,.9578) assert feq(avgBad,.8538) assert tbl[0,0] == 54 assert tbl[1,1] == 36 assert tbl[0,1] == 1 assert tbl[1,0] == 12 def test11(self): """ filtering with segmentation """ self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_filt_10_3.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) self.details.doHoldout=1 self.details.filterVal=1 self.details.filterFrac=.33 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood==37,nGood assert misCount==6 assert nSkipped==0 assert feq(avgGood,.9594) assert feq(avgBad,.85) assert tbl[0,0] == 14,tbl assert tbl[1,1] == 23 assert tbl[0,1] == 1 assert tbl[1,0] == 5 def test12(self): """ test the naive bayes composite""" self.details.tableName = 'ferro_noquant' compos = pickle.load(open(os.path.join(self.baseDir,'ferromag_NaiveBayes.pkl'), 'rb')) tgt = 10 assert len(compos)==tgt,'bad composite loaded: %d != %d'%(len(compos),tgt) self.details.doHoldout=1 nGood,misCount,nSkipped,avgGood,avgBad,avgSkip,tbl = ScreenComposite.ScreenFromDetails(compos,self.details) assert nGood == 27,nGood assert misCount == 4,misCount assert nSkipped == 0,nSkipped assert feq(avgGood, 0.9407),avgGood assert feq(avgBad, 0.875),avgBad assert tbl[0,0] == 11,tbl assert tbl[0,1] == 4 assert tbl[1,0] == 0 assert tbl[1,1] == 16 if __name__ == '__main__': unittest.main()
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/ML/UnitTestScreenComposite.py", "copies": "2", "size": "9996", "license": "bsd-3-clause", "hash": -4490366876140209700, "line_mean": 33.2328767123, "line_max": 111, "alpha_frac": 0.6396558623, "autogenerated": false, "ratio": 3.103384042222912, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4743039904522912, "avg_score": null, "num_lines": null }
from __future__ import print_function from rdkit import RDConfig import os, sys, time try: import subprocess except ImportError: subprocess = None TEST_FAILED = -1 TEST_PASSED = 0 def RunTest(exeName, args, extras): if exeName == "python": exeName = RDConfig.pythonExe args = args.split(' ') startDir = os.getcwd() if 'dir' in extras: os.chdir(extras['dir']) expectedReturn = extras.get('returns', 0) if not subprocess: raise NotImplementedError('cannot run tests if the subprocess module is not available.') else: try: retVal = subprocess.call([exeName] + list(args)) except OSError: print("Could not find executable: %s." % exeName, file=sys.stderr) return TEST_FAILED if 'dir' in extras: os.chdir(startDir) if retVal != expectedReturn: return TEST_FAILED else: return TEST_PASSED def RunScript(script, doLongTests, verbose): # support python 2.7 style -f argument for failfast if sys.argv[-1] == '-f': # setting environment allows this setting to recursively pass to all child # processes os.environ['PYTHON_TEST_FAILFAST'] = '1' if len(sys.argv) == 3 and sys.argv[1] == '--testDir': os.chdir(sys.argv[2]) # ------------------------------------------------------- # this is pretty funny. Whatever directory we started python in # will be in the search path, and if we've changed to another # directory, that'll be there too. HOWEVER... the starting # directory will be searched first (at least in python2.2), so we # need to make sure that '.' is at the front of the search path if sys.path[0] != '.': sys.path = ['.'] + sys.path script = script.split('.py')[0] mod = __import__(script) try: tests = mod.tests except AttributeError: return [], 0 longTests = [] if doLongTests: try: longTests = mod.longTests except AttributeError: pass failed = [] for i, entry in enumerate(tests): try: exeName, args, extras = entry except ValueError: print('bad entry:', entry) sys.exit(-1) try: res = RunTest(exeName, args, extras) except Exception: import traceback traceback.print_exc() res = TEST_FAILED if res != TEST_PASSED: failed.append((exeName, args, extras)) # check failfast setting if os.environ.get('PYTHON_TEST_FAILFAST', '') == '1': # return immediately sys.stderr.write("Exiting from %s\n" % str([exeName] + list(args))) return failed, i + 1 for i, (exeName, args, extras) in enumerate(longTests): res = RunTest(exeName, args, extras) if res != TEST_PASSED: failed.append((exeName, args, extras)) if os.environ.get('PYTHON_TEST_FAILFAST', '') == '1': # return immediately sys.stderr.write("Exitng from %s\n" % str([exeName] + list(args))) return failed, len(tests) + i + 1 nTests = len(tests) + len(longTests) del sys.modules[script] if verbose and failed: for exeName, args, extras in failed: print("!!! TEST FAILURE: ", exeName, args, extras, file=sys.stderr) return failed, nTests def ReportResults(script, failedTests, nTests, runTime, verbose, dest): if not nTests: dest.write('!-!-!-!-!-!-!-!-!-!-!\n') dest.write('\tScript: %s. No tests run!\n' % (script)) elif not len(failedTests): dest.write('-----------------\n') dest.write('\tScript: %s. Passed %d tests in %.2f seconds\n' % (script, nTests, runTime)) else: dest.write('!-!-!-!-!-!-!-!-!-!-!\n') dest.write('\tScript: %s. Failed %d (of %d) tests in %.2f seconds\n' % (script, len(failedTests), nTests, runTime)) if verbose: for exeName, args, extras in failedTests: dirName = extras.get('dir', '.') dirName = os.path.abspath(dirName) dest.write('\t\t(%s): %s %s\n' % (dirName, exeName, args)) if __name__ == '__main__': import getopt args, extras = getopt.getopt(sys.argv[1:], 'lv') doLongTests = 0 verbose = 1 for arg, val in args: if arg == '-l': doLongTests = 1 elif arg == '-v': verbose = 0 pwd = os.getcwd() totNumFailed = 0 totNumRun = 0 failures = [] timeAccum = 0.0 for script in extras: try: open(script, 'r') except IOError: sys.stderr.write('ERROR: Test script %s could not be opened.\n' % (script)) else: dirName = os.path.dirname(script) scriptBase = os.path.basename(script) if dirName: os.chdir(dirName) try: t1 = time.time() failed, nTests = RunScript(scriptBase, doLongTests, verbose) t2 = time.time() except ImportError: import traceback traceback.print_exc() sys.stderr.write('ERROR: Could not import test script %s\n' % (script)) else: runTime = t2 - t1 ReportResults(script, failed, nTests, runTime, verbose, sys.stderr) timeAccum += runTime if dirName: os.chdir(pwd) if len(extras) > 1: totNumFailed += len(failed) totNumRun += nTests if len(failed): failures.append(script) if totNumRun > 1: sys.stderr.write('\n\n-*-*-*-*-*-*- Test Results Summary -*-*-*-*-*-*-\n') sys.stderr.write('\t\tTotal run time: %.2f seconds\n' % (timeAccum)) if totNumFailed: sys.stderr.write('!!!!!--- %d Failures in %d tests ---!!!!!\n' % (totNumFailed, totNumRun)) sys.stderr.write('\tModules with failures:\n') for failure in failures: sys.stderr.write('\t\t%s\n' % failure) else: sys.stderr.write(' All %d tests (in %d modules) passed\n' % (totNumRun, len(extras))) sys.exit(totNumFailed) class _RedirectStream: _stream = None def __init__(self, new_target): self._new_target = new_target # We use a list of old targets to make this CM re-entrant self._old_targets = [] def __enter__(self): self._old_targets.append(getattr(sys, self._stream)) setattr(sys, self._stream, self._new_target) return self._new_target def __exit__(self, exctype, excinst, exctb): setattr(sys, self._stream, self._old_targets.pop()) class redirect_stdout(_RedirectStream): """Context manager for temporarily redirecting stdout to another file. # How to send help() to stderr with redirect_stdout(sys.stderr): help(dir) # How to write help() to a file with open('help.txt', 'w') as f: with redirect_stdout(f): help(pow) """ _stream = "stdout" class redirect_stderr(_RedirectStream): """Context manager for temporarily redirecting stderr to another file.""" _stream = "stderr" class OutputRedirectC: """Context manager which uses low-level file descriptors to suppress output to stdout/stderr, optionally redirecting to the named file(s). Suppress all output with Silence(): <code> Redirect stdout to file with OutputRedirectC(stdout='output.txt', mode='w'): <code> Redirect stderr to file with OutputRedirectC(stderr='output.txt', mode='a'): <code> http://code.activestate.com/recipes/577564-context-manager-for-low-level-redirection-of-stdou/ >>> """ def __init__(self, stdout=os.devnull, stderr=os.devnull, mode='wb'): self.outfiles = stdout, stderr self.combine = (stdout == stderr) self.mode = mode self.saved_streams = None self.fds = None self.saved_fds = None self.null_fds = None self.null_streams = None def __enter__(self): # save previous stdout/stderr self.saved_streams = saved_streams = sys.__stdout__, sys.__stderr__ self.fds = fds = [s.fileno() for s in saved_streams] self.saved_fds = [os.dup(fd) for fd in fds] # flush any pending output for s in saved_streams: s.flush() # open surrogate files if self.combine: null_streams = [open(self.outfiles[0], self.mode, 0)] * 2 if self.outfiles[0] != os.devnull: # disable buffering so output is merged immediately sys.stdout, sys.stderr = [os.fdopen(fd, 'wb', 0) for fd in fds] else: null_streams = [open(f, self.mode, 0) for f in self.outfiles] self.null_fds = null_fds = [s.fileno() for s in null_streams] self.null_streams = null_streams # overwrite file objects and low-level file descriptors for null_fd, fd in zip(null_fds, fds): os.dup2(null_fd, fd) def __exit__(self, *args): # flush any pending output for s in self.saved_streams: s.flush() # restore original streams and file descriptors for saved_fd, fd in zip(self.saved_fds, self.fds): os.dup2(saved_fd, fd) sys.stdout, sys.stderr = self.saved_streams # clean up for s in self.null_streams: s.close() for fd in self.saved_fds: os.close(fd) return False
{ "repo_name": "rvianello/rdkit", "path": "rdkit/TestRunner.py", "copies": "1", "size": "9112", "license": "bsd-3-clause", "hash": -8739317964714115000, "line_mean": 29.8881355932, "line_max": 99, "alpha_frac": 0.6187445127, "autogenerated": false, "ratio": 3.4423876086135246, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4561132121313525, "avg_score": null, "num_lines": null }
""" Hybrid EState-VSA descriptors (like the MOE VSA descriptors) """ import numpy from rdkit.Chem.EState.EState import EStateIndices as EStateIndices_ from rdkit.Chem.MolSurf import _LabuteHelper as VSAContribs_ import bisect """ These default VSA bins were chosen using the PP3K solubility data set. An arbitrary number of bins were selected and the boundaries were selected to give an approximately equal number of atoms per bin """ vsaBins=[4.78,5.00,5.410,5.740,6.00,6.07,6.45,7.00,11.0] def VSA_EState_(mol,bins=None,force=1): """ *Internal Use Only* """ if not force and hasattr(mol,'_vsaEState'): return mol._vsaEState if bins is None: bins = estateBins propContribs = EStateIndices_(mol,force=force) volContribs = VSAContribs_(mol) ans = numpy.zeros(len(bins)+1,numpy.float) for i,prop in enumerate(propContribs): if prop is not None: bin = bisect.bisect_right(bins,volContribs[i+1]) ans[bin] += prop mol._vsaEState=ans return ans """ These default EState bins were chosen using the PP3K solubility data set. An arbitrary number of bins (10) were selected and the boundaries were selected to give an approximately equal number of atoms per bin """ estateBins=[-0.390,0.290,0.717,1.165,1.540,1.807,2.05,4.69,9.17,15.0] def EState_VSA_(mol,bins=None,force=1): """ *Internal Use Only* """ if not force and hasattr(mol,'_eStateVSA'): return mol._eStateVSA if bins is None: bins = estateBins propContribs = EStateIndices_(mol,force=force) volContribs = VSAContribs_(mol) ans = numpy.zeros(len(bins)+1,numpy.float) for i,prop in enumerate(propContribs): if prop is not None: bin = bisect.bisect_right(bins,prop) ans[bin] += volContribs[i+1] mol._eStateVSA=ans return ans def _InstallDescriptors(): for i in range(len(vsaBins)): fn = lambda x,y=i:VSA_EState_(x,force=0)[y] if i > 0: fn.__doc__="VSA EState Descriptor %d (% 4.2f <= x < % 4.2f)"%(i+1,vsaBins[i-1],vsaBins[i]) else: fn.__doc__="VSA EState Descriptor %d (-inf < x < % 4.2f)"%(i+1,vsaBins[i]) name="VSA_EState%d"%(i+1) fn.version="1.0.0" globals()[name]=fn i+=1 fn = lambda x,y=i:VSA_EState_(x,force=0)[y] fn.__doc__="VSA EState Descriptor %d (% 4.2f <= x < inf)"%(i+1,vsaBins[i-1]) name="VSA_EState%d"%(i+1) fn.version="1.0.0" globals()[name]=fn fn=None for i in range(len(estateBins)): fn = lambda x,y=i:EState_VSA_(x,force=0)[y] if i > 0: fn.__doc__="EState VSA Descriptor %d (% 4.2f <= x < % 4.2f)"%(i+1,estateBins[i-1],estateBins[i]) else: fn.__doc__="EState VSA Descriptor %d (-inf < x < % 4.2f)"%(i+1,estateBins[i]) name="EState_VSA%d"%(i+1) fn.version="1.0.1" globals()[name]=fn i+=1 fn = lambda x,y=i:EState_VSA_(x,force=0)[y] fn.__doc__="EState VSA Descriptor %d (% 4.2f <= x < inf)"%(i+1,estateBins[i-1]) name="EState_VSA%d"%(i+1) fn.version="1.0.1" globals()[name]=fn fn=None # Change log for EState_VSA descriptors: # version 1.0.1: optimizations, values unaffected _InstallDescriptors()
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/Chem/EState/EState_VSA.py", "copies": "6", "size": "3368", "license": "bsd-3-clause", "hash": -6254493243906284000, "line_mean": 29.8990825688, "line_max": 102, "alpha_frac": 0.6591448931, "autogenerated": false, "ratio": 2.6108527131782946, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6269997606278294, "avg_score": null, "num_lines": null }
""" Hybrid EState-VSA descriptors (like the MOE VSA descriptors) """ import bisect import numpy from rdkit.Chem.EState.EState import EStateIndices as EStateIndices_ from rdkit.Chem.MolSurf import _LabuteHelper as VSAContribs_ """ These default VSA bins were chosen using the PP3K solubility data set. An arbitrary number of bins were selected and the boundaries were selected to give an approximately equal number of atoms per bin """ vsaBins = [4.78, 5.00, 5.410, 5.740, 6.00, 6.07, 6.45, 7.00, 11.0] def VSA_EState_(mol, bins=None, force=1): """ *Internal Use Only* """ if not force and hasattr(mol, '_vsaEState'): return mol._vsaEState if bins is None: bins = estateBins propContribs = EStateIndices_(mol, force=force) volContribs = VSAContribs_(mol) ans = numpy.zeros(len(bins) + 1, numpy.float) for i, prop in enumerate(propContribs): if prop is not None: nbin = bisect.bisect_right(bins, volContribs[i + 1]) ans[nbin] += prop mol._vsaEState = ans return ans """ These default EState bins were chosen using the PP3K solubility data set. An arbitrary number of bins (10) were selected and the boundaries were selected to give an approximately equal number of atoms per bin """ estateBins = [-0.390, 0.290, 0.717, 1.165, 1.540, 1.807, 2.05, 4.69, 9.17, 15.0] def EState_VSA_(mol, bins=None, force=1): """ *Internal Use Only* """ if not force and hasattr(mol, '_eStateVSA'): return mol._eStateVSA if bins is None: bins = estateBins propContribs = EStateIndices_(mol, force=force) volContribs = VSAContribs_(mol) ans = numpy.zeros(len(bins) + 1, numpy.float) for i, prop in enumerate(propContribs): if prop is not None: nbin = bisect.bisect_right(bins, prop) ans[nbin] += volContribs[i + 1] mol._eStateVSA = ans return ans def _descriptorDocstring(name, nbin, bins): """ Create a docstring for the descriptor name """ if nbin == 0: interval = "-inf < x < {0:.2f}".format(bins[nbin]) elif nbin < len(bins): interval = " {0:.2f} <= x < {1:.2f}".format(bins[nbin - 1], bins[nbin]) else: interval = " {0:.2f} <= x < inf".format(bins[nbin - 1]) return '{0} Descriptor {1} ({2})'.format(name, nbin + 1, interval) def _descriptor_VSA_EState(nbin): def VSA_EState_bin(mol): return VSA_EState_(mol, force=False)[nbin] name = "VSA_EState{0}".format(nbin + 1) fn = VSA_EState_bin fn.__doc__ = _descriptorDocstring('VSA EState', nbin, vsaBins) fn.version = '1.0.0' return name, fn def _descriptor_EState_VSA(nbin): def EState_VSA_bin(mol): return EState_VSA_(mol, force=False)[nbin] name = "EState_VSA{0}".format(nbin + 1) fn = EState_VSA_bin fn.__name__ = name if hasattr(fn, '__qualname__'): fn.__qualname__ = name fn.__doc__ = _descriptorDocstring('EState VSA', nbin, estateBins) fn.version = '1.0.1' return name, fn def _InstallDescriptors(): for nbin in range(len(vsaBins) + 1): name, fn = _descriptor_VSA_EState(nbin) globals()[name] = fn for nbin in range(len(estateBins) + 1): name, fn = _descriptor_EState_VSA(nbin) globals()[name] = fn # Change log for EState_VSA descriptors: # version 1.0.1: optimizations, values unaffected _InstallDescriptors()
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/EState/EState_VSA.py", "copies": "6", "size": "3552", "license": "bsd-3-clause", "hash": 8627994845224181000, "line_mean": 25.7067669173, "line_max": 80, "alpha_frac": 0.6675112613, "autogenerated": false, "ratio": 2.8190476190476192, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.012381261534426738, "num_lines": 133 }
from __future__ import print_function import bisect class TopNContainer(object): """ maintains a sorted list of a particular number of data elements. """ def __init__(self,size,mostNeg=-1e99): """ if size is negative, all entries will be kept in sorted order """ self._size = size if(size>=0): self.best = [mostNeg]*self._size self.extras = [None]*self._size else: self.best = [] self.extras = [] def Insert(self,val,extra=None): """ only does the insertion if val fits """ if self._size>=0: if val > self.best[0]: idx = bisect.bisect(self.best,val) # insert the new element if idx == self._size: self.best.append(val) self.extras.append(extra) else: self.best.insert(idx,val) self.extras.insert(idx,extra) # and pop off the head self.best.pop(0) self.extras.pop(0) else: idx = bisect.bisect(self.best,val) self.best.insert(idx,val) self.extras.insert(idx,extra) def GetPts(self): """ returns our set of points """ return self.best def GetExtras(self): """ returns our set of extras """ return self.extras def __len__(self): return self._size def __getitem__(self,which): return self.best[which],self.extras[which] def reverse(self): self.best.reverse() self.extras.reverse() if __name__ == '__main__': import random pts = [int(100*random.random()) for x in range(10)] c = TopNContainer(4) for pt in pts: c.Insert(pt,extra=str(pt)) print(c.GetPts()) print(c.GetExtras())
{ "repo_name": "strets123/rdkit", "path": "rdkit/DataStructs/TopNContainer.py", "copies": "4", "size": "1915", "license": "bsd-3-clause", "hash": -4584533402615983000, "line_mean": 25.2328767123, "line_max": 70, "alpha_frac": 0.6078328982, "autogenerated": false, "ratio": 3.431899641577061, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.037929492286115425, "num_lines": 73 }
from __future__ import print_function import bisect class TopNContainer(object): """ maintains a sorted list of a particular number of data elements. """ def __init__(self, size, mostNeg=-1e99): """ if size is negative, all entries will be kept in sorted order """ self._size = size if (size >= 0): self.best = [mostNeg] * self._size self.extras = [None] * self._size else: self.best = [] self.extras = [] def Insert(self, val, extra=None): """ only does the insertion if val fits """ if self._size >= 0: if val > self.best[0]: idx = bisect.bisect(self.best, val) # insert the new element if idx == self._size: self.best.append(val) self.extras.append(extra) else: self.best.insert(idx, val) self.extras.insert(idx, extra) # and pop off the head self.best.pop(0) self.extras.pop(0) else: idx = bisect.bisect(self.best, val) self.best.insert(idx, val) self.extras.insert(idx, extra) def GetPts(self): """ returns our set of points """ return self.best def GetExtras(self): """ returns our set of extras """ return self.extras def __len__(self): if self._size >= 0: return self._size else: return len(self.best) def __getitem__(self, which): return self.best[which], self.extras[which] def reverse(self): self.best.reverse() self.extras.reverse() def _exampleCode(): import random random.seed(0) pts = [int(100 * random.random()) for _ in range(10)] c = TopNContainer(4) for pt in pts: c.Insert(pt, extra=str(pt)) print(c.GetPts()) print(c.GetExtras()) if __name__ == '__main__': # pragma: nocover _exampleCode()
{ "repo_name": "jandom/rdkit", "path": "rdkit/DataStructs/TopNContainer.py", "copies": "5", "size": "2074", "license": "bsd-3-clause", "hash": 3134968020779097000, "line_mean": 22.8390804598, "line_max": 70, "alpha_frac": 0.599807136, "autogenerated": false, "ratio": 3.428099173553719, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.012897170691971443, "num_lines": 87 }
""" functionality to allow adjusting composite model contents """ from __future__ import print_function import numpy import copy def BalanceComposite(model, set1, set2, weight, targetSize, names1=None, names2=None): """ adjusts the contents of the composite model so as to maximize the weighted classification accuracty across the two data sets. The resulting composite model, with _targetSize_ models, is returned. **Notes**: - if _names1_ and _names2_ are not provided, _set1_ and _set2_ should have the same ordering of columns and _model_ should have already have had _SetInputOrder()_ called. """ # # adjust the weights to be proportional to the size of the two data sets # The normalization we do here assures that a perfect model contributes # a score of S1+S2 to the final # S1 = len(set1) S2 = len(set2) weight1 = float(S1 + S2) * (1 - weight) / S1 weight2 = float(S1 + S2) * weight / S2 #print '\t:::',S1,S2,weight1,weight2 #print 'nModels:',len(model) # start with a copy so that we get all the additional schnick-schnack res = copy.copy(model) res.modelList = [] res.errList = [] res.countList = [] res.quantizationRequirements = [] startSize = len(model) scores = numpy.zeros(startSize, numpy.float) actQuantBounds = model.GetActivityQuantBounds() if names1 is not None: model.SetInputOrder(names1) for pt in set1: pred, conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i] == ans: scores[i] += weight1 if names2 is not None: model.SetInputOrder(names2) for pt in set2: pred, conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i] == ans: scores[i] += weight2 # normalize the scores nPts = S1 + S2 scores /= nPts # sort them: bestOrder = list(numpy.argsort(scores)) bestOrder.reverse() print('\tTAKE:', bestOrder[:targetSize]) # and now take the best set: for i in range(targetSize): idx = bestOrder[i] mdl = model.modelList[idx] res.modelList.append(mdl) res.errList.append(1. - scores[idx]) res.countList.append(1) # FIX: this should probably be more general: res.quantizationRequirements.append(0) return res
{ "repo_name": "jandom/rdkit", "path": "rdkit/ML/Composite/AdjustComposite.py", "copies": "1", "size": "2617", "license": "bsd-3-clause", "hash": -4321554604370946600, "line_mean": 28.7386363636, "line_max": 86, "alpha_frac": 0.6679403898, "autogenerated": false, "ratio": 3.3042929292929295, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9355781545583133, "avg_score": 0.02329035470195934, "num_lines": 88 }
""" functionality to allow adjusting composite model contents """ from __future__ import print_function import copy import numpy def BalanceComposite(model, set1, set2, weight, targetSize, names1=None, names2=None): """ adjusts the contents of the composite model so as to maximize the weighted classification accuracty across the two data sets. The resulting composite model, with _targetSize_ models, is returned. **Notes**: - if _names1_ and _names2_ are not provided, _set1_ and _set2_ should have the same ordering of columns and _model_ should have already have had _SetInputOrder()_ called. """ # # adjust the weights to be proportional to the size of the two data sets # The normalization we do here assures that a perfect model contributes # a score of S1+S2 to the final # S1 = len(set1) S2 = len(set2) weight1 = float(S1 + S2) * (1 - weight) / S1 weight2 = float(S1 + S2) * weight / S2 # print('\t:::', S1, S2, weight1, weight2) # print('nModels:', len(model)) # start with a copy so that we get all the additional schnick-schnack res = copy.copy(model) res.modelList = [] res.errList = [] res.countList = [] res.quantizationRequirements = [] startSize = len(model) scores = numpy.zeros(startSize, numpy.float) actQuantBounds = model.GetActivityQuantBounds() if names1 is not None: model.SetInputOrder(names1) for pt in set1: pred, conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i] == ans: scores[i] += weight1 if names2 is not None: model.SetInputOrder(names2) for pt in set2: pred, conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i] == ans: scores[i] += weight2 # normalize the scores nPts = S1 + S2 scores /= nPts # sort them: bestOrder = list(numpy.argsort(scores)) bestOrder.reverse() print('\tTAKE:', bestOrder[:targetSize]) # and now take the best set: for i in range(targetSize): idx = bestOrder[i] mdl = model.modelList[idx] res.modelList.append(mdl) res.errList.append(1. - scores[idx]) res.countList.append(1) # FIX: this should probably be more general: res.quantizationRequirements.append(0) return res
{ "repo_name": "rvianello/rdkit", "path": "rdkit/ML/Composite/AdjustComposite.py", "copies": "4", "size": "2628", "license": "bsd-3-clause", "hash": -604106757098932400, "line_mean": 28.2, "line_max": 86, "alpha_frac": 0.6651445967, "autogenerated": false, "ratio": 3.3056603773584907, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5970804974058491, "avg_score": null, "num_lines": null }
""" functionality to allow adjusting composite model contents """ import numpy import copy def BalanceComposite(model,set1,set2,weight,targetSize,names1=None,names2=None): """ adjusts the contents of the composite model so as to maximize the weighted classification accuracty across the two data sets. The resulting composite model, with _targetSize_ models, is returned. **Notes**: - if _names1_ and _names2_ are not provided, _set1_ and _set2_ should have the same ordering of columns and _model_ should have already have had _SetInputOrder()_ called. """ # # adjust the weights to be proportional to the size of the two data sets # The normalization we do here assures that a perfect model contributes # a score of S1+S2 to the final # S1 = len(set1) S2 = len(set2) weight1 = float(S1+S2)*(1-weight)/S1 weight2 = float(S1+S2)*weight/S2 #print '\t:::',S1,S2,weight1,weight2 #print 'nModels:',len(model) # start with a copy so that we get all the additional schnick-schnack res = copy.copy(model) res.modelList = [] res.errList = [] res.countList = [] res.quantizationRequirements = [] startSize = len(model) scores = numpy.zeros(startSize,numpy.float) actQuantBounds = model.GetActivityQuantBounds() if names1 is not None: model.SetInputOrder(names1) for pt in set1: pred,conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i]==ans: scores[i] += weight1 if names2 is not None: model.SetInputOrder(names2) for pt in set2: pred,conf = model.ClassifyExample(pt) if actQuantBounds: ans = model.QuantizeActivity(pt)[-1] else: ans = pt[-1] votes = model.GetVoteDetails() for i in range(startSize): if votes[i]==ans: scores[i] += weight2 # normalize the scores nPts = S1+S2 scores /= nPts # sort them: bestOrder = list(numpy.argsort(scores)) bestOrder.reverse() print '\tTAKE:',bestOrder[:targetSize] # and now take the best set: for i in range(targetSize): idx = bestOrder[i] mdl = model.modelList[idx] res.modelList.append(mdl) res.errList.append(1.-scores[idx]) res.countList.append(1) # FIX: this should probably be more general: res.quantizationRequirements.append(0) return res
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/ML/Composite/AdjustComposite.py", "copies": "2", "size": "2529", "license": "bsd-3-clause", "hash": 7237315060509842000, "line_mean": 29.1071428571, "line_max": 80, "alpha_frac": 0.6797153025, "autogenerated": false, "ratio": 3.2674418604651163, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4947157162965117, "avg_score": null, "num_lines": null }
""" Define the class _KNNClassificationModel_, used to represent a k-nearest neighbhors classification model Inherits from _KNNModel_ """ from rdkit.ML.KNN import KNNModel class KNNClassificationModel(KNNModel.KNNModel): """ This is used to represent a k-nearest neighbor classifier """ def __init__(self, k, attrs, dfunc, radius=None): self._setup(k, attrs, dfunc, radius) self._badExamples = [] # list of examples incorrectly classified def type(self): return "Classification Model" def SetBadExamples(self, examples): self._badExamples = examples def GetBadExamples(self): return self._badExamples def NameModel(self, varNames): self.SetName(self.type()) def ClassifyExample(self, example, appendExamples=0, neighborList=None): """ Classify a an example by looking at its closest neighbors The class assigned to this example is same as the class for the mojority of its _k neighbors **Arguments** - examples: the example to be classified - appendExamples: if this is nonzero then the example will be stored on this model - neighborList: if provided, will be used to return the list of neighbors **Returns** - the classification of _example_ """ if appendExamples: self._examples.append(example) # first find the k-closest examples in the traning set knnLst = self.GetNeighbors(example) # find out how many of the neighbors belong to each of the classes clsCnt = {} for knn in knnLst: cls = knn[1][-1] if (cls in clsCnt): clsCnt[cls] += 1 else: clsCnt[cls] = 1 if neighborList is not None: neighborList.extend(knnLst) # now return the class with the maximum count mkey = -1 mcnt = -1 for key in clsCnt.keys(): if (mcnt < clsCnt[key]): mkey = key mcnt = clsCnt[key] return mkey
{ "repo_name": "rvianello/rdkit", "path": "rdkit/ML/KNN/KNNClassificationModel.py", "copies": "11", "size": "1992", "license": "bsd-3-clause", "hash": 493484967371214500, "line_mean": 23.9, "line_max": 87, "alpha_frac": 0.6666666667, "autogenerated": false, "ratio": 3.808795411089866, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9975462077789866, "avg_score": null, "num_lines": null }
""" Define the class _KNNRegressionModel_, used to represent a k-nearest neighbhors regression model Inherits from _KNNModel_ """ from rdkit.ML.KNN import KNNModel class KNNRegressionModel(KNNModel.KNNModel): """ This is used to represent a k-nearest neighbor classifier """ def __init__(self, k, attrs, dfunc, radius=None): self._setup(k, attrs, dfunc, radius) self._badExamples = [] # list of examples incorrectly classified def type(self): return "Regression Model" def SetBadExamples(self, examples): self._badExamples = examples def GetBadExamples(self): return self._badExamples def NameModel(self, varNames): self.SetName(self.type()) def PredictExample(self, example, appendExamples=0, weightedAverage=0, neighborList=None): """ Generates a prediction for an example by looking at its closest neighbors **Arguments** - examples: the example to be classified - appendExamples: if this is nonzero then the example will be stored on this model - weightedAverage: if provided, the neighbors' contributions to the value will be weighed by their reciprocal square distance - neighborList: if provided, will be used to return the list of neighbors **Returns** - the classification of _example_ """ if appendExamples: self._examples.append(example) # first find the k-closest examples in the training set knnLst = self.GetNeighbors(example) accum = 0.0 denom = 0.0 for knn in knnLst: if knn[1] is None: continue if weightedAverage: dist = knn[0] if dist == 0.0: w = 1. else: w = 1. / dist else: w = 1.0 accum += w * knn[1][-1] denom += w if denom: accum /= denom if neighborList is not None: neighborList.extend(knnLst) return accum
{ "repo_name": "jandom/rdkit", "path": "rdkit/ML/KNN/KNNRegressionModel.py", "copies": "12", "size": "1998", "license": "bsd-3-clause", "hash": -1707234064698523400, "line_mean": 23.6666666667, "line_max": 92, "alpha_frac": 0.6461461461, "autogenerated": false, "ratio": 3.9176470588235293, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import print_function from rdkit import RDConfig from rdkit import Chem import os.path from rdkit.VLib.NodeLib import * from rdkit.VLib import Supply,Filter # this would be a real input, from an sd file: #fName = os.path.join(RDConfig.RDCodeDir,'VLib','NodeLib','test_data','NCI_aids.10.dupes.sdf') #supplier = SDSupply.SDSupplyNode(fName) # instead though, we want a simpler input: smis = ['CCOC','CCO.Cl','CC(=O)[O-].[Na+]','CC[Cu]CC','OCC','C[N+](C)(C)C.[Cl-]', '[Na+].[Cl-]'] mols = [Chem.MolFromSmiles(x) for x in smis] # name the molecules (only needed because we built them from smiles): for i in range(len(mols)): mols[i].SetProp('Name','Mol-%d'%(i+1)) supplier = Supply.SupplyNode(contents=mols) # should be 7 here print('initial:',len([x for x in supplier])) # filter out anything with a transition metal or lanthanide: metals = '[#21,#22,#23,#24,#25,#26,#27,#28,#29,#39,#40,#41,#42,#43,#44,#45,#46,#47,#57,#58,#59,#60,#61,#62,#63,#64,#65,#66,#67,#68,#69,#70,#71,#72,#73,#74,#75,#76,#77,#78,#79]' smaFilter= SmartsMolFilter.SmartsFilter(patterns=[metals],counts=[1]) smaFilter.SetNegate(1) smaFilter.AddParent(supplier) # should be 6 here print('post-smaFilter:',len([x for x in smaFilter])) salts = ['[Cl;H1&X1,-]','[Na+]','[O;H2,H1&-,X0&-2]'] remover = SmartsRemover.SmartsRemover(patterns=salts) remover.AddParent(smaFilter) atsFilter = Filter.FilterNode(func=lambda x:x.GetNumAtoms()>1) atsFilter.AddParent(remover) # should be 5 here print('post-remover:',len([x for x in atsFilter])) dupeFilter = SmilesDupeFilter.DupeFilter() dupeFilter.AddParent(atsFilter) # should be 4 here print('post-dupes:',len([x for x in dupeFilter])) import StringIO # a StringIO object acts like a file: io = StringIO.StringIO() output = SmilesOutput.OutputNode(dest=io,delim=', ',idField='Name') output.AddParent(dupeFilter) print('post-output:',len([x for x in output])) print('OUTPUT:') print(io.getvalue())
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/VLib/NodeLib/demo.py", "copies": "4", "size": "2022", "license": "bsd-3-clause", "hash": 2159516174675559200, "line_mean": 33.8620689655, "line_max": 176, "alpha_frac": 0.696834817, "autogenerated": false, "ratio": 2.6328125, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5329647317, "avg_score": null, "num_lines": null }
from qt import * import sys if sys.platform == 'win32': from rdkit.qtGui.qtActiveX import MakeActiveXClass import win32com.client.gencache import win32clipboard try: cdxModule = win32com.client.gencache.EnsureModule("{AF2D2DBA-75E4-4123-BC0B-A57BD5C5C5D2}", 0, 7, 0) except Exception: raise ImportError("Chemdraw 6.0 or greater does not appear to be installed.") else: raise ImportError("Chemdraw support only available under Windows") #---------------------------------------------------------------------- class ChemdrawPanel(QWidget): def __init__(self,parent=None,name="test",readOnly=0,size=(300,300)): QWidget.__init__(self,parent,name) self.cdx = None #self.resize(QSize(300,300)) self.resize(size[0],size[1]) # Make a new class that derives from the class in the # COM module imported above. This class also derives from QWidget and # implements the machinery needed to integrate the two worlds. theClass = MakeActiveXClass(cdxModule.ChemDrawCtl, eventObj = self) # Create an instance of that class self.cdx = theClass(self) if readOnly: self.cdx.ViewOnly=1 # FIX: # This hackery is due to an apparent problem with PyQt: there is # always a gray box about 30 pixels high in the widget we're deriving # from. self.offset=30 self.label=QLabel(self,"ChemDraw") self.label.setText(name) self.label.setAlignment(Qt.AlignHCenter) fnt = QApplication.font() fnt.setPointSize(14) self.label.setFont(fnt) def pullData(self,fmt='chemical/daylight-smiles'): data = self.cdx.GetData(fmt) return str(data) def setData(self,data,fmt='chemical/daylight-smiles'): self.cdx.Objects.Clear() res = self.cdx.SetData(fmt,data) return res def resizeEvent(self,evt): sz = evt.size() self.label.setGeometry(0,0,sz.width(),self.offset) self.cdx.MoveWindow((0,self.offset,sz.width(),sz.height()),1) def __del__(self): if self.cdx: self.cdx = None # demo code if __name__ == '__main__': import sys,container a = QApplication(sys.argv) widg = QMainWindow() panel = ChemdrawPanel(widg) panel.show() widg.setCentralWidget(panel) widg.resize(QSize(300,300)) panel.setData("c1ccccc1C(=O)O") widg.show() a.setMainWidget(widg) a.exec_loop()
{ "repo_name": "adalke/rdkit", "path": "rdkit/utils/chemdraw_qax.py", "copies": "1", "size": "2430", "license": "bsd-3-clause", "hash": -1699072233390998000, "line_mean": 29.7594936709, "line_max": 104, "alpha_frac": 0.6609053498, "autogenerated": false, "ratio": 3.2142857142857144, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43751910640857145, "avg_score": null, "num_lines": null }
from rdkit import Chem from rdkit.VLib.Filter import FilterNode class DupeFilter(FilterNode): """ canonical-smiles based duplicate filter Assumptions: - inputs are molecules Sample Usage: >>> import os >>> from rdkit import RDConfig >>> from rdkit.VLib.NodeLib.SDSupply import SDSupplyNode >>> fileN = os.path.join(RDConfig.RDCodeDir,'VLib','NodeLib',\ 'test_data','NCI_aids.10.sdf') >>> suppl = SDSupplyNode(fileN) >>> filt = DupeFilter() >>> filt.AddParent(suppl) >>> ms = [x for x in filt] >>> len(ms) 10 >>> ms[0].GetProp("_Name") '48' >>> ms[1].GetProp("_Name") '78' >>> filt.reset() >>> filt.next().GetProp("_Name") '48' """ def __init__(self, **kwargs): FilterNode.__init__(self, func=self.filter, **kwargs) self._smisSeen = set() def reset(self): FilterNode.reset(self) self._smisSeen = set() def filter(self, cmpd): smi = Chem.MolToSmiles(cmpd) if smi not in self._smisSeen: self._smisSeen.add(smi) return 1 else: return 0 # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/VLib/NodeLib/SmilesDupeFilter.py", "copies": "11", "size": "1497", "license": "bsd-3-clause", "hash": 221437255125937150, "line_mean": 20.3857142857, "line_max": 76, "alpha_frac": 0.588510354, "autogenerated": false, "ratio": 3.198717948717949, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9287228302717949, "avg_score": null, "num_lines": null }
from rdkit import Chem from rdkit.VLib.Filter import FilterNode class SmartsFilter(FilterNode): """ filter out molecules matching one or more SMARTS patterns There is a count associated with each pattern. Molecules are allowed to match the pattern up to this number of times. Assumptions: - inputs are molecules Sample Usage: >>> smis = ['C1CCC1','C1CCC1C=O','CCCC','CCC=O','CC(=O)C','CCN','NCCN','NCC=O'] >>> mols = [Chem.MolFromSmiles(x) for x in smis] >>> from rdkit.VLib.Supply import SupplyNode >>> suppl = SupplyNode(contents=mols) >>> ms = [x for x in suppl] >>> len(ms) 8 We can pass in SMARTS strings: >>> smas = ['C=O','CN'] >>> counts = [1,2] >>> filt = SmartsFilter(patterns=smas,counts=counts) >>> filt.AddParent(suppl) >>> ms = [x for x in filt] >>> len(ms) 5 Alternatively, we can pass in molecule objects: >>> mols =[Chem.MolFromSmarts(x) for x in smas] >>> counts = [1,2] >>> filt.Destroy() >>> filt = SmartsFilter(patterns=mols,counts=counts) >>> filt.AddParent(suppl) >>> ms = [x for x in filt] >>> len(ms) 5 Negation does what you'd expect: >>> filt.SetNegate(1) >>> ms = [x for x in filt] >>> len(ms) 3 """ def __init__(self, patterns=[], counts=[], **kwargs): FilterNode.__init__(self, func=self.filter, **kwargs) self._initPatterns(patterns, counts) def _initPatterns(self, patterns, counts): nPatts = len(patterns) if len(counts) and len(counts) != nPatts: raise ValueError('if counts is specified, it must match patterns in length') if not len(counts): counts = [1] * nPatts targets = [None] * nPatts for i in range(nPatts): p = patterns[i] c = counts[i] if type(p) in (str, bytes): m = Chem.MolFromSmarts(p) if not m: raise ValueError('bad smarts: %s' % (p)) p = m targets[i] = p, c self._patterns = tuple(targets) def filter(self, cmpd): res = False for patt, count in self._patterns: ms = cmpd.GetSubstructMatches(patt) nMatches = len(ms) if nMatches >= count: # this query is an or, so we short circuit true: res = True break return res # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/VLib/NodeLib/SmartsMolFilter.py", "copies": "11", "size": "2668", "license": "bsd-3-clause", "hash": 1041939902500087700, "line_mean": 24.6538461538, "line_max": 83, "alpha_frac": 0.5948275862, "autogenerated": false, "ratio": 3.289765721331689, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.006843602825685255, "num_lines": 104 }
from rdkit import RDConfig from rdkit import Chem import os.path from rdkit.VLib.NodeLib import * from rdkit.VLib import Supply,Filter # this would be a real input, from an sd file: #fName = os.path.join(RDConfig.RDCodeDir,'VLib','NodeLib','test_data','NCI_aids.10.dupes.sdf') #supplier = SDSupply.SDSupplyNode(fName) # instead though, we want a simpler input: smis = ['CCOC','CCO.Cl','CC(=O)[O-].[Na+]','CC[Cu]CC','OCC','C[N+](C)(C)C.[Cl-]', '[Na+].[Cl-]'] mols = [Chem.MolFromSmiles(x) for x in smis] # name the molecules (only needed because we built them from smiles): for i in range(len(mols)): mols[i].SetProp('Name','Mol-%d'%(i+1)) supplier = Supply.SupplyNode(contents=mols) # should be 7 here print 'initial:',len([x for x in supplier]) # filter out anything with a transition metal or lanthanide: metals = '[#21,#22,#23,#24,#25,#26,#27,#28,#29,#39,#40,#41,#42,#43,#44,#45,#46,#47,#57,#58,#59,#60,#61,#62,#63,#64,#65,#66,#67,#68,#69,#70,#71,#72,#73,#74,#75,#76,#77,#78,#79]' smaFilter= SmartsMolFilter.SmartsFilter(patterns=[metals],counts=[1]) smaFilter.SetNegate(1) smaFilter.AddParent(supplier) # should be 6 here print 'post-smaFilter:',len([x for x in smaFilter]) salts = ['[Cl;H1&X1,-]','[Na+]','[O;H2,H1&-,X0&-2]'] remover = SmartsRemover.SmartsRemover(patterns=salts) remover.AddParent(smaFilter) atsFilter = Filter.FilterNode(func=lambda x:x.GetNumAtoms()>1) atsFilter.AddParent(remover) # should be 5 here print 'post-remover:',len([x for x in atsFilter]) dupeFilter = SmilesDupeFilter.DupeFilter() dupeFilter.AddParent(atsFilter) # should be 4 here print 'post-dupes:',len([x for x in dupeFilter]) import StringIO # a StringIO object acts like a file: io = StringIO.StringIO() output = SmilesOutput.OutputNode(dest=io,delim=', ',idField='Name') output.AddParent(dupeFilter) print 'post-output:',len([x for x in output]) print 'OUTPUT:' print io.getvalue()
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/VLib/NodeLib/demo.py", "copies": "2", "size": "1977", "license": "bsd-3-clause", "hash": 4897881568559909000, "line_mean": 33.6842105263, "line_max": 176, "alpha_frac": 0.6980273141, "autogenerated": false, "ratio": 2.608179419525066, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9173002216679869, "avg_score": 0.026640903389039454, "num_lines": 57 }
from rdkit import RDConfig import sys,os,types from rdkit import Chem from rdkit.VLib.Filter import FilterNode class SmartsFilter(FilterNode): """ filter out molecules matching one or more SMARTS patterns There is a count associated with each pattern. Molecules are allowed to match the pattern up to this number of times. Assumptions: - inputs are molecules Sample Usage: >>> smis = ['C1CCC1','C1CCC1C=O','CCCC','CCC=O','CC(=O)C','CCN','NCCN','NCC=O'] >>> mols = [Chem.MolFromSmiles(x) for x in smis] >>> from rdkit.VLib.Supply import SupplyNode >>> suppl = SupplyNode(contents=mols) >>> ms = [x for x in suppl] >>> len(ms) 8 We can pass in SMARTS strings: >>> smas = ['C=O','CN'] >>> counts = [1,2] >>> filt = SmartsFilter(patterns=smas,counts=counts) >>> filt.AddParent(suppl) >>> ms = [x for x in filt] >>> len(ms) 5 Alternatively, we can pass in molecule objects: >>> mols =[Chem.MolFromSmarts(x) for x in smas] >>> counts = [1,2] >>> filt.Destroy() >>> filt = SmartsFilter(patterns=mols,counts=counts) >>> filt.AddParent(suppl) >>> ms = [x for x in filt] >>> len(ms) 5 Negation does what you'd expect: >>> filt.SetNegate(1) >>> ms = [x for x in filt] >>> len(ms) 3 """ def __init__(self,patterns=[],counts=[],**kwargs): FilterNode.__init__(self,func=self.filter,**kwargs) self._initPatterns(patterns,counts) def _initPatterns(self,patterns,counts): nPatts = len(patterns) if len(counts) and len(counts)!=nPatts: raise ValueError,'if counts is specified, it must match patterns in length' if not len(counts): counts = [1]*nPatts targets = [None]*nPatts for i in range(nPatts): p = patterns[i] c = counts[i] if type(p) in types.StringTypes: m = Chem.MolFromSmarts(p) if not m: raise ValueError,'bad smarts: %s'%(p) p = m targets[i] = p,c self._patterns = tuple(targets) def filter(self,cmpd): neg = self.Negate() res = 0 #sys.stderr.write('\tFILTER: %s\n'%(Chem.MolToSmiles(cmpd))) for patt,count in self._patterns: ms = cmpd.GetSubstructMatches(patt) nMatches = len(ms) if nMatches >= count: # this query is an or, so we short circuit true: res = 1 break return res #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/VLib/NodeLib/SmartsMolFilter.py", "copies": "2", "size": "2725", "license": "bsd-3-clause", "hash": 1067319250771499500, "line_mean": 24.4672897196, "line_max": 83, "alpha_frac": 0.5941284404, "autogenerated": false, "ratio": 3.2517899761336517, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4845918416533652, "avg_score": null, "num_lines": null }
from rdkit import RDConfig import sys,os,types from rdkit import Chem from rdkit.VLib.Transform import TransformNode class SmartsRemover(TransformNode): """ transforms molecules by removing atoms matching smarts patterns Assumptions: - inputs are molecules Sample Usage: >>> smis = ['C1CCC1.C=O','C1CCC1C=O','CCC=O.C=O','NCC=O.C=O.CN'] >>> mols = [Chem.MolFromSmiles(x) for x in smis] >>> from rdkit.VLib.Supply import SupplyNode >>> suppl = SupplyNode(contents=mols) >>> ms = [x for x in suppl] >>> len(ms) 4 We can pass in SMARTS strings: >>> smas = ['C=O','CN'] >>> tform = SmartsRemover(patterns=smas) >>> tform.AddParent(suppl) >>> ms = [x for x in tform] >>> len(ms) 4 >>> Chem.MolToSmiles(ms[0]) 'C1CCC1' >>> Chem.MolToSmiles(ms[1]) 'O=CC1CCC1' >>> Chem.MolToSmiles(ms[2]) 'CCC=O' >>> Chem.MolToSmiles(ms[3]) 'NCC=O' We can also remove pieces of the molecule that are not complete fragments: >>> tform.Destroy() >>> smas = ['C=O','CN'] >>> smas = [Chem.MolFromSmarts(x) for x in smas] >>> tform = SmartsRemover(patterns=smas,wholeFragments=0) >>> tform.AddParent(suppl) >>> ms = [x for x in tform] >>> len(ms) 4 >>> Chem.MolToSmiles(ms[0]) 'C1CCC1' >>> Chem.MolToSmiles(ms[1]) 'C1CCC1' >>> Chem.MolToSmiles(ms[3]) '' Or patterns themselves: >>> tform.Destroy() >>> smas = ['C=O','CN'] >>> smas = [Chem.MolFromSmarts(x) for x in smas] >>> tform = SmartsRemover(patterns=smas) >>> tform.AddParent(suppl) >>> ms = [x for x in tform] >>> len(ms) 4 >>> Chem.MolToSmiles(ms[0]) 'C1CCC1' >>> Chem.MolToSmiles(ms[3]) 'NCC=O' """ def __init__(self,patterns=[],wholeFragments=1,**kwargs): TransformNode.__init__(self,func=self.transform,**kwargs) self._wholeFragments = wholeFragments self._initPatterns(patterns) def _initPatterns(self,patterns): nPatts = len(patterns) targets = [None]*nPatts for i in range(nPatts): p = patterns[i] if type(p) in types.StringTypes: m = Chem.MolFromSmarts(p) if not m: raise ValueError,'bad smarts: %s'%(p) p = m targets[i] = p self._patterns = tuple(targets) def transform(self,cmpd): #sys.stderr.write('\tTRANSFORM: %s\n'%(Chem.MolToSmiles(cmpd))) for patt in self._patterns: cmpd = Chem.DeleteSubstructs(cmpd,patt,onlyFrags=self._wholeFragments) #sys.stderr.write('\t\tAfter %s: %s\n'%(Chem.MolToSmiles(patt),Chem.MolToSmiles(cmpd))) return cmpd biggerTest=""" >>> smis = ['CCOC','CCO.Cl','CC(=O)[O-].[Na+]','OCC','C[N+](C)(C)C.[Cl-]'] >>> mols = [Chem.MolFromSmiles(x) for x in smis] >>> from rdkit.VLib.Supply import SupplyNode >>> suppl = SupplyNode(contents=mols) >>> ms = [x for x in suppl] >>> len(ms) 5 #>>> salts = ['[Cl;H1&X1,-]','[Na+]','[O;H2,H1&-,X0&-2]'] >>> salts = ['[Cl;H1&X1,-]','[Na+]','[O;H2,H1&-,X0&-2]'] >>> m = mols[2] >>> m.GetNumAtoms() 5 >>> patts = [Chem.MolFromSmarts(x) for x in salts] >>> m2 = Chem.DeleteSubstructs(m,patts[0],1) >>> m2.GetNumAtoms() 5 >>> m2 = Chem.DeleteSubstructs(m2,patts[1],1) >>> m2.GetNumAtoms() 4 >>> m2 = Chem.DeleteSubstructs(m2,patts[2],1) >>> m2.GetNumAtoms() 4 >>> tform = SmartsRemover(patterns=salts) >>> tform.AddParent(suppl) >>> ms = [x for x in tform] >>> len(ms) 5 """ #------------------------------------ # # doctest boilerplate # __test__={'bigger':biggerTest} def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/VLib/NodeLib/SmartsRemover.py", "copies": "2", "size": "3784", "license": "bsd-3-clause", "hash": 5915839498637561000, "line_mean": 24.2266666667, "line_max": 93, "alpha_frac": 0.5872093023, "autogenerated": false, "ratio": 2.6204986149584486, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42077079172584486, "avg_score": null, "num_lines": null }
from rdkit import six from rdkit.VLib.Node import VLibNode class SupplyNode(VLibNode): """ base class for nodes which supply things Assumptions: 1) no parents Usage Example: >>> supplier = SupplyNode(contents=[1,2,3]) >>> supplier.next() 1 >>> supplier.next() 2 >>> supplier.next() 3 >>> supplier.next() Traceback (most recent call last): ... StopIteration >>> supplier.reset() >>> supplier.next() 1 >>> [x for x in supplier] [1, 2, 3] """ def __init__(self, contents=None, **kwargs): VLibNode.__init__(self, **kwargs) if contents is not None: self._contents = contents else: self._contents = [] self._pos = 0 def reset(self): VLibNode.reset(self) self._pos = 0 def next(self): if self._pos == len(self._contents): raise StopIteration res = self._contents[self._pos] self._pos += 1 return res def AddParent(self, parent, notify=1): raise ValueError('SupplyNodes do not have parents') if six.PY3: SupplyNode.__next__ = SupplyNode.next # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/VLib/Supply.py", "copies": "4", "size": "1492", "license": "bsd-3-clause", "hash": 2943231362243582500, "line_mean": 18.3766233766, "line_max": 76, "alpha_frac": 0.5971849866, "autogenerated": false, "ratio": 3.560859188544153, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.007383017850633627, "num_lines": 77 }
import sys from rdkit import six from rdkit.VLib.Node import VLibNode class TransformNode(VLibNode): """ base class for nodes which filter their input Assumptions: - transform function takes a number of arguments equal to the number of inputs we have. We return whatever it returns - inputs (parents) can be stepped through in lockstep Usage Example: >>> from rdkit.VLib.Supply import SupplyNode >>> def func(a,b): ... return a+b >>> tform = TransformNode(func) >>> suppl1 = SupplyNode(contents=[1,2,3,3]) >>> suppl2 = SupplyNode(contents=[1,2,3,1]) >>> tform.AddParent(suppl1) >>> tform.AddParent(suppl2) >>> v = [x for x in tform] >>> v [2, 4, 6, 4] >>> tform.reset() >>> v = [x for x in tform] >>> v [2, 4, 6, 4] If we don't provide a function, just return the inputs: >>> tform = TransformNode() >>> suppl1 = SupplyNode(contents=[1,2,3,3]) >>> suppl2 = SupplyNode(contents=[1,2,3,1]) >>> tform.AddParent(suppl1) >>> tform.AddParent(suppl2) >>> v = [x for x in tform] >>> v [(1, 1), (2, 2), (3, 3), (3, 1)] """ def __init__(self,func=None,**kwargs): VLibNode.__init__(self,**kwargs) self._func = func def next(self): done = 0 parent = self.GetParents()[0] args = [] try: for parent in self.GetParents(): args.append(parent.next()) except StopIteration: raise StopIteration args = tuple(args) if self._func is not None: res = self._func(*args) else: res = args return res if six.PY3: TransformNode.__next__ = TransformNode.next #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "adalke/rdkit", "path": "rdkit/VLib/Transform.py", "copies": "1", "size": "1972", "license": "bsd-3-clause", "hash": 4679554147723710000, "line_mean": 21.9302325581, "line_max": 65, "alpha_frac": 0.5811359026, "autogenerated": false, "ratio": 3.2487644151565074, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43299003177565076, "avg_score": null, "num_lines": null }
import sys, os.path from rdkit import six from rdkit import RDConfig from rdkit.VLib.Supply import SupplyNode from rdkit import Chem class SDSupplyNode(SupplyNode): """ SD supplier Sample Usage: >>> fileN = os.path.join(RDConfig.RDCodeDir,'VLib','NodeLib',\ 'test_data','NCI_aids.10.sdf') >>> suppl = SDSupplyNode(fileN) >>> ms = [x for x in suppl] >>> len(ms) 10 >>> ms[0].GetProp("_Name") '48' >>> ms[1].GetProp("_Name") '78' >>> suppl.reset() >>> suppl.next().GetProp("_Name") '48' >>> suppl.next().GetProp("_Name") '78' """ def __init__(self, fileName, **kwargs): SupplyNode.__init__(self, **kwargs) self._fileName = fileName self._supplier = Chem.SDMolSupplier(self._fileName) def reset(self): SupplyNode.reset(self) self._supplier.reset() def next(self): """ """ return next(self._supplier) if six.PY3: SDSupplyNode.__next__ = SDSupplyNode.next #------------------------------------ # # doctest boilerplate # def _test(): import doctest, sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed, tried = _test() sys.exit(failed)
{ "repo_name": "jandom/rdkit", "path": "rdkit/VLib/NodeLib/SDSupply.py", "copies": "1", "size": "1317", "license": "bsd-3-clause", "hash": 2620716342770040000, "line_mean": 18.3676470588, "line_max": 66, "alpha_frac": 0.5740318907, "autogenerated": false, "ratio": 3.158273381294964, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9166213073859422, "avg_score": 0.013218439627108359, "num_lines": 68 }
import sys, types from rdkit import Chem from rdkit import six from rdkit.VLib.Output import OutputNode as BaseOutputNode class OutputNode(BaseOutputNode): """ dumps smiles output Assumptions: - destination supports a write() method - inputs (parents) can be stepped through in lockstep Usage Example: >>> smis = ['C1CCC1','C1CC1','C=O','NCC'] >>> mols = [Chem.MolFromSmiles(x) for x in smis] >>> from rdkit.VLib.Supply import SupplyNode >>> suppl = SupplyNode(contents=mols) >>> from rdkit.six import StringIO >>> sio = StringIO() >>> node = OutputNode(dest=sio,delim=', ') >>> node.AddParent(suppl) >>> ms = [x for x in node] >>> len(ms) 4 >>> txt = sio.getvalue() >>> repr(txt) "'1, C1CCC1\\\\n2, C1CC1\\\\n3, C=O\\\\n4, CCN\\\\n'" """ def __init__(self, dest=None, delim='\t', idField=None, **kwargs): BaseOutputNode.__init__(self, dest=dest, strFunc=self.smilesOut) self._dest = dest self._idField = idField self._delim = delim self._nDumped = 0 def reset(self): BaseOutputNode.reset(self) self._nDumped = 0 def smilesOut(self, mol): self._nDumped += 1 if type(mol) in (tuple, list): args = mol mol = args[0] if len(args) > 1: args = args[1:] else: args = [] else: args = [] if self._idField and mol.HasProp(self._idField): label = mol.GetProp(self._idField) else: label = str(self._nDumped) smi = Chem.MolToSmiles(mol) outp = [label, smi] + args return '%s\n' % (self._delim.join(outp)) #------------------------------------ # # doctest boilerplate # def _test(): import doctest, sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed, tried = _test() sys.exit(failed)
{ "repo_name": "jandom/rdkit", "path": "rdkit/VLib/NodeLib/SmilesOutput.py", "copies": "1", "size": "1925", "license": "bsd-3-clause", "hash": -6269298467054758000, "line_mean": 21.6470588235, "line_max": 68, "alpha_frac": 0.5828571429, "autogenerated": false, "ratio": 3.1505728314238954, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42334299743238957, "avg_score": null, "num_lines": null }
import sys,types from rdkit import Chem from rdkit.VLib.Output import OutputNode as BaseOutputNode class OutputNode(BaseOutputNode): """ dumps smiles output Assumptions: - destination supports a write() method - inputs (parents) can be stepped through in lockstep Usage Example: >>> smis = ['C1CCC1','C1CC1','C=O','NCC'] >>> mols = [Chem.MolFromSmiles(x) for x in smis] >>> from rdkit.VLib.Supply import SupplyNode >>> suppl = SupplyNode(contents=mols) >>> import StringIO >>> io = StringIO.StringIO() >>> node = OutputNode(dest=io,delim=', ') >>> node.AddParent(suppl) >>> ms = [x for x in node] >>> len(ms) 4 >>> txt = io.getvalue() >>> repr(txt) "'1, C1CCC1\\\\n2, C1CC1\\\\n3, C=O\\\\n4, CCN\\\\n'" """ def __init__(self,dest=None,delim='\t',idField=None,**kwargs): BaseOutputNode.__init__(self,dest=dest,strFunc=self.smilesOut) self._dest = dest self._idField = idField self._delim = delim self._nDumped = 0 def reset(self): BaseOutputNode.reset(self) self._nDumped=0 def smilesOut(self,mol): self._nDumped += 1 if type(mol) in [types.TupleType,types.ListType]: args = mol mol = args[0] if len(args)>1: args = args[1:] else: args = [] else: args = [] if self._idField and mol.HasProp(self._idField): label = mol.GetProp(self._idField) else: label = str(self._nDumped) smi = Chem.MolToSmiles(mol) outp = [label,smi]+args return '%s\n'%(self._delim.join(outp)) #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "rdkit/VLib/NodeLib/SmilesOutput.py", "copies": "5", "size": "1903", "license": "bsd-3-clause", "hash": 3700854602063619600, "line_mean": 21.9277108434, "line_max": 66, "alpha_frac": 0.5859169732, "autogenerated": false, "ratio": 3.1506622516556293, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.623657922485563, "avg_score": null, "num_lines": null }
""" Define the class _KNNClassificationModel_, used to represent a k-nearest neighbhors classification model Inherits from _KNNModel_ """ from rdkit.ML.KNN import KNNModel class KNNClassificationModel(KNNModel.KNNModel) : """ This is used to represent a k-nearest neighbor classifier """ def __init__(self, k, attrs, dfunc,radius=None) : self._setup(k, attrs, dfunc,radius) self._badExamples = [] # list of examples incorrectly classified def type(self): return "Classification Model" def SetBadExamples(self, examples) : self._badExamples = examples def GetBadExamples(self) : return self._badExamples def NameModel(self, varNames) : self.SetName(self.type()) def ClassifyExample(self, example, appendExamples=0, neighborList=None) : """ Classify a an example by looking at its closest neighbors The class assigned to this example is same as the class for the mojority of its _k neighbors **Arguments** - examples: the example to be classified - appendExamples: if this is nonzero then the example will be stored on this model - neighborList: if provided, will be used to return the list of neighbors **Returns** - the classification of _example_ """ if appendExamples: self._examples.append(example) # first find the k-closest examples in the traning set knnLst = self.GetNeighbors(example) # find out how many of the neighbors belong to each of the classes clsCnt = {} for knn in knnLst : cls = knn[1][-1] if (clsCnt.has_key(cls)) : clsCnt[cls] += 1 else : clsCnt[cls] = 1 if neighborList is not None: neighborList.extend(knnLst) # now return the class with the maximum count mkey = -1 mcnt = -1 for key in clsCnt.keys() : if (mcnt < clsCnt[key]) : mkey = key mcnt = clsCnt[key] return mkey
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/ML/KNN/KNNClassificationModel.py", "copies": "2", "size": "2016", "license": "bsd-3-clause", "hash": -211442763568115620, "line_mean": 24.5189873418, "line_max": 108, "alpha_frac": 0.6607142857, "autogenerated": false, "ratio": 3.7611940298507465, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.028049036355877476, "num_lines": 79 }
""" Define the class _KNNModel_, used to represent a k-nearest neighbhors model """ from rdkit.DataStructs.TopNContainer import TopNContainer class KNNModel(object): """ This is a base class used by KNNClassificationModel and KNNRegressionModel to represent a k-nearest neighbor predictor. In general one of this child classes needs to be instantiated. _KNNModel_s can save the following pieces of internal state, accessible via standard setter/getter functions - the child object store additional stuff: 1) _Examples_: a list of examples which have been predicted (either classified or values predicted) 2) _TrainingExamples_: List of training examples (since this is a KNN model these examples along with the value _k_ below define the model) 3) _TestExamples_: the list of examples used to test the model 4) _k_: the number of closest neighbors used for prediction """ def __init__(self, k, attrs, dfunc, radius=None) : self._setup(k, attrs, dfunc, radius) def _setup(self, k, attrs, dfunc, radius) : self._examples = [] self._trainingExamples = [] self._testExamples = [] self._k = k self._attrs = attrs self._dfunc = dfunc self._name = "" self._radius = radius def GetName(self) : return self_name def SetName(self, name) : self._name = name def GetExamples(self) : return self._examples def SetExamples(self, examples): self._examples = examples def GetTrainingExamples(self): return self._trainingExamples def SetTrainingExamples(self,examples): self._trainingExamples = examples def GetTestExamples(self) : return self._testExamples def SetTestExamples(self, examples) : self._testExamples = examples def GetNeighbors(self,example): """ Returns the k nearest neighbors of the example """ nbrs = TopNContainer(self._k) for trex in self._trainingExamples: dist = self._dfunc(trex, example, self._attrs) if self._radius is None or dist<self._radius: nbrs.Insert(-dist,trex) nbrs.reverse() return [x for x in nbrs]
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/ML/KNN/KNNModel.py", "copies": "6", "size": "2243", "license": "bsd-3-clause", "hash": 3538960052297391600, "line_mean": 27.7564102564, "line_max": 94, "alpha_frac": 0.6772180116, "autogenerated": false, "ratio": 3.9699115044247786, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7647129516024779, "avg_score": null, "num_lines": null }
""" Define the class _KNNRegressionModel_, used to represent a k-nearest neighbhors regression model Inherits from _KNNModel_ """ from rdkit.ML.KNN import KNNModel class KNNRegressionModel(KNNModel.KNNModel) : """ This is used to represent a k-nearest neighbor classifier """ def __init__(self, k, attrs, dfunc, radius=None) : self._setup(k, attrs, dfunc,radius) self._badExamples = [] # list of examples incorrectly classified def type(self): return "Regression Model" def SetBadExamples(self, examples) : self._badExamples = examples def GetBadExamples(self) : return self._badExamples def NameModel(self, varNames) : self.SetName(self.type()) def PredictExample(self, example, appendExamples=0, weightedAverage=0,neighborList=None) : """ Generates a prediction for an example by looking at its closest neighbors **Arguments** - examples: the example to be classified - appendExamples: if this is nonzero then the example will be stored on this model - weightedAverage: if provided, the neighbors' contributions to the value will be weighed by their reciprocal square distance - neighborList: if provided, will be used to return the list of neighbors **Returns** - the classification of _example_ """ if appendExamples: self._examples.append(example) # first find the k-closest examples in the training set knnLst = self.GetNeighbors(example) accum = 0.0 denom = 0.0 for knn in knnLst: if knn[1] is None: continue if weightedAverage: dist = knn[0] if dist==0.0: w = 1. else: w = 1./dist else: w=1.0 accum += w*knn[1][-1] denom += w if denom: accum /= denom if neighborList is not None: neighborList.extend(knnLst) return accum
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/ML/KNN/KNNRegressionModel.py", "copies": "6", "size": "1987", "license": "bsd-3-clause", "hash": 6461570690119748000, "line_mean": 23.2317073171, "line_max": 92, "alpha_frac": 0.6497232008, "autogenerated": false, "ratio": 3.8657587548638133, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7515481955663813, "avg_score": null, "num_lines": null }
import math def EuclideanDist(ex1, ex2, attrs): """ >>> v1 = [0,1,0,1] >>> v2 = [1,0,1,0] >>> EuclideanDist(v1,v2,range(4)) 2.0 >>> EuclideanDist(v1,v1,range(4)) 0.0 >>> v2 = [0,0,0,1] >>> EuclideanDist(v1,v2,range(4)) 1.0 >>> v2 = [0,.5,0,.5] >>> abs(EuclideanDist(v1,v2,range(4))-1./math.sqrt(2))<1e-4 1 """ dist = 0.0 for i in attrs: dist += (ex1[i] - ex2[i])**2 dist = math.sqrt(dist) return dist def TanimotoDist(ex1, ex2, attrs): """ >>> v1 = [0,1,0,1] >>> v2 = [1,0,1,0] >>> TanimotoDist(v1,v2,range(4)) 1.0 >>> v2 = [1,0,1,1] >>> TanimotoDist(v1,v2,range(4)) 0.75 >>> TanimotoDist(v2,v2,range(4)) 0.0 # this tests Issue 122 >>> v3 = [0,0,0,0] >>> TanimotoDist(v3,v3,range(4)) 1.0 """ inter = 0.0 unin = 0.0 for i in attrs: if (ex1[i] or ex2[i]): unin += 1 if (ex1[i] and ex2[i]): inter += 1 if (unin != 0.0): return (1 - inter / unin) else: return 1.0 # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/ML/KNN/DistFunctions.py", "copies": "11", "size": "1427", "license": "bsd-3-clause", "hash": -4573777458871548000, "line_mean": 17.7763157895, "line_max": 76, "alpha_frac": 0.511562719, "autogenerated": false, "ratio": 2.4731369150779896, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.848469963407799, "avg_score": null, "num_lines": null }
""" handles doing cross validation with naive bayes models and evaluation of individual models """ from __future__ import print_function from rdkit.ML.Data import SplitData from rdkit.ML.NaiveBayes.ClassificationModel import NaiveBayesClassifier try: from rdkit.ML.FeatureSelect import CMIM except ImportError: CMIM = None def makeNBClassificationModel(trainExamples, attrs, nPossibleValues, nQuantBounds, mEstimateVal=-1.0, useSigs=False, ensemble=None, useCMIM=0, **kwargs): if CMIM is not None and useCMIM > 0 and useSigs and not ensemble: ensemble = CMIM.SelectFeatures(trainExamples, useCMIM, bvCol=1) if ensemble: attrs = ensemble model = NaiveBayesClassifier(attrs, nPossibleValues, nQuantBounds, mEstimateVal=mEstimateVal, useSigs=useSigs) model.SetTrainingExamples(trainExamples) model.trainModel() return model def CrossValidate(NBmodel, testExamples, appendExamples=0): nTest = len(testExamples) assert nTest, 'no test examples: %s' % str(testExamples) badExamples = [] nBad = 0 preds = NBmodel.ClassifyExamples(testExamples, appendExamples) assert len(preds) == nTest for i in range(nTest): testEg = testExamples[i] trueRes = testEg[-1] res = preds[i] if (trueRes != res): badExamples.append(testEg) nBad += 1 return float(nBad) / nTest, badExamples def CrossValidationDriver(examples, attrs, nPossibleValues, nQuantBounds, mEstimateVal=0.0, holdOutFrac=0.3, modelBuilder=makeNBClassificationModel, silent=0, calcTotalError=0, **kwargs): nTot = len(examples) if not kwargs.get('replacementSelection', 0): testIndices, trainIndices = SplitData.SplitIndices(nTot, holdOutFrac, silent=1, legacy=1, replacement=0) else: testIndices, trainIndices = SplitData.SplitIndices(nTot, holdOutFrac, silent=1, legacy=0, replacement=1) trainExamples = [examples[x] for x in trainIndices] testExamples = [examples[x] for x in testIndices] NBmodel = modelBuilder(trainExamples, attrs, nPossibleValues, nQuantBounds, mEstimateVal, **kwargs) if not calcTotalError: xValError, _ = CrossValidate(NBmodel, testExamples, appendExamples=1) else: xValError, _ = CrossValidate(NBmodel, examples, appendExamples=0) if not silent: print('Validation error was %%%4.2f' % (100 * xValError)) NBmodel._trainIndices = trainIndices return NBmodel, xValError
{ "repo_name": "rvianello/rdkit", "path": "rdkit/ML/NaiveBayes/CrossValidate.py", "copies": "4", "size": "2697", "license": "bsd-3-clause", "hash": -4920573875304774000, "line_mean": 32.7125, "line_max": 100, "alpha_frac": 0.6792732666, "autogenerated": false, "ratio": 3.6844262295081966, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6363699496108197, "avg_score": null, "num_lines": null }
import Chem from Chem.Draw.MolDrawing import MolDrawing from Chem import TemplateAlign from sping.SVG.pidSVG import SVGCanvas as Canvas from mod_python import apache from utils import cactvs import sys,os,tempfile def gif(req,smiles,width=100,height=100,highlight='[]',frame=0, dblSize=0,**kwargs): req.content_type='image/gif' width=int(width) height=int(height) frame=int(frame) dblSize = int(dblSize) # FIX: unsafe: highlight = eval(highlight) imgD = '' if smiles: fName = tempfile.mktemp('.gif') cactvs.SmilesToGif(smiles,fName,(width,height),dblSize=dblSize,frame=frame) if os.path.exists(fName): imgD = open(fName,'rb').read() try: os.unlink(fName) except OSError: pass return imgD def svg(req,smiles,width=100,height=100,highlight='[]',frame=0, template='',numbers=0, **kwargs): req.content_type='image/svg+xml' width=int(width) height=int(height) frame=int(frame) # FIX: unsafe: highlight = eval(highlight) imgD = '' mol = None if smiles: mol = Chem.MolFromSmiles(smiles) if mol: if kwargs.get('kekulize',True): Chem.Kekulize(mol) if template and highlight: try: patt = Chem.MolFromSmiles(template) Chem.Compute2DCoords(patt) TemplateAlign.AlignMolToTemplate2D(mol,patt,highlight) except Exception: Chem.Compute2DCoords(mol) else: Chem.Compute2DCoords(mol) canvas = Canvas(size=(width,height)) drawer = MolDrawing(canvas=canvas) if numbers and numbers!='0': drawer.includeAtomNumbers=True drawer.atomNumberOffset=1 drawer.noCarbonSymbols = 1 drawer.AddMol(mol,highlightAtoms=highlight) svg = canvas._txt+'</svg>' else: svg = '' return svg
{ "repo_name": "adalke/rdkit", "path": "Web/RDExtras/MolImage.py", "copies": "1", "size": "1865", "license": "bsd-3-clause", "hash": -740125204472663900, "line_mean": 23.8666666667, "line_max": 79, "alpha_frac": 0.6691689008, "autogenerated": false, "ratio": 3.134453781512605, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.904991017535503, "avg_score": 0.050742501391514976, "num_lines": 75 }
import os import unittest from rdkit import RDConfig from rdkit.DataStructs import ExplicitBitVect from rdkit.ML.Data import DataUtils from rdkit.ML.NaiveBayes import CrossValidate from rdkit.ML.NaiveBayes.ClassificationModel import NaiveBayesClassifier class TestCase(unittest.TestCase): def setUp(self): DataUtils.InitRandomNumbers((25, 25)) def test1NaiveBayes(self): fName = os.path.join(RDConfig.RDCodeDir, 'ML', 'NaiveBayes', 'test_data', 'stddata.csv') data = DataUtils.TextFileToData(fName) examples = data.GetNamedData() nvars = data.GetNVars() attrs = list(range(1, nvars + 1)) npvals = [0] + [3] * nvars + [2] qBounds = [0] + [2] * nvars + [0] mod, err = CrossValidate.CrossValidationDriver(examples, attrs, npvals, qBounds, silent=True) self.assertAlmostEqual(mod._classProbs[0], 0.5000, 4) self.assertAlmostEqual(mod._classProbs[1], 0.5000, 4) self.assertAlmostEqual(mod._QBoundVals[1][0], -0.0360, 4) self.assertAlmostEqual(mod._QBoundVals[1][1], 0.114) self.assertAlmostEqual(mod._QBoundVals[2][0], -0.7022, 4) self.assertAlmostEqual(mod._QBoundVals[2][1], -0.16635, 4) self.assertAlmostEqual(mod._QBoundVals[3][0], -0.3659, 4) self.assertAlmostEqual(mod._QBoundVals[3][1], 0.4305, 4) self.assertAlmostEqual(err, 0.2121, 4) mod, err = CrossValidate.CrossValidationDriver(examples, attrs, npvals, qBounds, silent=True, calcTotalError=True) self.assertAlmostEqual(mod._classProbs[0], 0.515151, 4) self.assertAlmostEqual(mod._classProbs[1], 0.484848, 4) self.assertAlmostEqual(mod._QBoundVals[1][0], -0.40315, 4) self.assertAlmostEqual(mod._QBoundVals[1][1], 0.114) self.assertAlmostEqual(mod._QBoundVals[2][0], -0.62185, 4) self.assertAlmostEqual(mod._QBoundVals[2][1], -0.19965, 4) self.assertAlmostEqual(mod._QBoundVals[3][0], 0.4305, 4) self.assertAlmostEqual(mod._QBoundVals[3][1], 0.80305, 4) self.assertAlmostEqual(err, 0.14563, 4) mod, err = CrossValidate.CrossValidationDriver(examples, attrs, npvals, qBounds, silent=True, replacementSelection=True) self.assertAlmostEqual(mod._classProbs[0], 0.5131578, 4) self.assertAlmostEqual(mod._classProbs[1], 0.4868421, 4) self.assertAlmostEqual(mod._QBoundVals[1][0], -0.036, 4) self.assertAlmostEqual(mod._QBoundVals[1][1], 0.93465, 4) self.assertAlmostEqual(mod._QBoundVals[2][0], -0.6696, 4) self.assertAlmostEqual(mod._QBoundVals[2][1], -0.19965, 4) self.assertAlmostEqual(mod._QBoundVals[3][0], -1.06785, 4) self.assertAlmostEqual(mod._QBoundVals[3][1], 0.4305, 4) self.assertAlmostEqual(err, 0.3, 4) def test2NaiveBayes(self): fName = os.path.join(RDConfig.RDCodeDir, 'ML', 'NaiveBayes', 'test_data', 'stddata.csv') data = DataUtils.TextFileToData(fName) examples = data.GetNamedData() nvars = data.GetNVars() attrs = list(range(1, nvars + 1)) npvals = [0] + [3] * nvars + [2] qBounds = [0] + [2] * nvars + [0] mod, err = CrossValidate.CrossValidationDriver(examples, attrs, npvals, qBounds, mEstimateVal=20.0, silent=True) self.assertTrue(isinstance(mod, NaiveBayesClassifier)) self.assertAlmostEqual(err, 0.1818, 4) self.assertEqual(mod.GetName(), '') mod.SetName('modelName') self.assertEqual(mod.GetName(), 'modelName') mod.NameModel(None) self.assertEqual(mod.GetName(), 'NaiveBayesClassifier') self.assertGreater(len(mod.GetExamples()), 0) self.assertGreater(len(mod.GetTrainingExamples()), 0) self.assertEqual(sorted(mod.GetTrainingExamples() + mod.GetExamples()), sorted(examples)) def test3(self): examples = [ ['a', 1, 0, 1, 0, 1], ['b', 1, 0, 0, 0, 1], ['c', 1, 0, 1, 0, 0], ['d', 0, 1, 1, 0, 0], ['e', 0, 1, 1, 1, 0], ] nvars = len(examples[0]) - 2 attrs = list(range(1, nvars + 1)) npvals = [0] + [2] * nvars + [2] qBounds = [0] + [0] * nvars + [0] mdl = CrossValidate.makeNBClassificationModel(examples, attrs, npvals, qBounds) nWrong = 0 for eg in examples: p = mdl.ClassifyExample(eg) if p != eg[-1]: nWrong += 1 self.assertEqual(nWrong, 1) bitEx = [] for eg in examples: newEg = [eg[0], None, eg[-1]] bv = ExplicitBitVect(nvars) for i in range(nvars): if eg[i + 1]: bv.SetBit(i) newEg[1] = bv bitEx.append(newEg) attrs = list(range(nvars)) mdl2 = CrossValidate.makeNBClassificationModel(bitEx, attrs, npvals, qBounds, useSigs=True) nWrong = 0 for eg in bitEx: p = mdl2.ClassifyExample(eg) if p != eg[-1]: nWrong += 1 self.assertEqual(nWrong, 1) # now compare: for i in range(len(bitEx)): eg = examples[i] p1 = mdl.ClassifyExample(eg) bitEg = bitEx[i] p2 = mdl2.ClassifyExample(bitEg) self.assertEqual(p1, p2) v1 = mdl.GetClassificationDetails() v2 = mdl.GetClassificationDetails() self.assertAlmostEqual(v1, v2, 4) def test4(self): examples = [ ['a', 1, 0, 1, 0, 1], ['b', 1, 0, 0, 0, 1], ['c', 1, 0, 1, 0, 0], ['d', 0, 1, 1, 0, 0], ['e', 0, 1, 1, 1, 0], ] nvars = len(examples[0]) - 2 origNVars = nvars nvars = 10 npvals = [0] + [2] * nvars + [2] qBounds = [0] + [0] * nvars + [0] bitEx = [] for eg in examples: newEg = [eg[0], None, eg[-1]] bv = ExplicitBitVect(nvars) for i in range(origNVars): if eg[i + 1]: bv.SetBit(i) # this bit will yield perfect accuracy if # the attrs argument isn't being used properly: if eg[-1]: bv.SetBit(origNVars) newEg[1] = bv bitEx.append(newEg) attrs = list(range(origNVars)) mdl2 = CrossValidate.makeNBClassificationModel(bitEx, attrs, npvals, qBounds, useSigs=True) nWrong = 0 for eg in bitEx: p = mdl2.ClassifyExample(eg) if p != eg[-1]: nWrong += 1 self.assertEqual(nWrong, 1) def _test5(self): # disabled because CMIM was removed # pragma: nocover examples = [ ['a', 1, 0, 1, 0, 1, 1, 0, 1], ['b', 1, 0, 0, 0, 1, 0, 0, 1], ['c', 1, 0, 1, 0, 1, 1, 0, 0], ['d', 0, 1, 1, 0, 1, 0, 0, 0], ['e', 0, 1, 1, 1, 0, 1, 0, 0], ] nvars = len(examples[0]) - 2 npvals = [0] + [2] * nvars + [2] qBounds = [0] + [0] * nvars + [0] bitEx = [] for eg in examples: newEg = [eg[0], None, eg[-1]] bv = ExplicitBitVect(nvars) for i in range(nvars): if eg[i + 1]: bv.SetBit(i) # this bit will yield perfect accuracy if # the attrs argument isn't being used properly: newEg[1] = bv bitEx.append(newEg) attrs = list(range(nvars)) mdl2 = CrossValidate.makeNBClassificationModel(bitEx, attrs, npvals, qBounds, useSigs=True, useCMIM=2) nWrong = 0 for eg in bitEx: p = mdl2.ClassifyExample(eg) if p != eg[-1]: nWrong += 1 self.assertEqual(nWrong, 1) if __name__ == '__main__': # pragma: nocover unittest.main()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/ML/NaiveBayes/UnitTestNB.py", "copies": "11", "size": "7351", "license": "bsd-3-clause", "hash": 3094732866560428000, "line_mean": 32.7201834862, "line_max": 97, "alpha_frac": 0.597469732, "autogenerated": false, "ratio": 2.9869971556277934, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9084466887627793, "avg_score": null, "num_lines": null }
from rdkit import RDConfig import unittest,sys,os from rdkit.six.moves import cPickle from rdkit import Chem from rdkit.Chem import ChemicalFeatures,AllChem import EmbedLib import gzip from rdkit import DistanceGeometry as DG from rdkit import Geometry import Pharmacophore def feq(n1,n2,tol=1e-5): return abs(n1-n2)<=tol class TestCase(unittest.TestCase): def setUp(self): self.fdefBlock = \ """DefineFeature HAcceptor1 [N,O;H0] Family HBondAcceptor Weights 1.0 EndFeature DefineFeature HDonor1 [N,O;!H0] Family HBondDonor Weights 1.0 EndFeature DefineFeature Aromatic1 c1ccccc1 Family Aromatic Weights 1.0,1.0,1.0,1.0,1.0,1.0 EndFeature\n""" self.featFactory = ChemicalFeatures.BuildFeatureFactoryFromString(self.fdefBlock) self.feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ] self.pcophore=Pharmacophore.Pharmacophore(self.feats) def test1Basics(self): pcophore = self.pcophore self.assertTrue(len(pcophore.getFeatures())==3) self.assertTrue(pcophore.getFeature(0)) self.assertTrue(pcophore.getFeature(1)) self.assertTrue(pcophore.getFeature(2)) self.assertRaises(IndexError,pcophore.getFeature,3) def test2BoundSetting(self): pcophore = self.pcophore pcophore.setUpperBound(0,1,3.0) self.assertTrue(feq(pcophore.getUpperBound(0,1),3.0)) self.assertTrue(feq(pcophore.getUpperBound(1,0),3.0)) pcophore.setUpperBound(1,0,5.0) self.assertTrue(feq(pcophore.getUpperBound(0,1),5.0)) self.assertTrue(feq(pcophore.getUpperBound(1,0),5.0)) self.assertRaises(IndexError,pcophore.setUpperBound,0,3,2.0) self.assertRaises(ValueError,pcophore.setUpperBound,0,3,2.0,checkBounds=True) self.assertRaises(IndexError,pcophore.setUpperBound,3,0,2.0) self.assertRaises(ValueError,pcophore.setUpperBound,3,0,2.0,checkBounds=True) pcophore.setLowerBound(0,1,2.0) self.assertTrue(feq(pcophore.getLowerBound(0,1),2.0)) self.assertTrue(feq(pcophore.getLowerBound(1,0),2.0)) pcophore.setLowerBound(1,0,3.0) self.assertTrue(feq(pcophore.getLowerBound(0,1),3.0)) self.assertTrue(feq(pcophore.getLowerBound(1,0),3.0)) self.assertRaises(IndexError,pcophore.setLowerBound,0,3,2.0) self.assertRaises(ValueError,pcophore.setLowerBound,0,3,2.0,checkBounds=True) self.assertRaises(IndexError,pcophore.setLowerBound,3,0,2.0) self.assertRaises(ValueError,pcophore.setLowerBound,3,0,2.0,checkBounds=True) def test3Bound2DSetting(self): pcophore = self.pcophore pcophore.setUpperBound2D(0,1,3) self.assertTrue(pcophore.getUpperBound2D(0,1)==3) self.assertTrue(pcophore.getUpperBound2D(1,0)==3) pcophore.setUpperBound2D(1,0,5) self.assertTrue(pcophore.getUpperBound2D(0,1)==5) self.assertTrue(pcophore.getUpperBound2D(1,0)==5) self.assertRaises(IndexError,pcophore.setUpperBound2D,0,3,2) self.assertRaises(ValueError,pcophore.setUpperBound2D,0,3,2,checkBounds=True) self.assertRaises(IndexError,pcophore.setUpperBound2D,3,0,2) self.assertRaises(ValueError,pcophore.setUpperBound2D,3,0,2,checkBounds=True) pcophore.setLowerBound2D(0,1,3) self.assertTrue(pcophore.getLowerBound2D(0,1)==3) self.assertTrue(pcophore.getLowerBound2D(1,0)==3) pcophore.setLowerBound2D(1,0,5) self.assertTrue(pcophore.getLowerBound2D(0,1)==5) self.assertTrue(pcophore.getLowerBound2D(1,0)==5) self.assertRaises(IndexError,pcophore.setLowerBound2D,0,3,2) self.assertRaises(ValueError,pcophore.setLowerBound2D,0,3,2,checkBounds=True) self.assertRaises(IndexError,pcophore.setLowerBound2D,3,0,2) self.assertRaises(ValueError,pcophore.setLowerBound2D,3,0,2,checkBounds=True) def test4Github252(self): fdef= os.path.join(RDConfig.RDDataDir,'BaseFeatures.fdef') feat_factory = ChemicalFeatures.BuildFeatureFactory(fdef) m1 = Chem.MolFromSmiles('Cc1ccccc1') feats = feat_factory.GetFeaturesForMol(m1) try: pcophore = Pharmacophore.Pharmacophore(feats) ok=False except: ok=True self.assertTrue(ok) AllChem.Compute2DCoords(m1) try: pcophore = Pharmacophore.Pharmacophore(feats) ok=True except: ok=False self.assertTrue(ok) if __name__ == '__main__': unittest.main()
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/Chem/Pharm3D/UnitTestPharmacophore.py", "copies": "3", "size": "5219", "license": "bsd-3-clause", "hash": -6000396559295810000, "line_mean": 37.375, "line_max": 85, "alpha_frac": 0.6857635562, "autogenerated": false, "ratio": 2.8834254143646407, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5069188970564641, "avg_score": null, "num_lines": null }
"""unit testing code for the AnalyzeComposite functionality """ from rdkit import RDConfig import unittest,os from rdkit.ML import AnalyzeComposite from rdkit.six.moves import cPickle as pickle def feq(a,b,tol=1e-4): if abs(a-b)>tol: return 0 else: return 1 class TestCase(unittest.TestCase): def setUp(self): #print '\n%s: '%self.shortDescription(), self.baseDir = os.path.join(RDConfig.RDCodeDir,'ML','test_data') def test1_Issue163(self): name1 = os.path.join(self.baseDir,'humanoral.1.pkl') try: with open(name1,'rb') as pklF: c1 = pickle.load(pklF) except Exception: c1 = None self.assertTrue(c1) name2 = os.path.join(self.baseDir,'humanoral.2.pkl') try: with open(name2, 'rb') as pklF: c2 = pickle.load(pklF) except Exception: c2 = None self.assertTrue(c2) try: res = AnalyzeComposite.ProcessIt([c1,c2],verbose=-1) except Exception: import traceback traceback.print_exc() ok=0 else: ok=1 self.assertTrue(ok) self.assertTrue(res[0][0]=='BALABANJ') self.assertTrue(res[1][0]=='BERTZCT') self.assertTrue(res[-1][0]=='FR_ALLYLIC_OXID') for entry in res: self.assertTrue(len(entry)==5) if __name__ == '__main__': unittest.main()
{ "repo_name": "adalke/rdkit", "path": "rdkit/ML/UnitTestAnalyzeComposite.py", "copies": "1", "size": "1598", "license": "bsd-3-clause", "hash": 9045071593346077000, "line_mean": 25.1967213115, "line_max": 68, "alpha_frac": 0.6495619524, "autogenerated": false, "ratio": 3.1089494163424125, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9028037522586181, "avg_score": 0.04609476923124618, "num_lines": 61 }
from __future__ import print_function from rdkit import RDConfig import os,sys,copy import unittest import math from rdkit import Chem from rdkit.Chem import rdMolAlign,rdMolTransforms,rdMolDescriptors,rdDistGeom,ChemicalForceFields def lstFeq(l1, l2, tol=1.e-4): if (len(list(l1)) != len(list(l2))): return 0 for i in range(len(list(l1))): if not feq(l1[i], l2[i], tol): return 0 return 1 def feq(v1,v2,tol2=1e-4): return abs(v1-v2)<=tol2 class TestCase(unittest.TestCase): def setUp(self): pass def test1Basic(self): file1 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir.mol') file2 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_conf.mol') mol1 = Chem.MolFromMolFile(file1) mol2 = Chem.MolFromMolFile(file2) rmsd = rdMolAlign.AlignMol(mol2, mol1) self.assertTrue(feq(rmsd, 0.6578)) file3 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_trans.mol') mol3 = Chem.MolFromMolFile(file3) conf2 = mol2.GetConformer() conf3 = mol3.GetConformer() for i in range(mol2.GetNumAtoms()): self.assertTrue(lstFeq(conf2.GetAtomPosition(i), conf3.GetAtomPosition(i))) rmsd, trans = rdMolAlign.GetAlignmentTransform(mol2, mol1) self.assertAlmostEqual(rmsd, 0.6579,4) def test2AtomMap(self) : atomMap = ((18,27), (13,23), (21,14), (24,7), (9,19), (16,30)) file1 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir.mol') file2 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_conf.mol') mol1 = Chem.MolFromMolFile(file1) mol2 = Chem.MolFromMolFile(file2) rmsd = rdMolAlign.AlignMol(mol2, mol1, 0, 0, atomMap) self.assertAlmostEqual(rmsd, 0.8525,4) def test3Weights(self): atomMap = ((18,27), (13,23), (21,14), (24,7), (9,19), (16,30)) file1 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir.mol') file2 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_conf.mol') mol1 = Chem.MolFromMolFile(file1) mol2 = Chem.MolFromMolFile(file2) wts = (1.0, 1.0, 1.0, 1.0, 1.0, 2.0) rmsd = rdMolAlign.AlignMol(mol2, mol1, 0, 0, atomMap, wts) self.assertAlmostEqual(rmsd, 0.9513,4) def test4AlignConfs(self): mol = Chem.MolFromSmiles('C1CC1CNc(n2)nc(C)cc2Nc(cc34)ccc3[nH]nc4') cids = rdDistGeom.EmbedMultipleConfs(mol,10,30,100) #writer = Chem.SDWriter('mol_899.sdf') for cid in cids: ff = ChemicalForceFields.UFFGetMoleculeForceField(mol, confId=cid) ff.Initialize() more = 1 while more : more = ff.Minimize() # FIX: this should not be necessary but somehow more comes out to be 0 # even with the structure still being crappy ff.Minimize() aids = [12, 13, 14, 15, 16, 17, 18] rdMolAlign.AlignMolConformers(mol, aids) # now test that the atom location of these atom are consistent confs = mol.GetConformers() for aid in aids: mpos = 0 for i,conf in enumerate(confs): if (i == 0): mpos = list(conf.GetAtomPosition(aid)) continue else : pos = list(conf.GetAtomPosition(aid)) self.assertTrue(lstFeq(mpos, pos, .5)) # now test that we can get a list of RMS values rmsvals = [] rdMolAlign.AlignMolConformers(mol, aids, RMSlist=rmsvals) self.assertTrue((len(rmsvals)==mol.GetNumConformers()-1)) # make sure something sensible happens if we provide a stupid # argument: rmsvals = 4 self.assertRaises(AttributeError,rdMolAlign.AlignMolConformers,mol, atomIds=aids, RMSlist=rmsvals) def test5MMFFO3A(self): sdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', 'ref_e2.sdf') # alignedSdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', # 'MolAlign', 'test_data', 'ref_e2_pyMMFFO3A.sdf') molS = Chem.SDMolSupplier(sdf, True, False) # molW = Chem.SDWriter(alignedSdf) refNum = 48 refMol = molS[refNum] cumScore = 0.0 cumMsd = 0.0 refPyMP = ChemicalForceFields.MMFFGetMoleculeProperties(refMol) for prbMol in molS: prbPyMP = ChemicalForceFields.MMFFGetMoleculeProperties(prbMol) pyO3A = rdMolAlign.GetO3A(prbMol, refMol, prbPyMP, refPyMP) cumScore += pyO3A.Score() rmsd = pyO3A.Align() cumMsd += rmsd * rmsd # molW.write(prbMol) cumMsd /= len(molS) self.assertAlmostEqual(cumScore,6942,0) self.assertAlmostEqual(math.sqrt(cumMsd),.345,3) def test6MMFFO3A(self): " now test where the mmff parameters are generated on call " sdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', 'ref_e2.sdf') molS = Chem.SDMolSupplier(sdf, True, False) refNum = 48 refMol = molS[refNum] cumScore = 0.0 cumMsd = 0.0 for prbMol in molS: pyO3A = rdMolAlign.GetO3A(prbMol, refMol) cumScore += pyO3A.Score() rmsd = pyO3A.Align() cumMsd += rmsd * rmsd cumMsd /= len(molS) self.assertAlmostEqual(cumScore,6942,0) self.assertAlmostEqual(math.sqrt(cumMsd),.345,3) def test7MMFFO3A(self): " make sure we generate an error if parameters are missing (github issue 158) " m1 = Chem.MolFromSmiles('c1ccccc1Cl') rdDistGeom.EmbedMolecule(m1) m2 = Chem.MolFromSmiles('c1ccccc1B(O)O') rdDistGeom.EmbedMolecule(m1) self.assertRaises(ValueError,lambda :rdMolAlign.GetO3A(m1, m2)) self.assertRaises(ValueError,lambda :rdMolAlign.GetO3A(m2, m1)) def test8MMFFO3A(self): " test MMFFO3A with constraints " #we superimpose two identical coplanar 4-phenylpyridines: #1) the usual way #2) forcing the pyridine nitrogen to match with the para # carbon of the phenyl ring m = Chem.MolFromSmiles('n1ccc(cc1)-c1ccccc1') m1 = Chem.AddHs(m) rdDistGeom.EmbedMolecule(m1) mp = ChemicalForceFields.MMFFGetMoleculeProperties(m1) ff = ChemicalForceFields.MMFFGetMoleculeForceField(m1, mp) ff.Minimize() sub1 = m1.GetSubstructMatch(Chem.MolFromSmarts('nccc-cccc')) nIdx = sub1[0] cIdx = sub1[-1] dihe = sub1[2:6] rdMolTransforms.SetDihedralDeg(m1.GetConformer(), dihe[0], dihe[1], dihe[2], dihe[3], 0) m2 = copy.copy(m1) rdMolAlign.RandomTransform(m2) m3 = copy.copy(m2) pyO3A = rdMolAlign.GetO3A(m2, m1) pyO3A.Align() d = m2.GetConformer().GetAtomPosition(cIdx). \ Distance(m1.GetConformer().GetAtomPosition(cIdx)) self.assertAlmostEqual(d, 0, 0) pyO3A = rdMolAlign.GetO3A(m3, m1, constraintMap = [[cIdx, nIdx]]) pyO3A.Align() d = m3.GetConformer().GetAtomPosition(cIdx). \ Distance(m1.GetConformer().GetAtomPosition(cIdx)) self.assertAlmostEqual(d, 7, 0) #alignedSdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', # 'MolAlign', 'test_data', # '4-phenylpyridines_MMFFO3A.sdf') #sdW = Chem.SDWriter(alignedSdf) #sdW.write(m1) #sdW.write(m2) #sdW.write(m3) #sdW.close() def test9MMFFO3A(self): " test MMFFO3A with variable weight constraints followed by local-only optimization " sdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', 'ref_e2.sdf') # alignedSdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', # 'MolAlign', 'test_data', 'localonly.sdf') molS = Chem.SDMolSupplier(sdf, True, False) refNum = 23 prbNum = 32 refMol = molS[refNum] prbMol = molS[prbNum] refPyMP = ChemicalForceFields.MMFFGetMoleculeProperties(refMol) prbPyMP = ChemicalForceFields.MMFFGetMoleculeProperties(prbMol) refSIdx = refMol.GetSubstructMatch(Chem.MolFromSmarts('S'))[0] prbOIdx = prbMol.GetSubstructMatch(Chem.MolFromSmarts('O'))[0] # molW = Chem.SDWriter(alignedSdf) # molW.write(refMol) weights = [10.0, 100.0] distOS = [3.2, 0.3] for i in [0, 1]: pyO3A = rdMolAlign.GetO3A(prbMol, refMol, prbPyMP, refPyMP, constraintMap = [[prbOIdx, refSIdx]], constraintWeights = [weights[i]]) pyO3A.Align() # molW.write(prbMol) pyO3A = rdMolAlign.GetO3A(prbMol, refMol, prbPyMP, refPyMP, options = 4) pyO3A.Align() # molW.write(prbMol) d = prbMol.GetConformer().GetAtomPosition(prbOIdx). \ Distance(refMol.GetConformer().GetAtomPosition(refSIdx)) self.assertAlmostEqual(d, distOS[i], 1) # molW.close() def test10CrippenO3A(self): sdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', 'ref_e2.sdf') alignedSdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', 'ref_e2_pyCrippenO3A.sdf') molS = Chem.SDMolSupplier(sdf, True, False) molW = Chem.SDWriter(alignedSdf) refNum = 48 refMol = molS[refNum] cumScore = 0.0 cumMsd = 0.0 refList = rdMolDescriptors._CalcCrippenContribs(refMol, True) for prbMol in molS: prbList = rdMolDescriptors._CalcCrippenContribs(prbMol, True) pyO3A = rdMolAlign.GetCrippenO3A(prbMol, refMol, prbList, refList) cumScore += pyO3A.Score() rmsd = pyO3A.Align() cumMsd += rmsd * rmsd molW.write(prbMol) cumMsd /= len(molS) self.assertAlmostEqual(cumScore,4918,0) self.assertAlmostEqual(math.sqrt(cumMsd),.304,3) def test11CrippenO3A(self): " now test where the Crippen parameters are generated on call " sdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', 'ref_e2.sdf') molS = Chem.SDMolSupplier(sdf, True, False) refNum = 48 refMol = molS[refNum] cumScore = 0.0 cumMsd = 0.0 for prbMol in molS: pyO3A = rdMolAlign.GetCrippenO3A(prbMol, refMol) cumScore += pyO3A.Score() rmsd = pyO3A.Trans()[0] cumMsd += rmsd * rmsd cumMsd /= len(molS) self.assertAlmostEqual(cumScore,4918,0) self.assertAlmostEqual(math.sqrt(cumMsd),.304,3) def test12CrippenO3A(self): " test CrippenO3A with constraints " #we superimpose two identical coplanar 4-phenylpyridines: #1) the usual way #2) forcing the pyridine nitrogen to match with the para # carbon of the phenyl ring m = Chem.MolFromSmiles('n1ccc(cc1)-c1ccccc1') m1 = Chem.AddHs(m) rdDistGeom.EmbedMolecule(m1) mp = ChemicalForceFields.MMFFGetMoleculeProperties(m1) ff = ChemicalForceFields.MMFFGetMoleculeForceField(m1, mp) ff.Minimize() sub1 = m1.GetSubstructMatch(Chem.MolFromSmarts('nccc-cccc')) nIdx = sub1[0] cIdx = sub1[-1] dihe = sub1[2:6] rdMolTransforms.SetDihedralDeg(m1.GetConformer(), dihe[0], dihe[1], dihe[2], dihe[3], 0) m2 = copy.copy(m1) rdMolAlign.RandomTransform(m2) m3 = copy.copy(m2) pyO3A = rdMolAlign.GetCrippenO3A(m2, m1) pyO3A.Align() d = m2.GetConformer().GetAtomPosition(cIdx). \ Distance(m1.GetConformer().GetAtomPosition(cIdx)) self.assertAlmostEqual(d, 0, 0) pyO3A = rdMolAlign.GetCrippenO3A(m3, m1, constraintMap = [[cIdx, nIdx]]) pyO3A.Align() d = m3.GetConformer().GetAtomPosition(cIdx). \ Distance(m1.GetConformer().GetAtomPosition(cIdx)) self.assertAlmostEqual(d, 7, 0) #alignedSdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', # 'MolAlign', 'test_data', # '4-phenylpyridines_CrippenO3A.sdf') #sdW = Chem.SDWriter(alignedSdf) #sdW.write(m1) #sdW.write(m2) #sdW.write(m3) #sdW.close() def test13CrippenO3A(self): " test CrippenO3A with variable weight constraints followed by local-only optimization " sdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', 'ref_e2.sdf') # alignedSdf = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', # 'MolAlign', 'test_data', 'localonly.sdf') molS = Chem.SDMolSupplier(sdf, True, False) refNum = 23 prbNum = 32 refMol = molS[refNum] prbMol = molS[prbNum] refPyMP = ChemicalForceFields.MMFFGetMoleculeProperties(refMol) prbPyMP = ChemicalForceFields.MMFFGetMoleculeProperties(prbMol) refSIdx = refMol.GetSubstructMatch(Chem.MolFromSmarts('S'))[0] prbOIdx = prbMol.GetSubstructMatch(Chem.MolFromSmarts('O'))[0] # molW = Chem.SDWriter(alignedSdf) # molW.write(refMol) weights = [0.1, 100.0] distOS = [2.7, 0.4] for i in [0, 1]: pyO3A = rdMolAlign.GetCrippenO3A(prbMol, refMol, constraintMap = [[prbOIdx, refSIdx]], constraintWeights = [weights[i]]) pyO3A.Align() # molW.write(prbMol) pyO3A = rdMolAlign.GetCrippenO3A(prbMol, refMol, options = 4) pyO3A.Align() # molW.write(prbMol) d = prbMol.GetConformer().GetAtomPosition(prbOIdx). \ Distance(refMol.GetConformer().GetAtomPosition(refSIdx)) self.assertAlmostEqual(d, distOS[i], 1) # molW.close() def test14Github385(self): """ test github issue 385: O3A code generating incorrect results for multiconformer molecules """ def _multiConfFromSmiles(smiles, nConfs=10, maxIters=500): """Adds hydrogens to molecule and optimises a chosen number of conformers. Returns the optimised RDKit mol.""" idea = Chem.MolFromSmiles(smiles) idea = Chem.AddHs(idea) confs = rdDistGeom.EmbedMultipleConfs(idea, nConfs) for conf in confs: opt = ChemicalForceFields.MMFFOptimizeMolecule(idea, confId=conf, maxIters=maxIters) return idea def _confsToAlignedMolsList(multiConfMol): """Input is a multiconformer RDKit mol. Output is an aligned set of conformers as a list of RDKit mols.""" rdMolAlign.AlignMolConformers(multiConfMol) ms = [] cids = [x.GetId() for x in multiConfMol.GetConformers()] for cid in cids: newmol = Chem.Mol(multiConfMol) for ocid in cids: if ocid==cid: continue newmol.RemoveConformer(ocid) ms.append(newmol) return ms reference = Chem.MolFromSmiles("c1ccccc1N2CCC(NS(=O)(=O)C(F)(F)F)CC2") reference = Chem.AddHs(reference) rdDistGeom.EmbedMolecule(reference) idea1 = _multiConfFromSmiles("c1ccccc1C2CCCCC2", 10) idea1_mols = _confsToAlignedMolsList(idea1) cids = [x.GetId() for x in idea1.GetConformers()] refParams = ChemicalForceFields.MMFFGetMoleculeProperties(reference) prbParams = ChemicalForceFields.MMFFGetMoleculeProperties(idea1) for i in range(len(cids)): o3a1 = rdMolAlign.GetO3A(idea1_mols[i],reference,prbParams,refParams) score1 = o3a1.Score() o3a2 = rdMolAlign.GetO3A(idea1,reference,prbParams,refParams,prbCid=cids[i]) score2 = o3a2.Score() self.assertAlmostEqual(score1,score2,3) if __name__ == '__main__': print("Testing MolAlign Wrappers") unittest.main()
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "Code/GraphMol/MolAlign/Wrap/testMolAlign.py", "copies": "1", "size": "16282", "license": "bsd-3-clause", "hash": -2526764635969939000, "line_mean": 38.5194174757, "line_max": 121, "alpha_frac": 0.6134381526, "autogenerated": false, "ratio": 2.9023172905525847, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40157554431525844, "avg_score": null, "num_lines": null }
from rdkit import RDConfig import os,sys import unittest from rdkit import Chem from rdkit.Chem import rdMolAlign,rdDistGeom,ChemicalForceFields def lstFeq(l1, l2, tol=1.e-4): if (len(list(l1)) != len(list(l2))): return 0 for i in range(len(list(l1))): if not feq(l1[i], l2[i], tol): return 0 return 1 def feq(v1,v2,tol2=1e-4): return abs(v1-v2)<=tol2 class TestCase(unittest.TestCase): def setUp(self): pass def test1Basic(self): file1 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir.mol') file2 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_conf.mol') mol1 = Chem.MolFromMolFile(file1) mol2 = Chem.MolFromMolFile(file2) rmsd = rdMolAlign.AlignMol(mol2, mol1) self.failUnless(feq(rmsd, 0.6578)) file3 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_trans.mol') mol3 = Chem.MolFromMolFile(file3) conf2 = mol2.GetConformer() conf3 = mol3.GetConformer() for i in range(mol2.GetNumAtoms()): self.failUnless(lstFeq(conf2.GetAtomPosition(i), conf3.GetAtomPosition(i))) rmsd, trans = rdMolAlign.GetAlignmentTransform(mol2, mol1) self.failUnless(feq(rmsd, 0.6578)) def test2AtomMap(self) : atomMap = ((18,27), (13,23), (21,14), (24,7), (9,19), (16,30)) file1 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir.mol') file2 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_conf.mol') mol1 = Chem.MolFromMolFile(file1) mol2 = Chem.MolFromMolFile(file2) rmsd = rdMolAlign.AlignMol(mol2, mol1, 0, 0, atomMap) self.failUnless(feq(rmsd, 0.8525)) def test3Weights(self): atomMap = ((18,27), (13,23), (21,14), (24,7), (9,19), (16,30)) file1 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir.mol') file2 = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'MolAlign', 'test_data', '1oir_conf.mol') mol1 = Chem.MolFromMolFile(file1) mol2 = Chem.MolFromMolFile(file2) wts = (1.0, 1.0, 1.0, 1.0, 1.0, 2.0) rmsd = rdMolAlign.AlignMol(mol2, mol1, 0, 0, atomMap, wts) self.failUnless(feq(rmsd, 0.9513)) def test4AlignConfs(self): mol = Chem.MolFromSmiles('C1CC1CNc(n2)nc(C)cc2Nc(cc34)ccc3[nH]nc4') cids = rdDistGeom.EmbedMultipleConfs(mol,10,30,100) writer = Chem.SDWriter('mol_899.sdf') for cid in cids: print 'cid:',repr(cid) ff = ChemicalForceFields.UFFGetMoleculeForceField(mol, confId=cid) ff.Initialize() more = 1 while more : more = ff.Minimize() # FIX: this should not be necessary but somehow more comes out to be 0 # even with the structure still being crappy ff.Minimize() aids = [12, 13, 14, 15, 16, 17, 18] rdMolAlign.AlignMolConformers(mol, aids) # now test that the atom location of these atom are consistent confs = mol.GetConformers() for aid in aids: mpos = 0 for i,conf in enumerate(confs): if (i == 0): mpos = list(conf.GetAtomPosition(aid)) continue else : pos = list(conf.GetAtomPosition(aid)) self.failUnless(lstFeq(mpos, pos, .5)) if __name__ == '__main__': print "Testing MolAlign Wrappers" unittest.main()
{ "repo_name": "rdkit/rdkit-orig", "path": "Code/GraphMol/MolAlign/Wrap/testMolAlign.py", "copies": "1", "size": "3881", "license": "bsd-3-clause", "hash": 4433754164010141700, "line_mean": 33.6517857143, "line_max": 87, "alpha_frac": 0.5766555012, "autogenerated": false, "ratio": 2.9648586707410236, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40415141719410236, "avg_score": null, "num_lines": null }
""" Contains an implementation of Topological-torsion fingerprints, as described in: R. Nilakantan, N. Bauman, J. S. Dixon, R. Venkataraghavan; "Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison with Other Descriptors" JCICS 27, 82-85 (1987). """ from rdkit import Chem from rdkit.Chem import rdMolDescriptors import Utils def pyScorePath(mol,path,size,atomCodes=None): """ Returns a score for an individual path. >>> m = Chem.MolFromSmiles('CCCCC') >>> c1 = long(Utils.GetAtomCode(m.GetAtomWithIdx(0),1)) >>> c2 = long(Utils.GetAtomCode(m.GetAtomWithIdx(1),2)) >>> c3 = long(Utils.GetAtomCode(m.GetAtomWithIdx(2),2)) >>> c4 = long(Utils.GetAtomCode(m.GetAtomWithIdx(3),1)) >>> t = c1 | (c2 << rdMolDescriptors.AtomPairsParameters.codeSize) | (c3 << (rdMolDescriptors.AtomPairsParameters.codeSize*2)) | (c4 << (rdMolDescriptors.AtomPairsParameters.codeSize*3)) >>> pyScorePath(m,(0,1,2,3),4)==t 1 The scores are path direction independent: >>> pyScorePath(m,(3,2,1,0),4)==t 1 >>> m = Chem.MolFromSmiles('C=CC(=O)O') >>> c1 = long(Utils.GetAtomCode(m.GetAtomWithIdx(0),1)) >>> c2 = long(Utils.GetAtomCode(m.GetAtomWithIdx(1),2)) >>> c3 = long(Utils.GetAtomCode(m.GetAtomWithIdx(2),2)) >>> c4 = long(Utils.GetAtomCode(m.GetAtomWithIdx(4),1)) >>> t = c1 | (c2 << rdMolDescriptors.AtomPairsParameters.codeSize) | (c3 << (rdMolDescriptors.AtomPairsParameters.codeSize*2)) | (c4 << (rdMolDescriptors.AtomPairsParameters.codeSize*3)) >>> pyScorePath(m,(0,1,2,4),4)==t 1 """ codes = [None]*size for i in range(size): if i==0 or i==(size-1): sub = 1 else: sub = 2 if not atomCodes: codes[i] = Utils.GetAtomCode(mol.GetAtomWithIdx(path[i]),sub) else: base = atomCodes[path[i]] codes[i]=base-sub # "canonicalize" the code vector: beg=0 end = len(codes)-1 while(beg < end): if codes[beg] > codes[end]: codes.reverse() break elif codes[beg]==codes[end]: beg += 1 end -= 1 else: break accum = 0L for i in range(size): accum |= long(codes[i]) << (rdMolDescriptors.AtomPairsParameters.codeSize*i) return accum def ExplainPathScore(score,size=4): """ >>> m = Chem.MolFromSmiles('C=CC') >>> score=pyScorePath(m,(0,1,2),3) >>> ExplainPathScore(score,3) (('C', 1, 0), ('C', 2, 1), ('C', 1, 1)) Again, it's order independent: >>> score=pyScorePath(m,(2,1,0),3) >>> ExplainPathScore(score,3) (('C', 1, 0), ('C', 2, 1), ('C', 1, 1)) >>> m = Chem.MolFromSmiles('C=CO') >>> score=pyScorePath(m,(0,1,2),3) >>> ExplainPathScore(score,3) (('C', 1, 1), ('C', 2, 1), ('O', 1, 0)) >>> m = Chem.MolFromSmiles('OC=CO') >>> score=pyScorePath(m,(0,1,2,3),4) >>> ExplainPathScore(score,4) (('O', 1, 0), ('C', 2, 1), ('C', 2, 1), ('O', 1, 0)) >>> m = Chem.MolFromSmiles('CC=CO') >>> score=pyScorePath(m,(0,1,2,3),4) >>> ExplainPathScore(score,4) (('C', 1, 0), ('C', 2, 1), ('C', 2, 1), ('O', 1, 0)) >>> m = Chem.MolFromSmiles('C=CC(=O)O') >>> score=pyScorePath(m,(0,1,2,3),4) >>> ExplainPathScore(score,4) (('C', 1, 1), ('C', 2, 1), ('C', 3, 1), ('O', 1, 1)) >>> score=pyScorePath(m,(0,1,2,4),4) >>> ExplainPathScore(score,4) (('C', 1, 1), ('C', 2, 1), ('C', 3, 1), ('O', 1, 0)) >>> m = Chem.MolFromSmiles('OOOO') >>> score=pyScorePath(m,(0,1,2),3) >>> ExplainPathScore(score,3) (('O', 1, 0), ('O', 2, 0), ('O', 2, 0)) >>> score=pyScorePath(m,(0,1,2,3),4) >>> ExplainPathScore(score,4) (('O', 1, 0), ('O', 2, 0), ('O', 2, 0), ('O', 1, 0)) """ codeMask=(1<<rdMolDescriptors.AtomPairsParameters.codeSize)-1 res=[None]*size #print '>>>>>>>>>>>',score,size,codeMask for i in range(size): if i==0 or i==(size-1): sub = 1 else: sub = 2 code = score&codeMask #print i,code,score score = score>>rdMolDescriptors.AtomPairsParameters.codeSize symb,nBranch,nPi = Utils.ExplainAtomCode(code) expl = symb,nBranch+sub,nPi res[i] = expl return tuple(res) from rdkit.Chem.rdMolDescriptors import GetTopologicalTorsionFingerprint,GetHashedTopologicalTorsionFingerprint GetTopologicalTorsionFingerprintAsIntVect=rdMolDescriptors.GetTopologicalTorsionFingerprint def GetTopologicalTorsionFingerprintAsIds(mol,targetSize=4): iv = GetTopologicalTorsionFingerprint(mol,targetSize) res=[] for k,v in iv.GetNonzeroElements().iteritems(): res.extend([k]*v) res.sort() return res #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/AtomPairs/Torsions.py", "copies": "2", "size": "4994", "license": "bsd-3-clause", "hash": 586635135906475300, "line_mean": 28.2046783626, "line_max": 188, "alpha_frac": 0.6177412895, "autogenerated": false, "ratio": 2.6763129689174705, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9120432701165966, "avg_score": 0.0347243114503009, "num_lines": 171 }
from __future__ import division from rdkit import rdBase from rdkit.DataStructs import cDataStructs __doc__ = cDataStructs.__doc__ from rdkit.DataStructs.cDataStructs import * similarityFunctions = [ ('Tanimoto', TanimotoSimilarity, ''), ("Dice", DiceSimilarity, ''), ("Cosine", CosineSimilarity, ''), ("Sokal", SokalSimilarity, ''), ("Russel", RusselSimilarity, ''), ("RogotGoldberg", RogotGoldbergSimilarity, ''), ("AllBit", AllBitSimilarity, ''), ("Kulczynski", KulczynskiSimilarity, ''), ("McConnaughey", McConnaugheySimilarity, ''), ("Asymmetric", AsymmetricSimilarity, ''), ("BraunBlanquet", BraunBlanquetSimilarity, ''), ] def FingerprintSimilarity(fp1, fp2, metric=TanimotoSimilarity): """ returns the calculated similarity between two fingerprints, handles any folding that may need to be done to ensure that they are compatible """ sz1 = fp1.GetNumBits() sz2 = fp2.GetNumBits() if sz1 < sz2: fp2 = FoldFingerprint(fp2, sz2 // sz1) elif sz2 < sz1: fp1 = FoldFingerprint(fp1, sz1 // sz2) return metric(fp1, fp2) def FoldToTargetDensity(fp, density=0.3, minLength=64): while fp.GetNumOnBits() / len(fp) > density and len(fp) // 2 > minLength: fp = FoldFingerprint(fp, 2) return fp ExplicitBitVect.ToBitString = BitVectToText SparseBitVect.ToBitString = BitVectToText
{ "repo_name": "jandom/rdkit", "path": "rdkit/DataStructs/__init__.py", "copies": "1", "size": "1624", "license": "bsd-3-clause", "hash": 5260115597227195000, "line_mean": 29.0740740741, "line_max": 75, "alpha_frac": 0.7013546798, "autogenerated": false, "ratio": 3.012987012987013, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9182104670820459, "avg_score": 0.006447404393310825, "num_lines": 54 }
from __future__ import division from rdkit import rdBase from rdkit.DataStructs import cDataStructs from rdkit.DataStructs.cDataStructs import * __doc__ = cDataStructs.__doc__ similarityFunctions = [ ('Tanimoto', TanimotoSimilarity, ''), ("Dice", DiceSimilarity, ''), ("Cosine", CosineSimilarity, ''), ("Sokal", SokalSimilarity, ''), ("Russel", RusselSimilarity, ''), ("RogotGoldberg", RogotGoldbergSimilarity, ''), ("AllBit", AllBitSimilarity, ''), ("Kulczynski", KulczynskiSimilarity, ''), ("McConnaughey", McConnaugheySimilarity, ''), ("Asymmetric", AsymmetricSimilarity, ''), ("BraunBlanquet", BraunBlanquetSimilarity, ''), ] def FingerprintSimilarity(fp1, fp2, metric=TanimotoSimilarity): """ returns the calculated similarity between two fingerprints, handles any folding that may need to be done to ensure that they are compatible """ sz1 = fp1.GetNumBits() sz2 = fp2.GetNumBits() if sz1 < sz2: fp2 = FoldFingerprint(fp2, sz2 // sz1) elif sz2 < sz1: fp1 = FoldFingerprint(fp1, sz1 // sz2) return metric(fp1, fp2) def FoldToTargetDensity(fp, density=0.3, minLength=64): while fp.GetNumOnBits() / len(fp) > density and len(fp) // 2 > minLength: fp = FoldFingerprint(fp, 2) return fp ExplicitBitVect.ToBitString = BitVectToText SparseBitVect.ToBitString = BitVectToText
{ "repo_name": "rvianello/rdkit", "path": "rdkit/DataStructs/__init__.py", "copies": "4", "size": "1625", "license": "bsd-3-clause", "hash": -4876271652371967000, "line_mean": 28.5454545455, "line_max": 75, "alpha_frac": 0.7009230769, "autogenerated": false, "ratio": 3.009259259259259, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.571018233615926, "avg_score": null, "num_lines": null }
from __future__ import print_function from rdkit import Chem from rdkit.Chem import rdMolDescriptors import math def ExplainAtomCode(code, branchSubtract=0): """ **Arguments**: - the code to be considered - branchSubtract: (optional) the constant that was subtracted off the number of neighbors before integrating it into the code. This is used by the topological torsions code. >>> m = Chem.MolFromSmiles('C=CC(=O)O') >>> code = GetAtomCode(m.GetAtomWithIdx(0)) >>> ExplainAtomCode(code) ('C', 1, 1) >>> code = GetAtomCode(m.GetAtomWithIdx(1)) >>> ExplainAtomCode(code) ('C', 2, 1) >>> code = GetAtomCode(m.GetAtomWithIdx(2)) >>> ExplainAtomCode(code) ('C', 3, 1) >>> code = GetAtomCode(m.GetAtomWithIdx(3)) >>> ExplainAtomCode(code) ('O', 1, 1) >>> code = GetAtomCode(m.GetAtomWithIdx(4)) >>> ExplainAtomCode(code) ('O', 1, 0) """ typeMask = (1 << rdMolDescriptors.AtomPairsParameters.numTypeBits) - 1 branchMask = (1 << rdMolDescriptors.AtomPairsParameters.numBranchBits) - 1 piMask = (1 << rdMolDescriptors.AtomPairsParameters.numPiBits) - 1 nBranch = int(code & branchMask) code = code >> rdMolDescriptors.AtomPairsParameters.numBranchBits nPi = int(code & piMask) code = code >> rdMolDescriptors.AtomPairsParameters.numPiBits typeIdx = int(code & typeMask) if typeIdx < len(rdMolDescriptors.AtomPairsParameters.atomTypes): atomNum = rdMolDescriptors.AtomPairsParameters.atomTypes[typeIdx] atomSymbol = Chem.GetPeriodicTable().GetElementSymbol(atomNum) else: atomSymbol = 'X' return (atomSymbol, nBranch, nPi) GetAtomCode = rdMolDescriptors.GetAtomPairAtomCode def NumPiElectrons(atom): """ Returns the number of electrons an atom is using for pi bonding >>> m = Chem.MolFromSmiles('C=C') >>> NumPiElectrons(m.GetAtomWithIdx(0)) 1 >>> m = Chem.MolFromSmiles('C#CC') >>> NumPiElectrons(m.GetAtomWithIdx(0)) 2 >>> NumPiElectrons(m.GetAtomWithIdx(1)) 2 >>> m = Chem.MolFromSmiles('O=C=CC') >>> NumPiElectrons(m.GetAtomWithIdx(0)) 1 >>> NumPiElectrons(m.GetAtomWithIdx(1)) 2 >>> NumPiElectrons(m.GetAtomWithIdx(2)) 1 >>> NumPiElectrons(m.GetAtomWithIdx(3)) 0 >>> m = Chem.MolFromSmiles('c1ccccc1') >>> NumPiElectrons(m.GetAtomWithIdx(0)) 1 FIX: this behaves oddly in these cases: >>> m = Chem.MolFromSmiles('S(=O)(=O)') >>> NumPiElectrons(m.GetAtomWithIdx(0)) 2 >>> m = Chem.MolFromSmiles('S(=O)(=O)(O)O') >>> NumPiElectrons(m.GetAtomWithIdx(0)) 0 In the second case, the S atom is tagged as sp3 hybridized. """ res = 0 if atom.GetIsAromatic(): res = 1 elif atom.GetHybridization() != Chem.HybridizationType.SP3: # the number of pi electrons is just the number of # unsaturations (valence - degree): res = atom.GetExplicitValence() - atom.GetNumExplicitHs() if res < atom.GetDegree(): raise ValueError("explicit valence exceeds atom degree") res -= atom.GetDegree() return res def BitsInCommon(v1, v2): """ Returns the number of bits in common between two vectors **Arguments**: - two vectors (sequences of bit ids) **Returns**: an integer **Notes** - the vectors must be sorted - duplicate bit IDs are counted more than once >>> BitsInCommon( (1,2,3,4,10), (2,4,6) ) 2 Here's how duplicates are handled: >>> BitsInCommon( (1,2,2,3,4), (2,2,4,5,6) ) 3 """ res = 0 v2Pos = 0 nV2 = len(v2) for val in v1: while v2Pos < nV2 and v2[v2Pos] < val: v2Pos += 1 if v2Pos >= nV2: break if v2[v2Pos] == val: res += 1 v2Pos += 1 return res def DiceSimilarity(v1, v2, bounds=None): """ Implements the DICE similarity metric. This is the recommended metric in both the Topological torsions and Atom pairs papers. **Arguments**: - two vectors (sequences of bit ids) **Returns**: a float. **Notes** - the vectors must be sorted >>> DiceSimilarity( (1,2,3), (1,2,3) ) 1.0 >>> DiceSimilarity( (1,2,3), (5,6) ) 0.0 >>> DiceSimilarity( (1,2,3,4), (1,3,5,7) ) 0.5 >>> DiceSimilarity( (1,2,3,4,5,6), (1,3) ) 0.5 Note that duplicate bit IDs count multiple times: >>> DiceSimilarity( (1,1,3,4,5,6), (1,1) ) 0.5 but only if they are duplicated in both vectors: >>> DiceSimilarity( (1,1,3,4,5,6), (1,) )==2./7 True edge case >>> DiceSimilarity( (), () ) 0.0 and bounds check >>> DiceSimilarity( (1,1,3,4), (1,1)) 0.666... >>> DiceSimilarity( (1,1,3,4), (1,1), bounds=0.3) 0.666... >>> DiceSimilarity( (1,1,3,4), (1,1), bounds=0.33) 0.666... >>> DiceSimilarity( (1,1,3,4,5,6), (1,1), bounds=0.34) 0.0 """ denom = 1.0 * (len(v1) + len(v2)) if not denom: res = 0.0 else: if bounds and (min(len(v1), len(v2)) / denom) < bounds: numer = 0.0 else: numer = 2.0 * BitsInCommon(v1, v2) res = numer / denom return res def Dot(v1, v2): """ Returns the Dot product between two vectors: **Arguments**: - two vectors (sequences of bit ids) **Returns**: an integer **Notes** - the vectors must be sorted - duplicate bit IDs are counted more than once >>> Dot( (1,2,3,4,10), (2,4,6) ) 2 Here's how duplicates are handled: >>> Dot( (1,2,2,3,4), (2,2,4,5,6) ) 5 >>> Dot( (1,2,2,3,4), (2,4,5,6) ) 2 >>> Dot( (1,2,2,3,4), (5,6) ) 0 >>> Dot( (), (5,6) ) 0 """ res = 0 nV1 = len(v1) nV2 = len(v2) i = 0 j = 0 while i < nV1: v1Val = v1[i] v1Count = 1 i += 1 while i < nV1 and v1[i] == v1Val: v1Count += 1 i += 1 while j < nV2 and v2[j] < v1Val: j += 1 if j < nV2 and v2[j] == v1Val: v2Count = 1 j += 1 while j < nV2 and v2[j] == v1Val: v2Count += 1 j += 1 commonCount = min(v1Count, v2Count) res += commonCount * commonCount elif j >= nV2: break return res def CosineSimilarity(v1, v2): """ Implements the Cosine similarity metric. This is the recommended metric in the LaSSI paper **Arguments**: - two vectors (sequences of bit ids) **Returns**: a float. **Notes** - the vectors must be sorted >>> print('%.3f'%CosineSimilarity( (1,2,3,4,10), (2,4,6) )) 0.516 >>> print('%.3f'%CosineSimilarity( (1,2,2,3,4), (2,2,4,5,6) )) 0.714 >>> print('%.3f'%CosineSimilarity( (1,2,2,3,4), (1,2,2,3,4) )) 1.000 >>> print('%.3f'%CosineSimilarity( (1,2,2,3,4), (5,6,7) )) 0.000 >>> print('%.3f'%CosineSimilarity( (1,2,2,3,4), () )) 0.000 """ d1 = Dot(v1, v1) d2 = Dot(v2, v2) denom = math.sqrt(d1 * d2) if not denom: res = 0.0 else: numer = Dot(v1, v2) res = numer / denom return res # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/AtomPairs/Utils.py", "copies": "2", "size": "7283", "license": "bsd-3-clause", "hash": 1631624067527401500, "line_mean": 21.4783950617, "line_max": 76, "alpha_frac": 0.6088150487, "autogenerated": false, "ratio": 2.7451941198643044, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9297928661105601, "avg_score": 0.011216101491740793, "num_lines": 324 }
from rdkit import rdBase import cDataStructs __doc__=cDataStructs.__doc__ from cDataStructs import * similarityFunctions=[ ('Tanimoto',TanimotoSimilarity,''), ("Dice",DiceSimilarity,''), ("Cosine",CosineSimilarity,''), ("Sokal",SokalSimilarity,''), ("Russel",RusselSimilarity,''), ("RogotGoldberg",RogotGoldbergSimilarity,''), ("AllBit",AllBitSimilarity,''), ("Kulczynski",KulczynskiSimilarity,''), ("McConnaughey",McConnaugheySimilarity,''), ("Asymmetric",AsymmetricSimilarity,''), ("BraunBlanquet",BraunBlanquetSimilarity,''), ] def FingerprintSimilarity(fp1,fp2,metric=TanimotoSimilarity): """ returns the calculated similarity between two fingerprints, handles any folding that may need to be done to ensure that they are compatible """ sz1 = fp1.GetNumBits() sz2 = fp2.GetNumBits() if sz1<sz2: fp2 = FoldFingerprint(fp2,sz2/sz1) elif sz2<sz1: fp1 = FoldFingerprint(fp1,sz1/sz2) return metric(fp1,fp2) def FoldToTargetDensity(fp,density=0.3,minLength=64): while float(fp.GetNumOnBits())/len(fp)>density and len(fp)/2>minLength: fp = FoldFingerprint(fp,2) return fp ExplicitBitVect.ToBitString = BitVectToText SparseBitVect.ToBitString = BitVectToText
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/DataStructs/__init__.py", "copies": "2", "size": "1506", "license": "bsd-3-clause", "hash": 972658805899757000, "line_mean": 27.9615384615, "line_max": 73, "alpha_frac": 0.7197875166, "autogenerated": false, "ratio": 2.9129593810444874, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9394825220996379, "avg_score": 0.04758433532962171, "num_lines": 52 }
""" unit testing code for MOE-type descriptors with EStates """ from __future__ import print_function from rdkit import RDConfig import unittest,os from rdkit import Chem from rdkit.Chem.EState import EState_VSA import os.path def feq(n1,n2,tol=1e-4): return abs(n1-n2)<=tol class TestCase(unittest.TestCase): def setUp(self): if doLong: print('\n%s: '%self.shortDescription(), end='') def test1(self): inName = os.path.join(RDConfig.RDCodeDir,'Chem','EState','test_data', 'EState_VSA.csv') with open(inName,'r') as inF: inL = inF.readline() names = [x.strip() for x in inL.split(',')[1:]] suppl = Chem.SmilesMolSupplier(inName,delimiter=',',nameColumn=-1) for mol in suppl: self.assertTrue(mol) smi = Chem.MolToSmiles(mol) for name in names: prop = float(mol.GetProp(name)) func = getattr(EState_VSA,name) v = func(mol) self.assertTrue(feq(v,prop),'%s: %.4f!=%.4f'%(smi,v,prop)) if __name__ == '__main__': import sys,getopt,re doLong=0 if len(sys.argv) >1: args,extras=getopt.getopt(sys.argv[1:],'l') for arg,val in args: if arg=='-l': doLong=1 sys.argv.remove('-l') if doLong: for methName in dir(TestCase): if re.match('_test',methName): newName = re.sub('_test','test',methName) exec('TestCase.%s = TestCase.%s'%(newName,methName)) unittest.main()
{ "repo_name": "adalke/rdkit", "path": "rdkit/Chem/EState/UnitTestVSA.py", "copies": "4", "size": "1739", "license": "bsd-3-clause", "hash": -1630963691464598500, "line_mean": 27.5081967213, "line_max": 73, "alpha_frac": 0.6198964922, "autogenerated": false, "ratio": 3.0138648180242633, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.05067652033262737, "num_lines": 61 }
""" Contains an implementation of Atom-pair fingerprints, as described in: R.E. Carhart, D.H. Smith, R. Venkataraghavan; "Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications" JCICS 25, 64-73 (1985). """ from rdkit.DataStructs import IntSparseIntVect from rdkit import Chem from rdkit.Chem import rdMolDescriptors from rdkit.Chem.AtomPairs import Utils from rdkit import DataStructs from rdkit.Chem.rdMolDescriptors import GetAtomPairFingerprint,GetHashedAtomPairFingerprint GetAtomPairFingerprintAsIntVect=rdMolDescriptors.GetAtomPairFingerprint numPathBits=rdMolDescriptors.AtomPairsParameters.numPathBits _maxPathLen=(1<<numPathBits)-1 numFpBits=numPathBits+2*rdMolDescriptors.AtomPairsParameters.codeSize fpLen=1<<numFpBits def pyScorePair(at1,at2,dist,atomCodes=None): """ Returns a score for an individual atom pair. >>> m = Chem.MolFromSmiles('CCCCC') >>> c1 = Utils.GetAtomCode(m.GetAtomWithIdx(0)) >>> c2 = Utils.GetAtomCode(m.GetAtomWithIdx(1)) >>> c3 = Utils.GetAtomCode(m.GetAtomWithIdx(2)) >>> t = 1 | min(c1,c2)<<numPathBits | max(c1,c2)<<(rdMolDescriptors.AtomPairsParameters.codeSize+numPathBits) >>> pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(1),1)==t 1 >>> pyScorePair(m.GetAtomWithIdx(1),m.GetAtomWithIdx(0),1)==t 1 >>> t = 2 | min(c1,c3)<<numPathBits | max(c1,c3)<<(rdMolDescriptors.AtomPairsParameters.codeSize+numPathBits) >>> pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(2),2)==t 1 >>> pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(2),2, ... atomCodes=(Utils.GetAtomCode(m.GetAtomWithIdx(0)),Utils.GetAtomCode(m.GetAtomWithIdx(2))))==t 1 """ if not atomCodes: code1 = Utils.GetAtomCode(at1) code2 = Utils.GetAtomCode(at2) else: code1,code2=atomCodes accum = int(dist) % _maxPathLen accum |= min(code1,code2) << numPathBits accum |= max(code1,code2) << (rdMolDescriptors.AtomPairsParameters.codeSize+numPathBits) return accum def ExplainPairScore(score): """ >>> m = Chem.MolFromSmiles('C=CC') >>> score = pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(1),1) >>> ExplainPairScore(score) (('C', 1, 1), 1, ('C', 2, 1)) >>> score = pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(2),2) >>> ExplainPairScore(score) (('C', 1, 0), 2, ('C', 1, 1)) >>> score = pyScorePair(m.GetAtomWithIdx(1),m.GetAtomWithIdx(2),1) >>> ExplainPairScore(score) (('C', 1, 0), 1, ('C', 2, 1)) >>> score = pyScorePair(m.GetAtomWithIdx(2),m.GetAtomWithIdx(1),1) >>> ExplainPairScore(score) (('C', 1, 0), 1, ('C', 2, 1)) """ codeMask = (1<<rdMolDescriptors.AtomPairsParameters.codeSize)-1 pathMask = (1<<numPathBits)-1 dist = score&pathMask score = score>>numPathBits code1 = score&codeMask score = score>>rdMolDescriptors.AtomPairsParameters.codeSize code2 = score&codeMask res = Utils.ExplainAtomCode(code1),dist,Utils.ExplainAtomCode(code2) return res def GetAtomPairFingerprintAsBitVect(mol): """ Returns the Atom-pair fingerprint for a molecule as a SparseBitVect. Note that this doesn't match the standard definition of atom pairs, which uses counts of the pairs, not just their presence. **Arguments**: - mol: a molecule **Returns**: a SparseBitVect >>> m = Chem.MolFromSmiles('CCC') >>> v = [ pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(1),1), ... pyScorePair(m.GetAtomWithIdx(0),m.GetAtomWithIdx(2),2), ... ] >>> v.sort() >>> fp = GetAtomPairFingerprintAsBitVect(m) >>> list(fp.GetOnBits())==v True """ res = DataStructs.SparseBitVect(fpLen) fp = rdMolDescriptors.GetAtomPairFingerprint(mol) for val in fp.GetNonzeroElements().keys(): res.SetBit(val) return res #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "strets123/rdkit", "path": "rdkit/Chem/AtomPairs/Pairs.py", "copies": "4", "size": "4247", "license": "bsd-3-clause", "hash": -7505089715439233000, "line_mean": 30.4592592593, "line_max": 111, "alpha_frac": 0.700023546, "autogenerated": false, "ratio": 2.871534820824882, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5571558366824882, "avg_score": null, "num_lines": null }
""" Defines Naive Baysean classification model Based on development in: Chapter 6 of "Machine Learning" by Tom Mitchell """ import numpy from rdkit.ML.Data import Quantize from rdkit.six import iteritems def _getBinId(val, qBounds): bid = 0 for bnd in qBounds: if (val > bnd): bid += 1 return bid # FIX: this class has not been updated to new-style classes # (RD Issue380) because that would break all of our legacy pickled # data. Until a solution is found for this breakage, an update is # impossible. class NaiveBayesClassifier: """ _NaiveBayesClassifier_s can save the following pieces of internal state, accessible via standard setter/getter functions: 1) _Examples_: a list of examples which have been predicted 2) _TrainingExamples_: List of training examples - the descriptor value of these examples are quantized based on info gain using ML/Data/Quantize.py if necessary 3) _TestExamples_: the list of examples used to test the model 4) _BadExamples_ : list of examples that were incorrectly classified 4) _QBoundVals_: Quant bound values for each varaible - a list of lists 5) _QBounds_ : Number of bounds for each variable """ def __init__(self, attrs, nPossibleVals, nQuantBounds, mEstimateVal=-1.0, useSigs=False): """ Constructor """ self._attrs = attrs self._mEstimateVal = mEstimateVal self._useSigs = useSigs self._classProbs = {} self._examples = [] self._trainingExamples = [] self._testExamples = [] self._badExamples = [] self._QBoundVals = {} self._nClasses = nPossibleVals[-1] self._qBounds = nQuantBounds self._nPosVals = nPossibleVals self._needsQuant = 1 self._name = "" self.mprob = -1.0 # for the sake a of efficiency lets try to change the conditional probabities # to a numpy array instead of a dictionary. The three dimension array is indexed # on the the activity class, the discriptor ID and the descriptor binID #self._condProbs = {} #self._condProbs = numpy.zeros((self._nClasses, max(self._attrs)+1, max(self._nPosVals)+1), 'd') self._condProbs = [None] * self._nClasses for i in range(self._nClasses): if not (hasattr(self, '_useSigs') and self._useSigs): nA = max(self._attrs) + 1 self._condProbs[i] = [None] * nA for j in range(nA): nV = self._nPosVals[j] if self._qBounds[j]: nV = max(nV, self._qBounds[j] + 1) self._condProbs[i][j] = [0.0] * nV else: self._condProbs[i] = {} for idx in self._attrs: self._condProbs[i][idx] = [0.0] * 2 def GetName(self): return self._name def SetName(self, name): self._name = name def NameModel(self, varNames): self.SetName('NaiveBayesCalssifier') def GetExamples(self): return self._examples def SetExamples(self, examples): self._examples = examples def GetTrainingExamples(self): return self._trainingExamples def SetTrainingExamples(self, examples): self._trainingExamples = examples def GetTestExamples(self): return self._testExamples def SetTestExamples(self, examples): self._testExamples = examples def SetBadExamples(self, examples): self._badExamples = examples def GetBadExamples(self): return self._badExamples def _computeQuantBounds(self): neg = len(self._trainingExamples) natr = len(self._attrs) # make a list of results and values allVals = numpy.zeros((neg, natr), 'd') res = [] # list of y values i = 0 for eg in self._trainingExamples: res.append(eg[-1]) j = 0 for ai in self._attrs: val = eg[ai] allVals[i, j] = val j += 1 i += 1 # now loop over each of the columns and compute the bounds # the number of bounds is determined by the maximum info gain i = 0 for ai in self._attrs: nbnds = self._qBounds[ai] if nbnds > 0: mbnds = [] mgain = -1.0 for j in range(1, nbnds + 1): bnds, igain = Quantize.FindVarMultQuantBounds(allVals[:, i], j, res, self._nClasses) if (igain > mgain): mbnds = bnds mgain = igain self._QBoundVals[ai] = mbnds i += 1 def trainModel(self): """ We will assume at this point that the training examples have been set We have to estmate the conditional probabilities for each of the (binned) descriptor component give a outcome (or class). Also the probabilities for each class is estimated """ # first estimate the class probabilities n = len(self._trainingExamples) for i in range(self._nClasses): self._classProbs[i] = 0.0 #for i in range(self._nClasses): # self._classProbs[i] = float(self._classProbs[i])/n # first find the bounds for each descriptor value if necessary if not self._useSigs and max(self._qBounds) > 0: self._computeQuantBounds() # now compute the probabilities ncls = {} incr = 1.0 / n for eg in self._trainingExamples: cls = eg[-1] self._classProbs[cls] += incr ncls[cls] = ncls.get(cls, 0) + 1 tmp = self._condProbs[cls] if not self._useSigs: for ai in self._attrs: bid = eg[ai] if self._qBounds[ai] > 0: bid = _getBinId(bid, self._QBoundVals[ai]) tmp[ai][bid] += 1.0 else: for ai in self._attrs: if eg[1].GetBit(ai): tmp[ai][1] += 1.0 else: tmp[ai][0] += 1.0 #for key in self._condProbs: for cls in range(self._nClasses): if not cls in ncls: continue #cls = key[0] tmp = self._condProbs[cls] for ai in self._attrs: if not self._useSigs: nbnds = self._nPosVals[ai] if (self._qBounds[ai] > 0): nbnds = self._qBounds[ai] else: nbnds = 2 for bid in range(nbnds): if self._mEstimateVal <= 0.0: # this is simple the fraction of of time this descriptor component assume # this value for the examples that belong a specific class #self._condProbs[key] = (float(self._condProbs[key]))/ncls[cls] tmp[ai][bid] /= ncls[cls] else: # this a bit more complicated form - more appropriate for unbalanced data # see "Machine Learning" by Tom Mitchell section 6.9.1.1 # this is the probability that this descriptor component can take this specific value # in the lack of any other information is is simply the inverse of the number of # possible values 'npossible' # If we quantized this component then # npossible = 1 + len(self._QBoundVals[ai]) # else if we did no qunatize (the descriptor came quantized) # npossible = nPossibleVals[ai] #ai = key[1] pdesc = 0.0 if self._qBounds[ai] > 0: pdesc = 1.0 / (1 + len(self._QBoundVals[ai])) elif (self._nPosVals[ai] > 0): pdesc = 1.0 / (self._nPosVals[ai]) else: raise ValueError('Neither Bounds set nor data pre-quantized for attribute ' + str(ai)) tmp[ai][bid] += (self._mEstimateVal) * pdesc tmp[ai][bid] /= (ncls[cls] + self._mEstimateVal) def ClassifyExamples(self, examples, appendExamples=0): preds = [] for eg in examples: pred = self.ClassifyExample(eg, appendExamples) preds.append(int(pred)) return preds def GetClassificationDetails(self): """ returns the probability of the last prediction """ return self.mprob def ClassifyExample(self, example, appendExamples=0): """ Classify an example by summing over the conditional probabilities The most likely class is the one with the largest probability """ if appendExamples: self._examples.append(example) clsProb = {} for key, prob in iteritems(self._classProbs): clsProb[key] = prob tmp = self._condProbs[key] for ai in self._attrs: if not (hasattr(self, '_useSigs') and self._useSigs): bid = example[ai] if self._qBounds[ai] > 0: bid = _getBinId(bid, self._QBoundVals[ai]) else: if example[1].GetBit(ai): bid = 1 else: bid = 0 clsProb[key] *= tmp[ai][bid] mkey = -1 self.mprob = -1.0 for key, prob in iteritems(clsProb): if (prob > self.mprob): mkey = key self.mprob = prob return mkey
{ "repo_name": "jandom/rdkit", "path": "rdkit/ML/NaiveBayes/ClassificationModel.py", "copies": "1", "size": "8719", "license": "bsd-3-clause", "hash": -2859280128291355600, "line_mean": 30.3633093525, "line_max": 100, "alpha_frac": 0.6105057919, "autogenerated": false, "ratio": 3.5675122749590833, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4678018066859083, "avg_score": null, "num_lines": null }
from __future__ import print_function from rdkit import RDConfig import unittest,sys,os from rdkit.six import PY3 from rdkit.six.moves import cPickle from rdkit import Chem from rdkit.Chem import ChemicalFeatures,rdDistGeom import EmbedLib import gzip from rdkit import DistanceGeometry as DG from rdkit import Geometry import Pharmacophore import numpy def feq(n1,n2,tol=1e-5): return abs(n1-n2)<=tol class TestCase(unittest.TestCase): def setUp(self): self.dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') self.fdefBlock = \ """DefineFeature HAcceptor1 [N,O;H0] Family HBondAcceptor Weights 1.0 EndFeature DefineFeature HDonor1 [N,O;!H0] Family HBondDonor Weights 1.0 EndFeature DefineFeature Aromatic1 c1ccccc1 Family Aromatic Weights 1.,1.,1.,1.,1.,1. EndFeature\n""" self.featFactory = ChemicalFeatures.BuildFeatureFactoryFromString(self.fdefBlock) self.feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ] self.pcophore=Pharmacophore.Pharmacophore(self.feats) self.pcophore.setLowerBound(0,1, 2.0) self.pcophore.setUpperBound(0,1, 3.3) self.pcophore.setLowerBound(0,2, 5.0) self.pcophore.setUpperBound(0,2, 5.4) self.pcophore.setLowerBound(1,2, 2.6) self.pcophore.setUpperBound(1,2, 3.0) def _matchMol(self,tpl,pcophore,featFactory,downSample): name,molPkl,boundsMat = tpl mol = Chem.Mol(molPkl) matched,matches = EmbedLib.MatchPharmacophoreToMol(mol,featFactory,pcophore) if matched: r = EmbedLib.MatchPharmacophore(matches,boundsMat,pcophore, useDownsampling=downSample) if r[0]: return 0 else: return 1 else: return 0 def test1SearchFullMat(self): inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') #outF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.new.gz'),'wb+') nDone = 0 nHits = 0 while 1: try: tpl = cPickle.load(inF, encoding='latin1') if PY3: tpl = tpl[0], tpl[1].encode('latin1'), tpl[2] #tpl=tpl[0],tpl[1],numpy.array(tpl[2]) #cPickle.dump(tpl,outF) except: break if self._matchMol(tpl,self.pcophore,self.featFactory,0): nHits+=1 nDone += 1 self.assertEqual(nDone,100) #print 'nHits:',nHits self.assertEqual(nHits,47) def test2SearchDownsample(self): inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') nDone = 0 nHits = 0 hits = [] while 1: try: tpl = cPickle.load(inF, encoding='latin1') if PY3: tpl = tpl[0], tpl[1].encode('latin1'), tpl[2] except: break if self._matchMol(tpl,self.pcophore, self.featFactory,1): nHits+=1 nDone += 1 self.assertEqual(nDone,100) #print 'nHits:',nHits self.assertEqual(nHits,47) def test3Embed(self): testResults={ 'mol_197':(218.80,35.75,110.33,11.58,109.66,11.09,90.35,2.95,0.00), 'mol_223':(259.19,6.27,134.13,1.12,134.06,1.12,85.74,0.61,0.00), 'mol_269':(204.51,7.89,103.89,1.20,102.66,1.20,88.07,1.21,6.00), } inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') nDone = 0 nHits = 0 while 1: try: name,molPkl,boundsMat = cPickle.load(inF, encoding='latin1') if PY3: molPkl = bytes(molPkl, encoding='latin1') except: break nDone += 1 mol = Chem.Mol(molPkl) nboundsMat = rdDistGeom.GetMoleculeBoundsMatrix(mol) DG.DoTriangleSmoothing(nboundsMat) matched,matches = EmbedLib.MatchPharmacophoreToMol(mol,self.featFactory, self.pcophore) if matched: failed,bm,match,stats = EmbedLib.MatchPharmacophore(matches,nboundsMat, self.pcophore, useDownsampling=1) if not failed: nHits += 1 if name in testResults: stats = EmbedLib.EmbedOne(mol,name,match,self.pcophore,count=10, silent=1,randomSeed=23) tgt = testResults[name] self.assertEqual(len(tgt),len(stats)) print(name) print(','.join(['%.2f'%x for x in stats])) # we'll use different tolerances for the different values: self.assertTrue(feq(tgt[0],stats[0],5.0),(tgt[0],stats[0])) for i in range(2,len(tgt)): self.assertTrue(feq(tgt[i],stats[i],5.0),(tgt[i],stats[i])) self.assertEqual(nDone,100) #print 'nHits:',nHits self.assertEqual(nHits,50) def test4Search(self): featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(self.dataDir, 'BaseFeatures.fdef')) activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('Donor', Geometry.Point3D(0.0, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('Aromatic', Geometry.Point3D(0.0, 0.0, 0.0))] pcophore= Pharmacophore.Pharmacophore(activeFeats) pcophore.setLowerBound(0,1,2.251) pcophore.setUpperBound(0,1,2.451) pcophore.setUpperBound2D(0,1,3) pcophore.setLowerBound(0,2,4.970) pcophore.setUpperBound(0,2,5.170) pcophore.setUpperBound2D(0,2,6) pcophore.setLowerBound(1,2,2.681) pcophore.setUpperBound(1,2,2.881) pcophore.setUpperBound2D(1,2,6) inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') nDone = 0 nMatches = 0 nHits = 0 while 1: try: name,molPkl,boundsMat = cPickle.load(inF, encoding='latin1') if PY3: molPkl = bytes(molPkl, encoding='latin1') except: break nDone += 1 mol = Chem.Mol(molPkl) boundsMat = rdDistGeom.GetMoleculeBoundsMatrix(mol) DG.DoTriangleSmoothing(boundsMat) canMatch,matches = EmbedLib.MatchPharmacophoreToMol(mol,featFactory, pcophore) if canMatch: nMatches+=1 r = EmbedLib.MatchPharmacophore(matches,boundsMat,pcophore, useDownsampling=True,use2DLimits=True, mol=mol) failed,bm,match,details = r if not failed: nHits+=1 self.assertEqual(nDone,100) self.assertEqual(nMatches,93) #print 'nhits:',nHits self.assertEqual(nHits,67) def testIssue268(self): from rdkit import RDLogger #RDLogger.EnableLog('rdApp.debug') featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(self.dataDir, 'Issue268.fdef')) m1 = Chem.MolFromMolFile(os.path.join(self.dataDir, 'Issue268_Mol1.mol')) m2 = Chem.MolFromMolFile(os.path.join(self.dataDir, 'Issue268_Mol2.mol')) with open(os.path.join(self.dataDir, 'Issue268_Pcop.pkl'),'rb') as inF: pcop = cPickle.load(inF, encoding='latin1') #pcop._boundsMat=numpy.array(pcop._boundsMat) #pcop._boundsMat2D=numpy.array(pcop._boundsMat2D) #cPickle.dump(pcop,file(os.path.join(self.dataDir, # 'Issue268_Pcop.new.pkl'),'wb+')) match,mList1 = EmbedLib.MatchFeatsToMol(m1,featFactory,pcop.getFeatures()) match,mList2 = EmbedLib.MatchFeatsToMol(m2,featFactory,pcop.getFeatures()) b1 = rdDistGeom.GetMoleculeBoundsMatrix(m1) b2 = rdDistGeom.GetMoleculeBoundsMatrix(m2) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop)[2]),4) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop)[2]),4) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop, mol=m1,use2DLimits=True)[2]),4) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop, mol=m2,use2DLimits=True)[2]),4) from rdkit import DistanceGeometry as DG self.assertTrue(DG.DoTriangleSmoothing(b1)) self.assertTrue(DG.DoTriangleSmoothing(b2)) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop)[2]),4) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop)[2]),4) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop, mol=m1,use2DLimits=True)[2]),4) self.assertEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop, mol=m2,use2DLimits=True)[2]),4) if __name__ == '__main__': unittest.main()
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "rdkit/Chem/Pharm3D/UnitTestEmbed.py", "copies": "1", "size": "10065", "license": "bsd-3-clause", "hash": 8775973549836883000, "line_mean": 36.6966292135, "line_max": 85, "alpha_frac": 0.5786388475, "autogenerated": false, "ratio": 3.1841189496994624, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9083797925130674, "avg_score": 0.035791974413757525, "num_lines": 267 }
from __future__ import print_function from rdkit import RDConfig import sys,time,math from rdkit.ML.Data import Stats import rdkit.DistanceGeometry as DG from rdkit import Chem import numpy from rdkit.Chem import rdDistGeom as MolDG from rdkit.Chem import ChemicalFeatures from rdkit.Chem import ChemicalForceFields import Pharmacophore,ExcludedVolume from rdkit import Geometry _times = {} from rdkit import RDLogger as logging logger = logging.logger() defaultFeatLength=2.0 def GetAtomHeavyNeighbors(atom): """ returns a list of the heavy-atom neighbors of the atom passed in: >>> m = Chem.MolFromSmiles('CCO') >>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(0)) >>> len(l) 1 >>> isinstance(l[0],Chem.Atom) True >>> l[0].GetIdx() 1 >>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(1)) >>> len(l) 2 >>> l[0].GetIdx() 0 >>> l[1].GetIdx() 2 """ res=[] for nbr in atom.GetNeighbors(): if nbr.GetAtomicNum() != 1: res.append(nbr) return res def ReplaceGroup(match,bounds,slop=0.01,useDirs=False,dirLength=defaultFeatLength): """ Adds an entry at the end of the bounds matrix for a point at the center of a multi-point feature returns a 2-tuple: new bounds mat index of point added >>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]]) >>> match = [0,1,2] >>> bm,idx = ReplaceGroup(match,boundsMat,slop=0.0) the index is at the end: >>> idx == 3 True and the matrix is one bigger: >>> bm.shape == (4, 4) True but the original bounds mat is not altered: >>> boundsMat.shape == (3, 3) True We make the assumption that the points of the feature form a regular polygon, are listed in order (i.e. pt 0 is a neighbor to pt 1 and pt N-1) and that the replacement point goes at the center: >>> print(', '.join(['%.3f'%x for x in bm[-1]])) 0.577, 0.577, 0.577, 0.000 >>> print(', '.join(['%.3f'%x for x in bm[:,-1]])) 1.155, 1.155, 1.155, 0.000 The slop argument (default = 0.01) is fractional: >>> bm,idx = ReplaceGroup(match,boundsMat) >>> print(', '.join(['%.3f'%x for x in bm[-1]])) 0.572, 0.572, 0.572, 0.000 >>> print(', '.join(['%.3f'%x for x in bm[:,-1]])) 1.166, 1.166, 1.166, 0.000 """ maxVal = -1000.0 minVal = 1e8 nPts = len(match) for i in range(nPts): idx0 = match[i] if i<nPts-1: idx1 = match[i+1] else: idx1 = match[0] if idx1<idx0: idx0,idx1 = idx1,idx0 minVal = min(minVal,bounds[idx1,idx0]) maxVal = max(maxVal,bounds[idx0,idx1]) maxVal *= (1+slop) minVal *= (1-slop) scaleFact = 1.0/(2.0*math.sin(math.pi/nPts)) minVal *= scaleFact maxVal *= scaleFact replaceIdx = bounds.shape[0] if not useDirs: bm = numpy.zeros((bounds.shape[0]+1,bounds.shape[1]+1),numpy.float) else: bm = numpy.zeros((bounds.shape[0]+2,bounds.shape[1]+2),numpy.float) bm[0:bounds.shape[0],0:bounds.shape[1]]=bounds bm[:replaceIdx,replaceIdx]=1000. if useDirs: bm[:replaceIdx+1,replaceIdx+1]=1000. # set the feature - direction point bounds: bm[replaceIdx,replaceIdx+1]=dirLength+slop bm[replaceIdx+1,replaceIdx]=dirLength-slop for idx1 in match: bm[idx1,replaceIdx]=maxVal bm[replaceIdx,idx1]=minVal if useDirs: # set the point - direction point bounds: bm[idx1,replaceIdx+1] = numpy.sqrt(bm[replaceIdx,replaceIdx+1]**2+maxVal**2) bm[replaceIdx+1,idx1] = numpy.sqrt(bm[replaceIdx+1,replaceIdx]**2+minVal**2) return bm,replaceIdx def EmbedMol(mol,bm,atomMatch=None,weight=2.0,randomSeed=-1, excludedVolumes=None): """ Generates an embedding for a molecule based on a bounds matrix and adds a conformer (id 0) to the molecule if the optional argument atomMatch is provided, it will be used to provide supplemental weights for the embedding routine (used in the optimization phase to ensure that the resulting geometry really does satisfy the pharmacophore). if the excludedVolumes is provided, it should be a sequence of ExcludedVolume objects >>> m = Chem.MolFromSmiles('c1ccccc1C') >>> bounds = MolDG.GetMoleculeBoundsMatrix(m) >>> bounds.shape == (7, 7) True >>> m.GetNumConformers() 0 >>> EmbedMol(m,bounds,randomSeed=23) >>> m.GetNumConformers() 1 """ nAts = mol.GetNumAtoms() weights=[] if(atomMatch): for i in range(len(atomMatch)): for j in range(i+1,len(atomMatch)): weights.append((i,j,weight)) if(excludedVolumes): for vol in excludedVolumes: idx = vol.index # excluded volumes affect every other atom: for i in range(nAts): weights.append((i,idx,weight)) coords = DG.EmbedBoundsMatrix(bm,weights=weights,numZeroFail=1,randomSeed=randomSeed) #for row in coords: # print(', '.join(['%.2f'%x for x in row])) conf = Chem.Conformer(nAts) conf.SetId(0) for i in range(nAts): conf.SetAtomPosition(i,list(coords[i])) if excludedVolumes: for vol in excludedVolumes: vol.pos = numpy.array(coords[vol.index]) #print(' % 7.4f % 7.4f % 7.4f Ar 0 0 0 0 0 0 0 0 0 0 0 0'%tuple(coords[-1]), file=sys.stderr) mol.AddConformer(conf) def AddExcludedVolumes(bm,excludedVolumes,smoothIt=True): """ Adds a set of excluded volumes to the bounds matrix and returns the new matrix excludedVolumes is a list of ExcludedVolume objects >>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]]) >>> ev1 = ExcludedVolume.ExcludedVolume(([(0,),0.5,1.0],),exclusionDist=1.5) >>> bm = AddExcludedVolumes(boundsMat,(ev1,)) the results matrix is one bigger: >>> bm.shape == (4, 4) True and the original bounds mat is not altered: >>> boundsMat.shape == (3, 3) True >>> print(', '.join(['%.3f'%x for x in bm[-1]])) 0.500, 1.500, 1.500, 0.000 >>> print(', '.join(['%.3f'%x for x in bm[:,-1]])) 1.000, 3.000, 3.000, 0.000 """ oDim = bm.shape[0] dim = oDim+len(excludedVolumes) res = numpy.zeros((dim,dim),numpy.float) res[:oDim,:oDim] = bm for i,vol in enumerate(excludedVolumes): bmIdx = oDim+i vol.index = bmIdx # set values to all the atoms: res[bmIdx,:bmIdx] = vol.exclusionDist res[:bmIdx,bmIdx] = 1000.0 # set values to our defining features: for indices,minV,maxV in vol.featInfo: for index in indices: try: res[bmIdx,index] = minV res[index,bmIdx] = maxV except IndexError: logger.error('BAD INDEX: res[%d,%d], shape is %s'%(bmIdx,index,str(res.shape))) raise IndexError # set values to other excluded volumes: for j in range(bmIdx+1,dim): res[bmIdx,j:dim] = 0 res[j:dim,bmIdx] = 1000 if smoothIt: DG.DoTriangleSmoothing(res) return res def UpdatePharmacophoreBounds(bm,atomMatch,pcophore,useDirs=False, dirLength=defaultFeatLength, mol=None): """ loops over a distance bounds matrix and replaces the elements that are altered by a pharmacophore **NOTE** this returns the resulting bounds matrix, but it may also alter the input matrix atomMatch is a sequence of sequences containing atom indices for each of the pharmacophore's features. >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 1.0) >>> pcophore.setUpperBound(0,1, 2.0) >>> boundsMat = numpy.array([[0.0,3.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> atomMatch = ((0,),(1,)) >>> bm = UpdatePharmacophoreBounds(boundsMat,atomMatch,pcophore) In this case, there are no multi-atom features, so the result matrix is the same as the input: >>> bm is boundsMat True this means, of course, that the input boundsMat is altered: >>> print(', '.join(['%.3f'%x for x in boundsMat[0]])) 0.000, 2.000, 3.000 >>> print(', '.join(['%.3f'%x for x in boundsMat[1]])) 1.000, 0.000, 3.000 >>> print(', '.join(['%.3f'%x for x in boundsMat[2]])) 2.000, 2.000, 0.000 """ replaceMap = {} for i,matchI in enumerate(atomMatch): if len(matchI)>1: bm,replaceIdx = ReplaceGroup(matchI,bm,useDirs=useDirs) replaceMap[i] = replaceIdx for i,matchI in enumerate(atomMatch): mi = replaceMap.get(i,matchI[0]) for j in range(i+1,len(atomMatch)): mj = replaceMap.get(j,atomMatch[j][0]) if mi<mj: idx0,idx1 = mi,mj else: idx0,idx1 = mj,mi bm[idx0,idx1] = pcophore.getUpperBound(i,j) bm[idx1,idx0] = pcophore.getLowerBound(i,j) return bm def EmbedPharmacophore(mol,atomMatch,pcophore,randomSeed=-1,count=10,smoothFirst=True, silent=False,bounds=None,excludedVolumes=None,targetNumber=-1, useDirs=False): """ Generates one or more embeddings for a molecule that satisfy a pharmacophore atomMatch is a sequence of sequences containing atom indices for each of the pharmacophore's features. - count: is the maximum number of attempts to make a generating an embedding - smoothFirst: toggles triangle smoothing of the molecular bounds matix - bounds: if provided, should be the molecular bounds matrix. If this isn't provided, the matrix will be generated. - targetNumber: if this number is positive, it provides a maximum number of embeddings to generate (i.e. we'll have count attempts to generate targetNumber embeddings). returns: a 3 tuple: 1) the molecular bounds matrix adjusted for the pharmacophore 2) a list of embeddings (molecules with a single conformer) 3) the number of failed attempts at embedding >>> m = Chem.MolFromSmiles('OCCN') >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.5) >>> pcophore.setUpperBound(0,1, 3.5) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 10 >>> nFail 0 Set up a case that can't succeed: >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.0) >>> pcophore.setUpperBound(0,1, 2.1) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 0 >>> nFail 10 """ global _times if not hasattr(mol,'_chiralCenters'): mol._chiralCenters = Chem.FindMolChiralCenters(mol) if bounds is None: bounds = MolDG.GetMoleculeBoundsMatrix(mol) if smoothFirst: DG.DoTriangleSmoothing(bounds) bm = bounds.copy() #print '------------' #print 'initial' #for row in bm: # print ' ',' '.join(['% 4.2f'%x for x in row]) #print '------------' bm = UpdatePharmacophoreBounds(bm,atomMatch,pcophore,useDirs=useDirs,mol=mol) if excludedVolumes: bm = AddExcludedVolumes(bm,excludedVolumes,smoothIt=False) if not DG.DoTriangleSmoothing(bm): raise ValueError("could not smooth bounds matrix") #print '------------' #print 'post replace and smooth' #for row in bm: # print ' ',' '.join(['% 4.2f'%x for x in row]) #print '------------' if targetNumber<=0: targetNumber=count nFailed = 0 res = [] for i in range(count): tmpM = bm[:,:] m2 = Chem.Mol(mol) t1 = time.time() try: if randomSeed<=0: seed = i*10+1 else: seed = i*10+randomSeed EmbedMol(m2,tmpM,atomMatch,randomSeed=seed, excludedVolumes=excludedVolumes) except ValueError: if not silent: logger.info('Embed failed') nFailed += 1 else: t2 = time.time() _times['embed'] = _times.get('embed',0)+t2-t1 keepIt=True for idx,stereo in mol._chiralCenters: if stereo in ('R','S'): vol = ComputeChiralVolume(m2,idx) if (stereo=='R' and vol>=0) or \ (stereo=='S' and vol<=0): keepIt=False break if keepIt: res.append(m2) else: logger.debug('Removed embedding due to chiral constraints.') if len(res)==targetNumber: break return bm,res,nFailed def isNaN(v): """ provides an OS independent way of detecting NaNs This is intended to be used with values returned from the C++ side of things. We can't actually test this from Python (which traps zero division errors), but it would work something like this if we could: >>> isNaN(0) False #>>> isNan(1/0) #True """ if v!=v and sys.platform=='win32': return True elif v==0 and v==1 and sys.platform!='win32': return True return False def OptimizeMol(mol,bm,atomMatches=None,excludedVolumes=None, forceConstant=1200.0, maxPasses=5,verbose=False): """ carries out a UFF optimization for a molecule optionally subject to the constraints in a bounds matrix - atomMatches, if provided, is a sequence of sequences - forceConstant is the force constant of the spring used to enforce the constraints returns a 2-tuple: 1) the energy of the initial conformation 2) the energy post-embedding NOTE that these energies include the energies of the constraints >>> m = Chem.MolFromSmiles('OCCN') >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.5) >>> pcophore.setUpperBound(0,1, 2.8) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 10 >>> testM = embeds[0] Do the optimization: >>> e1,e2 = OptimizeMol(testM,bm,atomMatches=atomMatch) Optimizing should have lowered the energy: >>> e2 < e1 True Check the constrained distance: >>> conf = testM.GetConformer(0) >>> p0 = conf.GetAtomPosition(0) >>> p3 = conf.GetAtomPosition(3) >>> d03 = p0.Distance(p3) >>> d03 >= pcophore.getLowerBound(0,1)-.01 True >>> d03 <= pcophore.getUpperBound(0,1)+.01 True If we optimize without the distance constraints (provided via the atomMatches argument) we're not guaranteed to get the same results, particularly in a case like the current one where the pharmcophore brings the atoms uncomfortably close together: >>> testM = embeds[1] >>> e1,e2 = OptimizeMol(testM,bm) >>> e2 < e1 True >>> conf = testM.GetConformer(0) >>> p0 = conf.GetAtomPosition(0) >>> p3 = conf.GetAtomPosition(3) >>> d03 = p0.Distance(p3) >>> d03 >= pcophore.getLowerBound(0,1)-.01 True >>> d03 <= pcophore.getUpperBound(0,1)+.01 False """ try: ff = ChemicalForceFields.UFFGetMoleculeForceField(mol) except Exception: logger.info('Problems building molecular forcefield',exc_info=True) return -1.0,-1.0 weights=[] if(atomMatches): for k in range(len(atomMatches)): for i in atomMatches[k]: for l in range(k+1,len(atomMatches)): for j in atomMatches[l]: weights.append((i,j)) for i,j in weights: if j<i: i,j = j,i minV = bm[j,i] maxV = bm[i,j] ff.AddDistanceConstraint(i,j,minV,maxV,forceConstant) if excludedVolumes: nAts = mol.GetNumAtoms() conf = mol.GetConformer() idx = nAts for exVol in excludedVolumes: assert exVol.pos is not None logger.debug('ff.AddExtraPoint(%.4f,%.4f,%.4f)'%(exVol.pos[0],exVol.pos[1], exVol.pos[2])) ff.AddExtraPoint(exVol.pos[0],exVol.pos[1],exVol.pos[2],True) indices = [] for localIndices,foo,bar in exVol.featInfo: indices += list(localIndices) for i in range(nAts): v = numpy.array(conf.GetAtomPosition(i))-numpy.array(exVol.pos) d = numpy.sqrt(numpy.dot(v,v)) if i not in indices: if d<5.0: logger.debug('ff.AddDistanceConstraint(%d,%d,%.3f,%d,%.0f)'%(i,idx,exVol.exclusionDist,1000,forceConstant)) ff.AddDistanceConstraint(i,idx,exVol.exclusionDist,1000, forceConstant) else: logger.debug('ff.AddDistanceConstraint(%d,%d,%.3f,%.3f,%.0f)'%(i,idx,bm[exVol.index,i],bm[i,exVol.index],forceConstant)) ff.AddDistanceConstraint(i,idx,bm[exVol.index,i],bm[i,exVol.index], forceConstant) idx += 1 ff.Initialize() e1 = ff.CalcEnergy() if isNaN(e1): raise ValueError('bogus energy') if verbose: print(Chem.MolToMolBlock(mol)) for i,vol in enumerate(excludedVolumes): pos = ff.GetExtraPointPos(i) print(' % 7.4f % 7.4f % 7.4f As 0 0 0 0 0 0 0 0 0 0 0 0'%tuple(pos), file=sys.stderr) needsMore=ff.Minimize() nPasses=0 while needsMore and nPasses<maxPasses: needsMore=ff.Minimize() nPasses+=1 e2 = ff.CalcEnergy() if isNaN(e2): raise ValueError('bogus energy') if verbose: print('--------') print(Chem.MolToMolBlock(mol)) for i,vol in enumerate(excludedVolumes): pos = ff.GetExtraPointPos(i) print(' % 7.4f % 7.4f % 7.4f Sb 0 0 0 0 0 0 0 0 0 0 0 0'%tuple(pos), file=sys.stderr) ff = None return e1,e2 def EmbedOne(mol,name,match,pcophore,count=1,silent=0,**kwargs): """ generates statistics for a molecule's embeddings Four energies are computed for each embedding: 1) E1: the energy (with constraints) of the initial embedding 2) E2: the energy (with constraints) of the optimized embedding 3) E3: the energy (no constraints) the geometry for E2 4) E4: the energy (no constraints) of the optimized free-molecule (starting from the E3 geometry) Returns a 9-tuple: 1) the mean value of E1 2) the sample standard deviation of E1 3) the mean value of E2 4) the sample standard deviation of E2 5) the mean value of E3 6) the sample standard deviation of E3 7) the mean value of E4 8) the sample standard deviation of E4 9) The number of embeddings that failed """ global _times atomMatch = [list(x.GetAtomIds()) for x in match] bm,ms,nFailed = EmbedPharmacophore(mol,atomMatch,pcophore,count=count, silent=silent,**kwargs) e1s = [] e2s = [] e3s = [] e4s = [] d12s = [] d23s = [] d34s = [] for m in ms: t1 = time.time() try: e1,e2 = OptimizeMol(m,bm,atomMatch) except ValueError: pass else: t2 = time.time() _times['opt1'] = _times.get('opt1',0)+t2-t1 e1s.append(e1) e2s.append(e2) d12s.append(e1-e2) t1 = time.time() try: e3,e4 = OptimizeMol(m,bm) except ValueError: pass else: t2 = time.time() _times['opt2'] = _times.get('opt2',0)+t2-t1 e3s.append(e3) e4s.append(e4) d23s.append(e2-e3) d34s.append(e3-e4) count += 1 try: e1,e1d = Stats.MeanAndDev(e1s) except Exception: e1 = -1.0 e1d=-1.0 try: e2,e2d = Stats.MeanAndDev(e2s) except Exception: e2 = -1.0 e2d=-1.0 try: e3,e3d = Stats.MeanAndDev(e3s) except Exception: e3 = -1.0 e3d=-1.0 try: e4,e4d = Stats.MeanAndDev(e4s) except Exception: e4 = -1.0 e4d=-1.0 if not silent: print('%s(%d): %.2f(%.2f) -> %.2f(%.2f) : %.2f(%.2f) -> %.2f(%.2f)' % (name,nFailed,e1,e1d,e2,e2d,e3,e3d,e4,e4d)) return e1,e1d,e2,e2d,e3,e3d,e4,e4d,nFailed def MatchPharmacophoreToMol(mol, featFactory, pcophore): """ generates a list of all possible mappings of a pharmacophore to a molecule Returns a 2-tuple: 1) a boolean indicating whether or not all features were found 2) a list, numFeatures long, of sequences of features >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> pcophore= Pharmacophore.Pharmacophore(activeFeats) >>> m = Chem.MolFromSmiles('FCCN') >>> match,mList = MatchPharmacophoreToMol(m,featFactory,pcophore) >>> match True Two feature types: >>> len(mList) 2 The first feature type, Acceptor, has two matches: >>> len(mList[0]) 2 >>> mList[0][0].GetAtomIds() (0,) >>> mList[0][1].GetAtomIds() (3,) The first feature type, Donor, has a single match: >>> len(mList[1]) 1 >>> mList[1][0].GetAtomIds() (3,) """ return MatchFeatsToMol(mol, featFactory, pcophore.getFeatures()) def _getFeatDict(mol,featFactory,features): """ **INTERNAL USE ONLY** >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> m = Chem.MolFromSmiles('FCCN') >>> d =_getFeatDict(m,featFactory,activeFeats) >>> sorted(list(d.keys())) ['Acceptor', 'Donor'] >>> donors = d['Donor'] >>> len(donors) 1 >>> donors[0].GetAtomIds() (3,) >>> acceptors = d['Acceptor'] >>> len(acceptors) 2 >>> acceptors[0].GetAtomIds() (0,) >>> acceptors[1].GetAtomIds() (3,) """ molFeats = {} for feat in features: family = feat.GetFamily() if not family in molFeats: matches = featFactory.GetFeaturesForMol(mol,includeOnly=family) molFeats[family] = matches return molFeats def MatchFeatsToMol(mol, featFactory, features): """ generates a list of all possible mappings of each feature to a molecule Returns a 2-tuple: 1) a boolean indicating whether or not all features were found 2) a list, numFeatures long, of sequences of features >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> m = Chem.MolFromSmiles('FCCN') >>> match,mList = MatchFeatsToMol(m,featFactory,activeFeats) >>> match True Two feature types: >>> len(mList) 2 The first feature type, Acceptor, has two matches: >>> len(mList[0]) 2 >>> mList[0][0].GetAtomIds() (0,) >>> mList[0][1].GetAtomIds() (3,) The first feature type, Donor, has a single match: >>> len(mList[1]) 1 >>> mList[1][0].GetAtomIds() (3,) """ molFeats = _getFeatDict(mol,featFactory,features) res = [] for feat in features: matches = molFeats.get(feat.GetFamily(),[]) if len(matches) == 0 : return False, None res.append(matches) return True, res def CombiEnum(sequence): """ This generator takes a sequence of sequences as an argument and provides all combinations of the elements of the subsequences: >>> gen = CombiEnum(((1,2),(10,20))) >>> next(gen) [1, 10] >>> next(gen) [1, 20] >>> [x for x in CombiEnum(((1,2),(10,20)))] [[1, 10], [1, 20], [2, 10], [2, 20]] >>> [x for x in CombiEnum(((1,2),(10,20),(100,200)))] [[1, 10, 100], [1, 10, 200], [1, 20, 100], [1, 20, 200], [2, 10, 100], [2, 10, 200], [2, 20, 100], [2, 20, 200]] """ if not len(sequence): yield [] elif len(sequence)==1: for entry in sequence[0]: yield [entry] else: for entry in sequence[0]: for subVal in CombiEnum(sequence[1:]): yield [entry]+subVal def DownsampleBoundsMatrix(bm,indices,maxThresh=4.0): """ removes rows from a bounds matrix that are that are greater than a threshold value away from a set of other points returns the modfied bounds matrix The goal of this function is to remove rows from the bounds matrix that correspond to atoms that are likely to be quite far from the pharmacophore we're interested in. Because the bounds smoothing we eventually have to do is N^3, this can be a big win >>> boundsMat = numpy.array([[0.0,3.0,4.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),3.5) >>> bm.shape == (2, 2) True we don't touch the input matrix: >>> boundsMat.shape == (3, 3) True >>> print(', '.join(['%.3f'%x for x in bm[0]])) 0.000, 3.000 >>> print(', '.join(['%.3f'%x for x in bm[1]])) 2.000, 0.000 if the threshold is high enough, we don't do anything: >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),5.0) >>> bm.shape == (3, 3) True If there's a max value that's close enough to *any* of the indices we pass in, we'll keep it: >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,1),3.5) >>> bm.shape == (3, 3) True """ nPts = bm.shape[0] k = numpy.zeros(nPts,numpy.int0) for idx in indices: k[idx]=1 for i in indices: row = bm[i] for j in range(i+1,nPts): if not k[j] and row[j]<maxThresh: k[j]=1 keep = numpy.nonzero(k)[0] bm2 = numpy.zeros((len(keep),len(keep)),numpy.float) for i,idx in enumerate(keep): row = bm[idx] bm2[i] = numpy.take(row,keep) return bm2 def CoarseScreenPharmacophore(atomMatch,bounds,pcophore,verbose=False): """ >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 1.1) >>> pcophore.setUpperBound(0,1, 1.9) >>> pcophore.setLowerBound(0,2, 2.1) >>> pcophore.setUpperBound(0,2, 2.9) >>> pcophore.setLowerBound(1,2, 2.1) >>> pcophore.setUpperBound(1,2, 3.9) >>> bounds = numpy.array([[0,2,3],[1,0,4],[2,3,0]],numpy.float) >>> CoarseScreenPharmacophore(((0,),(1,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((0,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((1,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((0,),(1,),(2,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((1,),(0,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((2,),(1,),(0,)),bounds,pcophore) False # we ignore the point locations here and just use their definitions: >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.1) >>> pcophore.setUpperBound(0,1, 2.9) >>> pcophore.setLowerBound(0,2, 2.1) >>> pcophore.setUpperBound(0,2, 2.9) >>> pcophore.setLowerBound(0,3, 2.1) >>> pcophore.setUpperBound(0,3, 2.9) >>> pcophore.setLowerBound(1,2, 1.1) >>> pcophore.setUpperBound(1,2, 1.9) >>> pcophore.setLowerBound(1,3, 1.1) >>> pcophore.setUpperBound(1,3, 1.9) >>> pcophore.setLowerBound(2,3, 1.1) >>> pcophore.setUpperBound(2,3, 1.9) >>> bounds = numpy.array([[0,3,3,3],[2,0,2,2],[2,1,0,2],[2,1,1,0]],numpy.float) >>> CoarseScreenPharmacophore(((0,),(1,),(2,),(3,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((0,),(1,),(3,),(2,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((1,),(0,),(3,),(2,)),bounds,pcophore) False """ for k in range(len(atomMatch)): if len(atomMatch[k])==1: for l in range(k+1,len(atomMatch)): if len(atomMatch[l])==1: idx0 = atomMatch[k][0] idx1 = atomMatch[l][0] if idx1<idx0: idx0,idx1=idx1,idx0 if bounds[idx1,idx0] >= pcophore.getUpperBound(k, l) or \ bounds[idx0,idx1] <= pcophore.getLowerBound(k, l) : if verbose: print('\t (%d,%d) [%d,%d] fail'%(idx1,idx0,k,l)) print('\t %f,%f - %f,%f' % (bounds[idx1,idx0],pcophore.getUpperBound(k,l), bounds[idx0,idx1],pcophore.getLowerBound(k,l))) #logger.debug('\t >%s'%str(atomMatch)) #logger.debug() #logger.debug('\t %f,%f - %f,%f'%(bounds[idx1,idx0],pcophore.getUpperBound(k,l), # bounds[idx0,idx1],pcophore.getLowerBound(k,l))) return False return True def Check2DBounds(atomMatch,mol,pcophore): """ checks to see if a particular mapping of features onto a molecule satisfies a pharmacophore's 2D restrictions >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> pcophore= Pharmacophore.Pharmacophore(activeFeats) >>> pcophore.setUpperBound2D(0,1,3) >>> m = Chem.MolFromSmiles('FCC(N)CN') >>> Check2DBounds(((0,),(3,)),m,pcophore) True >>> Check2DBounds(((0,),(5,)),m,pcophore) False """ dm = Chem.GetDistanceMatrix(mol,False,False,False) nFeats = len(atomMatch) for i in range(nFeats): for j in range(i+1,nFeats): lowerB = pcophore._boundsMat2D[j,i] #lowerB = pcophore.getLowerBound2D(i,j) upperB = pcophore._boundsMat2D[i,j] #upperB = pcophore.getUpperBound2D(i,j) dij=10000 for atomI in atomMatch[i]: for atomJ in atomMatch[j]: try: dij = min(dij,dm[atomI,atomJ]) except IndexError: print('bad indices:',atomI,atomJ) print(' shape:',dm.shape) print(' match:',atomMatch) print(' mol:') print(Chem.MolToMolBlock(mol)) raise IndexError if dij<lowerB or dij>upperB: return False return True def _checkMatch(match,mol,bounds,pcophore,use2DLimits): """ **INTERNAL USE ONLY** checks whether a particular atom match can be satisfied by a molecule """ atomMatch = ChemicalFeatures.GetAtomMatch(match) if not atomMatch: return None elif use2DLimits: if not Check2DBounds(atomMatch,mol,pcophore): return None if not CoarseScreenPharmacophore(atomMatch,bounds,pcophore): return None return atomMatch def ConstrainedEnum(matches,mol,pcophore,bounds,use2DLimits=False, index=0,soFar=[]): """ Enumerates the list of atom mappings a molecule has to a particular pharmacophore. We do check distance bounds here. """ nMatches = len(matches) if index>=nMatches: yield soFar,[] elif index==nMatches-1: for entry in matches[index]: nextStep = soFar+[entry] if index != 0: atomMatch = _checkMatch(nextStep,mol,bounds,pcophore,use2DLimits) else: atomMatch = ChemicalFeatures.GetAtomMatch(nextStep) if atomMatch: yield soFar+[entry],atomMatch else: for entry in matches[index]: nextStep = soFar+[entry] if index != 0: atomMatch = _checkMatch(nextStep,mol,bounds,pcophore,use2DLimits) if not atomMatch: continue for val in ConstrainedEnum(matches,mol,pcophore,bounds,use2DLimits=use2DLimits, index=index+1,soFar=nextStep): if val: yield val def MatchPharmacophore(matches,bounds,pcophore,useDownsampling=False, use2DLimits=False,mol=None,excludedVolumes=None, useDirs=False): """ if use2DLimits is set, the molecule must also be provided and topological distances will also be used to filter out matches """ for match,atomMatch in ConstrainedEnum(matches,mol,pcophore,bounds, use2DLimits=use2DLimits): bm = bounds.copy() bm = UpdatePharmacophoreBounds(bm,atomMatch,pcophore,useDirs=useDirs,mol=mol); if excludedVolumes: localEvs = [] for eV in excludedVolumes: featInfo = [] for i,entry in enumerate(atomMatch): info = list(eV.featInfo[i]) info[0] = entry featInfo.append(info) localEvs.append(ExcludedVolume.ExcludedVolume(featInfo,eV.index, eV.exclusionDist)) bm = AddExcludedVolumes(bm,localEvs,smoothIt=False) sz = bm.shape[0] if useDownsampling: indices = [] for entry in atomMatch: indices.extend(entry) if excludedVolumes: for vol in localEvs: indices.append(vol.index) bm = DownsampleBoundsMatrix(bm,indices) if DG.DoTriangleSmoothing(bm): return 0,bm,match,(sz,bm.shape[0]) return 1,None,None,None def GetAllPharmacophoreMatches(matches,bounds,pcophore,useDownsampling=0, progressCallback=None, use2DLimits=False,mol=None, verbose=False): res = [] nDone = 0 for match in CombiEnum(matches): atomMatch = ChemicalFeatures.GetAtomMatch(match) if atomMatch and use2DLimits and mol: pass2D = Check2DBounds(atomMatch,mol,pcophore) if verbose: print('..',atomMatch) print(' ..Pass2d:',pass2D) else: pass2D = True if atomMatch and pass2D and \ CoarseScreenPharmacophore(atomMatch,bounds,pcophore,verbose=verbose): if verbose: print(' ..CoarseScreen: Pass') bm = bounds.copy() if verbose: print('pre update:') for row in bm: print(' ',' '.join(['% 4.2f'%x for x in row])) bm = UpdatePharmacophoreBounds(bm,atomMatch,pcophore); sz = bm.shape[0] if verbose: print('pre downsample:') for row in bm: print(' ',' '.join(['% 4.2f'%x for x in row])) if useDownsampling: indices = [] for entry in atomMatch: indices += list(entry) bm = DownsampleBoundsMatrix(bm,indices) if verbose: print('post downsample:') for row in bm: print(' ',' '.join(['% 4.2f'%x for x in row])) if DG.DoTriangleSmoothing(bm): res.append(match) elif verbose: print('cannot smooth') nDone+=1 if progressCallback: progressCallback(nDone) return res def ComputeChiralVolume(mol,centerIdx,confId=-1): """ Computes the chiral volume of an atom We're using the chiral volume formula from Figure 7 of Blaney and Dixon, Rev. Comp. Chem. V, 299-335 (1994) >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') R configuration atoms give negative volumes: >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'R' >>> ComputeChiralVolume(mol,1) < 0 True S configuration atoms give positive volumes: >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'S' >>> ComputeChiralVolume(mol,1) > 0 True Non-chiral (or non-specified) atoms give zero volume: >>> ComputeChiralVolume(mol,0) == 0.0 True We also work on 3-coordinate atoms (with implicit Hs): >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r-3.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'R' >>> ComputeChiralVolume(mol,1)<0 True >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s-3.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'S' >>> ComputeChiralVolume(mol,1)>0 True """ conf = mol.GetConformer(confId) Chem.AssignStereochemistry(mol) center = mol.GetAtomWithIdx(centerIdx) if not center.HasProp('_CIPCode'): return 0.0 nbrs = center.GetNeighbors() nbrRanks = [] for nbr in nbrs: rank = int(nbr.GetProp('_CIPRank')) pos = conf.GetAtomPosition(nbr.GetIdx()) nbrRanks.append((rank,pos)) # if we only have three neighbors (i.e. the determining H isn't present) # then use the central atom as the fourth point: if len(nbrRanks)==3: nbrRanks.append((-1,conf.GetAtomPosition(centerIdx))) nbrRanks.sort() ps = [x[1] for x in nbrRanks] v1 = ps[0]-ps[3] v2 = ps[1]-ps[3] v3 = ps[2]-ps[3] res = v1.DotProduct(v2.CrossProduct(v3)) return res #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "adalke/rdkit", "path": "rdkit/Chem/Pharm3D/EmbedLib.py", "copies": "1", "size": "38756", "license": "bsd-3-clause", "hash": -8048911424920958000, "line_mean": 30.4833468725, "line_max": 130, "alpha_frac": 0.6207554959, "autogenerated": false, "ratio": 3.03611437524481, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9021384317356422, "avg_score": 0.027097110757677557, "num_lines": 1231 }
from __future__ import print_function from rdkit import RDConfig import sys, time, math from rdkit.ML.Data import Stats import rdkit.DistanceGeometry as DG from rdkit import Chem import numpy from rdkit.Chem import rdDistGeom as MolDG from rdkit.Chem import ChemicalFeatures from rdkit.Chem import ChemicalForceFields import Pharmacophore, ExcludedVolume from rdkit import Geometry _times = {} from rdkit import RDLogger as logging logger = logging.logger() defaultFeatLength = 2.0 def GetAtomHeavyNeighbors(atom): """ returns a list of the heavy-atom neighbors of the atom passed in: >>> m = Chem.MolFromSmiles('CCO') >>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(0)) >>> len(l) 1 >>> isinstance(l[0],Chem.Atom) True >>> l[0].GetIdx() 1 >>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(1)) >>> len(l) 2 >>> l[0].GetIdx() 0 >>> l[1].GetIdx() 2 """ res = [] for nbr in atom.GetNeighbors(): if nbr.GetAtomicNum() != 1: res.append(nbr) return res def ReplaceGroup(match, bounds, slop=0.01, useDirs=False, dirLength=defaultFeatLength): """ Adds an entry at the end of the bounds matrix for a point at the center of a multi-point feature returns a 2-tuple: new bounds mat index of point added >>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]]) >>> match = [0,1,2] >>> bm,idx = ReplaceGroup(match,boundsMat,slop=0.0) the index is at the end: >>> idx == 3 True and the matrix is one bigger: >>> bm.shape == (4, 4) True but the original bounds mat is not altered: >>> boundsMat.shape == (3, 3) True We make the assumption that the points of the feature form a regular polygon, are listed in order (i.e. pt 0 is a neighbor to pt 1 and pt N-1) and that the replacement point goes at the center: >>> print(', '.join(['%.3f'%x for x in bm[-1]])) 0.577, 0.577, 0.577, 0.000 >>> print(', '.join(['%.3f'%x for x in bm[:,-1]])) 1.155, 1.155, 1.155, 0.000 The slop argument (default = 0.01) is fractional: >>> bm,idx = ReplaceGroup(match,boundsMat) >>> print(', '.join(['%.3f'%x for x in bm[-1]])) 0.572, 0.572, 0.572, 0.000 >>> print(', '.join(['%.3f'%x for x in bm[:,-1]])) 1.166, 1.166, 1.166, 0.000 """ maxVal = -1000.0 minVal = 1e8 nPts = len(match) for i in range(nPts): idx0 = match[i] if i < nPts - 1: idx1 = match[i + 1] else: idx1 = match[0] if idx1 < idx0: idx0, idx1 = idx1, idx0 minVal = min(minVal, bounds[idx1, idx0]) maxVal = max(maxVal, bounds[idx0, idx1]) maxVal *= (1 + slop) minVal *= (1 - slop) scaleFact = 1.0 / (2.0 * math.sin(math.pi / nPts)) minVal *= scaleFact maxVal *= scaleFact replaceIdx = bounds.shape[0] if not useDirs: bm = numpy.zeros((bounds.shape[0] + 1, bounds.shape[1] + 1), numpy.float) else: bm = numpy.zeros((bounds.shape[0] + 2, bounds.shape[1] + 2), numpy.float) bm[0:bounds.shape[0], 0:bounds.shape[1]] = bounds bm[:replaceIdx, replaceIdx] = 1000. if useDirs: bm[:replaceIdx + 1, replaceIdx + 1] = 1000. # set the feature - direction point bounds: bm[replaceIdx, replaceIdx + 1] = dirLength + slop bm[replaceIdx + 1, replaceIdx] = dirLength - slop for idx1 in match: bm[idx1, replaceIdx] = maxVal bm[replaceIdx, idx1] = minVal if useDirs: # set the point - direction point bounds: bm[idx1, replaceIdx + 1] = numpy.sqrt(bm[replaceIdx, replaceIdx + 1]**2 + maxVal**2) bm[replaceIdx + 1, idx1] = numpy.sqrt(bm[replaceIdx + 1, replaceIdx]**2 + minVal**2) return bm, replaceIdx def EmbedMol(mol, bm, atomMatch=None, weight=2.0, randomSeed=-1, excludedVolumes=None): """ Generates an embedding for a molecule based on a bounds matrix and adds a conformer (id 0) to the molecule if the optional argument atomMatch is provided, it will be used to provide supplemental weights for the embedding routine (used in the optimization phase to ensure that the resulting geometry really does satisfy the pharmacophore). if the excludedVolumes is provided, it should be a sequence of ExcludedVolume objects >>> m = Chem.MolFromSmiles('c1ccccc1C') >>> bounds = MolDG.GetMoleculeBoundsMatrix(m) >>> bounds.shape == (7, 7) True >>> m.GetNumConformers() 0 >>> EmbedMol(m,bounds,randomSeed=23) >>> m.GetNumConformers() 1 """ nAts = mol.GetNumAtoms() weights = [] if (atomMatch): for i in range(len(atomMatch)): for j in range(i + 1, len(atomMatch)): weights.append((i, j, weight)) if (excludedVolumes): for vol in excludedVolumes: idx = vol.index # excluded volumes affect every other atom: for i in range(nAts): weights.append((i, idx, weight)) coords = DG.EmbedBoundsMatrix(bm, weights=weights, numZeroFail=1, randomSeed=randomSeed) #for row in coords: # print(', '.join(['%.2f'%x for x in row])) conf = Chem.Conformer(nAts) conf.SetId(0) for i in range(nAts): conf.SetAtomPosition(i, list(coords[i])) if excludedVolumes: for vol in excludedVolumes: vol.pos = numpy.array(coords[vol.index]) #print(' % 7.4f % 7.4f % 7.4f Ar 0 0 0 0 0 0 0 0 0 0 0 0'%tuple(coords[-1]), file=sys.stderr) mol.AddConformer(conf) def AddExcludedVolumes(bm, excludedVolumes, smoothIt=True): """ Adds a set of excluded volumes to the bounds matrix and returns the new matrix excludedVolumes is a list of ExcludedVolume objects >>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]]) >>> ev1 = ExcludedVolume.ExcludedVolume(([(0,),0.5,1.0],),exclusionDist=1.5) >>> bm = AddExcludedVolumes(boundsMat,(ev1,)) the results matrix is one bigger: >>> bm.shape == (4, 4) True and the original bounds mat is not altered: >>> boundsMat.shape == (3, 3) True >>> print(', '.join(['%.3f'%x for x in bm[-1]])) 0.500, 1.500, 1.500, 0.000 >>> print(', '.join(['%.3f'%x for x in bm[:,-1]])) 1.000, 3.000, 3.000, 0.000 """ oDim = bm.shape[0] dim = oDim + len(excludedVolumes) res = numpy.zeros((dim, dim), numpy.float) res[:oDim, :oDim] = bm for i, vol in enumerate(excludedVolumes): bmIdx = oDim + i vol.index = bmIdx # set values to all the atoms: res[bmIdx, :bmIdx] = vol.exclusionDist res[:bmIdx, bmIdx] = 1000.0 # set values to our defining features: for indices, minV, maxV in vol.featInfo: for index in indices: try: res[bmIdx, index] = minV res[index, bmIdx] = maxV except IndexError: logger.error('BAD INDEX: res[%d,%d], shape is %s' % (bmIdx, index, str(res.shape))) raise IndexError # set values to other excluded volumes: for j in range(bmIdx + 1, dim): res[bmIdx, j:dim] = 0 res[j:dim, bmIdx] = 1000 if smoothIt: DG.DoTriangleSmoothing(res) return res def UpdatePharmacophoreBounds(bm, atomMatch, pcophore, useDirs=False, dirLength=defaultFeatLength, mol=None): """ loops over a distance bounds matrix and replaces the elements that are altered by a pharmacophore **NOTE** this returns the resulting bounds matrix, but it may also alter the input matrix atomMatch is a sequence of sequences containing atom indices for each of the pharmacophore's features. >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 1.0) >>> pcophore.setUpperBound(0,1, 2.0) >>> boundsMat = numpy.array([[0.0,3.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> atomMatch = ((0,),(1,)) >>> bm = UpdatePharmacophoreBounds(boundsMat,atomMatch,pcophore) In this case, there are no multi-atom features, so the result matrix is the same as the input: >>> bm is boundsMat True this means, of course, that the input boundsMat is altered: >>> print(', '.join(['%.3f'%x for x in boundsMat[0]])) 0.000, 2.000, 3.000 >>> print(', '.join(['%.3f'%x for x in boundsMat[1]])) 1.000, 0.000, 3.000 >>> print(', '.join(['%.3f'%x for x in boundsMat[2]])) 2.000, 2.000, 0.000 """ replaceMap = {} for i, matchI in enumerate(atomMatch): if len(matchI) > 1: bm, replaceIdx = ReplaceGroup(matchI, bm, useDirs=useDirs) replaceMap[i] = replaceIdx for i, matchI in enumerate(atomMatch): mi = replaceMap.get(i, matchI[0]) for j in range(i + 1, len(atomMatch)): mj = replaceMap.get(j, atomMatch[j][0]) if mi < mj: idx0, idx1 = mi, mj else: idx0, idx1 = mj, mi bm[idx0, idx1] = pcophore.getUpperBound(i, j) bm[idx1, idx0] = pcophore.getLowerBound(i, j) return bm def EmbedPharmacophore(mol, atomMatch, pcophore, randomSeed=-1, count=10, smoothFirst=True, silent=False, bounds=None, excludedVolumes=None, targetNumber=-1, useDirs=False): """ Generates one or more embeddings for a molecule that satisfy a pharmacophore atomMatch is a sequence of sequences containing atom indices for each of the pharmacophore's features. - count: is the maximum number of attempts to make a generating an embedding - smoothFirst: toggles triangle smoothing of the molecular bounds matix - bounds: if provided, should be the molecular bounds matrix. If this isn't provided, the matrix will be generated. - targetNumber: if this number is positive, it provides a maximum number of embeddings to generate (i.e. we'll have count attempts to generate targetNumber embeddings). returns: a 3 tuple: 1) the molecular bounds matrix adjusted for the pharmacophore 2) a list of embeddings (molecules with a single conformer) 3) the number of failed attempts at embedding >>> m = Chem.MolFromSmiles('OCCN') >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.5) >>> pcophore.setUpperBound(0,1, 3.5) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 10 >>> nFail 0 Set up a case that can't succeed: >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.0) >>> pcophore.setUpperBound(0,1, 2.1) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 0 >>> nFail 10 """ global _times if not hasattr(mol, '_chiralCenters'): mol._chiralCenters = Chem.FindMolChiralCenters(mol) if bounds is None: bounds = MolDG.GetMoleculeBoundsMatrix(mol) if smoothFirst: DG.DoTriangleSmoothing(bounds) bm = bounds.copy() #print '------------' #print 'initial' #for row in bm: # print ' ',' '.join(['% 4.2f'%x for x in row]) #print '------------' bm = UpdatePharmacophoreBounds(bm, atomMatch, pcophore, useDirs=useDirs, mol=mol) if excludedVolumes: bm = AddExcludedVolumes(bm, excludedVolumes, smoothIt=False) if not DG.DoTriangleSmoothing(bm): raise ValueError("could not smooth bounds matrix") #print '------------' #print 'post replace and smooth' #for row in bm: # print ' ',' '.join(['% 4.2f'%x for x in row]) #print '------------' if targetNumber <= 0: targetNumber = count nFailed = 0 res = [] for i in range(count): tmpM = bm[:, :] m2 = Chem.Mol(mol) t1 = time.time() try: if randomSeed <= 0: seed = i * 10 + 1 else: seed = i * 10 + randomSeed EmbedMol(m2, tmpM, atomMatch, randomSeed=seed, excludedVolumes=excludedVolumes) except ValueError: if not silent: logger.info('Embed failed') nFailed += 1 else: t2 = time.time() _times['embed'] = _times.get('embed', 0) + t2 - t1 keepIt = True for idx, stereo in mol._chiralCenters: if stereo in ('R', 'S'): vol = ComputeChiralVolume(m2, idx) if (stereo=='R' and vol>=0) or \ (stereo=='S' and vol<=0): keepIt = False break if keepIt: res.append(m2) else: logger.debug('Removed embedding due to chiral constraints.') if len(res) == targetNumber: break return bm, res, nFailed def isNaN(v): """ provides an OS independent way of detecting NaNs This is intended to be used with values returned from the C++ side of things. We can't actually test this from Python (which traps zero division errors), but it would work something like this if we could: >>> isNaN(0) False #>>> isNan(1/0) #True """ if v != v and sys.platform == 'win32': return True elif v == 0 and v == 1 and sys.platform != 'win32': return True return False def OptimizeMol(mol, bm, atomMatches=None, excludedVolumes=None, forceConstant=1200.0, maxPasses=5, verbose=False): """ carries out a UFF optimization for a molecule optionally subject to the constraints in a bounds matrix - atomMatches, if provided, is a sequence of sequences - forceConstant is the force constant of the spring used to enforce the constraints returns a 2-tuple: 1) the energy of the initial conformation 2) the energy post-embedding NOTE that these energies include the energies of the constraints >>> m = Chem.MolFromSmiles('OCCN') >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.5) >>> pcophore.setUpperBound(0,1, 2.8) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 10 >>> testM = embeds[0] Do the optimization: >>> e1,e2 = OptimizeMol(testM,bm,atomMatches=atomMatch) Optimizing should have lowered the energy: >>> e2 < e1 True Check the constrained distance: >>> conf = testM.GetConformer(0) >>> p0 = conf.GetAtomPosition(0) >>> p3 = conf.GetAtomPosition(3) >>> d03 = p0.Distance(p3) >>> d03 >= pcophore.getLowerBound(0,1)-.01 True >>> d03 <= pcophore.getUpperBound(0,1)+.01 True If we optimize without the distance constraints (provided via the atomMatches argument) we're not guaranteed to get the same results, particularly in a case like the current one where the pharmcophore brings the atoms uncomfortably close together: >>> testM = embeds[1] >>> e1,e2 = OptimizeMol(testM,bm) >>> e2 < e1 True >>> conf = testM.GetConformer(0) >>> p0 = conf.GetAtomPosition(0) >>> p3 = conf.GetAtomPosition(3) >>> d03 = p0.Distance(p3) >>> d03 >= pcophore.getLowerBound(0,1)-.01 True >>> d03 <= pcophore.getUpperBound(0,1)+.01 False """ try: ff = ChemicalForceFields.UFFGetMoleculeForceField(mol) except Exception: logger.info('Problems building molecular forcefield', exc_info=True) return -1.0, -1.0 weights = [] if (atomMatches): for k in range(len(atomMatches)): for i in atomMatches[k]: for l in range(k + 1, len(atomMatches)): for j in atomMatches[l]: weights.append((i, j)) for i, j in weights: if j < i: i, j = j, i minV = bm[j, i] maxV = bm[i, j] ff.AddDistanceConstraint(i, j, minV, maxV, forceConstant) if excludedVolumes: nAts = mol.GetNumAtoms() conf = mol.GetConformer() idx = nAts for exVol in excludedVolumes: assert exVol.pos is not None logger.debug('ff.AddExtraPoint(%.4f,%.4f,%.4f)' % (exVol.pos[0], exVol.pos[1], exVol.pos[2])) ff.AddExtraPoint(exVol.pos[0], exVol.pos[1], exVol.pos[2], True) indices = [] for localIndices, foo, bar in exVol.featInfo: indices += list(localIndices) for i in range(nAts): v = numpy.array(conf.GetAtomPosition(i)) - numpy.array(exVol.pos) d = numpy.sqrt(numpy.dot(v, v)) if i not in indices: if d < 5.0: logger.debug('ff.AddDistanceConstraint(%d,%d,%.3f,%d,%.0f)' % (i, idx, exVol.exclusionDist, 1000, forceConstant)) ff.AddDistanceConstraint(i, idx, exVol.exclusionDist, 1000, forceConstant) else: logger.debug('ff.AddDistanceConstraint(%d,%d,%.3f,%.3f,%.0f)' % (i, idx, bm[exVol.index, i], bm[i, exVol.index], forceConstant)) ff.AddDistanceConstraint(i, idx, bm[exVol.index, i], bm[i, exVol.index], forceConstant) idx += 1 ff.Initialize() e1 = ff.CalcEnergy() if isNaN(e1): raise ValueError('bogus energy') if verbose: print(Chem.MolToMolBlock(mol)) for i, vol in enumerate(excludedVolumes): pos = ff.GetExtraPointPos(i) print(' % 7.4f % 7.4f % 7.4f As 0 0 0 0 0 0 0 0 0 0 0 0' % tuple(pos), file=sys.stderr) needsMore = ff.Minimize() nPasses = 0 while needsMore and nPasses < maxPasses: needsMore = ff.Minimize() nPasses += 1 e2 = ff.CalcEnergy() if isNaN(e2): raise ValueError('bogus energy') if verbose: print('--------') print(Chem.MolToMolBlock(mol)) for i, vol in enumerate(excludedVolumes): pos = ff.GetExtraPointPos(i) print(' % 7.4f % 7.4f % 7.4f Sb 0 0 0 0 0 0 0 0 0 0 0 0' % tuple(pos), file=sys.stderr) ff = None return e1, e2 def EmbedOne(mol, name, match, pcophore, count=1, silent=0, **kwargs): """ generates statistics for a molecule's embeddings Four energies are computed for each embedding: 1) E1: the energy (with constraints) of the initial embedding 2) E2: the energy (with constraints) of the optimized embedding 3) E3: the energy (no constraints) the geometry for E2 4) E4: the energy (no constraints) of the optimized free-molecule (starting from the E3 geometry) Returns a 9-tuple: 1) the mean value of E1 2) the sample standard deviation of E1 3) the mean value of E2 4) the sample standard deviation of E2 5) the mean value of E3 6) the sample standard deviation of E3 7) the mean value of E4 8) the sample standard deviation of E4 9) The number of embeddings that failed """ global _times atomMatch = [list(x.GetAtomIds()) for x in match] bm, ms, nFailed = EmbedPharmacophore(mol, atomMatch, pcophore, count=count, silent=silent, **kwargs) e1s = [] e2s = [] e3s = [] e4s = [] d12s = [] d23s = [] d34s = [] for m in ms: t1 = time.time() try: e1, e2 = OptimizeMol(m, bm, atomMatch) except ValueError: pass else: t2 = time.time() _times['opt1'] = _times.get('opt1', 0) + t2 - t1 e1s.append(e1) e2s.append(e2) d12s.append(e1 - e2) t1 = time.time() try: e3, e4 = OptimizeMol(m, bm) except ValueError: pass else: t2 = time.time() _times['opt2'] = _times.get('opt2', 0) + t2 - t1 e3s.append(e3) e4s.append(e4) d23s.append(e2 - e3) d34s.append(e3 - e4) count += 1 try: e1, e1d = Stats.MeanAndDev(e1s) except Exception: e1 = -1.0 e1d = -1.0 try: e2, e2d = Stats.MeanAndDev(e2s) except Exception: e2 = -1.0 e2d = -1.0 try: e3, e3d = Stats.MeanAndDev(e3s) except Exception: e3 = -1.0 e3d = -1.0 try: e4, e4d = Stats.MeanAndDev(e4s) except Exception: e4 = -1.0 e4d = -1.0 if not silent: print('%s(%d): %.2f(%.2f) -> %.2f(%.2f) : %.2f(%.2f) -> %.2f(%.2f)' % (name, nFailed, e1, e1d, e2, e2d, e3, e3d, e4, e4d)) return e1, e1d, e2, e2d, e3, e3d, e4, e4d, nFailed def MatchPharmacophoreToMol(mol, featFactory, pcophore): """ generates a list of all possible mappings of a pharmacophore to a molecule Returns a 2-tuple: 1) a boolean indicating whether or not all features were found 2) a list, numFeatures long, of sequences of features >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> pcophore= Pharmacophore.Pharmacophore(activeFeats) >>> m = Chem.MolFromSmiles('FCCN') >>> match,mList = MatchPharmacophoreToMol(m,featFactory,pcophore) >>> match True Two feature types: >>> len(mList) 2 The first feature type, Acceptor, has two matches: >>> len(mList[0]) 2 >>> mList[0][0].GetAtomIds() (0,) >>> mList[0][1].GetAtomIds() (3,) The first feature type, Donor, has a single match: >>> len(mList[1]) 1 >>> mList[1][0].GetAtomIds() (3,) """ return MatchFeatsToMol(mol, featFactory, pcophore.getFeatures()) def _getFeatDict(mol, featFactory, features): """ **INTERNAL USE ONLY** >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> m = Chem.MolFromSmiles('FCCN') >>> d =_getFeatDict(m,featFactory,activeFeats) >>> sorted(list(d.keys())) ['Acceptor', 'Donor'] >>> donors = d['Donor'] >>> len(donors) 1 >>> donors[0].GetAtomIds() (3,) >>> acceptors = d['Acceptor'] >>> len(acceptors) 2 >>> acceptors[0].GetAtomIds() (0,) >>> acceptors[1].GetAtomIds() (3,) """ molFeats = {} for feat in features: family = feat.GetFamily() if not family in molFeats: matches = featFactory.GetFeaturesForMol(mol, includeOnly=family) molFeats[family] = matches return molFeats def MatchFeatsToMol(mol, featFactory, features): """ generates a list of all possible mappings of each feature to a molecule Returns a 2-tuple: 1) a boolean indicating whether or not all features were found 2) a list, numFeatures long, of sequences of features >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> m = Chem.MolFromSmiles('FCCN') >>> match,mList = MatchFeatsToMol(m,featFactory,activeFeats) >>> match True Two feature types: >>> len(mList) 2 The first feature type, Acceptor, has two matches: >>> len(mList[0]) 2 >>> mList[0][0].GetAtomIds() (0,) >>> mList[0][1].GetAtomIds() (3,) The first feature type, Donor, has a single match: >>> len(mList[1]) 1 >>> mList[1][0].GetAtomIds() (3,) """ molFeats = _getFeatDict(mol, featFactory, features) res = [] for feat in features: matches = molFeats.get(feat.GetFamily(), []) if len(matches) == 0: return False, None res.append(matches) return True, res def CombiEnum(sequence): """ This generator takes a sequence of sequences as an argument and provides all combinations of the elements of the subsequences: >>> gen = CombiEnum(((1,2),(10,20))) >>> next(gen) [1, 10] >>> next(gen) [1, 20] >>> [x for x in CombiEnum(((1,2),(10,20)))] [[1, 10], [1, 20], [2, 10], [2, 20]] >>> [x for x in CombiEnum(((1,2),(10,20),(100,200)))] [[1, 10, 100], [1, 10, 200], [1, 20, 100], [1, 20, 200], [2, 10, 100], [2, 10, 200], [2, 20, 100], [2, 20, 200]] """ if not len(sequence): yield [] elif len(sequence) == 1: for entry in sequence[0]: yield [entry] else: for entry in sequence[0]: for subVal in CombiEnum(sequence[1:]): yield [entry] + subVal def DownsampleBoundsMatrix(bm, indices, maxThresh=4.0): """ removes rows from a bounds matrix that are that are greater than a threshold value away from a set of other points returns the modfied bounds matrix The goal of this function is to remove rows from the bounds matrix that correspond to atoms that are likely to be quite far from the pharmacophore we're interested in. Because the bounds smoothing we eventually have to do is N^3, this can be a big win >>> boundsMat = numpy.array([[0.0,3.0,4.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),3.5) >>> bm.shape == (2, 2) True we don't touch the input matrix: >>> boundsMat.shape == (3, 3) True >>> print(', '.join(['%.3f'%x for x in bm[0]])) 0.000, 3.000 >>> print(', '.join(['%.3f'%x for x in bm[1]])) 2.000, 0.000 if the threshold is high enough, we don't do anything: >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),5.0) >>> bm.shape == (3, 3) True If there's a max value that's close enough to *any* of the indices we pass in, we'll keep it: >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,1),3.5) >>> bm.shape == (3, 3) True """ nPts = bm.shape[0] k = numpy.zeros(nPts, numpy.int0) for idx in indices: k[idx] = 1 for i in indices: row = bm[i] for j in range(i + 1, nPts): if not k[j] and row[j] < maxThresh: k[j] = 1 keep = numpy.nonzero(k)[0] bm2 = numpy.zeros((len(keep), len(keep)), numpy.float) for i, idx in enumerate(keep): row = bm[idx] bm2[i] = numpy.take(row, keep) return bm2 def CoarseScreenPharmacophore(atomMatch, bounds, pcophore, verbose=False): """ >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 1.1) >>> pcophore.setUpperBound(0,1, 1.9) >>> pcophore.setLowerBound(0,2, 2.1) >>> pcophore.setUpperBound(0,2, 2.9) >>> pcophore.setLowerBound(1,2, 2.1) >>> pcophore.setUpperBound(1,2, 3.9) >>> bounds = numpy.array([[0,2,3],[1,0,4],[2,3,0]],numpy.float) >>> CoarseScreenPharmacophore(((0,),(1,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((0,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((1,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((0,),(1,),(2,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((1,),(0,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((2,),(1,),(0,)),bounds,pcophore) False # we ignore the point locations here and just use their definitions: >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.1) >>> pcophore.setUpperBound(0,1, 2.9) >>> pcophore.setLowerBound(0,2, 2.1) >>> pcophore.setUpperBound(0,2, 2.9) >>> pcophore.setLowerBound(0,3, 2.1) >>> pcophore.setUpperBound(0,3, 2.9) >>> pcophore.setLowerBound(1,2, 1.1) >>> pcophore.setUpperBound(1,2, 1.9) >>> pcophore.setLowerBound(1,3, 1.1) >>> pcophore.setUpperBound(1,3, 1.9) >>> pcophore.setLowerBound(2,3, 1.1) >>> pcophore.setUpperBound(2,3, 1.9) >>> bounds = numpy.array([[0,3,3,3],[2,0,2,2],[2,1,0,2],[2,1,1,0]],numpy.float) >>> CoarseScreenPharmacophore(((0,),(1,),(2,),(3,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((0,),(1,),(3,),(2,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((1,),(0,),(3,),(2,)),bounds,pcophore) False """ for k in range(len(atomMatch)): if len(atomMatch[k]) == 1: for l in range(k + 1, len(atomMatch)): if len(atomMatch[l]) == 1: idx0 = atomMatch[k][0] idx1 = atomMatch[l][0] if idx1 < idx0: idx0, idx1 = idx1, idx0 if bounds[idx1,idx0] >= pcophore.getUpperBound(k, l) or \ bounds[idx0,idx1] <= pcophore.getLowerBound(k, l) : if verbose: print('\t (%d,%d) [%d,%d] fail' % (idx1, idx0, k, l)) print('\t %f,%f - %f,%f' % (bounds[idx1, idx0], pcophore.getUpperBound(k, l), bounds[idx0, idx1], pcophore.getLowerBound(k, l))) #logger.debug('\t >%s'%str(atomMatch)) #logger.debug() #logger.debug('\t %f,%f - %f,%f'%(bounds[idx1,idx0],pcophore.getUpperBound(k,l), # bounds[idx0,idx1],pcophore.getLowerBound(k,l))) return False return True def Check2DBounds(atomMatch, mol, pcophore): """ checks to see if a particular mapping of features onto a molecule satisfies a pharmacophore's 2D restrictions >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> pcophore= Pharmacophore.Pharmacophore(activeFeats) >>> pcophore.setUpperBound2D(0,1,3) >>> m = Chem.MolFromSmiles('FCC(N)CN') >>> Check2DBounds(((0,),(3,)),m,pcophore) True >>> Check2DBounds(((0,),(5,)),m,pcophore) False """ dm = Chem.GetDistanceMatrix(mol, False, False, False) nFeats = len(atomMatch) for i in range(nFeats): for j in range(i + 1, nFeats): lowerB = pcophore._boundsMat2D[j, i] #lowerB = pcophore.getLowerBound2D(i,j) upperB = pcophore._boundsMat2D[i, j] #upperB = pcophore.getUpperBound2D(i,j) dij = 10000 for atomI in atomMatch[i]: for atomJ in atomMatch[j]: try: dij = min(dij, dm[atomI, atomJ]) except IndexError: print('bad indices:', atomI, atomJ) print(' shape:', dm.shape) print(' match:', atomMatch) print(' mol:') print(Chem.MolToMolBlock(mol)) raise IndexError if dij < lowerB or dij > upperB: return False return True def _checkMatch(match, mol, bounds, pcophore, use2DLimits): """ **INTERNAL USE ONLY** checks whether a particular atom match can be satisfied by a molecule """ atomMatch = ChemicalFeatures.GetAtomMatch(match) if not atomMatch: return None elif use2DLimits: if not Check2DBounds(atomMatch, mol, pcophore): return None if not CoarseScreenPharmacophore(atomMatch, bounds, pcophore): return None return atomMatch def ConstrainedEnum(matches, mol, pcophore, bounds, use2DLimits=False, index=0, soFar=[]): """ Enumerates the list of atom mappings a molecule has to a particular pharmacophore. We do check distance bounds here. """ nMatches = len(matches) if index >= nMatches: yield soFar, [] elif index == nMatches - 1: for entry in matches[index]: nextStep = soFar + [entry] if index != 0: atomMatch = _checkMatch(nextStep, mol, bounds, pcophore, use2DLimits) else: atomMatch = ChemicalFeatures.GetAtomMatch(nextStep) if atomMatch: yield soFar + [entry], atomMatch else: for entry in matches[index]: nextStep = soFar + [entry] if index != 0: atomMatch = _checkMatch(nextStep, mol, bounds, pcophore, use2DLimits) if not atomMatch: continue for val in ConstrainedEnum(matches, mol, pcophore, bounds, use2DLimits=use2DLimits, index=index + 1, soFar=nextStep): if val: yield val def MatchPharmacophore(matches, bounds, pcophore, useDownsampling=False, use2DLimits=False, mol=None, excludedVolumes=None, useDirs=False): """ if use2DLimits is set, the molecule must also be provided and topological distances will also be used to filter out matches """ for match, atomMatch in ConstrainedEnum(matches, mol, pcophore, bounds, use2DLimits=use2DLimits): bm = bounds.copy() bm = UpdatePharmacophoreBounds(bm, atomMatch, pcophore, useDirs=useDirs, mol=mol) if excludedVolumes: localEvs = [] for eV in excludedVolumes: featInfo = [] for i, entry in enumerate(atomMatch): info = list(eV.featInfo[i]) info[0] = entry featInfo.append(info) localEvs.append(ExcludedVolume.ExcludedVolume(featInfo, eV.index, eV.exclusionDist)) bm = AddExcludedVolumes(bm, localEvs, smoothIt=False) sz = bm.shape[0] if useDownsampling: indices = [] for entry in atomMatch: indices.extend(entry) if excludedVolumes: for vol in localEvs: indices.append(vol.index) bm = DownsampleBoundsMatrix(bm, indices) if DG.DoTriangleSmoothing(bm): return 0, bm, match, (sz, bm.shape[0]) return 1, None, None, None def GetAllPharmacophoreMatches(matches, bounds, pcophore, useDownsampling=0, progressCallback=None, use2DLimits=False, mol=None, verbose=False): res = [] nDone = 0 for match in CombiEnum(matches): atomMatch = ChemicalFeatures.GetAtomMatch(match) if atomMatch and use2DLimits and mol: pass2D = Check2DBounds(atomMatch, mol, pcophore) if verbose: print('..', atomMatch) print(' ..Pass2d:', pass2D) else: pass2D = True if atomMatch and pass2D and \ CoarseScreenPharmacophore(atomMatch,bounds,pcophore,verbose=verbose): if verbose: print(' ..CoarseScreen: Pass') bm = bounds.copy() if verbose: print('pre update:') for row in bm: print(' ', ' '.join(['% 4.2f' % x for x in row])) bm = UpdatePharmacophoreBounds(bm, atomMatch, pcophore) sz = bm.shape[0] if verbose: print('pre downsample:') for row in bm: print(' ', ' '.join(['% 4.2f' % x for x in row])) if useDownsampling: indices = [] for entry in atomMatch: indices += list(entry) bm = DownsampleBoundsMatrix(bm, indices) if verbose: print('post downsample:') for row in bm: print(' ', ' '.join(['% 4.2f' % x for x in row])) if DG.DoTriangleSmoothing(bm): res.append(match) elif verbose: print('cannot smooth') nDone += 1 if progressCallback: progressCallback(nDone) return res def ComputeChiralVolume(mol, centerIdx, confId=-1): """ Computes the chiral volume of an atom We're using the chiral volume formula from Figure 7 of Blaney and Dixon, Rev. Comp. Chem. V, 299-335 (1994) >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') R configuration atoms give negative volumes: >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'R' >>> ComputeChiralVolume(mol,1) < 0 True S configuration atoms give positive volumes: >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'S' >>> ComputeChiralVolume(mol,1) > 0 True Non-chiral (or non-specified) atoms give zero volume: >>> ComputeChiralVolume(mol,0) == 0.0 True We also work on 3-coordinate atoms (with implicit Hs): >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r-3.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'R' >>> ComputeChiralVolume(mol,1)<0 True >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s-3.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'S' >>> ComputeChiralVolume(mol,1)>0 True """ conf = mol.GetConformer(confId) Chem.AssignStereochemistry(mol) center = mol.GetAtomWithIdx(centerIdx) if not center.HasProp('_CIPCode'): return 0.0 nbrs = center.GetNeighbors() nbrRanks = [] for nbr in nbrs: rank = int(nbr.GetProp('_CIPRank')) pos = conf.GetAtomPosition(nbr.GetIdx()) nbrRanks.append((rank, pos)) # if we only have three neighbors (i.e. the determining H isn't present) # then use the central atom as the fourth point: if len(nbrRanks) == 3: nbrRanks.append((-1, conf.GetAtomPosition(centerIdx))) nbrRanks.sort() ps = [x[1] for x in nbrRanks] v1 = ps[0] - ps[3] v2 = ps[1] - ps[3] v3 = ps[2] - ps[3] res = v1.DotProduct(v2.CrossProduct(v3)) return res #------------------------------------ # # doctest boilerplate # def _test(): import doctest, sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed, tried = _test() sys.exit(failed)
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/Pharm3D/EmbedLib.py", "copies": "1", "size": "38924", "license": "bsd-3-clause", "hash": 4507648311856197600, "line_mean": 30.4410339257, "line_max": 119, "alpha_frac": 0.6180762512, "autogenerated": false, "ratio": 3.0383264382171573, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4156402689417157, "avg_score": null, "num_lines": null }
from rdkit import Geometry from rdkit import Chem import numpy import math # BIG NOTE: we are going assume atom IDs starting from 0 instead of 1 # for all the functions in this file. This is so that they # are reasonably indepedent of the combicode. However when using # with combicode the caller needs to make sure the atom IDs from combicode # are corrected before feeding them in here. def cross(v1, v2): res = numpy.array([v1[1] * v2[2] - v1[2] * v2[1], -v1[0] * v2[2] + v1[2] * v2[0], v1[0] * v2[1] - v1[1] * v2[0]], numpy.double) return res def findNeighbors(atomId, adjMat): """ Find the IDs of the neighboring atom IDs ARGUMENTS: atomId - atom of interest adjMat - adjacency matrix for the compound """ nbrs = [] for i, nid in enumerate(adjMat[atomId]): if nid >= 1: nbrs.append(i) return nbrs def _findAvgVec(conf, center, nbrs): # find the average of the normalized vectors going from the center atoms to the # neighbors # the average vector is also normalized avgVec = 0 for nbr in nbrs: nid = nbr.GetIdx() pt = conf.GetAtomPosition(nid) pt -= center pt.Normalize() if (avgVec == 0): avgVec = pt else: avgVec += pt avgVec.Normalize() return avgVec def GetAromaticFeatVects(conf, featAtoms, featLoc, scale=1.5): """ Compute the direction vector for an aromatic feature ARGUMENTS: conf - a conformer featAtoms - list of atom IDs that make up the feature featLoc - location of the aromatic feature specified as point3d scale - the size of the direction vector """ dirType = 'linear' head = featLoc ats = [conf.GetAtomPosition(x) for x in featAtoms] p0 = ats[0] p1 = ats[1] v1 = p0 - head v2 = p1 - head norm1 = v1.CrossProduct(v2) norm1.Normalize() norm1 *= scale #norm2 = norm1 norm2 = head - norm1 norm1 += head return ((head, norm1), (head, norm2)), dirType def ArbAxisRotation(theta, ax, pt): theta = math.pi * theta / 180 c = math.cos(theta) s = math.sin(theta) t = 1 - c X = ax.x Y = ax.y Z = ax.z mat = [[t * X * X + c, t * X * Y + s * Z, t * X * Z - s * Y], [t * X * Y - s * Z, t * Y * Y + c, t * Y * Z + s * X], [t * X * Z + s * Y, t * Y * Z - s * X, t * Z * Z + c]] mat = numpy.array(mat) if isinstance(pt, Geometry.Point3D): pt = numpy.array((pt.x, pt.y, pt.z)) tmp = numpy.dot(mat, pt) res = Geometry.Point3D(tmp[0], tmp[1], tmp[2]) elif isinstance(pt, list) or isinstance(pt, tuple): pts = pt res = [] for pt in pts: pt = numpy.array((pt.x, pt.y, pt.z)) tmp = numpy.dot(mat, pt) res.append(Geometry.Point3D(tmp[0], tmp[1], tmp[2])) else: res = None return res def GetAcceptor2FeatVects(conf, featAtoms, scale=1.5): """ Get the direction vectors for Acceptor of type 2 This is the acceptor with two adjacent heavy atoms. We will special case a few things here. If the acceptor atom is an oxygen we will assume a sp3 hybridization the acceptor directions (two of them) reflect that configurations. Otherwise the direction vector in plane with the neighboring heavy atoms ARGUMENTS: featAtoms - list of atoms that are part of the feature scale - length of the direction vector """ assert len(featAtoms) == 1 aid = featAtoms[0] cpt = conf.GetAtomPosition(aid) mol = conf.GetOwningMol() nbrs = list(mol.GetAtomWithIdx(aid).GetNeighbors()) hydrogens = [] tmp = [] while len(nbrs): nbr = nbrs.pop() if nbr.GetAtomicNum() == 1: hydrogens.append(nbr) else: tmp.append(nbr) nbrs = tmp assert len(nbrs) == 2 bvec = _findAvgVec(conf, cpt, nbrs) bvec *= (-1.0 * scale) if (mol.GetAtomWithIdx(aid).GetAtomicNum() == 8): # assume sp3 # we will create two vectors by rotating bvec by half the tetrahedral angle in either directions v1 = conf.GetAtomPosition(nbrs[0].GetIdx()) v1 -= cpt v2 = conf.GetAtomPosition(nbrs[1].GetIdx()) v2 -= cpt rotAxis = v1 - v2 rotAxis.Normalize() bv1 = ArbAxisRotation(54.5, rotAxis, bvec) bv1 += cpt bv2 = ArbAxisRotation(-54.5, rotAxis, bvec) bv2 += cpt return ((cpt, bv1), (cpt, bv2), ), 'linear' else: bvec += cpt return ((cpt, bvec), ), 'linear' def _GetTetrahedralFeatVect(conf, aid, scale): mol = conf.GetOwningMol() cpt = conf.GetAtomPosition(aid) nbrs = mol.GetAtomWithIdx(aid).GetNeighbors() if not _checkPlanarity(conf, cpt, nbrs, tol=0.1): bvec = _findAvgVec(conf, cpt, nbrs) bvec *= (-1.0 * scale) bvec += cpt res = ((cpt, bvec), ) else: res = () return res def GetDonor3FeatVects(conf, featAtoms, scale=1.5): """ Get the direction vectors for Donor of type 3 This is a donor with three heavy atoms as neighbors. We will assume a tetrahedral arrangement of these neighbors. So the direction we are seeking is the last fourth arm of the sp3 arrangment ARGUMENTS: featAtoms - list of atoms that are part of the feature scale - length of the direction vector """ assert len(featAtoms) == 1 aid = featAtoms[0] tfv = _GetTetrahedralFeatVect(conf, aid, scale) return tfv, 'linear' def GetAcceptor3FeatVects(conf, featAtoms, scale=1.5): """ Get the direction vectors for Donor of type 3 This is a donor with three heavy atoms as neighbors. We will assume a tetrahedral arrangement of these neighbors. So the direction we are seeking is the last fourth arm of the sp3 arrangment ARGUMENTS: featAtoms - list of atoms that are part of the feature scale - length of the direction vector """ assert len(featAtoms) == 1 aid = featAtoms[0] tfv = _GetTetrahedralFeatVect(conf, aid, scale) return tfv, 'linear' def _findHydAtoms(nbrs, atomNames): hAtoms = [] for nid in nbrs: if atomNames[nid] == 'H': hAtoms.append(nid) return hAtoms def _checkPlanarity(conf, cpt, nbrs, tol=1.0e-3): assert len(nbrs) == 3 v1 = conf.GetAtomPosition(nbrs[0].GetIdx()) v1 -= cpt v2 = conf.GetAtomPosition(nbrs[1].GetIdx()) v2 -= cpt v3 = conf.GetAtomPosition(nbrs[2].GetIdx()) v3 -= cpt normal = v1.CrossProduct(v2) dotP = abs(v3.DotProduct(normal)) if (dotP <= tol): return 1 else: return 0 def GetDonor2FeatVects(conf, featAtoms, scale=1.5): """ Get the direction vectors for Donor of type 2 This is a donor with two heavy atoms as neighbors. The atom may are may not have hydrogen on it. Here are the situations with the neighbors that will be considered here 1. two heavy atoms and two hydrogens: we will assume a sp3 arrangement here 2. two heavy atoms and one hydrogen: this can either be sp2 or sp3 3. two heavy atoms and no hydrogens ARGUMENTS: featAtoms - list of atoms that are part of the feature scale - length of the direction vector """ assert len(featAtoms) == 1 aid = featAtoms[0] mol = conf.GetOwningMol() cpt = conf.GetAtomPosition(aid) # find the two atoms that are neighbors of this atoms nbrs = list(mol.GetAtomWithIdx(aid).GetNeighbors()) assert len(nbrs) >= 2 hydrogens = [] tmp = [] while len(nbrs): nbr = nbrs.pop() if nbr.GetAtomicNum() == 1: hydrogens.append(nbr) else: tmp.append(nbr) nbrs = tmp if len(nbrs) == 2: # there should be no hydrogens in this case assert len(hydrogens) == 0 # in this case the direction is the opposite of the average vector of the two neighbors bvec = _findAvgVec(conf, cpt, nbrs) bvec *= (-1.0 * scale) bvec += cpt return ((cpt, bvec), ), 'linear' elif len(nbrs) == 3: assert len(hydrogens) == 1 # this is a little more tricky we have to check if the hydrogen is in the plane of the # two heavy atoms (i.e. sp2 arrangement) or out of plane (sp3 arrangement) # one of the directions will be from hydrogen atom to the heavy atom hid = hydrogens[0].GetIdx() bvec = conf.GetAtomPosition(hid) bvec -= cpt bvec.Normalize() bvec *= scale bvec += cpt if _checkPlanarity(conf, cpt, nbrs): # only the hydrogen atom direction needs to be used return ((cpt, bvec), ), 'linear' else: # we have a non-planar configuration - we will assume sp3 and compute a second direction vector ovec = _findAvgVec(conf, cpt, nbrs) ovec *= (-1.0 * scale) ovec += cpt return ((cpt, bvec), (cpt, ovec), ), 'linear' elif len(nbrs) >= 4: # in this case we should have two or more hydrogens we will simple use there directions res = [] for hid in hydrogens: bvec = conf.GetAtomPosition(hid) bvec -= cpt bvec.Normalize() bvec *= scale bvec += cpt res.append((cpt, bvec)) return tuple(res), 'linear' def GetDonor1FeatVects(conf, featAtoms, scale=1.5): """ Get the direction vectors for Donor of type 1 This is a donor with one heavy atom. It is not clear where we should we should be putting the direction vector for this. It should probably be a cone. In this case we will just use the direction vector from the donor atom to the heavy atom ARGUMENTS: featAtoms - list of atoms that are part of the feature scale - length of the direction vector """ assert len(featAtoms) == 1 aid = featAtoms[0] mol = conf.GetOwningMol() nbrs = mol.GetAtomWithIdx(aid).GetNeighbors() # find the neighboring heavy atom hnbr = -1 for nbr in nbrs: if nbr.GetAtomicNum() != 1: hnbr = nbr.GetIdx() break cpt = conf.GetAtomPosition(aid) v1 = conf.GetAtomPosition(hnbr) v1 -= cpt v1.Normalize() v1 *= (-1.0 * scale) v1 += cpt return ((cpt, v1), ), 'cone' def GetAcceptor1FeatVects(conf, featAtoms, scale=1.5): """ Get the direction vectors for Acceptor of type 1 This is a acceptor with one heavy atom neighbor. There are two possibilities we will consider here 1. The bond to the heavy atom is a single bond e.g. CO In this case we don't know the exact direction and we just use the inversion of this bond direction and mark this direction as a 'cone' 2. The bond to the heavy atom is a double bond e.g. C=O In this case the we have two possible direction except in some special cases e.g. SO2 where again we will use bond direction ARGUMENTS: featAtoms - list of atoms that are part of the feature scale - length of the direction vector """ assert len(featAtoms) == 1 aid = featAtoms[0] mol = conf.GetOwningMol() nbrs = mol.GetAtomWithIdx(aid).GetNeighbors() cpt = conf.GetAtomPosition(aid) # find the adjacent heavy atom heavyAt = -1 for nbr in nbrs: if nbr.GetAtomicNum() != 1: heavyAt = nbr break singleBnd = mol.GetBondBetweenAtoms(aid, heavyAt.GetIdx()).GetBondType() > Chem.BondType.SINGLE # special scale - if the heavy atom is a sulfur (we should proabably check phosphorous as well) sulfur = heavyAt.GetAtomicNum() == 16 if singleBnd or sulfur: v1 = conf.GetAtomPosition(heavyAt.GetIdx()) v1 -= cpt v1.Normalize() v1 *= (-1.0 * scale) v1 += cpt return ((cpt, v1), ), 'cone' else: # ok in this case we will assume that # heavy atom is sp2 hybridized and the direction vectors (two of them) # are in the same plane, we will find this plane by looking for one # of the neighbors of the heavy atom hvNbrs = heavyAt.GetNeighbors() hvNbr = -1 for nbr in hvNbrs: if nbr.GetIdx() != aid: hvNbr = nbr break pt1 = conf.GetAtomPosition(hvNbr.GetIdx()) v1 = conf.GetAtomPosition(heavyAt.GetIdx()) pt1 -= v1 v1 -= cpt rotAxis = v1.CrossProduct(pt1) rotAxis.Normalize() bv1 = ArbAxisRotation(120, rotAxis, v1) bv1.Normalize() bv1 *= scale bv1 += cpt bv2 = ArbAxisRotation(-120, rotAxis, v1) bv2.Normalize() bv2 *= scale bv2 += cpt return ((cpt, bv1), (cpt, bv2), ), 'linear'
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/Features/FeatDirUtilsRD.py", "copies": "2", "size": "12281", "license": "bsd-3-clause", "hash": -2614181898708243000, "line_mean": 27.5604651163, "line_max": 104, "alpha_frac": 0.64929566, "autogenerated": false, "ratio": 3.1257317383558156, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47750273983558156, "avg_score": null, "num_lines": null }
from rdkit import Geometry import numpy from rdkit import Chem from rdkit.Chem import ChemicalFeatures from rdkit.RDLogger import logger logger = logger() class Pharmacophore: def __init__(self, feats, initMats=True): self._initializeFeats(feats) nf = len(feats) self._boundsMat = numpy.zeros((nf, nf), numpy.float) self._boundsMat2D = numpy.zeros((nf, nf), numpy.int) if initMats: self._initializeMatrices() def _initializeFeats(self, feats): self._feats = [] for feat in feats: if isinstance(feat, ChemicalFeatures.MolChemicalFeature): pos = feat.GetPos() newFeat = ChemicalFeatures.FreeChemicalFeature(feat.GetFamily(), feat.GetType(), Geometry.Point3D(pos[0], pos[1], pos[2])) self._feats.append(newFeat) else: self._feats.append(feat) def _initializeMatrices(self): # initialize the bounds matrix with distances to start with nf = len(self._feats) for i in range(1, nf): loci = self._feats[i].GetPos() for j in range(i): locj = self._feats[j].GetPos() dist = loci.Distance(locj) self._boundsMat[i, j] = dist self._boundsMat[j, i] = dist for i in range(nf): for j in range(i + 1, nf): self._boundsMat2D[i, j] = 1000 def getFeatures(self): return self._feats def getFeature(self, i): return self._feats[i] def getUpperBound(self, i, j): if (i > j): j, i = i, j return self._boundsMat[i, j] def getLowerBound(self, i, j): if (j > i): j, i = i, j return self._boundsMat[i, j] def _checkBounds(self, i, j): " raises ValueError on failure " nf = len(self._feats) if (i < 0) or (i >= nf): raise ValueError("Index out of bound") if (j < 0) or (j >= nf): raise ValueError("Index out of bound") return True def setUpperBound(self, i, j, val, checkBounds=False): if (checkBounds): self._checkBounds(i, j) if (i > j): j, i = i, j self._boundsMat[i, j] = val def setLowerBound(self, i, j, val, checkBounds=False): if (checkBounds): self._checkBounds(i, j) if (j > i): j, i = i, j self._boundsMat[i, j] = val def getUpperBound2D(self, i, j): if (i > j): j, i = i, j return self._boundsMat2D[i, j] def getLowerBound2D(self, i, j): if (j > i): j, i = i, j return self._boundsMat2D[i, j] def setUpperBound2D(self, i, j, val, checkBounds=False): if (checkBounds): self._checkBounds(i, j) if (i > j): j, i = i, j self._boundsMat2D[i, j] = val def setLowerBound2D(self, i, j, val, checkBounds=False): if (checkBounds): self._checkBounds(i, j) if (j > i): j, i = i, j self._boundsMat2D[i, j] = val def __str__(self): res = ' ' * 13 for i, iFeat in enumerate(self._feats): res += '% 12s ' % iFeat.GetFamily() res += '\n' for i, iFeat in enumerate(self._feats): res += '% 12s ' % iFeat.GetFamily() for j, jFeat in enumerate(self._feats): if j < i: res += '% 12.3f ' % self.getLowerBound(i, j) elif j > i: res += '% 12.3f ' % self.getUpperBound(i, j) else: res += '% 12.3f ' % 0.0 res += '\n' return res class ExplicitPharmacophore: """ this is a pharmacophore with explicit point locations and radii """ def __init__(self, feats=None, radii=None): if feats and radii: self._initializeFeats(feats, radii) def _initializeFeats(self, feats, radii): if len(feats) != len(radii): raise ValueError('len(feats)!=len(radii)') self._feats = [] self._radii = [] for feat, rad in zip(feats, radii): if isinstance(feat, ChemicalFeatures.MolChemicalFeature): pos = feat.GetPos() newFeat = ChemicalFeatures.FreeChemicalFeature(feat.GetFamily(), feat.GetType(), Geometry.Point3D(pos[0], pos[1], pos[2])) else: newFeat = feat self._feats.append(newFeat) self._radii.append(rad) def getFeatures(self): return self._feats def getRadii(self): return self._radii def getFeature(self, i): return self._feats[i] def getRadius(self, i): return self._radii[i] def setRadius(self, i, rad): self._radii[i] = rad def initFromString(self, text): lines = text.split(r'\n') self.initFromLines(lines) def initFromFile(self, inF): self.initFromLines(inF.readlines()) def initFromLines(self, lines): from rdkit.Chem import ChemicalFeatures import re spaces = re.compile('[\ \t]+') feats = [] rads = [] for lineNum, line in enumerate(lines): txt = line.split('#')[0].strip() if txt: splitL = spaces.split(txt) if len(splitL) < 5: logger.error('Input line %d only contains %d fields, 5 are required. Read failed.' % (lineNum, len(splitL))) return fName = splitL[0] try: xP = float(splitL[1]) yP = float(splitL[2]) zP = float(splitL[3]) rad = float(splitL[4]) except ValueError: logger.error('Error parsing a number of line %d. Read failed.' % (lineNum)) return feats.append( ChemicalFeatures.FreeChemicalFeature(fName, fName, Geometry.Point3D(xP, yP, zP))) rads.append(rad) self._initializeFeats(feats, rads) def __str__(self): res = '' for feat, rad in zip(self._feats, self._radii): res += '% 12s ' % feat.GetFamily() p = feat.GetPos() res += ' % 8.4f % 8.4f % 8.4f ' % (p.x, p.y, p.z) res += '% 5.2f' % rad res += '\n' return res
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/Pharm3D/Pharmacophore.py", "copies": "1", "size": "6085", "license": "bsd-3-clause", "hash": 8974841837638450000, "line_mean": 26.9128440367, "line_max": 96, "alpha_frac": 0.5753492194, "autogenerated": false, "ratio": 3.174230568596766, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9187696393858763, "avg_score": 0.012376678827600514, "num_lines": 218 }
from rdkit import RDConfig import unittest,sys,os,cPickle from rdkit import Chem from rdkit.Chem import ChemicalFeatures,rdDistGeom import EmbedLib import gzip from rdkit import DistanceGeometry as DG from rdkit import Geometry import Pharmacophore import cPickle import numpy def feq(n1,n2,tol=1e-5): return abs(n1-n2)<=tol class TestCase(unittest.TestCase): def setUp(self): self.dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') self.fdefBlock = \ """DefineFeature HAcceptor1 [N,O;H0] Family HBondAcceptor Weights 1.0 EndFeature DefineFeature HDonor1 [N,O;!H0] Family HBondDonor Weights 1.0 EndFeature DefineFeature Aromatic1 c1ccccc1 Family Aromatic Weights 1.,1.,1.,1.,1.,1. EndFeature\n""" self.featFactory = ChemicalFeatures.BuildFeatureFactoryFromString(self.fdefBlock) self.feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ] self.pcophore=Pharmacophore.Pharmacophore(self.feats) self.pcophore.setLowerBound(0,1, 2.0) self.pcophore.setUpperBound(0,1, 3.3) self.pcophore.setLowerBound(0,2, 5.0) self.pcophore.setUpperBound(0,2, 5.4) self.pcophore.setLowerBound(1,2, 2.6) self.pcophore.setUpperBound(1,2, 3.0) def _matchMol(self,tpl,pcophore,featFactory,downSample): name,molPkl,boundsMat = tpl mol = Chem.Mol(molPkl) matched,matches = EmbedLib.MatchPharmacophoreToMol(mol,featFactory,pcophore) if matched: r = EmbedLib.MatchPharmacophore(matches,boundsMat,pcophore, useDownsampling=downSample) if r[0]: return 0 else: return 1 else: return 0 def test1SearchFullMat(self): inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') #outF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.new.gz'),'wb+') nDone = 0 nHits = 0 while 1: try: tpl = cPickle.load(inF) #tpl=tpl[0],tpl[1],numpy.array(tpl[2]) #cPickle.dump(tpl,outF) except: break if self._matchMol(tpl,self.pcophore,self.featFactory,0): nHits+=1 nDone += 1 self.failUnlessEqual(nDone,100) #print 'nHits:',nHits self.failUnlessEqual(nHits,47) def test2SearchDownsample(self): inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') nDone = 0 nHits = 0 hits = [] while 1: try: tpl = cPickle.load(inF) except: break if self._matchMol(tpl,self.pcophore, self.featFactory,1): nHits+=1 nDone += 1 self.failUnlessEqual(nDone,100) #print 'nHits:',nHits self.failUnlessEqual(nHits,47) def test3Embed(self): testResults={ 'mol_197':(181.30,30.21,92.03,8.73,91.60,8.33,74.68,1.35,0.00), 'mol_223':(211.07,4.22,114.14,1.57,114.08,1.58,68.22,0.48,0.00), 'mol_269':(162.28,2.03,74.50,1.00,73.45,0.96,60.18,0.91,6.00), } inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') nDone = 0 nHits = 0 while 1: try: name,molPkl,boundsMat = cPickle.load(inF) except: break nDone += 1 mol = Chem.Mol(molPkl) nboundsMat = rdDistGeom.GetMoleculeBoundsMatrix(mol) DG.DoTriangleSmoothing(nboundsMat) matched,matches = EmbedLib.MatchPharmacophoreToMol(mol,self.featFactory, self.pcophore) if matched: failed,bm,match,stats = EmbedLib.MatchPharmacophore(matches,nboundsMat, self.pcophore, useDownsampling=1) if not failed: nHits += 1 if testResults.has_key(name): stats = EmbedLib.EmbedOne(mol,name,match,self.pcophore,count=10, silent=1,randomSeed=23) tgt = testResults[name] self.failUnlessEqual(len(tgt),len(stats)) print name print ','.join(['%.2f'%x for x in stats]) # we'll use different tolerances for the different values: self.failUnless(feq(tgt[0],stats[0],5.0),(tgt[0],stats[0])) for i in range(2,len(tgt)): self.failUnless(feq(tgt[i],stats[i],5.0),(tgt[i],stats[i])) self.failUnlessEqual(nDone,100) #print 'nHits:',nHits self.failUnlessEqual(nHits,50) def test4Search(self): featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(self.dataDir, 'BaseFeatures.fdef')) activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('Donor', Geometry.Point3D(0.0, 0.0, 0.0)), ChemicalFeatures.FreeChemicalFeature('Aromatic', Geometry.Point3D(0.0, 0.0, 0.0))] pcophore= Pharmacophore.Pharmacophore(activeFeats) pcophore.setLowerBound(0,1,2.251) pcophore.setUpperBound(0,1,2.451) pcophore.setUpperBound2D(0,1,3) pcophore.setLowerBound(0,2,4.970) pcophore.setUpperBound(0,2,5.170) pcophore.setUpperBound2D(0,2,6) pcophore.setLowerBound(1,2,2.681) pcophore.setUpperBound(1,2,2.881) pcophore.setUpperBound2D(1,2,6) inF = gzip.open(os.path.join(self.dataDir,'cdk2-syn-clip100.pkl.gz'),'rb') nDone = 0 nMatches = 0 nHits = 0 while 1: try: name,molPkl,boundsMat = cPickle.load(inF) except: break nDone += 1 mol = Chem.Mol(molPkl) boundsMat = rdDistGeom.GetMoleculeBoundsMatrix(mol) DG.DoTriangleSmoothing(boundsMat) canMatch,matches = EmbedLib.MatchPharmacophoreToMol(mol,featFactory, pcophore) if canMatch: nMatches+=1 r = EmbedLib.MatchPharmacophore(matches,boundsMat,pcophore, useDownsampling=True,use2DLimits=True, mol=mol) failed,bm,match,details = r if not failed: nHits+=1 self.failUnlessEqual(nDone,100) self.failUnlessEqual(nMatches,93) #print 'nhits:',nHits self.failUnlessEqual(nHits,68) def testIssue268(self): from rdkit import RDLogger #RDLogger.EnableLog('rdApp.debug') featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(self.dataDir, 'Issue268.fdef')) m1 = Chem.MolFromMolFile(os.path.join(self.dataDir, 'Issue268_Mol1.mol')) m2 = Chem.MolFromMolFile(os.path.join(self.dataDir, 'Issue268_Mol2.mol')) pcop = cPickle.load(file(os.path.join(self.dataDir, 'Issue268_Pcop.pkl'),'rb')) #pcop._boundsMat=numpy.array(pcop._boundsMat) #pcop._boundsMat2D=numpy.array(pcop._boundsMat2D) #cPickle.dump(pcop,file(os.path.join(self.dataDir, # 'Issue268_Pcop.new.pkl'),'wb+')) match,mList1 = EmbedLib.MatchFeatsToMol(m1,featFactory,pcop.getFeatures()) match,mList2 = EmbedLib.MatchFeatsToMol(m2,featFactory,pcop.getFeatures()) b1 = rdDistGeom.GetMoleculeBoundsMatrix(m1) b2 = rdDistGeom.GetMoleculeBoundsMatrix(m2) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop)[2]),4) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop)[2]),4) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop, mol=m1,use2DLimits=True)[2]),4) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop, mol=m2,use2DLimits=True)[2]),4) from rdkit import DistanceGeometry as DG self.failUnless(DG.DoTriangleSmoothing(b1)) self.failUnless(DG.DoTriangleSmoothing(b2)) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop)[2]),4) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop)[2]),4) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList1,b1,pcop, mol=m1,use2DLimits=True)[2]),4) self.failUnlessEqual(len(EmbedLib.MatchPharmacophore(mList2,b2,pcop, mol=m2,use2DLimits=True)[2]),4) if __name__ == '__main__': unittest.main()
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/Pharm3D/UnitTestEmbed.py", "copies": "1", "size": "9675", "license": "bsd-3-clause", "hash": 5872861235074889000, "line_mean": 36.79296875, "line_max": 85, "alpha_frac": 0.5804651163, "autogenerated": false, "ratio": 3.210019907100199, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4290485023400199, "avg_score": null, "num_lines": null }
from rdkit import RDConfig import sys,time,math from rdkit.ML.Data import Stats import rdkit.DistanceGeometry as DG from rdkit import Chem import numpy from rdkit.Chem import rdDistGeom as MolDG from rdkit.Chem import ChemicalFeatures from rdkit.Chem import ChemicalForceFields import Pharmacophore,ExcludedVolume from rdkit import Geometry _times = {} from rdkit import RDLogger as logging logger = logging.logger() defaultFeatLength=2.0 def GetAtomHeavyNeighbors(atom): """ returns a list of the heavy-atom neighbors of the atom passed in: >>> m = Chem.MolFromSmiles('CCO') >>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(0)) >>> len(l) 1 >>> isinstance(l[0],Chem.Atom) True >>> l[0].GetIdx() 1 >>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(1)) >>> len(l) 2 >>> l[0].GetIdx() 0 >>> l[1].GetIdx() 2 """ res=[] for nbr in atom.GetNeighbors(): if nbr.GetAtomicNum() != 1: res.append(nbr) return res def ReplaceGroup(match,bounds,slop=0.01,useDirs=False,dirLength=defaultFeatLength): """ Adds an entry at the end of the bounds matrix for a point at the center of a multi-point feature returns a 2-tuple: new bounds mat index of point added >>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]]) >>> match = [0,1,2] >>> bm,idx = ReplaceGroup(match,boundsMat,slop=0.0) the index is at the end: >>> idx 3 and the matrix is one bigger: >>> bm.shape (4, 4) but the original bounds mat is not altered: >>> boundsMat.shape (3, 3) We make the assumption that the points of the feature form a regular polygon, are listed in order (i.e. pt 0 is a neighbor to pt 1 and pt N-1) and that the replacement point goes at the center: >>> print ', '.join(['%.3f'%x for x in bm[-1]]) 0.577, 0.577, 0.577, 0.000 >>> print ', '.join(['%.3f'%x for x in bm[:,-1]]) 1.155, 1.155, 1.155, 0.000 The slop argument (default = 0.01) is fractional: >>> bm,idx = ReplaceGroup(match,boundsMat) >>> print ', '.join(['%.3f'%x for x in bm[-1]]) 0.572, 0.572, 0.572, 0.000 >>> print ', '.join(['%.3f'%x for x in bm[:,-1]]) 1.166, 1.166, 1.166, 0.000 """ maxVal = -1000.0 minVal = 1e8 nPts = len(match) for i in range(nPts): idx0 = match[i] if i<nPts-1: idx1 = match[i+1] else: idx1 = match[0] if idx1<idx0: idx0,idx1 = idx1,idx0 minVal = min(minVal,bounds[idx1,idx0]) maxVal = max(maxVal,bounds[idx0,idx1]) maxVal *= (1+slop) minVal *= (1-slop) scaleFact = 1.0/(2.0*math.sin(math.pi/nPts)) minVal *= scaleFact maxVal *= scaleFact replaceIdx = bounds.shape[0] if not useDirs: bm = numpy.zeros((bounds.shape[0]+1,bounds.shape[1]+1),numpy.float) else: bm = numpy.zeros((bounds.shape[0]+2,bounds.shape[1]+2),numpy.float) bm[0:bounds.shape[0],0:bounds.shape[1]]=bounds bm[:replaceIdx,replaceIdx]=1000. if useDirs: bm[:replaceIdx+1,replaceIdx+1]=1000. # set the feature - direction point bounds: bm[replaceIdx,replaceIdx+1]=dirLength+slop bm[replaceIdx+1,replaceIdx]=dirLength-slop for idx1 in match: bm[idx1,replaceIdx]=maxVal bm[replaceIdx,idx1]=minVal if useDirs: # set the point - direction point bounds: bm[idx1,replaceIdx+1] = numpy.sqrt(bm[replaceIdx,replaceIdx+1]**2+maxVal**2) bm[replaceIdx+1,idx1] = numpy.sqrt(bm[replaceIdx+1,replaceIdx]**2+minVal**2) return bm,replaceIdx def EmbedMol(mol,bm,atomMatch=None,weight=2.0,randomSeed=-1, excludedVolumes=None): """ Generates an embedding for a molecule based on a bounds matrix and adds a conformer (id 0) to the molecule if the optional argument atomMatch is provided, it will be used to provide supplemental weights for the embedding routine (used in the optimization phase to ensure that the resulting geometry really does satisfy the pharmacophore). if the excludedVolumes is provided, it should be a sequence of ExcludedVolume objects >>> m = Chem.MolFromSmiles('c1ccccc1C') >>> bounds = MolDG.GetMoleculeBoundsMatrix(m) >>> bounds.shape (7, 7) >>> m.GetNumConformers() 0 >>> EmbedMol(m,bounds,randomSeed=23) >>> m.GetNumConformers() 1 """ nAts = mol.GetNumAtoms() weights=[] if(atomMatch): for i in range(len(atomMatch)): for j in range(i+1,len(atomMatch)): weights.append((i,j,weight)) if(excludedVolumes): for vol in excludedVolumes: idx = vol.index # excluded volumes affect every other atom: for i in range(nAts): weights.append((i,idx,weight)) coords = DG.EmbedBoundsMatrix(bm,weights=weights,numZeroFail=1,randomSeed=randomSeed) #for row in coords: # print ', '.join(['%.2f'%x for x in row]) conf = Chem.Conformer(nAts) conf.SetId(0) for i in range(nAts): conf.SetAtomPosition(i,list(coords[i])) if excludedVolumes: for vol in excludedVolumes: vol.pos = numpy.array(coords[vol.index]) #print >>sys.stderr,' % 7.4f % 7.4f % 7.4f Ar 0 0 0 0 0 0 0 0 0 0 0 0'%tuple(coords[-1]) mol.AddConformer(conf) def AddExcludedVolumes(bm,excludedVolumes,smoothIt=True): """ Adds a set of excluded volumes to the bounds matrix and returns the new matrix excludedVolumes is a list of ExcludedVolume objects >>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]]) >>> ev1 = ExcludedVolume.ExcludedVolume(([(0,),0.5,1.0],),exclusionDist=1.5) >>> bm = AddExcludedVolumes(boundsMat,(ev1,)) the results matrix is one bigger: >>> bm.shape (4, 4) and the original bounds mat is not altered: >>> boundsMat.shape (3, 3) >>> print ', '.join(['%.3f'%x for x in bm[-1]]) 0.500, 1.500, 1.500, 0.000 >>> print ', '.join(['%.3f'%x for x in bm[:,-1]]) 1.000, 3.000, 3.000, 0.000 """ oDim = bm.shape[0] dim = oDim+len(excludedVolumes) res = numpy.zeros((dim,dim),numpy.float) res[:oDim,:oDim] = bm for i,vol in enumerate(excludedVolumes): bmIdx = oDim+i vol.index = bmIdx # set values to all the atoms: res[bmIdx,:bmIdx] = vol.exclusionDist res[:bmIdx,bmIdx] = 1000.0 # set values to our defining features: for indices,minV,maxV in vol.featInfo: for index in indices: try: res[bmIdx,index] = minV res[index,bmIdx] = maxV except IndexError: logger.error('BAD INDEX: res[%d,%d], shape is %s'%(bmIdx,index,str(res.shape))) raise IndexError # set values to other excluded volumes: for j in range(bmIdx+1,dim): res[bmIdx,j:dim] = 0 res[j:dim,bmIdx] = 1000 if smoothIt: DG.DoTriangleSmoothing(res) return res def UpdatePharmacophoreBounds(bm,atomMatch,pcophore,useDirs=False, dirLength=defaultFeatLength, mol=None): """ loops over a distance bounds matrix and replaces the elements that are altered by a pharmacophore **NOTE** this returns the resulting bounds matrix, but it may also alter the input matrix atomMatch is a sequence of sequences containing atom indices for each of the pharmacophore's features. >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 1.0) >>> pcophore.setUpperBound(0,1, 2.0) >>> boundsMat = numpy.array([[0.0,3.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> atomMatch = ((0,),(1,)) >>> bm = UpdatePharmacophoreBounds(boundsMat,atomMatch,pcophore) In this case, there are no multi-atom features, so the result matrix is the same as the input: >>> bm is boundsMat True this means, of course, that the input boundsMat is altered: >>> print ', '.join(['%.3f'%x for x in boundsMat[0]]) 0.000, 2.000, 3.000 >>> print ', '.join(['%.3f'%x for x in boundsMat[1]]) 1.000, 0.000, 3.000 >>> print ', '.join(['%.3f'%x for x in boundsMat[2]]) 2.000, 2.000, 0.000 """ replaceMap = {} for i,matchI in enumerate(atomMatch): if len(matchI)>1: bm,replaceIdx = ReplaceGroup(matchI,bm,useDirs=useDirs) replaceMap[i] = replaceIdx for i,matchI in enumerate(atomMatch): mi = replaceMap.get(i,matchI[0]) for j in range(i+1,len(atomMatch)): mj = replaceMap.get(j,atomMatch[j][0]) if mi<mj: idx0,idx1 = mi,mj else: idx0,idx1 = mj,mi bm[idx0,idx1] = pcophore.getUpperBound(i,j) bm[idx1,idx0] = pcophore.getLowerBound(i,j) return bm def EmbedPharmacophore(mol,atomMatch,pcophore,randomSeed=-1,count=10,smoothFirst=True, silent=False,bounds=None,excludedVolumes=None,targetNumber=-1, useDirs=False): """ Generates one or more embeddings for a molecule that satisfy a pharmacophore atomMatch is a sequence of sequences containing atom indices for each of the pharmacophore's features. - count: is the maximum number of attempts to make a generating an embedding - smoothFirst: toggles triangle smoothing of the molecular bounds matix - bounds: if provided, should be the molecular bounds matrix. If this isn't provided, the matrix will be generated. - targetNumber: if this number is positive, it provides a maximum number of embeddings to generate (i.e. we'll have count attempts to generate targetNumber embeddings). returns: a 3 tuple: 1) the molecular bounds matrix adjusted for the pharmacophore 2) a list of embeddings (molecules with a single conformer) 3) the number of failed attempts at embedding >>> m = Chem.MolFromSmiles('OCCN') >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.5) >>> pcophore.setUpperBound(0,1, 3.5) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 10 >>> nFail 0 Set up a case that can't succeed: >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.0) >>> pcophore.setUpperBound(0,1, 2.1) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 0 >>> nFail 10 """ global _times if not hasattr(mol,'_chiralCenters'): mol._chiralCenters = Chem.FindMolChiralCenters(mol) if bounds is None: bounds = MolDG.GetMoleculeBoundsMatrix(mol) if smoothFirst: DG.DoTriangleSmoothing(bounds) bm = bounds.copy() #print '------------' #print 'initial' #for row in bm: # print ' ',' '.join(['% 4.2f'%x for x in row]) #print '------------' bm = UpdatePharmacophoreBounds(bm,atomMatch,pcophore,useDirs=useDirs,mol=mol) if excludedVolumes: bm = AddExcludedVolumes(bm,excludedVolumes,smoothIt=False) if not DG.DoTriangleSmoothing(bm): raise ValueError,"could not smooth bounds matrix" #print '------------' #print 'post replace and smooth' #for row in bm: # print ' ',' '.join(['% 4.2f'%x for x in row]) #print '------------' if targetNumber<=0: targetNumber=count nFailed = 0 res = [] for i in range(count): tmpM = bm[:,:] m2 = Chem.Mol(mol.ToBinary()) t1 = time.time() try: if randomSeed<=0: seed = i*10+1 else: seed = i*10+randomSeed EmbedMol(m2,tmpM,atomMatch,randomSeed=seed, excludedVolumes=excludedVolumes) except ValueError: if not silent: logger.info('Embed failed') nFailed += 1 else: t2 = time.time() _times['embed'] = _times.get('embed',0)+t2-t1 keepIt=True for idx,stereo in mol._chiralCenters: if stereo in ('R','S'): vol = ComputeChiralVolume(m2,idx) if (stereo=='R' and vol>=0) or \ (stereo=='S' and vol<=0): keepIt=False break if keepIt: res.append(m2) else: logger.debug('Removed embedding due to chiral constraints.') if len(res)==targetNumber: break return bm,res,nFailed def isNaN(v): """ provides an OS independent way of detecting NaNs This is intended to be used with values returned from the C++ side of things. We can't actually test this from Python (which traps zero division errors), but it would work something like this if we could: >>> isNaN(0) False #>>> isNan(1/0) #True """ if v!=v and sys.platform=='win32': return True elif v==0 and v==1 and sys.platform!='win32': return True return False def OptimizeMol(mol,bm,atomMatches=None,excludedVolumes=None, forceConstant=1200.0, maxPasses=5,verbose=False): """ carries out a UFF optimization for a molecule optionally subject to the constraints in a bounds matrix - atomMatches, if provided, is a sequence of sequences - forceConstant is the force constant of the spring used to enforce the constraints returns a 2-tuple: 1) the energy of the initial conformation 2) the energy post-embedding NOTE that these energies include the energies of the constraints >>> m = Chem.MolFromSmiles('OCCN') >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.5) >>> pcophore.setUpperBound(0,1, 2.8) >>> atomMatch = ((0,),(3,)) >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1) >>> len(embeds) 10 >>> testM = embeds[0] Do the optimization: >>> e1,e2 = OptimizeMol(testM,bm,atomMatches=atomMatch) Optimizing should have lowered the energy: >>> e2 < e1 True Check the constrained distance: >>> conf = testM.GetConformer(0) >>> p0 = conf.GetAtomPosition(0) >>> p3 = conf.GetAtomPosition(3) >>> d03 = p0.Distance(p3) >>> d03 >= pcophore.getLowerBound(0,1)-.01 True >>> d03 <= pcophore.getUpperBound(0,1)+.01 True If we optimize without the distance constraints (provided via the atomMatches argument) we're not guaranteed to get the same results, particularly in a case like the current one where the pharmcophore brings the atoms uncomfortably close together: >>> testM = embeds[1] >>> e1,e2 = OptimizeMol(testM,bm) >>> e2 < e1 True >>> conf = testM.GetConformer(0) >>> p0 = conf.GetAtomPosition(0) >>> p3 = conf.GetAtomPosition(3) >>> d03 = p0.Distance(p3) >>> d03 >= pcophore.getLowerBound(0,1)-.01 True >>> d03 <= pcophore.getUpperBound(0,1)+.01 False """ try: ff = ChemicalForceFields.UFFGetMoleculeForceField(mol) except: logger.info('Problems building molecular forcefield',exc_info=True) return -1.0,-1.0 weights=[] if(atomMatches): for k in range(len(atomMatches)): for i in atomMatches[k]: for l in range(k+1,len(atomMatches)): for j in atomMatches[l]: weights.append((i,j)) for i,j in weights: if j<i: i,j = j,i minV = bm[j,i] maxV = bm[i,j] ff.AddDistanceConstraint(i,j,minV,maxV,forceConstant) if excludedVolumes: nAts = mol.GetNumAtoms() conf = mol.GetConformer() idx = nAts for exVol in excludedVolumes: assert exVol.pos is not None logger.debug('ff.AddExtraPoint(%.4f,%.4f,%.4f)'%(exVol.pos[0],exVol.pos[1], exVol.pos[2])) ff.AddExtraPoint(exVol.pos[0],exVol.pos[1],exVol.pos[2],True) indices = [] for localIndices,foo,bar in exVol.featInfo: indices += list(localIndices) for i in range(nAts): v = numpy.array(conf.GetAtomPosition(i))-numpy.array(exVol.pos) d = numpy.sqrt(numpy.dot(v,v)) if i not in indices: if d<5.0: logger.debug('ff.AddDistanceConstraint(%d,%d,%.3f,%d,%.0f)'%(i,idx,exVol.exclusionDist,1000,forceConstant)) ff.AddDistanceConstraint(i,idx,exVol.exclusionDist,1000, forceConstant) else: logger.debug('ff.AddDistanceConstraint(%d,%d,%.3f,%.3f,%.0f)'%(i,idx,bm[exVol.index,i],bm[i,exVol.index],forceConstant)) ff.AddDistanceConstraint(i,idx,bm[exVol.index,i],bm[i,exVol.index], forceConstant) idx += 1 ff.Initialize() e1 = ff.CalcEnergy() if isNaN(e1): raise ValueError,'bogus energy' if verbose: print Chem.MolToMolBlock(mol) for i,vol in enumerate(excludedVolumes): pos = ff.GetExtraPointPos(i) print >>sys.stderr,' % 7.4f % 7.4f % 7.4f As 0 0 0 0 0 0 0 0 0 0 0 0'%tuple(pos) needsMore=ff.Minimize() nPasses=0 while needsMore and nPasses<maxPasses: needsMore=ff.Minimize() nPasses+=1 e2 = ff.CalcEnergy() if isNaN(e2): raise ValueError,'bogus energy' if verbose: print '--------' print Chem.MolToMolBlock(mol) for i,vol in enumerate(excludedVolumes): pos = ff.GetExtraPointPos(i) print >>sys.stderr,' % 7.4f % 7.4f % 7.4f Sb 0 0 0 0 0 0 0 0 0 0 0 0'%tuple(pos) ff = None return e1,e2 def EmbedOne(mol,name,match,pcophore,count=1,silent=0,**kwargs): """ generates statistics for a molecule's embeddings Four energies are computed for each embedding: 1) E1: the energy (with constraints) of the initial embedding 2) E2: the energy (with constraints) of the optimized embedding 3) E3: the energy (no constraints) the geometry for E2 4) E4: the energy (no constraints) of the optimized free-molecule (starting from the E3 geometry) Returns a 9-tuple: 1) the mean value of E1 2) the sample standard deviation of E1 3) the mean value of E2 4) the sample standard deviation of E2 5) the mean value of E3 6) the sample standard deviation of E3 7) the mean value of E4 8) the sample standard deviation of E4 9) The number of embeddings that failed """ global _times atomMatch = [list(x.GetAtomIds()) for x in match] bm,ms,nFailed = EmbedPharmacophore(mol,atomMatch,pcophore,count=count, silent=silent,**kwargs) e1s = [] e2s = [] e3s = [] e4s = [] d12s = [] d23s = [] d34s = [] for m in ms: t1 = time.time() try: e1,e2 = OptimizeMol(m,bm,atomMatch) except ValueError: pass else: t2 = time.time() _times['opt1'] = _times.get('opt1',0)+t2-t1 e1s.append(e1) e2s.append(e2) d12s.append(e1-e2) t1 = time.time() try: e3,e4 = OptimizeMol(m,bm) except ValueError: pass else: t2 = time.time() _times['opt2'] = _times.get('opt2',0)+t2-t1 e3s.append(e3) e4s.append(e4) d23s.append(e2-e3) d34s.append(e3-e4) count += 1 try: e1,e1d = Stats.MeanAndDev(e1s) except: e1 = -1.0 e1d=-1.0 try: e2,e2d = Stats.MeanAndDev(e2s) except: e2 = -1.0 e2d=-1.0 try: e3,e3d = Stats.MeanAndDev(e3s) except: e3 = -1.0 e3d=-1.0 try: e4,e4d = Stats.MeanAndDev(e4s) except: e4 = -1.0 e4d=-1.0 if not silent: print '%s(%d): %.2f(%.2f) -> %.2f(%.2f) : %.2f(%.2f) -> %.2f(%.2f)'%(name,nFailed,e1,e1d,e2,e2d,e3,e3d,e4,e4d) return e1,e1d,e2,e2d,e3,e3d,e4,e4d,nFailed def MatchPharmacophoreToMol(mol, featFactory, pcophore): """ generates a list of all possible mappings of a pharmacophore to a molecule Returns a 2-tuple: 1) a boolean indicating whether or not all features were found 2) a list, numFeatures long, of sequences of features >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> pcophore= Pharmacophore.Pharmacophore(activeFeats) >>> m = Chem.MolFromSmiles('FCCN') >>> match,mList = MatchPharmacophoreToMol(m,featFactory,pcophore) >>> match True Two feature types: >>> len(mList) 2 The first feature type, Acceptor, has two matches: >>> len(mList[0]) 2 >>> mList[0][0].GetAtomIds() (0,) >>> mList[0][1].GetAtomIds() (3,) The first feature type, Donor, has a single match: >>> len(mList[1]) 1 >>> mList[1][0].GetAtomIds() (3,) """ return MatchFeatsToMol(mol, featFactory, pcophore.getFeatures()) def _getFeatDict(mol,featFactory,features): """ **INTERNAL USE ONLY** >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> m = Chem.MolFromSmiles('FCCN') >>> d =_getFeatDict(m,featFactory,activeFeats) >>> d.keys() ['Donor', 'Acceptor'] >>> donors = d['Donor'] >>> len(donors) 1 >>> donors[0].GetAtomIds() (3,) >>> acceptors = d['Acceptor'] >>> len(acceptors) 2 >>> acceptors[0].GetAtomIds() (0,) >>> acceptors[1].GetAtomIds() (3,) """ molFeats = {} for feat in features: family = feat.GetFamily() if not molFeats.has_key(family): matches = featFactory.GetFeaturesForMol(mol,includeOnly=family) molFeats[family] = matches return molFeats def MatchFeatsToMol(mol, featFactory, features): """ generates a list of all possible mappings of each feature to a molecule Returns a 2-tuple: 1) a boolean indicating whether or not all features were found 2) a list, numFeatures long, of sequences of features >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef')) >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> m = Chem.MolFromSmiles('FCCN') >>> match,mList = MatchFeatsToMol(m,featFactory,activeFeats) >>> match True Two feature types: >>> len(mList) 2 The first feature type, Acceptor, has two matches: >>> len(mList[0]) 2 >>> mList[0][0].GetAtomIds() (0,) >>> mList[0][1].GetAtomIds() (3,) The first feature type, Donor, has a single match: >>> len(mList[1]) 1 >>> mList[1][0].GetAtomIds() (3,) """ molFeats = _getFeatDict(mol,featFactory,features) res = [] for feat in features: matches = molFeats.get(feat.GetFamily(),[]) if len(matches) == 0 : return False, None res.append(matches) return True, res def CombiEnum(sequence): """ This generator takes a sequence of sequences as an argument and provides all combinations of the elements of the subsequences: >>> gen = CombiEnum(((1,2),(10,20))) >>> gen.next() [1, 10] >>> gen.next() [1, 20] >>> [x for x in CombiEnum(((1,2),(10,20)))] [[1, 10], [1, 20], [2, 10], [2, 20]] >>> [x for x in CombiEnum(((1,2),(10,20),(100,200)))] [[1, 10, 100], [1, 10, 200], [1, 20, 100], [1, 20, 200], [2, 10, 100], [2, 10, 200], [2, 20, 100], [2, 20, 200]] """ if not len(sequence): yield [] elif len(sequence)==1: for entry in sequence[0]: yield [entry] else: for entry in sequence[0]: for subVal in CombiEnum(sequence[1:]): yield [entry]+subVal def DownsampleBoundsMatrix(bm,indices,maxThresh=4.0): """ removes rows from a bounds matrix that are that are greater than a threshold value away from a set of other points returns the modfied bounds matrix The goal of this function is to remove rows from the bounds matrix that correspond to atoms that are likely to be quite far from the pharmacophore we're interested in. Because the bounds smoothing we eventually have to do is N^3, this can be a big win >>> boundsMat = numpy.array([[0.0,3.0,4.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),3.5) >>> bm.shape (2, 2) we don't touch the input matrix: >>> boundsMat.shape (3, 3) >>> print ', '.join(['%.3f'%x for x in bm[0]]) 0.000, 3.000 >>> print ', '.join(['%.3f'%x for x in bm[1]]) 2.000, 0.000 if the threshold is high enough, we don't do anything: >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),5.0) >>> bm.shape (3, 3) If there's a max value that's close enough to *any* of the indices we pass in, we'll keep it: >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]]) >>> bm = DownsampleBoundsMatrix(boundsMat,(0,1),3.5) >>> bm.shape (3, 3) """ nPts = bm.shape[0] k = numpy.zeros(nPts,numpy.int0) for idx in indices: k[idx]=1 for i in indices: row = bm[i] for j in range(i+1,nPts): if not k[j] and row[j]<maxThresh: k[j]=1 keep = numpy.nonzero(k)[0] bm2 = numpy.zeros((len(keep),len(keep)),numpy.float) for i,idx in enumerate(keep): row = bm[idx] bm2[i] = numpy.take(row,keep) return bm2 def CoarseScreenPharmacophore(atomMatch,bounds,pcophore,verbose=False): """ >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 1.1) >>> pcophore.setUpperBound(0,1, 1.9) >>> pcophore.setLowerBound(0,2, 2.1) >>> pcophore.setUpperBound(0,2, 2.9) >>> pcophore.setLowerBound(1,2, 2.1) >>> pcophore.setUpperBound(1,2, 3.9) >>> bounds = numpy.array([[0,2,3],[1,0,4],[2,3,0]],numpy.float) >>> CoarseScreenPharmacophore(((0,),(1,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((0,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((1,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((0,),(1,),(2,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((1,),(0,),(2,)),bounds,pcophore) False >>> CoarseScreenPharmacophore(((2,),(1,),(0,)),bounds,pcophore) False # we ignore the point locations here and just use their definitions: >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)), ... ] >>> pcophore=Pharmacophore.Pharmacophore(feats) >>> pcophore.setLowerBound(0,1, 2.1) >>> pcophore.setUpperBound(0,1, 2.9) >>> pcophore.setLowerBound(0,2, 2.1) >>> pcophore.setUpperBound(0,2, 2.9) >>> pcophore.setLowerBound(0,3, 2.1) >>> pcophore.setUpperBound(0,3, 2.9) >>> pcophore.setLowerBound(1,2, 1.1) >>> pcophore.setUpperBound(1,2, 1.9) >>> pcophore.setLowerBound(1,3, 1.1) >>> pcophore.setUpperBound(1,3, 1.9) >>> pcophore.setLowerBound(2,3, 1.1) >>> pcophore.setUpperBound(2,3, 1.9) >>> bounds = numpy.array([[0,3,3,3],[2,0,2,2],[2,1,0,2],[2,1,1,0]],numpy.float) >>> CoarseScreenPharmacophore(((0,),(1,),(2,),(3,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((0,),(1,),(3,),(2,)),bounds,pcophore) True >>> CoarseScreenPharmacophore(((1,),(0,),(3,),(2,)),bounds,pcophore) False """ for k in range(len(atomMatch)): if len(atomMatch[k])==1: for l in range(k+1,len(atomMatch)): if len(atomMatch[l])==1: idx0 = atomMatch[k][0] idx1 = atomMatch[l][0] if idx1<idx0: idx0,idx1=idx1,idx0 if bounds[idx1,idx0] >= pcophore.getUpperBound(k, l) or \ bounds[idx0,idx1] <= pcophore.getLowerBound(k, l) : if verbose: print '\t (%d,%d) [%d,%d] fail'%(idx1,idx0,k,l) print '\t %f,%f - %f,%f'%(bounds[idx1,idx0],pcophore.getUpperBound(k,l), bounds[idx0,idx1],pcophore.getLowerBound(k,l)) #logger.debug('\t >%s'%str(atomMatch)) #logger.debug() #logger.debug('\t %f,%f - %f,%f'%(bounds[idx1,idx0],pcophore.getUpperBound(k,l), # bounds[idx0,idx1],pcophore.getLowerBound(k,l))) return False return True def Check2DBounds(atomMatch,mol,pcophore): """ checks to see if a particular mapping of features onto a molecule satisfies a pharmacophore's 2D restrictions >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)), ... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))] >>> pcophore= Pharmacophore.Pharmacophore(activeFeats) >>> pcophore.setUpperBound2D(0,1,3) >>> m = Chem.MolFromSmiles('FCC(N)CN') >>> Check2DBounds(((0,),(3,)),m,pcophore) True >>> Check2DBounds(((0,),(5,)),m,pcophore) False """ dm = Chem.GetDistanceMatrix(mol,False,False,False) nFeats = len(atomMatch) for i in range(nFeats): for j in range(i+1,nFeats): lowerB = pcophore._boundsMat2D[j,i] #lowerB = pcophore.getLowerBound2D(i,j) upperB = pcophore._boundsMat2D[i,j] #upperB = pcophore.getUpperBound2D(i,j) dij=10000 for atomI in atomMatch[i]: for atomJ in atomMatch[j]: try: dij = min(dij,dm[atomI,atomJ]) except IndexError: print 'bad indices:',atomI,atomJ print ' shape:',dm.shape print ' match:',atomMatch print ' mol:' print Chem.MolToMolBlock(mol) raise IndexError if dij<lowerB or dij>upperB: return False return True def _checkMatch(match,mol,bounds,pcophore,use2DLimits): """ **INTERNAL USE ONLY** checks whether a particular atom match can be satisfied by a molecule """ atomMatch = ChemicalFeatures.GetAtomMatch(match) if not atomMatch: return None elif use2DLimits: if not Check2DBounds(atomMatch,mol,pcophore): return None if not CoarseScreenPharmacophore(atomMatch,bounds,pcophore): return None return atomMatch def ConstrainedEnum(matches,mol,pcophore,bounds,use2DLimits=False, index=0,soFar=[]): """ Enumerates the list of atom mappings a molecule has to a particular pharmacophore. We do check distance bounds here. """ nMatches = len(matches) if index>=nMatches: yield soFar,[] elif index==nMatches-1: for entry in matches[index]: nextStep = soFar+[entry] if index != 0: atomMatch = _checkMatch(nextStep,mol,bounds,pcophore,use2DLimits) else: atomMatch = ChemicalFeatures.GetAtomMatch(nextStep) if atomMatch: yield soFar+[entry],atomMatch else: for entry in matches[index]: nextStep = soFar+[entry] if index != 0: atomMatch = _checkMatch(nextStep,mol,bounds,pcophore,use2DLimits) if not atomMatch: continue for val in ConstrainedEnum(matches,mol,pcophore,bounds,use2DLimits=use2DLimits, index=index+1,soFar=nextStep): if val: yield val def MatchPharmacophore(matches,bounds,pcophore,useDownsampling=False, use2DLimits=False,mol=None,excludedVolumes=None, useDirs=False): """ if use2DLimits is set, the molecule must also be provided and topological distances will also be used to filter out matches """ for match,atomMatch in ConstrainedEnum(matches,mol,pcophore,bounds, use2DLimits=use2DLimits): bm = bounds.copy() bm = UpdatePharmacophoreBounds(bm,atomMatch,pcophore,useDirs=useDirs,mol=mol); if excludedVolumes: localEvs = [] for eV in excludedVolumes: featInfo = [] for i,entry in enumerate(atomMatch): info = list(eV.featInfo[i]) info[0] = entry featInfo.append(info) localEvs.append(ExcludedVolume.ExcludedVolume(featInfo,eV.index, eV.exclusionDist)) bm = AddExcludedVolumes(bm,localEvs,smoothIt=False) sz = bm.shape[0] if useDownsampling: indices = [] for entry in atomMatch: indices.extend(entry) if excludedVolumes: for vol in localEvs: indices.append(vol.index) bm = DownsampleBoundsMatrix(bm,indices) if DG.DoTriangleSmoothing(bm): return 0,bm,match,(sz,bm.shape[0]) return 1,None,None,None def GetAllPharmacophoreMatches(matches,bounds,pcophore,useDownsampling=0, progressCallback=None, use2DLimits=False,mol=None, verbose=False): res = [] nDone = 0 for match in CombiEnum(matches): atomMatch = ChemicalFeatures.GetAtomMatch(match) if atomMatch and use2DLimits and mol: pass2D = Check2DBounds(atomMatch,mol,pcophore) if verbose: print '..',atomMatch print ' ..Pass2d:',pass2D else: pass2D = True if atomMatch and pass2D and \ CoarseScreenPharmacophore(atomMatch,bounds,pcophore,verbose=verbose): if verbose: print ' ..CoarseScreen: Pass' bm = bounds.copy() if verbose: print 'pre update:' for row in bm: print ' ',' '.join(['% 4.2f'%x for x in row]) bm = UpdatePharmacophoreBounds(bm,atomMatch,pcophore); sz = bm.shape[0] if verbose: print 'pre downsample:' for row in bm: print ' ',' '.join(['% 4.2f'%x for x in row]) if useDownsampling: indices = [] for entry in atomMatch: indices += list(entry) bm = DownsampleBoundsMatrix(bm,indices) if verbose: print 'post downsample:' for row in bm: print ' ',' '.join(['% 4.2f'%x for x in row]) if DG.DoTriangleSmoothing(bm): res.append(match) elif verbose: print 'cannot smooth' nDone+=1 if progressCallback: progressCallback(nDone) return res def ComputeChiralVolume(mol,centerIdx,confId=-1): """ Computes the chiral volume of an atom We're using the chiral volume formula from Figure 7 of Blaney and Dixon, Rev. Comp. Chem. V, 299-335 (1994) >>> import os.path >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data') R configuration atoms give negative volumes: >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'R' >>> ComputeChiralVolume(mol,1) < 0 True S configuration atoms give positive volumes: >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'S' >>> ComputeChiralVolume(mol,1) > 0 True Non-chiral (or non-specified) atoms give zero volume: >>> ComputeChiralVolume(mol,0) == 0.0 True We also work on 3-coordinate atoms (with implicit Hs): >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r-3.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'R' >>> ComputeChiralVolume(mol,1)<0 True >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s-3.mol')) >>> Chem.AssignStereochemistry(mol) >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode') 'S' >>> ComputeChiralVolume(mol,1)>0 True """ conf = mol.GetConformer(confId) Chem.AssignStereochemistry(mol) center = mol.GetAtomWithIdx(centerIdx) if not center.HasProp('_CIPCode'): return 0.0 nbrs = center.GetNeighbors() nbrRanks = [] for nbr in nbrs: rank = int(nbr.GetProp('_CIPRank')) pos = conf.GetAtomPosition(nbr.GetIdx()) nbrRanks.append((rank,pos)) # if we only have three neighbors (i.e. the determining H isn't present) # then use the central atom as the fourth point: if len(nbrRanks)==3: nbrRanks.append((-1,conf.GetAtomPosition(centerIdx))) nbrRanks.sort() ps = [x[1] for x in nbrRanks] v1 = ps[0]-ps[3] v2 = ps[1]-ps[3] v3 = ps[2]-ps[3] res = v1.DotProduct(v2.CrossProduct(v3)) return res #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/Pharm3D/EmbedLib.py", "copies": "1", "size": "38529", "license": "bsd-3-clause", "hash": -8608010837664877000, "line_mean": 30.3754071661, "line_max": 130, "alpha_frac": 0.621194425, "autogenerated": false, "ratio": 3.030438886267107, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4151633311267107, "avg_score": null, "num_lines": null }
""" uses pymol to interact with molecules """ from rdkit import Chem import os, tempfile # Python3 compatibility try: from xmlrpclib import Server except ImportError: from xmlrpc.client import Server _server=None class MolViewer(object): def __init__(self,host=None,port=9123,force=0,**kwargs): global _server if not force and _server is not None: self.server=_server else: if not host: host=os.environ.get('PYMOL_RPCHOST','localhost') _server=None serv = Server('http://%s:%d'%(host,port)) serv.ping() _server = serv self.server=serv self.InitializePyMol() def InitializePyMol(self): """ does some initializations to set up PyMol according to our tastes """ self.server.do('set valence,1') self.server.do('set stick_rad,0.15') self.server.do('set mouse_selection_mode,0') self.server.do('set line_width,2') self.server.do('set selection_width,10') self.server.do('set auto_zoom,0') def DeleteAll(self): " blows out everything in the viewer " self.server.deleteAll() def DeleteAllExcept(self,excludes): " deletes everything except the items in the provided list of arguments " allNames = self.server.getNames('*',False) for nm in allNames: if nm not in excludes: self.server.deleteObject(nm) def LoadFile(self,filename,name,showOnly=False): """ calls pymol's "load" command on the given filename; the loaded object is assigned the name "name" """ if showOnly: self.DeleteAll() id = self.server.loadFile(filename,name) return id def ShowMol(self,mol,name='molecule',showOnly=True,highlightFeatures=[], molB="",confId=-1,zoom=True,forcePDB=False, showSticks=False): """ special case for displaying a molecule or mol block """ server = self.server if not zoom: self.server.do('view rdinterface,store') if showOnly: self.DeleteAll() if not forcePDB and mol.GetNumAtoms()<999 : if not molB: molB = Chem.MolToMolBlock(mol,confId=confId) mid = server.loadMolBlock(molB,name) else: if not molB: molB = Chem.MolToPDBBlock(mol,confId=confId) mid = server.loadPDB(molB,name) if highlightFeatures: nm = name+'-features' conf = mol.GetConformer(confId) for feat in highlightFeatures: pt = [0.0,0.0,0.0] for idx in feat: loc = conf.GetAtomPosition(idx) pt[0] += loc[0]/len(feat) pt[1] += loc[1]/len(feat) pt[2] += loc[2]/len(feat) server.sphere(pt,0.2,(1,1,1),nm) if zoom: server.zoom('visible') else: self.server.do('view rdinterface,recall') if showSticks: # show molecule in stick view self.server.do('show sticks, {}'.format(name)) return mid def GetSelectedAtoms(self,whichSelection=None): " returns the selected atoms " if not whichSelection: sels = self.server.getNames('selections') if sels: whichSelection = sels[-1] else: whichSelection=None if whichSelection: items = self.server.index(whichSelection) else: items = [] return items def SelectAtoms(self,itemId,atomIndices,selName='selection'): " selects a set of atoms " ids = '(id ' ids += ','.join(['%d'%(x+1) for x in atomIndices]) ids += ')' cmd = 'select %s,%s and %s'%(selName,ids,itemId) self.server.do(cmd) def HighlightAtoms(self,indices,where,extraHighlight=False): " highlights a set of atoms " if extraHighlight: idxText = ','.join(['%s and (id %d)'%(where,x) for x in indices]) self.server.do('edit %s'%idxText) else: idxText = ' or '.join(['id %d'%x for x in indices]) self.server.do('select selection, %s and (%s)'%(where,idxText)) def SetDisplayStyle(self,obj,style=''): " change the display style of the specified object " self.server.do('hide everything,%s'%(obj,)) if style: self.server.do('show %s,%s'%(style,obj)) def SelectProteinNeighborhood(self,aroundObj,inObj,distance=5.0, name='neighborhood',showSurface=False): """ selects the area of a protein around a specified object/selection name; optionally adds a surface to that """ self.server.do('select %(name)s,byres (%(aroundObj)s around %(distance)f) and %(inObj)s'%locals()) if showSurface: self.server.do('show surface,%s'%name) self.server.do('disable %s'%name) def AddPharmacophore(self,locs,colors,label,sphereRad=0.5): " adds a set of spheres " self.server.do('view rdinterface,store') self.server.resetCGO(label) for i,loc in enumerate(locs): self.server.sphere(loc,sphereRad,colors[i],label,1) self.server.do('enable %s'%label) self.server.do('view rdinterface,recall') def SetDisplayUpdate(self,val): if not val: self.server.do('set defer_update,1') else: self.server.do('set defer_update,0') def GetAtomCoords(self,sels): " returns the coordinates of the selected atoms " res = {} for label,idx in sels: coords = self.server.getAtomCoords('(%s and id %d)'%(label,idx)) res[(label,idx)] = coords return res def HideAll(self): self.server.do('disable all') def HideObject(self,objName): self.server.do('disable %s'%objName) def DisplayObject(self,objName): self.server.do('enable %s'%objName) def Redraw(self): self.server.do('refresh') def Zoom(self,objName): self.server.zoom(objName) def DisplayHBonds(self,objName,molName,proteinName, molSelText='(%(molName)s)', proteinSelText='(%(proteinName)s and not het)'): " toggles display of h bonds between the protein and a specified molecule " cmd = "delete %(objName)s;\n" cmd += "dist %(objName)s," + molSelText+","+proteinSelText+",mode=2;\n" cmd += "enable %(objName)s;" cmd = cmd%locals() self.server.do(cmd) def DisplayCollisions(self,objName,molName,proteinName,distCutoff=3.0, color='red', molSelText='(%(molName)s)', proteinSelText='(%(proteinName)s and not het)'): " toggles display of collisions between the protein and a specified molecule " cmd = "delete %(objName)s;\n" cmd += "dist %(objName)s," + molSelText+","+proteinSelText+",%(distCutoff)f,mode=0;\n" cmd += """enable %(objName)s color %(color)s, %(objName)s""" cmd = cmd%locals() self.server.do(cmd) def GetPNG(self,h=None,w=None,preDelay=0): try: import Image except ImportError: from PIL import Image import time if preDelay>0: time.sleep(preDelay) fd = tempfile.NamedTemporaryFile(suffix='.png',delete=False) fd.close() self.server.do('png %s'%fd.name) time.sleep(0.2) # <- wait a short period so that PyMol can finish for i in range(10): try: img = Image.open(fd.name) break except IOError: time.sleep(0.1) os.unlink(fd.name) fd=None if h is not None or w is not None: sz = img.size if h is None: h=sz[1] if w is None: w=sz[0] if h<sz[1]: frac = float(h)/sz[1] w *= frac w = int(w) img=img.resize((w,h),True) elif w<sz[0]: frac = float(w)/sz[0] h *= frac h = int(h) img=img.resize((w,h),True) return img
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/Chem/PyMol.py", "copies": "2", "size": "7796", "license": "bsd-3-clause", "hash": -5112879296776743000, "line_mean": 29.5725490196, "line_max": 102, "alpha_frac": 0.6222421755, "autogenerated": false, "ratio": 3.3487972508591066, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4971039426359107, "avg_score": null, "num_lines": null }
""" uses pymol to interact with molecules """ from rdkit import Chem import os, tempfile, sys # Python3 compatibility try: from xmlrpclib import Server except ImportError: from xmlrpc.client import Server _server=None class MolViewer(object): def __init__(self,host=None,port=9123,force=0,**kwargs): global _server if not force and _server is not None: self.server=_server else: if not host: host=os.environ.get('PYMOL_RPCHOST','localhost') _server=None serv = Server('http://%s:%d'%(host,port)) serv.ping() _server = serv self.server=serv self.InitializePyMol() def InitializePyMol(self): """ does some initializations to set up PyMol according to our tastes """ self.server.do('set valence,1') self.server.do('set stick_rad,0.15') self.server.do('set mouse_selection_mode,0') self.server.do('set line_width,2') self.server.do('set selection_width,10') self.server.do('set auto_zoom,0') def DeleteAll(self): " blows out everything in the viewer " self.server.deleteAll() def DeleteAllExcept(self,excludes): " deletes everything except the items in the provided list of arguments " allNames = self.server.getNames('*',False) for nm in allNames: if nm not in excludes: self.server.deleteObject(nm) def LoadFile(self,filename,name,showOnly=False): """ calls pymol's "load" command on the given filename; the loaded object is assigned the name "name" """ if showOnly: self.DeleteAll() id = self.server.loadFile(filename,name) return id def ShowMol(self,mol,name='molecule',showOnly=True,highlightFeatures=[], molB="",confId=-1,zoom=True,forcePDB=False, showSticks=False): """ special case for displaying a molecule or mol block """ server = self.server if not zoom: self.server.do('view rdinterface,store') if showOnly: self.DeleteAll() if not forcePDB and mol.GetNumAtoms()<999 : if not molB: molB = Chem.MolToMolBlock(mol,confId=confId) mid = server.loadMolBlock(molB,name) else: if not molB: molB = Chem.MolToPDBBlock(mol,confId=confId) mid = server.loadPDB(molB,name) if highlightFeatures: nm = name+'-features' conf = mol.GetConformer(confId) for feat in highlightFeatures: pt = [0.0,0.0,0.0] for idx in feat: loc = conf.GetAtomPosition(idx) pt[0] += loc[0]/len(feat) pt[1] += loc[1]/len(feat) pt[2] += loc[2]/len(feat) server.sphere(pt,0.2,(1,1,1),nm) if zoom: server.zoom('visible') else: self.server.do('view rdinterface,recall') if showSticks: # show molecule in stick view self.server.do('show sticks, {}'.format(name)) return mid def GetSelectedAtoms(self,whichSelection=None): " returns the selected atoms " if not whichSelection: sels = self.server.getNames('selections') if sels: whichSelection = sels[-1] else: whichSelection=None if whichSelection: items = self.server.index(whichSelection) else: items = [] return items def SelectAtoms(self,itemId,atomIndices,selName='selection'): " selects a set of atoms " ids = '(id ' ids += ','.join(['%d'%(x+1) for x in atomIndices]) ids += ')' cmd = 'select %s,%s and %s'%(selName,ids,itemId) self.server.do(cmd) def HighlightAtoms(self,indices,where,extraHighlight=False): " highlights a set of atoms " if extraHighlight: idxText = ','.join(['%s and (id %d)'%(where,x) for x in indices]) self.server.do('edit %s'%idxText) else: idxText = ' or '.join(['id %d'%x for x in indices]) self.server.do('select selection, %s and (%s)'%(where,idxText)) def SetDisplayStyle(self,obj,style=''): " change the display style of the specified object " self.server.do('hide everything,%s'%(obj,)) if style: self.server.do('show %s,%s'%(style,obj)) def SelectProteinNeighborhood(self,aroundObj,inObj,distance=5.0, name='neighborhood',showSurface=False): """ selects the area of a protein around a specified object/selection name; optionally adds a surface to that """ self.server.do('select %(name)s,byres (%(aroundObj)s around %(distance)f) and %(inObj)s'%locals()) if showSurface: self.server.do('show surface,%s'%name) self.server.do('disable %s'%name) def AddPharmacophore(self,locs,colors,label,sphereRad=0.5): " adds a set of spheres " self.server.do('view rdinterface,store') self.server.resetCGO(label) for i,loc in enumerate(locs): self.server.sphere(loc,sphereRad,colors[i],label,1) self.server.do('enable %s'%label) self.server.do('view rdinterface,recall') def SetDisplayUpdate(self,val): if not val: self.server.do('set defer_update,1') else: self.server.do('set defer_update,0') def GetAtomCoords(self,sels): " returns the coordinates of the selected atoms " res = {} for label,idx in sels: coords = self.server.getAtomCoords('(%s and id %d)'%(label,idx)) res[(label,idx)] = coords return res def HideAll(self): self.server.do('disable all') def HideObject(self,objName): self.server.do('disable %s'%objName) def DisplayObject(self,objName): self.server.do('enable %s'%objName) def Redraw(self): self.server.do('refresh') def Zoom(self,objName): self.server.zoom(objName) def DisplayHBonds(self,objName,molName,proteinName, molSelText='(%(molName)s)', proteinSelText='(%(proteinName)s and not het)'): " toggles display of h bonds between the protein and a specified molecule " cmd = "delete %(objName)s;\n" cmd += "dist %(objName)s," + molSelText+","+proteinSelText+",mode=2;\n" cmd += "enable %(objName)s;" cmd = cmd%locals() self.server.do(cmd) def DisplayCollisions(self,objName,molName,proteinName,distCutoff=3.0, color='red', molSelText='(%(molName)s)', proteinSelText='(%(proteinName)s and not het)'): " toggles display of collisions between the protein and a specified molecule " cmd = "delete %(objName)s;\n" cmd += "dist %(objName)s," + molSelText+","+proteinSelText+",%(distCutoff)f,mode=0;\n" cmd += """enable %(objName)s color %(color)s, %(objName)s""" cmd = cmd%locals() self.server.do(cmd) def SaveFile(self,filename): # PyMol will interpret the path to be relative to where it was started # from. Remedy that. if not filename: raise ValueError('empty filename') filename = os.path.abspath(filename) self.server.save(filename) def GetPNG(self,h=None,w=None,preDelay=0): try: import Image except ImportError: from PIL import Image import time if preDelay>0: time.sleep(preDelay) fd = tempfile.NamedTemporaryFile(suffix='.png',delete=False) fd.close() self.server.do('png %s'%fd.name) time.sleep(0.2) # <- wait a short period so that PyMol can finish for i in range(10): try: img = Image.open(fd.name) break except IOError: time.sleep(0.1) try: os.unlink(fd.name) except (OSError,PermissionError): # happens sometimes on Windows. Not going to worry about this too deeply since # the files are in a temp dir anyway. This was github #936 pass fd=None if h is not None or w is not None: sz = img.size if h is None: h=sz[1] if w is None: w=sz[0] if h<sz[1]: frac = float(h)/sz[1] w *= frac w = int(w) img=img.resize((w,h),True) elif w<sz[0]: frac = float(w)/sz[0] h *= frac h = int(h) img=img.resize((w,h),True) return img
{ "repo_name": "adalke/rdkit", "path": "rdkit/Chem/PyMol.py", "copies": "1", "size": "8287", "license": "bsd-3-clause", "hash": -2759578170375097300, "line_mean": 29.921641791, "line_max": 102, "alpha_frac": 0.6250754193, "autogenerated": false, "ratio": 3.3921408104789195, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.940957314131631, "avg_score": 0.021528617692522144, "num_lines": 268 }
""" uses pymol to interact with molecules """ from rdkit import Chem import xmlrpclib,os,tempfile _server=None class MolViewer(object): def __init__(self,host=None,port=9123,force=0,**kwargs): global _server if not force and _server is not None: self.server=_server else: if not host: host=os.environ.get('PYMOL_RPCHOST','localhost') _server=None serv = xmlrpclib.Server('http://%s:%d'%(host,port)) serv.ping() _server = serv self.server=serv self.InitializePyMol() def InitializePyMol(self): """ does some initializations to set up PyMol according to our tastes """ self.server.do('set valence,1') self.server.do('set stick_rad,0.15') self.server.do('set mouse_selection_mode,0') self.server.do('set line_width,2') self.server.do('set selection_width,10') self.server.do('set auto_zoom,0') def DeleteAll(self): " blows out everything in the viewer " self.server.deleteAll() def DeleteAllExcept(self,excludes): " deletes everything except the items in the provided list of arguments " allNames = self.server.getNames('*',False) for nm in allNames: if nm not in excludes: self.server.deleteObject(nm) def LoadFile(self,filename,name,showOnly=False): """ calls pymol's "load" command on the given filename; the loaded object is assigned the name "name" """ if showOnly: self.DeleteAll() id = self.server.loadFile(filename,name) return id def ShowMol(self,mol,name='molecule',showOnly=True,highlightFeatures=[], molB="",confId=-1,zoom=True,forcePDB=False): """ special case for displaying a molecule or mol block """ server = self.server if not zoom: self.server.do('view rdinterface,store') if showOnly: self.DeleteAll() if not forcePDB and mol.GetNumAtoms()<999 : if not molB: molB = Chem.MolToMolBlock(mol,confId=confId) mid = server.loadMolBlock(molB,name) else: if not molB: molB = Chem.MolToPDBBlock(mol,confId=confId) mid = server.loadPDB(molB,name) if highlightFeatures: nm = name+'-features' conf = mol.GetConformer(confId) for feat in highlightFeatures: pt = [0.0,0.0,0.0] for idx in feat: loc = conf.GetAtomPosition(idx) pt[0] += loc[0]/len(feat) pt[1] += loc[1]/len(feat) pt[2] += loc[2]/len(feat) server.sphere(pt,0.2,(1,1,1),nm) if zoom: server.zoom('visible') else: self.server.do('view rdinterface,recall') return mid def GetSelectedAtoms(self,whichSelection=None): " returns the selected atoms " if not whichSelection: sels = self.server.getNames('selections') if sels: whichSelection = sels[-1] else: whichSelection=None if whichSelection: items = self.server.index(whichSelection) else: items = [] return items def SelectAtoms(self,itemId,atomIndices,selName='selection'): " selects a set of atoms " ids = '(id ' ids += ','.join(['%d'%(x+1) for x in atomIndices]) ids += ')' cmd = 'select %s,%s and %s'%(selName,ids,itemId) self.server.do(cmd) def HighlightAtoms(self,indices,where,extraHighlight=False): " highlights a set of atoms " if extraHighlight: idxText = ','.join(['%s and (id %d)'%(where,x) for x in indices]) self.server.do('edit %s'%idxText) else: idxText = ' or '.join(['id %d'%x for x in indices]) self.server.do('select selection, %s and (%s)'%(where,idxText)) def SetDisplayStyle(self,obj,style=''): " change the display style of the specified object " self.server.do('hide everything,%s'%(obj,)) if style: self.server.do('show %s,%s'%(style,obj)) def SelectProteinNeighborhood(self,aroundObj,inObj,distance=5.0, name='neighborhood',showSurface=False): """ selects the area of a protein around a specified object/selection name; optionally adds a surface to that """ self.server.do('select %(name)s,byres (%(aroundObj)s around %(distance)f) and %(inObj)s'%locals()) if showSurface: self.server.do('show surface,%s'%name) self.server.do('disable %s'%name) def AddPharmacophore(self,locs,colors,label,sphereRad=0.5): " adds a set of spheres " self.server.do('view rdinterface,store') self.server.resetCGO(label) for i,loc in enumerate(locs): self.server.sphere(loc,sphereRad,colors[i],label,1) self.server.do('enable %s'%label) self.server.do('view rdinterface,recall') def SetDisplayUpdate(self,val): if not val: self.server.do('set defer_update,1') else: self.server.do('set defer_update,0') def GetAtomCoords(self,sels): " returns the coordinates of the selected atoms " res = {} for label,idx in sels: coords = self.server.getAtomCoords('(%s and id %d)'%(label,idx)) res[(label,idx)] = coords return res def HideAll(self): self.server.do('disable all') def HideObject(self,objName): self.server.do('disable %s'%objName) def DisplayObject(self,objName): self.server.do('enable %s'%objName) def Redraw(self): self.server.do('refresh') def Zoom(self,objName): self.server.zoom(objName) def DisplayHBonds(self,objName,molName,proteinName, molSelText='(%(molName)s)', proteinSelText='(%(proteinName)s and not het)'): " toggles display of h bonds between the protein and a specified molecule " cmd = "delete %(objName)s;\n" cmd += "dist %(objName)s," + molSelText+","+proteinSelText+",mode=2;\n" cmd += "enable %(objName)s;" cmd = cmd%locals() self.server.do(cmd) def DisplayCollisions(self,objName,molName,proteinName,distCutoff=3.0, color='red', molSelText='(%(molName)s)', proteinSelText='(%(proteinName)s and not het)'): " toggles display of collisions between the protein and a specified molecule " cmd = "delete %(objName)s;\n" cmd += "dist %(objName)s," + molSelText+","+proteinSelText+",%(distCutoff)f,mode=0;\n" cmd += """enable %(objName)s color %(color)s, %(objName)s""" cmd = cmd%locals() self.server.do(cmd) def GetPNG(self,h=None,w=None,preDelay=0): try: import Image except ImportError: from PIL import Image import time if preDelay>0: time.sleep(preDelay) fd = tempfile.NamedTemporaryFile(suffix='.png',delete=False) fd.close() self.server.do('png %s'%fd.name) time.sleep(0.2) # <- wait a short period so that PyMol can finish for i in range(10): try: img = Image.open(fd.name) break except IOError: time.sleep(0.1) os.unlink(fd.name) fd=None if h is not None or w is not None: sz = img.size if h is None: h=sz[1] if w is None: w=sz[0] if h<sz[1]: frac = float(h)/sz[1] w *= frac w = int(w) img=img.resize((w,h),True) elif w<sz[0]: frac = float(w)/sz[0] h *= frac h = int(h) img=img.resize((w,h),True) return img
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "rdkit/Chem/PyMol.py", "copies": "1", "size": "7617", "license": "bsd-3-clause", "hash": -6033795344289171000, "line_mean": 29.8380566802, "line_max": 102, "alpha_frac": 0.616253118, "autogenerated": false, "ratio": 3.342255375164546, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9309636988105882, "avg_score": 0.029774301011732854, "num_lines": 247 }
from __future__ import print_function from rdkit import RDConfig import sys, os.path from rdkit.VLib.Supply import SupplyNode from rdkit.six.moves import cPickle if RDConfig.usePgSQL: from pyPgSQL import PgSQL as sql class _lazyDataSeq: """ These classes are used to speed up (a lot) the process of pulling pickled objects from PostgreSQL databases. Instead of having to use all of PgSQL's typechecking, we'll make a lot of assumptions about what's coming out of the Db and its layout. The results can lead to drastic improvements in perfomance. """ def __init__(self, cursor, cmd, pickleCol=1, depickle=1, klass=None): self.cursor = cursor self.cmd = cmd self._first = 0 self._pickleCol = pickleCol self._depickle = depickle self._klass = klass def _validate(self): curs = self.cursor if not curs or \ curs.closed or \ curs.conn is None or \ (curs.res.resultType != sql.RESULT_DQL and curs.closed is None): raise ValueError('bad cursor') if curs.res.nfields and curs.res.nfields < 2: raise ValueError('invalid number of results returned (%d), must be at least 2' % curs.res.nfields) desc1 = curs.description[self._pickleCol] ftv = desc1[self._pickleCol].value if ftv != sql.BINARY: raise TypeError('pickle column (%d) of bad type' % self._pickleCol) def __iter__(self): try: self.cursor.execute(self.cmd) except Exception: import traceback traceback.print_exc() print('COMMAND:', self.cmd) raise self._first = 1 self._validate() return self def next(self): curs = self.cursor if not curs or \ curs.closed or \ curs.conn is None or \ curs.res is None or \ (curs.res.resultType != sql.RESULT_DQL and curs.closed is None): raise StopIteration if not self._first: res = curs.conn.conn.query('fetch 1 from "%s"' % self.cursor.name) if res.ntuples == 0: raise StopIteration else: if res.nfields < 2: raise ValueError('bad result: %s' % str(res)) t = [res.getvalue(0, x) for x in range(res.nfields)] val = t[self._pickleCol] else: t = curs.fetchone() val = str(t[self._pickleCol]) self._first = 0 if self._depickle: if not self._klass: fp = cPickle.loads(val) else: fp = self._klass(val) fields = list(t) del fields[self._pickleCol] fp._fieldsFromDb = fields else: fp = list(t) return fp class _dataSeq(_lazyDataSeq): def __init__(self, cursor, cmd, pickleCol=1, depickle=1): self.cursor = cursor self.cmd = cmd self.res = None self.rowCount = -1 self.idx = 0 self._pickleCol = pickleCol self._depickle = depickle def __iter__(self): self.cursor.execute(self.cmd) self._first = self.cursor.fetchone() self._validate() self.res = self.cursor.conn.conn.query('fetch all from "%s"' % self.cursor.name) self.rowCount = self.res.ntuples + 1 self.idx = 0 if self.res.nfields < 2: raise ValueError('bad query result' % str(res)) return self def next(self): if self.idx >= self.rowCount: raise StopIteration fp = self[self.idx] self.idx += 1 return fp def __len__(self): return self.rowCount def __getitem__(self, idx): if self.res is None: self.cursor.execute(self.cmd) self._first = self.cursor.fetchone() self._validate() self.res = self.cursor.conn.conn.query('fetch all from "%s"' % self.cursor.name) self.rowCount = self.res.ntuples + 1 self.idx = 0 if self.res.nfields < 2: raise ValueError('bad query result' % str(res)) if idx < 0: idx = self.rowCount + idx if idx < 0 or (idx >= 0 and idx >= self.rowCount): raise IndexError if idx == 0: val = str(self._first[self._pickleCol]) t = list(self._first) else: val = self.res.getvalue(self.idx - 1, self._pickleCol) t = [self.res.getvalue(self.idx - 1, x) for x in range(self.res.nfields)] if self._depickle: try: fp = cPickle.loads(val) except Exception: import logging del t[self._pickleCol] logging.exception('Depickling failure in row: %s' % str(t)) raise del t[self._pickleCol] fp._fieldsFromDb = t else: fp = t return fp else: _dataSeq = None class DbPickleSupplyNode(SupplyNode): """ Supplies pickled objects from a db result set: Sample Usage: >>> from rdkit.Dbase.DbConnection import DbConnect """ def __init__(self, cursor, cmd, binaryCol, **kwargs): SupplyNode.__init__(self, **kwargs) self._dbResults = dbResults self._supplier = DbMolSupplier.RandomAccessDbMolSupplier(self._dbResults, **kwargs) def reset(self): SupplyNode.reset(self) self._supplier.Reset() def next(self): """ """ return self._supplier.next() def GetNode(dbName, tableName): from rdkit.Dbase.DbConnection import DbConnect conn = DbConnect(dbName, tableName) return DbMolSupplyNode(conn.GetData()) #------------------------------------ # # doctest boilerplate # def _test(): import doctest, sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed, tried = _test() sys.exit(failed)
{ "repo_name": "rvianello/rdkit", "path": "rdkit/VLib/NodeLib/DbPickleSupplier.py", "copies": "5", "size": "5791", "license": "bsd-3-clause", "hash": -1577467328491821800, "line_mean": 26.7081339713, "line_max": 88, "alpha_frac": 0.5862545329, "autogenerated": false, "ratio": 3.6932397959183674, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6779494328818367, "avg_score": null, "num_lines": null }
from rdkit import RDConfig import os,sys import unittest from rdkit import Chem from rdkit.Geometry import Point3D def feq(v1,v2,tol2=1e-4): return abs(v1-v2)<=tol2 def ptEq(pt1, pt2, tol=1e-4): return feq(pt1.x,pt2.x,tol) and feq(pt1.y,pt2.y,tol) and feq(pt1.z,pt2.z,tol) def addConf(mol): conf = Chem.Conformer(mol.GetNumAtoms()) for i in range(mol.GetNumAtoms()): conf.SetAtomPosition(i,(0.,0.,0.)) mol.AddConformer(conf) mb = Chem.MolToMolBlock(mol) mb = Chem.MolToMolBlock(mol) class TestCase(unittest.TestCase): def setUp(self): pass def test0Conformers(self) : """Test the conformer data structure""" mol = Chem.MolFromSmiles("CC") conf = Chem.Conformer(2) conf.SetAtomPosition(0, (-0.5, 0.0, 0.0)) conf.SetAtomPosition(1, (1.0, 0.0, 0.0)) conf.SetId(0) cid = mol.AddConformer(conf) self.failUnless(cid == 0) conf2 = mol.GetConformer(0) self.failUnless(conf2.GetId() == cid) pt1 = conf2.GetAtomPosition(0) self.failUnless(ptEq(pt1, Point3D(-0.5, 0.0, 0.0))) pt2 = conf2.GetAtomPosition(1) self.failUnless(ptEq(pt2, Point3D(1.0, 0.0, 0.0))) #changing conf should not change conf2 - related to issue 217 conf.SetAtomPosition(1, Point3D(2.0, 0.0, 0.0)) pt2 = conf2.GetAtomPosition(1) self.failUnless(feq(pt2[0], 1.0)) conf = Chem.Conformer(2) conf.SetAtomPosition(0, Point3D(-0.5, 0.0, 0.0)) conf.SetAtomPosition(1, Point3D(1.0, 0.0, 0.0)) conf.SetId(2) cid = mol.AddConformer(conf, 0) self.failUnless(cid == 2) conf3 = mol.GetConformer(2) def test0AddHds(self) : mol = Chem.MolFromSmiles("CC") conf = Chem.Conformer(1) conf.SetAtomPosition(0, Point3D(-0.5, 0.0, 0.0)) conf.SetAtomPosition(1, Point3D(1.0, 0.0, 0.0)) cid = mol.AddConformer(conf) conf2 = mol.GetConformer() self.failUnless(conf2.GetNumAtoms() == 2) nmol = Chem.AddHs(mol, 0,1) conf3 = nmol.GetConformer() self.failUnless(conf3.GetNumAtoms() == 8) self.failUnless(conf2.GetNumAtoms() == 2) targetCoords = [[-0.5, 0.0, 0.0], [1.0, 0.0, 0.0], [-0.8667, 0.0, 1.03709], [-0.8667, 0.8981, -0.5185], [-0.8667, -0.8981, -0.5185], [1.3667, 0.0, -1.0371], [1.36667, 0.8981, 0.5185], [1.36667, -0.8981, 0.5185]] for i in range(8) : pt = conf3.GetAtomPosition(i) self.failUnless(ptEq(pt, apply(Point3D,tuple(targetCoords[i])))) def test2Issue217(self) : smi = 'c1ccccc1' m = Chem.MolFromSmiles(smi) addConf(m) self.failUnless(m.GetNumConformers()==1); mb2 = Chem.MolToMolBlock(m) def test3Exceptions(self) : smi = 'c1ccccc1' m = Chem.MolFromSmiles(smi) addConf(m) self.failUnless(m.GetNumConformers()==1) self.failUnlessRaises(ValueError,lambda:m.GetConformer(2)) def test4ConfTuple(self): smi = 'c1ccccc1' m = Chem.MolFromSmiles(smi) for i in range(10): addConf(m) confs = m.GetConformers() self.failUnless(len(confs) == 10) for conf in confs: for i in range(6): pt = conf.GetAtomPosition(i) self.failUnless(ptEq(pt, Point3D(0.0, 0.0, 0.0))) m.RemoveAllConformers() self.failUnless(m.GetNumConformers() == 0) confs = m.GetConformers() self.failUnless(confs == ()) if __name__ == '__main__': unittest.main()
{ "repo_name": "rdkit/rdkit-orig", "path": "Code/GraphMol/Wrap/testConformer.py", "copies": "2", "size": "3548", "license": "bsd-3-clause", "hash": 7824153832633648000, "line_mean": 26.937007874, "line_max": 79, "alpha_frac": 0.6087936866, "autogenerated": false, "ratio": 2.6300963676797626, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42388900542797625, "avg_score": null, "num_lines": null }
from rdkit import RDConfig import os, sys import unittest from rdkit import Chem from rdkit import Geometry from rdkit.Geometry import Point3D def feq(v1, v2, tol2=1e-4): return abs(v1 - v2) <= tol2 def ptEq(pt1, pt2, tol=1e-4): return feq(pt1.x, pt2.x, tol) and feq(pt1.y, pt2.y, tol) and feq(pt1.z, pt2.z, tol) def addConf(mol): conf = Chem.Conformer(mol.GetNumAtoms()) for i in range(mol.GetNumAtoms()): conf.SetAtomPosition(i, (0., 0., 0.)) mol.AddConformer(conf) mb = Chem.MolToMolBlock(mol) mb = Chem.MolToMolBlock(mol) class TestCase(unittest.TestCase): def setUp(self): pass def test0Conformers(self): """Test the conformer data structure""" mol = Chem.MolFromSmiles("CC") conf = Chem.Conformer(2) conf.SetAtomPosition(0, (-0.5, 0.0, 0.0)) conf.SetAtomPosition(1, (1.0, 0.0, 0.0)) conf.SetId(0) cid = mol.AddConformer(conf) self.assertTrue(cid == 0) conf2 = mol.GetConformer(0) self.assertTrue(conf2.GetId() == cid) pt1 = conf2.GetAtomPosition(0) self.assertTrue(ptEq(pt1, Point3D(-0.5, 0.0, 0.0))) pt2 = conf2.GetAtomPosition(1) self.assertTrue(ptEq(pt2, Point3D(1.0, 0.0, 0.0))) #changing conf should not change conf2 - related to issue 217 conf.SetAtomPosition(1, Point3D(2.0, 0.0, 0.0)) pt2 = conf2.GetAtomPosition(1) self.assertTrue(feq(pt2[0], 1.0)) conf = Chem.Conformer(2) conf.SetAtomPosition(0, Point3D(-0.5, 0.0, 0.0)) conf.SetAtomPosition(1, Point3D(1.0, 0.0, 0.0)) conf.SetId(2) cid = mol.AddConformer(conf, 0) self.assertTrue(cid == 2) conf3 = mol.GetConformer(2) def test0AddHds(self): mol = Chem.MolFromSmiles("CC") conf = Chem.Conformer(1) conf.SetAtomPosition(0, Point3D(-0.5, 0.0, 0.0)) conf.SetAtomPosition(1, Point3D(1.0, 0.0, 0.0)) cid = mol.AddConformer(conf) conf2 = mol.GetConformer() self.assertTrue(conf2.GetNumAtoms() == 2) nmol = Chem.AddHs(mol, 0, 1) conf3 = nmol.GetConformer() self.assertTrue(conf3.GetNumAtoms() == 8) self.assertTrue(conf2.GetNumAtoms() == 2) targetCoords = [[-0.5, 0.0, 0.0], [1.0, 0.0, 0.0], [-0.8667, 0.0, 1.03709], [-0.8667, 0.8981, -0.5185], [-0.8667, -0.8981, -0.5185], [1.3667, 0.0, -1.0371], [1.36667, 0.8981, 0.5185], [1.36667, -0.8981, 0.5185]] for i in range(8): pt = conf3.GetAtomPosition(i) self.assertTrue(ptEq(pt, Point3D(*tuple(targetCoords[i])))) def test2Issue217(self): smi = 'c1ccccc1' m = Chem.MolFromSmiles(smi) addConf(m) self.assertTrue(m.GetNumConformers() == 1) mb2 = Chem.MolToMolBlock(m) def test3Exceptions(self): smi = 'c1ccccc1' m = Chem.MolFromSmiles(smi) addConf(m) self.assertTrue(m.GetNumConformers() == 1) self.assertRaises(ValueError, lambda: m.GetConformer(2)) def test4ConfTuple(self): smi = 'c1ccccc1' m = Chem.MolFromSmiles(smi) for i in range(10): addConf(m) confs = m.GetConformers() self.assertTrue(len(confs) == 10) for conf in confs: for i in range(6): pt = conf.GetAtomPosition(i) self.assertTrue(ptEq(pt, Point3D(0.0, 0.0, 0.0))) m.RemoveAllConformers() self.assertTrue(m.GetNumConformers() == 0) confs = m.GetConformers() self.assertTrue(confs == ()) def test5PositionsArray(self): smi = 'c1ccccc1' m = Chem.MolFromSmiles(smi) addConf(m) confs = m.GetConformers() self.assertTrue(len(confs) == 1) for conf in confs: pos = conf.GetPositions() self.assertTrue(pos.shape, (6, 3)) m.RemoveAllConformers() self.assertTrue(m.GetNumConformers() == 0) confs = m.GetConformers() self.assertTrue(confs == ()) if __name__ == '__main__': unittest.main()
{ "repo_name": "rvianello/rdkit", "path": "Code/GraphMol/Wrap/testConformer.py", "copies": "6", "size": "3871", "license": "bsd-3-clause", "hash": 5609444473556453000, "line_mean": 25.8819444444, "line_max": 100, "alpha_frac": 0.6274864376, "autogenerated": false, "ratio": 2.6208530805687205, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.624833951816872, "avg_score": null, "num_lines": null }
def ConstructEnsembleBV(bv,bitsToKeep): """ >>> from rdkit import DataStructs >>> bv = DataStructs.ExplicitBitVect(128) >>> bv.SetBitsFromList((1,5,47,99,120)) >>> r = ConstructEnsembleBV(bv,(0,1,2,3,45,46,47,48,49)) >>> r.GetNumBits() 9 >>> r.GetBit(0) 0 >>> r.GetBit(1) 1 >>> r.GetBit(5) 0 >>> r.GetBit(6) # old bit 47 1 """ finalSize=len(bitsToKeep) res = bv.__class__(finalSize) for i,bit in enumerate(bitsToKeep): if bv.GetBit(bit): res.SetBit(i) return res #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "rdkit/DataStructs/BitUtils.py", "copies": "6", "size": "1061", "license": "bsd-3-clause", "hash": 6826026387626297000, "line_mean": 19.0188679245, "line_max": 67, "alpha_frac": 0.6041470311, "autogenerated": false, "ratio": 2.891008174386921, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.649515520548692, "avg_score": null, "num_lines": null }
from __future__ import print_function import copy import struct from rdkit.six import iterkeys from rdkit import six from rdkit import DataStructs class VectCollection(object): """ >>> vc = VectCollection() >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((1,3,5)) >>> vc.AddVect(1,bv1) >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((6,8)) >>> vc.AddVect(2,bv1) >>> len(vc) 10 >>> vc.GetNumBits() 10 >>> vc[0] 0 >>> vc[1] 1 >>> vc[9] 0 >>> vc[6] 1 >>> vc.GetBit(6) 1 >>> list(vc.GetOnBits()) [1, 3, 5, 6, 8] keys must be unique, so adding a duplicate replaces the previous values: >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((7,9)) >>> vc.AddVect(1,bv1) >>> len(vc) 10 >>> vc[1] 0 >>> vc[9] 1 >>> vc[6] 1 we can also query the children: >>> vc.NumChildren() 2 >>> cs = vc.GetChildren() >>> id,fp = cs[0] >>> id 1 >>> list(fp.GetOnBits()) [7, 9] >>> id,fp = cs[1] >>> id 2 >>> list(fp.GetOnBits()) [6, 8] attach/detach operations: >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((5,6)) >>> vc.AddVect(3,bv1) >>> vc.NumChildren() 3 >>> list(vc.GetOnBits()) [5, 6, 7, 8, 9] >>> vc.DetachVectsNotMatchingBit(6) >>> vc.NumChildren() 2 >>> list(vc.GetOnBits()) [5, 6, 8] >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((7,9)) >>> vc.AddVect(1,bv1) >>> vc.NumChildren() 3 >>> list(vc.GetOnBits()) [5, 6, 7, 8, 9] >>> vc.DetachVectsMatchingBit(6) >>> vc.NumChildren() 1 >>> list(vc.GetOnBits()) [7, 9] to copy VectCollections, use the copy module: >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((5,6)) >>> vc.AddVect(3,bv1) >>> list(vc.GetOnBits()) [5, 6, 7, 9] >>> vc2 = copy.copy(vc) >>> vc.DetachVectsNotMatchingBit(6) >>> list(vc.GetOnBits()) [5, 6] >>> list(vc2.GetOnBits()) [5, 6, 7, 9] The Uniquify() method can be used to remove duplicate vectors: >>> vc = VectCollection() >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((7,9)) >>> vc.AddVect(1,bv1) >>> vc.AddVect(2,bv1) >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((2,3,5)) >>> vc.AddVect(3,bv1) >>> vc.NumChildren() 3 >>> vc.Uniquify() >>> vc.NumChildren() 2 """ def __init__(self): self.__vects = {} self.__orVect = None self.__numBits = -1 self.__needReset = True def GetOrVect(self): if self.__needReset: self.Reset() return self.__orVect orVect = property(GetOrVect) def AddVect(self, idx, vect): self.__vects[idx] = vect self.__needReset = True def Reset(self): if not self.__needReset: return self.__orVect = None if not self.__vects: return ks = list(iterkeys(self.__vects)) self.__orVect = copy.copy(self.__vects[ks[0]]) self.__numBits = self.__orVect.GetNumBits() for i in range(1, len(ks)): self.__orVect |= self.__vects[ks[i]] self.__needReset = False def NumChildren(self): return len(self.__vects.keys()) def GetChildren(self): return tuple(self.__vects.items()) def __getitem__(self, idx): if self.__needReset: self.Reset() return self.__orVect.GetBit(idx) GetBit = __getitem__ def __len__(self): if self.__needReset: self.Reset() return self.__numBits GetNumBits = __len__ def GetOnBits(self): if self.__needReset: self.Reset() return self.__orVect.GetOnBits() def DetachVectsNotMatchingBit(self, bit): items = list(self.__vects.items()) for k, v in items: if not v.GetBit(bit): del (self.__vects[k]) self.__needReset = True def DetachVectsMatchingBit(self, bit): items = list(self.__vects.items()) for k, v in items: if v.GetBit(bit): del (self.__vects[k]) self.__needReset = True def Uniquify(self, verbose=False): obls = {} for k, v in self.__vects.items(): obls[k] = list(v.GetOnBits()) keys = list(self.__vects.keys()) nKeys = len(keys) keep = list(self.__vects.keys()) for i in range(nKeys): k1 = keys[i] if k1 in keep: obl1 = obls[k1] idx = keys.index(k1) for j in range(idx + 1, nKeys): k2 = keys[j] if k2 in keep: obl2 = obls[k2] if obl1 == obl2: keep.remove(k2) self.__needsReset = True tmp = {} for k in keep: tmp[k] = self.__vects[k] if verbose: # pragma: nocover print('uniquify:', len(self.__vects), '->', len(tmp)) self.__vects = tmp # # set up our support for pickling: # def __getstate__(self): pkl = struct.pack('<I', len(self.__vects)) for k, v in self.__vects.items(): pkl += struct.pack('<I', k) p = v.ToBinary() l = len(p) pkl += struct.pack('<I', l) pkl += struct.pack('%ds' % (l), p) return pkl def __setstate__(self, pkl): if six.PY3 and isinstance(pkl, str): pkl = bytes(pkl, encoding='Latin1') self.__vects = {} self.__orVect = None self.__numBits = -1 self.__needReset = True szI = struct.calcsize('I') offset = 0 nToRead = struct.unpack('<I', pkl[offset:offset + szI])[0] offset += szI for _ in range(nToRead): k = struct.unpack('<I', pkl[offset:offset + szI])[0] offset += szI l = struct.unpack('<I', pkl[offset:offset + szI])[0] offset += szI sz = struct.calcsize('%ds' % l) bv = DataStructs.ExplicitBitVect(struct.unpack('%ds' % l, pkl[offset:offset + sz])[0]) offset += sz self.AddVect(k, bv) # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
{ "repo_name": "jandom/rdkit", "path": "rdkit/DataStructs/VectCollection.py", "copies": "1", "size": "6326", "license": "bsd-3-clause", "hash": 939121153869144400, "line_mean": 21.5928571429, "line_max": 92, "alpha_frac": 0.5722415428, "autogenerated": false, "ratio": 2.8912248628884827, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3963466405688483, "avg_score": null, "num_lines": null }
from __future__ import print_function import copy,struct,sys from rdkit.six.moves import cPickle from rdkit.six import iterkeys from rdkit import six from rdkit import DataStructs class VectCollection(object): """ >>> vc = VectCollection() >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((1,3,5)) >>> vc.AddVect(1,bv1) >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((6,8)) >>> vc.AddVect(2,bv1) >>> len(vc) 10 >>> vc.GetNumBits() 10 >>> vc[0] 0 >>> vc[1] 1 >>> vc[9] 0 >>> vc[6] 1 >>> vc.GetBit(6) 1 >>> list(vc.GetOnBits()) [1, 3, 5, 6, 8] keys must be unique, so adding a duplicate replaces the previous values: >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((7,9)) >>> vc.AddVect(1,bv1) >>> len(vc) 10 >>> vc[1] 0 >>> vc[9] 1 >>> vc[6] 1 we can also query the children: >>> vc.NumChildren() 2 >>> cs = vc.GetChildren() >>> id,fp = cs[0] >>> id 1 >>> list(fp.GetOnBits()) [7, 9] >>> id,fp = cs[1] >>> id 2 >>> list(fp.GetOnBits()) [6, 8] attach/detach operations: >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((5,6)) >>> vc.AddVect(3,bv1) >>> vc.NumChildren() 3 >>> list(vc.GetOnBits()) [5, 6, 7, 8, 9] >>> vc.DetachVectsNotMatchingBit(6) >>> vc.NumChildren() 2 >>> list(vc.GetOnBits()) [5, 6, 8] >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((7,9)) >>> vc.AddVect(1,bv1) >>> vc.NumChildren() 3 >>> list(vc.GetOnBits()) [5, 6, 7, 8, 9] >>> vc.DetachVectsMatchingBit(6) >>> vc.NumChildren() 1 >>> list(vc.GetOnBits()) [7, 9] to copy VectCollections, use the copy module: >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((5,6)) >>> vc.AddVect(3,bv1) >>> list(vc.GetOnBits()) [5, 6, 7, 9] >>> vc2 = copy.copy(vc) >>> vc.DetachVectsNotMatchingBit(6) >>> list(vc.GetOnBits()) [5, 6] >>> list(vc2.GetOnBits()) [5, 6, 7, 9] The Uniquify() method can be used to remove duplicate vectors: >>> vc = VectCollection() >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((7,9)) >>> vc.AddVect(1,bv1) >>> vc.AddVect(2,bv1) >>> bv1 = DataStructs.ExplicitBitVect(10) >>> bv1.SetBitsFromList((2,3,5)) >>> vc.AddVect(3,bv1) >>> vc.NumChildren() 3 >>> vc.Uniquify() >>> vc.NumChildren() 2 """ def __init__(self): self.__vects = {} self.__orVect = None self.__numBits = -1 self.__needReset=True def GetOrVect(self): if self.__needReset: self.Reset() return self.__orVect orVect = property(GetOrVect) def AddVect(self,id,vect): self.__vects[id]=vect self.__needReset=True def Reset(self): if not self.__needReset: return self.__orVect=None if not self.__vects: return ks = list(iterkeys(self.__vects)) self.__orVect = copy.copy(self.__vects[ks[0]]) self.__numBits = self.__orVect.GetNumBits() for i in range(1,len(ks)): self.__orVect |= self.__vects[ks[i]] self.__needReset=False def NumChildren(self): return len(self.__vects.keys()) def GetChildren(self): return tuple(self.__vects.items()) def GetBit(self,id): if self.__needReset: self.Reset() return self[id] def GetNumBits(self): return len(self) def GetOnBits(self): if self.__needReset: self.Reset() return self.__orVect.GetOnBits() def DetachVectsNotMatchingBit(self,bit): items = list(self.__vects.items()) for k,v in items: if not v.GetBit(bit): del(self.__vects[k]) self.__needReset=True def DetachVectsMatchingBit(self,bit): items = list(self.__vects.items()) for k,v in items: if v.GetBit(bit): del(self.__vects[k]) self.__needReset=True def Uniquify(self,verbose=False): obls = {} for k,v in self.__vects.items(): obls[k] = list(v.GetOnBits()) keys = list(self.__vects.keys()) nKeys = len(keys) keep = list(self.__vects.keys()) for i in range(nKeys): k1 = keys[i] if k1 in keep: obl1 = obls[k1] idx = keys.index(k1) for j in range(idx+1,nKeys): k2 = keys[j] if k2 in keep: obl2 = obls[k2] if obl1==obl2: keep.remove(k2) self.__needsReset=True tmp = {} for k in keep: tmp[k] = self.__vects[k] if verbose: print('uniquify:',len(self.__vects),'->',len(tmp)) self.__vects=tmp def __len__(self): if self.__needReset: self.Reset() return self.__numBits def __getitem__(self,id): if self.__needReset: self.Reset() return self.__orVect.GetBit(id) # # set up our support for pickling: # def __getstate__(self): pkl = struct.pack('<I',len(self.__vects)) for k,v in self.__vects.items(): pkl += struct.pack('<I',k) p = v.ToBinary() l = len(p) pkl += struct.pack('<I',l) pkl += struct.pack('%ds'%(l),p) return pkl def __setstate__(self,pkl): if six.PY3 and isinstance(pkl,str): pkl = bytes(pkl,encoding='Latin1') self.__vects = {} self.__orVect = None self.__numBits = -1 self.__needReset=True szI = struct.calcsize('I') offset = 0 nToRead = struct.unpack('<I',pkl[offset:offset+szI])[0] offset += szI for i in range(nToRead): k = struct.unpack('<I',pkl[offset:offset+szI])[0] offset += szI l = struct.unpack('<I',pkl[offset:offset+szI])[0] offset += szI sz = struct.calcsize('%ds'%l) bv = DataStructs.ExplicitBitVect(struct.unpack('%ds'%l,pkl[offset:offset+sz])[0]) offset += sz self.AddVect(k,bv) #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "adalke/rdkit", "path": "rdkit/DataStructs/VectCollection.py", "copies": "1", "size": "6312", "license": "bsd-3-clause", "hash": -5363067129588532000, "line_mean": 21.3038869258, "line_max": 87, "alpha_frac": 0.5739860583, "autogenerated": false, "ratio": 2.87693710118505, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.39509231594850497, "avg_score": null, "num_lines": null }
from rdkit.rdBase import EnableLog, DisableLog, AttachFileToLog, LogMessage import sys, traceback _levels = ['rdApp.debug', 'rdApp.info', 'rdApp.warning', 'rdApp.error'] DEBUG = 0 INFO = 1 WARNING = 2 ERROR = 3 CRITICAL = 4 class logger(object): def logIt(self, dest, msg, *args, **kwargs): if (args): msg = msg % args LogMessage(dest, msg + '\n') if kwargs.get('exc_info', False): exc_type, exc_val, exc_tb = sys.exc_info() if exc_type: LogMessage(dest, '\n') txt = ''.join(traceback.format_exception(exc_type, exc_val, exc_tb)) LogMessage(dest, txt) def debug(self, msg, *args, **kwargs): self.logIt('rdApp.debug', 'DEBUG: ' + msg, *args, **kwargs) def error(self, msg, *args, **kwargs): self.logIt('rdApp.error', 'ERROR: ' + msg, *args, **kwargs) def info(self, msg, *args, **kwargs): self.logIt('rdApp.info', 'INFO: ' + msg, *args, **kwargs) def warning(self, msg, *args, **kwargs): self.logIt('rdApp.warning', 'WARNING: ' + msg, *args, **kwargs) def critical(self, msg, *args, **kwargs): self.logIt('rdApp.error', 'CRITICAL: ' + msg, *args, **kwargs) def setLevel(self, val): global _levels for i in range(val, len(_levels)): EnableLog(_levels[i]) for i in range(0, val): DisableLog(_levels[i])
{ "repo_name": "jandom/rdkit", "path": "rdkit/RDLogger.py", "copies": "12", "size": "1622", "license": "bsd-3-clause", "hash": 3278426643006919000, "line_mean": 27.9642857143, "line_max": 76, "alpha_frac": 0.6251541307, "autogenerated": false, "ratio": 3.0317757009345794, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.007325835716769957, "num_lines": 56 }
from __future__ import print_function from rdkit import Chem import sys from rdkit.Chem import Randomize def TestMolecule(mol): try: Chem.SanitizeMol(mol) mol = Chem.RemoveHs(mol) except ValueError as msg: return -1 except Exception: import traceback traceback.print_exc() return -2 if mol.GetNumAtoms(): try: Randomize.CheckCanonicalization(mol,10) except Exception: import traceback traceback.print_exc() return -3 return 0 def TestSupplier(suppl,stopAfter=-1,reportInterval=100,reportTo=sys.stderr, nameProp='_Name'): nDone = 0 nFailed = 0 while 1: try: mol = suppl.next() except StopIteration: break except Exception: import traceback traceback.print_exc() nFailed += 1 reportTo.flush() print('Failure at mol %d'%nDone, file=reportTo) else: if mol: ok = TestMolecule(mol) else: ok = -3 if ok<0: nFailed += 1 reportTo.flush() if ok==-3: print('Canonicalization',end='',file=reportTo) print('Failure at mol %d'%nDone,end='',file=reportTo) if mol: print(mol.GetProp(nameProp),end='',file=reportTo) print('', file=reportTo) nDone += 1 if nDone==stopAfter: break if not nDone%reportInterval: print('Done %d molecules, %d failures'%(nDone,nFailed)) return nDone,nFailed if __name__=='__main__': suppl = Chem.SDMolSupplier(sys.argv[1],False) if len(sys.argv)>2: nameProp = sys.argv[2] else: nameProp = '_Name' nDone,nFailed = TestSupplier(suppl,nameProp=nameProp) print('%d failures in %d mols'%(nFailed,nDone))
{ "repo_name": "adalke/rdkit", "path": "rdkit/Chem/ChemUtils/BulkTester.py", "copies": "1", "size": "2012", "license": "bsd-3-clause", "hash": -5640717515552599000, "line_mean": 23.5365853659, "line_max": 75, "alpha_frac": 0.6197813121, "autogenerated": false, "ratio": 3.4275979557069847, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45473792678069846, "avg_score": null, "num_lines": null }
from __future__ import print_function from rdkit import Chem import sys from rdkit.Chem import Randomize def TestMolecule(mol): try: Chem.SanitizeMol(mol) mol = Chem.RemoveHs(mol) except ValueError as msg: return -1 except Exception: import traceback traceback.print_exc() return -2 if mol.GetNumAtoms(): try: Randomize.CheckCanonicalization(mol, 10) except Exception: import traceback traceback.print_exc() return -3 return 0 def TestSupplier(suppl, stopAfter=-1, reportInterval=100, reportTo=sys.stderr, nameProp='_Name'): nDone = 0 nFailed = 0 while 1: try: mol = suppl.next() except StopIteration: break except Exception: import traceback traceback.print_exc() nFailed += 1 reportTo.flush() print('Failure at mol %d' % nDone, file=reportTo) else: if mol: ok = TestMolecule(mol) else: ok = -3 if ok < 0: nFailed += 1 reportTo.flush() if ok == -3: print('Canonicalization', end='', file=reportTo) print('Failure at mol %d' % nDone, end='', file=reportTo) if mol: print(mol.GetProp(nameProp), end='', file=reportTo) print('', file=reportTo) nDone += 1 if nDone == stopAfter: break if not nDone % reportInterval: print('Done %d molecules, %d failures' % (nDone, nFailed)) return nDone, nFailed if __name__ == '__main__': suppl = Chem.SDMolSupplier(sys.argv[1], False) if len(sys.argv) > 2: nameProp = sys.argv[2] else: nameProp = '_Name' nDone, nFailed = TestSupplier(suppl, nameProp=nameProp) print('%d failures in %d mols' % (nFailed, nDone))
{ "repo_name": "rvianello/rdkit", "path": "rdkit/Chem/ChemUtils/BulkTester.py", "copies": "5", "size": "2011", "license": "bsd-3-clause", "hash": 8403946734130894000, "line_mean": 23.2289156627, "line_max": 97, "alpha_frac": 0.6200895077, "autogenerated": false, "ratio": 3.3912310286677907, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6511320536367791, "avg_score": null, "num_lines": null }
from __future__ import print_function _version = "$Rev$" _splashMessage = """ -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* FeatFinderCLI version %s Copyright (C) 2005 Rational Discovery LLC This software is copyrighted. The software may not be copied, reproduced, translated or reduced to any electronic medium or machine-readable form without the prior written consent of Rational Discovery LLC. -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* """ % _version from rdkit import Chem from rdkit.Chem import ChemicalFeatures from rdkit import RDLogger logger = RDLogger.logger() import sys, os import re splitExpr = re.compile(r'[ \t,]') def GetAtomFeatInfo(factory, mol): res = [None] * mol.GetNumAtoms() feats = factory.GetFeaturesForMol(mol) for feat in feats: ids = feat.GetAtomIds() for id in ids: if res[id] is None: res[id] = [] res[id].append("%s-%s" % (feat.GetFamily(), feat.GetType())) return res if __name__ == '__main__': def Usage(): message = """ Usage: FeatFinderCLI [-r] <fdefFilename> <smilesFilename> NOTE: - the smiles file should have SMILES in the first column """ print(message, file=sys.stderr) import getopt args, extras = getopt.getopt(sys.argv[1:], 'r') reverseIt = False for arg, val in args: if arg == '-r': reverseIt = True if len(extras) < 2: Usage() sys.exit(-1) print(_splashMessage, file=sys.stderr) fdefFilename = extras[0] if not os.path.exists(fdefFilename): logger.error("Fdef file %s does not exist." % fdefFilename) sys.exit(-1) try: factory = ChemicalFeatures.BuildFeatureFactory(fdefFilename) except Exception: logger.error("Could not parse Fdef file %s." % fdefFilename, exc_info=True) sys.exit(-1) smilesFilename = extras[1] if not os.path.exists(smilesFilename): logger.error("Smiles file %s does not exist." % smilesFilename) sys.exit(-1) try: inF = file(smilesFilename, 'r') except Exception: logger.error("Could not open smiles file %s." % smilesFilename, exc_info=True) sys.exit(-1) lineNo = 0 for line in inF.readlines(): lineNo += 1 line = line.strip() smi = splitExpr.split(line)[0].strip() mol = Chem.MolFromSmiles(smi) if mol is not None: print('Mol-%d\t%s' % (lineNo, smi)) if not reverseIt: featInfo = GetAtomFeatInfo(factory, mol) for i, v in enumerate(featInfo): print('\t% 2s(%d)' % (mol.GetAtomWithIdx(i).GetSymbol(), i + 1), end='') if v: print('\t', ', '.join(v)) else: print() else: feats = factory.GetFeaturesForMol(mol) for feat in feats: print('\t%s-%s: ' % (feat.GetFamily(), feat.GetType()), end='') print(', '.join([str(x) for x in feat.GetAtomIds()])) else: logger.warning("Could not process smiles '%s' on line %d." % (smi, lineNo))
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/FeatFinderCLI.py", "copies": "1", "size": "3262", "license": "bsd-3-clause", "hash": -8944519266990291000, "line_mean": 27.3652173913, "line_max": 82, "alpha_frac": 0.6085223789, "autogenerated": false, "ratio": 3.191780821917808, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43003032008178077, "avg_score": null, "num_lines": null }
from rdkit import Chem from rdkit.Chem import rdDepictor from rdkit import Geometry def AlignMolToTemplate2D(mol,template,match=None,clearConfs=False, templateConfId=-1,): """ Arguments: - mol: the molecule to be aligned - template: the template to align to - match: If provided, this should be a sequence of integers containing the indices of the atoms in mol that match those in template. This is the result of calling: mol.GetSubstructMatch(template) - clearConfs: toggles removing any existing conformers on mol Returns the confId of the conformer containing the depiction >>> patt = Chem.MolFromSmiles('C1CC1') >>> rdDepictor.Compute2DCoords(patt) 0 >>> mol = Chem.MolFromSmiles('OC1CC1CC1CCC1') >>> rdDepictor.Compute2DCoords(mol) 0 >>> pc = patt.GetConformer(0) >>> mc = mol.GetConformer(0) We start out with the molecules not aligned: >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+1).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [False, False, False] But then we can replace the conformer of mol: >>> AlignMolToTemplate2D(mol,patt,clearConfs=True) 0 >>> mol.GetNumConformers() 1 >>> pc = patt.GetConformer(0) >>> mc = mol.GetConformer(0) >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+1).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [True, True, True] If we like, we can specify the atom map explicitly in order to align to the second matching ring in the probe molecule: >>> match = (5,6,7) >>> AlignMolToTemplate2D(mol,patt,clearConfs=True,match=match) 0 >>> mol.GetNumConformers() 1 >>> pc = patt.GetConformer(0) >>> mc = mol.GetConformer(0) >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+1).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [False, False, False] >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+5).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [True, True, True] """ if not match: match = mol.GetSubstructMatch(template) if not match: raise ValueError,'no match between mol and template' atomMap = {} templateConf = template.GetConformer(templateConfId) for i,idx in enumerate(match): p = templateConf.GetAtomPosition(i) atomMap[idx] = Geometry.Point2D(p.x,p.y) molConfId = rdDepictor.Compute2DCoords(mol,clearConfs=clearConfs,coordMap=atomMap) return molConfId #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/TemplateAlign.py", "copies": "2", "size": "3130", "license": "bsd-3-clause", "hash": 3981429026796701700, "line_mean": 30.3, "line_max": 102, "alpha_frac": 0.6428115016, "autogenerated": false, "ratio": 3.1776649746192893, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9738665817493277, "avg_score": 0.01636213174520253, "num_lines": 100 }
from rdkit import Chem from rdkit.Chem import rdDepictor from rdkit import Geometry def AlignMolToTemplate2D(mol, template, match=None, clearConfs=False, templateConfId=-1, ): """ Arguments: - mol: the molecule to be aligned - template: the template to align to - match: If provided, this should be a sequence of integers containing the indices of the atoms in mol that match those in template. This is the result of calling: mol.GetSubstructMatch(template) - clearConfs: toggles removing any existing conformers on mol Returns the confId of the conformer containing the depiction >>> patt = Chem.MolFromSmiles('C1CC1') >>> rdDepictor.Compute2DCoords(patt) 0 >>> mol = Chem.MolFromSmiles('OC1CC1CC1CCC1') >>> rdDepictor.Compute2DCoords(mol) 0 >>> pc = patt.GetConformer(0) >>> mc = mol.GetConformer(0) We start out with the molecules not aligned: >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+1).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [False, False, False] But then we can replace the conformer of mol: >>> AlignMolToTemplate2D(mol,patt,clearConfs=True) 0 >>> mol.GetNumConformers() 1 >>> pc = patt.GetConformer(0) >>> mc = mol.GetConformer(0) >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+1).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [True, True, True] If we like, we can specify the atom map explicitly in order to align to the second matching ring in the probe molecule: >>> match = (5,6,7) >>> AlignMolToTemplate2D(mol,patt,clearConfs=True,match=match) 0 >>> mol.GetNumConformers() 1 >>> pc = patt.GetConformer(0) >>> mc = mol.GetConformer(0) >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+1).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [False, False, False] >>> vs = [abs(pc.GetAtomPosition(i).x-mc.GetAtomPosition(i+5).x) for i in range(pc.GetNumAtoms())] >>> [x<1e-4 for x in vs] [True, True, True] """ if not match: match = mol.GetSubstructMatch(template) if not match: raise ValueError('no match between mol and template') atomMap = {} templateConf = template.GetConformer(templateConfId) for i, idx in enumerate(match): p = templateConf.GetAtomPosition(i) atomMap[idx] = Geometry.Point2D(p.x, p.y) molConfId = rdDepictor.Compute2DCoords(mol, clearConfs=clearConfs, coordMap=atomMap) return molConfId #------------------------------------ # # doctest boilerplate # def _test(): import doctest, sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed, tried = _test() sys.exit(failed)
{ "repo_name": "rvianello/rdkit", "path": "rdkit/Chem/TemplateAlign.py", "copies": "2", "size": "3215", "license": "bsd-3-clause", "hash": -6950193799603544000, "line_mean": 29.9134615385, "line_max": 102, "alpha_frac": 0.6258164852, "autogenerated": false, "ratio": 3.2540485829959516, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4879865068195952, "avg_score": null, "num_lines": null }
from rdkit import Chem import sys from rdkit.Chem import Randomize def TestMolecule(mol): try: Chem.SanitizeMol(mol) mol = Chem.RemoveHs(mol) except ValueError,msg: return -1 except: import traceback traceback.print_exc() return -2 if mol.GetNumAtoms(): try: Randomize.CheckCanonicalization(mol,10) except: import traceback traceback.print_exc() return -3 return 0 def TestSupplier(suppl,stopAfter=-1,reportInterval=100,reportTo=sys.stderr, nameProp='_Name'): nDone = 0 nFailed = 0 while 1: try: mol = suppl.next() except StopIteration: break except: import traceback traceback.print_exc() nFailed += 1 reportTo.flush() print >>reportTo,'Failure at mol %d'%nDone else: if mol: ok = TestMolecule(mol) else: ok = -3 if ok<0: nFailed += 1 reportTo.flush() if ok==-3: print >>reportTo,'Canonicalization', print >>reportTo,'Failure at mol %d'%nDone, if mol: print >>reportTo,mol.GetProp(nameProp), print >>reportTo,'' nDone += 1 if nDone==stopAfter: break if not nDone%reportInterval: print 'Done %d molecules, %d failures'%(nDone,nFailed) return nDone,nFailed if __name__=='__main__': suppl = Chem.SDMolSupplier(sys.argv[1],False) if len(sys.argv)>2: nameProp = sys.argv[2] else: nameProp = '_Name' nDone,nFailed = TestSupplier(suppl,nameProp=nameProp) print '%d failures in %d mols'%(nFailed,nDone)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/ChemUtils/BulkTester.py", "copies": "2", "size": "1898", "license": "bsd-3-clause", "hash": -884859499107085300, "line_mean": 22.725, "line_max": 75, "alpha_frac": 0.6111696523, "autogenerated": false, "ratio": 3.401433691756272, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9788045218787202, "avg_score": 0.04491162505381385, "num_lines": 80 }
import random from rdkit import Chem def RandomizeMolBlock(molB): splitB = molB.split('\n') res = [] res.extend(splitB[0:3]) idx = 3 inL = splitB[idx] res.append(inL) nAts = int(inL[0:3]) nBonds = int(inL[3:6]) idx+=1 atLines = splitB[idx:idx+nAts] order = range(nAts) random.shuffle(order) for i in order: res.append(atLines[i]) #print 'ORDER:',order idx += nAts for i in range(nBonds): inL = splitB[idx] idx1 = int(inL[0:3])-1 idx2 = int(inL[3:6])-1 idx1 = order.index(idx1) idx2 = order.index(idx2) inL = '% 3d% 3d'%(idx1+1,idx2+1)+inL[6:] res.append(inL) idx += 1 res.append('M END') return '\n'.join(res) def RandomizeMol(mol): mb = Chem.MolToMolBlock(mol) #print '-----------------' #print mb mb = RandomizeMolBlock(mb) #print mb return Chem.MolFromMolBlock(mb) def CheckCanonicalization(mol,nReps=10): refSmi = Chem.MolToSmiles(mol,False) for i in range(nReps): m2 = RandomizeMol(mol) smi = Chem.MolToSmiles(m2,False) if smi!=refSmi: raise ValueError,'\nRef: %s\n : %s'%(refSmi,smi) if __name__=='__main__': from rdkit.Chem import Randomize CheckCanonicalization(Chem.MolFromSmiles('CON')) CheckCanonicalization(Chem.MolFromSmiles('c1ccccn1')) CheckCanonicalization(Chem.MolFromSmiles('C/C=C/F'))
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/Randomize.py", "copies": "2", "size": "1626", "license": "bsd-3-clause", "hash": 7852179043251908000, "line_mean": 22.2285714286, "line_max": 63, "alpha_frac": 0.6402214022, "autogenerated": false, "ratio": 2.585055643879173, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4225277046079174, "avg_score": null, "num_lines": null }
import random from rdkit.six.moves import range from rdkit import Chem def RandomizeMolBlock(molB): splitB = molB.split('\n') res = [] res.extend(splitB[0:3]) idx = 3 inL = splitB[idx] res.append(inL) nAts = int(inL[0:3]) nBonds = int(inL[3:6]) idx+=1 atLines = splitB[idx:idx+nAts] order = list(range(nAts)) random.shuffle(order,random=random.random) for i in order: res.append(atLines[i]) #print 'ORDER:',order idx += nAts for i in range(nBonds): inL = splitB[idx] idx1 = int(inL[0:3])-1 idx2 = int(inL[3:6])-1 idx1 = order.index(idx1) idx2 = order.index(idx2) inL = '% 3d% 3d'%(idx1+1,idx2+1)+inL[6:] res.append(inL) idx += 1 res.append('M END') return '\n'.join(res) def RandomizeMol(mol): mb = Chem.MolToMolBlock(mol) #print '-----------------' #print mb mb = RandomizeMolBlock(mb) #print mb return Chem.MolFromMolBlock(mb) def CheckCanonicalization(mol,nReps=10): refSmi = Chem.MolToSmiles(mol,False) for i in range(nReps): m2 = RandomizeMol(mol) smi = Chem.MolToSmiles(m2,False) if smi!=refSmi: raise ValueError('\nRef: %s\n : %s'%(refSmi,smi)) if __name__=='__main__': from rdkit.Chem import Randomize CheckCanonicalization(Chem.MolFromSmiles('CON')) CheckCanonicalization(Chem.MolFromSmiles('c1ccccn1')) CheckCanonicalization(Chem.MolFromSmiles('C/C=C/F'))
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/Chem/Randomize.py", "copies": "4", "size": "1688", "license": "bsd-3-clause", "hash": -4444090380005678600, "line_mean": 22.7746478873, "line_max": 63, "alpha_frac": 0.6463270142, "autogenerated": false, "ratio": 2.613003095975232, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.04571893029693759, "num_lines": 71 }
import random from rdkit.six.moves import range from rdkit import Chem def RandomizeMolBlock(molB): splitB = molB.split('\n') res = [] res.extend(splitB[0:3]) idx = 3 inL = splitB[idx] res.append(inL) nAts = int(inL[0:3]) nBonds = int(inL[3:6]) idx += 1 atLines = splitB[idx:idx + nAts] order = list(range(nAts)) random.shuffle(order, random=random.random) for i in order: res.append(atLines[i]) #print 'ORDER:',order idx += nAts for i in range(nBonds): inL = splitB[idx] idx1 = int(inL[0:3]) - 1 idx2 = int(inL[3:6]) - 1 idx1 = order.index(idx1) idx2 = order.index(idx2) inL = '% 3d% 3d' % (idx1 + 1, idx2 + 1) + inL[6:] res.append(inL) idx += 1 res.append('M END') return '\n'.join(res) def RandomizeMol(mol): mb = Chem.MolToMolBlock(mol) #print '-----------------' #print mb mb = RandomizeMolBlock(mb) #print mb return Chem.MolFromMolBlock(mb) def CheckCanonicalization(mol, nReps=10): refSmi = Chem.MolToSmiles(mol, False) for i in range(nReps): m2 = RandomizeMol(mol) smi = Chem.MolToSmiles(m2, False) if smi != refSmi: raise ValueError('\nRef: %s\n : %s' % (refSmi, smi)) if __name__ == '__main__': from rdkit.Chem import Randomize CheckCanonicalization(Chem.MolFromSmiles('CON')) CheckCanonicalization(Chem.MolFromSmiles('c1ccccn1')) CheckCanonicalization(Chem.MolFromSmiles('C/C=C/F'))
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/Randomize.py", "copies": "5", "size": "1704", "license": "bsd-3-clause", "hash": -4938258008736394000, "line_mean": 22.6666666667, "line_max": 63, "alpha_frac": 0.640258216, "autogenerated": false, "ratio": 2.6175115207373274, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5757769736737328, "avg_score": null, "num_lines": null }
""" uses DSViewer to interact with molecules """ from rdkit import Chem from win32com.client import Dispatch import tempfile,os _nextDisplayId=1 class Displayable(object): def __init__(self,doc,id=-1): global _nextDisplayId if id<0: id = _nextDisplayId _nextDisplayId += 1 self.doc = doc self.id = id self.visible=True self.children = [] def Select(self,atoms=[],state=True,recurse=False): if state: selText = 'true' else: selText = 'false' if not atoms or atoms=='*': atomStr = '; atom "*"' else: # DSViewer has atom ids from 1, we do it from 0: atoms = ['id=%d'%(x) for x in atoms] atomStr = '; atom %s'%','.join(atoms) cmd = 'SetProperty object RD_Visual=%d %s: select=%s'%(self.id,atomStr, selText) r = int(str(self.doc.DoCommand(cmd))) if not r and not atoms: # this handles an annoying case where if you try to select # a molecule by ID in DSViewer, you get nothing selected: atomStr='' cmd = 'SetProperty object RD_Visual=%d %s: select=%s'%(self.id,atomStr, selText) r = int(str(self.doc.DoCommand(cmd))) #print 'sel cmd:',cmd #print 'result:', r # stupid DSViewer will select the bonds between pairs of highlighted atoms, # stop that nonsense right now: if r: cmd = 'SetProperty object RD_Visual=%d; bond index="*": select=off'%(self.id) self.doc.DoCommand(cmd) if recurse: for child in self.children: child.Select(atoms=atoms,state=state,recurse=True) return r def Hide(self,recurse=True): self.Select(state=True,recurse=True) self.doc.DoCommand('hide') self.Select(state=False,recurse=True) def Show(self,recurse=True): self.Select(state=True,recurse=True) self.doc.DoCommand('Show') self.Select(state=False,recurse=True) def ShowOnly(self,recurse=True): self.doc.DoCommand('HideAll') self.Select(state=True,recurse=True) self.doc.DoCommand('Show') self.Select(state=False,recurse=True) def __del__(self): self.doc.DoCommand('UnselectAll') count=self.Select(state=True,recurse=True) if count: self.doc.DoCommand('Delete') class MolViewer(object): def __init__(self,force=0,title='Untitled',**kwargs): self.app = Dispatch('WebLabViewerPro.Application') self.app.Visible=1 if force or self.app.ActiveDocument is None: self.doc = self.app.New(title) else: self.doc = self.app.ActiveDocument self.displayables={} def DeleteAll(self): self.doc.DoCommand('SelectAll') self.doc.DoCommand('Delete') self.displayables = {} def DeleteAllExcept(self,excludes): excludes = [x.lower() for x in excludes] allNames = self.displayables.keys() for nm in allNames: if nm not in excludes: del self.displayables[nm] def ShowMol(self,mol,name='molecule',showOnly=True,highlightFeatures=[], molB="",confId=-1,zoom=True): if showOnly: self.DeleteAll() obj = None else: obj = self.displayables.get(name.lower(),None) #if obj: # obj.Select(state=True) # self.doc.DoCommand('Delete') # obj.Select(state=False) if not molB: molB = Chem.MolToMolBlock(mol,confId=confId) tmp = name + "\n" + molB[molB.index('\n')+1:] molB = tmp if not obj: obj = Displayable(self.doc) if not hasattr(obj,'_molBlock') or obj._molBlock != molB: obj._molBlock = molB fN = tempfile.mktemp('.mol') open(fN,'w+').write(molB) self.doc.DoCommand('PasteFrom %s'%fN) self.doc.DoCommand('SetProperty molecule id=0 : RD_Visual=%d'%(obj.id)) self.doc.DoCommand('SetProperty molecule id=0 : id=%d'%(obj.id)) self.doc.DoCommand('SetProperty molecule id=0 : select=off') os.unlink(fN) else: obj.Select(state=True) self.doc.DoCommand('Show') self.displayables[name.lower()] = obj if zoom: self.doc.DoCommand('Center') self.doc.DoCommand('FitView') return def LoadFile(self,filename,name,showOnly=False): if showOnly: self.DeleteAll() self.doc.DoCommand('PasteFrom %s'%filename) obj = Displayable(self.doc) self.doc.DoCommand('SetProperty molecule id=0 : id=%d'%(obj.id)) self.doc.DoCommand('SetProperty molecule id=0 : select=off') count = self.doc.DoCommand('SetProperty AminoAcidChain id=0 : RD_Visual=%d'%(obj.id)) if not count or int(count)<=0: count = self.doc.DoCommand('SetProperty molecule id=0 : RD_Visual=%d'%(obj.id)) self.displayables[name.lower()] = obj return obj def GetSelectedAtoms(self,whichSelection=''): #print 'WHICH',repr(whichSelection),self.displayables.has_key(whichSelection.lower()) if not whichSelection: d = str(self.doc.DoCommand('GetPropertyValue atom select=true: id=?')) d2 = str(self.doc.DoCommand('GetPropertyValue atom select=true: molecule=?')) if d2: molIds = [] tmpD = {} for id in d2.split(','): id = int(id.split('/')[1])+1 if tmpD.has_key(id): molIds.append(tmpD[id]) else: for k,v in self.displayables.iteritems(): if id==v.id: tmpD[id] = k molIds.append(k) else: molIds = ['']*(d.count(',')+1) elif self.displayables.has_key(whichSelection.lower()): whichSelection = whichSelection.lower() whichSelection = self.displayables[whichSelection].id d = str(self.doc.DoCommand('GetPropertyValue molecule RD_Visual=%d; atom select=true: id=?'%whichSelection)) molIds = [whichSelection]*(d.count(',')+1) else: d = None molIds = None if d: splitD = d.split(',') #print 'splitD:',splitD #print 'molIds:',molIds try: res = [] for i in range(len(splitD)): # DSViewer has atom ids from 1, we do it from 0: idx = int(splitD[i]) res.append((molIds[i],idx)) except: import traceback traceback.print_exc() res = [] else: res = [] return res def HighlightAtoms(self,indices,where,extraHighlight=False): self.doc.DoCommand('UnSelectAll') self.SelectAtoms(where,indices) def SelectAtoms(self,itemId,atomIndices,selName='selection'): self.doc.DoCommand('UnSelectAll') self.doc.DoCommand('SetProperty atom id="*": select=off') o = self.displayables.get(itemId.lower(),None) #print 'O:',itemId,atomIndices if o: o.Select(atoms=atomIndices) def SetDisplayUpdate(self,val): if not val: self.doc.DoCommand('UpdateView off') else: self.doc.DoCommand('UpdateView on') def GetAtomCoords(self,sels): res = {} for label,idx in sels: whichSelection = label.lower() whichSelection = self.displayables[label].id # DSViewer has atom ids from 1, we do it from 0: idx += 1 cmd = 'GetPropertyValue molecule RD_Visual=%d; atom id=%d: xyz=?'%(whichSelection,idx) coords = self.doc.DoCommand(cmd) coords = [float(x) for x in coords.split(' ')] res[(label,idx)] = coords #print 'grab:',label,idx,coords return res def AddPharmacophore(self,locs,colors,label,sphereRad=0.5): label=label.lower() self.SetDisplayUpdate(False) parent = Displayable(self.doc) for i,loc in enumerate(locs): color = colors[i] color = ' '.join([str(int(255*x)) for x in color]) obj = Displayable(self.doc) nm = 'sphere-%d'%obj.id self.doc.DoCommand('Sphere %s'%nm) self.doc.DoCommand('SetProperty Object name=%s : xyz=%f %f %f'%(nm,loc[0],loc[1],loc[2])) self.doc.DoCommand('SetProperty Object name=%s : radius=%f'%(nm,sphereRad)) self.doc.DoCommand('SetProperty Object name=%s : color=%s'%(nm,color)) self.doc.DoCommand('SetProperty Object name=%s : RD_Visual=%d'%(nm,parent.id)) self.doc.DoCommand('SetProperty Object name=%s : id=%d'%(nm,parent.id)) #parent.children.append(obj) self.displayables[label] = parent self.SetDisplayUpdate(True) def SetDisplayStyle(self,obj,style=''): self.doc.DoCommand('UnSelectAll') obj = obj.lower() o = self.displayables.get(obj,None) if o: o.Select(state=True) if style=='sticks': self.doc.DoCommand('DisplayStyle Atom Stick') elif style=='lines': self.doc.DoCommand('DisplayStyle Atom Line') elif style=='': self.doc.DoCommand('DisplayStyle Atom Off') o.Select(state=False) def HideAll(self): self.doc.DoCommand('HideAll') def HideObject(self,objName): self.doc.DoCommand('UnSelectAll') objName = objName.lower() o = self.displayables.get(objName,None) if o: o.Hide() def DisplayObject(self,objName): self.doc.DoCommand('UnSelectAll') objName = objName.lower() o = self.displayables.get(objName,None) if o: o.Show() def Zoom(self,objName): self.doc.DoCommand('UnSelectAll') objName = objName.lower() o = self.displayables.get(objName,None) if o: r = o.Select(state=True) self.doc.DoCommand('Center') self.doc.DoCommand('FitView') o.Select(state=False) def SelectProteinNeighborhood(self,aroundObj,inObj,distance=5.0, name='neighborhood',showSurface=False): """ FIX: the surface display stuff here is all screwed up due to differences between the way PyMol and DSViewer handle surfaces. In PyMol they are essentially a display mode for the protein, so they don't need to be managed separately. In DSViewer, on the other hand, the surface is attached to the protein, but it needs to be hidden or shown on its own. I haven't figured out how to do that yet. """ self.doc.DoCommand('UnSelectAll') o = self.displayables.get(aroundObj.lower(),None) p = self.displayables.get(inObj.lower(),None) if o and p: self.SetDisplayUpdate(False) p.Show() self.doc.DoCommand('UnSelectAll') tmp = self.doc.DoCommand('SetProperty object RD_Visual=%d;object id="*":select=on'%o.id) tmp = self.doc.DoCommand('SelectByRadius inside %f atom'%distance) # that selects all atoms in the radius, now we need to make sure # only atoms in _inObj_ are selected: for obj in self.displayables.values(): if obj.id != p.id: self.doc.DoCommand('SetProperty object RD_Visual=%d;object id="*":select=off'%obj.id) # ---- # now get all the residue names for the selected atoms: rs = self.doc.DoCommand('GetPropertyValue atom select=true: parent=?') if rs: rs = rs.split(',') residues = {} for r in rs: residues[r] = 1 # and select each atom in those residues: parents=','.join(['parent="%s"'%x for x in residues.keys()]) cmd = 'SetProperty atom %s: select=on'%parents tmp=self.doc.DoCommand(cmd) if showSurface: # create the surface: self.doc.DoCommand('Surface') obj = Displayable(self.doc) self.displayables[name]=obj self.doc.DoCommand('SetProperty surface id="*":RD_Visual=%d'%obj.id) self.doc.DoCommand('UnSelectAll') self.SetDisplayUpdate(True) def Redraw(self): self.SetDisplayUpdate(True) if __name__=='__main__': from rdkit import Chem from rdkit.Chem import rdDistGeom, rdForceFieldHelpers m = Chem.MolFromSmiles('c1cccc2c1cccc2') rdDistGeom.EmbedMolecule(m) rdForceFieldHelpers.UFFOptimizeMolecule(m) s = MolViewer() s.ShowMol(m)
{ "repo_name": "strets123/rdkit", "path": "rdkit/Chem/DSViewer.py", "copies": "5", "size": "12172", "license": "bsd-3-clause", "hash": 3953421219471895600, "line_mean": 31.7204301075, "line_max": 114, "alpha_frac": 0.6196187972, "autogenerated": false, "ratio": 3.4123913652929634, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.032391589350551586, "num_lines": 372 }
""" uses DSViewer to interact with molecules """ from rdkit import Chem from win32com.client import Dispatch import tempfile, os _nextDisplayId = 1 class Displayable(object): def __init__(self, doc, id=-1): global _nextDisplayId if id < 0: id = _nextDisplayId _nextDisplayId += 1 self.doc = doc self.id = id self.visible = True self.children = [] def Select(self, atoms=[], state=True, recurse=False): if state: selText = 'true' else: selText = 'false' if not atoms or atoms == '*': atomStr = '; atom "*"' else: # DSViewer has atom ids from 1, we do it from 0: atoms = ['id=%d' % (x) for x in atoms] atomStr = '; atom %s' % ','.join(atoms) cmd = 'SetProperty object RD_Visual=%d %s: select=%s' % (self.id, atomStr, selText) r = int(str(self.doc.DoCommand(cmd))) if not r and not atoms: # this handles an annoying case where if you try to select # a molecule by ID in DSViewer, you get nothing selected: atomStr = '' cmd = 'SetProperty object RD_Visual=%d %s: select=%s' % (self.id, atomStr, selText) r = int(str(self.doc.DoCommand(cmd))) #print 'sel cmd:',cmd #print 'result:', r # stupid DSViewer will select the bonds between pairs of highlighted atoms, # stop that nonsense right now: if r: cmd = 'SetProperty object RD_Visual=%d; bond index="*": select=off' % (self.id) self.doc.DoCommand(cmd) if recurse: for child in self.children: child.Select(atoms=atoms, state=state, recurse=True) return r def Hide(self, recurse=True): self.Select(state=True, recurse=True) self.doc.DoCommand('hide') self.Select(state=False, recurse=True) def Show(self, recurse=True): self.Select(state=True, recurse=True) self.doc.DoCommand('Show') self.Select(state=False, recurse=True) def ShowOnly(self, recurse=True): self.doc.DoCommand('HideAll') self.Select(state=True, recurse=True) self.doc.DoCommand('Show') self.Select(state=False, recurse=True) def __del__(self): self.doc.DoCommand('UnselectAll') count = self.Select(state=True, recurse=True) if count: self.doc.DoCommand('Delete') class MolViewer(object): def __init__(self, force=0, title='Untitled', **kwargs): self.app = Dispatch('WebLabViewerPro.Application') self.app.Visible = 1 if force or self.app.ActiveDocument is None: self.doc = self.app.New(title) else: self.doc = self.app.ActiveDocument self.displayables = {} def DeleteAll(self): self.doc.DoCommand('SelectAll') self.doc.DoCommand('Delete') self.displayables = {} def DeleteAllExcept(self, excludes): excludes = [x.lower() for x in excludes] allNames = self.displayables.keys() for nm in allNames: if nm not in excludes: del self.displayables[nm] def ShowMol(self, mol, name='molecule', showOnly=True, highlightFeatures=[], molB="", confId=-1, zoom=True): if showOnly: self.DeleteAll() obj = None else: obj = self.displayables.get(name.lower(), None) #if obj: # obj.Select(state=True) # self.doc.DoCommand('Delete') # obj.Select(state=False) if not molB: molB = Chem.MolToMolBlock(mol, confId=confId) tmp = name + "\n" + molB[molB.index('\n') + 1:] molB = tmp if not obj: obj = Displayable(self.doc) if not hasattr(obj, '_molBlock') or obj._molBlock != molB: obj._molBlock = molB fN = tempfile.mktemp('.mol') open(fN, 'w+').write(molB) self.doc.DoCommand('PasteFrom %s' % fN) self.doc.DoCommand('SetProperty molecule id=0 : RD_Visual=%d' % (obj.id)) self.doc.DoCommand('SetProperty molecule id=0 : id=%d' % (obj.id)) self.doc.DoCommand('SetProperty molecule id=0 : select=off') os.unlink(fN) else: obj.Select(state=True) self.doc.DoCommand('Show') self.displayables[name.lower()] = obj if zoom: self.doc.DoCommand('Center') self.doc.DoCommand('FitView') return def LoadFile(self, filename, name, showOnly=False): if showOnly: self.DeleteAll() self.doc.DoCommand('PasteFrom %s' % filename) obj = Displayable(self.doc) self.doc.DoCommand('SetProperty molecule id=0 : id=%d' % (obj.id)) self.doc.DoCommand('SetProperty molecule id=0 : select=off') count = self.doc.DoCommand('SetProperty AminoAcidChain id=0 : RD_Visual=%d' % (obj.id)) if not count or int(count) <= 0: count = self.doc.DoCommand('SetProperty molecule id=0 : RD_Visual=%d' % (obj.id)) self.displayables[name.lower()] = obj return obj def GetSelectedAtoms(self, whichSelection=''): #print 'WHICH',repr(whichSelection), whichSelection.lower() in self.displayables if not whichSelection: d = str(self.doc.DoCommand('GetPropertyValue atom select=true: id=?')) d2 = str(self.doc.DoCommand('GetPropertyValue atom select=true: molecule=?')) if d2: molIds = [] tmpD = {} for id in d2.split(','): id = int(id.split('/')[1]) + 1 if id in tmpD: molIds.append(tmpD[id]) else: for k, v in self.displayables.iteritems(): if id == v.id: tmpD[id] = k molIds.append(k) else: molIds = [''] * (d.count(',') + 1) elif whichSelection.lower() in self.displayables: whichSelection = whichSelection.lower() whichSelection = self.displayables[whichSelection].id d = str( self.doc.DoCommand('GetPropertyValue molecule RD_Visual=%d; atom select=true: id=?' % whichSelection)) molIds = [whichSelection] * (d.count(',') + 1) else: d = None molIds = None if d: splitD = d.split(',') #print 'splitD:',splitD #print 'molIds:',molIds try: res = [] for i in range(len(splitD)): # DSViewer has atom ids from 1, we do it from 0: idx = int(splitD[i]) res.append((molIds[i], idx)) except Exception: import traceback traceback.print_exc() res = [] else: res = [] return res def HighlightAtoms(self, indices, where, extraHighlight=False): self.doc.DoCommand('UnSelectAll') self.SelectAtoms(where, indices) def SelectAtoms(self, itemId, atomIndices, selName='selection'): self.doc.DoCommand('UnSelectAll') self.doc.DoCommand('SetProperty atom id="*": select=off') o = self.displayables.get(itemId.lower(), None) #print 'O:',itemId,atomIndices if o: o.Select(atoms=atomIndices) def SetDisplayUpdate(self, val): if not val: self.doc.DoCommand('UpdateView off') else: self.doc.DoCommand('UpdateView on') def GetAtomCoords(self, sels): res = {} for label, idx in sels: whichSelection = label.lower() whichSelection = self.displayables[label].id # DSViewer has atom ids from 1, we do it from 0: idx += 1 cmd = 'GetPropertyValue molecule RD_Visual=%d; atom id=%d: xyz=?' % (whichSelection, idx) coords = self.doc.DoCommand(cmd) coords = [float(x) for x in coords.split(' ')] res[(label, idx)] = coords #print 'grab:',label,idx,coords return res def AddPharmacophore(self, locs, colors, label, sphereRad=0.5): label = label.lower() self.SetDisplayUpdate(False) parent = Displayable(self.doc) for i, loc in enumerate(locs): color = colors[i] color = ' '.join([str(int(255 * x)) for x in color]) obj = Displayable(self.doc) nm = 'sphere-%d' % obj.id self.doc.DoCommand('Sphere %s' % nm) self.doc.DoCommand('SetProperty Object name=%s : xyz=%f %f %f' % (nm, loc[0], loc[1], loc[2])) self.doc.DoCommand('SetProperty Object name=%s : radius=%f' % (nm, sphereRad)) self.doc.DoCommand('SetProperty Object name=%s : color=%s' % (nm, color)) self.doc.DoCommand('SetProperty Object name=%s : RD_Visual=%d' % (nm, parent.id)) self.doc.DoCommand('SetProperty Object name=%s : id=%d' % (nm, parent.id)) #parent.children.append(obj) self.displayables[label] = parent self.SetDisplayUpdate(True) def SetDisplayStyle(self, obj, style=''): self.doc.DoCommand('UnSelectAll') obj = obj.lower() o = self.displayables.get(obj, None) if o: o.Select(state=True) if style == 'sticks': self.doc.DoCommand('DisplayStyle Atom Stick') elif style == 'lines': self.doc.DoCommand('DisplayStyle Atom Line') elif style == '': self.doc.DoCommand('DisplayStyle Atom Off') o.Select(state=False) def HideAll(self): self.doc.DoCommand('HideAll') def HideObject(self, objName): self.doc.DoCommand('UnSelectAll') objName = objName.lower() o = self.displayables.get(objName, None) if o: o.Hide() def DisplayObject(self, objName): self.doc.DoCommand('UnSelectAll') objName = objName.lower() o = self.displayables.get(objName, None) if o: o.Show() def Zoom(self, objName): self.doc.DoCommand('UnSelectAll') objName = objName.lower() o = self.displayables.get(objName, None) if o: r = o.Select(state=True) self.doc.DoCommand('Center') self.doc.DoCommand('FitView') o.Select(state=False) def SelectProteinNeighborhood(self, aroundObj, inObj, distance=5.0, name='neighborhood', showSurface=False): """ FIX: the surface display stuff here is all screwed up due to differences between the way PyMol and DSViewer handle surfaces. In PyMol they are essentially a display mode for the protein, so they don't need to be managed separately. In DSViewer, on the other hand, the surface is attached to the protein, but it needs to be hidden or shown on its own. I haven't figured out how to do that yet. """ self.doc.DoCommand('UnSelectAll') o = self.displayables.get(aroundObj.lower(), None) p = self.displayables.get(inObj.lower(), None) if o and p: self.SetDisplayUpdate(False) p.Show() self.doc.DoCommand('UnSelectAll') tmp = self.doc.DoCommand('SetProperty object RD_Visual=%d;object id="*":select=on' % o.id) tmp = self.doc.DoCommand('SelectByRadius inside %f atom' % distance) # that selects all atoms in the radius, now we need to make sure # only atoms in _inObj_ are selected: for obj in self.displayables.values(): if obj.id != p.id: self.doc.DoCommand('SetProperty object RD_Visual=%d;object id="*":select=off' % obj.id) # ---- # now get all the residue names for the selected atoms: rs = self.doc.DoCommand('GetPropertyValue atom select=true: parent=?') if rs: rs = rs.split(',') residues = {} for r in rs: residues[r] = 1 # and select each atom in those residues: parents = ','.join(['parent="%s"' % x for x in residues.keys()]) cmd = 'SetProperty atom %s: select=on' % parents tmp = self.doc.DoCommand(cmd) if showSurface: # create the surface: self.doc.DoCommand('Surface') obj = Displayable(self.doc) self.displayables[name] = obj self.doc.DoCommand('SetProperty surface id="*":RD_Visual=%d' % obj.id) self.doc.DoCommand('UnSelectAll') self.SetDisplayUpdate(True) def Redraw(self): self.SetDisplayUpdate(True) if __name__ == '__main__': from rdkit import Chem from rdkit.Chem import rdDistGeom, rdForceFieldHelpers m = Chem.MolFromSmiles('c1cccc2c1cccc2') rdDistGeom.EmbedMolecule(m) rdForceFieldHelpers.UFFOptimizeMolecule(m) s = MolViewer() s.ShowMol(m)
{ "repo_name": "rvianello/rdkit", "path": "rdkit/Chem/DSViewer.py", "copies": "5", "size": "12113", "license": "bsd-3-clause", "hash": -6413528897471017000, "line_mean": 31.6495956873, "line_max": 100, "alpha_frac": 0.6223891687, "autogenerated": false, "ratio": 3.370339454646633, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6492728623346634, "avg_score": null, "num_lines": null }
_version = "$Rev$" _splashMessage=""" -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* FeatFinderCLI version %s Copyright (C) 2005 Rational Discovery LLC This software is copyrighted. The software may not be copied, reproduced, translated or reduced to any electronic medium or machine-readable form without the prior written consent of Rational Discovery LLC. -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* """%_version from rdkit import Chem from rdkit.Chem import ChemicalFeatures from rdkit import RDLogger logger = RDLogger.logger() import sys,os import re splitExpr = re.compile(r'[ \t,]') def GetAtomFeatInfo(factory,mol): res = [None]*mol.GetNumAtoms() feats = factory.GetFeaturesForMol(mol) for feat in feats: ids = feat.GetAtomIds() for id in ids: if res[id] is None: res[id] = [] res[id].append("%s-%s"%(feat.GetFamily(),feat.GetType())) return res if __name__ == '__main__': def Usage(): message=""" Usage: FeatFinderCLI [-r] <fdefFilename> <smilesFilename> NOTE: - the smiles file should have SMILES in the first column """ print >>sys.stderr,message import getopt args,extras = getopt.getopt(sys.argv[1:],'r') reverseIt=False for arg,val in args: if arg=='-r': reverseIt=True if len(extras)<2: Usage() sys.exit(-1) print >>sys.stderr,_splashMessage fdefFilename = extras[0] if not os.path.exists(fdefFilename): logger.error("Fdef file %s does not exist."%fdefFilename) sys.exit(-1) try: factory = ChemicalFeatures.BuildFeatureFactory(fdefFilename) except: logger.error("Could not parse Fdef file %s."%fdefFilename,exc_info=True) sys.exit(-1) smilesFilename = extras[1] if not os.path.exists(smilesFilename): logger.error("Smiles file %s does not exist."%smilesFilename) sys.exit(-1) try: inF = file(smilesFilename,'r') except: logger.error("Could not open smiles file %s."%smilesFilename,exc_info=True) sys.exit(-1) lineNo=0 for line in inF.readlines(): lineNo+=1 line = line.strip() smi = splitExpr.split(line)[0].strip() try: mol = Chem.MolFromSmiles(smi) except: mol = None if mol: print 'Mol-%d\t%s'%(lineNo,smi) if not reverseIt: featInfo = GetAtomFeatInfo(factory,mol) for i,v in enumerate(featInfo): print '\t% 2s(%d)'%(mol.GetAtomWithIdx(i).GetSymbol(),i+1), if v: print '\t',', '.join(v) else: print else: feats = factory.GetFeaturesForMol(mol) for feat in feats: print '\t%s-%s: '%(feat.GetFamily(),feat.GetType()), print ', '.join([str(x) for x in feat.GetAtomIds()]) else: logger.warning("Could not process smiles '%s' on line %d."%(smi,lineNo))
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/FeatFinderCLI.py", "copies": "2", "size": "3166", "license": "bsd-3-clause", "hash": 6317289670174538000, "line_mean": 25.8305084746, "line_max": 79, "alpha_frac": 0.6099178774, "autogenerated": false, "ratio": 3.1851106639839033, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9601415947807668, "avg_score": 0.0387225187152472, "num_lines": 118 }
from rdkit import RDConfig import unittest,os,sys from rdkit.ML.DecTree.SigTree import SigTreeNode from rdkit.ML import InfoTheory from rdkit.DataStructs import ExplicitBitVect from rdkit.DataStructs.VectCollection import VectCollection class TestCase(unittest.TestCase): def setUp(self): t1 = SigTreeNode(None,'root',0) t2 = SigTreeNode(t1,'nodeL1',1) t1.AddChildNode(t2) t3 = SigTreeNode(t2,'nodeLTerm0',0,isTerminal=1) t4 = SigTreeNode(t2,'nodeLTerm1',1,isTerminal=1) t2.AddChildNode(t3) t2.AddChildNode(t4) t2 = SigTreeNode(t1,'nodeR1',2) t1.AddChildNode(t2) t3 = SigTreeNode(t2,'nodeRTerm0',1,isTerminal=1) t4 = SigTreeNode(t2,'nodeRTerm1',0,isTerminal=1) t2.AddChildNode(t3) t2.AddChildNode(t4) self.tree = t1 def test1(self): t1 = self.tree bv = ExplicitBitVect(5) ex = ['nm',bv] self.assertFalse(t1.ClassifyExample(ex)) bv.SetBit(1) self.assertTrue(t1.ClassifyExample(ex)) bv.SetBit(0) self.assertTrue(t1.ClassifyExample(ex)) bv.SetBit(2) self.assertFalse(t1.ClassifyExample(ex)) def test2(self): t1 = self.tree vc = VectCollection() bv = ExplicitBitVect(5) bv.SetBitsFromList([0]) vc.AddVect(1,bv) bv = ExplicitBitVect(5) bv.SetBitsFromList([1,2]) vc.AddVect(2,bv) ex = ['nm',bv,1] self.assertTrue(t1.ClassifyExample(ex)) bv = ExplicitBitVect(5) bv.SetBitsFromList([0,2]) vc.AddVect(1,bv) ex = ['nm',bv,1] self.assertFalse(t1.ClassifyExample(ex)) def test3(self): from BuildSigTree import BuildSigTree examples = [] bv = ExplicitBitVect(2) vc = VectCollection() vc.AddVect(1,bv) examples.append(['a',vc,1]) bv = ExplicitBitVect(2) bv.SetBit(1) vc = VectCollection() vc.AddVect(1,bv) examples.append(['c',vc,0]) bv = ExplicitBitVect(2) bv.SetBit(1) vc = VectCollection() vc.AddVect(1,bv) examples.append(['c2',vc,0]) bv = ExplicitBitVect(2) bv.SetBit(0) vc = VectCollection() vc.AddVect(1,bv) examples.append(['d',vc,0]) bv = ExplicitBitVect(2) bv.SetBit(0) vc = VectCollection() vc.AddVect(1,bv) bv = ExplicitBitVect(2) bv.SetBit(1) vc.AddVect(2,bv) examples.append(['d2',vc,0]) bv = ExplicitBitVect(2) bv.SetBit(0) bv.SetBit(1) vc = VectCollection() vc.AddVect(1,bv) examples.append(['d',vc,1]) bv = ExplicitBitVect(2) bv.SetBit(0) bv.SetBit(1) vc = VectCollection() vc.AddVect(1,bv) examples.append(['e',vc,1]) t = BuildSigTree(examples,2,metric=InfoTheory.InfoType.ENTROPY, maxDepth=2,verbose=0) self.assertEqual(t.GetName(),'Bit-0') self.assertEqual(t.GetLabel(),0) c0 = t.GetChildren()[0] self.assertEqual(c0.GetName(),'Bit-1') self.assertEqual(c0.GetLabel(),1) c1 = t.GetChildren()[1] self.assertEqual(c1.GetName(),'Bit-1') self.assertEqual(c1.GetLabel(),1) bv = ExplicitBitVect(2) bv.SetBit(0) vc = VectCollection() vc.AddVect(1,bv) bv = ExplicitBitVect(2) bv.SetBit(1) vc.AddVect(2,bv) r = t.ClassifyExample(['t',vc,0]) self.assertEqual(r,0) def test4(self): import gzip from rdkit.six.moves import cPickle from BuildSigTree import BuildSigTree gz = gzip.open(os.path.join(RDConfig.RDCodeDir,'ML','DecTree','test_data', 'cdk2-few.pkl.gz'), 'rb') examples = cPickle.load(gz,encoding='Latin1') t = BuildSigTree(examples,2,maxDepth=3) self.assertEqual(t.GetLabel(),2181) self.assertEqual(t.GetChildren()[0].GetLabel(),2861) self.assertEqual(t.GetChildren()[1].GetLabel(),8182) if __name__ == '__main__': unittest.main()
{ "repo_name": "adalke/rdkit", "path": "rdkit/ML/DecTree/UnitTestSigTree.py", "copies": "4", "size": "3894", "license": "bsd-3-clause", "hash": -8748136318955324000, "line_mean": 23.8025477707, "line_max": 78, "alpha_frac": 0.6325115562, "autogenerated": false, "ratio": 2.8014388489208635, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5433950405120864, "avg_score": null, "num_lines": null }
import gzip import os import unittest from rdkit import RDConfig from rdkit.DataStructs import ExplicitBitVect from rdkit.DataStructs.VectCollection import VectCollection from rdkit.ML import InfoTheory from rdkit.ML.DecTree.BuildSigTree import BuildSigTree, _GenerateRandomEnsemble from rdkit.ML.DecTree.SigTree import SigTreeNode from rdkit.TestRunner import redirect_stdout from rdkit.six import StringIO class TestCase(unittest.TestCase): def setUp(self): t1 = SigTreeNode(None, 'root', 0) t2 = SigTreeNode(t1, 'nodeL1', 1) t1.AddChildNode(t2) t3 = SigTreeNode(t2, 'nodeLTerm0', 0, isTerminal=1) t4 = SigTreeNode(t2, 'nodeLTerm1', 1, isTerminal=1) t2.AddChildNode(t3) t2.AddChildNode(t4) t2 = SigTreeNode(t1, 'nodeR1', 2) t1.AddChildNode(t2) t3 = SigTreeNode(t2, 'nodeRTerm0', 1, isTerminal=1) t4 = SigTreeNode(t2, 'nodeRTerm1', 0, isTerminal=1) t2.AddChildNode(t3) t2.AddChildNode(t4) self.tree = t1 def test1(self): t1 = self.tree bv = ExplicitBitVect(5) ex = ['nm', bv] self.assertFalse(t1.ClassifyExample(ex)) bv.SetBit(1) self.assertTrue(t1.ClassifyExample(ex)) bv.SetBit(0) self.assertTrue(t1.ClassifyExample(ex)) bv.SetBit(2) self.assertFalse(t1.ClassifyExample(ex)) def test2(self): t1 = self.tree vc = VectCollection() bv = ExplicitBitVect(5) bv.SetBitsFromList([0]) vc.AddVect(1, bv) bv = ExplicitBitVect(5) bv.SetBitsFromList([1, 2]) vc.AddVect(2, bv) ex = ['nm', bv, 1] self.assertTrue(t1.ClassifyExample(ex)) bv = ExplicitBitVect(5) bv.SetBitsFromList([0, 2]) vc.AddVect(1, bv) ex = ['nm', bv, 1] self.assertFalse(t1.ClassifyExample(ex)) def test3(self): examples = [] bv = ExplicitBitVect(2) vc = VectCollection() vc.AddVect(1, bv) examples.append(['a', vc, 1]) bv = ExplicitBitVect(2) bv.SetBit(1) vc = VectCollection() vc.AddVect(1, bv) examples.append(['c', vc, 0]) bv = ExplicitBitVect(2) bv.SetBit(1) vc = VectCollection() vc.AddVect(1, bv) examples.append(['c2', vc, 0]) bv = ExplicitBitVect(2) bv.SetBit(0) vc = VectCollection() vc.AddVect(1, bv) examples.append(['d', vc, 0]) bv = ExplicitBitVect(2) bv.SetBit(0) vc = VectCollection() vc.AddVect(1, bv) bv = ExplicitBitVect(2) bv.SetBit(1) vc.AddVect(2, bv) examples.append(['d2', vc, 0]) bv = ExplicitBitVect(2) bv.SetBit(0) bv.SetBit(1) vc = VectCollection() vc.AddVect(1, bv) examples.append(['d', vc, 1]) bv = ExplicitBitVect(2) bv.SetBit(0) bv.SetBit(1) vc = VectCollection() vc.AddVect(1, bv) examples.append(['e', vc, 1]) f = StringIO() with redirect_stdout(f): t = BuildSigTree(examples, 2, metric=InfoTheory.InfoType.ENTROPY, maxDepth=2, verbose=True) self.assertIn('Build', f.getvalue()) self.assertEqual(t.GetName(), 'Bit-0') self.assertEqual(t.GetLabel(), 0) c0 = t.GetChildren()[0] self.assertEqual(c0.GetName(), 'Bit-1') self.assertEqual(c0.GetLabel(), 1) c1 = t.GetChildren()[1] self.assertEqual(c1.GetName(), 'Bit-1') self.assertEqual(c1.GetLabel(), 1) bv = ExplicitBitVect(2) bv.SetBit(0) vc = VectCollection() vc.AddVect(1, bv) bv = ExplicitBitVect(2) bv.SetBit(1) vc.AddVect(2, bv) r = t.ClassifyExample(['t', vc, 0]) self.assertEqual(r, 0) def test4(self): from rdkit.six.moves import cPickle gz = gzip.open( os.path.join(RDConfig.RDCodeDir, 'ML', 'DecTree', 'test_data', 'cdk2-few.pkl.gz'), 'rb') examples = cPickle.load(gz, encoding='Latin1') t = BuildSigTree(examples, 2, maxDepth=3) self.assertEqual(t.GetLabel(), 2181) self.assertEqual(t.GetChildren()[0].GetLabel(), 2861) self.assertEqual(t.GetChildren()[1].GetLabel(), 8182) def test_GenerateRandomEnsemble(self): ensemble = _GenerateRandomEnsemble(2, 4) self.assertEqual(len(ensemble), 2) self.assertTrue(all(r < 4 for r in ensemble)) ensemble = _GenerateRandomEnsemble(4, 4) self.assertEqual(len(ensemble), 4) self.assertTrue(all(r < 4 for r in ensemble)) ensemble = _GenerateRandomEnsemble(4, 40) self.assertEqual(len(ensemble), 4) self.assertTrue(all(r < 40 for r in ensemble)) if __name__ == '__main__': # pragma: nocover unittest.main()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/ML/DecTree/UnitTestSigTree.py", "copies": "4", "size": "4513", "license": "bsd-3-clause", "hash": -7371638601603785000, "line_mean": 24.9367816092, "line_max": 97, "alpha_frac": 0.6456902282, "autogenerated": false, "ratio": 2.863578680203046, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5509268908403047, "avg_score": null, "num_lines": null }
__doc__ = """hashlib module - A common interface to many hash functions. new(name, string='') - returns a new hash object implementing the given hash function; initializing the hash using the given string data. Named constructor functions are also available, these are much faster than using new(): md5(), sha1(), sha224(), sha256(), sha384(), and sha512() More algorithms may be available on your platform but the above are guaranteed to exist. See the algorithms_guaranteed and algorithms_available attributes to find out what algorithm names can be passed to new(). NOTE: If you want the adler32 or crc32 hash functions they are available in the zlib module. Choose your hash function wisely. Some have known collision weaknesses. sha384 and sha512 will be slow on 32 bit platforms. Hash objects have these methods: - update(arg): Update the hash object with the string arg. Repeated calls are equivalent to a single call with the concatenation of all the arguments. - digest(): Return the digest of the strings passed to the update() method so far. This may contain non-ASCII characters, including NUL bytes. - hexdigest(): Like digest() except the digest is returned as a string of double length, containing only hexadecimal digits. - copy(): Return a copy (clone) of the hash object. This can be used to efficiently compute the digests of strings that share a common initial substring. For example, to obtain the digest of the string 'Nobody inspects the spammish repetition': >>> import hashlib >>> m = hashlib.md5() >>> m.update("Nobody inspects") >>> m.update(" the spammish repetition") >>> m.digest() '\\xbbd\\x9c\\x83\\xdd\\x1e\\xa5\\xc9\\xd9\\xde\\xc9\\xa1\\x8d\\xf0\\xff\\xe9' More condensed: >>> hashlib.sha224("Nobody inspects the spammish repetition").hexdigest() 'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2' """ # This tuple and __get_builtin_constructor() must be modified if a new # always available algorithm is added. __always_supported = ('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512') algorithms_guaranteed = set(__always_supported) algorithms_available = set(__always_supported) algorithms = __always_supported __all__ = __always_supported + ('new', 'algorithms_guaranteed', 'algorithms_available', 'algorithms', 'pbkdf2_hmac') def __get_builtin_constructor(name): try: if name in ('SHA1', 'sha1'): import _sha return _sha.new elif name in ('MD5', 'md5'): import _md5 return _md5.new elif name in ('SHA256', 'sha256', 'SHA224', 'sha224'): import _sha256 bs = name[3:] if bs == '256': return _sha256.sha256 elif bs == '224': return _sha256.sha224 elif name in ('SHA512', 'sha512', 'SHA384', 'sha384'): import _sha512 bs = name[3:] if bs == '512': return _sha512.sha512 elif bs == '384': return _sha512.sha384 except ImportError: pass # no extension module, this hash is unsupported. raise ValueError('unsupported hash type ' + name) def __get_openssl_constructor(name): try: f = getattr(_hashlib, 'openssl_' + name) # Allow the C module to raise ValueError. The function will be # defined but the hash not actually available thanks to OpenSSL. f() # Use the C function directly (very fast) return f except (AttributeError, ValueError): return __get_builtin_constructor(name) def __py_new(name, string=''): """new(name, string='') - Return a new hashing object using the named algorithm; optionally initialized with a string. """ return __get_builtin_constructor(name)(string) def __hash_new(name, string=''): """new(name, string='') - Return a new hashing object using the named algorithm; optionally initialized with a string. """ try: return _hashlib.new(name, string) except ValueError: # If the _hashlib module (OpenSSL) doesn't support the named # hash, try using our builtin implementations. # This allows for SHA224/256 and SHA384/512 support even though # the OpenSSL library prior to 0.9.8 doesn't provide them. return __get_builtin_constructor(name)(string) try: import _hashlib new = __hash_new __get_hash = __get_openssl_constructor algorithms_available = algorithms_available.union( _hashlib.openssl_md_meth_names) except ImportError: new = __py_new __get_hash = __get_builtin_constructor for __func_name in __always_supported: # try them all, some may not work due to the OpenSSL # version not supporting that algorithm. try: globals()[__func_name] = __get_hash(__func_name) except ValueError: import logging logging.exception('code for hash %s was not found.', __func_name) try: # OpenSSL's PKCS5_PBKDF2_HMAC requires OpenSSL 1.0+ with HMAC and SHA from _hashlib import pbkdf2_hmac except ImportError: import binascii import struct _trans_5C = b"".join(chr(x ^ 0x5C) for x in range(256)) _trans_36 = b"".join(chr(x ^ 0x36) for x in range(256)) def pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None): """Password based key derivation function 2 (PKCS #5 v2.0) This Python implementations based on the hmac module about as fast as OpenSSL's PKCS5_PBKDF2_HMAC for short passwords and much faster for long passwords. """ if not isinstance(hash_name, str): raise TypeError(hash_name) if not isinstance(password, (bytes, bytearray)): password = bytes(buffer(password)) if not isinstance(salt, (bytes, bytearray)): salt = bytes(buffer(salt)) # Fast inline HMAC implementation inner = new(hash_name) outer = new(hash_name) blocksize = getattr(inner, 'block_size', 64) if len(password) > blocksize: password = new(hash_name, password).digest() password = password + b'\x00' * (blocksize - len(password)) inner.update(password.translate(_trans_36)) outer.update(password.translate(_trans_5C)) def prf(msg, inner=inner, outer=outer): # PBKDF2_HMAC uses the password as key. We can re-use the same # digest objects and just update copies to skip initialization. icpy = inner.copy() ocpy = outer.copy() icpy.update(msg) ocpy.update(icpy.digest()) return ocpy.digest() if iterations < 1: raise ValueError(iterations) if dklen is None: dklen = outer.digest_size if dklen < 1: raise ValueError(dklen) hex_format_string = "%%0%ix" % (new(hash_name).digest_size * 2) dkey = b'' loop = 1 while len(dkey) < dklen: prev = prf(salt + struct.pack(b'>I', loop)) rkey = int(binascii.hexlify(prev), 16) for i in xrange(iterations - 1): prev = prf(prev) rkey ^= int(binascii.hexlify(prev), 16) loop += 1 dkey += binascii.unhexlify(hex_format_string % rkey) return dkey[:dklen] # Cleanup locals() del __always_supported, __func_name, __get_hash del __py_new, __hash_new, __get_openssl_constructor
{ "repo_name": "johnkeepmoving/oss-ftp", "path": "python27/win32/Lib/hashlib.py", "copies": "51", "size": "7842", "license": "mit", "hash": 1618744083514250200, "line_mean": 34.4841628959, "line_max": 84, "alpha_frac": 0.6169344555, "autogenerated": false, "ratio": 3.9466532460996477, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00010646792653713069, "num_lines": 221 }
""" for the moment this is using Francois Fleuret's cmim library to do the feature selection Reference: F. Fleuret "Fast Binary Feature Selection with Conditional Mutual Information", J. Machine Learn. Res. 5, 1531-1535 (2004) """ from rdkit import RDConfig from rdkit import DataStructs import tempfile import os import rdFeatSelect def SelectFeatures(examples,nFeatsToPick,bvCol=1): res = rdFeatSelect.selectCMIM(examples,nFeatsToPick) if -1 in res: res = list(res) res = tuple(res[:res.index(-1)]) return res def _SelectFeatures(examples,nFeatsToPick,bvCol=1): nPts = len(examples) nFeats = examples[0][bvCol].GetNumBits() exe = os.path.join(RDConfig.RDBaseDir,'External','cmim-1.0','cmim.exe') if not os.path.exists(exe): raise ValueError,'could not find cmim executable %s'%exe inFname = tempfile.mktemp('.dat') outFname = inFname + '.out' inF = open(inFname,'w+') print >>inF,nPts,nFeats for row in examples: print >>inF,row[bvCol].ToBitString() print >>inF,row[-1] inF.close() inF = None os.spawnlp(os.P_WAIT,exe,exe,'--nb-features',str(nFeatsToPick),'--train', inFname,outFname) inD = open(outFname,'r') inL = inD.readline() nCreated = int(inL) inL = inD.readline() res = [] splitL = inL.split(' ') for i in range(nFeatsToPick): res.append(int(splitL[i])) inD.close() inD = None os.unlink(inFname) os.unlink(outFname) return res
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/ML/FeatureSelect/CMIM.py", "copies": "2", "size": "1551", "license": "bsd-3-clause", "hash": 7530698759182581000, "line_mean": 24.0161290323, "line_max": 75, "alpha_frac": 0.6718246293, "autogenerated": false, "ratio": 2.9154135338345863, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9358598720803569, "avg_score": 0.04572788846620349, "num_lines": 62 }
class LazySig: def __init__(self,computeFunc,sigSize): """ computeFunc should take a single argument, the integer bit id to compute """ if sigSize<=0: raise ValueError('zero size') self.computeFunc=computeFunc self.size=sigSize self._cache={} def __len__(self): """ >>> obj = LazySig(lambda x:1,10) >>> len(obj) 10 """ return self.size def __getitem__(self,which): """ >>> obj = LazySig(lambda x:x,10) >>> obj[1] 1 >>> obj[-1] 9 >>> try: ... obj[10] ... except IndexError: ... 1 ... else: ... 0 1 >>> try: ... obj[-10] ... except IndexError: ... 1 ... else: ... 0 1 """ if which<0: # handle negative indices which = self.size+which if which<=0 or which>=self.size: raise IndexError('bad index') if which in self._cache: v= self._cache[which] else: v = self.computeFunc(which) self._cache[which]=v return v #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "adalke/rdkit", "path": "rdkit/DataStructs/LazySignature.py", "copies": "1", "size": "1391", "license": "bsd-3-clause", "hash": 843844296093386600, "line_mean": 15.9634146341, "line_max": 65, "alpha_frac": 0.4996405464, "autogenerated": false, "ratio": 3.5850515463917527, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4584692092791752, "avg_score": null, "num_lines": null }
class LazySig: def __init__(self, computeFunc, sigSize): """ computeFunc should take a single argument, the integer bit id to compute """ if sigSize <= 0: raise ValueError('zero size') self.computeFunc = computeFunc self.size = sigSize self._cache = {} def __len__(self): """ >>> obj = LazySig(lambda x:1,10) >>> len(obj) 10 """ return self.size def __getitem__(self, which): """ >>> obj = LazySig(lambda x:x,10) >>> obj[1] 1 >>> obj[-1] 9 >>> try: ... obj[10] ... except IndexError: ... 1 ... else: ... 0 1 >>> try: ... obj[-10] ... except IndexError: ... 1 ... else: ... 0 1 """ if which < 0: # handle negative indices which = self.size + which if which <= 0 or which >= self.size: raise IndexError('bad index') if which in self._cache: v = self._cache[which] else: v = self.computeFunc(which) self._cache[which] = v return v # ------------------------------------ # # doctest boilerplate # def _runDoctests(verbose=None): # pragma: nocover import sys import doctest failed, _ = doctest.testmod(optionflags=doctest.ELLIPSIS, verbose=verbose) sys.exit(failed) if __name__ == '__main__': # pragma: nocover _runDoctests()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/DataStructs/LazySignature.py", "copies": "12", "size": "1472", "license": "bsd-3-clause", "hash": -49117080255145340, "line_mean": 16.734939759, "line_max": 76, "alpha_frac": 0.5149456522, "autogenerated": false, "ratio": 3.607843137254902, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import print_function import os, sys import io import unittest from rdkit.six.moves import cPickle from rdkit import RDConfig from rdkit import Chem from rdkit.Chem import ChemicalFeatures from rdkit.Geometry import rdGeometry as geom def feq(v1, v2, tol2=1e-4): return abs(v1 - v2) <= tol2 def lstFeq(l1, l2, tol=1.e-4): if (len(l1) != len(l2)): return 0 for i in range(len(l1)): if not feq(l1[i], l2[i], tol): return 0 return 1 def ptFeq(pt1, pt2, tol=0.0001): dist = pt1.Distance(pt2) return feq(dist, 0.0, tol) class TestCase(unittest.TestCase): def setUp(self): pass def testBasic(self): ffeat = ChemicalFeatures.FreeChemicalFeature() ffeat.SetId(123) pos = ffeat.GetId() self.assertTrue(pos == 123) ffeat.SetFamily("HBondDonor") self.assertTrue(ffeat.GetFamily() == "HBondDonor") ffeat.SetPos(geom.Point3D(1.0, 2.0, 3.0)) pos = ffeat.GetPos() self.assertTrue(ptFeq(pos, geom.Point3D(1.0, 2.0, 3.0))) ffeat.SetType("HBondDonor1") self.assertTrue(ffeat.GetType() == "HBondDonor1") ffeat = ChemicalFeatures.FreeChemicalFeature("HBondDonor", "HBondDonor1", geom.Point3D(1.0, 2.0, 3.0)) self.assertTrue(ffeat.GetId() == -1) self.assertTrue(ffeat.GetFamily() == "HBondDonor") self.assertTrue(ffeat.GetType() == "HBondDonor1") ffeat = ChemicalFeatures.FreeChemicalFeature("HBondDonor", "HBondDonor1", geom.Point3D(1.0, 2.0, 3.0), id=123) self.assertTrue(ffeat.GetId() == 123) self.assertTrue(ffeat.GetFamily() == "HBondDonor") self.assertTrue(ffeat.GetType() == "HBondDonor1") pos = ffeat.GetPos() self.assertTrue(ptFeq(pos, geom.Point3D(1.0, 2.0, 3.0))) ffeat = ChemicalFeatures.FreeChemicalFeature(id=123, type="HBondDonor1", family="HBondDonor", loc=geom.Point3D(1.0, 2.0, 3.0)) self.assertTrue(ffeat.GetId() == 123) self.assertTrue(ffeat.GetFamily() == "HBondDonor") self.assertTrue(ffeat.GetType() == "HBondDonor1") pos = ffeat.GetPos() self.assertTrue(ptFeq(pos, geom.Point3D(1.0, 2.0, 3.0))) def testPickle(self): ffeat = ChemicalFeatures.FreeChemicalFeature("HBondDonor", "HBondDonor1", geom.Point3D(1.0, 2.0, 3.0), 123) pkl = cPickle.dumps(ffeat) ffeat2 = cPickle.loads(pkl, encoding='bytes') self.assertTrue(ffeat2.GetId() == ffeat.GetId()) self.assertTrue(ffeat2.GetFamily() == ffeat.GetFamily()) self.assertTrue(ffeat2.GetType() == ffeat.GetType()) self.assertTrue(ptFeq(ffeat2.GetPos(), ffeat.GetPos())) # Check that the old pickled versions have not been broken inTF = open( os.path.join(RDConfig.RDBaseDir, 'Code/ChemicalFeatures/Wrap/testData/feat.pkl'), 'r') buf = inTF.read().replace('\r\n', '\n').encode('utf-8') inTF.close() inF = io.BytesIO(buf) ffeat2 = cPickle.load(inF, encoding='bytes') # this version (1.0) does not have an id in the byte stream self.assertTrue(ffeat2.GetFamily() == ffeat.GetFamily()) self.assertTrue(ffeat2.GetType() == ffeat.GetType()) self.assertTrue(ptFeq(ffeat2.GetPos(), ffeat.GetPos())) # Test the new version also has the id and works as expected # uncomment the following to generate (overrwrite) new version of pickled # data file #cPickle.dump(ffeat,file(os.path.join(RDConfig.RDBaseDir, 'Code/ChemicalFeatures/Wrap/testData/featv2.pkl'),'wb+')) inTF = open( os.path.join(RDConfig.RDBaseDir, 'Code/ChemicalFeatures/Wrap/testData/featv2.pkl'), 'r') buf = inTF.read().replace('\r\n', '\n').encode('utf-8') inTF.close() inF = io.BytesIO(buf) ffeat2 = cPickle.load(inF, encoding='bytes') self.assertTrue(ffeat2.GetId() == ffeat.GetId()) self.assertTrue(ffeat2.GetFamily() == ffeat.GetFamily()) self.assertTrue(ffeat2.GetType() == ffeat.GetType()) self.assertTrue(ptFeq(ffeat2.GetPos(), ffeat.GetPos())) if __name__ == '__main__': print("Testing ChemicalFeatures Wrapper code:") unittest.main()
{ "repo_name": "rvianello/rdkit", "path": "Code/ChemicalFeatures/Wrap/testFeatures.py", "copies": "5", "size": "4279", "license": "bsd-3-clause", "hash": 3779023811508788000, "line_mean": 35.2627118644, "line_max": 119, "alpha_frac": 0.6375321337, "autogenerated": false, "ratio": 2.986043265875785, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0061079062013230856, "num_lines": 118 }
from __future__ import print_function import os,sys import unittest from rdkit.six.moves import cPickle from rdkit import RDConfig from rdkit import Chem from rdkit.Chem import ChemicalFeatures from rdkit.Geometry import rdGeometry as geom def feq(v1,v2,tol2=1e-4): return abs(v1-v2)<=tol2 def lstFeq(l1, l2, tol=1.e-4): if (len(l1) != len(l2)): return 0 for i in range(len(l1)): if not feq(l1[i], l2[i], tol): return 0 return 1 def ptFeq(pt1, pt2, tol=0.0001): dist = pt1.Distance(pt2) return feq(dist, 0.0, tol) class TestCase(unittest.TestCase): def setUp(self): pass def testBasic(self): ffeat = ChemicalFeatures.FreeChemicalFeature() ffeat.SetId(123) pos = ffeat.GetId() self.assertTrue(pos == 123) ffeat.SetFamily("HBondDonor") self.assertTrue(ffeat.GetFamily() == "HBondDonor") ffeat.SetPos(geom.Point3D(1.0, 2.0, 3.0)) pos = ffeat.GetPos() self.assertTrue(ptFeq(pos, geom.Point3D(1.0, 2.0, 3.0))) ffeat.SetType("HBondDonor1") self.assertTrue(ffeat.GetType() == "HBondDonor1") ffeat = ChemicalFeatures.FreeChemicalFeature("HBondDonor", "HBondDonor1", geom.Point3D(1.0, 2.0, 3.0)) self.assertTrue(ffeat.GetId() == -1) self.assertTrue(ffeat.GetFamily() == "HBondDonor") self.assertTrue(ffeat.GetType() == "HBondDonor1") ffeat = ChemicalFeatures.FreeChemicalFeature("HBondDonor", "HBondDonor1", geom.Point3D(1.0, 2.0, 3.0),id=123) self.assertTrue(ffeat.GetId() == 123) self.assertTrue(ffeat.GetFamily() == "HBondDonor") self.assertTrue(ffeat.GetType() == "HBondDonor1") pos = ffeat.GetPos() self.assertTrue(ptFeq(pos, geom.Point3D(1.0, 2.0, 3.0))) ffeat = ChemicalFeatures.FreeChemicalFeature(id = 123, type="HBondDonor1", family="HBondDonor", loc=geom.Point3D(1.0, 2.0, 3.0)) self.assertTrue(ffeat.GetId() == 123) self.assertTrue(ffeat.GetFamily() == "HBondDonor") self.assertTrue(ffeat.GetType() == "HBondDonor1") pos = ffeat.GetPos() self.assertTrue(ptFeq(pos, geom.Point3D(1.0, 2.0, 3.0))) def testPickle(self): ffeat = ChemicalFeatures.FreeChemicalFeature("HBondDonor", "HBondDonor1", geom.Point3D(1.0, 2.0, 3.0),123) pkl = cPickle.dumps(ffeat) ffeat2 = cPickle.loads(pkl, encoding='bytes') self.assertTrue(ffeat2.GetId()==ffeat.GetId()); self.assertTrue(ffeat2.GetFamily()==ffeat.GetFamily()) self.assertTrue(ffeat2.GetType()==ffeat.GetType()) self.assertTrue(ptFeq(ffeat2.GetPos(),ffeat.GetPos())) # Check that the old pickled versions have not been broken inF = open(os.path.join(RDConfig.RDBaseDir, 'Code/ChemicalFeatures/Wrap/testData/feat.pkl'),'rb') ffeat2=cPickle.load(inF, encoding='bytes') # this version (1.0) does not have an id in the byte stream self.assertTrue(ffeat2.GetFamily()==ffeat.GetFamily()) self.assertTrue(ffeat2.GetType()==ffeat.GetType()) self.assertTrue(ptFeq(ffeat2.GetPos(),ffeat.GetPos())) # Test the new version also has the id and works as expected # uncomment the following to generate (overrwrite) new version of pickled # data file #cPickle.dump(ffeat,file(os.path.join(RDConfig.RDBaseDir, 'Code/ChemicalFeatures/Wrap/testData/featv2.pkl'),'wb+')) inF = open(os.path.join(RDConfig.RDBaseDir, 'Code/ChemicalFeatures/Wrap/testData/featv2.pkl'),'rb') ffeat2=cPickle.load(inF, encoding='bytes') self.assertTrue(ffeat2.GetId()==ffeat.GetId()); self.assertTrue(ffeat2.GetFamily()==ffeat.GetFamily()) self.assertTrue(ffeat2.GetType()==ffeat.GetType()) self.assertTrue(ptFeq(ffeat2.GetPos(),ffeat.GetPos())) if __name__ == '__main__': print("Testing ChemicalFeatures Wrapper code:") unittest.main()
{ "repo_name": "AlexanderSavelyev/rdkit", "path": "Code/ChemicalFeatures/Wrap/testFeatures.py", "copies": "1", "size": "4027", "license": "bsd-3-clause", "hash": 608325846380943700, "line_mean": 37.7211538462, "line_max": 134, "alpha_frac": 0.6481251552, "autogenerated": false, "ratio": 2.9653902798232696, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.41135154350232694, "avg_score": null, "num_lines": null }
""" Import all RDKit chemistry modules """ from rdkit import rdBase from rdkit import RDConfig from rdkit import DataStructs from rdkit.Geometry import rdGeometry from rdkit.Chem import * from rdkit.Chem.rdPartialCharges import * from rdkit.Chem.rdDepictor import * from rdkit.Chem.rdForceFieldHelpers import * from rdkit.Chem.ChemicalFeatures import * from rdkit.Chem.rdDistGeom import * from rdkit.Chem.rdMolAlign import * from rdkit.Chem.rdMolTransforms import * from rdkit.Chem.rdShapeHelpers import * from rdkit.Chem.rdChemReactions import * from rdkit.Chem.rdReducedGraphs import * try: from rdkit.Chem.rdSLNParse import * except: pass from rdkit.Chem.rdMolDescriptors import * from rdkit.Chem.rdqueries import * from rdkit import ForceField Mol.Compute2DCoords = Compute2DCoords Mol.ComputeGasteigerCharges = ComputeGasteigerCharges import numpy, os from rdkit.RDLogger import logger logger = logger() import warnings def TransformMol(mol,tform,confId=-1,keepConfs=False): """ Applies the transformation (usually a 4x4 double matrix) to a molecule if keepConfs is False then all but that conformer are removed """ refConf = mol.GetConformer(confId) TransformConformer(refConf,tform) if not keepConfs: if confId==-1: confId=0 allConfIds = [c.GetId() for c in mol.GetConformers()] for id in allConfIds: if not id==confId: mol.RemoveConformer(id) #reset the conf Id to zero since there is only one conformer left mol.GetConformer(confId).SetId(0) def ComputeMolShape(mol,confId=-1,boxDim=(20,20,20),spacing=0.5,**kwargs): """ returns a grid representation of the molecule's shape """ res = rdGeometry.UniformGrid3D(boxDim[0],boxDim[1],boxDim[2],spacing=spacing) EncodeShape(mol,res,confId,**kwargs) return res def ComputeMolVolume(mol,confId=-1,gridSpacing=0.2,boxMargin=2.0): """ Calculates the volume of a particular conformer of a molecule based on a grid-encoding of the molecular shape. """ mol = rdchem.Mol(mol) conf = mol.GetConformer(confId) CanonicalizeConformer(conf) box = ComputeConfBox(conf) sideLen = ( box[1].x-box[0].x + 2*boxMargin, \ box[1].y-box[0].y + 2*boxMargin, \ box[1].z-box[0].z + 2*boxMargin ) shape = rdGeometry.UniformGrid3D(sideLen[0],sideLen[1],sideLen[2], spacing=gridSpacing) EncodeShape(mol,shape,confId,ignoreHs=False,vdwScale=1.0) voxelVol = gridSpacing**3 occVect = shape.GetOccupancyVect() voxels = [1 for x in occVect if x==3] vol = voxelVol*len(voxels) return vol def GenerateDepictionMatching2DStructure(mol,reference,confId=-1, referencePattern=None, acceptFailure=False, **kwargs): """ Generates a depiction for a molecule where a piece of the molecule is constrained to have the same coordinates as a reference. This is useful for, for example, generating depictions of SAR data sets so that the cores of the molecules are all oriented the same way. Arguments: - mol: the molecule to be aligned, this will come back with a single conformer. - reference: a molecule with the reference atoms to align to; this should have a depiction. - confId: (optional) the id of the reference conformation to use - referencePattern: (optional) an optional molecule to be used to generate the atom mapping between the molecule and the reference. - acceptFailure: (optional) if True, standard depictions will be generated for molecules that don't have a substructure match to the reference; if False, a ValueError will be raised """ if reference and referencePattern: if not reference.GetNumAtoms(onlyExplicit=True)==referencePattern.GetNumAtoms(onlyExplicit=True): raise ValueError('When a pattern is provided, it must have the same number of atoms as the reference') referenceMatch = reference.GetSubstructMatch(referencePattern) if not referenceMatch: raise ValueError("Reference does not map to itself") else: referenceMatch = range(reference.GetNumAtoms(onlyExplicit=True)) if referencePattern: match = mol.GetSubstructMatch(referencePattern) else: match = mol.GetSubstructMatch(reference) if not match: if not acceptFailure: raise ValueError('Substructure match with reference not found.') else: coordMap={} else: conf = reference.GetConformer() coordMap={} for i,idx in enumerate(match): pt3 = conf.GetAtomPosition(referenceMatch[i]) pt2 = rdGeometry.Point2D(pt3.x,pt3.y) coordMap[idx] = pt2 Compute2DCoords(mol,clearConfs=True,coordMap=coordMap,canonOrient=False) def GenerateDepictionMatching3DStructure(mol,reference,confId=-1, **kwargs): """ Generates a depiction for a molecule where a piece of the molecule is constrained to have coordinates similar to those of a 3D reference structure. Arguments: - mol: the molecule to be aligned, this will come back with a single conformer. - reference: a molecule with the reference atoms to align to; this should have a depiction. - confId: (optional) the id of the reference conformation to use """ nAts = mol.GetNumAtoms() dm = [] conf = reference.GetConformer(confId) for i in range(nAts): pi = conf.GetAtomPosition(i) #npi.z=0 for j in range(i+1,nAts): pj = conf.GetAtomPosition(j) #pj.z=0 dm.append((pi-pj).Length()) dm = numpy.array(dm) Compute2DCoordsMimicDistmat(mol,dm,**kwargs) def GetBestRMS(ref,probe,refConfId=-1,probeConfId=-1,maps=None): """ Returns the optimal RMS for aligning two molecules, taking symmetry into account. As a side-effect, the probe molecule is left in the aligned state. Arguments: - ref: the reference molecule - probe: the molecule to be aligned to the reference - refConfId: (optional) reference conformation to use - probeConfId: (optional) probe conformation to use - maps: (optional) a list of lists of (probeAtomId,refAtomId) tuples with the atom-atom mappings of the two molecules. If not provided, these will be generated using a substructure search. Note: This function will attempt to align all permutations of matching atom orders in both molecules, for some molecules it will lead to 'combinatorial explosion' especially if hydrogens are present. Use 'rdkit.Chem.AllChem.AlignMol' to align molecules without changing the atom order. """ if not maps: matches = ref.GetSubstructMatches(probe,uniquify=False) if not matches: raise ValueError('mol %s does not match mol %s'%(ref.GetProp('_Name'), probe.GetProp('_Name'))) if len(matches) > 1e6: warnings.warn("{} matches detected for molecule {}, this may lead to a performance slowdown.".format(len(matches), probe.GetProp('_Name'))) maps = [list(enumerate(match)) for match in matches] bestRMS=1000. for amap in maps: rms=AlignMol(probe,ref,probeConfId,refConfId,atomMap=amap) if rms<bestRMS: bestRMS=rms bestMap = amap # finally repeate the best alignment : if bestMap != amap: AlignMol(probe,ref,probeConfId,refConfId,atomMap=bestMap) return bestRMS def GetConformerRMS(mol,confId1,confId2,atomIds=None,prealigned=False): """ Returns the RMS between two conformations. By default, the conformers will be aligned to the first conformer of the molecule (i.e. the reference) before RMS calculation and, as a side-effect, will be left in the aligned state. Arguments: - mol: the molecule - confId1: the id of the first conformer - confId2: the id of the second conformer - atomIds: (optional) list of atom ids to use a points for alingment - defaults to all atoms - prealigned: (optional) by default the conformers are assumed be unaligned and will therefore be aligned to the first conformer """ # align the conformers if necessary # Note: the reference conformer is always the first one if not prealigned: if atomIds: AlignMolConformers(mol, confIds=[confId1,confId2], atomIds=atomIds) else: AlignMolConformers(mol, confIds=[confId1,confId2]) # calculate the RMS between the two conformations conf1 = mol.GetConformer(id=confId1) conf2 = mol.GetConformer(id=confId2) ssr = 0 for i in range(mol.GetNumAtoms()): d = conf1.GetAtomPosition(i).Distance(conf2.GetAtomPosition(i)) ssr += d*d ssr /= mol.GetNumAtoms() return numpy.sqrt(ssr) def GetConformerRMSMatrix(mol,atomIds=None,prealigned=False): """ Returns the RMS matrix of the conformers of a molecule. As a side-effect, the conformers will be aligned to the first conformer (i.e. the reference) and will left in the aligned state. Arguments: - mol: the molecule - atomIds: (optional) list of atom ids to use a points for alingment - defaults to all atoms - prealigned: (optional) by default the conformers are assumed be unaligned and will therefore be aligned to the first conformer Note that the returned RMS matrix is symmetrically, i.e. it is the lower half of the matrix, e.g. for 5 conformers: rmsmatrix = [ a, b, c, d, e, f, g, h, i, j] This way it can be directly used as distance matrix in e.g. Butina clustering. """ # if necessary, align the conformers # Note: the reference conformer is always the first one rmsvals = [] if not prealigned: if atomIds: AlignMolConformers(mol, atomIds=atomIds, RMSlist=rmsvals) else: AlignMolConformers(mol, RMSlist=rmsvals) else: # already prealigned for i in range(1, mol.GetNumConformers()): rmsvals.append(GetConformerRMS(mol, 0, i, atomIds=atomIds, prealigned=prealigned)) # loop over the conformations (except the reference one) cmat = [] for i in range(1, mol.GetNumConformers()): cmat.append(rmsvals[i-1]) for j in range(1,i): cmat.append(GetConformerRMS(mol, i, j, atomIds=atomIds, prealigned=True)) return cmat def EnumerateLibraryFromReaction(reaction,sidechainSets) : """ Returns a generator for the virtual library defined by a reaction and a sequence of sidechain sets >>> from rdkit import Chem >>> from rdkit.Chem import AllChem >>> s1=[Chem.MolFromSmiles(x) for x in ('NC','NCC')] >>> s2=[Chem.MolFromSmiles(x) for x in ('OC=O','OC(=O)C')] >>> rxn = AllChem.ReactionFromSmarts('[O:2]=[C:1][OH].[N:3]>>[O:2]=[C:1][N:3]') >>> r = AllChem.EnumerateLibraryFromReaction(rxn,[s2,s1]) >>> [Chem.MolToSmiles(x[0]) for x in list(r)] ['CNC=O', 'CCNC=O', 'CNC(C)=O', 'CCNC(C)=O'] Note that this is all done in a lazy manner, so "infinitely" large libraries can be done without worrying about running out of memory. Your patience will run out first: Define a set of 10000 amines: >>> amines = (Chem.MolFromSmiles('N'+'C'*x) for x in range(10000)) ... a set of 10000 acids >>> acids = (Chem.MolFromSmiles('OC(=O)'+'C'*x) for x in range(10000)) ... now the virtual library (1e8 compounds in principle): >>> r = AllChem.EnumerateLibraryFromReaction(rxn,[acids,amines]) ... look at the first 4 compounds: >>> [Chem.MolToSmiles(next(r)[0]) for x in range(4)] ['NC=O', 'CNC=O', 'CCNC=O', 'CCCNC=O'] """ if len(sidechainSets) != reaction.GetNumReactantTemplates(): raise ValueError('%d sidechains provided, %d required' % (len(sidechainSets),reaction.GetNumReactantTemplates())) def _combiEnumerator(items,depth=0): for item in items[depth]: if depth+1 < len(items): v = _combiEnumerator(items,depth+1) for entry in v: l=[item] l.extend(entry) yield l else: yield [item] for chains in _combiEnumerator(sidechainSets): prodSets = reaction.RunReactants(chains) for prods in prodSets: yield prods def ConstrainedEmbed(mol,core,useTethers=True,coreConfId=-1, randomseed=2342,getForceField=UFFGetMoleculeForceField,**kwargs): """ generates an embedding of a molecule where part of the molecule is constrained to have particular coordinates Arguments - mol: the molecule to embed - core: the molecule to use as a source of constraints - useTethers: (optional) if True, the final conformation will be optimized subject to a series of extra forces that pull the matching atoms to the positions of the core atoms. Otherwise simple distance constraints based on the core atoms will be used in the optimization. - coreConfId: (optional) id of the core conformation to use - randomSeed: (optional) seed for the random number generator An example, start by generating a template with a 3D structure: >>> from rdkit.Chem import AllChem >>> template = AllChem.MolFromSmiles("c1nn(Cc2ccccc2)cc1") >>> AllChem.EmbedMolecule(template) 0 >>> AllChem.UFFOptimizeMolecule(template) 0 Here's a molecule: >>> mol = AllChem.MolFromSmiles("c1nn(Cc2ccccc2)cc1-c3ccccc3") Now do the constrained embedding >>> newmol=AllChem.ConstrainedEmbed(mol, template) Demonstrate that the positions are the same: >>> newp=newmol.GetConformer().GetAtomPosition(0) >>> molp=mol.GetConformer().GetAtomPosition(0) >>> list(newp-molp)==[0.0,0.0,0.0] True >>> newp=newmol.GetConformer().GetAtomPosition(1) >>> molp=mol.GetConformer().GetAtomPosition(1) >>> list(newp-molp)==[0.0,0.0,0.0] True """ match = mol.GetSubstructMatch(core) if not match: raise ValueError("molecule doesn't match the core") coordMap={} coreConf = core.GetConformer(coreConfId) for i,idxI in enumerate(match): corePtI = coreConf.GetAtomPosition(i) coordMap[idxI]=corePtI ci = EmbedMolecule(mol,coordMap=coordMap,randomSeed=randomseed,**kwargs) if ci<0: raise ValueError('Could not embed molecule.') algMap=[(j,i) for i,j in enumerate(match)] if not useTethers: # clean up the conformation ff = getForceField(mol,confId=0) for i,idxI in enumerate(match): for j in range(i+1,len(match)): idxJ = match[j] d = coordMap[idxI].Distance(coordMap[idxJ]) ff.AddDistanceConstraint(idxI,idxJ,d,d,100.) ff.Initialize() n=4 more=ff.Minimize() while more and n: more=ff.Minimize() n-=1 # rotate the embedded conformation onto the core: rms =AlignMol(mol,core,atomMap=algMap) else: # rotate the embedded conformation onto the core: rms = AlignMol(mol,core,atomMap=algMap) ff = getForceField(mol,confId=0) conf = core.GetConformer() for i in range(core.GetNumAtoms()): p =conf.GetAtomPosition(i) pIdx=ff.AddExtraPoint(p.x,p.y,p.z,fixed=True)-1 ff.AddDistanceConstraint(pIdx,match[i],0,0,100.) ff.Initialize() n=4 more=ff.Minimize(energyTol=1e-4,forceTol=1e-3) while more and n: more=ff.Minimize(energyTol=1e-4,forceTol=1e-3) n-=1 # realign rms = AlignMol(mol,core,atomMap=algMap) mol.SetProp('EmbedRMS',str(rms)) return mol def AssignBondOrdersFromTemplate(refmol, mol): """ assigns bond orders to a molecule based on the bond orders in a template molecule Arguments - refmol: the template molecule - mol: the molecule to assign bond orders to An example, start by generating a template from a SMILES and read in the PDB structure of the molecule >>> from rdkit.Chem import AllChem >>> template = AllChem.MolFromSmiles("CN1C(=NC(C1=O)(c2ccccc2)c3ccccc3)N") >>> mol = AllChem.MolFromPDBFile(os.path.join(RDConfig.RDCodeDir, 'Chem', 'test_data', '4DJU_lig.pdb')) >>> len([1 for b in template.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 8 >>> len([1 for b in mol.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 22 Now assign the bond orders based on the template molecule >>> newMol = AllChem.AssignBondOrdersFromTemplate(template, mol) >>> len([1 for b in newMol.GetBonds() if b.GetBondTypeAsDouble() == 1.0]) 8 Note that the template molecule should have no explicit hydrogens else the algorithm will fail. It also works if there are different formal charges (this was github issue 235): >>> template=AllChem.MolFromSmiles('CN(C)C(=O)Cc1ccc2c(c1)NC(=O)c3ccc(cc3N2)c4ccc(c(c4)OC)[N+](=O)[O-]') >>> mol = AllChem.MolFromMolFile(os.path.join(RDConfig.RDCodeDir, 'Chem', 'test_data', '4FTR_lig.mol')) >>> AllChem.MolToSmiles(mol) 'COC1CC(C2CCC3C(O)NC4CC(CC(O)N(C)C)CCC4NC3C2)CCC1N(O)O' >>> newMol = AllChem.AssignBondOrdersFromTemplate(template, mol) >>> AllChem.MolToSmiles(newMol) 'COc1cc(-c2ccc3c(c2)Nc2ccc(CC(=O)N(C)C)cc2NC3=O)ccc1[N+](=O)[O-]' """ refmol2 = rdchem.Mol(refmol) mol2 = rdchem.Mol(mol) # do the molecules match already? matching = mol2.GetSubstructMatch(refmol2) if not matching: # no, they don't match # check if bonds of mol are SINGLE for b in mol2.GetBonds(): if b.GetBondType() != BondType.SINGLE: b.SetBondType(BondType.SINGLE) b.SetIsAromatic(False) # set the bonds of mol to SINGLE for b in refmol2.GetBonds(): b.SetBondType(BondType.SINGLE) b.SetIsAromatic(False) # set atom charges to zero; for a in refmol2.GetAtoms(): a.SetFormalCharge(0) for a in mol2.GetAtoms(): a.SetFormalCharge(0) matching = mol2.GetSubstructMatches(refmol2, uniquify=False) # do the molecules match now? if matching: if len(matching) > 1: logger.warning("More than one matching pattern found - picking one") matching = matching[0] # apply matching: set bond properties for b in refmol.GetBonds(): atom1 = matching[b.GetBeginAtomIdx()] atom2 = matching[b.GetEndAtomIdx()] b2 = mol2.GetBondBetweenAtoms(atom1, atom2) b2.SetBondType(b.GetBondType()) b2.SetIsAromatic(b.GetIsAromatic()) # apply matching: set atom properties for a in refmol.GetAtoms(): a2 = mol2.GetAtomWithIdx(matching[a.GetIdx()]) a2.SetHybridization(a.GetHybridization()) a2.SetIsAromatic(a.GetIsAromatic()) a2.SetNumExplicitHs(a.GetNumExplicitHs()) a2.SetFormalCharge(a.GetFormalCharge()) SanitizeMol(mol2) if hasattr(mol2, '__sssAtoms'): mol2.__sssAtoms = None # we don't want all bonds highlighted else: raise ValueError("No matching found") return mol2 #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/Chem/AllChem.py", "copies": "1", "size": "19475", "license": "bsd-3-clause", "hash": 264373935059233470, "line_mean": 36.2370936902, "line_max": 145, "alpha_frac": 0.6744544288, "autogenerated": false, "ratio": 3.3393347050754456, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45137891338754454, "avg_score": null, "num_lines": null }
import os from rdkit.six import iteritems from rdkit.Chem.Draw.MolDrawing import MolDrawing,DrawingOptions from rdkit.Chem.Draw.rdMolDraw2D import * def _getCanvas(): useAGG=False useCairo=False useSping=False Canvas=None if not os.environ.get('RDKIT_CANVAS',''): try: from rdkit.Chem.Draw.cairoCanvas import Canvas useCairo=True except ImportError: try: from rdkit.Chem.Draw.aggCanvas import Canvas useAGG=True except ImportError: from rdkit.Chem.Draw.spingCanvas import Canvas useSping=True else: canv=os.environ['RDKIT_CANVAS'].lower() if canv =='cairo': from rdkit.Chem.Draw.cairoCanvas import Canvas useCairo=True elif canv =='agg': from rdkit.Chem.Draw.aggCanvas import Canvas useAGG=True else: from rdkit.Chem.Draw.spingCanvas import Canvas useSping=True if useSping: DrawingOptions.radicalSymbol='.' #<- the sping canvas doesn't support unicode well return useAGG,useCairo,Canvas def _createCanvas(size): useAGG,useCairo,Canvas=_getCanvas() if useAGG or useCairo: try: import Image except ImportError: from PIL import Image img = Image.new("RGBA",size,(0,0,0,0)) canvas = Canvas(img) else: from rdkit.Chem.Draw.spingCanvas import Canvas canvas = Canvas(size=size,name='MolToImageFile') img = canvas._image return img,canvas def MolToImage(mol, size=(300,300), kekulize=True, wedgeBonds=True, fitImage=False, options=None, canvas=None, **kwargs): """Returns a PIL image containing a drawing of the molecule ARGUMENTS: - kekulize: run kekulization routine on input `mol` (default True) - size: final image size, in pixel (default (300,300)) - wedgeBonds: draw wedge (stereo) bonds (default True) - highlightAtoms: list of atoms to highlight (default []) - highlightMap: dictionary of (atom, color) pairs (default None) - highlightBonds: list of bonds to highlight (default []) - highlightColor: RGB color as tuple (default [1, 0, 0]) NOTE: use 'matplotlib.colors.to_rgb()' to convert string and HTML color codes into the RGB tuple representation, eg. from matplotlib.colors import ColorConverter img = Draw.MolToImage(m, highlightAtoms=[1,2], highlightColor=ColorConverter().to_rgb('aqua')) img.save("molecule.png") RETURNS: a PIL Image object """ if not mol: raise ValueError('Null molecule provided') if canvas is None: img,canvas=_createCanvas(size) else: img=None if options is None: options = DrawingOptions() if fitImage: options.dotsPerAngstrom = int(min(size) / 10) options.wedgeDashedBonds = wedgeBonds if 'highlightColor' in kwargs: color = kwargs.pop('highlightColor', (1, 0, 0)) options.selectColor = color drawer = MolDrawing(canvas=canvas,drawingOptions=options) if kekulize: from rdkit import Chem mol = Chem.Mol(mol.ToBinary()) Chem.Kekulize(mol) if not mol.GetNumConformers(): from rdkit.Chem import AllChem AllChem.Compute2DCoords(mol) if 'legend' in kwargs: legend = kwargs['legend'] del kwargs['legend'] else: legend='' drawer.AddMol(mol,**kwargs) if legend: from rdkit.Chem.Draw.MolDrawing import Font bbox = drawer.boundingBoxes[mol] pos = size[0]/2,int(.94*size[1]),0 # the 0.94 is extremely empirical # canvas.addCanvasPolygon(((bbox[0],bbox[1]),(bbox[2],bbox[1]),(bbox[2],bbox[3]),(bbox[0],bbox[3])), # color=(1,0,0),fill=False,stroke=True) # canvas.addCanvasPolygon(((0,0),(0,size[1]),(size[0],size[1]),(size[0],0) ), # color=(0,0,1),fill=False,stroke=True) font=Font(face='sans',size=12) canvas.addCanvasText(legend,pos,font) if kwargs.get('returnCanvas',False): return img,canvas,drawer else: canvas.flush() return img def MolToFile(mol,fileName,size=(300,300),kekulize=True, wedgeBonds=True, imageType=None, fitImage=False, options=None, **kwargs): """ Generates a drawing of a molecule and writes it to a file """ # original contribution from Uwe Hoffmann if not fileName: raise ValueError('no fileName provided') if not mol: raise ValueError('Null molecule provided') if imageType is None: imageType=os.path.splitext(fileName)[1][1:] if options is None: options = DrawingOptions() useAGG,useCairo,Canvas = _getCanvas() if fitImage: options.dotsPerAngstrom = int(min(size) / 10) options.wedgeDashedBonds = wedgeBonds if useCairo or useAGG: canvas = Canvas(size=size,imageType=imageType, fileName=fileName) else: options.radicalSymbol = '.' #<- the sping canvas doesn't support unicode well canvas = Canvas(size=size,name=fileName,imageType=imageType) drawer = MolDrawing(canvas=canvas,drawingOptions=options) if kekulize: from rdkit import Chem mol = Chem.Mol(mol.ToBinary()) Chem.Kekulize(mol) if not mol.GetNumConformers(): from rdkit.Chem import AllChem AllChem.Compute2DCoords(mol) drawer.AddMol(mol,**kwargs) if useCairo or useAGG: canvas.flush() else: canvas.save() def MolToImageFile(mol,filename,size=(300,300),kekulize=True, wedgeBonds=True, **kwargs): """ DEPRECATED: please use MolToFile instead """ img = MolToImage(mol,size=size,kekulize=kekulize,wedgeBonds=wedgeBonds,**kwargs) img.save(filename) tkRoot=None tkLabel=None tkPI=None def ShowMol(mol,size=(300,300),kekulize=True,wedgeBonds=True, title='RDKit Molecule',**kwargs): """ Generates a picture of a molecule and displays it in a Tkinter window """ global tkRoot,tkLabel,tkPI try: import Tkinter except ImportError: import tkinter as Tkinter try: import ImageTk except ImportError: from PIL import ImageTk img = MolToImage(mol,size,kekulize,wedgeBonds,**kwargs) if not tkRoot: tkRoot = Tkinter.Tk() tkRoot.title(title) tkPI = ImageTk.PhotoImage(img) tkLabel = Tkinter.Label(tkRoot,image=tkPI) tkLabel.place(x=0,y=0,width=img.size[0],height=img.size[1]) else: tkPI.paste(img) tkRoot.geometry('%dx%d'%(img.size)) def MolToMPL(mol,size=(300,300),kekulize=True, wedgeBonds=True, imageType=None, fitImage=False, options=None, **kwargs): """ Generates a drawing of a molecule on a matplotlib canvas """ if not mol: raise ValueError('Null molecule provided') from rdkit.Chem.Draw.mplCanvas import Canvas canvas = Canvas(size) if options is None: options = DrawingOptions() options.bgColor=None if fitImage: drawingOptions.dotsPerAngstrom = int(min(size) / 10) options.wedgeDashedBonds=wedgeBonds drawer = MolDrawing(canvas=canvas, drawingOptions=options) omol=mol if kekulize: from rdkit import Chem mol = Chem.Mol(mol.ToBinary()) Chem.Kekulize(mol) if not mol.GetNumConformers(): from rdkit.Chem import AllChem AllChem.Compute2DCoords(mol) drawer.AddMol(mol,**kwargs) omol._atomPs=drawer.atomPs[mol] for k,v in iteritems(omol._atomPs): omol._atomPs[k]=canvas.rescalePt(v) canvas._figure.set_size_inches(float(size[0])/100,float(size[1])/100) return canvas._figure def calcAtomGaussians(mol,a=0.03,step=0.02,weights=None): """ useful things to do with these: fig.axes[0].imshow(z,cmap=cm.gray,interpolation='bilinear',origin='lower',extent=(0,1,0,1)) fig.axes[0].contour(x,y,z,20,colors='k') fig=Draw.MolToMPL(m); contribs=Crippen.rdMolDescriptors._CalcCrippenContribs(m) logps,mrs=zip(*contribs) x,y,z=Draw.calcAtomGaussians(m,0.03,step=0.01,weights=logps) fig.axes[0].imshow(z,cmap=cm.jet,interpolation='bilinear',origin='lower',extent=(0,1,0,1)) fig.axes[0].contour(x,y,z,20,colors='k',alpha=0.5) fig.savefig('coumlogps.colored.png',bbox_inches='tight') """ import numpy from matplotlib import mlab x = numpy.arange(0,1,step) y = numpy.arange(0,1,step) X,Y = numpy.meshgrid(x,y) if weights is None: weights=[1.]*mol.GetNumAtoms() Z = mlab.bivariate_normal(X,Y,a,a,mol._atomPs[0][0], mol._atomPs[0][1])*weights[0] for i in range(1,mol.GetNumAtoms()): Zp = mlab.bivariate_normal(X,Y,a,a,mol._atomPs[i][0], mol._atomPs[i][1]) Z += Zp*weights[i] return X,Y,Z def MolsToImage(mols, subImgSize=(200,200),legends=None,**kwargs): """ """ try: import Image except ImportError: from PIL import Image if legends is None: legends = [None]*len(mols) res = Image.new("RGBA",(subImgSize[0]*len(mols),subImgSize[1])) for i,mol in enumerate(mols): res.paste(MolToImage(mol,subImgSize,legend=legends[i],**kwargs),(i*subImgSize[0],0)) return res def MolsToGridImage(mols,molsPerRow=3,subImgSize=(200,200),legends=None, highlightAtomLists=None,**kwargs): """ """ try: import Image except ImportError: from PIL import Image if legends is None: legends = [None]*len(mols) nRows = len(mols)//molsPerRow if len(mols)%molsPerRow : nRows+=1 res = Image.new("RGBA",(molsPerRow*subImgSize[0],nRows*subImgSize[1]),(255,255,255,0)) for i,mol in enumerate(mols): row = i//molsPerRow col = i%molsPerRow highlights=None if highlightAtomLists and highlightAtomLists[i]: highlights=highlightAtomLists[i] res.paste(MolToImage(mol,subImgSize,legend=legends[i],highlightAtoms=highlights, **kwargs),(col*subImgSize[0],row*subImgSize[1])) return res def ReactionToImage(rxn, subImgSize=(200,200),**kwargs): """ """ try: import Image except ImportError: from PIL import Image mols = [] for i in range(rxn.GetNumReactantTemplates()): tmpl=rxn.GetReactantTemplate(i) tmpl.UpdatePropertyCache(False) mols.append(tmpl) mols.append(None) for i in range(rxn.GetNumProductTemplates()): tmpl = rxn.GetProductTemplate(i) tmpl.UpdatePropertyCache(False) mols.append(tmpl) res = Image.new("RGBA",(subImgSize[0]*len(mols),subImgSize[1]),(255,255,255,0)) for i,mol in enumerate(mols): if mol is not None: nimg = MolToImage(mol,subImgSize,kekulize=False,**kwargs) else: nimg,canvas = _createCanvas(subImgSize) p0 = (10,subImgSize[1]//2) p1 = (subImgSize[0]-10,subImgSize[1]//2) p3 = (subImgSize[0]-20,subImgSize[1]//2-10) p4 = (subImgSize[0]-20,subImgSize[1]//2+10) canvas.addCanvasLine(p0,p1,lineWidth=2,color=(0,0,0)) canvas.addCanvasLine(p3,p1,lineWidth=2,color=(0,0,0)) canvas.addCanvasLine(p4,p1,lineWidth=2,color=(0,0,0)) if hasattr(canvas,'flush'): canvas.flush() else: canvas.save() res.paste(nimg,(i*subImgSize[0],0)) return res def MolToQPixmap(mol, size=(300,300), kekulize=True, wedgeBonds=True, fitImage=False, options=None, **kwargs): """ Generates a drawing of a molecule on a Qt QPixmap """ if not mol: raise ValueError('Null molecule provided') from rdkit.Chem.Draw.qtCanvas import Canvas canvas = Canvas(size) if options is None: options = DrawingOptions() options.bgColor = None if fitImage: options.dotsPerAngstrom = int(min(size) / 10) options.wedgeDashedBonds=wedgeBonds if kekulize: from rdkit import Chem mol = Chem.Mol(mol.ToBinary()) Chem.Kekulize(mol) if not mol.GetNumConformers(): from rdkit.Chem import AllChem AllChem.Compute2DCoords(mol) drawer = MolDrawing(canvas=canvas, drawingOptions=options) drawer.AddMol(mol, **kwargs) canvas.flush() return canvas.pixmap
{ "repo_name": "soerendip42/rdkit", "path": "rdkit/Chem/Draw/__init__.py", "copies": "2", "size": "11955", "license": "bsd-3-clause", "hash": -6749942334766245000, "line_mean": 29.9715025907, "line_max": 108, "alpha_frac": 0.6625679632, "autogenerated": false, "ratio": 3.114092211513415, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4776660174713415, "avg_score": null, "num_lines": null }
import os def _getCanvas(): useAGG=False useCairo=False Canvas=None if not os.environ.get('RDKIT_CANVAS',''): try: from cairoCanvas import Canvas useCairo=True except ImportError: try: from aggCanvas import Canvas useAGG=True except ImportError: from spingCanvas import Canvas else: canv=os.environ['RDKIT_CANVAS'].lower() if canv =='cairo': from cairoCanvas import Canvas useCairo=True elif canv =='agg': from aggCanvas import Canvas useAGG=True else: from spingCanvas import Canvas return useAGG,useCairo,Canvas def _createCanvas(size): useAGG,useCairo,Canvas=_getCanvas() if useAGG or useCairo: import Image img = Image.new("RGBA",size,"white") canvas = Canvas(img) else: MolDrawing.radicalSymbol='.' #<- the sping canvas doesn't support unicode well from spingCanvas import Canvas canvas = Canvas(size=size,name='MolToImageFile') img = canvas._image return img,canvas def MolToImage(mol, size=(300,300), kekulize=True, wedgeBonds=True, **kwargs): """ returns a PIL image containing a drawing of the molecule Keyword arguments: kekulize -- run kekulization routine on input `mol` (default True) size -- final image size, in pixel (default (300,300)) wedgeBonds -- draw wedge (stereo) bonds (default True) highlightAtoms -- list of atoms to highlight (default []) highlightMap -- dictionary of (atom, color) pairs (default None) highlightBonds -- list of bonds to highlight (default []) """ from MolDrawing import MolDrawing if not mol: raise ValueError,'Null molecule provided' img,canvas=_createCanvas(size) drawer = MolDrawing(canvas) if kekulize: from rdkit import Chem mol = Chem.Mol(mol.ToBinary()) Chem.Kekulize(mol) if not mol.GetNumConformers(): from rdkit.Chem import AllChem AllChem.Compute2DCoords(mol) drawer.wedgeDashedBonds=wedgeBonds if kwargs.has_key('legend'): legend = kwargs['legend'] del kwargs['legend'] else: legend='' drawer.AddMol(mol,**kwargs) if legend: from rdkit.Chem.Draw.MolDrawing import Font bbox = drawer.boundingBoxes[mol] pos = size[0]/2,int(.94*size[1]) # the 0.94 is extremely empirical # canvas.addCanvasPolygon(((bbox[0],bbox[1]),(bbox[2],bbox[1]),(bbox[2],bbox[3]),(bbox[0],bbox[3])), # color=(1,0,0),fill=False,stroke=True) # canvas.addCanvasPolygon(((0,0),(0,size[1]),(size[0],size[1]),(size[0],0) ), # color=(0,0,1),fill=False,stroke=True) font=Font(face='sans',size=12) canvas.addCanvasText(legend,pos,font) if kwargs.get('returnCanvas',False): return img,canvas,drawer else: canvas.flush() return img def MolToFile(mol,fileName,size=(300,300),kekulize=True, wedgeBonds=True, imageType=None,**kwargs): """ Generates a drawing of a molecule and writes it to a file """ from MolDrawing import MolDrawing # original contribution from Uwe Hoffmann if not fileName: raise ValueError,'no fileName provided' if not mol: raise ValueError,'Null molecule provided' if imageType is None: imageType=os.path.splitext(fileName)[1][1:] useAGG,useCairo,Canvas = _getCanvas() if useCairo or useAGG: canvas = Canvas(size=size,imageType=imageType, fileName=fileName) else: MolDrawing.radicalSymbol='.' #<- the sping canvas doesn't support unicode well canvas = Canvas(size=size,name=fileName,imageType=imageType) drawer = MolDrawing(canvas) if kekulize: from rdkit import Chem mol = Chem.Mol(mol.ToBinary()) Chem.Kekulize(mol) if not mol.GetNumConformers(): from rdkit.Chem import AllChem AllChem.Compute2DCoords(mol) drawer.wedgeDashedBonds=wedgeBonds drawer.AddMol(mol,**kwargs) if useCairo or useAGG: canvas.flush() else: canvas.save() def MolToImageFile(mol,filename,size=(300,300),kekulize=True, wedgeBonds=True, **kwargs): """ DEPRECATED: please use MolToFile instead """ img = MolToImage(mol,size=size,kekulize=kekulize,wedgeBonds=wedgeBonds,**kwargs) img.save(filename) tkRoot=None tkLabel=None tkPI=None def ShowMol(mol,size=(300,300),kekulize=True,wedgeBonds=True, title='RDKit Molecule',**kwargs): """ Generates a picture of a molecule and displays it in a Tkinter window """ global tkRoot,tkLabel,tkPI import Tkinter import ImageTk img = MolToImage(mol,size,kekulize,wedgeBonds,**kwargs) if not tkRoot: tkRoot = Tkinter.Tk() tkRoot.title(title) tkPI = ImageTk.PhotoImage(img) tkLabel = Tkinter.Label(tkRoot,image=tkPI) tkLabel.place(x=0,y=0,width=img.size[0],height=img.size[1]) else: tkPI.paste(img) tkRoot.geometry('%dx%d'%(img.size)) def MolToMPL(mol,size=(300,300),kekulize=True, wedgeBonds=True, imageType=None,**kwargs): """ Generates a drawing of a molecule on a matplotlib canvas """ if not mol: raise ValueError,'Null molecule provided' from MolDrawing import MolDrawing from mplCanvas import Canvas canvas = Canvas(size) drawer = MolDrawing(canvas) omol=mol if kekulize: from rdkit import Chem mol = Chem.Mol(mol.ToBinary()) Chem.Kekulize(mol) if not mol.GetNumConformers(): from rdkit.Chem import AllChem AllChem.Compute2DCoords(mol) drawer.wedgeDashedBonds=wedgeBonds drawer.AddMol(mol,**kwargs) omol._atomPs=drawer.atomPs[mol] for k,v in omol._atomPs.iteritems(): omol._atomPs[k]=canvas.rescalePt(v) canvas._figure.set_size_inches(float(size[0])/100,float(size[1])/100) return canvas._figure def calcAtomGaussians(mol,a=0.03,step=0.02,weights=None): """ useful things to do with these: fig.axes[0].imshow(z,cmap=cm.gray,interpolation='bilinear',origin='lower',extent=(0,1,0,1)) fig.axes[0].contour(x,y,z,20,colors='k') fig=Draw.MolToMPL(m); contribs=Crippen.rdMolDescriptors._CalcCrippenContribs(m) logps,mrs=zip(*contribs) x,y,z=Draw.calcAtomGaussians(m,0.03,step=0.01,weights=logps) fig.axes[0].imshow(z,cmap=cm.jet,interpolation='bilinear',origin='lower',extent=(0,1,0,1)) fig.axes[0].contour(x,y,z,20,colors='k',alpha=0.5) fig.savefig('coumlogps.colored.png',bbox_inches='tight') """ import numpy from matplotlib import mlab x = numpy.arange(0,1,step) y = numpy.arange(0,1,step) X,Y = numpy.meshgrid(x,y) if weights is None: weights=[1.]*mol.GetNumAtoms() Z = mlab.bivariate_normal(X,Y,a,a,mol._atomPs[0][0], mol._atomPs[0][1])*weights[0] for i in range(1,mol.GetNumAtoms()): Zp = mlab.bivariate_normal(X,Y,a,a,mol._atomPs[i][0], mol._atomPs[i][1]) Z += Zp*weights[i] return X,Y,Z def MolsToImage(mols, subImgSize=(200,200),legends=None,**kwargs): """ """ import Image if legends is None: legends = [None]*len(mols) res = Image.new("RGB",(subImgSize[0]*len(mols),subImgSize[1])) for i,mol in enumerate(mols): res.paste(MolToImage(mol,subImgSize,legend=legends[i],**kwargs),(i*subImgSize[0],0)) return res def MolsToGridImage(mols,molsPerRow=3,subImgSize=(200,200),legends=None,**kwargs): """ """ import Image if legends is None: legends = [None]*len(mols) nRows = len(mols)//molsPerRow if len(mols)%molsPerRow : nRows+=1 res = Image.new("RGB",(molsPerRow*subImgSize[1],nRows*subImgSize[1]),(255,255,255)) for i,mol in enumerate(mols): row = i//molsPerRow col = i%molsPerRow res.paste(MolToImage(mol,subImgSize,legend=legends[i],**kwargs),(col*subImgSize[0],row*subImgSize[1])) return res def ReactionToImage(rxn, subImgSize=(200,200),**kwargs): """ """ import Image mols = [] for i in range(rxn.GetNumReactantTemplates()): tmpl=rxn.GetReactantTemplate(i) tmpl.UpdatePropertyCache(False) mols.append(tmpl) mols.append(None) for i in range(rxn.GetNumProductTemplates()): tmpl = rxn.GetProductTemplate(i) tmpl.UpdatePropertyCache(False) mols.append(tmpl) res = Image.new("RGB",(subImgSize[0]*len(mols),subImgSize[1]),(255,255,255)) for i,mol in enumerate(mols): if mol is not None: nimg = MolToImage(mol,subImgSize,kekulize=False,**kwargs) else: nimg,canvas = _createCanvas(subImgSize) p0 = (10,subImgSize[1]//2) p1 = (subImgSize[0]-10,subImgSize[1]//2) p3 = (subImgSize[0]-20,subImgSize[1]//2-10) p4 = (subImgSize[0]-20,subImgSize[1]//2+10) canvas.addCanvasLine(p0,p1,lineWidth=2,color=(0,0,0)) canvas.addCanvasLine(p3,p1,lineWidth=2,color=(0,0,0)) canvas.addCanvasLine(p4,p1,lineWidth=2,color=(0,0,0)) if hasattr(canvas,'flush'): canvas.flush() else: canvas.save() res.paste(nimg,(i*subImgSize[0],0)) return res
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/Draw/__init__.py", "copies": "1", "size": "8895", "license": "bsd-3-clause", "hash": -2760273108516460000, "line_mean": 29.4623287671, "line_max": 106, "alpha_frac": 0.671950534, "autogenerated": false, "ratio": 2.9473161033797215, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.41192666373797215, "avg_score": null, "num_lines": null }
from rdkit.Chem.FeatMaps.FeatMapPoint import FeatMapPoint import math class FeatMapScoreMode(object): All = 0 """ score each feature in the probe against every matching feature in the FeatMap. """ Closest = 1 """ score each feature in the probe against the closest matching feature in the FeatMap. """ Best = 2 """ score each feature in the probe against the matching feature in the FeatMap that leads to the highest score """ class FeatDirScoreMode(object): Ignore = 0 """ ignore feature directions """ DotFullRange = 1 """ Use the dot product and allow negative contributions when directions are anti-parallel. e.g. score = dot(f1Dir,f2Dir) """ DotPosRange = 2 """ Use the dot product and scale contributions to lie between zero and one. e.g. score = ( dot(f1Dir,f2Dir) + 1 ) / 2 """ class FeatMapParams(object): """ one of these should be instantiated for each feature type in the feature map """ radius = 2.5 " cutoff radius " width = 1.0 " width parameter (e.g. the gaussian sigma) " class FeatProfile(object): " scoring profile of the feature " Gaussian = 0 Triangle = 1 Box = 2 featProfile = FeatProfile.Gaussian class FeatMap(object): dirScoreMode = FeatDirScoreMode.Ignore scoreMode = FeatMapScoreMode.All params = {} def __init__(self, params=None, feats=None, weights=None): if params: self.params = params self._initializeFeats(feats, weights) def _initializeFeats(self, feats, weights): self._feats = [] if feats: if len(feats) != len(weights): raise ValueError('feats and weights lists must be the same length') for feat, weight in zip(feats, weights): self.AddFeature(feat, weight) def AddFeature(self, feat, weight=None): if self.params and not feat.GetFamily() in self.params: raise ValueError('feature family %s not found in params' % feat.GetFamily()) newFeat = FeatMapPoint() newFeat.initFromFeat(feat) newFeat.weight = weight self.AddFeatPoint(newFeat) def AddFeatPoint(self, featPt): if not isinstance(featPt, FeatMapPoint): raise ValueError('addFeatPoint() must be called with a FeatMapPoint instance') if self.params and not featPt.GetFamily() in self.params: raise ValueError('feature family %s not found in params' % featPt.GetFamily()) self._feats.append(featPt) def GetFeatures(self): return self._feats def GetNumFeatures(self): return len(self._feats) def GetFeature(self, i): return self._feats[i] def DropFeature(self, i): del self._feats[i] def _loopOverMatchingFeats(self, oFeat): for sIdx, sFeat in enumerate(self._feats): if sFeat.GetFamily() == oFeat.GetFamily(): yield sIdx, sFeat def GetFeatFeatScore(self, feat1, feat2, typeMatch=True): """ feat1 is one of our feats feat2 is any Feature """ if typeMatch and feat1.GetFamily() != feat2.GetFamily(): return 0.0 d2 = feat1.GetDist2(feat2) params = self.params[feat1.GetFamily()] if d2 > params.radius * params.radius: return 0.0 if params.featProfile == FeatMapParams.FeatProfile.Gaussian: score = math.exp(-d2 / params.width) elif params.featProfile == FeatMapParams.FeatProfile.Triangle: d = math.sqrt(d2) if d < params.width: score = 1. - d / params.width else: score = 0.0 elif params.featProfile == FeatMapParams.FeatProfile.Box: score = 1.0 weight = feat1.weight score *= weight if self.dirScoreMode != FeatDirScoreMode.Ignore: dirScore = feat1.GetDirMatch(feat2) if self.dirScoreMode == FeatDirScoreMode.DotPosRange: dirScore = (dirScore + 1.0) / 2.0 elif self.dirScoreMode != FeatDirScoreMode.DotFullRange: raise NotImplementedError('bad feature dir score mode') score *= dirScore return score def ScoreFeats(self, featsToScore, mapScoreVect=[], featsScoreVect=[], featsToFeatMapIdx=[]): nFeats = len(self._feats) if mapScoreVect and len(mapScoreVect) != nFeats: raise ValueError('if provided, len(mapScoreVect) should equal numFeats') nToScore = len(featsToScore) if featsScoreVect and len(featsScoreVect) != nToScore: raise ValueError('if provided, len(featsScoreVect) should equal len(featsToScore)') if featsToFeatMapIdx and len(featsToFeatMapIdx) != nToScore: raise ValueError('if provided, len(featsToFeatMapIdx) should equal len(featsToScore)') if mapScoreVect: for i in range(nFeats): mapScoreVect[i] = 0.0 else: mapScoreVect = [0.0] * nFeats if self.scoreMode == FeatMapScoreMode.Closest: defScore = 1000.0 else: defScore = 0.0 if featsScoreVect: for i in range(nToScore): featsScoreVect[i] = defScore else: featsScoreVect = [defScore] * nToScore if not featsToFeatMapIdx: featsToFeatMapIdx = [None] * nToScore for i in range(nToScore): if self.scoreMode != FeatMapScoreMode.All: featsToFeatMapIdx[i] = [-1] else: featsToFeatMapIdx[i] = [] for oIdx, oFeat in enumerate(featsToScore): for sIdx, sFeat in self._loopOverMatchingFeats(oFeat): if self.scoreMode == FeatMapScoreMode.Closest: d = sFeat.GetDist2(oFeat) if d < featsScoreVect[oIdx]: featsScoreVect[oIdx] = d featsToFeatMapIdx[oIdx][0] = sIdx else: lScore = self.GetFeatFeatScore(sFeat, oFeat, typeMatch=False) if self.scoreMode == FeatMapScoreMode.Best: if lScore > featsScoreVect[oIdx]: featsScoreVect[oIdx] = lScore featsToFeatMapIdx[oIdx][0] = sIdx elif self.scoreMode == FeatMapScoreMode.All: featsScoreVect[oIdx] += lScore mapScoreVect[sIdx] += lScore featsToFeatMapIdx[oIdx].append(sIdx) else: raise ValueError('bad score mode') totScore = 0.0 if self.scoreMode == FeatMapScoreMode.Closest: for oIdx, oFeat in enumerate(featsToScore): sIdx = featsToFeatMapIdx[oIdx][0] if sIdx > -1: lScore = self.GetFeatFeatScore(sFeat, oFeat, typeMatch=False) featsScoreVect[oIdx] = lScore mapScoreVect[sIdx] = lScore totScore += lScore else: featsScoreVect[oIdx] = 0 else: totScore = sum(featsScoreVect) if self.scoreMode == FeatMapScoreMode.Best: for oIdx, lScore in enumerate(featsScoreVect): sIdx = featsToFeatMapIdx[oIdx][0] if sIdx > -1: mapScoreVect[sIdx] = lScore # replace placeholders: if self.scoreMode != FeatMapScoreMode.All: for elem in featsToFeatMapIdx: if elem == [-1]: elem.pop() return totScore def __str__(self): res = '' for i, feat in enumerate(self._feats): weight = feat.weight pos = feat.GetPos() res += '% 3d % 12s % 6.4f % 6.4f % 6.4f % 6.4f\n' % (i + 1, feat.GetFamily(), pos.x, pos.y, pos.z, weight) return res
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/FeatMaps/FeatMaps.py", "copies": "12", "size": "7458", "license": "bsd-3-clause", "hash": -6629856976347529000, "line_mean": 29.3170731707, "line_max": 97, "alpha_frac": 0.6427996782, "autogenerated": false, "ratio": 3.435283279594657, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.012191879131962853, "num_lines": 246 }
from rdkit import Geometry from rdkit.Chem.FeatMaps import FeatMaps, FeatMapPoint import re """ ScoreMode=All DirScoreMode=Ignore BeginParams family=Aromatic radius=2.5 width=1.0 profile=Gaussian family=Acceptor radius=1.5 EndParams # optional BeginPoints family=Acceptor pos=(1.0, 0.0, 5.0) weight=1.25 dir=(1, 1, 0) family=Aromatic pos=(0.0,1.0,0.0) weight=2.0 dir=(0,0,1) dir=(0,0,-1) family=Acceptor pos=(1.0,1.0,2.0) weight=1.25 EndPoints """ class FeatMapParseError(ValueError): pass class FeatMapParser(object): data = None def __init__(self, file=None, data=None): if file: self.data = file.readlines() elif data: self.SetData(data) self._lineNum = 0 def SetData(self, data): if isinstance(data, str): self.data = data.split('\n') else: self.data = data self._lineNum = 0 def _NextLine(self): txt = '' while 1: try: l = self.data[self._lineNum].split('#')[0].strip() except IndexError: break self._lineNum += 1 if l: txt += l if l[-1] != '\\': break return txt def Parse(self, featMap=None): if featMap is None: featMap = FeatMaps.FeatMap() l = self._NextLine().strip() while l: splitL = l.split('=') if len(splitL) == 1: keyword = splitL[0].strip().lower() if keyword == 'beginpoints': pts = self.ParseFeatPointBlock() for pt in pts: featMap.AddFeatPoint(pt) elif keyword == 'beginparams': featMap.params = self.ParseParamBlock() else: raise FeatMapParseError('Unrecognized keyword %s on line %d' % (keyword, self._lineNum)) else: keyword = splitL[0].strip().lower() val = splitL[1].strip() if keyword == 'scoremode': try: featMap.scoreMode = getattr(FeatMaps.FeatMapScoreMode, val) except AttributeError: raise FeatMapParseError('ScoreMode %s not recognized on line %d' % (val, self._lineNum)) elif keyword == 'dirscoremode': try: featMap.dirScoreMode = getattr(FeatMaps.FeatDirScoreMode, val) except AttributeError: raise FeatMapParseError('DirScoreMode %s not recognized on line %d' % (val, self._lineNum)) else: raise FeatMapParseError('Unrecognized keyword %s on line %d' % (keyword, self._lineNum)) l = self._NextLine().strip() return featMap def ParseParamBlock(self): paramLineSplitter = re.compile(r'([a-zA-Z]+) *= *(\S+)') params = {} l = self._NextLine() while l and l != 'EndParams': param = FeatMaps.FeatMapParams() vals = paramLineSplitter.findall(l) for name, val in vals: name = name.lower() if name == 'family': family = val elif name == 'radius': param.radius = float(val) elif name == 'width': param.width = float(val) elif name == 'profile': try: param.featProfile = getattr(param.FeatProfile, val) except AttributeError: raise FeatMapParseError('Profile %s not recognized on line %d' % (val, self._lineNum)) else: raise FeatMapParseError('FeatMapParam option %s not recognized on line %d' % (name, self._lineNum)) params[family] = param l = self._NextLine() if l != 'EndParams': raise FeatMapParseError('EndParams line not found') return params def _parsePoint(self, txt): txt = txt.strip() startP = 0 endP = len(txt) if txt[0] == '(': startP += 1 if txt[-1] == ')': endP -= 1 txt = txt[startP:endP] splitL = txt.split(',') if len(splitL) != 3: raise ValueError('Bad location string') vs = [float(x) for x in splitL] pt = Geometry.Point3D(vs[0], vs[1], vs[2]) return pt def ParseFeatPointBlock(self): featLineSplitter = re.compile(r'([a-zA-Z]+) *= *') feats = [] l = self._NextLine() while l and l != 'EndPoints': vals = featLineSplitter.split(l) while vals.count(''): vals.remove('') p = FeatMapPoint.FeatMapPoint() i = 0 while i < len(vals): name = vals[i].lower() if name == 'family': i += 1 val = vals[i].strip() p.SetFamily(val) elif name == 'weight': i += 1 val = float(vals[i]) p.weight = val elif name == 'pos': i += 1 val = vals[i] pos = self._parsePoint(val) p.SetPos(pos) elif name == 'dir': i += 1 val = vals[i] pos = self._parsePoint(val) p.featDirs.append(pos) else: raise FeatMapParseError('FeatPoint option %s not recognized on line %d' % (name, self._lineNum)) i += 1 feats.append(p) l = self._NextLine() return feats
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/FeatMaps/FeatMapParser.py", "copies": "12", "size": "5307", "license": "bsd-3-clause", "hash": 5239492474791536000, "line_mean": 26.7853403141, "line_max": 100, "alpha_frac": 0.5577539099, "autogenerated": false, "ratio": 3.5498327759197323, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from rdkit import Geometry from rdkit.Chem import ChemicalFeatures from rdkit.Chem.FeatMaps import FeatMaps,FeatMapPoint import re """ ScoreMode=All DirScoreMode=Ignore BeginParams family=Aromatic radius=2.5 width=1.0 profile=Gaussian family=Acceptor radius=1.5 EndParams # optional BeginPoints family=Acceptor pos=(1.0, 0.0, 5.0) weight=1.25 dir=(1, 1, 0) family=Aromatic pos=(0.0,1.0,0.0) weight=2.0 dir=(0,0,1) dir=(0,0,-1) family=Acceptor pos=(1.0,1.0,2.0) weight=1.25 EndPoints """ class FeatMapParseError(ValueError): pass class FeatMapParser(object): data=None def __init__(self,file=None,data=None): if file: self.data=file.readlines() elif data: self.SetData(data) self._lineNum=0 def SetData(self,data): if isinstance(data,str): self.data=data.split('\n') else: self.data=data self._lineNum=0 def _NextLine(self): txt = '' while 1: try: l = self.data[self._lineNum].split('#')[0].strip() except IndexError: break self._lineNum+=1 if l: txt += l if l[-1]!='\\': break return txt def Parse(self,featMap=None): if featMap is None: featMap = FeatMaps.FeatMap() l = self._NextLine().strip() while l: splitL = l.split('=') if len(splitL)==1: keyword=splitL[0].strip().lower() if keyword=='beginpoints': pts=self.ParseFeatPointBlock() for pt in pts: featMap.AddFeatPoint(pt) elif keyword=='beginparams': featMap.params=self.ParseParamBlock() else: raise FeatMapParseError,'Unrecognized keyword %s on line %d'%(keyword,self._lineNum) else: keyword = splitL[0].strip().lower() val = splitL[1].strip() if keyword=='scoremode': try: featMap.scoreMode=getattr(FeatMaps.FeatMapScoreMode,val) except AttributeError: raise FeatMapParseError,'ScoreMode %s not recognized on line %d'%(val,self._lineNum) elif keyword=='dirscoremode': try: featMap.dirScoreMode=getattr(FeatMaps.FeatDirScoreMode,val) except AttributeError: raise FeatMapParseError,'DirScoreMode %s not recognized on line %d'%(val,self._lineNum) else: raise FeatMapParseError,'Unrecognized keyword %s on line %d'%(keyword,self._lineNum) l = self._NextLine().strip() return featMap def ParseParamBlock(self): paramLineSplitter = re.compile(r'([a-zA-Z]+) *= *(\S+)') params = {} l = self._NextLine() while l and l!='EndParams': param = FeatMaps.FeatMapParams() vals=paramLineSplitter.findall(l) for name,val in vals: name = name.lower() if name=='family': family=val elif name=='radius': param.radius=float(val) elif name=='width': param.width=float(val) elif name=='profile': try: param.featProfile=getattr(param.FeatProfile,val) except AttributeError: raise FeatMapParseError,'Profile %s not recognized on line %d'%(val,self._lineNum) else: raise FeatMapParseError,'FeatMapParam option %s not recognized on line %d'%(name,self._lineNum) params[family]=param l = self._NextLine() if l!='EndParams': raise FeatMapParseError('EndParams line not found') return params def _parsePoint(self,txt): txt = txt.strip() startP=0 endP=len(txt) if txt[0]=='(': startP += 1 if txt[-1]==')': endP -= 1 txt = txt[startP:endP] splitL = txt.split(',') if len(splitL) != 3: raise ValueError,'Bad location string' vs = [float(x) for x in splitL] pt = Geometry.Point3D(vs[0],vs[1],vs[2]) return pt def ParseFeatPointBlock(self): featLineSplitter = re.compile(r'([a-zA-Z]+) *= *') feats = [] l = self._NextLine() while l and l!='EndPoints': vals=featLineSplitter.split(l) while vals.count(''): vals.remove('') p = FeatMapPoint.FeatMapPoint() i=0 while i<len(vals): name = vals[i].lower() if name=='family': i+=1 val = vals[i].strip() p.SetFamily(val) elif name=='weight': i+=1 val = float(vals[i]) p.weight = val elif name=='pos': i+=1 val = vals[i] pos = self._parsePoint(val) p.SetPos(pos) elif name=='dir': i+=1 val = vals[i] pos = self._parsePoint(val) p.featDirs.append(pos) else: raise FeatMapParseError,'FeatPoint option %s not recognized on line %d'%(name,self._lineNum) i+=1 feats.append(p) l = self._NextLine() return feats #------------------------------------ # # doctest boilerplate # def _test(): import doctest,sys return doctest.testmod(sys.modules["__main__"]) if __name__ == '__main__': import sys failed,tried = _test() sys.exit(failed)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/FeatMaps/FeatMapParser.py", "copies": "2", "size": "5354", "license": "bsd-3-clause", "hash": 1657975308928289800, "line_mean": 25.9045226131, "line_max": 105, "alpha_frac": 0.5821815465, "autogenerated": false, "ratio": 3.481144343302991, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5063325889802991, "avg_score": null, "num_lines": null }
import copy from rdkit.Chem.FeatMaps import FeatMaps class MergeMethod(object): # Put the new point at the weighted average position of the two fused points WeightedAverage = 0 # Put the new point at the un-weighted average position of the two fused points Average = 1 # Put the new point at the position of the larger (by weight) of the two points UseLarger = 2 @classmethod def valid(cls, mergeMethod): """ Check that mergeMethod is valid """ if mergeMethod not in (cls.WeightedAverage, cls.Average, cls.UseLarger): raise ValueError('unrecognized mergeMethod') class MergeMetric(object): # Do not merge points NoMerge = 0 # merge two points if they come within a threshold distance Distance = 1 # merge two points if their percent overlap exceeds a threshold Overlap = 2 @classmethod def valid(cls, mergeMetric): """ Check that mergeMetric is valid """ if mergeMetric not in (cls.NoMerge, cls.Distance, cls.Overlap): raise ValueError('unrecognized mergeMetric') class DirMergeMode(object): # Do not merge directions (i.e. keep all direction vectors) NoMerge = 0 # Sum direction vectors Sum = 1 @classmethod def valid(cls, dirMergeMode): """ Check that dirMergeMode is valid """ if dirMergeMode not in (cls.NoMerge, cls.Sum): raise ValueError('unrecognized dirMergeMode') def __copyAll(res, fm1, fm2): """ no user-serviceable parts inside """ for feat in fm1.GetFeatures(): res.AddFeatPoint(copy.deepcopy(feat)) for feat in fm2.GetFeatures(): res.AddFeatPoint(copy.deepcopy(feat)) def GetFeatFeatDistMatrix(fm, mergeMetric, mergeTol, dirMergeMode, compatFunc): """ NOTE that mergeTol is a max value for merging when using distance-based merging and a min value when using score-based merging. """ MergeMetric.valid(mergeMetric) dists = [[1e8] * fm.GetNumFeatures() for _ in range(fm.GetNumFeatures())] if mergeMetric == MergeMetric.NoMerge: return dists elif mergeMetric == MergeMetric.Distance: mergeTol2 = mergeTol * mergeTol for i in range(fm.GetNumFeatures()): ptI = fm.GetFeature(i) for j in range(i + 1, fm.GetNumFeatures()): ptJ = fm.GetFeature(j) if compatFunc(ptI, ptJ): dist2 = ptI.GetDist2(ptJ) if dist2 < mergeTol2: dists[i][j] = dist2 dists[j][i] = dist2 elif mergeMetric == MergeMetric.Overlap: for i in range(fm.GetNumFeatures()): ptI = fm.GetFeature(i) for j in range(i + 1, fm.GetNumFeatures()): ptJ = fm.GetFeature(j) if compatFunc(ptI, ptJ): score = fm.GetFeatFeatScore(ptI, ptJ, typeMatch=False) score *= -1 * ptJ.weight if score < mergeTol: dists[i][j] = score dists[j][i] = score return dists def familiesMatch(f1, f2): return f1.GetFamily() == f2.GetFamily() def feq(v1, v2, tol=1e-4): return abs(v1 - v2) < tol def MergeFeatPoints(fm, mergeMetric=MergeMetric.NoMerge, mergeTol=1.5, dirMergeMode=DirMergeMode.NoMerge, mergeMethod=MergeMethod.WeightedAverage, compatFunc=familiesMatch): """ NOTE that mergeTol is a max value for merging when using distance-based merging and a min value when using score-based merging. returns whether or not any points were actually merged """ MergeMetric.valid(mergeMetric) MergeMethod.valid(mergeMethod) DirMergeMode.valid(dirMergeMode) res = False if mergeMetric == MergeMetric.NoMerge: return res dists = GetFeatFeatDistMatrix(fm, mergeMetric, mergeTol, dirMergeMode, compatFunc) distOrders = [None] * len(dists) for i in range(len(dists)): distV = dists[i] distOrders[i] = [] for j, dist in enumerate(distV): if dist < mergeTol: distOrders[i].append((dist, j)) distOrders[i].sort() # print('distOrders:') # print(distOrders) # we now know the "distances" and have rank-ordered list of # each point's neighbors. Work with that. # progressively merge nearest neighbors until there # are no more points left to merge featsInPlay = list(range(fm.GetNumFeatures())) featsToRemove = [] # print '--------------------------------' while featsInPlay: # find two features who are mutual nearest neighbors: fipCopy = featsInPlay[:] for fi in fipCopy: # print('>>>',fi,fipCopy,featsInPlay) # print('\t',distOrders[fi]) mergeThem = False if not distOrders[fi]: featsInPlay.remove(fi) continue dist, nbr = distOrders[fi][0] if nbr not in featsInPlay: continue if distOrders[nbr][0][1] == fi: # print 'direct:',fi,nbr mergeThem = True else: # it may be that there are several points at about the same distance, # check for that now if (feq(distOrders[nbr][0][0], dist)): for distJ, nbrJ in distOrders[nbr][1:]: if feq(dist, distJ): if nbrJ == fi: # print 'indirect: ',fi,nbr mergeThem = True break else: break # print ' bottom:',mergeThem if mergeThem: break if mergeThem: res = True featI = fm.GetFeature(fi) nbrFeat = fm.GetFeature(nbr) if mergeMethod == MergeMethod.WeightedAverage: newPos = featI.GetPos() * featI.weight + nbrFeat.GetPos() * nbrFeat.weight newPos /= (featI.weight + nbrFeat.weight) newWeight = (featI.weight + nbrFeat.weight) / 2 elif mergeMethod == MergeMethod.Average: newPos = featI.GetPos() + nbrFeat.GetPos() newPos /= 2 newWeight = (featI.weight + nbrFeat.weight) / 2 elif mergeMethod == MergeMethod.UseLarger: if featI.weight > nbrFeat.weight: newPos = featI.GetPos() newWeight = featI.weight else: newPos = nbrFeat.GetPos() newWeight = nbrFeat.weight featI.SetPos(newPos) featI.weight = newWeight # nbr and fi are no longer valid targets: # print 'nbr done:',nbr,featsToRemove,featsInPlay featsToRemove.append(nbr) featsInPlay.remove(fi) featsInPlay.remove(nbr) for nbrList in distOrders: try: nbrList.remove(fi) except ValueError: pass try: nbrList.remove(nbr) except ValueError: pass else: # print ">>>> Nothing found, abort" break featsToRemove.sort() for i, fIdx in enumerate(featsToRemove): fm.DropFeature(fIdx - i) return res def CombineFeatMaps(fm1, fm2, mergeMetric=MergeMetric.NoMerge, mergeTol=1.5, dirMergeMode=DirMergeMode.NoMerge): """ the parameters will be taken from fm1 """ res = FeatMaps.FeatMap(params=fm1.params) __copyAll(res, fm1, fm2) if mergeMetric != MergeMetric.NoMerge: MergeFeatPoints(res, mergeMetric=mergeMetric, mergeTol=mergeTol) return res
{ "repo_name": "rvianello/rdkit", "path": "rdkit/Chem/FeatMaps/FeatMapUtils.py", "copies": "12", "size": "7261", "license": "bsd-3-clause", "hash": 8989646949305047000, "line_mean": 29.5084033613, "line_max": 95, "alpha_frac": 0.6412339898, "autogenerated": false, "ratio": 3.5733267716535435, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
import unittest,os,sys from rdkit.six.moves import cPickle from rdkit import RDConfig from rdkit import Chem from rdkit import DataStructs from rdkit.Chem import MolCatalog class TestCase(unittest.TestCase): def test1(self): cat = MolCatalog.CreateMolCatalog() es = [] for smi in ('C1CCC1OC','C1CCC1','C'): m = Chem.MolFromSmiles(smi) entry = MolCatalog.MolCatalogEntry() entry.SetMol(m) self.assertTrue(entry.GetMol()) eSmi = Chem.MolToSmiles(entry.GetMol()) self.assertTrue(eSmi==Chem.MolToSmiles(m)) entry.SetDescription(smi) self.assertTrue(entry.GetDescription()==smi) es.append(entry) v=cat.AddEntry(es[0]) self.assertTrue(v==0) self.assertTrue(cat.GetNumEntries()==1) v=cat.AddEntry(es[1]) self.assertTrue(v==1) self.assertTrue(cat.GetNumEntries()==2) v=cat.AddEntry(es[2]) self.assertTrue(v==2) self.assertTrue(cat.GetNumEntries()==3) cat.AddEdge(0,1) cat.AddEdge(0,2) cat.AddEdge(1,2) d = cPickle.dumps(cat) es = None entry = None cat=None cat = cPickle.loads(d) self.assertTrue(cat.GetNumEntries()==3) cat=None if __name__ == '__main__': unittest.main()
{ "repo_name": "strets123/rdkit", "path": "Code/GraphMol/MolCatalog/Wrap/rough_test.py", "copies": "4", "size": "1285", "license": "bsd-3-clause", "hash": 2677997044440974300, "line_mean": 21.1551724138, "line_max": 50, "alpha_frac": 0.6435797665, "autogenerated": false, "ratio": 2.9204545454545454, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.030728956509119526, "num_lines": 58 }
import unittest, os, sys from rdkit.six.moves import cPickle from rdkit import RDConfig from rdkit import Chem from rdkit import DataStructs from rdkit.Chem import MolCatalog class TestCase(unittest.TestCase): def test1(self): cat = MolCatalog.CreateMolCatalog() es = [] for smi in ('C1CCC1OC', 'C1CCC1', 'C'): m = Chem.MolFromSmiles(smi) entry = MolCatalog.MolCatalogEntry() entry.SetMol(m) self.assertTrue(entry.GetMol()) eSmi = Chem.MolToSmiles(entry.GetMol()) self.assertTrue(eSmi == Chem.MolToSmiles(m)) entry.SetDescription(smi) self.assertTrue(entry.GetDescription() == smi) es.append(entry) v = cat.AddEntry(es[0]) self.assertTrue(v == 0) self.assertTrue(cat.GetNumEntries() == 1) v = cat.AddEntry(es[1]) self.assertTrue(v == 1) self.assertTrue(cat.GetNumEntries() == 2) v = cat.AddEntry(es[2]) self.assertTrue(v == 2) self.assertTrue(cat.GetNumEntries() == 3) cat.AddEdge(0, 1) cat.AddEdge(0, 2) cat.AddEdge(1, 2) d = cPickle.dumps(cat) es = None entry = None cat = None cat = cPickle.loads(d) self.assertTrue(cat.GetNumEntries() == 3) cat = None if __name__ == '__main__': unittest.main()
{ "repo_name": "rvianello/rdkit", "path": "Code/GraphMol/MolCatalog/Wrap/rough_test.py", "copies": "5", "size": "1303", "license": "bsd-3-clause", "hash": -4307203768100849000, "line_mean": 22.2678571429, "line_max": 52, "alpha_frac": 0.6346891788, "autogenerated": false, "ratio": 2.9681093394077447, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00727800369750766, "num_lines": 56 }
from __future__ import print_function from rdkit import RDLogger logger = RDLogger.logger() from rdkit import Chem, Geometry import numpy from rdkit.Numerics import Alignment from rdkit.Chem.Subshape import SubshapeObjects class SubshapeAlignment(object): transform = None triangleSSD = None targetTri = None queryTri = None alignedConfId = -1 dirMatch = 0.0 shapeDist = 0.0 def _getAllTriangles(pts, orderedTraversal=False): for i in range(len(pts)): if orderedTraversal: jStart = i + 1 else: jStart = 0 for j in range(jStart, len(pts)): if j == i: continue if orderedTraversal: kStart = j + 1 else: kStart = 0 for k in range(j + 1, len(pts)): if k == i or k == j: continue yield (i, j, k) class SubshapeDistanceMetric(object): TANIMOTO = 0 PROTRUDE = 1 # returns the distance between two shapea according to the provided metric def GetShapeShapeDistance(s1, s2, distMetric): if distMetric == SubshapeDistanceMetric.PROTRUDE: #print s1.grid.GetOccupancyVect().GetTotalVal(),s2.grid.GetOccupancyVect().GetTotalVal() if s1.grid.GetOccupancyVect().GetTotalVal() < s2.grid.GetOccupancyVect().GetTotalVal(): d = Geometry.ProtrudeDistance(s1.grid, s2.grid) #print d else: d = Geometry.ProtrudeDistance(s2.grid, s1.grid) else: d = Geometry.TanimotoDistance(s1.grid, s2.grid) return d # clusters a set of alignments and returns the cluster centroid def ClusterAlignments(mol, alignments, builder, neighborTol=0.1, distMetric=SubshapeDistanceMetric.PROTRUDE, tempConfId=1001): from rdkit.ML.Cluster import Butina dists = [] for i in range(len(alignments)): TransformMol(mol, alignments[i].transform, newConfId=tempConfId) shapeI = builder.GenerateSubshapeShape(mol, tempConfId, addSkeleton=False) for j in range(i): TransformMol(mol, alignments[j].transform, newConfId=tempConfId + 1) shapeJ = builder.GenerateSubshapeShape(mol, tempConfId + 1, addSkeleton=False) d = GetShapeShapeDistance(shapeI, shapeJ, distMetric) dists.append(d) mol.RemoveConformer(tempConfId + 1) mol.RemoveConformer(tempConfId) clusts = Butina.ClusterData(dists, len(alignments), neighborTol, isDistData=True) res = [alignments[x[0]] for x in clusts] return res def TransformMol(mol, tform, confId=-1, newConfId=100): """ Applies the transformation to a molecule and sets it up with a single conformer """ newConf = Chem.Conformer() newConf.SetId(0) refConf = mol.GetConformer(confId) for i in range(refConf.GetNumAtoms()): pos = list(refConf.GetAtomPosition(i)) pos.append(1.0) newPos = numpy.dot(tform, numpy.array(pos)) newConf.SetAtomPosition(i, list(newPos)[:3]) newConf.SetId(newConfId) mol.RemoveConformer(newConfId) mol.AddConformer(newConf, assignId=False) class SubshapeAligner(object): triangleRMSTol = 1.0 distMetric = SubshapeDistanceMetric.PROTRUDE shapeDistTol = 0.2 numFeatThresh = 3 dirThresh = 2.6 edgeTol = 6.0 #coarseGridToleranceMult=1.5 #medGridToleranceMult=1.25 coarseGridToleranceMult = 1.0 medGridToleranceMult = 1.0 def GetTriangleMatches(self, target, query): """ this is a generator function returning the possible triangle matches between the two shapes """ ssdTol = (self.triangleRMSTol**2) * 9 res = [] tgtPts = target.skelPts queryPts = query.skelPts tgtLs = {} for i in range(len(tgtPts)): for j in range(i + 1, len(tgtPts)): l2 = (tgtPts[i].location - tgtPts[j].location).LengthSq() tgtLs[(i, j)] = l2 queryLs = {} for i in range(len(queryPts)): for j in range(i + 1, len(queryPts)): l2 = (queryPts[i].location - queryPts[j].location).LengthSq() queryLs[(i, j)] = l2 compatEdges = {} tol2 = self.edgeTol * self.edgeTol for tk, tv in tgtLs.items(): for qk, qv in queryLs.items(): if abs(tv - qv) < tol2: compatEdges[(tk, qk)] = 1 seqNo = 0 for tgtTri in _getAllTriangles(tgtPts, orderedTraversal=True): tgtLocs = [tgtPts[x].location for x in tgtTri] for queryTri in _getAllTriangles(queryPts, orderedTraversal=False): if ((tgtTri[0],tgtTri[1]),(queryTri[0],queryTri[1])) in compatEdges and \ ((tgtTri[0],tgtTri[2]),(queryTri[0],queryTri[2])) in compatEdges and \ ((tgtTri[1],tgtTri[2]),(queryTri[1],queryTri[2])) in compatEdges: queryLocs = [queryPts[x].location for x in queryTri] ssd, tf = Alignment.GetAlignmentTransform(tgtLocs, queryLocs) if ssd <= ssdTol: alg = SubshapeAlignment() alg.transform = tf alg.triangleSSD = ssd alg.targetTri = tgtTri alg.queryTri = queryTri alg._seqNo = seqNo seqNo += 1 yield alg def _checkMatchFeatures(self, targetPts, queryPts, alignment): nMatched = 0 for i in range(3): tgtFeats = targetPts[alignment.targetTri[i]].molFeatures qFeats = queryPts[alignment.queryTri[i]].molFeatures if not tgtFeats and not qFeats: nMatched += 1 else: for j, jFeat in enumerate(tgtFeats): if jFeat in qFeats: nMatched += 1 break if nMatched >= self.numFeatThresh: break return nMatched >= self.numFeatThresh def PruneMatchesUsingFeatures(self, target, query, alignments, pruneStats=None): i = 0 targetPts = target.skelPts queryPts = query.skelPts while i < len(alignments): alg = alignments[i] if not self._checkMatchFeatures(targetPts, queryPts, alg): if pruneStats is not None: pruneStats['features'] = pruneStats.get('features', 0) + 1 del alignments[i] else: i += 1 def _checkMatchDirections(self, targetPts, queryPts, alignment): dot = 0.0 for i in range(3): tgtPt = targetPts[alignment.targetTri[i]] queryPt = queryPts[alignment.queryTri[i]] qv = queryPt.shapeDirs[0] tv = tgtPt.shapeDirs[0] rotV = [0.0] * 3 rotV[0] = alignment.transform[0, 0] * qv[0] + alignment.transform[0, 1] * qv[ 1] + alignment.transform[0, 2] * qv[2] rotV[1] = alignment.transform[1, 0] * qv[0] + alignment.transform[1, 1] * qv[ 1] + alignment.transform[1, 2] * qv[2] rotV[2] = alignment.transform[2, 0] * qv[0] + alignment.transform[2, 1] * qv[ 1] + alignment.transform[2, 2] * qv[2] dot += abs(rotV[0] * tv[0] + rotV[1] * tv[1] + rotV[2] * tv[2]) if dot >= self.dirThresh: # already above the threshold, no need to continue break alignment.dirMatch = dot return dot >= self.dirThresh def PruneMatchesUsingDirection(self, target, query, alignments, pruneStats=None): i = 0 tgtPts = target.skelPts queryPts = query.skelPts while i < len(alignments): if not self._checkMatchDirections(tgtPts, queryPts, alignments[i]): if pruneStats is not None: pruneStats['direction'] = pruneStats.get('direction', 0) + 1 del alignments[i] else: i += 1 def _addCoarseAndMediumGrids(self, mol, tgt, confId, builder): oSpace = builder.gridSpacing if mol: builder.gridSpacing = oSpace * 1.5 tgt.medGrid = builder.GenerateSubshapeShape(mol, confId, addSkeleton=False) builder.gridSpacing = oSpace * 2 tgt.coarseGrid = builder.GenerateSubshapeShape(mol, confId, addSkeleton=False) builder.gridSpacing = oSpace else: tgt.medGrid = builder.SampleSubshape(tgt, oSpace * 1.5) tgt.coarseGrid = builder.SampleSubshape(tgt, oSpace * 2.0) def _checkMatchShape(self, targetMol, target, queryMol, query, alignment, builder, targetConf, queryConf, pruneStats=None, tConfId=1001): matchOk = True TransformMol(queryMol, alignment.transform, confId=queryConf, newConfId=tConfId) oSpace = builder.gridSpacing builder.gridSpacing = oSpace * 2 coarseGrid = builder.GenerateSubshapeShape(queryMol, tConfId, addSkeleton=False) d = GetShapeShapeDistance(coarseGrid, target.coarseGrid, self.distMetric) if d > self.shapeDistTol * self.coarseGridToleranceMult: matchOk = False if pruneStats is not None: pruneStats['coarseGrid'] = pruneStats.get('coarseGrid', 0) + 1 else: builder.gridSpacing = oSpace * 1.5 medGrid = builder.GenerateSubshapeShape(queryMol, tConfId, addSkeleton=False) d = GetShapeShapeDistance(medGrid, target.medGrid, self.distMetric) if d > self.shapeDistTol * self.medGridToleranceMult: matchOk = False if pruneStats is not None: pruneStats['medGrid'] = pruneStats.get('medGrid', 0) + 1 else: builder.gridSpacing = oSpace fineGrid = builder.GenerateSubshapeShape(queryMol, tConfId, addSkeleton=False) d = GetShapeShapeDistance(fineGrid, target, self.distMetric) #print ' ',d if d > self.shapeDistTol: matchOk = False if pruneStats is not None: pruneStats['fineGrid'] = pruneStats.get('fineGrid', 0) + 1 alignment.shapeDist = d queryMol.RemoveConformer(tConfId) builder.gridSpacing = oSpace return matchOk def PruneMatchesUsingShape(self, targetMol, target, queryMol, query, builder, alignments, tgtConf=-1, queryConf=-1, pruneStats=None): if not hasattr(target, 'medGrid'): self._addCoarseAndMediumGrids(targetMol, target, tgtConf, builder) logger.info("Shape-based Pruning") i = 0 nOrig = len(alignments) nDone = 0 while i < len(alignments): removeIt = False alg = alignments[i] nDone += 1 if not nDone % 100: nLeft = len(alignments) logger.info(' processed %d of %d. %d alignments remain' % ((nDone, nOrig, nLeft))) if not self._checkMatchShape(targetMol, target, queryMol, query, alg, builder, targetConf=tgtConf, queryConf=queryConf, pruneStats=pruneStats): del alignments[i] else: i += 1 def GetSubshapeAlignments(self, targetMol, target, queryMol, query, builder, tgtConf=-1, queryConf=-1, pruneStats=None): import time if pruneStats is None: pruneStats = {} logger.info("Generating triangle matches") t1 = time.time() res = [x for x in self.GetTriangleMatches(target, query)] t2 = time.time() logger.info("Got %d possible alignments in %.1f seconds" % (len(res), t2 - t1)) pruneStats['gtm_time'] = t2 - t1 if builder.featFactory: logger.info("Doing feature pruning") t1 = time.time() self.PruneMatchesUsingFeatures(target, query, res, pruneStats=pruneStats) t2 = time.time() pruneStats['feats_time'] = t2 - t1 logger.info("%d possible alignments remain. (%.1f seconds required)" % (len(res), t2 - t1)) logger.info("Doing direction pruning") t1 = time.time() self.PruneMatchesUsingDirection(target, query, res, pruneStats=pruneStats) t2 = time.time() pruneStats['direction_time'] = t2 - t1 logger.info("%d possible alignments remain. (%.1f seconds required)" % (len(res), t2 - t1)) t1 = time.time() self.PruneMatchesUsingShape(targetMol, target, queryMol, query, builder, res, tgtConf=tgtConf, queryConf=queryConf, pruneStats=pruneStats) t2 = time.time() pruneStats['shape_time'] = t2 - t1 return res def __call__(self, targetMol, target, queryMol, query, builder, tgtConf=-1, queryConf=-1, pruneStats=None): for alignment in self.GetTriangleMatches(target, query): if builder.featFactory and \ not self._checkMatchFeatures(target.skelPts,query.skelPts,alignment): if pruneStats is not None: pruneStats['features'] = pruneStats.get('features', 0) + 1 continue if not self._checkMatchDirections(target.skelPts, query.skelPts, alignment): if pruneStats is not None: pruneStats['direction'] = pruneStats.get('direction', 0) + 1 continue if not hasattr(target, 'medGrid'): self._addCoarseAndMediumGrids(targetMol, target, tgtConf, builder) if not self._checkMatchShape(targetMol, target, queryMol, query, alignment, builder, targetConf=tgtConf, queryConf=queryConf, pruneStats=pruneStats): continue # if we made it this far, it's a good alignment yield alignment if __name__ == '__main__': from rdkit.six.moves import cPickle tgtMol, tgtShape = cPickle.load(file('target.pkl', 'rb')) queryMol, queryShape = cPickle.load(file('query.pkl', 'rb')) builder = cPickle.load(file('builder.pkl', 'rb')) aligner = SubshapeAligner() algs = aligner.GetSubshapeAlignments(tgtMol, tgtShape, queryMol, queryShape, builder) print(len(algs)) from rdkit.Chem.PyMol import MolViewer v = MolViewer() v.ShowMol(tgtMol, name='Target', showOnly=True) v.ShowMol(queryMol, name='Query', showOnly=False) SubshapeObjects.DisplaySubshape(v, tgtShape, 'target_shape', color=(.8, .2, .2)) SubshapeObjects.DisplaySubshape(v, queryShape, 'query_shape', color=(.2, .2, .8))
{ "repo_name": "jandom/rdkit", "path": "rdkit/Chem/Subshape/SubshapeAligner.py", "copies": "1", "size": "13420", "license": "bsd-3-clause", "hash": -5043293890927798000, "line_mean": 36.8028169014, "line_max": 99, "alpha_frac": 0.6524590164, "autogenerated": false, "ratio": 3.286798922361009, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9360487573334718, "avg_score": 0.01575407308525806, "num_lines": 355 }
from rdkit import RDLogger logger = RDLogger.logger() from rdkit import Chem,Geometry import numpy from rdkit.Numerics import Alignment from rdkit.Chem.Subshape import SubshapeObjects class SubshapeAlignment(object): transform=None triangleSSD=None targetTri=None queryTri=None alignedConfId=-1 dirMatch=0.0 shapeDist=0.0 def _getAllTriangles(pts,orderedTraversal=False): for i in range(len(pts)): if orderedTraversal: jStart=i+1 else: jStart=0 for j in range(jStart,len(pts)): if j==i: continue if orderedTraversal: kStart=j+1 else: kStart=0 for k in range(j+1,len(pts)): if k==i or k==j: continue yield (i,j,k) class SubshapeDistanceMetric(object): TANIMOTO=0 PROTRUDE=1 # returns the distance between two shapea according to the provided metric def GetShapeShapeDistance(s1,s2,distMetric): if distMetric==SubshapeDistanceMetric.PROTRUDE: #print s1.grid.GetOccupancyVect().GetTotalVal(),s2.grid.GetOccupancyVect().GetTotalVal() if s1.grid.GetOccupancyVect().GetTotalVal()<s2.grid.GetOccupancyVect().GetTotalVal(): d = Geometry.ProtrudeDistance(s1.grid,s2.grid) #print d else: d = Geometry.ProtrudeDistance(s2.grid,s1.grid) else: d = Geometry.TanimotoDistance(s1.grid,s2.grid) return d # clusters a set of alignments and returns the cluster centroid def ClusterAlignments(mol,alignments,builder, neighborTol=0.1, distMetric=SubshapeDistanceMetric.PROTRUDE, tempConfId=1001): from rdkit.ML.Cluster import Butina dists = [] for i in range(len(alignments)): TransformMol(mol,alignments[i].transform,newConfId=tempConfId) shapeI=builder.GenerateSubshapeShape(mol,tempConfId,addSkeleton=False) for j in range(i): TransformMol(mol,alignments[j].transform,newConfId=tempConfId+1) shapeJ=builder.GenerateSubshapeShape(mol,tempConfId+1,addSkeleton=False) d = GetShapeShapeDistance(shapeI,shapeJ,distMetric) dists.append(d) mol.RemoveConformer(tempConfId+1) mol.RemoveConformer(tempConfId) clusts=Butina.ClusterData(dists,len(alignments),neighborTol,isDistData=True) res = [alignments[x[0]] for x in clusts] return res def TransformMol(mol,tform,confId=-1,newConfId=100): """ Applies the transformation to a molecule and sets it up with a single conformer """ newConf = Chem.Conformer() newConf.SetId(0) refConf = mol.GetConformer(confId) for i in range(refConf.GetNumAtoms()): pos = list(refConf.GetAtomPosition(i)) pos.append(1.0) newPos = numpy.dot(tform,numpy.array(pos)) newConf.SetAtomPosition(i,list(newPos)[:3]) newConf.SetId(newConfId) mol.RemoveConformer(newConfId) mol.AddConformer(newConf,assignId=False) class SubshapeAligner(object): triangleRMSTol=1.0 distMetric=SubshapeDistanceMetric.PROTRUDE shapeDistTol=0.2 numFeatThresh=3 dirThresh=2.6 edgeTol=6.0 #coarseGridToleranceMult=1.5 #medGridToleranceMult=1.25 coarseGridToleranceMult=1.0 medGridToleranceMult=1.0 def GetTriangleMatches(self,target,query): """ this is a generator function returning the possible triangle matches between the two shapes """ ssdTol = (self.triangleRMSTol**2)*9 res = [] tgtPts = target.skelPts queryPts = query.skelPts tgtLs = {} for i in range(len(tgtPts)): for j in range(i+1,len(tgtPts)): l2 = (tgtPts[i].location-tgtPts[j].location).LengthSq() tgtLs[(i,j)]=l2 queryLs = {} for i in range(len(queryPts)): for j in range(i+1,len(queryPts)): l2 = (queryPts[i].location-queryPts[j].location).LengthSq() queryLs[(i,j)]=l2 compatEdges={} tol2 = self.edgeTol*self.edgeTol for tk,tv in tgtLs.iteritems(): for qk,qv in queryLs.iteritems(): if abs(tv-qv)<tol2: compatEdges[(tk,qk)]=1 seqNo=0 for tgtTri in _getAllTriangles(tgtPts,orderedTraversal=True): tgtLocs=[tgtPts[x].location for x in tgtTri] for queryTri in _getAllTriangles(queryPts,orderedTraversal=False): if compatEdges.has_key(((tgtTri[0],tgtTri[1]),(queryTri[0],queryTri[1]))) and \ compatEdges.has_key(((tgtTri[0],tgtTri[2]),(queryTri[0],queryTri[2]))) and \ compatEdges.has_key(((tgtTri[1],tgtTri[2]),(queryTri[1],queryTri[2]))): queryLocs=[queryPts[x].location for x in queryTri] ssd,tf = Alignment.GetAlignmentTransform(tgtLocs,queryLocs) if ssd<=ssdTol: alg = SubshapeAlignment() alg.transform=tf alg.triangleSSD=ssd alg.targetTri=tgtTri alg.queryTri=queryTri alg._seqNo=seqNo seqNo+=1 yield alg def _checkMatchFeatures(self,targetPts,queryPts,alignment): nMatched=0 for i in range(3): tgtFeats = targetPts[alignment.targetTri[i]].molFeatures qFeats = queryPts[alignment.queryTri[i]].molFeatures if not tgtFeats and not qFeats: nMatched+=1 else: for j,jFeat in enumerate(tgtFeats): if jFeat in qFeats: nMatched+=1 break if nMatched>=self.numFeatThresh: break return nMatched>=self.numFeatThresh def PruneMatchesUsingFeatures(self,target,query,alignments,pruneStats=None): i = 0 targetPts = target.skelPts queryPts = query.skelPts while i<len(alignments): alg = alignments[i] if not self._checkMatchFeatures(targetPts,queryPts,alg): if pruneStats is not None: pruneStats['features']=pruneStats.get('features',0)+1 del alignments[i] else: i+=1 def _checkMatchDirections(self,targetPts,queryPts,alignment): dot = 0.0 for i in range(3): tgtPt = targetPts[alignment.targetTri[i]] queryPt = queryPts[alignment.queryTri[i]] qv = queryPt.shapeDirs[0] tv = tgtPt.shapeDirs[0] rotV =[0.0]*3 rotV[0] = alignment.transform[0,0]*qv[0]+alignment.transform[0,1]*qv[1]+alignment.transform[0,2]*qv[2] rotV[1] = alignment.transform[1,0]*qv[0]+alignment.transform[1,1]*qv[1]+alignment.transform[1,2]*qv[2] rotV[2] = alignment.transform[2,0]*qv[0]+alignment.transform[2,1]*qv[1]+alignment.transform[2,2]*qv[2] dot += abs(rotV[0]*tv[0]+rotV[1]*tv[1]+rotV[2]*tv[2]) if dot>=self.dirThresh: # already above the threshold, no need to continue break alignment.dirMatch=dot return dot>=self.dirThresh def PruneMatchesUsingDirection(self,target,query,alignments,pruneStats=None): i = 0 tgtPts = target.skelPts queryPts = query.skelPts while i<len(alignments): if not self._checkMatchDirections(tgtPts,queryPts,alignments[i]): if pruneStats is not None: pruneStats['direction']=pruneStats.get('direction',0)+1 del alignments[i] else: i+=1 def _addCoarseAndMediumGrids(self,mol,tgt,confId,builder): oSpace=builder.gridSpacing if mol: builder.gridSpacing = oSpace*1.5 tgt.medGrid = builder.GenerateSubshapeShape(mol,confId,addSkeleton=False) builder.gridSpacing = oSpace*2 tgt.coarseGrid = builder.GenerateSubshapeShape(mol,confId,addSkeleton=False) builder.gridSpacing = oSpace else: tgt.medGrid = builder.SampleSubshape(tgt,oSpace*1.5) tgt.coarseGrid = builder.SampleSubshape(tgt,oSpace*2.0) def _checkMatchShape(self,targetMol,target,queryMol,query,alignment,builder, targetConf,queryConf,pruneStats=None,tConfId=1001): matchOk=True TransformMol(queryMol,alignment.transform,confId=queryConf,newConfId=tConfId) oSpace=builder.gridSpacing builder.gridSpacing=oSpace*2 coarseGrid=builder.GenerateSubshapeShape(queryMol,tConfId,addSkeleton=False) d = GetShapeShapeDistance(coarseGrid,target.coarseGrid,self.distMetric) if d>self.shapeDistTol*self.coarseGridToleranceMult: matchOk=False if pruneStats is not None: pruneStats['coarseGrid']=pruneStats.get('coarseGrid',0)+1 else: builder.gridSpacing=oSpace*1.5 medGrid=builder.GenerateSubshapeShape(queryMol,tConfId,addSkeleton=False) d = GetShapeShapeDistance(medGrid,target.medGrid,self.distMetric) if d>self.shapeDistTol*self.medGridToleranceMult: matchOk=False if pruneStats is not None: pruneStats['medGrid']=pruneStats.get('medGrid',0)+1 else: builder.gridSpacing=oSpace fineGrid=builder.GenerateSubshapeShape(queryMol,tConfId,addSkeleton=False) d = GetShapeShapeDistance(fineGrid,target,self.distMetric) #print ' ',d if d>self.shapeDistTol: matchOk=False if pruneStats is not None: pruneStats['fineGrid']=pruneStats.get('fineGrid',0)+1 alignment.shapeDist=d queryMol.RemoveConformer(tConfId) builder.gridSpacing=oSpace return matchOk def PruneMatchesUsingShape(self,targetMol,target,queryMol,query,builder, alignments,tgtConf=-1,queryConf=-1, pruneStats=None): if not hasattr(target,'medGrid'): self._addCoarseAndMediumGrids(targetMol,target,tgtConf,builder) logger.info("Shape-based Pruning") i=0 nOrig = len(alignments) nDone=0 while i < len(alignments): removeIt=False alg = alignments[i] nDone+=1 if not nDone%100: nLeft = len(alignments) logger.info(' processed %d of %d. %d alignments remain'%((nDone, nOrig, nLeft))) if not self._checkMatchShape(targetMol,target,queryMol,query,alg,builder, targetConf=tgtConf,queryConf=queryConf, pruneStats=pruneStats): del alignments[i] else: i+=1 def GetSubshapeAlignments(self,targetMol,target,queryMol,query,builder, tgtConf=-1,queryConf=-1,pruneStats=None): import time if pruneStats is None: pruneStats={} logger.info("Generating triangle matches") t1=time.time() res = [x for x in self.GetTriangleMatches(target,query)] t2=time.time() logger.info("Got %d possible alignments in %.1f seconds"%(len(res),t2-t1)) pruneStats['gtm_time']=t2-t1 if builder.featFactory: logger.info("Doing feature pruning") t1 = time.time() self.PruneMatchesUsingFeatures(target,query,res,pruneStats=pruneStats) t2 = time.time() pruneStats['feats_time']=t2-t1 logger.info("%d possible alignments remain. (%.1f seconds required)"%(len(res),t2-t1)) logger.info("Doing direction pruning") t1 = time.time() self.PruneMatchesUsingDirection(target,query,res,pruneStats=pruneStats) t2 = time.time() pruneStats['direction_time']=t2-t1 logger.info("%d possible alignments remain. (%.1f seconds required)"%(len(res),t2-t1)) t1 = time.time() self.PruneMatchesUsingShape(targetMol,target,queryMol,query,builder,res, tgtConf=tgtConf,queryConf=queryConf, pruneStats=pruneStats) t2 = time.time() pruneStats['shape_time']=t2-t1 return res def __call__(self,targetMol,target,queryMol,query,builder, tgtConf=-1,queryConf=-1,pruneStats=None): for alignment in self.GetTriangleMatches(target,query): if builder.featFactory and \ not self._checkMatchFeatures(target.skelPts,query.skelPts,alignment): if pruneStats is not None: pruneStats['features']=pruneStats.get('features',0)+1 continue if not self._checkMatchDirections(target.skelPts,query.skelPts,alignment): if pruneStats is not None: pruneStats['direction']=pruneStats.get('direction',0)+1 continue if not hasattr(target,'medGrid'): self._addCoarseAndMediumGrids(targetMol,target,tgtConf,builder) if not self._checkMatchShape(targetMol,target,queryMol,query,alignment,builder, targetConf=tgtConf,queryConf=queryConf, pruneStats=pruneStats): continue # if we made it this far, it's a good alignment yield alignment if __name__=='__main__': import cPickle tgtMol,tgtShape = cPickle.load(file('target.pkl','rb')) queryMol,queryShape = cPickle.load(file('query.pkl','rb')) builder = cPickle.load(file('builder.pkl','rb')) aligner = SubshapeAligner() algs = aligner.GetSubshapeAlignments(tgtMol,tgtShape,queryMol,queryShape,builder) print len(algs) from rdkit.Chem.PyMol import MolViewer v = MolViewer() v.ShowMol(tgtMol,name='Target',showOnly=True) v.ShowMol(queryMol,name='Query',showOnly=False) SubshapeObjects.DisplaySubshape(v,tgtShape,'target_shape',color=(.8,.2,.2)) SubshapeObjects.DisplaySubshape(v,queryShape,'query_shape',color=(.2,.2,.8))
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/Chem/Subshape/SubshapeAligner.py", "copies": "2", "size": "13196", "license": "bsd-3-clause", "hash": 552674047822483100, "line_mean": 36.4886363636, "line_max": 108, "alpha_frac": 0.6615641103, "autogenerated": false, "ratio": 3.2842210054753607, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9736972004035912, "avg_score": 0.04176262234788971, "num_lines": 352 }
""" Implementation of the clustering algorithm published in: Butina JCICS 39 747-750 (1999) """ import numpy from rdkit import RDLogger logger=RDLogger.logger() def EuclideanDist(pi,pj): dv = numpy.array(pi)- numpy.array(pj) return numpy.sqrt(dv*dv) def ClusterData(data,nPts,distThresh,isDistData=False,distFunc=EuclideanDist): """ clusters the data points passed in and returns the list of clusters **Arguments** - data: a list of items with the input data (see discussion of _isDistData_ argument for the exception) - nPts: the number of points to be used - distThresh: elements within this range of each other are considered to be neighbors - isDistData: set this toggle when the data passed in is a distance matrix. The distance matrix should be stored symmetrically. An example of how to do this: dists = [] for i in range(nPts): for j in range(i): dists.append( distfunc(i,j) ) - distFunc: a function to calculate distances between points. Receives 2 points as arguments, should return a float **Returns** - a tuple of tuples containing information about the clusters: ( (cluster1_elem1, cluster1_elem2, ...), (cluster2_elem1, cluster2_elem2, ...), ... ) The first element for each cluster is its centroid. """ if isDistData and len(data)>(nPts*(nPts-1)/2): logger.warning("Distance matrix is too long") nbrLists = [None]*nPts for i in range(nPts): nbrLists[i] = [] dmIdx=0 for i in range(nPts): for j in range(i): if not isDistData: dij = distFunc(data[i],data[j]) else: dij = data[dmIdx] dmIdx+=1 if dij<=distThresh: nbrLists[i].append(j) nbrLists[j].append(i) #print nbrLists # sort by the number of neighbors: tLists = [(len(y),x) for x,y in enumerate(nbrLists)] tLists.sort() tLists.reverse() res = [] seen = [0]*nPts while tLists: nNbrs,idx = tLists.pop(0) if seen[idx]: continue tRes = [idx] for nbr in nbrLists[idx]: if not seen[nbr]: tRes.append(nbr) seen[nbr]=1 res.append(tuple(tRes)) return tuple(res)
{ "repo_name": "rdkit/rdkit-orig", "path": "rdkit/ML/Cluster/Butina.py", "copies": "2", "size": "2393", "license": "bsd-3-clause", "hash": -7361614801745215000, "line_mean": 25.8876404494, "line_max": 78, "alpha_frac": 0.6130380276, "autogenerated": false, "ratio": 3.5663189269746645, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.031051693477891305, "num_lines": 89 }
""" Implementation of the clustering algorithm published in: Butina JCICS 39 747-750 (1999) """ import numpy from rdkit import RDLogger logger = RDLogger.logger() def EuclideanDist(pi, pj): dv = numpy.array(pi) - numpy.array(pj) return numpy.sqrt(dv * dv) def ClusterData(data, nPts, distThresh, isDistData=False, distFunc=EuclideanDist, reordering=False): """ clusters the data points passed in and returns the list of clusters **Arguments** - data: a list of items with the input data (see discussion of _isDistData_ argument for the exception) - nPts: the number of points to be used - distThresh: elements within this range of each other are considered to be neighbors - isDistData: set this toggle when the data passed in is a distance matrix. The distance matrix should be stored symmetrically. An example of how to do this: dists = [] for i in range(nPts): for j in range(i): dists.append( distfunc(i,j) ) - distFunc: a function to calculate distances between points. Receives 2 points as arguments, should return a float - reodering: if this toggle is set, the number of neighbors is updated for the unassigned molecules after a new cluster is created such that always the molecule with the largest number of unassigned neighbors is selected as the next cluster center. **Returns** - a tuple of tuples containing information about the clusters: ( (cluster1_elem1, cluster1_elem2, ...), (cluster2_elem1, cluster2_elem2, ...), ... ) The first element for each cluster is its centroid. """ if isDistData and len(data) > (nPts * (nPts - 1) / 2): logger.warning("Distance matrix is too long") nbrLists = [None] * nPts for i in range(nPts): nbrLists[i] = [] dmIdx = 0 for i in range(nPts): for j in range(i): if not isDistData: dij = distFunc(data[i], data[j]) else: dij = data[dmIdx] dmIdx += 1 if dij <= distThresh: nbrLists[i].append(j) nbrLists[j].append(i) #print nbrLists # sort by the number of neighbors: tLists = [(len(y), x) for x, y in enumerate(nbrLists)] tLists.sort(reverse=True) res = [] seen = [0] * nPts while tLists: nNbrs, idx = tLists.pop(0) if seen[idx]: continue tRes = [idx] for nbr in nbrLists[idx]: if not seen[nbr]: tRes.append(nbr) seen[nbr] = 1 # update the number of neighbors: # remove all members of the new cluster from the list of # neighbors and reorder the tLists if reordering: # get the list of affected molecules, i.e. all molecules # which have at least one of the members of the new cluster # as a neighbor nbrNbr = [nbrLists[t] for t in tRes] nbrNbr = frozenset().union(*nbrNbr) # loop over all remaining molecules in tLists but only # consider unassigned and affected compounds for x, y in enumerate(tLists): y1 = y[1] if seen[y1] or (y1 not in nbrNbr): continue # update the number of neighbors nbrLists[y1] = set(nbrLists[y1]).difference(tRes) tLists[x] = (len(nbrLists[y1]), y1) # now reorder the list tLists.sort(reverse=True) res.append(tuple(tRes)) return tuple(res)
{ "repo_name": "jandom/rdkit", "path": "rdkit/ML/Cluster/Butina.py", "copies": "1", "size": "3551", "license": "bsd-3-clause", "hash": -6320237006247684000, "line_mean": 30.149122807, "line_max": 100, "alpha_frac": 0.6212334554, "autogenerated": false, "ratio": 3.683609958506224, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9736244288179975, "avg_score": 0.0137198251452497, "num_lines": 114 }
import unittest from rdkit.six.moves import cPickle from rdkit import RDConfig from rdkit.ML.Cluster import Butina class TestCase(unittest.TestCase): def test1(self): dists = [1, 2, 1, 4, 3, 2, 6, 5, 4, 2, 7, 6, 5, 3, 1] nPts = 6 cs = Butina.ClusterData(dists, nPts, 1.1, isDistData=1) self.assertTrue(len(cs) == 3) self.assertTrue(cs[0] == (1, 0, 2)) self.assertTrue(cs[1] == (5, 4)) self.assertTrue(cs[2] == (3, )) def test2(self): dists = [.5, 1, .5, 2, 1.5, 1, 3, 2.5, 2, 1, 5, 4.5, 4, 3, 2, 8, 7.5, 7, 6, 5, 3, 9, 8.5, 8, 7, 6, 4, 1, ] nPts = 8 cs = Butina.ClusterData(dists, nPts, 2.1, isDistData=1) self.assertTrue(len(cs) == 3) self.assertTrue(cs[0] == (3, 0, 1, 2, 4)) self.assertTrue(cs[1] == (7, 6)) self.assertTrue(cs[2] == (5, )) def test3(self): " edge case: everything a singleton " dists = [1, 2, 1, ] nPts = 3 cs = Butina.ClusterData(dists, nPts, 0.9, isDistData=1) self.assertTrue(len(cs) == 3) self.assertTrue(cs[0] == (2, )) self.assertTrue(cs[1] == (1, )) self.assertTrue(cs[2] == (0, )) def test4(self): " edge case: everything in one cluster " dists = [1, 2, 1, 3, 2, 1, ] nPts = 4 cs = Butina.ClusterData(dists, nPts, 2, isDistData=1) self.assertTrue(len(cs) == 1) self.assertTrue(cs[0] == (3, 0, 1, 2)) def test4(self): " edge case: one in the middle leaves the edges lonely " dists = [1.5, 2.5, 1, 3.5, 2, 1, 5, 3.5, 2.5, 1.5, ] nPts = 5 cs = Butina.ClusterData(dists, nPts, 1.1, isDistData=1) self.assertTrue(len(cs) == 3) self.assertTrue(cs[0] == (2, 1, 3)) self.assertTrue(cs[1] == (4, )) self.assertTrue(cs[2] == (0, )) def test6(self): " edge case: zero distances: " dists = [1, 2, 0, 2, 0, 0, 4, 2, 2, 2, ] nPts = 5 cs = Butina.ClusterData(dists, nPts, 0.9, isDistData=1) self.assertTrue(len(cs) == 3) self.assertTrue(cs[0] == (3, 1, 2)) self.assertTrue(cs[1] == (4, )) self.assertTrue(cs[2] == (0, )) def test7(self): " reordering: no changes " dists = [1, 2, 1, 4, 3, 2, 6, 5, 4, 2, 7, 6, 5, 3, 1] nPts = 6 cs = Butina.ClusterData(dists, nPts, 1.1, isDistData=1, reordering=True) self.assertTrue(len(cs) == 3) self.assertTrue(cs[0] == (1, 0, 2)) self.assertTrue(cs[1] == (5, 4)) self.assertTrue(cs[2] == (3, )) def test8(self): " reordering: changes" dists = [2, 3.5, 1.5, 5, 3, 1.5, 7, 5, 3.5, 2, 8, 6, 4.5, 3, 1, 9, 7, 5.5, 4, 2, 1, ] nPts = 7 # without reordering cs = Butina.ClusterData(dists, nPts, 2.1, isDistData=1) self.assertTrue(len(cs) == 3) self.assertTrue(cs[0] == (4, 3, 5, 6)) self.assertTrue(cs[1] == (2, 1)) self.assertTrue(cs[2] == (0, )) # with reordering cs = Butina.ClusterData(dists, nPts, 2.1, isDistData=1, reordering=True) self.assertTrue(len(cs) == 2) self.assertTrue(cs[0] == (4, 3, 5, 6)) self.assertTrue(cs[1] == (1, 0, 2)) profileTest = 0 if __name__ == '__main__': unittest.main()
{ "repo_name": "jandom/rdkit", "path": "rdkit/ML/Cluster/UnitTestButina.py", "copies": "1", "size": "4057", "license": "bsd-3-clause", "hash": 8340812294716463000, "line_mean": 21.6648044693, "line_max": 76, "alpha_frac": 0.4269164407, "autogenerated": false, "ratio": 3.0230998509687033, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8936703213815784, "avg_score": 0.002662615570583815, "num_lines": 179 }
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import Lipinski,Descriptors,Crippen from rdkit.Dbase.DbConnection import DbConnect from rdkit.Dbase import DbModule import re #set up the logger: import rdkit.RDLogger as logging logger = logging.logger() logger.setLevel(logging.INFO) def ProcessMol(mol,typeConversions,globalProps,nDone,nameProp='_Name',nameCol='compound_id', redraw=False,keepHs=False, skipProps=False,addComputedProps=False, skipSmiles=False, uniqNames=None,namesSeen=None): if not mol: raise ValueError('no molecule') if keepHs: Chem.SanitizeMol(mol) try: nm = mol.GetProp(nameProp) except KeyError: nm = None if not nm: nm = 'Mol_%d'%nDone if uniqNames and nm in namesSeen: logger.error('duplicate compound id (%s) encountered. second instance skipped.'%nm) return None namesSeen.add(nm) row = [nm] if not skipProps: if addComputedProps: nHD=Lipinski.NumHDonors(mol) mol.SetProp('DonorCount',str(nHD)) nHA=Lipinski.NumHAcceptors(mol) mol.SetProp('AcceptorCount',str(nHA)) nRot=Lipinski.NumRotatableBonds(mol) mol.SetProp('RotatableBondCount',str(nRot)) MW=Descriptors.MolWt(mol) mol.SetProp('AMW',str(MW)) logp=Crippen.MolLogP(mol) mol.SetProp('MolLogP',str(logp)) pns = list(mol.GetPropNames()) pD={} for pi,pn in enumerate(pns): if pn.lower()==nameCol.lower(): continue pv = mol.GetProp(pn).strip() if pv.find('>')<0 and pv.find('<')<0: colTyp = globalProps.get(pn,2) while colTyp>0: try: tpi = typeConversions[colTyp][1](pv) except Exception: colTyp-=1 else: break globalProps[pn]=colTyp pD[pn]=typeConversions[colTyp][1](pv) else: pD[pn]=pv else: pD={} if redraw: AllChem.Compute2DCoords(m) if not skipSmiles: row.append(Chem.MolToSmiles(mol,True)) row.append(DbModule.binaryHolder(mol.ToBinary())) row.append(pD) return row def ConvertRows(rows,globalProps,defaultVal,skipSmiles): for i,row in enumerate(rows): newRow = [row[0],row[1]] pD=row[-1] for pn in globalProps: pv = pD.get(pn,defaultVal) newRow.append(pv) newRow.append(row[2]) if not skipSmiles: newRow.append(row[3]) rows[i] = newRow def LoadDb(suppl,dbName,nameProp='_Name',nameCol='compound_id',silent=False, redraw=False,errorsTo=None,keepHs=False,defaultVal='N/A',skipProps=False, regName='molecules',skipSmiles=False,maxRowsCached=-1, uniqNames=False,addComputedProps=False,lazySupplier=False, startAnew=True): if not lazySupplier: nMols = len(suppl) else: nMols=-1 if not silent: logger.info("Generating molecular database in file %s"%dbName) if not lazySupplier: logger.info(" Processing %d molecules"%nMols) rows = [] globalProps = {} namesSeen = set() nDone = 0 typeConversions={0:('varchar',str),1:('float',float),2:('int',int)} for m in suppl: nDone +=1 if not m: if errorsTo: if hasattr(suppl,'GetItemText'): d = suppl.GetItemText(nDone-1) errorsTo.write(d) else: logger.warning('full error file support not complete') continue row=ProcessMol(m,typeConversions,globalProps,nDone,nameProp=nameProp, nameCol=nameCol,redraw=redraw, keepHs=keepHs,skipProps=skipProps, addComputedProps=addComputedProps,skipSmiles=skipSmiles, uniqNames=uniqNames,namesSeen=namesSeen) if row is None: continue rows.append([nDone]+row) if not silent and not nDone%100: logger.info(' done %d'%nDone) if len(rows)==maxRowsCached: break nameDef='%s varchar not null'%nameCol if uniqNames: nameDef += ' unique' typs = ['guid integer not null primary key',nameDef] pns = [] for pn,v in globalProps.items(): addNm = re.sub(r'[\W]','_',pn) typs.append('%s %s'%(addNm,typeConversions[v][0])) pns.append(pn.lower()) if not skipSmiles: if 'smiles' not in pns: typs.append('smiles varchar') else: typs.append('cansmiles varchar') typs.append('molpkl %s'%(DbModule.binaryTypeName)) conn = DbConnect(dbName) curs = conn.GetCursor() if startAnew: try: curs.execute('drop table %s'%regName) except Exception: pass curs.execute('create table %s (%s)'%(regName,','.join(typs))) else: curs.execute('select * from %s limit 1'%(regName,)) ocolns = set([x[0] for x in curs.description]) ncolns = set([x.split()[0] for x in typs]) if ncolns != ocolns: raise ValueError('Column names do not match: %s != %s'%(ocolns,ncolns)) curs.execute('select max(guid) from %s'%(regName,)) offset = curs.fetchone()[0] for row in rows: row[0] += offset qs = ','.join([DbModule.placeHolder for x in typs]) ConvertRows(rows,globalProps,defaultVal,skipSmiles) curs.executemany('insert into %s values (%s)'%(regName,qs),rows) conn.Commit() rows = [] while 1: nDone +=1 try: m = next(suppl) except StopIteration: break if not m: if errorsTo: if hasattr(suppl,'GetItemText'): d = suppl.GetItemText(nDone-1) errorsTo.write(d) else: logger.warning('full error file support not complete') continue tmpProps={} row=ProcessMol(m,typeConversions,globalProps,nDone,nameProp=nameProp, nameCol=nameCol,redraw=redraw, keepHs=keepHs,skipProps=skipProps, addComputedProps=addComputedProps,skipSmiles=skipSmiles, uniqNames=uniqNames,namesSeen=namesSeen) if not row: continue rows.append([nDone]+row) if not silent and not nDone%100: logger.info(' done %d'%nDone) if len(rows)==maxRowsCached: ConvertRows(rows,globalProps,defaultVal,skipSmiles) curs.executemany('insert into %s values (%s)'%(regName,qs),rows) conn.Commit() rows = [] if len(rows): ConvertRows(rows,globalProps,defaultVal,skipSmiles) curs.executemany('insert into %s values (%s)'%(regName,qs),rows) conn.Commit()
{ "repo_name": "adalke/rdkit", "path": "rdkit/Chem/MolDb/Loader_orig.py", "copies": "1", "size": "6608", "license": "bsd-3-clause", "hash": -8750633315164838000, "line_mean": 30.317535545, "line_max": 92, "alpha_frac": 0.6372578692, "autogenerated": false, "ratio": 3.209324915007285, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9165449428095416, "avg_score": 0.0362266712223738, "num_lines": 211 }
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import Lipinski, Descriptors, Crippen from rdkit.Dbase.DbConnection import DbConnect from rdkit.Dbase import DbModule import re #set up the logger: import rdkit.RDLogger as logging logger = logging.logger() logger.setLevel(logging.INFO) def ProcessMol(mol, typeConversions, globalProps, nDone, nameProp='_Name', nameCol='compound_id', redraw=False, keepHs=False, skipProps=False, addComputedProps=False, skipSmiles=False, uniqNames=None, namesSeen=None): if not mol: raise ValueError('no molecule') if keepHs: Chem.SanitizeMol(mol) try: nm = mol.GetProp(nameProp) except KeyError: nm = None if not nm: nm = 'Mol_%d' % nDone if uniqNames and nm in namesSeen: logger.error('duplicate compound id (%s) encountered. second instance skipped.' % nm) return None namesSeen.add(nm) row = [nm] if not skipProps: if addComputedProps: nHD = Lipinski.NumHDonors(mol) mol.SetProp('DonorCount', str(nHD)) nHA = Lipinski.NumHAcceptors(mol) mol.SetProp('AcceptorCount', str(nHA)) nRot = Lipinski.NumRotatableBonds(mol) mol.SetProp('RotatableBondCount', str(nRot)) MW = Descriptors.MolWt(mol) mol.SetProp('AMW', str(MW)) logp = Crippen.MolLogP(mol) mol.SetProp('MolLogP', str(logp)) pns = list(mol.GetPropNames()) pD = {} for pi, pn in enumerate(pns): if pn.lower() == nameCol.lower(): continue pv = mol.GetProp(pn).strip() if pv.find('>') < 0 and pv.find('<') < 0: colTyp = globalProps.get(pn, 2) while colTyp > 0: try: tpi = typeConversions[colTyp][1](pv) except Exception: colTyp -= 1 else: break globalProps[pn] = colTyp pD[pn] = typeConversions[colTyp][1](pv) else: pD[pn] = pv else: pD = {} if redraw: AllChem.Compute2DCoords(m) if not skipSmiles: row.append(Chem.MolToSmiles(mol, True)) row.append(DbModule.binaryHolder(mol.ToBinary())) row.append(pD) return row def ConvertRows(rows, globalProps, defaultVal, skipSmiles): for i, row in enumerate(rows): newRow = [row[0], row[1]] pD = row[-1] for pn in globalProps: pv = pD.get(pn, defaultVal) newRow.append(pv) newRow.append(row[2]) if not skipSmiles: newRow.append(row[3]) rows[i] = newRow def LoadDb(suppl, dbName, nameProp='_Name', nameCol='compound_id', silent=False, redraw=False, errorsTo=None, keepHs=False, defaultVal='N/A', skipProps=False, regName='molecules', skipSmiles=False, maxRowsCached=-1, uniqNames=False, addComputedProps=False, lazySupplier=False, startAnew=True): if not lazySupplier: nMols = len(suppl) else: nMols = -1 if not silent: logger.info("Generating molecular database in file %s" % dbName) if not lazySupplier: logger.info(" Processing %d molecules" % nMols) rows = [] globalProps = {} namesSeen = set() nDone = 0 typeConversions = {0: ('varchar', str), 1: ('float', float), 2: ('int', int)} for m in suppl: nDone += 1 if not m: if errorsTo: if hasattr(suppl, 'GetItemText'): d = suppl.GetItemText(nDone - 1) errorsTo.write(d) else: logger.warning('full error file support not complete') continue row = ProcessMol(m, typeConversions, globalProps, nDone, nameProp=nameProp, nameCol=nameCol, redraw=redraw, keepHs=keepHs, skipProps=skipProps, addComputedProps=addComputedProps, skipSmiles=skipSmiles, uniqNames=uniqNames, namesSeen=namesSeen) if row is None: continue rows.append([nDone] + row) if not silent and not nDone % 100: logger.info(' done %d' % nDone) if len(rows) == maxRowsCached: break nameDef = '%s varchar not null' % nameCol if uniqNames: nameDef += ' unique' typs = ['guid integer not null primary key', nameDef] pns = [] for pn, v in globalProps.items(): addNm = re.sub(r'[\W]', '_', pn) typs.append('%s %s' % (addNm, typeConversions[v][0])) pns.append(pn.lower()) if not skipSmiles: if 'smiles' not in pns: typs.append('smiles varchar') else: typs.append('cansmiles varchar') typs.append('molpkl %s' % (DbModule.binaryTypeName)) conn = DbConnect(dbName) curs = conn.GetCursor() if startAnew: try: curs.execute('drop table %s' % regName) except Exception: pass curs.execute('create table %s (%s)' % (regName, ','.join(typs))) else: curs.execute('select * from %s limit 1' % (regName, )) ocolns = set([x[0] for x in curs.description]) ncolns = set([x.split()[0] for x in typs]) if ncolns != ocolns: raise ValueError('Column names do not match: %s != %s' % (ocolns, ncolns)) curs.execute('select max(guid) from %s' % (regName, )) offset = curs.fetchone()[0] for row in rows: row[0] += offset qs = ','.join([DbModule.placeHolder for x in typs]) ConvertRows(rows, globalProps, defaultVal, skipSmiles) curs.executemany('insert into %s values (%s)' % (regName, qs), rows) conn.Commit() rows = [] while 1: nDone += 1 try: m = next(suppl) except StopIteration: break if not m: if errorsTo: if hasattr(suppl, 'GetItemText'): d = suppl.GetItemText(nDone - 1) errorsTo.write(d) else: logger.warning('full error file support not complete') continue tmpProps = {} row = ProcessMol(m, typeConversions, globalProps, nDone, nameProp=nameProp, nameCol=nameCol, redraw=redraw, keepHs=keepHs, skipProps=skipProps, addComputedProps=addComputedProps, skipSmiles=skipSmiles, uniqNames=uniqNames, namesSeen=namesSeen) if not row: continue rows.append([nDone] + row) if not silent and not nDone % 100: logger.info(' done %d' % nDone) if len(rows) == maxRowsCached: ConvertRows(rows, globalProps, defaultVal, skipSmiles) curs.executemany('insert into %s values (%s)' % (regName, qs), rows) conn.Commit() rows = [] if len(rows): ConvertRows(rows, globalProps, defaultVal, skipSmiles) curs.executemany('insert into %s values (%s)' % (regName, qs), rows) conn.Commit()
{ "repo_name": "rvianello/rdkit", "path": "rdkit/Chem/MolDb/Loader_orig.py", "copies": "12", "size": "6741", "license": "bsd-3-clause", "hash": 645975154123385900, "line_mean": 30.9478672986, "line_max": 99, "alpha_frac": 0.6246847649, "autogenerated": false, "ratio": 3.220735785953177, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9845420550853177, "avg_score": null, "num_lines": null }
import os import io import sys import unittest from rdkit import RDConfig #import pickle from rdkit.six.moves import cPickle as pickle from rdkit import DataStructs as ds class TestCase(unittest.TestCase): def setUp(self) : pass def test1Discrete(self): v1 = ds.DiscreteValueVect(ds.DiscreteValueType.ONEBITVALUE, 30) for i in range(15): v1[2*i] = 1; self.assertTrue(len(v1) == 30) self.assertTrue(v1.GetTotalVal() == 15) for i in range(len(v1)): self.assertTrue(v1[i] == (i+1)%2) self.assertRaises(ValueError, lambda : v1.__setitem__(5, 2)) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.TWOBITVALUE, 30) for i in range(len(v1)): v1[i] = i%4; self.assertTrue(len(v1) == 30) for i in range(len(v1)): self.assertTrue(v1[i] == i%4) self.assertRaises(ValueError, lambda : v1.__setitem__(10, 6)) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.FOURBITVALUE, 30) for i in range(len(v1)): v1[i] = i%16; self.assertTrue(len(v1) == 30) self.assertTrue(v1.GetTotalVal() == 211) for i in range(len(v1)): self.assertTrue(v1[i] == i%16) self.assertRaises(ValueError, lambda : v1.__setitem__(10, 16)) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.EIGHTBITVALUE, 32) for i in range(len(v1)): v1[i] = i%256; self.assertTrue(len(v1) == 32) self.assertTrue(v1.GetTotalVal() == 496) for i in range(len(v1)): self.assertTrue(v1[i] == i%256) self.assertRaises(ValueError, lambda : v1.__setitem__(10, 256)) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.SIXTEENBITVALUE, 300) for i in range(len(v1)): v1[i] = i%300; self.assertTrue(len(v1) == 300) self.assertTrue(v1.GetTotalVal() == 44850) self.assertRaises(ValueError, lambda : v1.__setitem__(10, 65536)) def test2VectDistances(self): v1 = ds.DiscreteValueVect(ds.DiscreteValueType.ONEBITVALUE, 30) v2 = ds.DiscreteValueVect(ds.DiscreteValueType.ONEBITVALUE, 30) for i in range(15): v1[2*i] = 1 v2[2*i] = 1 self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) for i in range(30): if (i%3 == 0): v2[i] = 1 else: v2[i] = 0 self.assertTrue(ds.ComputeL1Norm(v1, v2) == 15) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.TWOBITVALUE, 30) v2 = ds.DiscreteValueVect(ds.DiscreteValueType.TWOBITVALUE, 30) for i in range(30): v1[i] = i%4 v2[i] = (i+1)%4 self.assertTrue(ds.ComputeL1Norm(v1, v2) == 44) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.FOURBITVALUE, 16) v2 = ds.DiscreteValueVect(ds.DiscreteValueType.FOURBITVALUE, 16) for i in range(16): v1[i] = i%16 v2[i] = i%5 self.assertTrue(ds.ComputeL1Norm(v1, v2) == 90) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.EIGHTBITVALUE, 5) v2 = ds.DiscreteValueVect(ds.DiscreteValueType.EIGHTBITVALUE, 5) v1[0] = 34 v1[1] = 167 v1[2] = 3 v1[3] = 56 v1[4] = 128 v2[0] = 14 v2[1] = 67 v2[2] = 103 v2[3] = 6 v2[4] = 228 self.assertTrue(ds.ComputeL1Norm(v1, v2) == 370) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.SIXTEENBITVALUE, 3) v2 = ds.DiscreteValueVect(ds.DiscreteValueType.SIXTEENBITVALUE, 3) v1[0] = 2345 v1[1] = 64578 v1[2] = 34 v2[0] = 1345 v2[1] = 54578 v2[2] = 10034 self.assertTrue(ds.ComputeL1Norm(v1, v2) == 21000) def test3Pickles(self): #outF = file('dvvs.pkl','wb+') with open( os.path.join(RDConfig.RDBaseDir, 'Code/DataStructs/Wrap/testData/dvvs.pkl'), 'r' ) as inTF: buf = inTF.read().replace('\r\n', '\n').encode('utf-8') inTF.close() with io.BytesIO(buf) as inF: v1 = ds.DiscreteValueVect(ds.DiscreteValueType.ONEBITVALUE, 30) for i in range(15): v1[2*i] = 1 v2 = pickle.loads(pickle.dumps(v1)) self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) #cPickle.dump(v1,outF) v2=pickle.load(inF, encoding='bytes') self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) self.assertTrue(v1.GetTotalVal()==v2.GetTotalVal()) self.assertTrue(v2.GetTotalVal()!=0) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.TWOBITVALUE, 30) for i in range(30): v1[i] = i%4 v2 = pickle.loads(pickle.dumps(v1)) self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) #pickle.dump(v1,outF) v2=pickle.load(inF, encoding='bytes') self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) self.assertTrue(v1.GetTotalVal()==v2.GetTotalVal()) self.assertTrue(v2.GetTotalVal()!=0) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.FOURBITVALUE, 16) for i in range(16): v1[i] = i%16 v2 = pickle.loads(pickle.dumps(v1)) self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) #pickle.dump(v1,outF) v2=pickle.load(inF, encoding='bytes') self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) self.assertTrue(v1.GetTotalVal()==v2.GetTotalVal()) self.assertTrue(v2.GetTotalVal()!=0) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.EIGHTBITVALUE, 5) v1[0] = 34 v1[1] = 167 v1[2] = 3 v1[3] = 56 v1[4] = 128 v2 = pickle.loads(pickle.dumps(v1)) self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) #pickle.dump(v1,outF) v2=pickle.load(inF, encoding='bytes') self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) self.assertTrue(v1.GetTotalVal()==v2.GetTotalVal()) self.assertTrue(v2.GetTotalVal()!=0) v1 = ds.DiscreteValueVect(ds.DiscreteValueType.SIXTEENBITVALUE, 3) v1[0] = 2345 v1[1] = 64578 v1[2] = 34 v2 = pickle.loads(pickle.dumps(v1)) self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) #pickle.dump(v1,outF) v2=pickle.load(inF, encoding='bytes') self.assertTrue(ds.ComputeL1Norm(v1, v2) == 0) self.assertTrue(v1.GetTotalVal()==v2.GetTotalVal()) self.assertTrue(v2.GetTotalVal()!=0) def test4DiscreteVectOps(self): v1 = ds.DiscreteValueVect(ds.DiscreteValueType.TWOBITVALUE, 8) for i in range(4): v1[2*i] = 2 self.assertTrue(v1.GetTotalVal()==8) v2 = ds.DiscreteValueVect(ds.DiscreteValueType.TWOBITVALUE, 8) for i in range(4): v2[2*i+1] = 2 v2[2*i] = 1 self.assertTrue(v2.GetTotalVal()==12) v3 = v1|v2 self.assertTrue(len(v3)==len(v2)) self.assertTrue(v3.GetTotalVal()==16) v3 = v1&v2 self.assertTrue(len(v3)==len(v2)) self.assertTrue(v3.GetTotalVal()==4) v4 = v1+v2 self.assertTrue(len(v4)==len(v2)) self.assertTrue(v4.GetTotalVal()==20) v4 = v1-v2 self.assertTrue(v4.GetTotalVal()==4) v4 = v2-v1 self.assertTrue(v4.GetTotalVal()==8) v4 = v2 v4 -= v1 self.assertTrue(v4.GetTotalVal()==8) v4 -= v4 self.assertTrue(v4.GetTotalVal()==0) def testIterator(self): """ connected to sf.net issue 1719831: http://sourceforge.net/tracker/index.php?func=detail&aid=1719831&group_id=160139&atid=814650 """ v1 = ds.DiscreteValueVect(ds.DiscreteValueType.ONEBITVALUE, 30) for i in range(15): v1[2*i] = 1; l1 = list(v1) self.assertTrue(len(l1)==len(v1)) for i,v in enumerate(v1): self.assertTrue(l1[i]==v) self.assertRaises(IndexError,lambda :v1[40]) def test9ToNumpy(self): import numpy bv = ds.DiscreteValueVect(ds.DiscreteValueType.FOURBITVALUE,32) bv[0]=1 bv[1]=4 bv[17]=1 bv[23]=8 bv[31]=12 arr = numpy.zeros((3,),'i') ds.ConvertToNumpyArray(bv,arr) for i in range(len(bv)): self.assertEqual(bv[i],arr[i]) if __name__ == '__main__': unittest.main()
{ "repo_name": "soerendip42/rdkit", "path": "Code/DataStructs/Wrap/testDiscreteValueVect.py", "copies": "3", "size": "7784", "license": "bsd-3-clause", "hash": -1170882445160915700, "line_mean": 28.7099236641, "line_max": 96, "alpha_frac": 0.6202466598, "autogenerated": false, "ratio": 2.6548431105047747, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.964637917957194, "avg_score": 0.02574211814656705, "num_lines": 262 }